

Copyright 1913, by Modern Publishing Co., 231 Fulton St., New York City.

A Magazine devoted
entirely to
the Electrical Arts

MoIEERN
ZELECTRCS
"The Electrical
Magazine
for Everybody"

Contents

A Hypothesis Regarding Aurora Rorealis. .
The Measurement of Flectomotive Force Fy the Potentiometer Metlind.
Military Automobile Scarchlight.
Filectrical llelps in I.ife Saving
How Much Power Does it Tai to Ruin a Volimeter or an Ammeter
Pole Supported by Wires it Carried.
Ghart Recording Pyrometer
As Flectro-Magnet for Pantagruel
The Measurement of [ligh Potentials
Simple Experiments in Nlternating Currents
I Ilandy and Useful Rheostat
An Automatic Tank Filler.
An Automatic Tank Filler..
Simple Magnetic Locator to Use in Viring or Plumbing
Automatic Current Regulator and Protective Switch
A Cheap Rheostat. Method of Finding ihe Niother Simple Method of Finding A High Frequency Buzzer.
Flectric Soldering Iron
Recent Electrical Patents
The Oracle
Hadio Cumannieation
An Experimental Radio-Phone
Wireless in the Philippines.
I Mypothesis Regarding Aurora Borcalis

		Page
$\begin{array}{r} \text { Page } \\ 446 \end{array}$	Examinations for Operator's License Now	
	Held at Fort Mason, San Prancisco	
	ireless \qquad	478
456	A Portable Receiving Set	
160	A Combined Section and	
	for Loose Coupler IVindin	476
161	A Non Sticking Interrupter.........	477
463	About Aerials and Recciving Inok-Uns.	477 478
463	A Multiple Crystal Holder	478
464	A Large Sending Conden	480 480
465		
470 475	Another Synchronous Rotary nap for Spark Coils	492
475 477	In Fonclosed Detector	483
477	\ Migh Frequency Buzz	484
	Reccrit Electrical Patents	480
480	T.e Pas, Manitoha Wircless	493
	Wireless Club Directory.	494
481	Wireless Telegraph Cont	7
482	The Oracle	
	T,ier nsed Amatcur Stations............	
483	Miserllameoun Subjerts	
484	The fVorld's Largest Ship Borealis	137
484	A Hypothesis Reparding Aurora Borealis.	4.16
486	Residence Iceless Refrigeration	
504	Pole Supported by Wires it Carried.	463
	Machining Large Casting for TurboGen-	454
441	Marksmanship of Our Navy 1200 Times	
4.4	Better Tlian at the Time of the Spanish-	
446	American War	464
454	I.eat Silk Clothing for X-Ray Srecialists	473
45.5	dil Nisht Tennis With Felectrie Tights.	73
4.57	A Wash Bottle for the Tahnratory.	2
	With the Inventor.	48
4 G 1	Recent Tmportant, Patent Dec	48.5
462	Recent Elcetrical Patents	48
	Flying Sparks	41
472	The Oracle	501

Page Held at Fort Mason, San ranc" News is Burned
A Portable Receiving Set...........................
for Loose Conpler Windings............. 476
Sor Sticking Interrupter.................... 477
Dbout Aerials and Recciving IInok-Uns..... 477
A Multiple Crystal Holder................ 478
Large Sending Condenser.... 480
Another Synchronous Rotary Ciap for Spark
In Finclosed Detector 483
M Iigh Frequency Buzzcr . 484
f.e Pas, Manitoha Vireless Station 493

The Oracle 504
Visuctilntueanw Sulbjeets
The \$Vorld's Largest Ship
Hypothesis Regarding A
Residence Iceless Refrigeration............ 45.
Pole Supported by Wires it Cartied............ 463
Machining Large Casting for Tirbo Gen
464
arkmanship of Aur Navy 1.2 onmes
46.
I.cad Silk Clothing for X.Rav Specialists... 473

Nil . ight Tentis With belectric I.ights.
A ash Bottle for the V,ahoratnev
Recent Tmportant. Patent Decisions
Recent Elcetrical Patents
Tlie Oracle
The Oracle 50
178
482
485
48.3
485
486

4 กn

The Ifeterodyne Receiving System. sil Words a Minute by Wireless 3.500 Miles heress Telegraphiv in Brazil
Homment Manden Wims Ifonors as Wireless Operalor
! Practical "No.Slicler" Tuner
Trouble Vadin Fxperimenter Rets Into
-
Pxoiration We enclose renewal blank with the lat eopy sent out on each subscription. To
Change of Address When you change your address notify us promptly, giving old as well that our mailing list is made us new address. Also notify your former postmaster, as it often asppens go to your old address, but the postmaster will forward copy to your new address upon request, Ne copies sent after expiration of subscription.

Magazine issued monthly. Yearly subscription in U. S., \$1.50. Manhattan and Cenada, \$1.8s Foreign, $\$ 2.00$ in Gold. SINGLE COPY, is cents.

Modern Electrics may be had at all news stands in the United States and Caneda also at Rrentano's, 37 Avenue de l'Opera, Paris.

Original contributions of timely interest pertaining to the electrical and affliated arts, or on eny branch of electrical science and invention, especially with practical working directions, drawings or photographs are solicited. No manuscript returned unless postage is enclosed.

Forms close the 1 st of the month preceding date of publication. Advertising rates on application.
Entered as second class matter March 31, 1908, at the New York Post Office, under the Act of Congres of March 8, 1879.

Modern Eizctaics Magazine should be on the newsostands on the 15 th of the month preceding the date of issue. Readers unable to get the magazine on the 17 h , will confer a favor by notifying the Publishers. Newsstand patrons should instruct their. Newsdealer to reserve their copy of Modres Electics, otherwise they are likely to find the magazine "sold out."

The contenta of this Magazine are copyrighted and must not be reprinted without permisaion.
Published by \mathcal{C} Modern Publishing Co., 231 Fulton St., New York, U. S. A. Trade Mnrl Realatered June alst, 1810.

A Real Estate Opportunity

Now is the Time to Buy.

60 Acres of Fine Land,

on Grand Island, N. Y., For Sale. Fronts on the beautiful Niagara River, right across from Buffalo; suitable for high grade development, bungalow plots, gentleman's estate or farming; nearly 600 feet shore front with riparian rights; house and barns near shore; price $\$ 250$ per acre; worth double; this property will surely triple in value when N. Y. State Canal is opened; liberal terms will be made with responsible parties.

W. H. NORTHROP, Real Estate Grand Island, Erie Co., Buffalo, New York

A CLEAN SWEEP
 IS GENERALLY
 A DUSTY SWEEP

This disagreeable dust should be drawn off by a suction of air by means of a vacuum cleaning machine which effectually disposes of it. This makes the clean sweep a reality.

A new Vacuum Cleaning Machine generally cleans out a room efficiently. How many cleaners will do so after a few months' service. The secret is in the pump.

Leiman Bros. poporivive Vacuum Pumps

are powerful and efficient, and when you buy a cleaner be sure that the pump is powerful and efficient-or, better still, insist on having I.EIMAN HILOS. PUMPS. They cost no more, but they're worth more. Our Catalog No. 139 tells why.

Don't be content to grind out a few dollars a week and miss all those comforts and pleasures that make life really worth living. Do something worth while-train yourself to earn a salary that will enable you to "BE Somebody."

Every normal man possesses the elements of success in some line of work. Some men are born with a natural inclination for mechanics. Other men are natural builders. Still others achieve their greatest success in the world of business.

Success depends largely on getting into the right occupation. YOU have natural ability for some line of work, Find out what your natural ability is and then DEVELOP IT.

For 22 years the International Correspondence Schorils have been helping men to find and develop their natural ability. Every month over 400 I.C.S. students report promotions or salary increases as a direct result of this I.C.S. training.

What the I.C.S. have done for these men they can do for'YOU right in your own home during your spare time. No matter where you live or how little education you have-if you can read and write-the I.C.S. can help you.

Just mark and mail the attached conpon-it won't obligate you in the least-and the I.C.S. will show you how they can train you for a good job and a big salary in the occupation for which you are best suited.

ANY OF THE ABOVE BOOKS SENT POSTPAID ON RECEIPT OF PRICES. MODERN ELECTRICS, ocpantment 231 Fulton Street, New York

When writing, please mention "Modern Electrics."

The World's Largest Ship

THES. S. Imperator, the new marine Womler, which arrived in New York fone isth, we her maden trip, ow America, upens a new chapter in marine history. The great liner is not only the largest ship in the world, but establishes new standards by the completeness wf her mechanical equipment, her safety devices, and the variety and luxury of her cabins. The limperator is built with an inner-skin, with both longitudinal and transwerse bulklicads, and other original features. Taking advantage of her great dimensions, the ship"s pulblic calins have been made so large as to avoid any suggestion of crowding. The Imperator is the latest addition to the fleet of the Itamburg- Amerian Line. the largest steamship company in the world, which profits by an experience of sixty-seven years in directing its services in all parts of the world.

The Imperafor measures 919 feet in length or almost one-fifth of a mile, 98 feet in width or that of a great boulevard, and has a tonnage of 50,000 . Her powerful quadruple turbine engines drive her at an average speed of $22^{1} / 2$ knots. crossing the Atlantic in six days.

She is manned by a crew of 1,180 , selected for their long service on other ships of the line. The rigid discipline for which this service is famous ob tains in every department. Despite her great size, the imperator carries only a few more passengers than ships of half her tomage, assuring complete comiort of all on board.

Nu hotel un either side of the Atlantic offers its guests so great a choice of dining roxms. ball rooms, winter gardens and palm rooms. gritl rooms. smoking rome gymmatims, roof gardens, public haths and luxurions lounges. The leading decorators of Europe have been entrusted with the decorations of the Imperator's cabins. and each is a masterpiece of its individnal style. The great size of the $/ \mathrm{m}$ perator has matce it possible to give her some of the most spacious rooms: ever enjoyed on shiphoard. The main lounge. which may be converted into a ballroom, is hung with Gobelin tapestries and equipped with a practical stage for theatrical performances. An musual amount of space has been set aside for an elaborate winter garden
with a wealth of tropical vegetation. There is a running track, an elaborate Roman bath and swimming pool, and a variety of Russian, mineral and electric baths with skilled attendants, a florist, candy and book shop, a public

SPACE BETWEEN THE INNER AND OUTER SKINS OF THE DOUBLE HULL
stenographer, a photographic dark room, electric elevators, and every conceivable appointment to assure luxury and variety throughout the Atlantic crossing.

The Imperator has been constructed with sixteen steel bulkheads, forming in all thirty-six watertight compartments. These are still further subdivided by the steel decks, giving the ship a cellular construction throughout. The bulkheads have been carried to the level of the second deck, high above the water-line. A single bulkhead weighs I,200 cwt. These steel compartments have been completely flooded with water to test their efficiency under extreme conditions. The bulkheads are fitted with Dorrscher doors and closing appliances operated hydraulically from the Commander's bridge, while a second appliance operated from the upper deck is held in reserve.
The Imperator carries eighty-three large lifeboats of the most approved
type, accommodating everyone on board. Two of these are high-powered motor boats, capable of towing the others. The motor boats are equipped with wireless telegraph working over 200 miles. Many of these boats are carried on the upper deck between the funnels, and may be lowered by special cranes to either side of the boat. The apparatus employed for handling all these boats is of the newest type, making it possible to lower a boat from an upper deck in a few seconds. The safety equipment also includes life belts for everybody and illuminated life buoys. The efficiency of all apparatus is assured by frequent drills and rigid discipline.

The familiar sea phrase "ship, shape" has a special significance as ap. plied to the eight kitchens of the $1 \mathrm{~m}-$ perator: To economize the space, which is so valuable on shipboard, the kitchens are equipped with the newest time and labor saving devices which are operated by electricity. There are ingenious electrical plate washers, knife cleaning machines,silver polishing machines, electrical egg cuokers, water filters, etc. Connected with the kitchens are enormous storerooms and cold storage rooms besides innumerable pantries, bars, taps and mess rooms. A series of electric elevators carry the foods quickly from the kitchens to the saloon decks.

The Imperatur takes on board for

SOME OF THE ANCHOR CIIAIN SHE CARRIES $3 / 4$ MILE OF THIS
a seven day voyage between New York and Hamburg some 48,500 pounds of fresh meats, 48,000 eggs and 121,000
pounds of potatocs. The larder besides contains 27,500 pounds of fresh vegetables and 6,000 tins of canned vegetables. There are, besides, 10,500 pounds of fowl and game and 0,000 pounds of fish and shell fish, 800 pounds of mushrooms and 4.000 cans of preserved fruits. The ship also carries 12,500 quarts of milk and cream, 400 pounds of tea, 500 pounds of chocolate and cocoa, and 7,000 pounds of coffee.

In every detail of its construction, the Imperator more than conforms to the laws governing shipbuilding, both in America and Europe. It has been built according to the regulations laid down by the Germanian Iloyd for the first class, four screw. passenger and
side, each measuring 26 metres, 85 feet, in length, and weighing 30 cwt. The weight of the steel plates, angles, profiles, sheet iron, etc., totals $520,000 \mathrm{cwt}$. More than 2,000,000 steel rivets have been used in her construction, each weighing eleven pounds. More than 60,000 cubic metres, 2,130,000 cubic feet, of different kinds of wood have been used.

The Imperator has a Commander, an Executive Captain, and three Watch Captains, one in special charge of navigation and another of the safety conditions, assisted by seven officers. The engineering department is directed by one chicf engineer, three first engineers as watch engineers, and a staff of 25 en-

THE WORLD'S LARGEST SHIP
HAMBLRG-AMERICAN LINE S.S. IMPERATOR
freight steamers, and has been equipped with every appliance required for emigrant slips by the German Laws, the Marine Association, the Sailors' Regulations, and the English and American Emigrant Laws. In the construction of the Impcrator $\mathrm{I}, 800$ workmen were engaged for three years, or for a total of more than $1,000,000$ working clays. The contract was given to the Vulcan Works, at Hamburg, June 18, i910, and the ship was christened by His Majesty Kaiser Wilhelm II, and launched May 23rd, 1912. Some idea of the magnitude of the work may be gained from the fact that her sides are built upom 327 steel rils, on either
gineers and electricians. The health of the passengers and crew is cared for by three physicians and two medical assistants. The highly complicated life of the great ship reguires the services of a paymaster and three assistants, a storekeeper, provision superintendent, and five provision overseers, three baggage masters, a superintendent of materials, three telegraphers, two telephone operators, four barbers, a hairdresser, three printers, a cabinet maker, a tailor, four elevator operators and a gardener.

The wireless telegraph equipment of the Imperator is sufficiently powerful to work over a range of $\mathrm{r}, 500$ sea miles.

The ship has two reserve antennae and two receiving instruments for long and short waves, designed for news service and rescue work. The station is directed by three expert operators, one of whom will always be at the key. The Imperator will be within direat communication with land through the Atlantic crossing. The electrical equipment of the lmperator is musually complete. Current is developed by five Turbo dynamos and a motor dymamo driven by a benzine motor placed high above the water-line on the boat deck for emergency lighting. The ship is lighted by more than 10,000 electric lamps, distributed throughout the ship. Electrical power is employed for operating the four passenger and five pro-

THE MAIN ANCHOR IT WEIGHS OVER I3 rONS
vision elevators, the winches, piontal cancs, call bells, heating, etc.

The Imporator is propelled by manmoth quadruple turbine engines develuping 62,000 horsepower. She has four winged screws of turbadium bronze, measuring more than five metres, i6.4 feet, in diameter. which turn at a normal speed of 185 revolutions per minlite. The machinery for reversing the engines is especially efficient, enabling her Commander to direct her movements more quickly than that of ships of far less tomnage. The hackward moving power of all the reverse turhines is about 35.000 horsepower. The ship has four furnace rooms which are divided into watertight compartments by transverse and longitudinal bulkheads.

The Imperator carries five great antchors which are secured by steel chains:
having a total length of three-quarters of a mile. The main anchor weighs 26,455 pounds, her two bow ancloors 17,636 pounds, a fourth 11,463 pounds, and her warp anchor 4,960 pounds. The anchors and chains together have a total weight of 485,082 pounds which alone makes an important item of cargo.

The Imperator carries a number of compasses distributed on the Commander"s bridge, in the filter space on the third deck and in the rudder honse at the stern. The equipment includes an Anschutz revolving compass, consisting of a "mother compass," two motor generators with starters, revolution recorders, and division tables. There are four "daughter compasses" which serve as azimuth and steering compasses besides four magnetic compasses provided as an emergency outfit, including one azimuth compass and three stecrage compasses.

To assure a pleasant crossing in all extremes of weather, the Imperator has been equipped with the Schlinger Tanks or wave motion absorbers. This stabilizing device when tested on smaller steamers has reduced the rolling motion from thirteen degrees from the vertical to less than three degrees. The great size of the Imperator renders her naturally very steady in the highest seas, and assisted by the anti-rolling tank, she will be doubtless one of the steadiest ships in the world.

The wireless efuipment is mustally powerful for a ship station and hats sereral unique features. There are three separate and distinct aerials. The principal acrial is of the T type, and consists of two two-wire aerials strung between the two masts and from the middle of each of these four wires a vertical drop wire or down-lead is brought down to the deck, where they are connected together and carried through a single deck-insulator to the wireless room. The two other aerials each colisist of a single wire running from tile wireless room, one to the formast or forward mast, and the other to the mairmast or rear mast.
The forward single wire aerial start= .I the top of the forward mast atm swings in one span to a set of insulators lung from an iron bracket projecting (Continued on page 46.3)

An Experimental Radio-Phone

By Stanley E. Hyde

THE Kadio T'elephone has recently made a great stride in the direction of practicability by the combined efforts of Mr. 11. Laverne Twining, liarl Hanson and l:. N1. 11all, of the Los Angeles Polytechnic High School.

Why experimenters in general have not employed luw frequency alternating current for Katio purposes before is ta question. liouks written on this subject mention direct current and the use of very hig! frequency alternators, the latter at present being intpractical, for very little power can be derived from them and they must be driven at a dangerous speed, necessitating very firm and substantial bearing supports. In consubstantial bearing quency alternators the aim has been to make the frequency so high that the diaphragms of telephones would not respond, or in other words, the frequency must be raised to a point above the audibility of the human ear. But why not go in the other direction and make the frequency so low that the natural period of the telephone diaphragm will not respond to it?

This is what the above inventors have done with an arrangement of apparatus which they have named the "Oscillaphone." The purpose of this article will be to show construction of the "Oscillaphone" in a very practical form that can be used by any one possessing moderate experience with wireless telegraph apparatus. From 15 to

Fig. 1
SM NLI. SP, オRK R.NBW TFIFFHONF. TFANSMITTER

25 miles can be easily covered with a hali kilowatt of power and moderate sized antenna.

In order that the reader may gain some prerequired experience in distinctly speaking over the "Oscillaphone" and in adjusting the carlons that control the intensity of the roice variations that are superimposed upun the regular wases generated in 1 he closed circuit he is referred to lig. 1. in which is shown a cut of a simple form of Radio phone. It requires at least a onc inch induction coil, spark gap made of sharpened carbons, batteries and a transmitter. Connections are made as in lig. 2. The vibrator of the coil is screwed up so that the variations of the primary current, made by speaking into the transmitter, call circulate unhindered around the primary windings. The gap is set very close, the regulation being continued until little sparks jump the gap every time the transmitter is spoken into. To one side of the gap is connected a wire leading to the antenna and to the other, one leading to the carth capacity. When in operation the transmitter must be held close to the mouth and spoken into very forcibly, at the same time speaking distinctly.
For the reception of speech any of the common wireless receivers that employ tuning coils and crystal detectors will be satisfactory, but the writer has found that a detector made of a
piece of chalcopyrite (copper-iron pyrite) pressing on silicon is very much more responsive to speech messages than other crystal detectors.

Upon gaining some necessary experience with this simple form of 'phone the experimenter is referred to Fig. 3 , in which figure he will at once see the new departure from other systems employing direct current.
To a supply of ordinary alternating current at a pressure of 110 volts is

connected a $1 / 2 \mathrm{kw}$ wireless transformer through some form of resistance for regulating the current when necessary. Across the terminals of the secondary of the transformer is a special form

FIG. 4
VARIABLE CONDENSERS, INDUCTANCE, SPARK G.AP AND TRANSMITTER
of finely regulated carbon spark gap, which will be taken up later. Across this gap is arranged a closed circuit consisting of a variable inductance, variable capacity and a telephone transmitter. See Fig. 4. In Fig. 4 it will be noted that the condensers are of the rotary type and are filled with castor
oil to insulate the plates so that sparks will not pass between them. If condensers of this type are not available a condenser can be made of 4 glass plates 10 $\times 10^{\prime \prime}$ covered with tin foil. Construction of the condensers should follow the same rules as for wireless sets as they have to stand practically the same high voltages.

For the inductance it is preferable to make use of the type shown in Fig 4. On a round wooden core onefoot long and 4 inches in diameter are wound ioo turns of No. io SCC copper wire. The insulation is scraped off to a width of a quarter inch the whole length of the koil and a sliding contact made to

FIG. 5 CARBON M1CROMETER GAP bear upon the respective turns. The construction is exactly the same as a single slide tuning coil, the only difference being in the size of the wire wound on the core.

Fig. 5 illustrates a form of micrometer spark gap that constitutes one of the principal features in this system. Fig. 6 contains details of this gap. To a base is fixed a piece of square carbon. Mounted above this piece of square carbon is another carbon electrode that

is round and filed flat on its sparking end. It is parallel with the upper face of the square carbon and should never be brought below the edge of the upper surface, Fig. 6a. The square carbon electrode is mounted so that it can slide forward toward the micrometer electrode, varying the distance between
the two. Fig. 6b. Upon current passing between the two the edge of the square carbon will wear in a little and form a semicircle, as shown. In this condition the spark gap is doing its best work, for the current in passing from one carbon to the other is evenly distributed.

About the transmitter. For the set

being described an ordinary transmitter can be employed (Carbon grain type), but if the set be kept active for any length of time it is apt to heat up and cause a little trouble. The ordinary transmitter used on a $1 / 2 \mathrm{kw}$ set will withstand leating for at least half an hour, and cause no trouble. For larger powers a multiple transmitter described by the writer in the Sept., 1912, issue of Modern Electrics in an article on "Experiments With the Musical Arc,"

FIG. 8
MERCI'RY VAPOR BLILI can be used to advantage. A large wooden bowl has arrange. around its inner surface four transmitters, so that sound waves from the voice wil! b e focuserl intothe transmitters. They are connected as in Fig. 7 , where C.I. C2, etc., are condensers each made of 3 glass plates $1 \mathrm{IO}^{\prime \prime} \times$ 10". In this manner more current can be handled than with a single transmitter. and they will not heat up. as each carries but one-fourth of the total current. These transmitters may be also connected in the ground lead, but it is
probably as well to vary the oscillations directly in the closed circuit itself.
If a considerable amount of power is to be handled a mercury vapor gap

may be employed instead of the carbon spark gap, as indicated in Fig. 9. For cut of mercury vapor bulb see Fig. 8. Into a glass bulb of the form shown are sealed two silver electrodes, A and 13, Fig. Io. The air is exhausted from the tube and it is mounted as in Fig. II, to keep the bulb from being injured. Wooden dises are cut and large holes to fit the bulb are made to hold it in place and in an upright position. Around the silver clectrodes, which

may be copper, silver plated, is mercury which comes nearly up to the top of the legs, Li and La2. Wires that connect to the electrodes pass on to binding posts on the top of the wooden frame. The whole is then immersed in a can of transformer oil to keep the

FIG. II
MERCURY VAPOR GAP AND CASE
bulb cool. Upon closing the primary circuit a high frequency current will pass through the bulb from one electrode to the other and upon speaking (Continued on page 468)

Wireless in the Philippines

By Charles Berntswiller

I'T' is curious that wireless telegraply should be so extensively used as a means of telegraph communication in such out of the way places as the islands of Mindanao and Jolo, situated in the southern end of the Philippines Archipelago. As far back as rgo5 when

FIG. I
station at malabang, p. 1 .
"ireless telegraphy was still in its infancy. three stations were installed, at Jolo, Zamboanga, and Malabang, by the United States Signal Corps. At first they were erected solely for military purposes onl account of the very unsettled conditions existing among the savage Moros that infest the southern islands. But later, when hostilities more or less ceased, and the merchants: and planters opened up the country,
these stations were turned over to the Burcau of Posts of the Philippines, and operated by the Postal Department. for commercial purposes. They have, beyond a doubt, proved much more satisfactory than the ordinary land wire telegraph on account of the destructive typloons and tropical rain storms that so frequently sweep over the islands. At times, miles of land wire have been carried away during a single typhoon which might last but a few hours.

Fig. I shows the Malabang wireless station. The apparatus is installed on the (op) floor of a small shack made of hamboo and nipa grass, raised about 8 fect from the ground on piles, which can be seen in the background of the plonto. The transmitting set consists of the ordinary, old type, junk apparatus, with four spark gaps in series, a forty plate condenser, and an oscillation transformer. The receiving set is marle up of a Wireless Specialty tuner and phones working in conjunction with a l'erikon and a Pyron detector.
On the ground floor, and protected from the water in the rainy season by a shallow ditel, is the engine and dynamo. which is shown in Fig. 2. A 3 kw generator is driven by a belt by a 10 lpairlank-- Morse gasoline engine. wa-

FIG. 2
IUWHR ILANT UF MAT.AIBANI: STATION
ter cooled from a tank at the back of the shack. The tower which is made of steel lattice work is 130 feet high, and supports an eight wire antenna arranged umbrella shaped.

This wireless station is the terminus of the land wire coming down through the different islands from Manila. It therefore handles all messages going south. They are transmitted to Zamboanga, the main station, and thence

fig. 3
STATION AT ZAMBOANGA, 1 . 1 .
relayed to their respective destinations: through the sub-stations at Jolo. Davao, Puerto l'rincessa, and Cuyo.

The above Fig. 3 shows the Zamboanga wircless station. It is situated on a small hill about three miles from the town of Zamboanga. The wooden lat-tice-work tower is 175 feet high, and supports an aerial similar to that used at Malabang. A 5 kw generator is driven be belt by a 12 hp Gorham gasoline engine in the small house near the operating room. The sending and receiving apparatus is identical with that used on the Malabang station, except that it is of larger build.
Δn idea of the interior of this sta-
tion can be got from Fig. f, which shows an operator at work.

A 3 kw station is operated at Jolo, similar to that of the Malabang Station. At Davao a +kw Telefunken set is used while Cuyo and Puerto Princessa lave 2 kw Telefunken sets.

The atmospherical disturbances which are so heavy in these equatorial regions occasionally hold up busines: for hours at a stretch. But as this seldom occurs in the day time except occasionally in the static season, excellent service is generally maintained. The telegraph offices throughout the Philippines only keep open during the day time: this is fortunate, because as stom as the daylight fades, the static comes on to such a surprising extent that generally no matter how loud the siguals are. further work is absolutely wit of the question. These athonspheric discharges are so strong that a whole tumer and phones have beell known to burn out when an operator neglected to cut in the ground switch.

A few enterprising native operators. who have learned the wireless busines: while working the land lines on these stations. have proved very successful wireless operators and are now work-

FIG. 4
()PP:R.ITOR RF: ELYINC AT Z.IS!MOANGA
ing nearly all the stations under the supervision of a white chief operator. Great difficulty has ahways been experienced in obtaining white operators tw stay on these stations in spite of the high wages paid, hecanse of the great hatdships and dangers to be met with in such lonesmene regions. There is such a great quantity of business to be handleil in a comparatively short time, that exceptionally yood operators are needed.

A Hypothesis Regarding Aurora Borealis

Based on Observations Made in Hudson Bay, 1912, by E. G. Fulton, Marconi Officer, S. S. "Beothic," and Mr. F. M. McLennan

By E. G. Fulton

ON July. 5th, I9I2, the steamship Beothic chartered by the Hudson Bay Steamship Line, of Montreal, entered upon the work of providing the first regular freight and passenger transportation to the territory adjacent to Hudson Bay ever undertaken by any commercial steamship line. The Beothic

S.S. BEOTHIC

FROM WHICH THE EXPERIMENTS WERE CONDUCTED
was equipped with Marconi wireless apparatus, and on August 6th the first Marconigram ever sent in Hudson Bay was sent from that steamer to the Canadian Government Hydrographic Survey Ship Minto upon its arrival off Port Nelson, Manitoba.

In explanation of the circumstances leading to the observations described in this article it must be stated that the writer claims no scientific attainments and possesses only a rudimentary scientific education. Therefore the data and hypothesis outlined here are given not as conclusions, but, as no opportunity has heretofore been afforded for determining the effect of Aurora Borealis on wireless equipment in such close proximity to the North Magnetic Pole, this article is intended to suggest to those with greater scientific resources further experiments along this line.
The writer is indebted for valuable assistance during these experiments to

Mr. F. M. McLennan, a member of an engincering party of the Department of Railways and Canals of the Dominion of Canadla. This party was proceeding via Bocthic to Port Nelson, Manitoba, to begin the survey and construction of a harbor and railway terminus at that point, to comnect with which the Dominion Government has already under construction a line of railway.
The first Aurora Borealis to be observed occurred on August 2nd. Position of ship, Latitude North 57° o7 7^{\prime}, Longitude West $92^{\circ} 33^{\prime}$ (about eight miles off Port Nelson). W'eather clear, moon about half, barometer reading 30.I6, temperature $+48^{\circ}$ Fahr. at time of observation, Ir : $45 \mathrm{p} . \mathrm{m}$. (time of goth meridian). The Aurora first appeared as an are of greenish-yellow light extending across the northern sky from northwest to cast. The wireless receiver was carefully adjusted, but the only ef"fect observable was that the slight "brushing" sound which accompanies the normal operation of the Marconi magnetic detector was somewhat increased during the prevalance of the

A CORNER OF THE WIRELESS CABIN ON the S.S. BEOTHIC

Aurora. This would indicate, if anything, that Aurora Borealis would enhance rather than obstruct wireless communication. Upon transmitting wireless signals for five minutes the

Aurora became violently agitated, but resumed its original form when the signals ceased. After a five-minute interval signals were again transmitted for two minutes, during which the band of light separated into two parts and gradually disappeared. In ten minutes it reappeared with almost its original brilliance, but upon transmitting signals for

two minutes again disappeared and was not further observed during the night.

The second observation was made on August 4 th. F'osition of ship unchanged, weather clear, starry sky, barometer 29.69, temperature $+65^{\circ}$ l'ahr., at time of observation, II : $45 \mathrm{p} . \mathrm{m}$. The Aurora was generally distributed over the northern sky in the form of ares of greenishyellow light radiating in various directions. L'pon transmitting signals for five minutes it became violently agitated and the outer ends of the arcs were apparently drawn towards the ship until concentrated overhead. Transmission was then discontinued for five minutes, dluring which the agitation ceased. Signals were then transmitted for five minutes and the Aurora gradually broke up and disappeared. After a ten-minute interval it reappeared rather faintly, but upon transmitting signals for two minutes again disappeared and was not further observed.

Third observation, August 5th, position of ship uncharged. At 8 a. m. barometer 29.98 , temperature $+62^{\circ}$ Fahr. At time of chlservation, $8 \mathrm{p} . \mathrm{m}$., weather clear, half moon and many stars, barometer 29.82, temperature $+65^{\circ}$ Fahr. The Aurora Borealis was very brilliant, but, desiring to ohserve its normal action, no signals were transmitted on this evening. It was generally distributed over the northern sky in various formations of greenish-yellow light, which un-
derwent many variations in form and shadings in color. In this case, however, the changes occurred gradually and deliberately and did not resemble the rapid vibration or agitation that had been observed while signals were being transmitted the previous evenings.

Soon after this time the ship left Port Nelson for James Bay, and then for North Sydney, Nova Scotia, and the next observation did not occur until off the Northern Labrador coast on the second voyage, September 2_th. Position of slip, Latitude North $57^{\circ} 34^{\prime}$, Longitude West $60^{\circ} 45^{\prime}$. At $8 \mathrm{a} . \mathrm{m}$. (time of the (roth meridian), barometer 30.01 , temperature $+42^{\circ}$ Fahr. At time of obserration, $9: 45 \mathrm{p} . \mathrm{m}$., weather clear, few light clouds to southward, full moon, barometer 30.10 , temperature $+45^{\circ}$ Fahr. The Aurora Borcalis appeared as a faintly-defined and comparatively narrow arc of bluish-green light extending across the horizon from northwest to east. It remained stationary for some time, but upon transmitting signals for five minutes the eastern end apparently deflecterl toward the ship, the whole arc

increased in brilliance for a moment, then gradually disappeared.

Next observation, October 6th, position of ship off Port Nelson, Latitude North $57^{\circ} 07^{\prime}$, Longitude West $92^{\circ} 13^{\prime}$. It $8 \mathrm{a} . \mathrm{m}$. (time of goth meridian), barometer 29.60 , temperature $+36^{\circ}$ Fahr. It time of observation, 10:50 p. m., weather clear, no moon, few clouds in the sky. Cold north wind blowing and snow flurries experienced during the day and early part of evening. The Aurora Morealis appeared as a faintlydefined arc of bluish-green light, as shown at A, Fig. I.

There was no apparent change for the first ten minutes of the observation, but
while transmitting signals for two mintites the atditiomal series of greenishyellow lights shown at B, Fig. 1, appeared. The original are gradually inereased in brilliance and assumed the usual greenish-yellow shade at the same time. When the signals were discontinued the Aurora Borealis slowly disappeared. but while transmitting at alternate five-minute intervals from II:1o cuntil if:30 p. m. it gradually returned (1) its original brilliance and to approxi-

mately the form shown at λ and B , Fig. 1. While transmitting continuousis from 11:35 until 11:45 p. m., the Aurorat Liorealis maderwent rapid changes in form and variations in color, apparently being concentrated directly over the ship, and continually increasing in area, density and brilliance, and foally assuming approximately the position shown in Fig. 2. During this period a phenomenon resembling the travel through space and bursting of a meteorite was observed, as shown at A, Fig. 2. It is the opinion of the writer that this phenomenon occurred below rather than above the Aurora Borealis, as this was so dense and lrilliant at the time that the stars above it were quite obscured, and a meteorite, had it occurred above the Aurora Borealis, would undoubtedly have been invisible also. When signals were discontinued the Aurora Borealis decreased materially in brilliance and area until at 12:15 a. m. it was barely visible. At 12:25 a. m. it again appeared, gradually increased in area and brilliance, and at $12: 40 \mathrm{a} . \mathrm{m}$. it was darting rapidly in all directions and was still quite brilliant when last observed at I a. m.

The last observation was marle on October 16th, ship anchored off Fort Churchill, latitude North $58^{\circ} 46^{\circ}$, longi-
tude 11 est 94° 10. At 8 a. m., (time of the goth meridians) barometer 29.02. temperature $+36^{\circ}$ Falır., 8.00 p. 1 II weather clear, barometer 29.01, temperature $+39^{\circ}$ Fahr. At 7.04 p . m. a rather faint Aurora Borealis appeared, which gradually increased in brilliance and formed an are of greenish-yellow light from the northern to the eastern horizon as shown at λ, Fig. 3. At 7.45 p . m. signals were transmitted for two minutes during which time the Aurora Borealis increased still further in brilliance and was set into rapid vibration. After a five-minute interval signals were transmitted for five minutes during which the Aurora liorealis continued to increase in brilliance. During this period a meteorite was olserved as at II, Fig. 3. The Durora borealis in this case wats not so brilliant as to olscure the stars and a meteorite might possibly have been seen through it. hat the meteorite appeared t.

be far below the Aurora horealis. After a ten-minute interval during which no material changes occurred in the Surora Borealis signals were again transmitted and the additional arcs of green-ish-yellow light shown at C, D, Fig. 3 appeared. The Aurora Borealis remained thus until about $8.45 \mathrm{p} . \mathrm{m}$, and then began to gradually disappear.

The next experiment was as follows: The wireless set was connected according to Fig. 4 , in which A indicates the transmitting key connected in series with the primary of a 110 - to 25,000 -volt transformer, B, to a iro-volt, 60 -cycle alternating current circuit supplied by a motor-generator set driven by the ship's dynamos; C, represents a high-frequency discharger consisting of two copper-alloy stationary electrodes and a disc carrying sixteen copper-alloy electrodes mounterl on the end of the motor-generator shaft
and ranning at a speed of $1,450 \mathrm{rpm}$ beween the stationary electrodes: 1.) represents anh inductance consisting of 204 feet of one-fourth ind copper wire wouml on a frame lwele inches square with turns spaced one inch apart; E represents a capacity consisting of four leyden jars whose outer and inner coatings each contain 136 square inches of copper foil and whose dielectric thickness is three thirty-seconds inch. This constitutes the regular working arrangement of the wireless transmitting appatratus with which the previous experiments were made, but for the purpose of this experiment the aerial terminal was disconnected and an ordinary fowatt tungsten lamp bull, (the filamemt of which had been destroved), was comnocterl ats shown at ly

When the circuit was completed the halb was immediately ilhminated with a bhush-green phusphurescent light. The whole interior of the bulb glowed, but the light appeared the most intense near the glass surface and near the small ter minal wires which had served as the path of the current during the life of the bulb's filament. The striking similarity between this light and the Aurora liorealis was at unce apparent, particularly when, with the variations of the current, the light fluctuated and darted around the interior of the bulb exactly as a miniature Aurora horealis might be expected to do. The writer, after carefully insulating himself from any grounded objects, grasped the glass outer end of the bulb in his fingers, whereupon the light was greatly intensified and changed from the bluish color to the identical greenish-yellow that had characterized all the Aiurora Lorealis so far observed. The bulb also heated up rapidly where it came in contact with the fingers and soon became too hot to hold.

This was possibly due to the same principle that canses the anti-cathode or "target" of an X-ray tube to heat up from the continual bombardment of the clectrons composing these rays of light. This heating, ats well as the change in color and increased intensity of the light. showed that more energy was flowing through the bulb when the "capacits." of the loody was placed in contact. Oity at slight shock was felt while touching the loulb.

Tfier considerable study of all the data arailable in the writer regarding Surorat lioreatis, and of the utiservations described above, the following hypothesis was evolved: That the earth is essentiatly an immense magnet. That it is hing comstantly traversicl by mag. netic lines of forco extending between the north and south magnetic poles. The

lines of foree are concentrated in the vicinity of the pules. That when these magnetic lines of force pass neat the carth's surface, parallel to the chouds. they induce an electrical charge upon the clouds. That when this etectrical charge becomes great enomgh it is discharged through the air as lightning. but near the poles where this energy is greatest instead of inducing an electrical charge upon the clouds it is projected out beyourd the comparatively thin layer of the carth's atmosphere into the partial or complete racuum beyond, where it is dispersed aver the region surrounding the poles as the phosphorescent, fluctuating light known as Aurora Borealis.

This hypothesis is illustrated in Figs. 5 and 6. First the familiar bar magnet will be recognized, with its magnetic lines of force shown approximately as they would le shown to exist by the timehonored experiment with iron filings. It should be noted that near the magnet poles where the magnetic energy is greatest the lines of force project much farther out than they do in the center where it is least. If the earth is indeed a magnet it must obey the same laws that govern the small har magnet, and Fig. 6 shows the writer's idea of the arrangement of the lines of magnetic force about the earth. This drawing. of course. is only an approximation and for the sake of clearness the line defining the limit of atmosphere is much farther from
the line representing the earth's surface than it should be. The north magnetic pole is located at about latitude north 70° and longitude west 97°, and the drawing represents a cross-section of the earth taken upon the meridian upon which the magnetic poles fall. That these lines of force do exist is so conclusively proven by the action of the compass and the matter is so generally understood that no comment is necessary on that point. It only remains to show that they are the cause of the two phenomena known as lightning and Aurora Borealis. This latter, though not universally conceded to be of electrical origin, has never been shown to be due to any other of the physical forces and the electrical origin has been generally accepted for want of a better explanation. To show that this explanation is indeed the correct one the principal assumptions made in the above hypothesis, and the data upon which they are based, may now be considered.

First, can it be established that the magnetic lines of force which cause the action of the compass are capable of inducing an electrical charge upon the clouds over which they pass? The writer cannot define the cycle of transformation that might take place between the simple, unseen magnetic impulse and the disruptive lightning discharge; but in the laboratory the magnetism present in the core of the induction coil is manifested at the secondary terminals as a crackling spark that duplicates, on a smaller scale, the lightning. Is it not, thercfore, reasonable to concede that in Nature's laboratory the same cycle of transformation might take place, even though all the processes cannot be definitely understood.

If this nagnetic energy is the cause of lightning it would seem that in the vicinity of the magnetic poles where this energy is greatest, lightning would be most frequent. This, however, is not the case; on the contrary it is doubtful if lightning ever occurs in the vicinity of the poles. The writer spent the entire summer in Hudson Bay, and though storms were frequently experienced and weather conditions were often such that lightning might have been expected, none occurred north of the 55th parallel. Inquiries were made of several engineers and navigators of long experience in the

Arctics and none of them were able to recall having experienced any lightning north of the 6oth parallel. In the experiment illustrated in Fig. 4, if the aerial terminal had been brought to within a short distance of the ground terminal, the energy would have discharged through the air as a crashing spark corresponding to lightning. However, when the same energy was radiated into a vacuum it manifested itself as a quiet, phosphorescent light closely corresponding to Aurora Borealis. Applying this laboratory truth to natural occurrences is it not reasonable to suggest that the energy which manifests itself as lightning when discharged through the air might manifest itself as Aurora Borealis when discharged into a vacuum?
The final assumption upon which the hypothesis rests is that Aurora Borealis does occur under atmospheric conditions sufficiently different from the normal to account for the different form in which the same type of energy is manifested. The writer is informed, by a civil engineer of long experience in the Canadian Government Survey of Hudson Bay, that Aurora Borealis is not frequently seen north of latitude north 76°, and when it is seen north of this parallel it is seen to the southward instead of to the northward. It would appear, then that Aurora Borealis originates at about north 70° or, as has been stated, in the vicinity of the north magnetic pole. The writer has observed at least one brilliant Aurora Borealis from his home at latitude north $41^{\circ} 35^{\prime}$, longitude west 82° 35'. Many authentic observations have been made from points much further distant than that. It is obvious, therefore, that if Aurora Borealis occurs in the vicinity of the north magnetic pole it must occur at very high altitudes to be visible over the curvature of the earth from points so far south. It was stated that during the observation made on Oc tober 6th the Aurora Borealis was so dense and brilliant that the stars could not be seen through it, yet a meteorite was plainly observed. The meteorite must have been below the Aurora Borealis. A second meteorite was observed on October 16th that was very probably also below the Aurora Borealis. Meteorites do not become visible until they reach the earth's atmosphere, as it is the
friction of the atmosphere on the swiftlyfalling body that causes it to heat up to incandescence. Evidently, if the Aurora Borealis was above these meteorites it must have been above the earth's atmosphere.

From a property inherent in Aurora Borealis itself it seems most probable that it actually occurs, not in the complete vacuum outside the earth's atmosphere, but in the higher levels where the atmosphere is so rarified as to serve the same purpose, so far as electrical phenomena are concerned, as a vacuum. This property is the variation in color so noticeable in Aurora Borealis. It is known that when electrical energy at high frequency and potential is radiated into tubes containing various gases, each gas will impart a characteristic color to the light that will result. The atmosphere is well known to be not a chemical composition whose constituents exist in unvarying proportion, but a mechanical mixture the proportions and constituents of which vary under certain conditions. It is reasonably certain that the proportions of the gases of which the atmosphere is composed do vary to a certain extent at different altitudes. With these two facts in mind, and in the light of the above lyypothesis the variations in color noted in Aurora Borealis can easily be accounted for.
It has been impossible to arrive at any definite conclusion as to the reason for the effect the wireless transmitter evidently had upon the Aurora Borealis. The writer is not even so dogmatic as to assert positively that the phenomena here recorded were due to the influence of the wireless transmitter. Appearances were such, however, that it is scarcely conceivable that all of these phenonema were due to coincidences. Previous to the Boethic's voyage, no powerful wireless set ever attained such close proximity to the probable origin of Aurora Borealis. and it seems that these observations should, therefore, be worthy of considerable study, particularly from the viewpoint of the above hypothesis. It has been stated to the author that if wireless waves were capable of affecting Aurora Borealis it would constantly be under the effects of powerful land stations at various points, which are radiating many times the energy of the Boethic's equip-
ment. This objection, while a reasonable one, can hardly be accepted, because the wireless receiver was kept carefully adjusted during the entire summer in Hudson Bay and not a signal from a land station was heard. If no land station is powerful enough to affect a sensitive receiving apparatus in the vicinity of the Aurora Borealis it certainly could not be expected to affect the Aurora Borealis itself.

In connection with this hypothesis the following experiments may be particularly suggested: To produce, in the laboratory, such lights as are described in Fig. 4, though an induction coil or static machine would answer even better than the wireless transmitter as a source of high-potential current. Tubes exhausted to various percentages of vacuum and tubes containing various gases, especially the atmospheric gases, nitrogen, oxygen, hydrogen, argon, etc., should be tried, and the gas or combination of gases emanating the light most nearly corresponding to Aurora Borealis determined The ravs of light from this tube should then be subjected to a spectrum analysis and the results compared with the results of a similar spectrum analysis of Aurora Borealis. The tube should also be brought under the influence of a powerful nlagnetic field and of magnetic waves such as are sent out by a wireless transmitter, and its action noted. The rays of a Crookes tube are deflected by a magnet and some useful analogy might be determined in this way, between the action of the Aurora Borealis in some of these experiments, and the rays of a Crookes tube, the nature and origin of which are, of course, definitely known. Another experiment of interest would be the construction and magnetization of a steel sphere, so that, by means of iron filings suspended in glycerine or any other suitable method, it might be determined whether or not the magnetic lines of force about a sphere would arrange themselves as shown in Fig. 6. Finally, one of the vessels which are frequently sent to Arctic latitudes by the United States or other Government Hydrographic Survey departments, might be, at no prohibitive expense, equipped with apparatus suitable for performing these and other experiments which would suggest
(Continued on page 472)

The Measurement of Electromotive Force by the Potentiometer Method

By Stanley E. Hyde

THE potentioncter method of measuring electromotive force is the methorl generally followed where accuracy is desired. This form of potentiometer and the form (so called) that is used in radio telegraphy must not be confused. Why the variable resistances used in radio receptive circuits were ever called potentiometers is harel to figure out because they do unt

FIG. I

measure electrumotive forces but merely vary it to suit the needs of the rectifier. They are nothing more or less than plain mon-inductive resistances. the name potentioneter being stuck on by some manufacturer probably to let the radio experimenter know that he had a new type of wireless instrument for sale. There's no doubt but that it sounds "scientific."

The accompanying cut shows a l.ceds \& Northrup potentiometer that can be made to give accurate results to the fifth or sixth place of decimals. Fig. 3 constitutes the real wiring diatgram of this potentiometer, hut for the sake of simplicity and for explanation we will consider Fig. 2, which is essentially the same in principle involved. A storage battery B , or any combination of hateries having an F.MF which is constant and somewhat higher than that of any of the cells to be compared,
is comected to the ends of the wire, at, of sufficiently high resistance to prevent a current from flowing which is large enough to heat the wire appreciably. The resistance, ab, must also be so high, in comparison with the internal resistance of B, that the potential difference maintained by 13 , between a and b, is greater than the EX11* of either Er or E2, the two cells to be compared. These cells are connected as in the figure, so that their negative terminals are joined to the same point. a, to which the negative terminal of $1:$ is connected, their positive terminals: being connected to the contact points, in and 11 , of a double throw switch, S . through which either cell can be put in connection with a resistance box. K, a galvanometer, G, and a wire, w, which can be tonched at any point along its length, ab. The comparison of the EMF'S is made as follows: Sup pose that the switch, S, is turned so as to touch the contact, m , and thus put the cell, Ei, in the galvanometer circuit. If now the free terminal of the wire, w. were to be touched to any point on ab, for example. c, a current would always flow through G and R, from right to left, provided there were no cell in the circuit, cGRma. The cell, Ei, which is in this circuit, however, tends to force current in the opposite direction, namely, from left to right, through R and G_{r}. If, then. the PD (potential difference) which already exists between c and a. when the wire is touched at c, is greater than the EMF: of EI, a current will actually flow through σ_{5} and R from right to left; but if the EMF of the cell. Et, is greater than the PD which is maintained between the points c and a by the battery. R, then a current will flow through the galvanu meter from left to right. If the PI) between c and a is exactly equal to the EMF of Ei, then no current whatever will flow through the circuit of the cell, that is, through r_{r}, for G minly de-
llects when a current is passing throngh its windings. We have then anly to find the puint. on ab, which can be touched by the free end of the wire without prodncing any galranometer deflection whatever, in wrder to obtain the paint such that the PD between it and a is exacly equal to the EXDF of the cell.

Suppose mow that the switch is is

FIG. 2
SIMPI.IFIF.IV WURING IIMMKAM
thrmed - 6 ats tor make comtact with the terminal. 11 , wif the wher ecoll. If it inow fomm that some other pesint. d. is the point for which the galvanometer shoms mo deflection. then, if the wire. all, is maform we hate:
 While the point of mo detfection is being found, the resistance. R, should le made very large (20,000 ohms). for then no appreciable current will flow through the cell circuit, and hence this cell will not polarize. even if it be one of the polarizing kind.

Dfter the point of zero deflection is mond. the resistance. K. may be varied. or in fact entirely removed. withwit altering the point of balance. for obviously at this point the cell is in exact equilibrimm with the Pl) belween cand a: that is it is rirtually un upen circuit. The only reason for introulucing k at all was to prevent the cell from polarizing while the point of hatance was being found. and to protect the galsanometer from too violent leflections. Varving the value of R will then alter mothing save the sharpness with which the point of zero dePection can be loeated.

Referring to the cut and Fig. +. "'he large revolving drum resistance slown in the cut to the right is M^{\prime} in Fig. 4 ,
the three little buttons in front are KI , K_{2}, K_{3}, the ressstances on the right end of the potenummeter are 23 R and 8.3R respectively. The resistance, . I, .2, $\cdot 3$, etc.. correspond to the knol, switch just to the left of the revolving drum, and the one marked T is the resistance just back of the I I'DT switch. . Wll binding posts are on the other side of the instrumeni

Instruments required are potentiometer galvanometar, battery to operate potentiometer (sturage battery), Standard Clark (eell and the FiMF to be measured. The standard cell is comstructed so that :emperature fluctuafonss do mot affeed it and the li.XIf is allayys constant, and upon this fate rests the accurary of the potention meter.
. 111 resistances are previonsly cali brated when mambactured so that mo computations are necessary.

To operate: "The battery to operate be potentioncte is commected and the 1)| D'l switch thamon to the stambard cell. 'The resistance, 'l', which has its: higs marked fo: different makes ni standard ectls is ramed motil the E., WF of the cell corresponds to the nearest mumerical FidFF marked on the lugs. The average E.MF of a mmber of

standatil cells tesied be the limreall of Ltandards at Washington. W). C.. Was foimed to be r.orx(x) volts. Now the little resistances 23 K and 8.3 K are ad justed until the galvanometer shows modeflection. In doing this the key ドו should first be tourhed to connect the galvanometer in eircuit as the first adjustments are only rough and the excessive current might injure the galvanometer, as mentioned previonsly. When the galvanometer shows no de-
flection the two batteries are exactly bucking each other, otherwise the stronger would force current through the galvanometer and show a defection. Now we are ready for the comparison to find the EMF of the battery to be measured, say a dry cell. The DPDT switch is thrown so that the dry cell is connected to the potentiometer and the knob switch, L, moved to where you think would be the approximate voltage of the dry cell, about I.4. Then the revolving drum resistance, M^{\prime}, is turned until the galvanometer again shows no deflection, this showing that our dry cell is just bucking the potentiometer battery. The revolving drum has numbers on its rim and also on the glass dial in front of it which are calibrated, so we put down 1.4 which we took from L and find that the numbers that coincide on the edge of the drum and the glass dial are o and 73. these being set down after the I.4, making I.4073. By special shunts voltages from small fractions up to 1000 volts can be measured with great accuracy; and although the diagram looks complicated it works on exactly the same principle as that of Fig. 2 and the operation can be performed in a very short time when one is familiar with the operation of the potentiometer.
liclow are some tabulated data on different commercial cells.

	Kind	$\begin{aligned} & \text { of Cell } \\ & \text { Edison } \end{aligned}$	
Crowfoot	Sampson	Primary	Dry Celt
0.9281	0.8495	0.3739	T. 4073
1.0154	0.3715	0.8456	1.4375
0.8474	1.0236	0.8075	I.43I
0.8483	1.0244	0.3930	1. 4450
0.9108 A	0.8173 A	0.0050 A	1.4302

Test tube cell consisting of carbon and zinc elements immersed in Dilute CuSO_{4} (Copper sulphate), gave 0.122_{+} volt.

Cell composed zinc and copper immersed in damp sand in tubing $3 / 4^{\prime \prime}$ diameter, 20 " long moistened with CuSO_{4} gave 1.0175 volt.

Voltaic element composed of a copper and zinc plate $4^{\prime \prime}$ square with separation of moistened blotter paper CuSO_{4} gave I.OI 75 volt.

THE HETERODYNE RECEIVING SYSTEM

At a meeting of the Institute of Radio Engineers held in New York on June 4th, Mr. John L. Hogan, Jr., of the National Electric Signaling Co., presented a paper describing the principle and apparatus involved in the Heterodyne receiver. Much interest has been shown in this invention of Prof. R. A. Fessenden's, especially since the recent test between Arlington, Va., and the U. S. S. Salem, in which it was used for all long distance communication.

Since the "beats" principle, upon which the heterodyne operates, is not generally understood, Mr. Hogan opened his paper by a discussion of the classification of radio receivers and of the addition of simultaneous wave motions. Radio receivers are of two broad classes: (i) the relay or "trigger" type, in which the received energy releases an amount of local potential energy which in turn operates an indicator to produce a signal, and (2) the "converter" type, which acts merely as a transformer linking the antenna and the indicator, and in which the signal is produced by energy actually received by radio from the transmitting station. Receivers of the first class (such as filings coherers) are limited by their delicacy and inefficiency, while those of the second, such as the gas, liquid or solid rectifiers. cannot utilize in producing a signal any more energy than that actually received. This has led to attempts to use microphonic or other telephone relays to amplify received signals, but in general these have been unsuccessful. A selective receiver which will amplify persistent waves but will not increase effects due to highly damped disclarges (such as those of atmospheric interference) is needed in the art of radio transmission. The only receiver of this type is the Heterodyne, whose action is to give an indication by the conjoint operation of two high frequency alternating currents, one received from the transmitter and the other usually generated at the receiving station.

Mr. Hogan illustrated by lantern slides the graphical addition of waves
of various types, treating mathematically the several cases. The production of acoustic beats by organ pipes and singing flames was shown, and the distinction between polarized and nonpolarized indicators demonstrated by generation of inaudible air-wave beats with Galton's whistles.

Five types of Heterodyne receiver were described. In the first, two streams of waves having slightly different frequencies were received on two separate antennas. Currents set up by them passed through the coils of a non-polarized magnetic telcphone and reacted on its diaphragm to produce audible signals. In the second form, a single antenna was used, one of the two interacting currents being generated by an alternator, arc or other oscillator at the receiver. The third form shown had its sensitiveness increased by use of a dynamometer telephone, and the fourth type was made still more effective by the use of a static telephone receiver.

With this last arrangement of Hetcrodyne apparatus signals had been received over 3,000 miles, in spite of the notoriously low sensitiveness of the static telephone. The great increase in effective sensitiveness could be explained by a theory of operation which had been proposed and which indicated that the static telephone used upon the Heterodyne principle would respond to a given strength of sustained wave several hundred times as loud as if used simply.

The fifth type shown adds to the sensitive rectifier and telephone combination of modern receivers the amplifying power of Heterodyne excitation. Receiving either from sustained wave or spark transmitters it is possible to read signals so weak that they cannot be heard with the ordinary receiving apparatus. On spark signals the intensity of Heterodyne response is from 5 to 15 times as great, in audibility, as that of the best rectifier receivers operating normally, while on sustained waves the effective amplification is still greater. This increase of sensitiveness to continous waves accounts for the long distances transmitted by the arc temporarily installed at Arlington and used for special tests during the cruise of the Salem to Gi-
braltar. During those trials all long distance signals, whether from arc or spark sender, were received on the Heterodyne, the tikker receiver having been abandoned by the U. S. Navy engineers after the first few days of the test.

Data secured on the trials between Arlington and the Salem permitted modification of the constants in the Austin-Cohen transmission expression* so as to compensate for the increased sensitiveness of the Heterodyne. Extending such data it is found that two stations of the Arlington type could exchange messages regularly by day and night over a distance of $4,500 \mathrm{km1}$. $(2,800$ miles), or could transmit between them daylight signals of 25 times audibility (readable through light static) even if $5,500 \mathrm{~km}$. (3,400 miles) apart. These distances would be impossible with anything like similar transmitting power if any receiver other than the Heterodyne were used.

A form of Heterodyne still more effective than any of those described has been put into use and shows great promise, but even if no step had been made beyond the type used on the ArlingtonSalen test, this invention of Prof. Fessenden's would seem certain to work a revolution in radio communication.

[^0]
8o WORDS A MINUTE BY WIRELESS 3,500 MILES

A wireless system between Great Britain and Canada will be in operation for the first time next September, contracts having been signed recently between the Universal Radio Syndicate operating the Poulsen system, and the Canadian Government. The Syndicate has agreed to a test of the Poulsen "continuous wave" system between Arlington (Washington) and a European station over a distance of 3,500 miles a thousand miles in excess of the requirements of the Anglo-Canadian service. The company has contracted to receive and despatch messages at the rate of 400 letters per minute and proposes to charge eight pence per word for code messages and four pence for plain word messages.

Military Automobile Searchlight

THE new type of antomolile searchlight which is in use in the French army may be taken as the latest adrance in this direction. What is to be noticed is that a single automobile serves to carry all the material, and the car is thus selfcontained and the searchlight does not need as before two separate vehicles, one for the dynamo apparatus and a second for the searchlight. The war department wished to find the most suitable solution of the problem by the use of the automobile, and thus had the present cars constructell under the plansof Comm. Cordier and Capt. Doizan, the car being built at the De Dion atutomobile works at Paris. In the present type, of which quite a number have now been put in actual use, the gasoline motor of the automobile not only drives the car but also operates a dynamo of good size, this being directly coupled upon the motor shaft. In consequence, the searchlight can throw its beam while the car is running on the road, should this be necessary, although in usual practice the antomobile is stopped for this purpose.

Of 7,000 candlepower, the projector has a diameter of 3 feet, and throws a powerful beam which is intended during military operations in show up the enemy's movements or positions. When the car is on the road. except in unusual circumstances, the projector is lowered, so as to keep down the general centre of gravity. This movement is carried out by the use of a rack and pinion which has about 3 foot range of working. Mounted on its 4 -wheeled carriage, the searchlight can be run off bodily and transported to a distance of 150 to 300 feet from the car, two men heing enough for this. Cables unroll at the
same time from a drum carried on the car so as to keep, the searchlight comnected to the automotile.

Modern practice with projectors shows that observations camot be well carried out when the person is stationed near the source of light, as a powerful searchlight of this kind is apt to give a blinding glare owing to the reflection of the light from small particles of vapor in the air even though $t h_{c}$ body of the apparatus i : well closed. The oftion charged with directing ill: beam on a distant spot is required to kerp at 75 to 300 feet from the alpparathis :and work the movements an electric control method. The searchlights are provided with a very ingenions electric motur mechanism for working the turntalle base or for swinging the projector on its trumions, also to light or extinguish the are lamp, and to open and close the shutters for the beam. All these movements are obtained by the use of a small set of controllers which can be used upon the automobile or removed from it, for directing the current into the various parts of the electric mechanism, and one common cable encloses various wires for the control, and a second cable carries the current wires for the arc light. The automobile carries an 18-horse-power, 4 -cylinder motor and is built to run under good conditions even over very rough roads where the searchlight needs often to be taken during campaign work, and the car is therefore light as well as solid and can make a speed of 20 miles an hour on the road and mount grades as steep, as 12 and 15 per cent. Power enough is given by the motor to keep the searchlight burning while the car is traveling, as already mentioned. The maximum fuel con-
sumption of the motor is 8 gallons of gasoline per 60 miles run.

At the time when the attomobiles were delivered to the war department they were put through a series of very severe trials which lasted for about a week over the roads in the country around Paris. For most of the time the roads were wet by rain and were in the worst of slape for automobile tratvel, but this did not hinder the good performance of the cars. On one occasion especially, a heay ratn and wind storm prevaled, but this diel not prevent the cars from starting out for their night trip at the regulation hour, and they climbed up the specially hard grade of Clamast, then the cars were drawn up in line above Jouy. on the Versailles route. Gen. Nbaint, artillery inspector, and Col. St. Claire-De-

WIRELESS TELEGRAPHY IN BRAZIL

Vice-Admiral Belfort Vieira, the Brazilian Minister of Marine, in his anmual report to the President of Brazil, states that the wireless telegraph service in the republic has increased during the past year. Wireless stations are to be erected at Rio de Janciro, Bauru, and「orto Murtinho, which will enable communication to be established with the base of the Matto Grosso Squadron. The contract for these stations has bech awarded to Marconi's Wireless Telegraph Co.. Ltd., and a commission has been appointed, consisting of three officers of the navy and a representative of the Marconi Co. Another station at Santa Martha will communicate with ships sonth of the republic. The Min-

SEARCHLIGIITS ON GROUND READY FUR ACTION. NOTF, CONTROLLING APPARATUS CARRIED BY IIERATORS
ville, technical director, presided at the tests, and the projectors were put in position and working in less than two minutes so as to send the beams over the valley of the Bievre. The rain was falling in torrents and the powerful beams produced at striking and somewhat fantastic effect. It threw the heam upon it point lying at 2 miles ristance. On other days the automobiles were put through runs of 60 miles. followed hy projection trials lasting for four hours, and the results were all that could be expected.
ister's report alds that the naval wireless telegraph statıons have worked with minfailing regularity. New Marconi stations hawe heen purchased, and, in the opinion of the Minister of Warine, the good results obtatined justify the aloption of the Marcuni system in the Rrazilian navy. It is proposed to framsfer the apparatus wholl was formerly used in the Itha das Cobrats station to Dhoolhos, and to adapt the former as a trationing school for wireless operators.Electricity.

Residence Iceless Refrigeration

By Frank C. Perkins

There is a great demand for an iceless refrigerator, in the home, of low cost, fool proof and economical in operation. Such a device has been developed in England and a similar equipment in America operating by gas or electricity for heating and water for condensing the ammonia.

The illustration shows an English vertical type of self-contained semi-automatic iceless refrigerator and cabinet, for country houses, with cooling power equal to that of about 200 pounds of ice

moderate size iceless refrigerator
every 24 hours. The panelled teak cabinet measures approximately 4 feet by 3 feet and 5 feet high, and is lined with marble walls and fitted with marble shelves and solid nickel ice mould. The walls are insulated and about 6 inches thick, while the available capacity is about 23 cubic feet.

A simple appliance for artificially producing cold for a variety of purposes is a growing necessity. There are many refrigerating machines on the market, and for very large cold storage of ice
making installations, where skilled engineers are always in attendance, these machines have been found eminently suitable; but where such skilled attention is not available, they are certain to get out of order sooner or later.

For this reason and because they all require some form of motive power, they have not found great favor with those requiring cold only on a moderate or small scale; it is for this class of users that the new iceless refrigerator shown in the accompanying drawings and illustrations was specially designed.

It will be seen that this refrigerator is a simple appliance which has no running machinery or complicated mechanism. It is constructed in various sizes for making from a few pounds of ice up to one ton per day, or for cooling from one to 10,000 cubic feet of storage space

without motive power and without skilled attention.
It is operated by the direct application of heat from any available source, such as gas, steam, oil, wood, coal, or electricity.

The apparatus is noiseless and vibrationless; it is constructed to maintain any required temperature down to
many degrees below freezing point, according to requirements specified when the apparatus is ordered.

The ammonia absorption principle is used with this iceless refrigerator, and it is the simplest apparatus of its kind, and differs from all others in that it is hermetically sealed, has no working parts

and requires no motive power. $\overline{\text { From }}$ the drawings it will be noted that the essential part of the device includes a combined absorber and generator (or still), a condenser and a receiver.

The generator, A , which contains strong ammonia liquor, a mixture of ammonia and water, is heated by a gas burner, B, or other suitable means. The ammonia is thereby distilled and, passing through the pipe, C, which is surrounded by water in the tank, T, it is cooled and condensed. The resulting liquid, pure anhydrous ammonia, runs by gravity into the receiver, R .

This process is continued until all the available ammonia has been distilled and collected in the receiver. At the same time there is left in the generator orly hot and very weak liquid, practically pure water. The generator is then cooled by admitting cold water to the jacket. J.

This creates a partial vacuum which
causes the anhydrous ammonia to evaporate very rapidly. At the same time the weak liquor is cooled and becomes "greedy" for ammonia. It therefore absorbs the vapor resulting from the evaporation of the liquid in the receiver as quickly as it is formed. The evaporation of the ammonia in the receiver continues until the whole of the liquid has evaporated aind been reabsorbed by the liquor in the absorber, the vessel which previously acted as the generator. The liquid in evaporating takes up a large amount of "latent heat" and consequently the receiver becomes intensely cold and cools all surrounding objects.
As soon as all the liquid has evaporated from the recciver the same state of affairs exists in the apparatus as before the heating was begun. This process can therefore be started again and the same cycle of operations can be repeated an unlimited number of times. The an?monia is not altered or weakened by the process and as there is no possibility of escape the same charge of liquor will last indefinitely.
To increase the evaporative surface

and hasten the evaporation, the receiver often has a coil of pipe connected with it. In many cases this coil is immersed in a tank of brine or other non-freezing solution. This brine acts as a store for a large quantity of cold and maintains a uniform temperature during time when the apparatus is not being worked.

It will be seen that the machine is operated by alternately heating and cooling the vessel, A, which acts alternately as a generator and absorber. There is an automatic device for turning off the heat and admitting water to the cooling jacket. The tube, K, is filled with water
and sealed. The curved portion is flattened. The straight end of it dips into the well, !., which is surrounded by the liquid in A. As the remperature of the latter rises the water in the tube, K , becomes heated and expands. Owing to this expansion the curved part of the (w)e tends to straighten out more and more as the temperature rises. At the end of the tule is a catch, M, against which rests the weighted lever, N.

The catch is so adjusted that at the required temperature the lever is released and falls. The lever is comected with the gas tap and a three-way water cock, and when it falls it turns out the gas, leaving only a small pilot light burning, and admits water through pipe, O, from the tank, D, to the jacket, J. The water fills the jacket and overflows through the spout, F, and is either carried away to waste or collected in a tank for future use.

The level of the water in, D, is maintained by the ball cock, S, connected to the water supply. The apparatus is reheated by raising the lever, N, which turns on the gas and cuts off the water sulpply from tank. D. to jacket, I, and drains the latter. There is no communication between the well. I., and the generator, A.
It may be stater? that when other sources of heat than yas are used the arrangement is modified. but is substantially the same. The heating has to be started by hand each time.

A completely atutumatic gear can be fitted as indicated in the drawing and the derice will go on working without attention so long as the water is rumning. Part of the water overflowing from the condenser is allowed to run into the tipping tank. T. pivoted at P.

When this tank is full up to a certain level it overbalances and pours its contents into the bucket. B. which drops and operates the water and gas cock, W^{W}. The tipping tank when enpty immediately returns to its normal position. In the bucket, B, is a small hole so that while the tipping tank is refilling the bucket enipties itself and the counterweight, X . raises it into position again.

The cock is fitted with a ratchet and pawl so that the rising of the bucket does not affect the cock. One stroke of the bucket turns the gas off and the
water on, the next turns the gas on and the water off. The gas relights from a small by-pass. The flow of water into the tipping tank is so adjusted that the tank fills up to the necessary level to werbalance it in the same length of time that is required for heating or cooling the generator. This antomatic gear can be placed in any convenient position.
It is claimed that the water required for operating the machine is not contaminated in any way, but is slightly warmed; therefore in cases where the cost of water is an item worth consideration, it can be collected in a tank and used for other purposes after having passed through the machine.

The cost of operating the machine is very low and as there are no expenses of upkeep, it is far more economical in use than any other form of artificial refrigeration.

ELECTRICAL HELPS IN LIFE SAVING

The city of Toronto, Canada, will equip its lake and river shores for miles about with an electrical life-saving equipment, said to be the most advanced in the world. By the beginning. of August there will be completed a seventy-foot watch tower of steel on the outer circumference of the harbor. Sub-stations will be established over an area of about twelve miles where in the past numerous acciclents have taken place and scores of lives lost. All stations will be linked by a private telephone system, and on each one a searchlight will be installed so that capsized craft may be quickly detected during the night, even though five miles from shore. Regular patrols of life-savers will cover the shore line oi mainland and islands and alarn boxes will be placed along the route which they will be required to ring at intervals. Electricity will be utilized in every possible way. A new twinscrew surfboat and a thirty-five foot cruising lifeboat for heavy seas will also be added.

It is well to aim high, but be sure your gun is loaderl.

HOW MUCH POWER DOES IT TAKE TO RUN A VOLTMETER OR AN AMMETER?

II e are atconstomed to believe that the amomint of energy or power required for an ammeter or voltmeter or at wattmeter either of the indicating or recorling type is very small. Under urdinary conditions where the voltage or current involved is small, this is true and the instruments take remarkaWy little power to operate them. Where the voltage is very high or the current is very great the power lost in operating one of these instruments sometimes amounts to several kilowatts.
'This was brought forcibly to our in()tice by the advertisement of a wellknown instrument maker on the front coser of a recent issue of a well-known clectrical magazine in which a recorting wattmeter of about the size of the ordinary instrument used in metering current for residence lighting purposes was shown, together with its shont which was capable of handling (oo,000 amperes.

The shant alone weighs 2,000 pounds and together with its oil. tank. connecting hars and clamps, weighs 8.500 ponnds. The difference in por tential across the terminals of this shomt is the standard drop of 50 milli polts-five one-hundredths of a volt. This difference of potential in itself is extremely small, but when this is multiplied by fo.000 amperes the protuct is 3,000 watts or 3 kilowatts, which mast be dissipated in the form of heat in order to supply a few watts to operate the recorling instrument. It first thonght this appears to be a very large waste of energy to accomplish the desired result, but at the present time there is mo help for it as there is no other method known in the present state of the art which wontll be atly better.

1 never saw a Kilowatt, I never hope to spy one; but by this meter bill I got I see that 1 must buy one. - Ceorge R. Staff in Edison Monthly.

HONOLULU MAIDEN WINS HONORS AS WIRELESS OPERATOR

A little Honolnh girl has the honom of being the tirst girl to pass the fealeral wircless examimations, which quatities her to take a position as atr operator for the govermment. 'The girl's name is Mary Amn Nomiga, and she is only it years ohl.

Her father writes the ats follows:
"I am semling you the photograph of my daughter as being the first girl to hate an amatemr license. She patsced

ilhe examination on May zoth. The munber of her license is $190-$.

* ${ }^{-}$ler complete outfit for semding and recciving is as follows: One loose coupler, double slide tuner used as a luading coil, one variable condenser, $20 n 0$ ohms receiver, galena detector, one fixed condenser, I $1 / 2$ inch spark coil, one lrass spark gap, six dry batteries. Her aterial consists of four No. It copper wires, spaced two foet apart, for feet long and 55 feet high."

A Practical "No-Slider" Tuner

By Paul Horton

IT has been explained many times, in these columns, wherein sliders are a disadvantage in devices which utilize the variation of inductance in their operation. Wearing of wire, reducing mechanical strength and conductivity, short circuitng of turns by the contact shoe or by copper chips, are only a few faults that could be cited.

However, in Fig. I is shown an instrument, which is, as far as the writer is aware, absolutely original.

Here the secondary surrounds and moves over the primary, contrary to

the usual practice. In the instrument at hand the primary coil consists of a cardboard tube (fibre is leetter) 23 in . long and $21 / 2 \mathrm{in}$. in diameter, wound with a single layer of No. 20 D.C.C. copper wire.

After completion the primary is securely fastened in place as follows: Obtain two $2 \frac{1}{2} \mathrm{in}$. circular wooden discs, $3 / 4 \mathrm{in}$. or more in thickness, and screw

FIG. 2
in the proper place on the side supports, using brass screws. Now, the
primary tube is either glued or tacked over these wooden pieces (see sectional view). A tap is taken out from each end and from a middle point, 3 in all. The direction the wires are

FIG. 3
wound in the 2 halves, depends upon the "hook-up" used. If Fig. 5 is followed the wires are wound in the same direction (a continuous spiral), but if Fig. 4 is followed, and it is to be preferred, the halves are wound in opposite directions. Do not shellac the turns on this coil, as it needlessly increases the capacity, which is undesirable.

The secondary tube measures 4 in . long and $27 / 8 \mathrm{in}$. inside diameter, allowing $1 / 8 \mathrm{in}$. clearance. It is wound with No. 28 D.C.C. copper wire.

To construct the wooden end pieces for the secondary obtain 2 boards $41 / 2$ in. square and cut a 3 in . hole in the center, using a key-hole saw. Two smaller holes are cut in each of the two lower corners to accommodate the brass supporting rods and brass bushings are installed in each.

Now the ends are slipped over the ends of the secondary tube and secured in place by brass tacks (see sectional view). The secondary slides on the usual brass rods, which may also be utilized to bring out the secondary taps, by simply soldering the wires
to the brass bushings mentioned above.

A hard rubber knob, fastened to the and of the stout brass rod, which is securely bolted to the secondary, is used to slide the secondary back and forth. An index is glued along the side of the slot cut in the top, and these readings used in conjunction with the condenser readings may be used to indicate the adjustment found by experiment to be best for any particular station, and may be filed away for reference.

All other dimensions are given in drawings.

THE WORLDS LARGEST SHIP

(Contnued from page 440)
from the side of the forward smoke stack, and from these insulators it drops down to the deck insulator and passes into the wireless room. The other single wire aerial, extending to the rear, starts at the top of the rear mast and is supported from insulators attached to the two rear smoke stacks and then drops down to a deck insulator and passes into the wireless room in the same manner as does the forward single wire aerial. These three aerials, it will be evident, have different wave lengths, and enable messages to be sent on either of the commercial wave lengths of 300 and 600 meters respectively, while for long distance work a wave length of about $\mathrm{t}, 800$ meters is used.

The transmitting apparatus consists of a standard Telefunken set capable of putting $71 / 2 \mathrm{kw}$. into the aerial and draws about 15 kw. from the ship's power plant. It is equipped with an automatic or motor operated antenna switch. a break-in system, and several other additional features which contribute in easy and quick operation. In addition, there is a small set which can be used for short distance and emergency work.
Note.-We should like to have been able to show photographs and give a detailed descripfion of the wireless equipment, but this is impossible for the reason that photographs and details of the apparatus are not azailable at the present time.-Ed.

POLE SUPPORTED BY WIRES IT CARRIED

The photograph shows a large power-wire pole standing in the middle of a small river bed. A six-foot section was taken out of this pole when a flood came down the stream. The wires supported the pole and no damage was

POLE SUPPORTED BY WIRES 1T FORMERLY CARRIED
done to the wiring or to the upper part of the pole excepting the broken cross arm.

CHART RECORDING PYROMETER

An instrument that looks like the record on a mechanical piano player, which carries a six months' roll of recording paper, that travels a little more than an inch an hour, has just been invented to record volts, temperatures, amperes, revolutions and mechanical operations that require a small current of electricity.

The instrument works without friction and the pen makes a single dot of ink on the rolling paper scroll every ten minutes which forms a continual line.

MACHINING LARGF CASTING FOR TURBO-GENERATOR

Large electrical generators require. in their construction, the largest of castings. and for machining these, the largest and strongest of tools are neeessary. The illustration herewith shows a 150,000 -pound steel casting which will comprise one-half of the rotor of a steam-turbo-generator of 5,000 kilowatts' capacity. The machining is being clone on an electrically operated horing mill, and the finished rotor will lose about one-half of its original weight. Expert machinists only are

STEEL CASTING FOR ROTOR OF LARGE TURI:, d. rernator being machinelb on motor driten horing mill.
allowed to work on a casting of the size shown, as the variation of a humdredth of an inch in some dimensions would ruin the casting for its use, and entail a large financial loss, as well as loss of time.

In order fror over five thou-and No. ri54r receptacles and plates has heen placed with the Manhattan Electrical Supply Co. for installation in the new Municipal Ruilding in New York (ity. This is the largest order for installation in a single building ever placed.

AN ELECTRO-MAGNET PANTAGRUEL!

The most gigantic as well as the greatest power generating magnet in the universe is about to be placed in the laboratory of the man whose discoveries directed Madame and Monsicur Curie to the discovery of radium. Professor Becquerell's place is in the Polytechnic of Paris. Were this great efectro-magnet made by his colleague Professosr Pierre Weiss, of Zurich, will yielld a magnetic force of 50,000 or 5,000 greater than the greatest one in the United States or elscowhere.

The polar pieces in this gargantuan magnet are made of iron and cobalt. and a new water cooling system allows Professor Jean Recquerell to work it maximum power for twenty-four hours: Oil a stretch. ifo wolts and 2001025° amperes are all that is required to keep it going.

Professor Reguerel expects to throw light on the phenomena of gravitation. the magnetic effects present in the atom, and in matter in general,-I. K. Hirshberg.

MARKSMANSHIP OF OUR NAVY I200 TIMES BETTER THAN AT THE TIME OF THE SPANISH-AMERICAN WAR

* Is evidence of the value of competition in grumery, a comparisen is made with the tighting efficiency of the ressels during the Spanish-American War and at the present writing. The percentage of hits in 1898 was $3^{1 / 2}$, with the large guns firing about once in five minutes at short range. The percentage of hits in the recent firing at the San Marcos was $33^{1 / 3}$, the range being 10,000 yards, and the present rate of firing a single 12 -inch gim being to shots in five minutes. This rather overestimates the work at Santiago and underestinates the work to-day. 1 roughly drawn comparison shows that we are about $\mathrm{r}, 200$ times better in gunnery efficiency than we were at Santiagn. -Holl. George won 1. Mever, former Secretary of the Navy, in an article in Transartions of the Fefficiency Society. Inc.

The Measurement of High Potentials

THE measurement of high potential electric currents may be, and oftentimes is performed, by the aid of a calibrated voltmeter, the same as low voltage currents are measured. However, there is another very convenient and more desirable method, of determining these high voltages which involves the use of a spark gap. As is well known, a potential or voltage having a value exceeding a few thousand, will readily jump an air gap between

needle points or spheres. Of course to be able to measure the voltage of a spark of certain length, necessitates the calibration or determination of the voltages for various lengths of the gap, and this is dependent upon the form and dimensions of the gap itself.

In the measurement of high potential alternating currents there are two distinct values of the voltage which are useful, and under certain conditions one value may be quickly found when the other is known. To start with, we had best discuss just what the two potential values above referred to mean.

In Fig. I is shown a curve of a sine wave alternating current, and in this paper a sine wave current is understood unless otherwise mentioned. The two distinct values of the A. C. sine wave form, shown in Fig. 1, are known as the maximum and effective values respectively. The maximum value of $1 / 2$ cycle or 1 alternation of A. C. is as shown in Fig. I, the highest peak of the wave; and this value is often desired to be known, especially in measuring the potential applied to insulators, under break-down tests; as
it is this maximum potential which finally ruptures the insulator.

The average value of an alternating electromotive force (or current) during a complete cycle is zero; inasmuch as similar sets of positive and negative values occur. The average value of an electromotive force or current during the positive (or negative) half of a cycle is usually spoken of briefly as the "average value" or "mean value," and is not zero. Let us consider an alternating current, of which the instantaneous value is i . Now the rate at which heat is generated in a circuit through which the current flows is R^{2}, where R is the resistance of the circuit ; and the "average" rate at which heat is generated in that circuit is R multiplied by the "average" value of i^{2}. A continuous current which would produce the same heating effect would be one which squared is equal to the average value of i^{2}; or of which the actual value is equal to the square root of the average of i^{2}. This square root of the average square of an alternating current is termed the "effective value" of that alternating electromotive force.

Alternating current measuring instruments, such as ammeters and voltmeters, always read "effective values," irrespective of wave form ; and in specifying an alternating electromotive

force or current, its "effective value" is invariably understood, unless expressly stipulated otherwise. This effective value is the equivalent of the direct current which would produce the same heating effect in the circuit.

The effective value of an A. C. electromotive force or current is often spoken of as the "Root Mean Square" or simply "R. M. S." value. The wave form is usually determined by means of an oscillograph, which is a finely
adjusted instrument, consisting of two electrical conductors, delicately mounted in an intense magnetic field, and having a minute mirror attached to the conductors. When an alternating electromotive force is passed through these conductors, the electro-magnetic reaction, or attraction and repulsion, set up between the magnetic field produced about the conductors, and the powerful magnetic field, causes the

conductors to swing or twist back and forth, in step or synchronism with the alternations of current or potential. A beam of light is focussed on the small mirror and as the mirror swings back and forth, it projects a reflected beam of light upon a moving strip of photographic film, with the result that a wave form or curve is outlined by the varying beam of light, as shown at Fig. I. Of course all kinds of oscillographic
curves can be taken, such as the making and breaking of a circuit carrying a current, pulsating direct or unipulsating curronts, complex wave forms, induction coil discharges, etc. The Duddell oscillograph is one of the most delicate and can project wave forms of condenser discharges which are ex tremely rapid.* An oscillograph used by the writer at the Western Electric Co.'s laboratories, was capable of projecting wave forms having a frequency up to 8,000 cycles per second. It might be interesting to note that this was used mostly in studying the undulations or vibrations and their decay (or logarithmic decrement) of telephone receiver and transmitter diaphragms, when spoken against.

As an example, let the instantaneous values at progressive time instants, in one alternation of an alternating elec-tro-motive force be, as seen at Fig. 1o, 30, 60, 80, 90, 95 (maximum), 90, 80 , 60,30 , volts. The sum of these values is 6I5 volts, which, divided by the number of values, viz. Io, gives 61.5 volts, zehich is the average z'alue of this electromotive force during half a cycle.

If now each of the above instantaneous voltage values are squared (i. e.. multiplied by themselves) and the squares are then added together, and their sum divided by their number, viz. mo, the result given is the average zalue of the square of the electromotive force, which is 4.702 .5 volts 2; and the square root of this average square is 68.6 volts; which is the effective value of the given electromotive force. This is the value of the potential that would be indicated by a voltmeter, also it is the "Root Mean Square" value. Another factor is the "form factor," and this is equal to the effective value divided by the average value: or in the case above discussed, the form factor 68.6
would be equal to $\frac{68.6}{61 \text { or 1.12. This is }}$ 61.5
a common value of the form factor, and for a rectangular electromotive force curve, such as seen at Fig. 2, its value is I or unity. The more peaked the wave form, the greater the value of its form factor. Other values of this fac-

[^1]tor for various wave forms are given in Fig. 3.

Now comes a factor known as the "amplitude factor," and this is of great importance in measuring high potentials, as it serves as the factor, which gives us the maximum voltage from R.M.S. values, or vice versa. In the case of a sine wave form (which is nearly realized in most cases where alternating current is supplied by a (lynamo) the amplitude factor or ratio between the maximum value and the R.M.S. value is equal to $\sqrt{ } 2$ or 1.414 . Hence, assuming a sine wave form, if the R.M.S. value of a spark in volts is known, its maximum potential is ascertained by multiplying the R.M.S. value by the amplitude factor, viz. 1.414. As an example, suppose a sine wave spark of I inch $(2.54 \mathrm{~cm}$.) is obtained, and upon inspection of a calibration curve it is found that the R.M.S. (i. e., effective value) value is equal to 20,000 volts. The maximum value reached by the alternating current leaping the gap is equivalent to 20,000 times 1.4 I 4 , or $\mathbf{2 8 , 2 8 0}$ volts. If the calibrated value of the spark had been in volts maximum, then the R.M.S. value would have been found hy dividing 28.28 o by I.4I4. While the R.M.S. value of a spark may be, in come cases, 20,000 volts for the ist inch. the maximum value of that spark may be very high indeed. As a case in point, consider a wave form approximating the shape shown in Figure 4, or that wave form in which the maximum potential or current values is quickly reached. Here the amplitude factor may reach a value as high as 3.0 or more. In Fig. 4, is depicted an oscillographic curve of the induced secondary potential in a $2^{\prime \prime}$ spark induction coil with condenser around the break or interrupter in the primary circuit. The amplitude factor of this wave form was ascertained to be 2.5 , and this wave is that resultant from the breaking of the primary circuit. The amplitude factor for a regular sinusoidal alternating electromotive force is quite constant as long as the wave form is not distorted by the addition of inductance or capacity to the circuit, but with induction or spark coils this facfor varies somewhat, depending upon the type and speed of the interruupter
used in the primary circuit, and upon the size of condenser used across it. In general, though, it may be taken that the amplitude factor for spark coil secondary patentials induced at the breaking of the primary circuit, is equal to 2.5. Upon this assumption a curve has been plotted by the author, see Fig. 5. showing the maximum potential of spark coil secondary discharges for spark lengths up to $30^{\prime \prime}$ (76.2 cm .) .

From these considerations it is to be observed that the rating of spark voltage may be given in two ways, and as an example a I inch spark may be stated to have a potential value of $20,-$ 000 volts (R.M.S.), or 50,000 volts (maximum). Both would be right, but

the meaning is vastly different, as previously explained. Likewise an alternating current such as used in electric lighting might be stated to have a potential of ino volts (R.M.S. value), or its maximum value would be I.414 times 1 Io or 155.54 volts. The R.M.S. value of this potential, i. e., ito volts, would, of course, be indicated by a voltmeter used in regular testing work.

Having discussed the various meanings of the terms involved in alternating current work, as far as regards potential waves, we may now turn our attention to the set of curves presented in Fig. 5. The R.M.S. or lower curve was drawn from values given in the table of spark potentials, recommended by the American Institute of Electrical Engineers in their standardization rules.* The sine wave (maximum)

[^2]and spark coil (maximum) potential curves were drawn from calculated values. The potentials are given in kilovolts (kv), the kilovolt being a unit of 1,000 volts.

For accurate determination of the spark voltage a number of different functions must be taken into consideration. Humidity of the atmosphere, and location of the tests, as regards height above sea-level, or barometric pressure, etc.-all have a marked effect upon the potential required to jump a gap of given length.

A few of the rules to be applied in making careful spark gap potential tests, as cited by the American Institute Electrical Engineers Rules, are:

The spark gap method of measuring potential is preferred as its potential value is dependent upon the "maximum voltage," and is independent of wave form, and hence is a limit on the maximum electric stress to which an insulator is subjected, but the spark gap is not conveniently adapted for comparatively low voltages, say below 4,000-5,000.
The spark points should consist of new steel sewing needles, supported axially at the ends of linear conductors, which are each at least twice the length of the gap.

There should be no conductors nor other foreign bodies near the gap within a radius of twice its length. A noninductive resistance of about $1 / 2$ ohm per volt, should be inserted in series with each gap terminal, so as to keep the discharge current between the limits of $1 / 4$ and 2 amperes. The purpose of this series resistance (which may be water tubes) is to limit the current
in order to prevent the surges which might otherwise occur at the time of break-down of the gap.
In measuring the high potential A. C. by means of a voltmeter there are three general methods of applying same. The voltmeter of the low reading type may be connected across the primary circuit of the step-up transformer, and knowing the transformation ratio of the windings, it is only necessary to multiply the primary potential indicated by this ratio, which gives the secondary potential. This method is not always very exact. The second method of reading the high potential in the secondary of a transformer is by means of a direct reading voltmeter of the high reading electrostatic type connected across the secondary. The third method is to employ a second step-down transformer, just for the voltmeter, connecting the primary of many turns in the high voltage circuit, and secondary of few turns, to the voltmeter of the low reading type. The transformer in question has, of course, a known transformation ratio, such as a 100 to 1 , or 1,000 to 1 , etc. In making close reading with this last method oscillographic curves should be taken of the voltage read by the voltmeter, and also on both sides of the step-down transformer.
The needle spark-gap has come into disfavor among engineers, owing to its erratic behavior under varying and sometimes nearly coincidental conditions. It is unreliable for commercial work on extra high potentials, because in a great many cases the broken-down air about the gap gives false readings. Its operation varies with the humidity of the air, and also upon the barometric pressure. A higher voltage is required to spark over a certain gap when the humidity is higher than usual. A variation between spark length and voltage occurs, depending upon the sharpness of the needles (Harpers No. 12 generally used) and the needles must be changed after each spark over.

The best spark-gap for voltage measurements is the sphere* or ball gap. This is now being recommended as the standard gap instead of the needle gap for the American Institute of Electrical

[^3]Engineers standardization rules. It is stated that the sphere diameter should be chosen so that the spacing for the required voltage shall never be over four times the radius of the sphere; and that the first evidence of electric stress is complete spark-over-corona, or brush discharge not forming-also that all the undesirable effects and variables due to the broken-down air near needle gaps are eliminated. Humidity has no measurable effect. The spheres do not have to be polished after each sparkover; in fact, several thousand meas-urements may be made with this gap without repolishing the balls. Complete data and curves for large sphere spark gaps are given in the American Institute of Electrical Engineers paper, above referred to, and for the use of the experimenter a table is given here containing spark potentials in R.M.S. values as determined by Heydweiller.
spark voltage (maximum) between
brass balls 2 Centimetres ($0.787^{\prime \prime}$)
in diameter for various spark lengtils.
Spark Length
Centimetres. Spark Voltage.

EXPERIMENTAL RADIO-PHONE

 (Cortinued from page 443) into the transmitter the current is varied accordingly, fluctuating in the gap in exact accordance with the voice.To operate the set, the primary circuit is closed and a temporary adjustment of the carbon spark gap made. Very little condenser capacity is needed and no more than that specified (4 plates Ioxio") should he inserted in the closed
circuit. The rest of the tuning is done with the slider on the inductance, this being varied until the hot wire ammeter in the ground circuit indicates a maximum reading, showing that the closed circuit is tumed to the natural period of the antenna. The inductance must not be changed after this has been done, merely to help adjust the spark gap, or the closed and radiating circuits will be thrown out of tune again and a deficiency in radiation the result. It will be noticed that when the carbons are some distance apart the resulting arc will give out a hissing noise and this is what is to be avoided as much as possible. By screwing down the upper carbon until the noise is reduced altogether or to a minimum the voice is much clearer and heard more distinctly. The distance between the two carbons, for the set in question, should not exceed $1 / 16$ of an inch.
It is necessary to have some one listening in while you adjust the carbon arc so that he can tell you when he hears the words at their best. In general it will be found that the words are the clearest when the carbons are close together and the hissing of the arc eliminated as much as possible.

As the transmitter is held in the hand at the same time that the arc is adjusted it is advisable to have a large hard rubber handle to turn the micrometer carbon so that the operator will not be shocked.

As a last word it must be impressed upon the reader that it is necessary that he speak in a very distinct and forceful voice. Do not run your words together. This will be acquired by practice.

In placing this "Oscillaphone" before the many thousands of experimenters over the country, there ought to be some surprising results obtained in the near future, as each person can find some little way in which he can improve the apparatus he employs. A frequency of 25 cycles would no doubt be much better than 60 . As the frequency increases the noise in the telephone from the arc will grow louder, so do not waste tince using higher frequencies, as this system was tried out on a I 33 cycle alternatnr and the results were not nearly as satisfactory as those tried on commercial 60 cycle lighting current.

Simple Experiments in Alternating Currents

(Continued)
By P. Mertz

33. The different methods of connecting the windings of a three-phase dynamo are very important in alternating currents, and we will take these up here.

The simplest connections for these are shown in the diagram, Fig. 76. The

three coils, A, B and C , represent the windings as a whole for each phase. That is, suppose on the alternator armature, all the separate coils of any one phase were connected in series, this whole set would be considered in Fig. 76 as one of the windings. If all the coils of the same phase on the alternator armature were connected in parallel instead of in series, the same would be true, in regard to Fig. 76. Again, each of the wires leading out of the diagram in the figure is assumed to lead to a collector ring on the armature, each wire leading to a separate collector ring.

Considering the nature of the winding in Fig. 76, you will notice that both

terminals of each winding are led out to separate collector rings. This style of connection is very rarely used, on account of the number of collector rings and brushes required.

Considering Fig. 77, you will notice that all three circuits now have a common "return" wire, very similar to the ground return usually employed in telegraph and other electrical circuits. This method, as youl may notice, does away with two of the collector rings in Fig. 76 , and is used to some extent.

It was shown in $\$ 30, *$ that at any instant the algebraic sum of the three currents in a three-phase circuit is equal to zero. Consequently, if these three currents are arranged to flow through a common wire (this does not necessarily mean that that wire is the whole circuit; it is only a part of it), the algebraic sum of the currents flowing through the wire would be zero, and there would really be no current flowing. This is the case of the common return in Fig. 77, and since there is no current flowing, there is no reason why it sloulld

not be left out altogether, provided the loads on the three circuits are equal. There are then only three collector rings needed. This is often done, and the resullting winding, shown in Fig. 78, is commonly known as the "star," or " Y " winding for three-phase apparatus. It is used extensively when the load on each circuit is equal.

There is still another method of connecting the windings of a three-phase alternator, shown in Fig. 79. This is commonly known, from the shape of the diagram representing it, as the "delta" (coming from the Greek letter, delta, written Δ) form of winding. It is used to a great extent. Of course, these diagrams can also apply to the mechanical converter, $\leqslant 3$ I, \dagger or to almost any appa-

[^4]ratus employing three-phase current.
34. We will now take up threephase current motors. An extremely simple form of one is shown in Figs. 80 and 8I. It consists of a base, A, on which are mounted six electromagnets, arranged in a circle, care being taken that the windings on these are all in the same direction. At the center of the circle formed by the electromagnets is placed a piece of tin, C, with a center-

punch dent in it, the dent being exactly at the center. This serves as a bearing for the armature-shaft, which consists of a steel needle, D. The other bearing is a piece of wire, I:, bent and fastened to the base by means of screws, as shown in the illustration. The armature consists of a piece of tin bent over itself

three or four times to give it thickness and rigidity. It has a hole in the middle, through which passes the shaft. The tin is fastened to the latter either by
means of sealing wax, or by means of small corks stuck over the needle at each end, and clamping the tin between them. It is well in this case to cover the needle with glue, shellac, or some other

adhesive, to prevent the corks, with the armature, from sliding along the length of the needle.

The field-magnets of the motor are then connected, as shown in the diagram, Fig. 82, especial care being taken to see that the relations between the inside

and outside ends of the several windings are not altered from those shown in the figure. For example, the diagram shows that the inside ends (the ends by which the actual winding of the wire on the magnet was started) of opposite coils are connected together. If instead
one inside end is comnected to an outside end, the motor will not work as it should. The letters on the wires leading out of the diagram denote the binding posts on the mechanica! converter (see Fig. 7I \ddagger) to which they are to be connected. Having taken care that all the connections are correct, the mechanical converter is connected to the battery and started rotating. The motor will also begin to rotate as soon as the mechanical converter drum is turned.

To illustrate the operation of this motor, we will use the diagrams in Fig. 83. The six circles in a ring represent the six electromagnets, and the rectangularshaped bar the armature. Supposing now, that the cycle has arrived at such a point that the current flowing through the coils marked + and -, in diagram A, is greater than the other two currents, and therefore magnetizes these two more strongly than any of the others are. The armature will then arrange itself in the position shown, and will also become magnetized by the lines of force flowing through it. At the next instant ($1 / 3$ of a cycle later) the current strength will have become greatest in the two mag-

nets marked + and - at B. The armature retaining some of its magnetism will now tend to arrange itself in the position shown by the dotted lines. An instant later, the strongest field-magnets will again have changed, pulling the armature up a bit more, as at C; and this is carried on indefinitely.

In actual practice, the armature does not consist merely of a bar of iron, but of a laminated, wound ring or drum, on which all of the windings are short-circuited. Then, instead of residual magnetism being depended upon at B, to attract and repel the armature, a current is induced in the armature windings. This induced current magnetizes the armature core, giving practically the \ddagger See p. 360, July, 1918, issue.
same result. In this case the operation of the motor is similar to that of the single-phase motor described on pp. 1556 , of the May, 1912, issule.
(T_{0} be continued)

AURORA BOREALIS

(Continued from page 451)
themselves. A competent scientist who could investigate and authoritively interpret the wonderful manifestations of Aurora Borealis as seen from comparatively short distances, as in the writer's experience of this last summer, and particularly if his experiments were in connection with a wireless telegraphic apparatus and along the lines suggested in the hypothesis outlined above, would be in a position to add materially to the world's knowledge of some very interesting natural and electrical phenomena.

The writer anticipates another opportunity of observing Aurora Borealis from Hudson Bay and to have opportunity of using an even more powerful wireless transmitter in future experiments. As much of the experimental work suggested above as possible will be carried out, but as the writer cannot hope to attain as authoritive results as could easily be achieved by someone with greater resources of scientific apparatus and knowledge, this record has been prepared and made available in the hope that it might suggest and assist contemporary investigation.

NEW YORK RADIO EXPERIMENTER GETS INTO TROUBLE

An experimenter whose efforts have been devoted to the development of a radio telephone has gotten into trouble with the Federal authorities.

It transpires that he has been operating his stations in defiance of the wireless law, in that he has secured neither a station license nor an operator's license. Also he is reported to have used wave lengths reserved for commercial u1se.

His station in New York City has been closed by Radio Inspector Terrell, of the second district, and proceedings have been instituted against him in the Federal courts.

LEAD SILK CLOTHING FOR X-RAY SPECIALISTS

Mr. C. Amsworth Mitchell, of the British Isles, has just invented a material for clothing, gloves, caps, stockings and masks, that may be expected to rid the use of the Roentgen rays from all danger. It has been long known and recognized that cancerous growths as well as other malignant maladies of the eyes and skin of Roentgen ray operators, are growing more and more frequent with the extending use of the Crooke's tubes and these vacuum rays. For some time operators have adopted varions manoeuvres to protect themselves from the danger. But even Dr. W. Baetger, the radiographer of the Johns Hopkins Hospital, whose careful attention to details for protection has gone as far as anybody; who has employed lead foil screens and other measures to save himself, has lost an eye, several fingers, and has borne much other suffering because of his constant exposure to the action of the rays.

Luckily the Roentgen rays are harmless when used only a few times for purposes of diagnosis or remedial applications. The danger lies in the constant use year in and year out by physicians and surgeons and their assistants.

Now comes Mr. Mitchell with his rescue. He says that Mr. M. L. Droit and others have discovered that by the addition of the salts of lead, a silk fabric can be manufactured into clothing, underwear, shirts, stockings, socks, gloves, and other wearing apparel, which is absolutely opaque to the Xrays. Thus these dangerous penetrating particles are shut off from the physician's skin and body, and he may employ the X-rays without in any way jeopardizing his health.

Mr. Droit took a quantity of silk goods and carefully soaked it in phosphotannate of lead, oxide of lead, oxide of tin, and some other unimportant minerals such as lime, phosphates, and alkalis. Two layers of this saturated silk prevented the X-rays from passing through, while six layers protected the doctors and their assistants from moderately powerful discharges.

Clothing made of such a silk is not only superior to the rough and ready
method of covering the skin with lead foil, but has the other advantages of elasticity, flexibility, and preparation without the usual delays and their accompanying nuisances. - L. K. Hirshberg.

ALL-NIGHT TENNIS WITH ELECTRIC LIGHTS

A tennis court so equipped with powerful electric lamps that there will be ample light to play tennis at night is the latest improvement added to the country home of John J. Raskob, an official of the Du Pont Powder Company at Holly Oak. Mr. Raskob conceived the idea of turning night into day at his estate and after working out his plans turned over the contract to an electrical company to install the equipment.

Twenty-four powerful lamps are placed on poles along the sides of the court, 12 on each side.

EXAMINATIONS FOR OPERATORS' LICENSES NOW HELD AT FORT MASON, SAN FRANCISCO

The United States Army Radio Station, at Fort Mason, San Francisco, California, is added to the list of places at which examinations of radio operators for licenses will be conducted. Applications should be addressed to the officer in charge at that station.

The Regulations Governing Radio Communication (February 20, I913), at page 4, and Department Circular No. 241 (September 5, 1912), at page 4 , are amended accordingly.

WIRELESS THAT HANDLED "TITANIC" NEWS IS BURNED

By a spark from the sending apparatus igniting the side of the wooden building, the Cape Race. Newfoundland wireless station was burned down on May 5 th, involving a loss of ten thousand dollars. The station is one of the best known on the Atlantic Coast and through it came the first tragic messages a little over a year ago, announcing the horrors of the "Titanic" disaster.

Vol. 6. No. \because

This department is eatablished for the purpose of encouraging the experimenter to bring out new idess. Every reader is welcome to contribute to this department and new ideas will be gladly received. CON: TRIBUTIONS SHOULD BE WRITTEN ON ONLY ONE SIDE OF THE SHEET AND SHOULD PREFERABLY BE TYPEWRITTEN. IF TYPEWRITTEN THEY MUST BE DOUBLE SPACED. SRETCHES MUST BE ON SEPARATE SHEETS FROM THE TEXT. The description should be sis chort as possible. Good sketches are not required, as our art department can work up rough sketches
which are clear enough to illustrate the idea. Return postage must be enclosed if return of unusued which are clear enous

THREE PRIZES OF FIVE TWO AND ONE.HALF DOLLARS AND ONE DOLLAR ARE AWARDED for the three best ideas published each month. All other contributions appearing in this department are paid for at regular space rates.

FIRST PRIZE

A PORTABLE RECEIVING SET

Now is the time of the year to make a portable receiving set for use in the fall (when the air is free from static), on your day excursion trips.

First, secure a box like the one

shown in the figure. One 9 in . long, 6 in . deep and 8 in . high is a very good size. The instruments are as follows: One loose coupler, a variable condenser, a galena detector, two small-sized fixed condensers and two large-sized ones. Two cardboard tubes $4^{1 / 2}$ in. long are used for the loose coupler. The primary tube should be 4 in . in diameter and wound with a layer of No. 22 enameled wire, tapped in seven places, and the windings 4 in . long. The secondary should be $3^{1 / 2} \mathrm{in}$. in diameter, wound 4 in . long with No. 28 silk covered wire and tapped 7
times. The position of the coupler is shown in Fig. 2, by the dotted lines.
In front of the coupler and fastened to the front side of the box are the fixed condensers. The large one on top of the small one. These are made of wax paper and tinfoil. The small one consists of 20 pieces of tinfoil, 2 x^{4}, and the larger one twice as many. Now make a hole on the right-hand side of the box for the brass rod to vary the coupling of secondary, and fasten the rod to the secondary. Then take the shelf of the box and drill the holes for the switches and binding posts, Fig. 2. The loose coupler switch handles are ordinary typewriter

knobs. Figure 3 shows how the different switches are to be connected.

For the variable condenser, E, take two brass tubes 8 in . long. The outside one should be $1 / 2 \mathrm{in}$. in diameter. The inner one, $11 / 4 \mathrm{in}$. in diameter,
should be covered with wax paper. Piece A, in figure 1 , is of wood and is made to hold the variable condenser so that it can be moved in and out the lid. B is the brass rod with hard rubber handle that is fastened to the secondary. The galena detector is of the "cat-whisker" type, with the fine wire sealed on to the galena with wax so it is not necessary to adjust it. A small fixed condenser may be placed in between the secondary switch of the condenser and the galena detector.
In figure 1 we have the set as it looks when completed. The phones are also carried in the box so that aerial wire is the only necessary thing to carry besides it. A single wire at least 200 feet long makes a good aerial when used with a wire fence as a

ground. Using the fixed condensers and the variable one high wave lengths can be reached and great selectivity can be obtained.

Contributed by
H. A. L. Behlen.

SECOND PRIZE
 A HANDY AND USEFUL RHEOSTAT

Helow is a list of the material needed:
$\begin{array}{cr}\text { No. Article } & \text { Marked } \\ 2 \text { Curtain roller springs } & R\end{array}$
2 8-32 nuts
1 Washer $3 / 5^{\prime \prime}$ dia., $3 / 16^{\prime \prime}$ thick
L
1 Base $9^{1 / 2} \times 3^{1 / 2} \times 3$ 沦 inches A
2 Uprights $2 \times 11 / 2 \times 3 / 4$ inches B
${ }^{1}$ Top, bearing $8 \times 11 / 2 \times 1 / 4$ inches C
2 Round pieces of wood $5^{1 / 2} 2^{\prime \prime}$ dia., $3 / 4^{\prime \prime}$ thick G
1 Round piece of wood $11 / 2^{\prime \prime}$ dia., $3 / 4^{\prime \prime}$ thick

I Brass rod $1 / 4^{\prime \prime}$ dia. and $4^{\prime \prime}$ long E
2 Binding posts
'2 Wood screws $2^{\prime \prime}$ long ()
4 Round hardwood screws $1 / 2^{\prime \prime}$ long

P
2 Brass strips $21 / 2^{\prime \prime}$ long, $1 / 2^{\prime \prime}$ wide, $1^{1 / 32^{\prime \prime}}$ thick
1 Brass strip $21 / 2^{\prime \prime}$ long and $1 / 4^{\prime \prime}$ wide

A $1 / 4$-inch hole is drilled through

the middle of the base, then a 1 -inch hole is bored half way through from the bottom J, Fig. i.

Next a $1 / 4$-inch hole is drilled in the center of top bearing C, Fig. I. The two uprights are next screwed to top bearing with the $1 / 2$-inch screw P. The two wood discs G should be turned out in a lathe and have a groove in them to take the wire R, Fig. I. They are then nailed together and a $1 / 4$-inch hole bored through the center.

On one side of these discs the brass disc K is screwed with three screws N .

The 4 -inch brass rod is turned down to $5 / 32$-in. at one end, threaded with an $8-32$ die. It is then put through the discs and soldered to the brass disc so that when the washer and nuts are put on there will be little play.

The two curtain springs are put around the ends of the discs and fastened about $1 / 2$-inch apart. The two springs are then connected together at
one end, as at Q, Fig. I. Any resistance wire can be used.

The pointer F, Fig. 2, is $21 / 2$ inches long and is screwed to the top bearing. The brushes are made out of the two brass strips H.
The knob has a hole $3 / 4$ through and is glued on the shaft.

The scale is marked on the wood disc G, Fig. 2. The numbering is started under the end of the pointer when the two ends of the springs which are conected together are under the brushes.

Contributed by
Oscar F. Olson.

THIRD PRIZE A COMBINED SECTION AND DEAD END SWITCH FOR LOOSE COUPLER WINDINGS

The illustration, Fig. I, shows the secondary of a loose coupler. This one has five taps coming down to the switch. Now, instead of just making a connection at this tap, after having brought the wire down, and then taking it up again, end the wire at the tap. Then place another tap right side of this one and start the wire from that and then take it up and wind on another section of wire. Then bring the wire down again, end it, then start it again from another tap placed side of this last one and then take the wire up again and wind on another section,

etc. In other words, the two ends of each section are brought to separate switch contacts.
Fig. 2 shows the switch at the end of the secondary with the switch points for the five taps. This explains itself.

Fig. 3 shows a round disc of hard rubber with its radius a little less than the distance of the switch points from
the centre of the switch. In the middle of this there is a small hard rubber knob for turning the disc.

Fig. 4 shows the back of the hard rubber disc. Place on the back 4 pieces of copper ribbon wide enough so that each one would cover a pair of switch

points and space these pieces of copper as far apart as a pair of switch points are. Then fasten on another piece of copper only one-half as wide so that it will only cover one switch point. But then continue this piece of copper right down to the centre of the disc so that it will make a connection with the bolt, which will fasten this disc to the secondary head, and from which one of the two wires of

the secondary will come. Have these 5 pieces of copper so that they will project over the edge a little.

Fig. 5 shows the secondary with the disc fastened on and also shows the two wires of the secondary.

Fig. 6 shows an end view of the secondary with the disc on and everything completed. As the disc is turned now there are three of the five sections of the secondary in use and there is no "dead end."

This device can also be used to great advantage on the primary and on "loading coils," thus doing away with the objectionable features of sliders and large "dead ends."

Contributed by
Arthur Kenison.

AN AUTOMATIC TANK FILLER
Here is a handy thing about the farm, dairy or even in town where any one wishes a supply of fresh water at all times.

This device will start the pump and fill your tank with fresh cool water as soon as the water level falls to a given point and will cost less in the long run than either wind pump or gas engine equipment. Also, it will save all the trouble with both. All that is necessary is to keep the mechanical parts in good order and they will do the rest.
In the diagram A is an arm which

rises and falls with the water by means of a float B. As the water is used up arm A falls which in turn raises M (switch closing device) which closes switch K on contact C .

When the switch is closed it starts the motor F which operates the pump E. H is the power switch. Blocks D are made of any suitable substance with holes bored through them in which the rod X is inserted, which in turn carries M-all this being fastened securely to the wall of the pump house.

As the tank fills, arm A reverses its action and rises, which lowers M and causes the switch to be thrown.

It will be noticed however that there is enough play at M to keep it from throwing the switch immediately as it moves down.

This allows the tank time to fill. The apparatus should be adjusted so the switch will be opened when tank is full.
Contributed by

> R. F. Denton.

A NON STICKING INTERRUPTER The following gives directions for
making an interrupter which I have successfully used on a $11 / 2^{\prime \prime}$ spark coil. The advantage of this interrupter lies in the fact that there is a quick break and a comparatively long space of time is allowed for the current to pass through and magnetize the primary. Also it is practically free from sticking. Figure I represents the end of the coil with the interrupter attached. B is a piece of soft iron $1 / 8^{\prime \prime}$ thick and is attached to the spring, J, by rivets, as shown in Fig. 2. A binding post is then taken and $1 / 4^{\prime \prime}$ is sawed off. B is then tapped $8-32$ at point shown and the portion of binding post, E , is screwed in and soldered. I also bored some holes in B, at L, to reduce its weight and consequently its inertia. C is a piece of phosphor bronze to which the platinum or silver contact, G, is soldered, as shown. A is a piece of brass, cut as in Fig. 3. To it B and C are attached by means of a small bolt and nut. D is a brass pillar to support the adjusting screw, F, which has a platinum or silver tip and a rubber han-

dle. The only other thing which needs explanation is H , which is a machine screw with rubber washers. These washers not only reduce the noise, but by their elasticity also increase the speed of vibration.

No dimensions are given because the interrupter should be made to fit the size coil which the experimenter may have.

Contributed by
Leo Behr.

ABOUT AERIALS AND RECEIVING HOOK UPS

I am a very interested student in wireless and have done quite a little experimenting on the above lines. I am one
of these kind that cannot stop until I get the best out of my set.

I have noticed in the Wireless Telegraph Contest that most of the fellows with 40 or 50 foot aerials about 60 feet long are usually content with a receiving radius of about 250 miles. Several amateurs in Denver have heard from 750 to 1,300 miles with aerials from 40 to 75 feet high and not more than 80 feet long.

I tried several types with but indifferent success, when a friend of mine showed me a hook up for a loop aerial. I found this to be fairly good and heard

some five or six long distance stations with it. Fig. 1.

Then, at a meeting of the Colorado Wireless Association, one of the members brought up a hook up which was shown to him by an old ship operator. Fig. 2. The hook up calls for a single lead aerial; but I was using a loop aerial at the time and I did not feel like getting up on the roof to change it, so I merely connected the two leads together just above the aerial switch.

Upon trying the hook up that evening I found that it worked as good as Fig.

1. The next day I went up on the roof and changed the aerial to a straightaway and connected it as in Fig. 3. This I found to work at least 25 per cent. better than Fig. 2.

You will notice that all hook ups call for three slide tuners. Although the hook up worked well there seemed to be
a lack of close tuning. I did not want to make another tuner and I did not want to spoil the one I had by tacking another slider rod onto it.

By putting two sliders on one rod and using this as the aerial slider I made the equivalent of a four slide tuner. Fig. 4 may help to make it clearer. When I had done this I connected it as in Fig. 5. I found this hook up very selective. Using this hook up on an aerial 50 feet high at one end, 44 at the other, and 60 feet long, I was able on several occasions to hear NAR, Key West, 1,300 miles. This was with a silicon detector and a pair of Brandes superior phones.

Later the aerial was raised to 70 feet and was changed to a duplex with one aerial under the other, four wires in each, and the same remaining dimensions as in the above aerial. Fig. 6. I found this type very satisfactory where only a short aerial can be raised.

The only detector I have ever used for any length of time is the silicon. When using this detector I find that if the receivers are connected around the detector, Fig. 7, instead of around the condenser, Fig. 8, as is recommended by some, that the static is much less. Either method brings in the signals with exactly the same loudness and clearness.

With the aerial in Fig. 6 and hook up, Fig. 5, I heard stations varying from 750 to 1,300 miles nearly every night last winter.

As I have never experimented with a loose coupler I am in no position to say what is the best to use with them.

If the experimenter wishes to connect a variable condenser in these hook ups, I think the best place is around the ends of the tuning coil.
I recently moved to Boston, where I have erected a temporary aerial, one wire 150 feet long, and bo feet high at each end. I am using hook up, Fig. 5, and have heard some 34 stations in less than a week. I have picked up NAR on two occasions. This hook up with an ordinary tuner will pick up waves to about $\mathrm{r}, 600$ meters.

Contributed by
James A. Kilton.

A MULTIPLE CRYSTAL HOLDER

There are endless ways and methods of making detectors but, one fact re-
mains true, and that is, if the detector is really a "sensitive" one it will be "knocked" when the transmitter is operated if the detector is not cut completely out from the circuit, and cut ot the detector terminals. The reason for this is that by electro-magnetic induction there are induced high voltage currents in the receiving windings and wires and

this current upon passing across the terminals of the detector elements causes the two to weld together and thus destroys its rectifying qualities.

The holder shown in the drawings is designed to overcome this difficulty and has been used very successfully in commercial use, where operators have not the time to waste patience and energy fooling with their detectors, when they must "shoot" a message. It will be noticed that the cutout switch is mounted on the same base as the crystal holders, the base being intended for mounting on the wall conveniently near the operator. A plan view is shown in Fig. I, depicting the two holders, see Fig. 2, the cutout switch, double binding posts for holding fine wire or other contact, and the 3 -pole switch for cutting in either crystal. All are mounted on a piece of hard fibre cut in the shape illustrated, and then the fibre screwed to a similar

woor base $5 / 8$ inch thick. Connections are made as in Fig. 3. It is preferable to operate the cutout switch by a larger handle than those usually found on or-
dinary DP switches, one being turned out from maple or any hard wood.

One crystal is adjusted, then the 3 pole switch is thrown to the other, and that one adjusted till it is a little more responsive than the first, and this kept up until you are sure that the very best spot on the crystal is being employed. If one should for any reason be "knocked" the other can be instantly cut in without undue interruption.

Contributed by

> Stanley E. Hyde.

A LARGE SENDING CONDENSER

Most amateurs cannot afford to buy condensers of a very large capacity as they often cost as much and sometimes more than the transformer itself. The following is a description of a condenser which can handle up to and includ-

ing a 1 kw . transformer. It is easy to make and costs but little more than \$3.

First go to some drug store or candy shop and ask for twelve large candy jars, the square kind, Fig. I. After

you have these get some good hard wood about $1 / 2$-inch thick and put it in an oven to thoroughly dry it. While it is still hot put it in some hot paraffine to make it moistureproof. When the wax has pretty well soaked in take an old rag and rub it thoroughly.

Take a piece 24×30 inches and cut twelve square holes in it as shown in Fig. 2. The rest of the woodwork may
be easily understood by looking at Fig. 3.

The jars are covered inside and out with a heavy tinfoil which is fastened to the jars with shellac. When this is dry heavy painting of shellac is then put all over the tinfoil and especially over the edges, to stop the brush discharge.

They are then put in the case and connected in two sets of six each, Fig. 3.

The connections are of either brass chain or metal ribbon as is used to wind a helix for the inside, while for the outside a sheet of copper or brass is put in the bottom of the case. A wire should be soldered to this in the center and is brought up to the center binding post so that the capacity may be varied.

A piece of wood can now be put on the sides of the case to give it a finished appearance.
If everything has been carried out as described you will have an efficient and cheap condenser.
Contributed by
E. R. Hall.

LIGHTNING GROUND SWITCH

Lightning switches, by the new law, are required to be put on the outside

but here is one which can be operated from the wireless room.

The diagram is self explanatory and simple.
In diagram A is the contact to which lead to set is connected; D the contact to which the aerial lead is connected, and C is the ground connection.

It will be advisable to use a separate ground wire for lightning switch aside from the ground that the set is connected to.
The rod B should be fibre or hard rubber. The dimensions of the inside parts are left to the reader's fancy, but the parts outside should conform to the Underwriters' requirements-blade made from copper $1 / 8-\mathrm{in}$. x I in., and clips having a contact surface one inch square on each side of the blade.

Contributed by

R.F. Denton.

SIMPLE MAGNETIC LOCATER TO USE IN WIRING OR PLUMBING

In my electric house wiring I frequently got myself into trouble by miscalculating by rule measurement and boring holes out into rooms when they should come in the partitions. So I decided to try the following scheme:

I took a large file about ten or eleven inches long and magnetized it strongly on the poles of a dynamo by the usual stroking method. It would pick up six or seven ten-penny nails at once. Next I took a common magnetic compass and tried to see at how great a distance the file would affect it. Now anyone who has experimented with magnetism knows that a certain end of a bar magnet will attract a certain end of a compass needle. I found that the pointed end of the file that was designed to go in a handle would begin to attract the south seeking pole of the compass at a distance of a foot or more. At a distance of six inches the needle would point nearly straight to the file, and at a distance of two inches or less it would point very exactly. This will work through anything that is not magnetic just as well as through the air.

To locate a point over a partition I tie the file to a springy stick slightly longer than the height of the ceiling so that the end of the file may be placed anywhere on the ceiling and held there by springing or moving the bottom of the stick. Sometimes it is more convenient to use a shorter stick and a chair under it. Then I take the compass and go overhead-upstairs
where the floor is up (one can generally guess near enough where to find the file)-and knowing which end of the compass the file attracts, I follow up with this end of the compass until the needle suddenly reverses and vibrates very rapidly, which point is over the file.

It is difficult to locate much nearer than an inch by the above method and if more exactness is wanted the compass may be placed one or two inches from the file in two positions so that intersecting lines may be drawn and the intersection will be within one-

eighth of an inch of the place where the file is.

This scheme may be used to locate through floors, where there is no ceiling, very rapidly and easily, for instance, in locating a partition to bore up into it from the cellar. Many times partitions are put in after the house is built and no nails are visible by which to locate the partitions. I take a hammer and drive up the pointed end of the file at a point down cellar that I^{-}think can be located a little way from the wall.

This method may be used to locate through a wall horizontally, and will work very well through six or seven inches and locate within one and onehalf inches.

I have used this in all the wiring I have done in the last two years and have found it to be such a great time and worry and trouble saver that I now carry it as a regular tool.

Contributed by

R. J. Cleveland.

AUTOMATIC CURRENT REGULATOR AND PROTECTIVE SWITCH

Often an arrangement which will control the current through a given circuit is wanted. For instance, in the case of
small power motors driving widely variable loads, extreme fluctuations of the speed are common. However, using the apparatus shown below, this trouble will be in part eliminated. Also the device may be used to protect lamps from excessive current or a possible burn-out.

As is shown in the drawing, the instrument comprises a solenoid magnet within which is freely suspended an iron plunger. This plunger is so connected to the lever, B, that upon any increase of current flowing through the circuit beyond a predetermined limit it will pull the plunger down, thereby lifting the rod, A, out of the solution in the tumbler or beaker, D.

The base and back are made from any kind of stock and to the dimensions required. The size of the solenoid, that is, the size of wire and the number of turns, depends upon the value of the current needed, and must be found by experiment.

If the instrument is found, after construction, to be too sensitive, i. e., shut-

ting off the power before the amount wanted is being delivered, either reduce the number of turns in the solenoid or weight the arm, B. The regulation in any particular case is also aided by cutting off the wire, A, to the best length as indicated by experiment.
To use, connect the instrument in series with the apparatus to be protected or regulated. In the absence of current the arm, B, should rest on the binding post, E, and the plungor should be almost entirely out of the solenoid; after the connections are made, pour some water into the cup, D.

Then sulphuric acid is added slowly until the apparatus is running under normal conditions. The arm, B, should now be level,--if not, weight until it is level. If the current now increases or
falls off, the wire, A, will move up or down to compensate the changes by varying the resistance. If the current becomes strong enough to lift the wire, A, out of the solution, it will start a vibration of the apparatus which is sure to compel notice by the tender. Contributed by

Paul Horton.

A WASH BOTTLE FOR THE LABORATORY

A good wash bottle for the amateur's laboratory can be made as follows: A two-hole rubber or cork stopper is fitted into the neck of a flask, as shown at S in the sketch. Two glass tubes about

3/16 inch internal diameter are bent to the shape shown by M and N, these tubes being fitted into the holes of the stopper. The lower end of M reaches nearly to the bottom of the flask, while the lower end of N is about $1 / 2$ inch below the bottom of the stopper. The upper end of M is drawn down until the opening is about $1 / 16$ inch in diameter.

By blowing through the tube N the water in the flask is forced out through the tapered end of M in a fine stream. This makes a suitable apparatus for washing the residuum in qualitative analysis, and it can also be used for many other purposes in the laboratory. By making the orifice in M quite small
the above described apparatus can also be used as an atomizer or spray.
Contributed by
Wm. H. Dettman.

ANOTHER SYNCHRONOUS ROTARY GAP FOR SPARK COILS

I have constructed a rotary spark gap and interrupter combined, for use in wireless, that has two marked arlvantages over the ordinary kind now used. First it works in absolute synchronism, and second it is much lighter, heing no load even for a little Hustler motor.

This instrument requires a small motor of high speed. On one end of the motor shaft is soldered a brass or copper disc with four points or corners spaced equidistant around the circumference, and as the shaft rotates the points dip in a pool of mercury over which is a layer of alcohol to prevent oxidation, thus interrupting the current.
But now to the spark gap wherein lies the merits of this instrument. It is simply a disc of mica in which there are four holes spaced equidistant and about $3 / 4$-inch from the edge of the disc.
This disc is glued on to the other end of the shaft and rotates between two zinc plugs. The mica disc is glued to the shaft in such a manner that the holes in it come between the plugs at the instant the interrupter point (on other end of shaft) leaves the mercury, thus making it synchronous. This may be made into a revolving series gap by placing four plugs on each side of the disc in such a manner that the spark would travel four times through the disc. But I find no great advantage in the series gap.
Contributed by
Emmett Moffett.

A CHEAP RHEOSTAT

A very easily made and cheap rheostat for reducing ino volts A. C. for use on small motors and arc lights may be made as follows: Get two No. 2 coil door springs and fasten to a board coyered by $I / 3^{\prime \prime}$ sheet asbestos, stretching
out far enough to allow for their not touching when they expand. Connect two of the ends together and connect coil in series with light, motor, or other instruments. The springs only cost 5 cents each and if two of them do not reduce current enough, of course more springs may be added.

Contributed by
Hubert Izey.

ANOTHER SIMPLE METHOD OF FINDING THE FREQUENCY OF AN ALTERNATING CURRENT

In the July issue of this magazine. Mr. Beverage explained how to find the ireguency of an alternating current by

means of a pendulum. The following method makes use of the tone emitted by a vibrating string and the fact that a conductor in which a current is flowins tends to move in a direction at right angles to the lines of force when placed in a magnetic field.

The apparatus consists of a horseshoe magnet, a sonometer, and some musical instrument, such as a piano or a violin. The sonometer may be constructed as shown in the figure. The base, A, is about one metre (39.37 inches) long, has a binding post, B, at one end, and a bent lever, C , at the other. A wire, say No. $26 \mathrm{~B} \& \mathrm{~S}$, is stretched between B and C. When plucked the wire will give out a certain tone which may be changed by adjusting the tension or the length of the wire. That is, by changing weights at the end of C or by sliding the bridge. 1 , to a different place on the board. If a magnet, M, is now placed astride the wire about half way between B and D , and an alternating current sent through it, it will tend to move up during onehalf the cycle and move down during the other half. If the frequency of the vi brations of the wire when plucked is the
same as the frequency of the current, the wire will vibrate in unison with the current and give out a tone which must be identified by comparison with some musical instrument or other standard.

In order to make the frequency of the wire equal to that of the current, the weight at C must be adjusted and the bridge, D , slid along until the wire gives out a strong, clear tone. When the correct adjustment is found, the tone is compared with some tone that is known on some musical instrument. The frequency is then found by reference to the following table:

| Tone. | No. of Vibrations |
| :--- | :--- | :--- | :--- | :--- | Tone. | No. of Vibrations |
| :--- | :--- | :--- |
| per second. |

If the tone of the wire is found to be some tone not in the table, its frequency may be found by applying the following rule: Of two tones an octave apart, the lower tone has one-half the number of vibrations per second of the higher one. That is, if the tone is below middle C , its frequency equals that of the corresponding tone in the table divided by 2 , once for every octave's difference between the tones. If the tone is above middle C its frequency equals the tone in the table multiplied by 2, once for every octave's difference between the tones. For example, say the tone is identified as G^{1} two octaves above G in the table. Then frequency of $\mathrm{G}^{1}=2 \times 2 \times 383.6=$ 1534.4 per sec.

This method is better when very high frequencies are to be determined, as the human ear is so delicately adiusted that it can distinguish between two tones differing only by a few vibrations per second.

Contributed by

Francis John Nankizell.

AN ENCLOSED DETECTOR

I will describe an enclosed detector I recently constructed and used with good results.

Referring to Fig. I, A is a tube, pref-
erably of glass, an oil cup glass does nicely. A rubber ear cushion is forced into the bottom to take up vibration.

A three point battery switch is dismantled and binding posts put in holes as shown in Fig. 2. One of these is connected to a bushing B, which is placed in the hole in the center of the base while the other is connected to the brass screw N.

A piece of wood $3 / 8$ in. to $1 / 2$ in. thick is made to fit tight in tube A. Two holes are made in this, one in the center for rod to pass through, and the

other for screw N. After cutting, drilling and bending a strip of $1 / 2$ in. brass, as shown, the parts are ready to assemble, as shown in Fig. I.

Rod R should slide easily through bushing B, and its weight will keep contact on mineral. Any kind of mineral may be used in this detector. The contact shown gave excellent results with silicon.

Contributed by
Thos. W. Benson.

A HIGH FREQUENCY BUZZER

The accompanying sketch shows a high frequency buzzer for your detector test. It is constructed of an ordinary 4 -ohm bell magnet A, above which is stretched the fine piano wire B, supported by the screw C, in the fibre standard D, and by the clock spring E .

To the top of D is attached the brass arm F, supporting the contact screw G. On the steel wire, under G, is fastened a small piece of platinum or silver, by being bent in the form of a tube around the wire. Mount a bind-
ing post H on the instrument. The shorter the steel wire the higher the pitch, a piece about 3 inches long is good.

Connect one end of the magnet to E and the other to a battery. The

post H is connected to the other side of the battery. The maker should use the dimensions best suited to him.

Contributed by
C. J. Sedlak.

ELECTRIC SOLDERING IRON

First, obtain a medium sized ordinary soldering iron, one having 4 sides and having at least two inches of copper point. Cut four pieces of sheet mica, the same dimensions as one side of the iron (the copper), except that it comes to within $3 / 4$-inch from the

point. Over this are put four pieces of sheet asbestos the same size as the mica.

Now procure 20 feet of No. 24 Climax Resistance Wire. Wind about 25 turns on the first layer, cover with a layer of $1 / 16-\mathrm{in}$. sheet asbestos and wind about another 25 turns of the resistance wire. Cover with another layer of asbestos and mica. It can now be covered with a layer of thin sheet brass or wind over a layer of No. 16 or No. $18 \mathrm{~B} \& S$ gauge wire. The leads should be connected to insulated wires, leading through a hole bored through the handle, and an ordinary plug attached.

Contributed by
Haydn P. Roberts.

Recent Important Patent Decisions

By George William Miatt

THE Supreme Court of the United States has again demonstrated the efficiency of the existing patent laws by its decision of May 28th, 1913, in the so-called "Sanatogen" case, in which it announces as a universal rule that "a patentee who has parted with a patented machine by PASSING TITLE to a purchaser has placed the article beyond the limits of the monopoly secured by the patent act." In other words, the "passing of title," as in other property, cancels the patent owner's right to control; but it does not prevent him from licensing conditionally, nor from consigning goods for sale at a stipulated price. This decision is parallel to and consistent with the decision of the same Supreme Court in the Bobbs-Merrill case, in which it held that a copyright did not enable the publisher of a book to prevent its sale at less than a fixed price by department stores and others.

The Department of Justice has long contended that where a patentee sold his patented article he lost all control of it and was powerless, especially in view of the Sherman anti-trust law, to establish and control resale prices. Hence the officials of the department regard this decision in the "Sanatogen" case as of tremendous importance, putting an end to existing widespread extensions of patent monopolies, based upon unlawful or inequitable stipulations and conditions. The decision will affect many articles now sold under restrictions fixing the resale price, particularly certain cameras, talking machines, watches and clocks, not to
forget certain kinds of safety razors, the manufacturers of which have sought to extend their monopolies and shave the public in a financial sense by questionable expedients. In fact, several anti-trust suits now pending in the courts are based on the principle involved, and the Department of Justice has been awaiting a determination of the question before starting additional prosecutions on the same theory.

It must be understood that this latest decision of the Supreme Court, while it does eliminate certain "trust" abuses that have arisen under the prior construction of the patent law, does not deprive the inventor or patent owner of any equitable right or protection; and it certainly is an efficacious answer to the pending piratical "Oldfield Bill" and those back of it. As we have always maintained, the patent laws are fundamentally broad and basic, and the United States Supreme Court is certainly competent to interpret them in such manner as to meet changed trade conditions and to correct abuses. The average politician is no more competent to tinker with the patent law than an elephant is to regulate a watch.

An important decision affecting Patent Office practice has been rendered by the Court of Appeals of the District of Columbia overruling the decision of the Commissioner of Patents in re. Karbeck. The point at issue in this case was the old one of invention as distinguished from the use of obvious expedients or the exercise of mere mechanical skill in at-
taining a desired result. The tendency of late years has been to restrict the granting of patents and construe simple though admittedly original conceptions, changes or combinations as the exercise of good judgment or selection only, lacking patentability. In fact the policy has been most illiberal, all doubts being construed as against the inventor, a policy which is emplatically reversed by the decision of the Court in this case, Judge Van Orsdel ruling that: "It is easy to dispose of a case, where the issue of invention is close, by holding that the advance over the prior art constitutes a mere mechanical change apparent to those skilled in the art. But, in the absence of proof to support this conclusion, and zohere the question of patentability is close, the doubt should be resolved in favor of the applicant. While the use of new materials to produce a known result, or of known materials to produce a new but obvious result, may not always constitute invention, if the new idea, when applied, brings success out of failure, produces a new and useful re-
sult and saving in operation or production, or efficiency instead of inefficiency, gives to the devise neru functions and useful properties, it is invention and may be patented.

We think this decision is most just and equitable as well as opportune. By all means give the inventor the benefit of the doubt and let the public decide as to the merits. If people do not want the innovation the latter will suffer a peaceful death-if they do, they should be willing to pay the piper. While so-called mechanical expedients or equivalents seem obvious enough after use they are not always primarily apparent to either the inventor or the skilled artisan. Not so many years ago Edison regretted that he did not have the aid, while expending many thousands of dollars and much time in experimental investigation in attaining a certain result, of the Judges who afterward declared the invention an "obvious expedient"obvious to them on sight, but not to Edison and his skilled associates until after they had succeeded laboriously in solving the problem.

Recent Electrical Patents

By George William Miatt

A^{s}S is well known, in the "mixed" or electro-chemical propulsion system, the heat motor directly drives the wheels by means of a magnetic or similar clutch, and by toothed gearing, while the electric machine is placed in parallel

with the battery and coupled mechanically to the heat motor. The heat motor is generally diminished for average power so that the electric machine serves, when hills are encountered, to increase the power by working as a motor, and, as a generator, to store up energy during de-
scents. According to the invention of Henri Pieper, of Liege, Belgium, set forth in patent No, 1,056, 119 , the electrical machines and batteries of all the vehicles of the train are connected in series. In this manner unequal demand on the electric machines and also on the different batteries is prevented. This system is illustrated in the diagram where I represents the heat motors, 2 the electric machines and 3 the batteries of the different vehicles. Obviously each vehicle can be provided with several electrical machines and several heat motors. The control of the entire train is effected, in the known manner, from the motorman's cab. The patent covers an electro-mechanical propulsion system for trains having a plurality of vehicles comprising heat mo-
tors, electric machines coupled thereto, batteries working in combination with the electric machines, means for connecting the electric machines, and batteries of each vehicle in separate groups in order to start the different groups of heat motors and electric machines and to start the different vehicles of the train, means for connecting the electric machines and batteries of the whole train in series for running, means for regulating the speed by varying the field of the electric machines and means for changing from the one system of connection to the other at about the commencement of the speed regulation

PATENT No. t,052,522, issued to Victor Sene, of New York, N. Y., relates to electric therapeutic devices, and comprises an improved portable apparates adapted to be carried in and manipulated by one hand of the operator, and which when placed in contact with the head or any part of the operator's body will put the same in circuit with

the terminals
of a mechanical generator of electricity mounted on the apparatue so that any current gcn^{-} crated is sent through the body. The most convenlent form of apparatus t o be so equipped is a hair brush having bristles of metal or other electrically conducefive material. The mechanica 1 generator is preferably driven by pawl and ratchet gearing actorated by the hand that holds the brush.
Hence the accompanying figure represents a back view of a hair brush constructed in accordance with the invention, with metallic bristles, and an ordinary hack and handle. 2, cut away at, 55 , to receive the electric generating mechanism.

In operation the brush is held by the handle with the thumb of the operator on thumb piece, 36 , of lever, 34 . If, while the brush is being used in the ordinary manner, the metallic bristles being in contact with the scalp and the operators' hand making contact with plates, 3 and 4 , the lever, 34 . is vibrated by the alternating pressure of the opentor's thumb and spring, 37 , continuous rotation will be given the magneto armature by the pawl and ratchet mechanism and multiplying gearing. As a result the armature coils are short circuited and a current of considerable volume is created. Each time this short circuit is broken a counter indecd current is generated in the armature coils, and shunted through the boldly of the operator from head to hand.

PATENT No. $1,052,056$, issued to Peter Cooper Hewitt, of New York, N. Y., assignor to Cooper Hewitt Electric Co., a corporation of New York, is for certain Improvements in the Operaion of Translating Devices with Mutsiple Electrodes.

It is well understood that when eectric current traverses a divided circuit containing only ohmic resistance, the product of the current and the resistance in both branches is the same. In such a circuit, it is not generally diffi-

cult to make an even division of the load, or, in other words, to make the fall of potential in both paths exactly the same.
The problem of running similar translating or transmitting devices in parallel becomes more difficult when She devices to le o. crated are either such that the drop is practically indpendent of the current flowing, or such that the resistance decreases more or less rapidly with increments of current, as in the well-known Nernst lamp. Under such circumstances, it is practically impossible to so construct the similar translating or transmitting devices as to get an exactly equal loss of voltage in two parallel paths, include.
ing such devices, the consequence being that all the current will flow through one to the exclusion of the other, unless special ballast devices are provided.

The solution of the problem which depends upon introducing ohmic resistance or other choking devices into one or both of the parallel circuits is open to objection on account of the loss of efficiency in the system due to the presence of such devices. By providing means, therefore, for exactly balancing the electro-motive-forces in the two paths without substantial loss of energy or interference with the regulation or the supply of energy in the system, a substantial improvement in the arc is accomplished.

Broadly, this result is accomplished by introducing into each of the parallel paths means whereby a flow of current in this path produces an electro-motiveforce in the opposite path in such a direction as to assist the flow of current in such opposite path. In this way, if the electro-motive-forces consumed in the two paths be slightly unequal, due to unavoidable lack of similarity in the translating or transmitting devices, the slight increase of current in one path will cause a slight additional electro-motive-force in the second path sufficient to exactly balance the difference in the two electro-motive-forces.

In the diagram, I and 2 , are the mains of a supply system, the source being any suitable source of alternating currents. The main conductors of the receiving circuit are shown at 3 and 4 and translating devices requiring direct current appear at 5, 5. Between the mains, I and 3, are introduced two parallel circuits, 40 and 60 , which it is desired to operate in parallel. These circuits are here represented as being included in a gas or vapor electric apparatus, consisting of a suitable container inclosing a conducting gas or vapor and provided with a plurality of positive electrodes, 13 and 14, and a negative electrode, 9 .
In circuit with the anode, I_{3}, is a coil, io, surrounding a laminated core, II, and in circuit with the anode, I4, is a coil, 12, surrounding the same core, II. In other words, the branch circuit, 40 , contains the anode, 13 , and the coil, 10, while the branch circuit, 60 , contains the anode, 14, and the coil, 12.

The direction of current flow is always the same, inasmuch as impulses of opposite direction cannot pass from the supply to the receiving circuit owing to the character of the device.

To compensate for the unavoidable slight difference in apparatus of this class an inductive apparatus is used consisting of the coils, 10 and I2, and the core, II. The relations of the respective coils are such that when the load is evenly divided between the two branches, the opposing inductions of the coils substantially cancel each other. Should the branch, 40, begin to take a slight excess of current as compared with the branch, 60 , the inductive effect produced by the increase of current in the coil, ro, would be such as to create an additional electro-mo-tive-force in the coil, II, tending to increase the flow of current in the second branch. By these means a change of load in one branch will produce counter active effects upon the other branch whereby the fall of potential in the two branches will be maintained practically equal, thereby making it possible to operate the two devices in parallel circuits.

EVERY one who has a preference for eggs cooked in an individually prescribed time and manner will appreciate the efforts of Archibald S. Gubitt, of Pittsfield, Mass., to gratify their tastes, as set forth in Letters Patent No. I, 055,882, assigned to the General Electric Company, New York.

Fig. I represents a sectional elevation of the device, and Fig. 2 an enlarged sectional view of the lower part thereof. The outside casing, Io, is provided with legs, II, and with a cover, I2. Within the casing, Io, and spaced therefrom, is an inner casing, 13 , in which is mounted the basket, 15 , for holding the eggs out of contact with the water. The inner casing is shaped to provide a pocket, 16 . for containing water after the main body of the water has been evaporated. The heating unit, I4, is arranged to be open circuited when it reaches a predetermined temperature-that to which the heater will rise when there is no longer water in contact with its effective radiating surface for keeping it cool. In order to open the circuit under these
conditions a thermostatic member, 17, is mounted in contact with the central portion of the heating unit. This thermostatic member may be U-shaped, to provide an effective movement for opening the circuit, and is provided with a lug, 17^{1}. Switch member, 18, pivoted at 19, is arranged to open the circuit of the heating unit, being provided with a portion, 20, which engages the lug, 17^{1}, of the thermostatic nember, and is held in closed position thereby. A spring, 2I, presses against the member, 20 , to normally force the switch open. A key, 22, extends out through the casing to pro-

vide means for closing the switch. When the key, 22, is turned the switch member, 18 , is turned to closed position, as shown in Fig. I, and the member, 20, holds it in place by bearing against the lug, 17^{1}, of the thermostatic element, providing the temperature in the heating unit is not excessive. If the temperature rises above a predetermined point the end of the thermostatic element will bend upward and release the
switch. In order to provide a signal to call the user's attention to the fact, a hammer, 23, moves with the switch member, and a bell, 24, is engaged by the hammer when the switch is opened.
The operation is as follows: The eggs are placed in the basket, 15. The water is then poured into the bottom of the receptacle. The degree to which the eggs are to be steamed is controlled by the amount of water in the receptacle. The cover, 12, which is used as a cup to measure the amount of water in the heater, may be graduated, as shown at 25 , for indicating the proper amount. The current being turned on by means of the key, 22 , steam will be generated in the receptacle, and the eggs cooked. When the water in contact with the flat portion of the bottom, that is, in contact with the effective radiating surface, is evaporated, the eggs are cooked to the desired degree. A very short time after the water has evaporated, the circuit is opened by the thermostat. The pocket, 15 , will still contain water for steaming the eggs for a short period, sufficient to prevent the burnings of the eggs until the circuit is opened. As soon as the temperature becomes excessive in the heating unit the switch opens and the gong rings.

THE accompanying view is a diagrammatic representation of means devised by Augustus Rosenberg, of London, England, (Patent No. 1,057,279). for the treatment of deafness and other disorders of the auditory organs by agitating the sound-conducting and soundperceiving portions of the ear by me-

chanical vibrations having a continuous undulatory character corresponding to that of the sounds to which it is required
to train the ear to respond. In the circuit, A^{\prime} is interposed the source of electric energy, A, and the opening and closing switch, F. A sound controlling cur-rent-regulator, B , agitated by direct mechanical contact with a phonograph or equivalent, E, is also interposed in the circuit. The undulator comprises a permanent magnet j^{\prime} wound with a coil, C , of insulated wire, connected at its ends with the terminals of the circuit; the magnet-armature being constituted by a freely-vibrating piece of magnetizable metal, g, mounted on a spring, h, which is attached at both ends to the vibrator, D. The magnet, j^{\prime}, itself is of the tubular type, wherein a central core is surrounded by a concentric tube in magnetic connection with the core, the winding being placed in the annular space between the core and tube. The vibrator, D, which is adapted to respond to the vibrations set up in the undulator and to transmit these vibrations directly to the person of the user, is in the form of a casing inclosing the undulator from whence it receives pulsations. Any portion of the vibrator may be applied to the person, but it is generally preferable to employ that end of the casing which is opposite the magnetic armature, g ; the said end being prolonged, as at d, to form a cylindrical plug adapted for insertion into the external ear to insure the communication of the vibrations to the inner and middle ear. The armature, G, may be attached by the spring, h, to the interior of a cap, i, and made to approach or recede from the electromagnet until the vibrations set up on the passage of current through the winding of the magnet exhibit the amplitude or intensity desired. Where the armature itself, or a plug, d^{\prime}, carried thereby as indicated in dotted lines, similar in form to the plug, d, is applied to the person the pressure consequently exerted upon the spring, h, will tend to damp the vibrations or even to cause the armature by contacting with the pole of the magnet, to stick. In such case it is only necessary to increase the distance of the armature from the pole of the magnet until the armature, although subjected to pressure, remains free to vibrate.

A PORTABLE apparatus for purifying water by electrolysis, adapted for domestic uses, is shown in the accompanying illustration, taken from Letters Patent No. 1,057,367, issued to Ada H. Van Pelt, of Los Angeles, Cal. The disc, 3, has a set of downturned leg members, 4 , and a plurality of perforations, 5, so that water may freely circulate. Centra!ly the disc has a hole and an upturned annular flange, 6 , to receive the lower end of a tubular stem, 7 , of hard rubber, the upper end being open to receive a removable head, 8, through which the inlet wires pass. One of these inlet wires, 9 , passes down through the tube and is held by a screw, 10, which passes through the flange, 6 .

of the disc, 3 , and the other wire conductor, II, connects through the screw, 12, with a metal contact bar, 13, secured to the outer surface of the tubular stem, 7, on which is mounted a circularlyformed body of insulating material, I4, which has a vertical notch, 15 , to clear the contact bar, 13 , on the side of the stem, and a set screw, 16, for vertically adjusting the spider. The body, I4, has a plurality of radiating arms, 17 , of any suitable conductor of electricity, each held in place by a set screw, 18, passing through a metal ring, 19, on the body, 14 , so that the arms are electrically in contact therewith. This ring has an upwardly projecting contact finger, 20, to engage with the vertically-disposed contact bar on the outside of the stem. It will be seen that one conductor is in electrical contact with the base, constituting one of the terminals, and the other conductor is
electrically connected with the arms of the spider, constituting the other terminal. The different waters which are to be treated have different resistances. The vertical adjustment of the spider is to so fix the distances between the terminals as to give the most effective treatment to the water, and as different voltages are found in electric systems, this adjustability is a necessary element. As the device is applicable for either alternating or direct currents, the terminals are set much farther apart, when an alternating current is used, to make the water itself act as the resistance, and thus prevent overheating.

WHEN bare resistance coils are employed for heating air and the like, there is, in effect, much loss of heat, since much of the heat is generated as radiant heat, which passes througl surrounding air without raising the temperature thereof materially, and which becomes sensible heat only when it impinges upon some solid or
 liquid body not transparent to heat rays. To obviate this loss, the coils must be embedded in some material, not transparent to heat. but merely conductive of heat, whereby all of the heat generated will be transmitted from the heater as sensible heat. In the past, this has generally been accomplished by embedding the coils in porcelain or like material; to which practice, however, there are numerous serious disadvantages, one of which is that the porcelain is extremely apt to break as a result of sudden temperature changes, or unequal heating, and another of which is that the porcelain does not allow free expansion and contraction of heating roils. A further objection is that porcelain is a rather poor conductor of heat and therefore is a poor radiating material and furthermore does not afford sufficiently large heating surface for contact with the surrounding air to heat the latter. John F. Monnet, of Paris, France, in Patent No. 1.058:380, proposes io obviate these difficulties largely by surrounding the heating coils
with a finely pulverized material of an insulating nature, inclosed within a sealed envelope, which latter is preferably of a material having a high rate of heat transmission, such as one of the more conductive metals. The pulverized material then performs the several functions of insulating the heating coils electrically from one another, of excluding air from the coils and thereby preventing oxidation, of converting all radiant heat admitted from the coils into sensible heat, of storing heat so that the rise and fall of temperature of the resistance coils is relatively gradual, of cushioning the structure so that it is not liable to injury even by excessive jar or vibration, and of permitting free expansion and contraction of the coils. The accompanying view represents diagrammatically a central longitudinal section of the heating element, in which the heating wire, 2 , is wound on the support, I, and is imbedded in the pulverized material, 7. The whole is enclosed in the metal casing, 6 , closed at the top and bottom by the end pieces, 8 and Io.

IN systems of electric car lighting wherein the car axte is used to drive the dynamn furnishing the current for the lighting system, the speed of the car axle of necessity varies considerably because of variations in the speed of the car or train, and therefore the terminal voltage of the dynamo will vary within wide limits. The object of Otto Schaller

of Steglitz, near Berlin, Germany, in his Patent No. 1,059,076 is to obtain an approximately constant potential at the terminals of the working circuit irrespective of great variations in speed of the mechanically driven power shaft. To this end there is provided a second shaft and electrical means, consisting of one or
more auxiliary dynamos, for driving such second shaft, whereby the sum of the speeds of the main and auxiliary dynamos, or the relative speed of parts of the main dynamo rotating one in opposition to the other, and therefore the voltage of the working circuit will remain approximately constant. In the accompanying diagram there is indicated a shaft, W^{\prime}, driven in either direction or first in one direction and then after a time in the other direction, as would happen if driven from a car axle by a belt, R. On this shaft, W^{\prime}, are mounted the armature, A^{\prime}, of a dynamo, D^{\prime}, and the armature, a^{\prime}, of a dynamo-electric machine, M^{\prime}. A second set electrically driven comprising a motor, M2, and a dynamo, D_{2}, having their respective armatures, A2, and, a2, mechanically connected by a shaft, W2. The set, D^{\prime}, M^{\prime}, operates as a direct current converter, and the set, D2, M2. as a motorbooster. The armatures, a^{\prime} and a2, are connected together in series and to a battery, B . The armatures A^{\prime} and A 2 , are connected together in series, and to a working circuit in which are included translating devices such as lamps, I, or heating coils, w.

THE accompanying figure is a diagrammatic representation of a variable speed dynamo arranged in accordance with the invention of Albert H. Midgley and Charles A. Vandervell of Acton Vale, England, as set forth in their Letters Patent No. 1,057,759. This invention consists of a dynamo electric machine in which the brushes for collecting the useful current are arranged in such position that the coil or coils of the armature short-circuited by the said brushes are in an active zone where they are cutting an initial magnetic flux due to wound poles, and the current thus generated in the short circuited coils, as distinguished from the working current which flows through the armature from brush to brush, acts to distort the said initial magnetic flux in a manner to accomplish self-regulation. It is well known that in every armature in addition to its working current there would be another and local current produced in the coils short-circuited by the brushes if such short-circuiting took place at a moment when the coil is not situated in a
neutral zone, and the magnitude of such local current depends, other things being equal, upon the strength of the magnetic flux and the speed at which the armature rotates. In carrying out the invention, this property of the local current in the short-circuited coils to produce a cross-

magnetizing force in the armature to distort the magnetic flux to one side of the center of the plane of the short-circuited coils is utilized, as is also the reaction of the working current in the armature winding to weaken the magnetic flux as the speed of the armature increases in order to obtain the desired self-regulation. a represents the armature, and b its commutator provided with brushes, c, each of which is adapted to short circuit one or more individual armature coils, d, while said coils are cutting the magnetic flux from the subsidiary poles, f, of the field magnets, e,-said subsidiary poles, f, being disposed midway between the main poles, g, and provided with a winding, h, in conjunction with means such as a short circuit for energizing said windings from the brushes, c. The main poles, g, are not provided with any winding, but as the subsidiary poles are excited independently the magnetic flux will always have one direction.

THIS invention of Henry Earl Beighlee, of East Cleveland, Ohio, pertaining to temperature controlled regulating devices, relates more especially to apparatus wherein the desired regulation is effected through the medium of an actuating electric circuit. The control of the latter is the object in view, and it will be obviously immaterial whether such actuating circuit be employed simply to give an alarm or to directly affect heating means, a damper, or other mechanism. Referring to the diagram the relay will be seen to comprise an electro-magnet, A, one leg, a, of which includes a single coil, a2, wound in ordinary fashion, the other, $a \mathrm{r}$, of which includes two concentrically wound coils, a3, a4, differentially connected so that as long as the same current flows through said coils there will be no resulting magnetic field induced and no actuation of the armature, $a 5$, had. The differential relay thus constituted by said two differentially connected coils of such electro-magnet, together with the ther-mo-sensitive resistance, Ar, and another resistance, A 2 , are arranged in the form of a Wheatstone bridge, wherein said two differentially connected coils, a3, a4, constitute the arms adjacent to the ther mo-sensitive resistance. The coil, d2,

wound about the other leg of the electromagnet is connected across such bridge in the same fashion as the galvanometer is ordinarily included. In the same arm with the thermo-resistance, Ar, there is furthermore included an adjustable resistance, A3, as shown. As a source of current a battery, B, adapted to be connected in the usual fashion to the respective coils and resistances that enter into the bridge, is provided, or current may be taken from a light or power line, Br. The main actuating circuit is shown with
three leads, $a 6, a 7$, and $a 8$, and the movement of the armature, $a 5$, is adapted to complete the circuit through the lead, $a 7$ and either the lead, $a 6$, or $a 8$, depending on the position of the armature as controlled by the coils. The patent is No. 1,059,971.

AN improvement in the terminal arrangement of electric batteries, whereby superior results in the connection of the terminals with the conductors of the circuit with which the battery is to be used, are secured,
 and at the same time securing advantages in carrying, handling or shipping a battery without danger of short circuiting is the subject of Pa tent No. 1,061,572 issued to Charles F. Schuh, of Newark. The terminals of the battery elements are elongated, flexible conductors, which are secured in electrical contact to the respective battery elements, within the seal of the battery; such conductors extend exteriorly of the seal, and at least the portions thereof exterior of the seal are covered with suitable insulation, whereby the battery may be carried without danger of short circuiting or leakage, and at the same time affording more space between the terminals for connection with the circuit wires. After the battery has been shipped to the place of use, the insulation of the conductors may be wholly or partly removed to allow the connections with the circuit wires to be made.

LE PAS, MANITOBA. WIRELESS STATION

The wireless station to be constructed at Le Pas, Manitoba, will be the second largest wireless station in Canada. The plant will cost about $\$ 100,000$ and will include four 250 -foot steel towers and a 230 horse-power engine.

Wireless Club Directory

Until furtler notice we will publish here from time to time a list of wireless clubs. These notices are inserted free upon receipt of proper information. Notices of the organization of all new clubs, as well as any changes of officers, etc., should be sent to us promptly.

Allegheny County (Pa.) Wireless Associa-tion-Leetsdale, Pa .

Alpha Wireless Association-Box 57, Valparaiso, Ind.

Amateur Experimental Association - Spokane, Wash.

Amateur Wireless Association of New Bedford-84 Dunbar Street, New Bedford, Mass.

Amateur Wircless Association of Schenec-tady-R. F. D. Route No. 49, Schenectady, N. Y.

Amateur Wireless Association of Schenec-tady-405 Lenox Road, Schenectady, N. Y.
Amateur Wircless Club of Geneva-448 Castle Street, Geneva, N. Y.
Amateur Wireless Telegraphy Club of Cali-fornia-Box 55, Capitola, Cal.
Arkansas Wireless Association-216 West 20th Street, Little Rock, Ark
Atlanta Wireless Association-159 Capitol Avenue, Atlanta, Ga .
Austin Wireless Association-406 West roth Street, Austin, Texas.
Back Bay Wireless Club of Boston-295 Walnut Street, Brookline, Mass.
Berkshire Wireless Club-18 Dean Street, Adams. Mass.
Birmingham Radio Association-1404 South 17th Avenue, Birmingham, Ala.
Boise Radio Club- 715 North 9th St., Boise, Iraho.

Boys' Experimental Club - Box 214, Virkinia. Minn.
Bridgeton Radio Association - 313 East
Commerce Street, Bridgeton, N. J.
Bronx Wireless Association-500 East 165th Street, Bronx, N. Y.
Brooklyn Wireless Club - 131 Ryerson Street, Brooklyn, N. Y.
B. W. T. A. Wireless Department-Scarsdale, N. Y.
Canadian Central Wireless Club-9 Central Avenue, Armstrong's Point, Winnipeg, Man., Canada.

Cantabridga Wireless Club - 351 Harvard St.. Cambridge, Mass.

Cardinal Wireless Club - South Division High School, Milwaukee, Wis.
Chicago Wireless Association-4418 South Wabash Avenue, Chicago, III.

Cincinnati Wireless Signal Club-1839 Hopkins Street, Cincinnati, Ohio.

Colorado Wireless Association-1545 Milwaukee Street, Denver. Colo.
Council Bluffs Radio Association - 725
Sixth Avenue. Council Bluffs, Iowa.
Danvers Wireless Association - Franklin Street, Danvers, Mass.
De Kalb Radio-Transmission Club-205 Augusta Avenue, De Kalb, III.

Detroit Y. M. C. A. Radio Club-Detroit, Mich.

Dorchester Wireless Association-222 Harvard Street, Dorchestor, Mass.

East Buffalo Wireless Club-yor Walden Avenue, Buffalo, N. Y.

East Glenville M. E. Wireless Association -Kiz4 East 124th Street. Cleveland, Ohio.

East Side Y. M. C. A. Radio Club-162 East 66th Street, New York City.
East Tennessee Wireless Association-723 North: Third Avenue, Knoxville, Tenn.

Electric St. Louis Wireless Club - 200B Allen Avenue, St. Louis, Mo.
 Electro and Mechanical Association of Columbus, Ohio- 512 West State Street, Columbus, Ohio.

Everett Wireless Association-2716 Grand Avenue, Everett, Wash.
Ever Ready Wireless Club-167 East 7rst Street, New York, N. Y.
Experimental Club of Cincinnati-523 Tor-
rence Road, East, Walnut Hills, Cincinnari, Ohio.
Fargo Wireless Association - 518 Ninth
Street, Fargo, N. D.
Flushing Wireless Association- 24 Madison
Avenue, Flushing, N. Y.
Franklin Wireless Telegraph and Telephone Association-Bronx, N. Y.
Frontier Wireless Club - 1034 Elmwood Avenue, Buffalo, N. Y.
Fruitvale Wireless Club-2510 Fruitvale Avenue, Chicago, Ill. Geneva Amateur Wireless AssociationGeneva, Ill.
The Germantown Wireless Club-5801 Germantown Avenue, Germantown, Pa .
Glenville M. E. Wireless Club-12620 Woodside Avenue, Cleveland, Ohio. Gramercy Wircless Club-207 East 25th Street, New York, N. Y.
Granby High School Electricity Club, Granby, Mass.

Greater Boston Wireless Association-41 Lawrence Street, Wakefield, Mass.
Guilford County (N. C.) Wireless Associa-tion-Greensboro, N. C.
Hamilton Wireless Association-405 Franklin Street, Hamilton, Ohio.
Hamlin Wireless Association-2;29 Noble Avenue, Chicago, III.
Hannibal Amateur Wireless Club - I,306 Hill Street. Hannibal, Mo.
Haverhill Wireless Association-Haverhill, Mass.

Harriman Wircless Association-8or Clinton Street, Harriman, Tenn.

Hartford Wireless Association-320 Wethersfield Avenuc. Hartford, Conn.

Huron Wireless Telegraph Association Huron, S. D.

Independence Wireless Association-214 South 6th Street. Independence, Kas.

Irving Park Wireless Club-4908 Byron Street. Chicago. III.
Italian-American Wireless Experimental Club- 146 Bleecker Street, New York, N. Y.
Inter-Mountain Wircless Association - 219 5th Street, Salt Lake City. Utah.

Kappa Sigma Phi Wireless Corps-\$23 Torrence Road, E. Walnut Hills, Cincinnati, Ohio.
Kentucky Radio Association-1214 Jackson Street. Cincinnati, Ohio.
Killington Radio Club- 36 Lincoln Avenue. Rutland. Vt.
Lane Radio Association-2147 Lineoln Place. Chicago, Ill.
Lexington Electrical and Wireless Club517 Throop Avenue, Brooklyn, N. Y.
Long Beach Radio Research Club-Long Beach. Cal.

Madisonville Wireless Cluh - 5609 Tompkins Avenue, Madisonville, Ohio.

Manchester Radio Club-759 Pine Street, Manchester, N. H.

Massachusetts Wireless Association-245 Commonwealth Avenue, Boston, Mass.

Metropolis Wireless Association-I甘1 West 63d Street. New York, N. Y.
Metropolitan Wireless Association - 18I West 63d Street, New sork, N. Y.
Mowa Wireless Club-331 Pacific Street, Brooklyn, N. Y.
Multnomah Wireless Club-1021 Mississippi Avenue, Portland, Ore.
Murray Hill Wireless Association-334 East 34th Street, New York City.

New England Wireless Association, Inc.125 Milk Street, Room 99, Boston, Mass.
New Haven Wireless Association- 27 Vernon Street, New Haven, Conn.
Northern New Jersey Relay Club-io2 High Street, Passaic, N. J.
North Jersey Wireless Association-Hawthorne, N. J.
North Shore Wireless Association - 1700 Nelson Street, Chicago, Ill.
Oklahoma State Wireless Association-Box 627, Tahlequah, Okla.
Oakland Wireless Club-916 Chester Street, Oakland, Cal.
Oregon State Wireless Association-Lents, Oregon.
Pacific Radio Communicating Association1109 Washington Street, Vancouver, Wash.
Pacific States Wireless Association-288 Wilcox Avenue, Los Angeles, Cal.
Pacific Wireless Club of Oregon-405 East Market Street, Portland, Ore.
Pittsburg Wireless Association-603I Kirkwood Street, Pittsburg, Pa.
Plaza Wireless Club-156 East 66th Street, New York, N. Y.
Power City Wireless Association-Niagara Falls, N. Y.

Progressive Wireless Club - Poplar Bluf, Missouri.
Progressive Wireless Club--Seattle, Wash.
Radio Club of Baltimore- 904 N. Fulton Avenue, Baltimore, Md.
Radio Intercommunication Club-25 Terrence Street, Springfield, Mass.

Ranger Nautical Signal and Wireless Club -Nautical Training School, State House, Boston, Mass.

Richmond. Radio Association-320 South 8th Street, Richmond, Ind.

Rochester Wireless Association-Rochester, N. Y.

Rockland County Radio Wireless Associa-tion-54 Catherine Street, Nyack, N. Y.

Roslindale Wireless Association-962 South Street, Roslindale, Mass.

Sacramento Wireless Signal Club-2119 H Street, Sacramento, Cal.

St. Paul Wireless Club-IgiI Ashland Ave., St. Paul, Minn.

Santa Cruz Wireless Association-184 Walnut Avenue, Santa Cruz, Cal.

Southern Wireless Association-1435 Henry Clay Avenue, New Orleans, La

Springfield Wireless Association-323 King Street, Springfield, Mass.

Spring Hill Amateur Wireless Association

- 2 Benton Road, Somerville. Mass.

Stoneham Radio Association-33 Warren Street. Stoneham, Mass.
Suburban Radio Club - 5504 Wisconsin
Avenue, Washington, D. C.

Sullivan Amateur Radio Association-R. R. I, Sullivan, Ind.
Lechucal Wireless Association-1206 East Capitol Street, Washincton, D. C.
Texas Wireless Association - 1212 Prairie Avenue, Houston, Texas.
The Radio Relay Club oi the Eastern Coast -Oyster Bay, N. Y.
Toledo Wireless Club-io24 Erie Street, Toledo, Ohio.
Tri-County Wireless Association - Greentield, Ohio.
Tri-State Wireless Association-Room 101 , Falls Bldg., Memphis, Tenn.
United Wireless Relay Club - 102 High
Street, Passaic, N. J.
Waterbury Wireless Association-26 Linden Street, Waterbury, Conn.
Waynesburg College Wireless Club Waynesburg College, Pa .
Welcome Wireless Association-185 Chauncey Street, Brooklyn, N. Y.
Westchester Wireless Association-37 West Main Street, Tarrytown, N. Y.

Western Division High School Wireless Association-Milwaukee, Wis.
Wildwood Wireless Association-IIo East Pine Avenue, Wildwood, N. J.
Wireless and Electrical Association-Lindeborg, Kans.

Wireless Association of Atlantic City-Atlantic City, N J.
Wireless Association of Buffalo, N. Y.142 Dorchester Place, Buffalo, N. Y.
Wireless Association of Canada-189 Harvard Avenue, Notre Dame de Grace, Montreal, Quebec, Canada.

Wireless Association of Central California - 860 Callish Street, Fresno, Cal.

Wireless Association of Central Pennsyl-vania-409 Kelker Street, Harrisburg, Pa.

Wireless Association of Easton, Pa.-123
North Main Street, Phillipsburg, N. J.
Wireless Association of Greater Fort Smith
-Greater Fort Smith, Ark.
Wireless Association of Illinois-303 North
8th Street, Marshall, Ill.
Wireless Association of Keene - 172 Elm
Street, Keene, N. H.
Wireless Association of Milwaukee-824
Nineteenth Avenue, Milwaukee, Wis.
Wireless Association of Montana - 309
South Ohio Street, Butte, Mont.
Wireless Association of New Orleans 2022 State Street, New Orleans, La.

Wireless Association of Pennsylvania-Odd Fellows' Temple, Philadelphia, Pa.
Wireless Association of Savannah-303 Price Street, Savannah, Ga.
Wireless Association of Southern Califor-nia-935 Denver Avenue, Los Angeles, Cal.
Wireless Association of Woodbury - 28 Penn Street. Woodbury, N. J.
Wireless Club of Newtonville-47 Gibson Road, Newtonville, Mass.
Wireless Society of Springfield-P. O. Box 562. Springfield, Mass.

Wireless Telegraph \& Telephone Association of U. S.-Boys' Club, 16r Avenue A, New York, N. Y.

Young Edison Society-Rogers, Ark.
Young Experimenters' Society-Box 251, Coaticook, P. Q., Canada.

Young Marconis' Wireless Association1024 Erie Street, Youngstown, Ohio.
Y. M. C. A. Wireless Club-2iI Weat Fourth Street, Williamsport, Pa.
Zanesville Wireless Association-105 South Seventh Avenue, Zanesville, Ohio.

GAS AND ELECTRICITY
Mrs. McCarty--"Say doctor, when I comb my hair it sparkles and crackles. Is that caused by electricity in the hair?"

Doctor-"No, that's caused from gas on your stomach!"

Be
 SOME TRAP

A few days ago, a woman came rushing into a grocery store, and demanded "f the first clerk who greeted her:
"Please, give me a mouse trap, I want to catch a car."

The teacher was hearing the youthful class in mathematics.
"No," she said, "in order to subtract, things have to be in the same denomination. For instance, we couldn't take three pears from four peaches, nor eight horses from ten cats. Do you understand ?"

There was assent from the majority
of pupils. One little boy in the rear raised a timid hand.
"Well, Bobby, what is it?" asked the teacher.
"Please, teacher," said Bobby, "couldn't you take three quarts of milk from two cows?"-Nerv York Evening Post.

Pe

A CHANGED MAN

"Are you the same man who ate my mince pie last week?"
'No, mum. I'll never be th' same man again!"-New York Mail.

Be

GOING UP!

A belated guest found his way into the Arcade Hotel, Watertown, N. Y., one night and following a series of maneuvers entered a telephone booth. After looking out several times inquiringly he hailed the night clerk and said: "Shay, I wanna go to m' room. When in thunder y^{\prime} goin' t' run thish elevator up?"-New York Telephone Revicze.

The Wireless Station and Laboratory Contest is continued from month to month. The best photograph, each month is awarded a First Prize of Three (3) Dollars; second best, Two (2) Dollars; third best, One (1) Dollar. If you have a good photograph of your station or laboratory, send it in. If you haven't one, take one, or have it taken.

PLEASE NOTE THAT THE DESCRIPTION OF THE STATION MUST NOT BE LONGER THAN 250 WORDS, AND THAT IT IS ESSENTIAL THAT ONLY ONE SIDE OF THE SHEET IS WRITTEN UPON. SHEET MUST RE TYPEWRITTEN OR WRITTEN BY PEN. IF TYPE. WRITTEN, USF DOUBI.E SPACING. DO NOT USE PENCIL. NO DESCRIPTION WILL BE IENTERED IN TIIE CONTEST UNLESS THESE RULES ARE CLOSELY ADHERED TO.

It is also advisable to send two prints of the photograph (one toned dark and one light) so we can have the choice of the one best strited fo- reproduction.

This competition is open freely to all who may desire to compete, without charge or consideration of any kind. Prospective contestants need not he sthseribers for (the puhlication) in order to be entitled 10 compete for the prizes offered.

FIRST PRIZE

'The illustration shows my wireless telegraph station.

For sencling I have a r-kilowatt transformer, a 1 -kilowatt condenser atul a helix, besides a rotary spark gap. 'The motor of the rotary makes 3.0:

Geo. s. mason's station fremonia, NFW york
pmo. which gives me a very musical athd clear mote.

Fing recoriving I have 3,0世x)-nhm Whrdrok phomes, a 3 , OOn-meter loose coupler, a variable condenser, a fixed condenser, and a two-in-one detector. in which I llacesilionn and galoma.

For the acrial system I nise an 88 foot mast, which l put up for this purposc, and an aerial-ground switch in at box outside of my window. The aerial promer is 200 feet long, 88 feet ligh at one cud, and 50 feet at the other.

Ny station is locaterl in my room. Half of the instruments I have marle myself, following the instructions as siven in sumr masazince from time to

SECOND PRIZE

lim will fund herewith a fathlighn photo of my radio ontit, which I wish to enter in your contest.

I have had umsually goorl success with this outfit of late, being able to hear Sayville, I.ong Island (W. S. L..), Key West. Florida (N. A. R.), and numerous stations along the Atlantic Coast.

Nearly any time I go into my station I can pick up Ft. Riley and Ft. Leavenworth, a distance of about 200 miles.

The transmitting set will be scen at the left of the photo and comsists of the following instruments:
t/2-kilowatt transformer coil, large helix with E. I. Co. spark gap on top, licat! glas phat (o)ndmser of my own
construction, own make electrolytic interrupter, and heavy wircless key with silver contacts which in turn operates the magnetic key seen at the upper left-hand corner of the photograph.

My receiving instruments are mostly inclosed in the case seen at the right of

PALLL R. BreEs' Station wichita. kansas
the photo; they are: receiving transformer of my own design, with primary taps on the front of the case, McCreary-Moore variable condenser, galena, perikon, silicon and ferron detectors, and Prandes 2,000 -ohm receivers. I have tested out nearly every mineral detector known and found that galena is by far the most sensitive. There is not much doing here in wireless in the summer because of the hot dry climate, which produces so much static. I am a subscriber to Modern Flectrics and consider it the best wireless magazine published.-T'aul R. Brecs, Wichita, Kan.

THIRD PRIZE

Herewith is a photograph of my radio station, taken by myself.

CHas, e. everard's station PASADENA, CALIFORNIA

I started to build this station in December last. I secured all back num-
bers of Modern Electrics I could buy or borrow and with the help of these and good tools I made most of the instruments shown.

The antenna is of the inverted L type, consisting of 6 wires, each composed of 7 strands of No. 18 aluminum, 150 feet long, 75 feet high, with 16 foot spreaders.

My sending set comprises a $1 / 2$-kilowatt transformer, plate condenser with switches, water rheostat, silver contact key, roller switch for disconnecting receiving and sending, 100 ampere $S . P$. I). T. ground and aerial switch, helix with pilot lamp, anchor gap, 3 spark gaps and a rotary in the process of making.

Receiving set consists of a 12×3 double slide tuning coil, navy type loose coupler, fixed condenser, large capacity variable condenser, 3 pairs of Murdock phones, complete buzzer test and an assortment of detectors, of which I find galena the best.

I also have a complete sounder and buzzer telegraph line working with a friend down the street; have also a lot of apparatus, etc., for experimental work.-Chas. E. Ẽerard, Pasadena. Cal.

HONORABLE MENTION

The accompanying picture is of my wireless telegraph apparatus. Taking the apparatus in order from left to right

Alex. Folson's station Winnipeg, manitora, canaba
we see on the extreme left the recciving outfit. This consists of a loose coupled tuner, variable condenser (not shown in picture), double detector stand, hard rubber base switches and push button and binding posts for telephone receiver connections. All this apparatus is mounted on a polished

Take Your Choice
 With a Trial Subscription to Modern Electrics "The Electrical Magazine for Everybody"

Little Hustler Motor

This well-known motor is $3 \frac{1}{2}$ inches high, finished in black enamel with nickel-plated trimmings. Has a threepole armature, causing the motor to start without assistance when the current is applied. It is fitted with a. pulley for rumning mechanical toys, models, etc.
Price $\$ 1.00$ postpaid, or given free with one yearly subscription to MODERN ELECTRICS.

"Tesla" Magneto

Operated by crank; wheel and pinion, cut teeth, insuring smooth action. Substantial brass bearings. Well made throughout. Finisined in red enamel, nickel trimmings. Pol-
 isherl wood base, with neat bushings for flexille conducting cords. New and neat design-the best in this class.
Price $\$ 1.00$ postpaid, or given free with one yearly subscrip- $\$ 1.50$ tion to MODERN ELECTRICS. dealers for less than $\$ 2.00$, but for a limited time only we will send it prepaid absolutely free with a trial sul)scription.

Price $\$ 1.00$ postpaid, or given free with one yearly subscription to MODERN ELECTRICS.

Guaranteed to fly or money refunded. This model has never been sold by

Bleriot Monoplane

to to MODERN ELECTRICS. \$1.J0

Now about MODERN ELECTRICS, the wonderful, big, interesting electrical magazine that keeps you informed of all that is new and novel in electrical achievement. There is a growing tendency among the ever up-to-date American Public to keep in touch with the times not only in business, politics and art, but in science and invention as well. MODERN ELECTRICS is a profusely illustrated monthly, which fully describes these subjects and written so you can readily understand it.
The Authority on Wireless. For the Novice, the Amateur, the Experimenter and the Student

[^5]hardwool hase, 9 -in. x 16-in. For a louzzer test I use a relay connected in onch a mamer as to make the arma. ture bu\%\%. Thus there is very little exlernat mise fom the tesi. I use 2,000 ohn bramles phontes in connection with dhis set.

Tho the right of the telephone receivers is the large sending condenser loox upon which the series spark gap is mounted. The oscillation transformer is mounted on the wall just lack of the spark gap. At the extreme right of the picture is shown the key and the sending transformer, which is a homemade $1 / 4-\mathrm{kw}$. close core transformer. The aerial switch and fuse block are mounted on the wall as shown. All the apparatus is mounted on an oak base, $2 \mathrm{ft}, \times 3 \mathrm{ft}$. $\times 1 \mathrm{in}$, thus making a very compact outfit. Connections are made on the sending side with copper strip.

At present I am using a two-wire aerial, composed of No, it copper wire. spaced six feet apart. I have had good success in every way with this set, a great deal of which I consider due to the knowledge gained from your valuable magazine, which I have read constantly for three years.-Alex. Polson, I'imineg, Ontario, Canada.

HONORABLE MENTION

laclosed herewith is a picture of our wireless station. We have two sending and receiving sets, one for long distances and one for short. Our long

R. 11. CASEY, JR.'S, AND JACK Whlifams' Station cleburne, texas
distance outfit consists of a $\overline{1}$-kw. transformer, six leeyden jars, a 20 -inch Tesla transformer, helix, suitable spark gap and wireless key, a pair of Brandes 3.200 -olum healphones, pancake tuner, Blitzen variable condenser, three fixed
condensers, ferron, galena, iron pyrites. - Hecrolytic and peroxide of lead detec lors, and a putentiometer. Our shor distaner antlit consists of a key, 2 -inch coil, galp, rheostat, forot switch, I\%. 1. Co. 3 ,ux whm headphones, gatena de tector, fixed condenser and at thning coil-K. HI. Cusey, Ir., and Juk II'iniums, Cleburne, Texas.

HONORABLE MENTION

In construction and connection of apparatus, simplicity is featured at all hatard; especially is this true in regard to the transmitting set, where short, direct comnections are made between all instruments carrying hign frequency current.
() h the transmitting side we employ a $1-k w$. closed core transformer, 8

I..IWRENCE E. HIGHES' STATION DIRMINGHAM, AIABAMA
point zinc electrode rotary, helix wombl with to turns of No. 2 aluminum, oscillator with primary and secondary composing of 16 turns of cop per ribbon. and comdenser comprisin! 30 brass plates with glass dielectric (8×10) huilt in five sections and immersed in sil. ln this comnection. it might be of interest to amateurs who make their own hightension comblen sers, that wil is the only insulation that successfutly lowlds down the voltage 20,00, in tise with this condenser. A1though sectionally blocked in paraffine, an even score of plates wor broken when placed in cirenit.

For receiving we use a loose conpled tumer, tubular fixed condenser, brass plate rotary variable condenser. Ferron detector, and Navy type phones. I.ead-in insulator consists of si- and

Did you ever see a Government or Commercial Station without a Hot Wire Ammeter?

Hot Wire Instruments

To introduce at special prices: Five to Eight Dollars.

We also sell Rectifiers, Hell Ringing Transformers. Poy Transformers, Transformer Iron, cut to size.

MOHAWK ELECTRIC MFG. CO., - Newark, N.J.

AMATEURS - LOOK

 NEW ROTARY SPARK GAPwith 110 volt Universal A. C. or D. C. motor-eff. cient, high tone. Once tried you cannot do without it. Price, 10 Bucks. Parts also sold.

SENDING KEY

carries 10 amperes, springy action-beat ever. Special price this month only $\$ 3.50$. We need the money, you need the key. Let's get together. Send for circulare.
THE WIRELESS MFG. CO., Canton, Ohio.

LOOSE COUPLER

The Print of them all. It is the most eervicenble and eclentsfically conatructed inatrumeut on the maritet. The SBCONDARY Fidee upon two heevy rods to which the taps are permanontly secured, thus lasurins sbsolute contact.
It is atted with a switch that is Indeed a BWITCH, that makea ponitive perfeot contict in every position but also ta very fiexible in adjustment

THE EPECIALTY ENGINEERINQ COMPANY 217 8. Central Ave., Beltimere. Md.

GORDON CELLS

A RENEWAL consists of a complete interior, and when the renewal is made it makes a complete new battery at a very moderate cost.

Costs less to maintain than any other kind of battery installation.

All types and sizes for all classes of work.
Further information and catalog on request.
GORDON PRIMARY BATTERY CO.
50 Church Street, NEW YORK, N. Y.

Ask Your Dealer for
 Columbia Batteries

Von will mave tlime, worry, and mones; becratue they
Cost No More—Last Longer
Fahnestock connections at no extra charge NATIONAL CARBON CO.

CH, IVEI,AND, OHIO.

Y A TES-ROCHE SPECIAL

In Service Maximum Service Minimum Local Action Quickest Recuperation

THE WM. ROCHE ELECTRICAL CO. 487-489 GREENWICH ST.

[^6]I/2-in. porcelain tubes telescoped with paraffine filling; while the antenna is of the 4 -wire loop type, 80 feet in length, 65 and 40 feet in height. We have two separate grounds, one of No. 4 cable, the other No. 12 B. \& S. That Birmingham has its full share of enthusiastic amateurs is evidenced by listening in any fair evening; and morenver they all pride themselves on keeping within the law-Lazurence E. Hughes, Birmingham, Ala.

HONORABLE MENTION

The accompanying photograph shows the results of my experience in experimenting with wireless telegraphy up to the present time.
My station consists of practically all home-made instruments, constructed by myself, aided by Modern Electrics.

The receiving end of my set consists of the following, starting from the antenna switch, loading coil, receiving transformer, variable and fixed condenser, galena and silicon detectors, and a pair of 1,000 -olin1 phones.

The transmitting set consists of a I-inch spark coil, helix, variable condenser, consisting of large glass test tubes, spark gap and key.

I have a hot wire ammeter, mounted

DAVID HUNDERMARK'S STATION Paterson, New Jersey
in an old volt-ammeter case, which I use for testing my transmitting set.
With this set I have picked up Key West, Fla., N A R, and on up the coast as far as Sable Island, Nova Scotia, M S D, and have done local work with the transmitting set.
My call is D H and I should be glad to meet or hear from any fellow am-
ateur in this vicinity as I am on almost every night.-David Hundermark, Paterson, N.J.

HONORABLE MENTION

The accompanying illustration shows my wireless telegraph station. The sending apparatus consists of a I-inch spark coil, spark gap, key, batteries, helix and a large Leyden jar, of my own manufacture. The helix is not

LEWIS C. NOBLE'S STATION WINTIIROP, MASSACIIUSETTS
shown in the illustration, the apparatus not being in circuit when the picture was taken. My sending range is about Io miles.

The receiving apparatus is my main hobly, and so I have tried to make it as attractive and efficient as possible, and get very good results with it, receiving all the way up to 1,000 miles.

The receiving apparatus consists of a large two-slide tunning coil, which I the also as a loading coil for my transformer, shown in the background. I have two detectors, I Silicon and I Ferron, both of my own make, which give very satisfactory results. The detectors do not show very clearly in the photograph. I also have two variables and one fixed condenser; one of the variable condensers is of the rotary type, the other the slicle plate type, having 25 plates in all.

Ay receivers are 3,000 ohms and very sensitive. I have a buzzer test and a wireless telephone, in addition to the main apparatus. My aerial is Ioo feet long, 50 feet high at each end, and consists of 4 wires, 2 feet apart.Lezis C. Noble, Winthrop, Mass.

Price $\$ 2.00$

The Blitzen Duplex

loading coil will prove to be the most efficient "stepladder" you can use to climb to the long wave lengths employed by the new government atation at Arlington and other high power stations now beyond the reach of your set. This little device will double your pleasure and the utility of your set. It may be used in connection with any receiving transformer. The two coils wound in a slotted hard rubber disc have coupling between them, and are connected in both the primary and secondary circuits.

The Blitzen Rotary Spark Gap

Consists of a $534^{\prime \prime}$ hard rubber disc with 12 spark points and a cast iron hub with set screw for fastening direct on motor shaft. Two hard rubber posts carry adjustable stationary electrodes. Satisfactory up to 1 kilowatt .
Price complete without motor..............................5. 50 Rotary wheel without stationary posts............ 4.00 Specify whether for $1 / /^{\prime \prime} 5 / 16^{\prime \prime}$ or $3 / 8^{\prime \prime}$ shaft. Why not be up to date and send ic stamps for complete catalog of apparatus a little better than the best.
CLAPP-EASTHAM COMPANY 143 Main St., CAMBRIDGE, MASS.
Aylnworth Agencien Co., J. J, Duck Co., 148 Second Street, $482-484$ St. Clair Street,
San Francisco, Cal.,
Toledo, Ohio,
Central Sales Agent.

The MURDOCK MOULDED CONDENSER

A transmitting condenser distinguished by two especially desirable features:-
I-The practical elimination of the "brush" effect, with a consequent minimum of internal loss.
2-The saving of space, since capacity for capacity, these condensers occupy but one-third that needed for the usual plate condensers and one-fourth that of jars.
When used with proper voltages, and in the manner specified, these condensers will prove the most eflicient adjunct of any radiating system.
Made in solid sections, each .0017 mf.
PRICE, per section, $\$ 2.00$

WM. J. MURDOCK CO. 40 Carter Street
 Chelsea, Mass.
 680 Howard St., San Francisco

K. \& D. Measuring Instruments

Voltmeter, No. 22,Ammeter, No. 20, Price, $\$ 2.00$

Our measuring instrument are inexpensive but well made and designed for practical work

For sale by all dealers, or will be sent expreas prepaid upon receipt of $\$ 2.25$. Send for our catalog No. 9.A. of high grade battery motors and small dynamos. All dealers should write for catalog and prices of our line.

KENDRICK \& DAVIS CO.
Manufacturers
Lebanon
Now Hampahire

Querics and questions pertaining to the clectrical arts, addressed to this department, will be published free of charge. Only answers to inquiries of general interest will be published here for the benefit of all readers.

On account of the large amount of inctuiries received, it may not be possible to print all the answers in any one issuc, as each has to take its turn. Correspondents should bear this in mind when writing.

Common questions will be answered by mail if 10 cents to cover expenses have been enclosed for each question. This class of correspondence has grown to such proportions that we can no longer answer questions by mail free of charge.

Owing to the additional labor recfured in the gradual advance of the date of publication of this magazine, there will be more or less delay necessary in answering questions and we therefore cannot undertake to furnish guick replies, for the next few months at least

Special information requiring a large amount of calculation and labor cannot be furnished without remuneration. THE ORACLE has no fixed rate for such work, but will inform the correspondent promplly as to the eliarges involved.

NAME ANH ADDRESS MUST ALWAYS BE GIVEN IN ALI. LETTERS. WIIEN WRITING ONLY ONE SIDE OF QUESTION SHEET MUST BE USED; DHAGRAMS ANI DRAW INGS MUST INVARIAIBLY IBE ON A SEPARATE SHEET. NOT MORE THAN THREE QUESTIONS MUST BE ASKED, NOR SHALI. THE ORACLE ANSWER MORF. THAN THIS NUMBER. NO ATTENTION PAID TO IETTERS NOT OBSERVING ABOVE RULES

WE CANNOT ANSWER QUESTIONS REGARDING SENDING AND RECEIVING RANGES.

PORTABLE SETS

(24.38) I. Vrecland, New Jersey, requests:
Q. I. Some hints about portable raclio stations, their efficiency as compared with the stationary sets, the manner of getting a gromme commedion, the hoss of efficiency cansed by bunching the instruments, elt.

1. I. The efficiency of a pertalle set can be matle nearly as great as thot uf a stationary one by taking proper care with the aerial and ground. The alowe are the principal sources of dissipation of energy. The aerial, of course, must be well insulated and should be as high and (for receiving) as long as possible. The ground presents the greatest difficulties. The capacity type of ground has generally been given preference in portable sets. This may well consist of pieces of insulated wire laid on the ground with the station as a center, the wires diverging outward. The instruments may be the same as the regular stationary type, made very sulhstantially. The bunching of the instru-
ments has anything but an injurious effect on the working of the set. Very short comections are always to be preferred in both the sending and receiving sets.
!2. 2. All explanation of the usie of the condenser in rarlion sets.
. 2. 2. For a complete explatation of the finction of a condenser we must refer youn to any good book on wireless telegrathly. This womld take ap tow math spate. Air is the best dielectric to use ats the hysteresis, or energy expembed in changing the polarity of the charge on the plates of the condenser, is then a minimum. Transformer oil or castor oil comes next in the line of prefercuce.
Q. 3. Why is the capacity of the Electro-Importing Co. glass plate condenser less than that of the (rernsback variable condenser?
A. 3. The capacity of a condenser is proportional to the area of dielectric covered by the condluctor and inversely proportional to the thickness of the dielectric. Thus, if, as in the glass plate. the dielectric is, say, one-sixteenth of an inch thick, the capacity will be small in comparison with that of the Giernshach condenser, in which the dielectric is inly about one-thousandth of an inch thick.

YOUR opportunty

\$7.50 Loose Coupler
Special Price, $\$ 1.93$

We have received so many requests for parts for our well-knunn louse compler, we have decided to offet during the month of . luyust only, a com plete set of parts ready for asscmbling at a cost which you would pay for the raw material alone if purchased anywhere else. . Ill wood parts are of heavy whe hanesomely finished. We furnish enameled wire for phimary winding, silk covered for secondary.

This coupler when assembled sells by most houses at $\$ 7.50$ to $\$ 8.00$ and is a beautiful and efficient instrument. This is your opportunity to save nearly $\$ 6.00$ and secure an up-to-date well-made instrument.

Order your loose coupler to-day.
All the parts packed weigh about 3 lbs., if you desire sent by parcels post add from IIc. to 36 c ., according to the zone you live in. Act now before it's too late.

We have the following coils taken in lieu of a debt which we offer you while they last:
Eighteen-1 $1 / 2$ inch wireless coils at $\$ 4.38$, sold regularly at $\$ 7.50$.
Seven -2 " " " at 6.42, " " " 10.00 .
Four -3 " " " at I3.I5, " " " 18.00 .
(Sent by express collect.)
You will never get another opportunity like this again. If you need a coil send for it at once. Also send for bulletin M, it is FREF.

```
            SPECIAL ORDER BLANK
HUNT \& MOCREE,
                            92-94 Murray St., New York.
                        moncy orcar
Gentlemen:-Enclosed find check for..
                ........................... or wich kindly send
the the folloaing as per special offer An Augst Modern Eilectrivs.
                    Naire.
R. F. D.
                                    Address
```


Make Money Making Photos

He Can Do It-Why Not YOU?

SUCCEED IN LIFE

You cannot ecoompliah great thinge nor climb to the top of the ladder of success unless your muscular development is Eiven proper attention because that is the only way the artertes. tho nerves and the vital organs can keep the machinery of your body in working harmony. Educato yourself in deep breathing and attain great atrength and fitality by reading the wonderful book "Intelligenoe in Physleal Culture" written by Llonal Stronpfort, the world's strongest and most perfect athleta. The Strongfort system of phrsical culture is a rovelation in health culturo and bods bulldIng. It coxplodes many of the weak points and the fallacies of other aystems, chowing why they fall and making it esey for you to accomplish your dreams of fame and fortune throush the vitailty, strongth, health, atrong nerves and Doricct Dolag that my method methods are secret of succes. any onginal mechods are erective cad when jou writo me Gend te for Dostege and secure this book; it whll start jou toward health and happiness.
LIONEL STRONGFORT
Dept. D., St. James Blg., II33 Bdy., New York

I WILL MAKE YOU PROSPEROUS
 If you are honest and ambitious

 Write me today. No matter where you teach you the Real Estate business by mail; appoint you Special Representative of my Company in your town start you in a profitable business of your own, and beip you make bic money at once. Can arrange for spare time only if desired. l'nuanal opportanity for men lifihout Faluable Book and full partienlare F'ree. Write toder.NatIONAL COOPERATIVE, REALTI (CO. - Mardea Bullding
\qquad

FREE AUTO B00K SI completeldes of our thorough, ingtruction, covering the fatent models and improvementa. Free anodel to every stodent Sond for PRER ILLUSTRATED BOOK loday. GREAT DEMAND Por competant onparto. Wo anslat you to securos poeltion in any partof the country. H. T. 811 PLiP ACTO 8CH00L pept L. 148 Breedway, New Yort
When writing, please mention "Modern Electrics."

RECEIVING TRANSFORMER

(2439) Edward B. Wood, New York, asks
(). I. Kindly publish data for a rotary receiving transformer.

1. I. You will find all necessary data for the construction of such a transformer in the June issute of this magazine in an article in the lixperimental Dept.
Q. 2. Can crystal detectors, such as the perikon, silicon, etc., be used for a receiving set for wireless telephony?
A. 2. Yes, but the Audion is better.

LICENSE

(2440) C. IV°. Cushing, North Dakota, inquires:
Q. I. How to calculate the output in watts and kilowatts of a coil from the voltage and amperage supplied?
A. I. The product of the volts and amperes supplied to the coil (this must be measured at the primary terminals and is not always equal to the line voltage) will be the input in volt-amperes. To convert this to kilovolt-amperes, divide by rooo. This is the input and if a closed core transformer is used and the cfficiency known the output can be calculated by multiplying the watts input by the efficiency, which will always be a fraction of one. If the efficiency is not known, there is no simple way to calculate the output
?. 2. I have a four-inch coil, what is the output in watts and kilowatts?

1. 2. See answer to first questiom
Q. 3. There is no commercial station within five miles of me and I amr in about the conter of the State. Do I need a license?
A. 3. If you do not interfere with any station which receives from anlother State you will not require a license. You had better write to the Riadio Inspector of your district and ask: him about this.

WAVE LENGTH AND PILOT LAMP

(244.1) Wm. L. Knoepke, New York, asks:
Q. I. How can I construct a pilot lamp for my helix and what voltage should the lamp be?
A. I. See answer to query No. 2303 in the June, 1913, issue. The pilot lamp

LEARN TO FLY

Bierlot Monoplanew. Latest $24^{\prime \prime}$ model, knocked down, packed ready for mailing. with blue print and complete drawinge for assembling. Boyn all over the country are having barrela of fun with them. An elegant present. This is your op portunity to get your chum a present that be will appreciate. For amusement, pure and simple, there is probably no flying Jevice more the boys and grown-ups than this pleasing toy.
Owing to the excellence of the material and workmanship in this fine model, it has been used for exhibition purposes and in the lecture rooms of several educational institutions.

Guaranteed to Fly or Money Raiunded

These models are famous the world over for their efficiency and speed in flying. It should be understood that the success of a machine depends a great deal on the quality of material used, and it is also essential to use scientific methods and have skilled mechanics. All of our models are have skile by experienced workers from the best ma. terials ohtainable. Therefore, the great success of this little wonder. This model has never been of this little wonder. This model has never been sold for less than $\$ 2.00$, but as we are desirous of cleaning up our stock, we are offering them at
the remarkably low price of $\$ 1.00$ EACH, the remarkab
You may remit by cash, stamps, check, money or express order.

MODEL FLYING MACHINE CO.
172 Greenwich St., Hew York City.

BRANDES Wireless Receivers

Owing to the greatly increased demand for BRANDES receivers we have been compelled to remove our offices and testing laboratory to the top of the GERMAN AMERICAN BUIIDING, 3.50 feet above the streets. With better facilities and mure space, we can now fill all orders promptly.

Tranmatlautle 'Type-89.14) Complete.
Guaranteed to be the best professional type headset at this price. Cery popular with opera. tors on the 'Iranmatlantle steamers. Other reccivers from $\$ 1.60$ each to $\$ 13.00$ per set.

Hot Wire Meterm, $\$ 5.50$ and up.
Send Stamp for Deacriptive Matter

C. BRANDES, Inc.
 3 Liberty Street, New York City

 AGEXTSI.ICIFIC COAST-Aylsworth Agencies, 149 New Montgomery St., San Francisco.
ClICA(;)—Winger Eilec. \& Mfg. Co., 711 So. Dearborn St.
AUSTR.MLJA-G. C. Hamilton. Ltd., 177 Elizaheth St.. Sydney, N. S. W.

Free Trial

 No Money Now ONLY \$4.00 A MONTH SENSATIONAL PRICE

This is the offer that has startled the typewriter world!
Typewriter salemmen and agents simply cannot comprehend how we do it. We actually sell to the user at a price very much less than the dealer paid at wholesale. Our monthly payments are exactly the same as rent.
More than 10,000 orders have been filled! We have no salesmen, no agents, no dealers The quality of the typewriter, the extreme low price, the small payments, the broad guar-antec-these are our only arguments. The typewriter we supply on this remarkable offer is not some unknowin, untried make, but the world-wide Famous Model No. 3 Oliver. The typewriter that everyone knows. It is a Visible Writer, just as perfect, just as fully equipped as though you paid the full cash price.
You get every perfection and every device that goes out with this Model. You get all of the extras; metal cover, base board, tools, in struction book, and the broadest guarantee ever given on a typewriter
The Olizer is the machine with the type bars that sirike duwnward: that has made the "write-in-sight" principle mechanically practical.
It is so simple that children learn to operate it in ten minutes: yet it is faster than the fastest expert. It possesses phenomena strength, and will last a life time.
No Monfy Undil Yow See It, until you actuall try it in your own home or office. Thenyou make your decision. There is no salesman to influence or hurry you. If you keep it you pay only $\$ 4$ down. It will pay for itsel thereafter. There is no interest, no chattel mortgage, no collectors, no publicity, no delay This is positively the best typewriter offer ever made; the best selling plan ever devised
If you own a typewriter now we will take i in trade and make you a liberal allowance for it. If you are renting a typewriter you will want to send it back when you see this one. Send your name and address today. We will send you a catalogue of the machine. It won't cost you anything. You will be under no obligation-and-we promise not to send a salesmon.

TYPEWRITERS DISTRIBUTING SYNDICATE
166C.7 North Michigan Boulevard, CHICAGO

[^7]may also be connected to a single timin or two or more turns wound inside of the helix. It is not advisable to keep the lamp on all the time, as this takes energy from the circuit. The proper voltage for the lamp depends on the set. This intist be determined by experiment.
Q. 2. Please tell me the wave length of the following aerials, etc.
A. 2. See answer to query No. 2419 in the July number.

GROUNDS

(24.2) Fearing Pratt, Massachusetts, asks
Q. I. Would a small pond be all right for a ground? The pond dries ul in summer, but the ground remains thoroughly moist.
A. I. This would make a good ground if you provide a large piece of slieet copper or some other metal to make contact with the earth.
Q. 2. Compare the results to be obtained from this ground with that from a water pipe (city mains).
A. 2. Probably the mains would give better results, but if you use a large sheet to make contact with the ground and bury it pretty deeply you can obtain good results from this ground.
Q. 3. Don't you think the ground wire should be insulated so that the current sent out will not leak into a poor ground?
A. 3. You forget that electricity always takes the easiest path. If voll use a large ground wire, youl will have no difficulty in confining the current to the proper ground.

BUZZER SET

(2.443) D. H. Coxshall, Wisconsin, inquires:
O. \quad. Does the Radio High frequency buzzer described in the March issuc comply with the wireless law?

1. I. This buzzer sends out a very sharp wave and if the wave is below two hnmired meters it will comply with the law.
?. 2. If I get an are in my spark gap instead of a snappy sounding spark. what would be the trouble and how could I remedy it?
2. 2. If the spark arcs there is mobably mot enongh condenser. The remedy, of conirse, would be to put more comblenser on.

THE EXCELSIOR BRAD SET. PRICE 25 CENTS

Takes No. 18
and No. 20
Brads irom $3 / 4$

 wave received your quartor's worth, your money

A HALF DOLLAR

Puts you in possession of a cloth bound volume of the

1912

MOTORCYCLE MANUAL

A Motoresclopaedin of useful Information-Motoregele Engine and Frame Parts Illusimed and Described: Their Functions Set Forthand Trouble Remedies Given-How to Tour: State Liemse aml Other Regulations - Official Racilng Rerords: Horsepower and other Merhanical Formulac-A Motorcycle Trade Directory, Etc., Fic.
All you want to know alout the Motorcycle, in handy reference form.

 to those about to buy madimen.
Bound in eloth, 50 cents: panar conver 25 cents. postpaid. Semel stamps, mumey orboren cash to

Motorcycle Illustrated

51 CHAMBERS ST., NEW YORK
> "CUBIT"
> Electric Horn $\$ 3.00$

> Punh Bntton mind Wire that retails for 82,00 , packed in box, 30 c . Extra. A Good Horn at a Low Price, Black Enamel very High Gloss, Weighs Two Pounds and a IIalf; Consumes very little current ($11 / 3$ to $9 Y /$ amperes). Emits High Toned Musical Blast, Has no Parts to get, out of order. Mas no Vibrator, the Diaphragm is the Armature, Requires No Oil. Runs on Six Volt Battery, Gets better with age as the "Bulging" of the diaphragm which is detrimental to other horns. makes the "CUBIT"" more efficient.
> TOAGENTS: Write Immediately for FxcInmive Territorg. J. R. MACK. General Salea Manacer.
> KOSMAK ELECTRICAL CO., Jersey City

oftice and Pactory, 290 Ocesn Ave. Factory, 17 Sterens Are. Branch Oftice, Pord Baildine. Datroit

Forery bick man and women in the land thould resd thle sreat booklet. Costs nothing to get it. it point the way to honest bealth, true wealth, real happiness. The more you have suftered, the severer your allment, the more you have doc* tored'- the more you need to read this wonnerful atory about Onygenator, the mot mar. reloun ilncovery of the age. No matter what the cose, th Is to your miventage to read this booket fromble, rheu-cover-whether you hare stomach or bower, catarth, luns matiom. Iver, kidney or bladder disorder, citarth, luns or bronchlal imuhle, blood or nervous cisease, Brisht's or weakness pecullar to men or women, crofla, It shows disease, blond poison, eppendletis, or what.

WESTERN OXYGENATOR COMPANY
EEATRICE, NEBE.

Artists, Cartoonists, IIlustrators earn $\$ 40$ a week up to \$450. "Vet" Anderson. internationally knowil caricaturist, cartoonlat and illustrator, teaches cartcaturing, cartooning and Llustrating by most thorough up-to-date correspondence methods. Comic artista and cartoonlste or newspapers earn ss hish as $\$ 30,000$ a gear. Iearn to draw work that is alable. Inspect other schools, then come to ours and learn right. There ro no "ifs" and "ands" about our courses-you can suoceen truted catalogue, to cover cost of poatage.

BERKLEY SCHOOL OF DRAWING,
98 Park Place.
Nowark, N. J.

Send 25c, and get "The Farmer Boy," 6 months. The only paper in the world published just for you, Send world pub. E. E. BARI,EY, Exeter, Cal.

THE New York Electrical School teaches men practical electricity and shows them the way to earn big money by becoming expert electricians. No profession has a more splendid future than electricity.
We teach our students how to become master electricians by painstakingly drilling them in the actual work they will be called upon to do when they accept a situation at big pay. Each scholar is personally taught from the day he enters, and individual instruction is given in all practical branches of the work. Students are first taught the simpler electrical work and as they gradually progress they are taken from department to department until finally they can completely equip a building from the blue prints the students themselves have drawn. When they receive their certificate they are ready to go out in the world with a profession that will never forsake them. Not a correspondence school-you "Learn by Doing."

Good Electricians Are Always in Demand

and the money they earn is often twice as much as other men earn from ordinary trades.

Write for Our Free Catalog and Get Full Particulars

It is more than likely that this is your opportunity. There is no work that a man can do from which he will get more pleasure and profit than from electrical work. Write to-day.

The New York Electrical School
 26 West 17th Street, New York

[^8]
WAVE LENGTH AND LEADS (2444) H. N. Swain, Ohio, requests:

Q. I. What is the best material for comecting up the transmitting set?
A. I. Stranded copper wire or copper riblon are best for connecting the set. The leads should be very heavy, and very short,-the heavier and shorter the better.
?. 2. How many feet and what size iron wire should be used for an antiflickering device on a transformer?
A. 2. If you refer to a reactance coil, do not use iron wire, as the object is not resistance, but impedance in the circuit. L'se copper wire, either the same or preferably two sizes larger than the wire on the primary of the transformer.
Q. 3. What is the wave length of my aerial, etc.?
A. 3. See answer to query No. 2419 in the July issue.

AERIAL

(2415) M. Winglemirc, Michigan, asks:
Q. I. Would it pay to change my aerial from the back to the front of our store if by so doing the length would be increased from 120 to 250 feet, also to use stranded copper wire?
A. I. This aerial would be too large to send on without using a series condenser, but for receiving it would certainly pay to make the change.

ANTENNAE AND PERIKON CRYSTALS

(2446) A. S. Boritilier, Massachusetts, wishes:
Q. I. Diagram of an antenna showing where the No. 4 wire starts.
A. I. It starts at the ground clip of the lightning switch.
Q. 2. Is there any way of renewing the sensitiveness of perikon crystals?
A. 2. Washing them in carbon disulphide will renew the sensitiveness to a certain extent.
2. 3. Can an antenna be built and work properly as the one shown?
A. 3. Yes, but it is not as good as if the horizontal part were on a straight line.

THE BEST EUENING COURSE IN WIRELESS IN NEW YORK
 If you live nearby and wish to hold yout present position, while studying at aight Complete equipment-twelve instructors.
 Prepare for a government license-under a Marconi Engineer由vening Courmem in Engineering, Opernting, nind Draftine Sbanimh for Operatorm
 New class in Engineering starts June 80
 Y. M.C.A. TELEGRAPH SCHOOL,
 148 Eart 8Gth St., New York

The Omnigraph Automatic Transmitter comblued with standard key and sounder. Sende your telecraph menages at any speed just as an expert opergraph messages at any speed. Circular free.
Omaigraph Mfg. Co., 39 $1 / 2$ Corthand SL, Mew York

Learn Wireless, Rallroad, and commerclal telegraphy; classes Learn evening; latest wireless apparatur used; puplls receive direless messages from ships and stations many miles away. Write or call for descriptive matter, terns and bulletin giving positions beld by our graduates.

The PAINE ODtown BOSINESS SCHOOL
Boz A" 1931 Broadway, near 65 th Sl., New York City

This Lamp Type of Detector

is the handsomest and most sensitive on the market. If you want to hear distance you bave got to have it. Sent ready to operate. PIICE $\$ 13.00$.
Sead ice atamp for literature and Discount
J. F. ARNOLD

243 E. 118 St., N. Y. C.

We can furnimh any book pablinhed. Write Book Dept.,

LEARN WIRELESS Telegraphy

The demand for good wireless operalors, not rechnical men, is increasing daily. This school fits the student to hecome enexpert operator in the shortest possihle time. Call or wrife for circular.

BARRETT'S WIRELESS SCHOOL, ${ }^{344 E}$ E. York 152 nd St.

LEARN WIRELESS

See the World.-Biz Opportonitied
WE PREPARE YOU FOR COVERNMENT LICENSE Our Graduates Make Good
Kenosha Wireless School
ave, M. KENOSHA, WIS.
Rebuilt Typewriters at Wondefful Savings

All makes, all prices, all bargains. Have reorganized and must cash in immense stock. Will give $\$ 5.00$ worth of supplies ree Write for special list D. Phone 5678 Barclay.
Consolldated Typewriter Exchange, Inc. (Established 1881) 245 Broadway, New York

TYPEWPITERS ALL

 MAKES\& 100 Uaderwoode, Smiths, Olivera, Remiagton, etc. from 10 up. Every machine in perfect mondition. Euaranteed two yeara, with privilege
 Sls aach whil

ALL maKES typewriter exchange co.

The Fra Magazine
 －…＂ano．
 ELBERT HUBBARD＇S
 B O O K of BUSINESS

TW゙（ 1）（）L」には

N this，the latest lum writern by Mr．Ihablatre，lutsiness is treated from erery puscible standpoint，atml by a man who hats had at varied and externsibe ceperi－ conce in many lines of trate．

Very few persoms have hat the upper－ tumity to meet the great business men of America as has Mr．IItbinarl．For twenty years he has visited factories， banks，stores，general offices，and sturlied conditions at first hand．

T11．S most valuable book is to be given as a premium with a subscription to The Fra Magazine．The subscrintion－ rate of The Fra is Two Dollars a year． a Your subscription is solicited．If you are aiready a subscriber to The lia you may have the Magazine sent to some one else and The Book of Business will be sent to you．

The Roycrofters，

East Aurora，New York

I enclose Two Dollars for THE IFRA Magazine for one your，and THE BOOH O／： BUSINLESS，as promium．

Nume

Address

Foreign Postage，Canada excepled，Seventy－five cents

[^9]
ROTARY GAP WITH A SPARK COIL

（2477）Kay $\mathrm{F}:$ Vates，Nuw lofh， ingtures：

11．1．In the Jannary issute 1 noticed ant article on the ase of the rotary grat with a spark conil．Wionld the results low the same if the comrent were to le inter－ rupled instead of reversed？
－1．While the result，wenthl mat le quite as satisfactory as with ihe pe versing methoul，the rotary gat cratal be ronn with an interrupter in this way：
（．）．2．Is there any other methom oif using the rotary gatp with a spark coil？

1．\therefore No．None that is satisfaciaty
！）．3．llould the series scribed in the lamary isote give at pime以ate？
． s No．

INDUCTION

（2－fis）Kev．H．E．Righan，（hio． writes：
！．．1．Will I be buthered by indac－ ton from the eleotric light wires if a pht iny acrial at right angles to them：

A．1．No，we do not believe that yout will be bothered by it．
（2．2．Where can I get bambun spreaders？

A．2．We must refer you to uur all－ vertising columms for this artick．
？2．3．Ithat and where are the neat－ ust commercial stations？

A．3．The nearest stations are at Cleveland，Butfalo，Chicago，Toledo， Shabula and numerous plates on the （ireat Iakes．

MECHANICAL CONVERTER

（2449）IV．I．Irvin，Missunti，asks：
（）．1．Can the rotary gap and me－ chanical converter be used on ino volts d．C．？
\triangle ．1．If you have Δ ．C．there is no use in using a converter even if it could be used．The reason for using the con－ verter is that when a vibrator is used， the interruptions are irregular and the secondary voltage is consequently irreg－ ular．The rotary spark gap can be used with a spark coil run on A．C．without any converter．I＇roper precantions shouk be taken，however，to limit the current taken by the primary from the A．C．

Q．2．Do the teeth of one side of the converter have to be any certain dis－

Why Not Amsure Youreself a Definite INCOME NOR LIEE

Thus providing for the education of your children, the permanent care of your family and for a comfortable old age?

What of the Child's Future?

This little 6 year old girl is a "Pecan Enthusiast'" and owner of one of our Groves that assures her an annual income of at least $\$ 1000$ when she is 15 , and of $\$ 2000$ or more when she is 20 years of age, and of an increasing income for her entire lifetime. Small monthly payments will soon enable any parents to make the same provision for their children.
"Discussing Pecans at Afternoon Tea"
The Atlanta (Ga.) Journal, in speaking of Paper Shell Pccan Groves as an investment, says: "Parents and guardians (thoughout lifo, which can be reached by no other investment

YOU OWE IT TO YOURSELF AND YOUR FAMILY TO CONSIDER THIS OPPORTUNITY

IF you have a surplus fund, small or large, to invest and want the full carning capacity of your money.

IF you can systematically put aside a stated sum per month, quarter or year.

IF you are thinking of taking out a life insur-

:nce policy and would like to leave an annual
 income equal to the face value of the policy and

yet do it at one-fourth the cost, as well as reap benefits while you live.

IF you desire to provide a sure way of providing funds to educate your children.

IF you want to provide for your family or your old age in case you lose your earning capacity.

IF concerned about any of the above matters, you owe it to yourself to investigate what our pecan orchards can do for you.

A Pecan Grove

Assures You an Income for Life and is many times more valuable to you than the same sum invested in Life Insurance. Write today for "FORTUNES IN PECANS" and our Special Limited \because Offer to small investors. You can secure a two, five or ten \because acre Pecan orchard in the best possible location and at lowest S.
Andrews prices either for outright purchase or on easy monthly payments. Andrews
Bay . It is rare that an opportunity of saving and investing money Bay Nursery \circ, in small amounts where it will yield such large returns with \& Orchard Co. 'S absolute safety of principal is given the business man III Broadma, N. Y. . \because of today. If you can save $\$ 5.00$ or over per month

Name
Address. .
St. Andrews Bay Nursery and Orchard Co. , 111 Broadway

You Can Vary the Tone or Pitch of Your Spark at will by using the
 BARNES VARIABLE SPEED A. C. MOTOR

on your revolving spark gap.
Made in two sizes suitable for direct connection to any gap from $1 / 4 \mathrm{~K} . W$. to $5 \mathrm{~K} . \mathrm{W}$. or larger, and inatantly variable in speed from 2,000 to 7,000 revolutions per minute without the use of external resistance or other regulating devices. Absoluting devices. and positively non-heating. High efficiency at all speeds.
The Barnes Mo-
tor is indispensable to Dentists, Jewelers, Toolmakers, and all. who require a reliable source of power at variable speed on A. C. and D. C.
For the Motion Picture Machine, the motor is an acquisition. The simplicity of the con. trol is invaluable under such circumstances. Let us send you free catalog.

```
    BARNES MFG. CO.
777 Belmont Street
SOSQUEHANNA, PA.
```


HOUSE OF ELECTRICAL. NOVELTIES

Famous "FRANCO"

 Flashlights, Batteries and Miniature Lamps

The above illustrates our Pistol Flash-Light-A Favorite

Complete with Tungsten $\$ \mathbf{1 . 5 0}$
Lamp and Battery
AT YOUR DEALERE
Interstate Electric Novelty Co.

Now Torls
90 Parl Place
11 Ban Iranodeco
111 Now Mostpomery st.

[^10]tance from the teeth of the other side?
A. 2. No, so long as the teeth are evenly spaced.

WIRELESS LAW

(2450) Arthur Johnson, Missouri, writes:
(2. I. Some time ago I was told that a new law had been passed (in Missouri, I think) that amateurs could not send more than one-half mile because it interfered with commercial work. Is this so?
A. I. We have never heard of any such law and should think that you, being a Missourian, would not believe anything until you saw a copy of it.
Q. 2. In using the electric current with a transformer, reducing it to two volts, is there any danger of getting a bad shock from your spark gap?
A. 2. 1 Ve do not understand your question. Where are vou using a spark gap in connection with a step down transformer? If you mean that you pass the two volts through a spark coil, there is some danger of getting a shock, the severity of which depends on the size of the coil.

VERTICAL AERIAL

(2451) Otto 「arrill, New Yorl;, asks:
Q. I. Can I receive messages with a vertical aerial running up the side of a building ?
A. I. Yes, a vertical aerial is a very good type for receiving.
(.) 2. To what wave length can I tume using a small E. I. Co. tuner?
A. 2. Nbout 800 or 1000 meters.

FLICKERING LIGHTS

(2452) R. M. Mueller, Canada, inquires:
(). I. What to do for flickering lights? Tis coil draws about 200 watts and the liohts flicker dreadfully.
A. I. The only thing to do in this case is to run a separate line from the meter or from the main distributing panel to the wireless roon. This will prevent lickering to a great extent. The wire used for the line should be heavy, about No. то B \& S.
Q. 2. The resistance coil which is always in circuit, heats up very quickly. What can be done to remedy this?
A. 2. The coil might better be re-

HEADQUARTERS

When writing, please mention "Modern Electrics."

What Have You Invented?

Your invention may be worth thousands of dollars-if it is commercially developed.

Our Specialty is developing inventions of all kinds-electrical as well as inechanical. We secure capital for ex. ploiting patents of merit. We build instruments and apparatus to order, according to your own design with greatest accuracy. We make parts of brass, aluminum, iron. steel, hard rub. ber fibre, etc., of all description and in any quantity. Tools, punches, dies, any, quantity. Tools, punches, dies, chinery. Drawings under the best mechanical advice.

- Let us give you a demenstration of our work

Here is something entirely new in Razor llones. It is a mechanical device developed in our slop. and users say, "It's worth its weight in gold."
Let is send you one of these remarkable hones postpaid for $\$ 1.00$ or if you dn not need a hone for your own use, you can make a handsome profit repre. enting us in your territory.
Write to-alay for ngent propowition.
MULLER \& JABLONSKY, Bleecker and Bonk Sta. NEW YORK, N. Y.

Sead your business direct to Washington. Saven time and insures better service.

Persenal Attention Guaranteed 30 Years Adive Pratice BOOK WITH TERMS FREE
E. G. SIGGERS

Patent Lawyer
SUITE 2, N. U. BLDG., WASHIIMGTON, D. C.

PATENTS
 C. L. PARKER
 Ex-metrber Examining (orps Patont Ontice Patent Lawyer

8 McGill Bldg., Washington, D. C. Patents. Trademarks, Copyrights, Patent Litigation Fandbook for Ioventors. "Protecting. Explotting and Sibling
uventions" bent fire upon iculued

DON'T EMPLOY MAKESHIFTS

We want every experimenter in Electricity and Mechanics to send for our small parts lists numbers 1 and 2. We have parts for transformers, coils, couplers, spark gaps, detectors; also roush stock, books, and anything experimental. We make anything for you at reasonsble prices. Send stamps for lists.
WOOOSIDE ELECTRICCL SHOPS, Metuchen, M. I.

[^11]placed by a coil of heavy wire wound on an iron core. The right amome of wire must be determined by experiment.

QUENCHED ARC

(2453) Bernard Wexler, Yemsylvania, writes:
Q. 1. 1 understand that in order to produce an arc between two electrodes, they must first be brought in contact and then separated a short distance. If this be so, then how tues the so-called (fuenched are take place if the plates of the gap are not comected and hence are not in contact? The voltage on which the gap operates is entirely too low to semd a spark across the gap, no matter how near they are brought together.
A. 1. The voltage on which the gat operates (about 500) is sufficient to start the arc, except in cases where very low power is nsed. It this case, a drop of water or acid (very dilute) is plated in the center of the separating disk. This suffices to start the are in every alace. The distance between the electrodes in this form of gap is never more than one me-hinndredth of an inch.
(1. 2. Will this gap operate on A. C. and will it produce a high pitched note 'n sixty cycles?
A. 2. This gap will operate on sixty cycles, but we do not think it will produce a high pitched note.
O. 3. Could I regulate my apparattus to obtain a wave length of two hondred meters with this gap?

1. 3. Yes provided that wher comclitions. such as the sembing condenser. indoctance. and acrial are of the right proけnortions.

WIRELESS LAW

(2+54) W'm. Wheeler, New Yurk, ask:
Q. I. Are amateurs permitted to use sets containing the Electro-Tmporting ($0, \mathrm{~s}$ instruments?

1. I. Sce article. "The Wireless Smatemr and the Wireless Law." in the Jantary and Felmary iscues. If these instruments can be made to proditec a pure sharply tumed wate of zoo metres or less, they may be used.

TUNING

(2+55) (ieorge Pittman, Texas, in fuires:
Q. I. In tuning with a loose compler there are so many different adjustments

PATEENTS

Secured or Fee Returned
Send model or sketch and description of your invention for free search of the U. S. Patent Office Records.

OUR BOOKS malled free to mny nddress. Send for thene bookm; the tinest pnblicationn ever innmed for free dimtribntion.
HOW TO OBTAIN A PATENT. OUT illus trated 80 page Guide Book is an invaluable book of reference for inventors and 100 mechanical movements illustrated and described.
FORTUNES IN PATENTS. Tells how to in. vent for profit and gives history of successful inventions.
WHAT TO INVENT. Contains a valuable list of New Ideas Wanfed. Also information regard ing prizes offered for inventions, among which is a Prize of One Million Dollarm offered for one invention and $\$ 10,000$ for otbers.
PATRNTS THAT PAY. Contains ietters from successful clients. Ifet of Patent Bnyer氟。 successful clients. inmt of prom prominent inventors, Also endorsements from prominent inventors,
manufacturers, senators, congressmen, governors, man
We, advertise our chents' inventions free in a list of Sunday newspopers with two million circulation and in the World's Progress. Sample copy free.
flectrical Canen a Specialty. We have secured many important electrical patents.

Victor J. Evans \& Co.

Vider Bug., 724 9t St., M. W., WASHINGTON, D. C.

DRAWINGS FOR INVENTORS

Working drawings made from your sketches or patent. Engineering advice given. Inventions practically developed. Write for full information
L. N. GILLIS. Victor Buildirg. Wabhiegton. D. C.

EUGENE B. CLARK

Solicitor of PATENTS and TRADE MARKS

SPECIALTIES

GAS, metallurgy and mineral oils
VICTOR BLDG., 724 9th St., Washinzton, D.C.

PATENTS SECURED

Send sketch or model for search. Book containing over 200 mechanical movements. Advice abd wearch free.
W. א. ROACH, Jr., 512 Malzeritt BIdg., Washingten, D. C.

Patents Procured and Sold
Your idea will have a cash value when patented; build a business on your ides or patent and sell if outright; good inventions make fortunes; copyright. trademarks and designs also; BOOK FREE; send sketch to-dey.
H.J. SANDER

2 Crilly Bnilding,
Chlcate.

: Pron PROCT YOUR IDEA! Patents That Pay

"MY TRADE-MARK"
"Your business will have my personal attention."-E. B.V.

BOOK"What and How to In-vent-Proof of Fortunes in Patents" Free, containing: "Patents Wanted," "How to Advertise Your Patent," etc

FREE: Instructive 112-page Guide Book mailed upon request.

REFERENCES

Lincoln National Bank........ Wakhington, D. C. Little Giant Hay Press Co........Dallas, Texas Electro Importing Co...........New York, N. Y. American Railway Appliance Co.....Oil City, Pa. Farmers' Mfg. Co................ Norfolle, Virginia The Consolidated Conveying and Elevating Co., The Consolidated Conveying and Elevatiog Cansdowne, Pa.
Warsaw Paper Box Co.............Warsaw, N. Y.
Butler Engincering Co........................ Akron, Ahio Garl Electric Co.. York, Y. Y. Gray Lithograph Co............... New York, N.
Expert-Prompt Services. Highest Reforences.
E. E. VROOMAN

Registered Pated Attermey, Pateat Likgation, Palem Imyer 809 F St., N. W., WASH., D. C. Mg offices are bocated acre ne the itreet from tha U. S. Patent oftice

LAURENCE J. GALLAGHER
Formerly Assistant Examiner in the United States Patent Office
Patent Matters in the Electrical Arts Specially Correspondence Invited 2 RECTOR STREET

NEW YORK

INVENTORSWe manufacture Metai. Speciatities of all kinds, to order; largest equipment: low. est prices. Send perfect sample for FREE low estimate and best expert advice the eagle mfo. Co., Dept. D., Cincinnati, 0.

PATENTS
 THAT PROTECT AND PAY

 BOOKS, ADVICE AND SEARCHESFREE Send sketch or model for search. Hisheat Referencea Best Results. Promptness Assured.
Watson E. Coleman
Patent Lawyer 624 F Street, N. W.

Wachimeton, D. C.

PATENTS

 BRING WEALTH;proof, books, advice free. Low rates, easy terms.
A. Wedderburn, Pat. Atty., Dept. M., Waghington, D. C.

MIATT Procures PATENTS $1868=1913$

G. W. MIATI, Counselor at Law

 Solleitor of U. S. and Fareign Patents, otc. Offices: Temjle Ceurt, 5 and 7 Bectman St., hew york Phone, 5437 Cortlandt; Night, 3390 Morningside
FREE--Send for This

Large Illustrated Catalogue of

 Home-Study Books
ON

Electricity, Engineering, Carpentry, Building, Painting, Business

Check the subjects you are interested in and mail it with your name and address, We will send full particulars by return mail

......Electrical Eugiaerime
Eloc. Light min fowor sept.
....stala Lagiaen

..... Cas Enlue Enghier
...... Antuabille Mechancilat
...... leoterper
...... Piember
......Masan and Brictlayer
...... Corpanter
......Painter, Stans and Card Writhe
..... Letter Writate
...... Aa Iratifeg
.... Moterman
FREDERICK J. DRAKE \& CO. D 22 - 1325 Michigan Ave.

CHICAGO, ILL.

[^12]to be made, viz., the primary, the secondary, and the variable condenser, I should think that if either of these parts were to be slightly off the tune the signals would not be heard. Also if the operator were to be listening for a certain station and happened to have the detector poorly adjusted, that he would not know whether it was his detector or loose coupler which was "on the fritz." Am I right about this and how is this difficulty overcome in practice?
A. I. When properly adjusted, the loose coupler is a very selective instrument. In practice, however, it is found that the wave sent from the sending station is usually more or less damped. This, together with the resistance in the receiving circuit, makes the signals tune pretty broadly when the secondary is pushed well into the primary. In tuning with a loose coupler, to get the best results the primary should be adjusted to the wave of the incoming signal and then the secondary is adjusted to the same wave. The variable condenser is used to tume the secondary in smaller steps than is possible with the secondary switch alone and also to give the secmilary a greater range of wave length. Therefore, the secondary switch and the variable are identical in their function and the switch is seldom moved until the variable is at the highest or lowest capacity. The secondary may then be drawn partly or wholly out of the primary and the variable condenser readjusted to still further increase the selectivity. It is found in practice that a slight ditference in the adjustment of the primary or secondary makes very little clifference in the strength of signals. I skilled operator always knows where to find each station on his receiving set, as there is not a great difference in the tunc of stations except of the different classes, such as the commercial class and the navy class. In the Marconi multiple and valve tuning sets there is provided a switch to change the connections. Thus, when the operator is waiting for a call from any ship or station, he puts the switch on the "Stand By" side (U'ntuned), thus enabling him to hear signals with widely varying wave lengths. When he hears a station call"ing him, he throws the switch over to "Tune" and adjusts his tuner to the wave of the station calling.

ANOTHER OPPORTUNTY

Wallace Valve Detector ar oub Special Bargain Price

For the benefit of those who wished to avail themselves of the REDUCED PRICE of $\$ 12$ or $\$ 17$, with $4-40$ storage batery; but who were not yet prepared to read in the money: we have extended our offer in the July issue to Sept. 15th.
POSITIVELY NO ORDERS filled at the REDUCED PRICE efter Sept. 15 th .
Folder for 2 cent stamp. (No portals.)
WALLACE \& CO.
59 FIfth Avenue
Now York

WIRELESS COURSE FREE

Complete In 20 Lessons

With each purchase of $\$ 1.00$ worth of our Wireless Material we give you a Lesson, from 1 to 20.

Western Dlstributors for the Electro Importing Co.

SAME CATALOG
SAME PRICES

Boys In Chicago and vicinity are invited to call and look over our line. We also carry a General Line of Hlectrical Supplies and Novelties.

Static Machine $\$ 4.00$

Anderson Light \& Spec. Co.

176 No. La Salle Street. CHICAGO (Between Lake and Randolph)

Our Wireles Supplieo are
GUARANTEED
Since the wireless amateur is limited in power, it is essential that he use those devicel that give the maximum distance.

Therefore we have designed the ROTARY SPARK GAP
for, with one Kilowatt limit, the amateur must jmprove his transmitting device in order to be heard at all.

Disc, inches in diameter. Renewable Zinc Gaps. Mounted on fibre base, so as to be screwed directly to table.
This Rotary Sparic Gap has been constructed to give a spark frequency of 500 a secoad, but by the use of amall rheostat the frequency may be varied at will.

What we guamantec

OLENN SABIN \& CU., Amherst, Mass.

NEW BOOKS

for the Wireless Amateur
Elootriolen's Mandy Beach,
By Prof, T. O'Conor blaens.
Oyname Bullding for Ameteura, or How to Conbtruet Fifty With Dyara
By Arthut J. Weed
Wirelose Tolegraphy Tolephony, ©moly Ex.

Practleal Apeiled Elentridty,
By Devid Penn Morvion.
Wirelees Tolegraphy \& TAlophony.

By Calvin F. Bwingle.
Electrical Ralireadial at Apsllod to stoem Rellways,
Moder: Eleotrial Censtruetion.
By Henry C. Hormtmann Efictor B. Tousloy.
Modern WIrlas Diagramatad Desorlatione,
By Henry C. Eoratmane Victor B. Tvualey.
Pratleal Armature a Magnet Wiading,
Eleotrlefan's Operatian e Testine Manual,
By Heary C. Horatmon tictor B. Teueles.
Elomantary Eleotrialty Up.to. Date,
B) Sidney Aylmer-Bmall.

Eleotritelty Made EAmple,
By Clark Carn Bentine.
By Clark Caryl Inatine. 31.00
Firot Step Im Elactrielty; \quad \$1.00
By W. Jerome Harrisen.
Easy Electrleal Experimenta A How to Mahe Thom,
The Mandy Voot Peoket Eleotrloal Dietlenary (Full Lather).
Stera
Bteram Batterlet.
Telegraphy self-Tau tet
By Theodore 4 . Miteon
Operatere WIrelee Tolegraph a Tolephond Hand Pent.
By Victer H. Leughter
Iomentary Chomidty Selt-Taunt
B) H. 2 Rascoe.

Tolograyly and Hew to Learn It

10e. Extre for any of the altove meak by malf.
Then ordaring aiwart give name of suther.
MODERN ELECTRICS
231 Fulton Street
NEW YORK

LONG VS. SHORT AERIALS, DETECTORS AND ROTARY SPARK GAP

 aslis:
(). 1. I! hy is it that a short amial is 110! :s citicient for receiving as a long anc: It secms for ate !hat wire on the
 atrrial.

- 1. Wire wotme un at thang coil is by mot me:tus just ats gool as wire on the acrial for sereral reasons.
liars, it is nswatly of a moth smaller diamber and has merefore a math higher high-fregterncy resistance. secmal. the distributed capacity is muth speater. 'lourd, its imfoctance is higher.

These three factors combined prodtace a much higher impedance, or apparent resistance, which chokes batck the high frembericy current set up in the arrial and ladels to weaker signals. An increatse in height increases the voltage generated in the aeriat, while an increase in lengoth increases the curront induced in the acrial by the incoming waves.
(2. 2. It is advertised that the Audion, clectrolytic and peroxide of lead are the most sensitive detectors known. Is not the perikon more sensitive than these?
A. 2. 'There is a great diversity of opinion in regard to the relative sensitiveness of detectors. The Audion is generally admitted to be the must sensitive detector in common use, but the difierent Audion bullos vary greatly in sensitiveness. J'erikon is regarded as equal to or slightly better than the electrolytic, and galena as slightly better than the perikon. Each operator has his favorite detector, which he is ready to back against all comers.
Q. 3. Data for a rotary spark gap to be used in connection with a I kw. transformer.
A. 3. The plugs should be about three-eighths of an inch in diameter. The number of plugs and the speed of the motor should be such as to give a product of about 800 . Thus, if the motor has a speed of forty revolutions per sccond, the plugs should number about twenty. This will produce a very high tone.

D) C BIG 300 PAGE P ELECTRICAL \& WIRELESS C A A C
 CELEBRATED FERRDN DETECTOR
 Mailed for ec. stamps or coin, which pou mey. deduct on first

It yea roundin the pare of all Detectore 11conced for privite upe. Priee oaly $\$ 5$. The Ferron Dulecter containa the aeme. hish rade crystel and an alyotent aually - erron Prow per comer. con un com for rem fer virce uce per. fer civit prion
Michisan polunterly patron of Greenvile. writes:-With your Frron Devedor I rocolved the iscor Llanto heard Tey Weat (700 to 600 miea) and havel heerd land.
order of $\$ 1.00$. Great cost of catalog and low prices prohibit dis. tribution except to those really interested. Sinte 28% to 38% tribution except to those realy interested. betting this bif On Sirnuarn Cotog. There is no catalog to take its place; neither will you Cud find elsewhere as large a variety
goods at such attractive prices.

WHAT OUR BIG CATALOE CONTAINS:

100 pp . Wireles Inatrumente for Beperimatal and Cammerelal use.

 instruments.) 15 DD. Teleraph Initrumenta of mane quality as ued by Instrument.) 15 DD , Tolesraph Initrumenta of man Cunnereisl Motere. Wentern Union and Pontal Companser 1 opp. Toy 145 pD . \propto Home Lighting 20 pp . Flash Laghts and Minitiure ampa, and Mas Dis. Vibrators, Ammeter, rlants. Scwing Machince, Automobile Accessories, Massace Miniature Railwass. Foltmeters. Mecianical Books gnd fieneral Flectiteal Supplies.

THE J. J. DUGK COMPANY $432-434$ St. Clair St, TOLEDO, OHIO

Boston Variable Condenser

25 Plates, $\$ 2.75$
Boston Agent for
Electro Importing Co. Same Prices.
If goods are to be sent by Parcel Post, send stamps.
Catalogue 2 cents in stamps.

M. MUELLER

18 Devoashire
22 Exchange St. BOSTON

Licensed Agents for the Sale of PERIKON CRYSTALS

(By the W.S.A.Co.)

For Amateur use only, \$1.00 per set
LONO MISTAN
CEO.S. SAUNDERS \& CO.

KNOWLEDGE IS POWER

 THE REAL ESTATE EDUCATOR

Containing inside information not generally known, ""bon't" in Real Estate. Fommers. Sinchange. Buildthe and Surefvehip contracts. monds Mortuades. Pouters of Attor. Boma. Acts. Landlor,"s Agrcement.s. "ey. Cense Ouit Deeds, Chatfel MortAntice to Qutit gives in the mot ablecs. Eld. form, the essentiab condensed Knowledpe of the Rase to KNowHess. Whit lot Neep ro knowWhat You (Minit to knowWiat lou want to kinow, finds. It. Piacen at your Fingers pinds. how. to lilcomer a Notary Public OR COMMISSIONER OF DEEDS. the in. luok is an inspiration to the indifierent and a stimulus to the ainlitious. Apart from the agent, op. wator on entutactor, there is much to be found in its contents that will prove of great value to all who wish to be posted on Valuation, Insurance, Mcasurements, Contracts, Mort.
 * I. (W) ponstpail.

MODERN ELECTRICS BOOK DEPT.
231 Fulton street
NEW YORK

If You Will Take Advantage of This Right Away
In addition to sending GAS ENERGY, which is the liveliest and newsiest for those interested in gas engines, for one year, we will send you free copy of "How to Run and Install Gasoline Enginea." GAS ENERGY covers the Stationary, Portable, Automobile, Marine, Aeronautic, and Producer fields in a way that no other paper does. must send goc. in postage or currency and we will

GAS ENERGY CO., 22 Murray St., NEW YORK CITY

BOY ELECTRICS The KNAPP LEADER - The Best

Many other motors at all prices. live dealers ceverywhere.
Order direct or ask your dealer to show you he Knapp line and insist on getting Knapp goods. Dealers not already handling the Knapp line hould ask for prices.
Catalogue illustrating full line of dynamos, motors and electrical nuvelties free on request.
Knapp Electric \& Novelty Co. $\quad 517$ west 5 sist st.

[^13]
INDUCTION MOTOR

(2457) Chas. J. Drake, Kansas, wants:
Q. I. An explanation of the principle of the induction motor.
A. I. This is too lengthy to be presented here. You will find it explained in detail in any book on alternating currents. Briefly, it may be said, however, that the alternating currents, when fed into the windings on the stationary part of the motor, set up a revolving field, or in other words a magnetic field the poles of which revolve round and round the field structure or stator. This revolving field, in turn, induces currents in the windings of the rotating part or rotor which react upon the revolving field and catuse the rotor to revolve.
Q. 2. The address of a firm making same.
A. 2. We must refer you to our atvertising columns for this information.
Q. 3. How many square inches of tinfoil should be used in making a blocking condenser?
A. 3. You have the wrong idea of a blocking condenser. The drawing yout enclose is incorrect. The condenser shoukd be connected as shown in diagram given in query No. 2380 in the May, 1913. issue. For dimensions of the condenser, see answer to query No. 2390 in the June, 1913, issule.

OPEN CORE TRANSFORMER

(2458) Guilderoy Smith, New York,

 asks:Q. I. Where can I obtain blue prints of the Navy standard type if 76 receiving set made by the Wireless Specialty Apparatus Co.?
A. I. We do not think it is possible to obtain blue prints of this set. If the makers won't furnish them, and they probally won't, you can't get them.
Q. 2. In building an open core transformer. is it better to wind the secondary so as to occupy seven inches of the core and be eight inches in diameter or have it occupv twenty inches of the core and be four inches in diameter? The core is 36 inches long and wound with one layer of No. Io wire.
A. 2. Let the secondary occupy ten inches of the core.
Q. 3. What is the rating of this transformer in watts and volts?
A. 2. This depends altogether on the

You wouldn't try to get Colon, Panama, with an old coheror set. yet

Edelman's "Experimental Wireless Stations"

is as essential to your success as is a sensitive detector for long distance receiving.
Mr. H. C. Gawler, Radio Inspector at Buston, Mass., says, "I have read your 'Phperimental Wireles Stations' and consider it a very valuable part of an operator's equipment.'

That's the puint. This practical volume belongs to your station. It should be on your table ready for immediate reference, ready for rending during spare moments. It is the only book written exclusirely for sou.

Nearly 2.000 coples have been sold. Among otlier things the readors have heen and are now (1) building helr own apparatus. (2) getung (iovermment heensez, (3) deling resicue work during the (Hulo flood. (4) settiag long distance, (5) working through static and interfermenc. lou can do as woll and better, for many wher ttenns aro fully presented in this book.
Get a copy by all means, but be sure that it is Edelman's Experimental Wireless Stations. Don't be satisfiod With cherap books you know are unrellable The cost is but \$.10, much loss than yoh pay ro: manly atledes of lesser value. Own this book. Send
for it before you wru this page.

PHILIP E. EDELMAN

2472 Lyadale South, . Minneapolis, Minn,
(buaranteed us represented. Monty back if you say w whthln 5 days. You take no risk

Build and Malntaln Your Own STORAGE BATTERIES

Detailed Inotructions and Formulae PRICE 50 CENTS guaranteed electric starage bitteay co., St. Lenis, Mo.

Premium Catalog
 Containing over 1500 electrical

 articles anyone of which you may acquire for NOTHING, simply by getting us new subsoribers will be sent you on recelpt of 2 c . stamp.MODERN ELECTRICS, 231 Fulton St. N.

FAUCET WATER MOTOR

 Conplete with emery
wheel, buis wheal, pulle
$\$ 2.50$ wheel, buti wheel. pulley chine, polish, In some cities where we have no agente, end where the water pre motor will be given ireet apply at once if you want to make some extra mones, or if rou can devote Four whole time, liberal selary and commission will be paid.
ALCOHOL STOVES, LAMPS AND FLAT IRONS
ENGINEERS WANTED to send for catalos of indicatora Reducing Wheels Planimeters. Addrees

LIPPINCOTT M. S. CO.
Nowerle

SAYWe have every type of wireless instrument on the market and many new ones at the same prices or better than you can get elsewhere. We also have a large stock of electrical supplies and specialties. Send 3c. in stamps for our No. 10 catalogue, we may have just what you were looking for.

```
John Y. Parke \& Co. 129 N. 7thste Phinedelphis, Pa
```


Send to us for your

WIRELESS

We will treat you square.
THE MERKER-FLOCKER ELECTRIC CO. 957 LIGERTY AVE., PITTSEUAGH, PA

We Can Supply You

with any parts to make your wirelesa inttruments athelowest cost.
G. S. CROWTHER

1414 Pembroke St., Victoria, B. C. Can.
NO CATALOGI'ES ISSUED YET

Mr. Man!

That boy of yours, that kid brother, that Boy Scout, ousht to read

EVERYBOY'S MAGAZINE

Contains good serials, short etories, stamp department, Boy Scout page, etc. Trial icar sub scription 15c.
R. C. YOUNG, 22** Vallace st., Miladediala

Haveyou been unable to locate wireless dealer in your city? If so write us dealer in your city? if so write us, we will give you his name and ad-
dress. Modern Eieotricu, Trade Inquiry Dept., 231 Fulton St., New York, N. Y.

[^14]roltage intil frequçacy wi the sup川s circuit

APPARATUS EXCHANGE DE－ PARTMENT

（ 2459$)$ las．lupton，New lomk， writes：
（）．I．Is the Apparatus Exchange Department a fake？I have written to six of the advertisers，enclosing a stamped，addressed envelope，but have never yet received a reply．

1．I．This department is not a fake． The ads are sent in by the persons whose names they hear and are accepted by us as genuine．We would like to call the attention of our readers to this mat－ ter and ask that all persons who enclose atl elovelope as above stated be answered． eren if an exchange has been already effected．It is only common courtesy to answer a note，especially when the writer has enclosed an envelope as abore．

Q．2．What size wire should be used to connect the receiving set？The send－ ing？
． 2 ．Sice allswer to query No，eftt in this issule．＇The same applies to the receiving set．

HOOK－UP AND FORBIDDEN QUESTIONS

 wishes：
（）．I．A hook up for the following ins！ruments．Sending－one－quarter inch coil，spark gap．helix，condenser and key．Kecoiving－DPD）switeh for change－over silicon detector．one 2.50 ohm recedere，tuming coil amd fixed com－ alenser．
－1．For this diagram see answer to fucry No． 2055 in the July，パ上． issue．＂The fixed comdenser should be platerl betwean the slider and the re－ tecior．
（）．2．Jow far call I semd amd re－ ceive with this set？

人．2．See notice at the head of this department concerning questions such as these．

SPARK COIL AND RECEIVING SET

（2．f6r）I．I．IIenderson，Virginia． writes：
？．r．Tave constructed a coil hav－ ing four and one－laalf pounds of No． 30

The Greatest Book on Wireless Ever Published
 Wireless Telegraphy and Telephony Simply Explained
 By ALFRED P. MORGAN, Wireless Expert,

Author of "Wireless Telegraph Construction For Anateurs," E.tc.

175 Pages

156 Illustrations

This is undoubtedly one of the most complete and comprehensive reatises on the subject ever published, and a close study of its pages will enable one to master all the details of the wireless transmission of messages. The author has filled a long-felt want and has succeeded in furnishing a lucid, comprehensible explanation in simple language of telegraphy and telephony.

Price $\$ 1.00$

Handsomely Bound in Cloth
The book treats the subject from an entirely new standpoint. Several very novel and original ideas have been carried out in its making. It is well illustrated by over one hundred and fifty interesting photographs and drawings. All diagrams have been made in prespective showing the instruments as they actually appear in practice. The drawings are carefully keyed and labeled Many of the photographs labe accompanied by phantom draw. ings which reveal the name and purpose of each part.

A Beok the WIreless Experlmenter Cannot Afford to be Without. It enables one to Design and Construct Apparatus. Also Valuable to the Layman.

CONTAINING CHAPTERS ON

Introductory: The principles of Wireless Transnission and Reception; Ether: Electromagnetic Waves; How Waves Are Created: High-frequency Oscillations; 1 ransmitting and Receiving Apparatus.
II. The means for Radiating and Intercepting Electric Waves; The effect of Intervening Country Upon Electric Waves; Effect of Locality; "Static"; Lightning and What It Is; Aerial Masts; Types of Aerials; Directive Action of Aerials; Insulation of the Aerial; Earth Connections.
III. The Transmitting Apparatus: Current In. The Transmiting Apparatust Fields Supply; Magnetic Induction; Magnetic Fietds; The Induction Coil; The Interrupter: Elect:o lytic Interrupters; Open Core Transformers. Closed Core Transformers; Direct Current; Alternating Current; Oscillation Condensers The Helix; Spark Gaps; Rotary Gaps Quenched Gaps; Aerial Switches; Anchor Gaps; Keys.
IV. The Receiving Apparatus: The Detector; Telephone Receivers; How Electric Waves Affect the Receiving Apparatus; Perikon Detector: Silicon Detector; Pyron Detector; Carborundum Detector: Galena Detector: Molybdenite Detector; The Potentiometer; The Tuneng What Tuning Accomplishes; How ing coind Messares Are Excluded: The Undesirable Messages Are Excluded Variable loading Coil; The Fixed Condenser; Variable
Condensers; The Purpose of tuning and Coupling; How Tuning Is Accomplished; The Results of Tuning; The Effects of Coupling; Inductive Helixes; The Loose Coupler; The Hot Wire Ammeter; Directive Wireless Telegraphy; The Braun Sysem: Bellini and Tosi Method.

V1. The Dignity of Wireless Telegraphy Its Applications and Service; Wireless Teleg raphy in Warfare; Wireless in the Army; Wireless in the Navy; The Wireless Telegraph Automobile; Wireless on an Airship; WireAutomobice, Telegrap as an Aid to Press Work; The Wireless Codes; How a Message Is Trans mitted and Received; The Breaking in System.
VII. The Ear; How We Hear; Sound; Sound Waves; The Nature of Sound; Speech; The Larynx and Vocal Chords; The Structure of Speech; Manometric Flames.
VIII. The Telephone; The Telephone Transmitter; The Telephone Receiver; The Photophone; Selenium Cells; The Thermophone; The Electric Arc; The Speaking Arc; Wireless Telephony by Means of a Beam of Light.
IX. The Wireless Telephone; The Difficulties of Wireless Telephony; A Simple Wireless Telephone; The Effects of Speech Upon Wire less Telephone Apparatus; The Requirements of Wireless Telephone Apparatus; The Production of Undamped Electrical Oscillations; The Poulsen Arc; Wireless Telephone Apparatus: The Majorana Transmitter; The Re ceiving Apparatus; The Audion; Transmission of Wireless Telephone Messages.
X. Remarks; Maxwell's Theory; Hertz's Discovery; Electromagnetic Waves; The Position of Wireless Telegraphy in the World To-Day; The Field for Wireless Telephony, The Status of the "Amateur"; Wireless of the Future: The Transmission of Power by Wireless.

COPIES OF THIS HOOK SENT ON RECEIPT OF PRICES.
MODERN ELECTRICS, umpanten 231 Fulton Stroet, New York City

When writing, please mention "Modern Electrics."

25c. Books

on Practical

Subjects

COMMUTATOR CONSTRUCTION

By William Baxter, Je.

The business end of any dynamo or motor of the direct current type is the commutator. This book goes into the designing, building and maintenance of commutators; shows how to locate commuators; shows how to locate everyone who fusses with dynamos needs this. Fourth edition.
Price........

By Herbert Pratt

Shows a house already built; tells just how to start about wiring it; where to begin; what wire to use; how to run it according to Insurance Rules; in fact just the information you need. Direc. tions apply equally to a shop. Fourth edition. Price.................. 25 centi

BRAZING AND SOLDERING

By James F. Hobart
The only book that shows you just how to handle any job of brazing or solder. ing that comes along; tells you what mixture to use, how to make a turnace if you need one. Full of kinkes. Fifth edition. Price..............25 cente
TURNING AND BORING TAPERS
By Fred. H. Colvin
There are two ways to turn tapers; the right way and one other. This treatise has to do with the right way: it tellg you how to the right way; properly, how to set the lathe, what tools to use and how to use them, and forty and one other little things that you should know. Fourth edition.
DRAFTING OF CAMS
By Louis Rouillion
Every mechanic is interested in Cams, and this show's just how to lay them out for any kind of work you may have. There is more real information in this little book than in others that cost more. Third edition.
Price........................... 25 cente
THREADS AND THREAD CUTTING

By Colvin.Stabel

This clears up many of the mysteries of thread cutting such as double and triple threads, internal threads, catch ing threads, uses of hobs, etc. Con tains a lot of useful hints and several tables. Third edition.
Price.......................... 25 centm

SPECIAL OFFER:

We will send you any five of theae books if ordered at one time, on receipt of One Dollar
$A^{-y^{-5}}$ Any of these books sent prepaid on receipt of the price.
MODER ELECTRICS
BOOK DEPT. 231 FULTON ST., NEW YORK
wire on the secondary. It fails to give more than a hot three-quarter inch spark. If I take off three sections and only use the remaining one, I get the same size spark. What is the trouble?
A. I. The secondary sections must he connected wrong or the coil is sparking inside the secondary.
(2. 2. What instruments will I need to hear Norfolk and Arlington?
A. 2. To hear Arlington you will need a very large tuning coil, a detector, a fixed condenser and a pair of phones. The same instrmments will enable you to hear Norfolk.
Q. 3. There is a hill 800 feet high near me. Would it be possible to put up a long distance station to hear New York and Cape Cod?
A. 3. Yes, but if you increase the length of your aterial to about three humalred feet, you ought to be able to hear these stations at your house. You would need a loose coupler and high resistance phones, also an Audion detector.

AERIAL AND RECEIVING RANGE

(2462) T. S. Dickerson, New Jersey, asks:
(). I. When speaking of receiving from a certain distance, from what powered transmitter does this mean?
\therefore. I. It may mean anything from a 1% or 2 kw ship station to government and commercial stations of 20 to roo kw. ()ne of the reasons for discontinuing the answers was owing to our inability to more than guess the range. The question of range depends a great deal on the ability of the operator.
Q. 2. I am about to change from aluminum to copper acrial wire. Shall I use No. i2 or it stranded?
A. 2. Vse the No. 12.
Q. 3. Using an aerial twenty-five feet high and 115 feet long, I have been unable to get Washington loud enough to read. What is the trouble?
A. 3. Your acrial is entirely too low to receive any distance. Increase the height and it would be better to increase the length also. and put up a separate aerial for sending, or, better still, use a series condenser.

THIS B00K ${ }^{\text {Belongc. in tho }}$ Modern Scientific Literature
 Thin is what ene purcheser wrote sbout thie book.
 HOMAN'S A B OF THE TELE. PHONE, BY J. E. HOMANS, A.M.
 Young mea rou need it. It will prowe of eadstence to theeo whe decire an explanation of the generel princtiples of diperent apparatus and systems. Cosfor ready referthco.
 Only \$1.00 Postpaid

The A BO OR The Twlephons it a book raluable io all pertons intereated in thil over ingreatis industry. No expence bes been pered by the publighers or the No expens has this the mont comprohnailve handbook over brought out relating to the tolephons.
The volum containg 875 peges, $98 A^{1 l l u m t r a t i o n}$ and diacrams. It te hendsomely bound in bleck vellum aloth and tit a sunuinely rood boot without refersence to oot and is a sauinely rood book withouk rererence to cot
OUR GUAPANTME: Monet Flll be geturned to purehacer if bootit is nok as represented in this edrertisemens. chacer if boot is not as reprasented in thit edvert
WRITE TO-DAT. It belong in jour laboratery

You may remis by ash, etampe, monev or ecpres ordes.

MODERN ELECTRICS BOOK DEP'T

231 Fulton St.
NEW YORK

Real education excels
Because you live in this elect. rical age you are interested in experimenting in and leatoing about electricity. The magazine that will belp you is

ELECTROFORCE

 "The Technical Magazine for Everybody"This contains live up-to-date educational and practical articles and notes describing and illustrating how to run wiring for lights and motors, and giving experiments in the new science Electro-chemistry. An additional feature beginning in the April number is the

JUNIOR DEPARTMENT

Whick shows the boy and electrical beginner how to make his own apparatus, giving full details.

A Quarter For Three Months
Wrap up a quarter now and we will put you on our paid-up subscribers list for a quarter of a year. Address
electroforce publishing co.
Stroh Bldg.
Milwaukee, Wis.

ELECTRICAL

This dictionary contalns upwards of 4,800 words, terms and phrase employed in the olectrical profealos, whe ther deraitions iven in the most conclo. lucd manner.

VEST POCKET

Much thought and great care has been exercised in the prophration of thls unique work by the author, Mr. Wiliam L. Weber, M. F.

This valuable book will be seat postpald to any addrees on recelpt of price, only 50a.
Modern Electrioe Book OepL
381 Multon et. Now Tork.
DICTIONARY

NOW READY

THIT
Airman's Vade-Mecum

No. 1. Meteorology

By Colonel H. E. RAWSON, C. B.
(l'ice-President Rowal Metcorological Society;
Council Acronantical Socicty)
Contents:-Introduction and 5 Chadters on Temperature, Pressure. Wind, and Pre. cipitation. Weather Forecasting. Index. (Illustrated.)
Drice, 40 cents. Pont Free.

ELECTRIC

Electriclty Simpilfied

By T. O'Conor sloane. The object of "Weetricity simplifed" if to make the subject as plain as posalble, and to show what the modern concepthon of electricity is; to show how two plates of diferent metals immersed In acid can send a messace around the clobe: to axplain how a bundle of copper wre rotated by a steam engine can be the agent in lighting our atreets; to tell What the rolt. ohm, and ampere are, and what huestiona jow tension mean: and th answer the questions that perpetually arise in the mind in

How to Become a Successful

Electriclan

By T. O'Conor sloane. Dery yount man who wishes to become successiul electrician thould read this book. It colls in simplent lancuate the surent and analeat way to become a succeasful electrician. The studies to be followed, methode of work. Deld of operation and the requirementa of the ouccessful electrician are pointed out and fully anplalned. 202 pages. Price. $\$ 1,00$.
Standard Electrical Dictlonary
By T. O'Conor Slomene. A practicel handbook of reference, contalining deanitions of about 5,000 393 illustrallons. Prims, and phraves. 68! pases. 393 Illustratlons. Price, \$3.00.

Wiring a House

By H. Pratt. Shows evers atep in the wirint of a modern houne and erplains everything so to to be readily understnod. Directions apply equally
to athop. Price, 25 cents.
Electric Toy Making, Dynamo BuildIng and Electric Motor Construction By T. O'Conor Slome. This work trents of the making at hone of electrical toys, electrical aposratus, motors, dynamos, and instrumente in gemeral. and is designed to bring within the reach of soung and old the manufartirre of genulne and useful slectrical sppllances. 140 pages. Frice. $\$ 1.00$

Arithmetic of Electricity

Ry T. O'Conor gloane. A practical treatise on electrical calculations of all kinds reduced to serlea of rules, all of the slmplest forms, and filustrated by one or more practic: ench rule With defalied one of more practical nroblems. Price. $\$ 1.00$.

Telephone Construction, Installation, Wiring Operation and Maintenance By Radclite and Cushing. A practicall reference bonk and gulde for telephone wiremen and contractors. Erers phase of telephone wiring and Installation commonly used to-das is treated in a practical, graphic and concise manner. Intricate mathematica aro avoided, and all apparatus, clrcuits and syatems are thoroughly described. The appendix contains defritions of units and terms sed in the taxt. selected wlring tables, which fully ulustrated. Price, $\$ 1.00$.
Commutator Construction
Ry Wm. Bazter. The bualiven ond of a dyumo or motor is the commutator, and this is what is made, why thes tet out of whack how they are to put em right math. Price. 25 cents.

MODERN ELECTRICS

231 FULTON ST.
NEW YORK

RECEIVING SET AND AERIAL (2403) C. U. Williams, Kentucky,

 Writes:! I. Intend putting up a long disfinnee set. After connecting the six aterial wires together, can i'run one small wire down to the receiving set :
A. I. Xo. 'This is done many times hat always decreases the range of the set. The wire leading to the receiving set should be as large as the combined aerial wires. Thus, if you run six No. If wites on the aterial, the lead shonkd he made up of six No. If wires buntlend together.
?. 2. Can I get a sufficient groumd connection by rumning several irom wires 75 feet to the well and then soldering to a piece of sheet iron about six ly two feet?
A. 2. You had better use cryper wires and make the plate larger.
(). 3. What instruments should be used in connection with this aerial and what stations would I be likely to hear?
A. 3. With a good loose coupler, rotary variable condenser and galena detector, fixed condenser and is pair of good 2000 ohm phones, you ought to be able to hear the stations at Philarlebhia: and New York.

HOOK-UP AND WAVE LENGTH

(2f(ry) ()sc:at l'iersom, Wiseromin intulures:
!3. 1. Ire there athy high prower shat tions in this statle and if so, what wathe lensth do they use?

1. I. There are no bery high power stations, but there are several commer cial stations. Ther are as follows: Two stations at Milwatuee, one at Manitowoc, IVanpaca, and Scandinavia. They operate on about 600 meters.
Q. 2. Please give the best look 11p for the following station. It contains one three-slide tuning coil, variable condenser, silicon detector, 2000 ohm phones and threc fixed condensers.
A. 2. Find the diagram helow. One fixed condenser is all that is necessary.

Licensed Amateur Stations

First Radio District

June 8, 1918.

Cull Lettere	Name and Address	Licenge No.
1 AB	Philip T. Brown, 36 Taylor Street. Portland, Me	104
1AC	Chester A. Kennedy, 109 High Street, So. Portland. Me	105
1AD	Edward S. C. Smith, 58 South Street, Biddleford, Me	81
LAE	George E. Sterling, 28 Paine Street Springvale, Me.	106
1AF	Winfield C. Hodgkins, 54 Eagle Lake Rd., Bar Harbor, Me	116
1AG	Ray Hutchins, Oak Street, Springvale, Me.	126
1AII	Donald G. Ward, 14 Orchard Street, Portland, Me	127
1AI	Olin C. Bronn, Ledgelawn Avenue, Bar Harbor, Me.	189
1BA	Harold W. Fitts, 2 Park Street, Barre, Vt.	79
1BC	Leon R Dimick, 27 Cliff Street, St. Johnsbury, Vt	89
18M	John L. Coppe, 188 So. Main Street, Rutland, Vt.	6
1 BN	Raymond Shaw, 10 E. Washington Street, Rutland, Vt.	\%
1 BO	Wm. R. Canty. 86 Lincoln Avenue, Rutland, Vt.	42
ICM	Henry R. McLane, Union Avenue, Laconia, N. H	4
1 CO	Harry Atkins, 67 Pine Street, Franklin, N. H.	15
1CR	Reginald F. Howe, 94 School Street, Keene, N. H	10
1 CX	George H. Parker, Hudson, N. H.	80
1CY	Page H. Haselton, Hudson (Nashua), N. H.. R. F. D. No.	16
1GA	Harold C. Snow, 11 Paradise Road, Swampscott, Mass	34
1GB	Henry G. Blount, Hamilton, Mass.	38
1GC	Gilbert L. Chadwick, 10 Eleventh Avenue. Haverhill, Mass	43
1 GD	Frederic A. Lane, 7 Madison Avenue, Gloucester. Mass.	53
1GE	F. L. Wheeler, 28 Mt. Vernon Street, Cliftondale, Mass.	59
1GF	F. M. Fowler, 16 Shore Avenue, Salem, Mass	68
1GH	Harold Bibber, 81 Beacon Street, Gloucester, Mass	38
1GI	H. E. Morse, 108 Essex Street, Swampscott, Mas	82
1GJ	Richard M. Daniels, 25 Outlook Road, Swampscott, Mass	103
1GK	Lyman R. Stanley, 52 Burrill Street, Swampacott, Mass.	114
1 GL	Arthur W. Bush, 80 Tower Hill Street, Lawrence, Mass	118
1GM	J. Wyman Allen, 236 Hale Street, Beverly, Mass	134
1GN	Malcolm H. Smith. 115 Prospect Street, Gloucester, Mass	135
1GO	F. Clifford Estey, 3 Goodell Street. Salem, Mass	186
1GP	Albert W. James, 86 Union Street, Manchester, Ma	138
1GR	Dancan IIodges, Groton School, Groton, Mass..	12
1HA	William H. Allison, 37 Plantation Street, Worcester, Mass	24
1HB	Warren B. Burgess, 62 Fruit Sireet, Worcester, Mas6	38
1HC	Harry R. Cheetham, 81 Avon Street, Somerville, Mass	8
1HD	Donald T. Canfield, Westboro, Mass., R. F. D. 1-34.	21
1HE	Kenneth R. Lynde, 20 Cloelia Terrace, Newtonville, Mass	19
1HF	Chester R. Gardner, 11 Spring Hill Terrace, Somerville, Mass	18
1HG	George R. Cogswell. 18 Garden Street, Cambridge, Mass.	16
1HI	Alan W. Burke, 40 Pollock Avenue. Pittsfield, Mass....	
1 HJK	Albert M. Hunt, 12 Madison Avenue, Newtonville, Mass Horace W. Dennigon, 60 Garland Street, Chelsea, Mass.	21 81
1HL	Herman A. Affel, 45 'St. Botolph Street. Boston, Mass..	80
1HM	Herbert M. Hammit \& Blue Hill Avenue, Roxbury. Mass	29
1HN	J. Frank J. Flood, 160 D Street, So. Boston, Mase.....	32
$1 \mathrm{l}^{\text {O }}$	Clark B, Merrill, ${ }^{8}$ Elm Street, Dorchester, Mas.	
${ }_{1}^{1 H P}$	H. G. N. Cromack, 8 Elm Lawn, Dorchester, Mass......	86 89
1 HO	Harry R. Broadley, ${ }^{\text {Thomas }}$. Elliot, Jr., 41 Brington Road, Brookline, Mass	48
1HS	- Herbert Shattuck, 1-A Lewis Place, Roxbury. Mass.......	28
1 HT	James H. Anderson, 182 White Street, Waverly (Belmont),	41
1HU	Harry E. Upton, 18 Jackson Avenue, Everett, Mass........	
1 HV	James A. Ryan. 48 Linwood Street, Somerville, Mass.	48 60
1HW	W. H. T. Monroe, 88 Beacon Street, Everett, Mass.	60
${ }_{1}^{1 H X}$	Eliner A. Leavitt, 41 Forest Avenue, Everett, Mass....	$\begin{array}{r}61 \\ 107\end{array}$
${ }_{1 H 2}$	Harric E. Duncan, 84 Foster Avenue, Newtonville, Mass.	52
118	Starr Walker Stanyan, 75 Boston Avenue, Medford, Mass.	14
1 ID	Francis Kehoe, 41 Walnut Street, Boston, Mass. (Neponsit)	64
1 IE	William F. Bennett, Jr, 24 Spring Street, Somerville, Mass	65 20
11 F	Harland A. Eveleth, ${ }^{72}$ Gray Street, ${ }^{\text {Crlington, }}$ Mass.. .	66
111	Andrew J. Fassert, Jr., 27 Walden Street, Cambridge. Mass	49 68

is to be the keynote of the most notable gathering of technical, class and trade journal editors and publishers ever held in America. No live manufacturer, sales manager, advertising man, trade paper editor or publisher can afford to overlook the

Eighth Annual Convention of the Federation of Trade Press Associations in the United States at the Hotel Astor, New York, Sept. 18, 19, 20, 1913.

Two sessions will be held daily. There will be editorial, circulation, advertising and publishing symposiums under competent leaders. Many of the leading editors, business managers, buyers and sellers of advertising, and authorities on modern merchandising methods will take part. On Friday afternoon, September 19, there will be a mass meeting with addresses by representative business and professional men, on subjects of timely interest to editors, publishers and advertisers. Distinguished guests and worth-while speakers will be at the annual banquet, which will be made a memorable social occasion. No matter what may be your connection with the trade journal field, if you are interested in the idea of business promotion through trade press efficiency, if you believe in business papers for business men. you will be welcome at all sessions.

Full information may be obtained from The Committee of Arrangernents
iVM. H. UKERS, Chairman, 79 Wall Street, New York.

[^15]Q. 3. What is the approximate wave of the following aerial, etc.?
A. 3. For all questions as to the wave of aerials we refer you to query No. 2419 in the July, 1913, issue.

AUTOMOBILE HORNS

(2465) Leslie Emrick, Ohio, asks:
Q. 1. The numbers of the patents which control the use of the electric automobile horns?
A. I. We would advise you to write the Patent Office, Washington, and ask them. They may be able to tell you. The usual procedure is to send a patent attorney to the Patent Office and have him look up the records.

RECEIVING TROUBLE AND RECEIVERS

(2466) Jim J. Hayes, writes:
Q. I. Have not been able to get the station at San Antonio (10 kw.), 156 miles away, nor a 2 kw . station 50 miles away. Aerial is insulated all right. Can get amateurs in town O. K. What is the trouble?
A. I. It may be that you are tuning wrong. The commercial and government stations use a higher wave length than amateurs. Connect the variable across the secondary, as it may be that you cannot reach the higher waves with the secondary alone. We would also suggest that you take out one of the fixed condensers, as one is all the circuit needs.
Q. 2. Some well-known makers of wireless receivers say No. 40 wire is absolutely unfit for receivers, while others of equal rank use No. 50. Which is preferable?
A. 2. This depends on the resistance it is desired to wind the receivers. It is generally admitted that with a crystal detector a resistance of from 500 to r 500 ohms per receiver is desirable. Of course, it is not the resistance that determines the value; it is the number of ampere turns, viz., the number of turns in a given space. For this reason some firms wind the phones with No. 50, thus getting more turns, but, of course, increasing the resistance, which is undesirable. Others claim that by using larger wire and less resistance, better results are obtained. We have found that if a receiver is well made, the resistance makes very little difference, provided it is 400 ohms or over.

Call Letters	Name and Address	
$11 P$	Harold Lelend, 34 Irving Street, Somerville, Mass.	
110	Doland Luey. 44 West Street, Worcester, Mass	
11 R	Minott W. Lewis, 44 Kidder Avenue Weat Somerville, Maes	
1 IS	George Leach, 613 Liberty Street, Rockland, Mass.	
$11 T$	Irving T. Barnes, 877 Main Street, Waltham, Mass	
11 U	Arthur E Church, 8 Wellington Terrace, Brookline,	
11 V	William E. Snyder, 7 Heath Street, Somerville.	
11W	Phillips B. Wilde, Government Street, Wood's Hole,	
1 IX	Olof Ohlson, ${ }^{\text {472 }}$ Crafts Street, Newton, Mass.	
1IY	Horace M. Baxter, 160 Foster Street, Brighton,	
112	Robert T. St. James, 38 Avery Lane, Great Barrington, Mass.	
13A	Fred A. Dimond, Jr., E. Carver, Mass	
IJB	Howland C. Lord. 40 Clyde Street, Newtonville, Mass	
1 C	Robert D. Fairbanks, 21 Carver Road, Newton Highlands, M	
1JD	Lovejoy Collins, 44 Carver Road, Newton Highlands, Mass	
1 P	Edward E. Haywood, Jr., \& Pembroke Street. Newton, Maed	
1]P	Albert E. Snow, 80 Cary Avenue, Chelsea Mass.	
13 G	Fearing Pratt, 120 Main Street, Hingham, Mass	
1JH	Allen Hubbard, 11 Montvale Crescent, Newton Center, Ma	
1 JI	Milford R. Lawrence, Main Street, Falmouth, Mass.	
1JK	Alfred A. Franks, 16 Orchard Street. Jamaica Plain, Mass	
1 JL	Sebastian Gahm, Jr., 118 Sheridan Street, Jamaica Plain,	
2JM	Walter G. Cheever, 6 Aldersey Street, Somerville, Mass	
IJN	Arthur O. Bruce, 30 York Street, Cambridge, Mase	
1 JO	William B. Snow, 11 Devon Road, Newton Center, Mass	
1 PP	Clarence Decker, Cottage Street, Great Barrington, Mass.	
1 l ¢	Frank E. Hoffman, 38 High Street, Springfield, Ma	
1JR	Edward C. Delano, 64 School Street, Fall River, Mass	
1JS	Leonard S. Powers, 431 Plymouth Street. Carver. Mas	
2JT	Arthur G. Carlson, 19 Mechanic Street, N. Easton	
1JU	Francis W. Dane, Main Street, Hamilton, Mass.	
IJV	Henry R. Reuther, 15 Jewett Street, Northampton, Ma	
LJW	John J. Long, 32 London Street. Somerville, Mass	
1JY	John S. Herland, 48 Brush Hill Road, Mattapan, Mas	
$1 J Z$	Kenneth H. Lanvuette, 21 Houstin Avenue, Milton, M	
1KA	H. E. Stickney, 25 Tufts Avenue, Everett, Mass.	
1 KB	W. T. Richards, 15 Follen Street, Cambridge, Mass	
1UC	Isaiah Creaser, 28 Bend Street, Providence, R. I.	
1UD	Harold P. Donle, 18 Observatory Avenue, Providence, \mathbf{R}.	
1UE	George E. Jetts, 161 Summer Street, Central Falls, R. I.	
1 UP	Leonard M. Perkins, 281/2 Warren Street, Providence, R.	
1UG	Fred C. Bigelow, Jr., 128 Main Street, Lincoln, R.	
1UH	William R. Handy, Manville P. O., Lincoln, R. I.	
1 U1	William M. Bailey, 57 Brownell Street, Providence, R.	
1UJ	Harry Ahworth, 37 Heath Street, Providence, R. I.	
1UK	Kenneth A. Tutin, 312 Blackstone Street, Woonsocket, R. I	
IUL	Clinton A. Bigelow, 96 Whittier Avenue, Providence, R. I	
IUM	Bernard H. Miller, 88 Doyle Avenue, Providence, R. I.	
1 IUN	William E. Henry, 169 Prairie Avenue, Piovidence, R. Ohn B Dove 308 Thurber Avenue Providence, \mathbf{R}.	
1U0	John B. Doyle, ${ }^{306}$ Thurber Avenue, Providence, R.	
1 UQ	Karl E. Barth. 289 Washington Avenue, Providence, R.	
$1{ }^{1}$	James E. Dorthy, 22 Orms Street, Providence, R. I	
$1{ }^{\text {I }}$	Don C. Thorndike, 803 Doric Avenue, Cranston, R.	
1 UV	Edward M. Monahan, 1033 Eddy Street, Providence,	
1 UW	Arthur R. Nilson, 11 Colfax Street, Providence. R.	
1 U	Corton T. Lippitt, 111 Benevolent Sireet, Providence, R. it	
1Uz	Arthur B. Homer, 270 Blackstone Beulevard, Providence, R.	
	Edwerd L. Belknop, 91 Vine Street, Hartford, Conn.	
1 VM	William C. McGuire, 76 Madison Street, Hartford, Conn	
IVN	Louis Green, 126 Central Avenue, Waterbury, Conn..	
1WO	Harold Post, 181 Derby Avenue, New Haven, Conn.	
1 WP	Edward H. Cummings, Warwick, R, 1..........	
IWO	Arthur P. Seeley, 55 Pearl Street, New Haven, Conn.....	
1WR	Donald F. Sawtelle, 122 Gilbert Avenue, New Haven, Const	
1 W	Salathiel Buffett, Quarry Avenue, Saybrook, Conn......	
1 1WU	Orville Lucas, 172 Washington Street, Wallingford, Conn,	
1WV	Donald C. Blanke (cancelled), Old Church Road, Greenwich,	
iWX	Jerry Sefrenck, 28 South Street, South Norwalk, Conn	
1WY	Wallace Hoggson, Maber Avenue, Greenwich, Conn...	

PRACTICAL BOOKS!
Dymene Bulliling for Anateurn
Be Arthur J. Need. This book cive a coneral diveripilon, with mong 11luetrations, of a 50 -whel dynane and comeriben its bullding is dotail. twat lis of the tenle and matertale requisul. Prioe neper, seo: Hoth, \$1.co.
Wedil Belloent and Fiylity Mathimes
Ay 3. II. Alexander. Indicpenmble to an whe dodre to construet model alrahip or folas mat china. Mro foldiag platem of morking drawing are giren. eech moet containlag a difermet alied machine. 187 pasee, with folting piates. \$1.50.
Whing a Hown
B) Eerbert Prati Gtves all information gooded for the aucostaful wring of a house. Price 2 se .
Membyt Twentiote Contury Remint Book
Butited Dy Gariner D. Hisoox. Most completo book of rectipts over published, siving theusinde of rwopipts for the manufacture of valuable artione for every day use. Tells thousands of ways of malidng mones. Bet a eepy. One reoplot may bo werth many umes the value of the beok to yeu. 800 cetaro pacia.
Eloctife Toy Makling. Oyname Bullding, and
Electrif Motor Canotruotion
Hy Prof. Sloane. This wort treate of the mairing at home of dectrical terst. electicical mpparatue. motors. armamos, and lastrumant in general. and and aid the to bring within the retech of youns and otd the manufacture of sonuilo and useful electrical apoliancear 185 pages. Priop $\$ 1.00$.
Inetrietty Branlmad
Ty Prof. T. OCConor Sloane. The objeat of as main at posilibio and to to mate thil cuibect orn conemption of electricity in Prites slen.
Any of the abow booke ceat mopeld en molit Hete
MODERN ELECTRICS BOOK DEPT. 231 FBLTON ST., WEW Yañ

Broadway Central Hotel

Cor. Third Street
IN THE HEART of NEW YORK
Special attention given
to Ladies unescorted
SPECIAL RATES FOR SUMMER
OUR TABLE is the foundation of our enormous business.

American Plan, $\$ 2.50$ upwards
 European Plan, $\$ 1.00$ upwards

Send for Large Colored Map and Guide
of Now York, FREE.

TILLY haynes, Proprictor
DANIEL C. WEBB, Mgt.
Formerly of Charloston, S. C.
The Only New York Hotel Featuring american plan
Moderate Pricea
Excellont Food
Good Service

Q. 3. What is the best way to connect a slanting four-wire aerial? May leads be brought down from the center?
A. 3. Yes, but if there is any certain direction you would like to receive from, if you can arrange your aerial with the low end pointing in that direction and take the lead from this end, the aerial will receive better in this direction than any other.

IT CAN'T BE DONE

(2467) Harold Christner, Arkansas, asks:
Q. I. Is there any way in which a number of push buttons may be connected in series on one wire and then to a like number of lamps, so that pressing each button consecutively will light the corresponding light?
A. I. This is impossible. The lighting of a lamp corresponding with a push on a button may be accomplished if you are willing to wire the buttons in the following way. In this way any number of buttons and lamps may be used. You must take care not to have the lamps too far from the buttons or the resistance of the wire will be so great that the lamps will not light properly unless a very high voltage is applied.

DETECTORS

(2468) Henry Kinney, Minnesota, inquires:
Q. I. Which detectors require battery and which do not?
A. I. Of the common types: Those needing battery are as follows: Electrolytic, carborundum, peroxide of lead, Audion and all valve detectors. Those not requiring battery: galena, cerusite. The perikon, silicon, antimony and silicon and arsenic and silicon are reputed to work better with a very slight voltage applied.
Q. 2. What other instruments will I need in connection with, etc.:
A. 2. You have all the instruments necessary to a complete wireless set.

Call Letters.	Name and Address	License No.
	Fourth District	
	May 20. 1918.	
4AA	Alfred S. Bradberry, 806 College Avenue, Athens, Ga.	
4 AB	Arthur Funk, 226 W. Liberty Street, Savannah, Ga.	
4 AC	Elmer L. Rice, 1702 E. Duval Street, Jacksonville, Fla	
4 AD	Elmer Steinhauser, 10 W. Gordoa Street, Savannah, Ga	-
4AF	J. F. Flagg, 118 Forest Street, Jacksonville, Fla.	
4AF	F. Stringfellow, East Main Street, North, Gainesville, Fla.	
4AG	W. H. Miller, 402 W. Oglethorpe Ave., Savannah, Ga..	-
4AH	P. O. Jarvis, New Bern, N. C...	
4AI	W. B. Pope, 197 Dearing Street, Athens, Ga.	
4AJ	W. Moore, 147 Nacoochee Avenue, Athens, Ga.	
AAK	C. T. Whiting, R. F. D. No. 6, Box 1, Gainesville, Fla .	
4AL	P. C. Bangs, 918 E. Duffy Street, Savannah, Ga.	
4AM	L. F. Sebastian, 224 Parker Street, Jacksonville, Fla	
4AN	George G. Adams, 45 Whitaker Street, Savannah, Ga.	
4 AO	T. J. Swearingen, Jr.. 403 So. Roper Avenue, Gainesville, Fla	
4 AP	Ermmitt E. Peer, 14 W. Duval Street, Jacksoaville, Fla	
4AQ	C. C. Fisher, Mills Y. M. C. A., Columbia, S. C...	
4 AR	Ralph E. Marbury, 26 Wesley Street, Newnan, Ga.	
4AS	B. A. Brandon, 28 W. Second Street, Jacksonville, Fla	
4 AT	Frank R. Ehle, 1337 Liberty St, Jacksonville, Fla.	
4 AU	W. W. Avera, Watkinsville, Ga.	
4 AV	Robert Treisback, 2228 Riverside Ave, Jacksonville, Fla	
AAW	Joe N. Crevasse, 1605 Boulevard, Jacksonville, Fla.	
4AX	R. J. Cole, 1712 Silver St., Jacksonville, Fla	
4 AY	C. W. Moseley, 815 Mulberry St., Columbia, S. C.	
4 A \%	Thos. R. Dunk, 1424 Laura St., Jacksonville, Fla.	
4BA	Claude A. Lewis and Manning White, 47 Bull St., Savannah,	
4 BB	R. G. Rankin, Jr., 6 and 8 N. Front St., Wilmington, N. C.	
4 BC	E'arl I. Marx, 1654 Main St., Jacksonville, Fla.	
4BD	M. C. Speight, New Bern, N. C.	
4 BE	C. A. Fowler, Athens, Ga.	
4 BF	R. G. Rankin, Jr., Wrightsville Beach, N. C.	
4BG	A. G. Stanton, 1081 Highway Ave., Jacksonville, Fla	

Nors-License numbers for the fourth district could not be obtained.

Fifth District

May 26, 1918.

Eugene B. Knight, 2501 Battery St., Little Rock, Ark
SAG Stanley Martin, 219 N. K St., Muskogee, Okla... 1207
6AH Ben W. Martin, 438 Spring Hill Ave., Mobile, Ala. 1208
5AI Fred Rateliff, 220 Penn St., Shawnee, Okda. 1209
5 AJ Clarence E. Albertson, 416 Park Ave., Tupelo, Mississippi 1210
BAK T. J. M. Daley, Covington, Tennessee. 1211
6AL Theophile Reboul, 2106 Charters St., S., Birmingham, Ala 1212
5AM H. S. Brownell, 1512 Phelan St., S., Birmingham, Ala. 1213
5AN W. O. Watkins, 203 First Ave., Birmingham, Ala. 1214
$\$$ JO J. A. Buster, 316 Main St., Breham, Texas. 1215
5AP Vance Thompson, 267 Pasadena Pl.. Memphis. Tenn 1816
5AQ H. R. Goldstcin, 1819 Octavia St., New Orleans, La. 1217
5AR Eugene T. Beynon, 604 Artesian, Corpus Christi, Texas. 1218 1218
bAS Royal R. Bastian, 5528 Saratoga St., New Orleans, La 1218
5AT Alwyn Vickers, 508 Clayton St., Montgomery, Ala. 1220

CORRECTIONS

In our July issue:-The addrese of Charles C. B. Conley (3FZ) should be 700 N .89 th St., Philadelphia, Pa., the address of S. T. Critchlow, (SBE) should be 2682 N. 17 th St., Philadelphia, Pa., and the address of C. Laager, (SCF) should be 1216 Belmont Ave., Philadelphia, Pa.

Classified Advertisements

Advertisemente in this department 5 cents a word, no diaplay of any kind. Payable in advance, by emrency, check, money order or stempe Count 7 words per line.

within one zear.
With 80,000 subecribers, ve have over 400,000 nesdert of MODERN ELECTRICS, which makes th one of the cheapest bigh grade clasified mediums in the United Stestes.

Adrertimement for the September ingue munt be in one handm July inft.

AERONAUTICS

LEARN TO FLY-BIG TWO-FOOT BLERIOT Monoplane. Latest model, knocked down, packed ready for mailing, with blue print and complete drawings for amsembling, with wheels and propeller. This model is usually sold by dealers for $\$ 2.00$. Boys all over the country are having barrels of fun with them. For good. wholesome amusement, there is probably no flying device more entertaining and that will aford more fun for the boys and grown-ups than this pleasing toy. Guaranteed to fly or money refunded. Send prepaid on receipt of price, $\$ 1.00$. Model Flying Ma. chine Company, 172 Greenwich St., New York City.

BOAT BUILDING FOR AMATEURS. BY Adrian Neison, C.E.-This book will tell you how to build all manner of small boats, such as punts, sifif, canoes, row and rail boats; only $\$ 1.00$, postpaid Dept., 281 Fulton St., New. York City Electrics, Book Dept., 281 Fulton St., New York City.

AGENTS

AGENTS-THE BIGGEST THING OUT-SELL "Ambrew" Concentrated Beer Extract. For making Beer at Home-by adding water. The real article. Not a substitute. Saves over 100 per cent. Small package. Enormous demand, big sales, long profits. Start while it's new. Don't delay-just a postal today. The Ambrew Company, Dept. 1670, Cincinnati, Ohio.
$\$ 50.00$ PER WEEK AND UP. HOW PAR UP depends on you. Enormous sums are being made by Oxygenator Salesmen-one has made $\$ 21,600$ in throe years; another $\$ 6,000$ in one year; another $\$ 1,600$ in eix montha. Western Oxygenator Co., Beatrice, Neb.
(7)

AGENTS - SALARY OR COMMISSION. Greatest seller yet. Every user pen and ink buys on sight. 200 to 500 per cent. profit. One agent's sales, 620 in six days; another $\$ 82$ in two hours. Monroe Mfg. Co., X 38, La Crosee, Wis.

AUTOMOBILES

KEROSENE FOR AUTOMOBILES-OUR NEW Model B usel successfully half and half mixture low. est grades keroseoe and gasolinc. Satisfaction guaranteed or money refunded. Greatly increased power, very slow apeed on high. Starts easy at zero. Special agents' prices. Dept. P, The Air-Friction Carbureter Co., Dayton, Ohio.
(5)

CYLINDER REBORED INCLUDING PISTON and Rings. \$7 to \$11. Sterling Eng. Co., 881 S . Clinton, Chicago. Ill.

MODERN ELECTRICAL CONSTRUCTION, BY Henry C. Horstmann and Victor H. Tousley. A new revised and enlarged edition. 10 mo :, 858 pages, 178 revised and Pocket size. full leather limp. Price $\$ 1.60$, postpaid. Modern Publishing Co., 281 Fulton St, New York.

BUSINESS OPPORTUNITIES

MAKE BIG MONEY OPENING SAFES AND setting combinations. Write Wayne Strong, 811 Temple St., Los Angeles, Cal.

BUSINESS OPPORTUNITIES

AN EXCEPTIONAL OPPORTUNITY IS OFfered to a young reliable Christian, who has a fair knowledge of electricity and is able to inveet $\$ 500$ in addition to his services as a partner in a business sure to be immensely profitable from the start Prefers one who desires to complete his electrical education by attending a New York evening school Address J. L., care Modern Electrics, New York City.
"MONEY MAKING IDEAS," PUBLISHED mondily, turns your apare time into eash. Sample copy tree. A. Kraus 409 Cbetnut Se, Milwauleet Wis. A. Kraw, (7)

BOOKS, ETC.

SIX ACTUAL PHOTOGRAPHS OF STEAMships, 25 c . Frazk H. Barnes, 1055 Dewey PL, Eliza-
beth, N. J.

INVISIBLE INK FORMULAS-TESTED, PRAC. tical, inexpensive; also formula for silver platiag powder. Postpaid, 25c. Chemint, 888 West 25 th St, Cleveland, Ohia.

50c. ANY FORMULA - GEO. CASEY, JR. Swarthmore, Pa.

BOOKS, AS A RULE, ARE FILLED UP WITE technicalities and are of very litule use to the experimenter, but acre in a book which is simple, plaim sand understandable. Send your order at once for your oopy of "Electricity Made Simple," Clarte Carr Haskins 288 pages, 108 Hlustrations, 18 mo. doth binding. Price $\$ 1.00$, postpaid. Modern Publithing Co., 881 Fulton St., New York.
BOUND VOLUME NO. 3 OF "MODERN ELEC. trics" is now ready, which contains 740 pages over 1,000 illustrations and writings of 800 author, 650 articles of unusual interest, with 1,173 questions and answers. Bound in handsome black eloth, sold stamped. $\$ 1.60 ; \$.30$ extra by mail. Modern fiold trics, Book Dept., 281 Fulton St., New York City.

COLIECTIONS

THE REAL ESTATE EDUCATOR CONTAINS inside information not generally known. Don'ts in Real Estate, tells all about the real cstate business from A to Z. $\$ 1.00$, postpaid to any address in the U. S. on receipt of price. Medern Electrics, Book Dept., 231 Fulton St., New York City.

DOGS

BLOODHOUNDS - FOXHOUNDS, REGIS. terod; trained bear; deer, wolf, coon and cat doge; illustrated catalogue, oc atamp, Reokwood Kennels. Lexington, Ky .

ENTERTAINMENT

MAGICAL APPARATUS-LOW PRICES. CAT. alogues. Senrab, 1812 Emerson Ave., So. Minneapo-
lis, Minn.
LEARN TO ENTERTAIN - WONDERFUR Magic Trick Cards, 10c. Magician's Cabinet of Tricks, performed by any one, 50 c . Free Catalog. Walwen Co., 150 Nassau St., New York.
164 LATEST SONGS-MAMMOTH BUDGET OF the largest collection of popular songs ever sold for only 10 c . The Wedge Mifg. Co., Lo. Binghamton,
$\mathrm{N} . \mathrm{Y}$. TRICKS 105 MAGIC, WITH CATA-
logues. Klein, 1198 Broadway. CACHOO SNEEZE PUWDER 10 CENTS (1) Three for 86 cents. Free copy Star Magazime with order. L. Dolson, Hampton, Iowa. Magazime (8) (8)

ELECTRICAL APPARATUS

THIS ELECTRICAL DICTIONARY WILL TUST fit in your vest pocket. Carty it around with you while Dictionare at work. "Handy Vest Pocket Electri. cal Dictionary," by Wm. L. Weber, M.E., eonfainine upwards of 4.800 words, terms and phrases employed in the electrical profession with their definitions ayiven in the most comprehensive manner. Full leather cover; 50c, postpaid. Modern Pablishing Co, Qut

When writing, please mention "Modera Electrics."

ELECTRICAL APPARATUS

MR ELECTRICIAN! DO YOU KNOW ALL about wiring diagrams and descriptions? If not you need this book, whics is the latest out on the oubject. "Modern Wiring Diagrems and Descriptioas," y Henry C. Horsmana and Victor H. Tousley 16mo., 300 pages, 825 illustrations. Full leather binding, size \$x6 inches, pocket edition. Price $\$ 1.50$, postpaid. It explains dynamos and motors, alternating current and direct current, groumd detectors and storage betteries, installations, etc. Modern Publishing Co., 281 Fulton St., New York.

FOR MEN

TOBACCO HABIT-YOU CAN CONQUER IT easily in three days, improve your health, prolong your life. No more stomach trouble, no foul breath, no heart weakness. Regain manly vigor, calm nerves, clear eyes and superior mental strength. Whether you chew; or smoke pipe, cigarettes, cigars. get my interesting Tobacco Book. Worth its weight in gold. Mailed free. E. J. Woods, 534 Sixth Ave., $267^{\circ} \mathrm{A}$, New York, N. Y.

DO YOU WANT THIS BOOK, WHICH TELLS you hou to test and operate all different kinds of you how apparatus from enerators and motors to electrical apparatus, from generators and motors to lampe and bells? Only $\$ 1.50$, postpaid. Electricians Operating and Testiag Manual, by Henry Ci Horstmann and Victor H. Tousiey, 16 ma , full leather, and chuck full of the right kind of information, which can be readily mastered by the layraan as well as the experienced man. Modera Publishing Co., 881 Fulton St., New York.

MACHINERY

HERE IS THE BOOK YOU ARE LOOKING for, written in plain English so it can be easily mastor, written you whether you are an experimenter or an tered by you whether you are an experiment Magnet electrical engmeer. "Practica Ammaina and Victor H. Winding," by Henry C. Horstmann and Vrict $\$ 1.50$. Tonsley, 16 mo . pocket size, leather cover. Price This book is the moet valuable aid to the electrician, either in construcking or operating departinent.
ern Publishing Co.. 281 Fulton St., New York.

STORAGE BATTERIES ARE VERY HARD TO master and understand, but if you read this book you wilt know all about them from beginning to ,end. "Storage Batteries Stationary and Powerful," by J. T. Niblett, M.I.E.E. 80 pages, 21 illustrations, pocket size, silk cloth binding. Price, 50 c postpaid. pocket size, siki cing Co., 231 Fulton St., New York.

FOR SALE

FOR SALE-MOVING PICTURE FILMS. ANY subject, 1c per foot. Davis Service, Watertown, Wis.

FOR SALE - PORTABLE LONG-DISTANCE Feiving set. F. Heinfling, 343 E . 55 th St., New York

CLARK'S FI.Y EXITS-LET FLIES AND MOS. guitoes out through screen. Can't return through exit. guitoes out 10 c . 8 for 25 c .; $\$ 1$ per dozen, postpaid. Dr. L. W. Clark, Carterville, Mo.

FOR SALE-COMPLETE, EFFICIENT WIRE: FOR SALE-COMPred Six, 1100 Lafayette Ave., less station:
DISPOSE OF YOUR OLD MINERAL MADISPOSE OF YOUR Platinum. Quicksilver, Cad terial. I can use Nickes, Plating. Tell us what you have. Joseph Radnai, 86 Fulton St., New York Cíty.

HELP WANTED

FREE ILLUSTRATED BOOK TELLS OF bout 300,000 protected positions in UT. S. service. Thousands of vacancies every year. There is a hig chance here for you, sure and senerous pay, life. chance here for you, sure and booklet S.947. No time employment. TFopkins. Washington. D. C. (t) HEIP WANTED-YOU CAN ADD \$25 WEEK HEIP WANTED-YOU Cunning a silver plating ly to your present income running a No capital re husiness at home in your spare time. Lindmark, 4510 nuired. Send for free namp
Sixth Ave., Brooklyn, N. Y.

HELP WANTED

Abstract

WANTED-YOUNG MEN TO LEARN ARCHIectural drafting. Earn $\$ 26.00$ to $\$ 75.00$ per week. Big demand. Short hours, pleasant work. Write for particulars. Keystone Architectural Institute, Ro-

 chester, N. Y.I WILL START YOU EARNING \$S DAILY AT home in spare time ailvering mirrors; no capital; free instructive booklet, giving plans of operation. G. F. Redmond, Dept. A. G., Boston, Mass.
(1) \star

I NEED GOOD MEN-EVERYWHERE-PART or all time; learn my methods; join me in my high class bueiness; established 18 years; authorized capital, $\$ 1,000,000$; no experience needed; desk and complete business ousfit free; write to-day. W. M. Ostrander, Dept 15, 12 West 81 st St., New York City. (tf)

INFORMATION

INFORMATION FOR MEN-WE WILL MAIL valuable secrets, sealed. Sure and harmless; try hem. Two red stamps brings them next mail. Famous Co., 117 E .151 st St, New York.

ARE YOU EFFICIENTT-HOW SALARY IS increased, higher wages secured, advancement as sured, your condition bettered. Our membership is growing amazingly and is destined to bocome world-wide in influence and benefits. All departments headed by experts to aid members in every line of work and industry. Every problem handled individuly. If benefits fail service is free of all charge. Present enrollments at $\$ 1.00$ will inelude league Present enrolments at fully and get best results. Addres adge. Write Wully and Wet beat Efeaiency Leaguc, Bratenahl Bldgs., Cleveland, Ohio.
(2) \star

GET MARRIED-MATRIMONIAL PAPER CON. taining advertisements, marriageable people from all sections rich, poor, young, old, Protestants, Catholics; mailed, sealed, free. The Correspondent, Toledo Ohio.
(4)

IT IS IMPORTANT THAT ALL INTERESTED in wireless should join the Wireless Astociation of Americe, which is helpful to those interested in anw way in the wireless industry. For foh particulars, way in the wireless industry. For America, 981 Fulton St., New York.

INSTRUCTION

FREE-ILLUSTRATED BOOK ON HYPNOTISM and other accult sciences to all who send their ad dreas. Write to-day and learn how to influence and control others. M. D. Betts, Ste 174, Jackson, Mich.
(tf) t
FIRST STEPS IN ELECTRICITY, OR ELECtricity for the Beginnerl Doesn't that titie sound in teresting? It is just what it denotes, or maybe more because it starts off with the development of elec tricity, explaining fully in a purely and descriptive mancer how to perform simple experiments with a little expense as ponsible. 288 pages, 114 当ustration pocket size, cloth cover. Price $\$ 1.00$, pastpaid Mod ern Publishing Co., 281 Fulton St., Nev York.
"WIRELESS HOOK-UPS," CONTAINING 96 pages and 160 hook-ups, is frll of diagrans fuHy il lustrating every possible wireless comnection. This book will enable wirci-ss men to get excelfent results. Sent postpaid for \$.85. Modern Electrice, Book Dept. 81 Fulton St., New York City.

PATENTS

HAVE YOU A PATENT TO SELL?-YOU'LL be interested in my proposition. Write now for free particulars. Walfred Johnson, 318 W . Washington St., Cbicago, Ill.

PATENT ATTORNEYS

1868-MIATT-PATENTS-1918-i.e. 45 YEARS' personal practical and successful experience in procuring U. S. and Foreign Patents, Registration of Trade-Marks, Labels, Prints, Copyrights, etc. Also as Counsellor and Expert in Patent Causes. Personal attention given to all business assumed by mutual attention given to all business assumed by mutual time and labor involved. Terms moderate, but for time and labor involved. Terms moderate, but not contingent. Information and advice freely given, but no circular literature. Branch Office, Washington, D. C., for transaction of business with Patent Office direct. Reliable and competent foreign representa. tives. Geo. W. Miatt. Attomey and Counsellor at Law and Patent Expert. Patent business exclusively. Offices, Temple Court, Cor. Nassau and Beekman Sts., New York City.

PATENTS OF VALUE-PROMPT AND EFFTcieat service. No misleading inducements. Expert in Mechanics. Book of Advice and Patent Office Rules frec. Clemento Clements, Patent Attorneys, 719 Colorado Bldg., Washington. D. C. Atorneys, (1)

PHOTOGRAPHY, CAMERAS \& SUPPLIES

KODARS, GRAFLEX CAMERAS, LENSES Everything photographic; get bargain list. You can save money by sending your order to Willoushby, Broadway and 11th St., New York. Wik
MONEY IN PHOTOGRAPHY-II START AMA. teurs making money at horne taking portraits; become professionals. Stwdi secrets, reteuching, etc, fully explained. Wells' Studio, Eest Liverpood, Ohio.

PICTURES AND POST CARDS

25 COMIC POST CARDS AND BOOK OF FLIRtations, 1 nc A. Kraus, 409 L, Chestnut St., Milwaukee, Wis.
44 LOVERS' CARDS AND BOOK OF TOASTS 10 c. A. Kraus, 409 M, Chestnut St., Milwaukee, Wis.

BEAUTIFUL PHOTOGRAVURES-SIZE 7×10 in. of Thomes A. Edison and Nicola Tesla. Suitable for framing-Just the thing for your den or station-10c each or the two mailed postpaid on re ceipt of 15 c stamps or coin. W. A. O. A., 281 Fu ion St.. New York City.

MEDICAL

DEAFNESS, HEAD-NOISES - MY TREATISE, llustrated, explains how complete lasting relief may be effected without operation; experience, 38 years be effected without operation; experience,
book sent free by author. ${ }^{38}$ yr. Geo. E. ${ }^{38}$ Coutant, book sent free by author.
534 Ar. Station F. New York, N. X.

STAMPS, COINS, ETC.

OLD STAMPS BOUGHT - $\$ 75.00$ PAID FOR

 2 certain old stamp; hundreds of other stamps bought. Send stamp for buying list A. Kraus, 108 Kraus Bldg., Milwaukee, Wis.(9)
$\$ 4.25$ EAACH PAID FOR U. S. FLYING EAGLE cents, dated 1856 ; \$8 to $\$ 600$ paid for hundreds of other coins dated before 1895; send 10 cents at once for New Illustrated Coin Value Book, size 4x7; get posted-it may mean your fortune. Clarke \& Co., Coin Dealers, Box 127 LeRoy. N. Y. (tf)
\$4.95 PAID FOR FLYING EAGLE CENT OF 1856. Fundreds of other coins bought. Send 10 c for buying catalog. A. Kraus, 409 K, Chestaut ${ }_{\text {St. }}$ (7)
Milwaukee, Wis.

TELEGRAPHY

[^16]
TELEGRAPHY

IN THIS VALUABLE BOOK WILL BE POUND everything that is necesagry for the study of teleg. raphy. Rules are given for the guidance of operatore in alt different kinds of servioen, and they are very clear and comprehensive. ${ }^{\text {wTolegraphy Self Taugle: }}$ A Complete Manual of Instruetion, by Theo. A. Adisomplete Manum of Inatruction, 18 mon , 170 py Theo. A. Price $\$ 1.00$, postpaid. Modera Publishing Co., 291 Fulton St. New York. Modern Fublishing Co., 291

THE PROCESS OF TRANSMITTING WIREless messages through the air over long distano the aid of electricity is to countleas thousands of people only a mysterious fairy tale, but here is of peofor you, Mr. Operator, which states here is a book facts. "Operators' Wireless Telegraph and but cold Hand Book," by Victor II pages, fully illustrated, iving the oper, $12 \mathrm{mo}, 210$ information he desires, giving the operator all the ern Publishing Co., 231 Fulton St, postpaid, Modern Publishing Co., 231 Fulton St., New York.

WANTED

STUDENTS DESIROUS OF OBTAINING A working knowledge of Electrical Engineering by parsuing work in our laboratories. Tuition 8 mall. Ne entrance examinations. Fine opportunity for rellable men. Number limited. Wire at once to Prof. F. E.

WANTED MOVING PICTURE OUTFIT. FRED I. Smith, Amsterdam, N. Y.
"CONSTRUCTION OF INDUCTION COILS and Transformers" is a valuable book, containing 100 pages and 72 illustrations, by H. W. Secor. You cannot afford to be without this book, which is the latest work on construction of induction ceils and transformers. $\$.25$ postpaid. Modern Electrice, Book Dept. F. 281 Fulton St, New Yorle, N. Y.

WIRELESS

FOR SALE-THIS NEW 4" VIBRATOR MAhogany enclosed spark coil. Extra heavy platinum contacts. Cost $\$ 85$ last winter. Yours for $\$ 18$. 1 pair new Brandes small. phones. \$8, and all the rest of my station at similar prices. Write me. Do it now, before they are all sold. H. E. S., Suite 1469 now, 60 Church St., New York City.

WOULD YOU SPEND $\$ 10$ IF YOU WERE sure you would get better receiving results? See ad. on another page. Colby's Telegraph School, Auburn

WIRELESS GOODS, ELECTRIC NOVELTIES and Experimenters' Supplies. Send 2c stamp for large catalogue. A. W. Bowman \& Co., $551 / 2$ Sudbury St.,
Boston, Mass.
\$35 WIRELESS STATION FOR SALE - NO reasonable offer refused. Address Box 226 Lake Forest, III.

OUR 80-PAGE BOOK, "THE' WIRELESS TELE. phone," will be found invaluable to those interested in this science. This boot contains 57 illuattrations and is considered a masterpiece. Send 5.85 in or M. O. to Modern Electrics, Book Dept, 881 Fulton St., New York City.
"HOW TO MAKE WIRELESS INSTRUMENTS" by 20 Wireless Experto. containing 96 pages and ${ }^{\circ} 5$ illustrations, written expressiy for wirelesp amateurs. and is a book that youpressy fannot afford to be without. Price. 25 c . postpaid. Modern Electrics, Book Dept. 281 Fulton St.. New York City.

HERE IS THE VERY LATEST AND MOST valuable work on electricity for the amateur or prac tical electrician, published: "Easy Electrical or prac ments and How to Make Them," by L. P. Dickeneon 220 pages, 110 illustrations, 18 mo . cloth Dickenson, Price $\$ 1.00$, postpaid. Modern Publishing cloth binding Fulton St., New York

BUILDERS OF WIRELESS APPARATUS SEND stamp for large catalog on parts and r IT With every catalogue we will send either a copy of the Morse or Continental codes free. Elmwood Electric

Apparatus Exchange Department

This department is for the free use of our maborib. ara and readere, to eabble them to exchange technical articles for which they bave no further use for ocher articles or apperatus which they need.
Advertisements under thi heading containiag more than fifty words cannot be accepted; the right is also reserved to rewrite or reject any advertisement which will not be for the best interesti of our readers. Advertisements under this beading will be inserted ons time only free of charge.

Advertisernent of articien intended for ale cannot be socepted as regular clasaified department in coatducted for advertising of this character at a cese of be per word.

Advertisements should be addressed to "Apparaty Exchange Department," care Modorn Bhectrisa, 881 Fulton St., New York.

WILL EXCHANGE $1 \frac{1}{4}-1 N$. SPARK COIL, 1 2-in, spark coil, both will work well on line current with electrolytic interrupter, 1 Winchester 22-calibre, 16 -shot repeater, landles 22 short, long or long rifle; will exchange for Brandes Navy phones and good loose coupler. Lawrence Thaw, 257 West 86th St., New York City.

HAVE A BICYCLE, ROADSTER MODEL. IN fair condition; 1 telephone, complete, with receiver; 2 telephone ringers, 2000 ohm ; 2 telephone induction coils; 1 generator; Expo watch camera; 1 spark coil, 1 in., and other articles, to exchange for $6-\mathrm{v} ., 60-\mathrm{a} . \mathrm{h}$. storage battery: spark coil, 3 in., or pair of 1000 ohm receivers. Philip G. Pedicord, Olathe, Colo.

WANTED-DRAWING INSTRUMENTS-WILL exchange wireless apparatus for good set of one of the standard makes of drawing instruments: write for list of wireless instruments: also want water colors. Geo. A. Rauch, 216 West 20th St., Little Rock, Ark.

WILL EXCIIANGE AN ELECTRIC BELT, NEWV: cost $\$ 8$, and a wireless key, for anything electrical: would prefer a storage battery and some Modern Electrics, dated before January, 1011. Address Gerald Tlapa, 4072 Ranier Ave., Seattle. Wash.

DO YOU WANT THIS BOOK, WHICH TELLS you how to test and operate all different kinds of electrical apparatus. from generators and motors to elamps and bells? Only \$1.50 postpaid. "Electricians' Operating and Testing Manual," by Henry C, Horstmann and victor Hight kind of information, which can be readily mastered by the layman as well as the ex perienced man. Modern Publishing Co.. 231 Fulton St., New York.
WILL EXCIIANGE MARCONI 2500 OHM RE ceivers (with headband and cord), a fixed condenser, Universal detector and aerial wire, for a camera Godfrey Jaffia, 581 West 161st St., New York City.

WILL EXCHANGE GOOD BOX PLATE CAMera and outfit for 110 v., 60 cycles, alternating current, $1 / 7$ or $1 / 3 \mathrm{~h} . \mathrm{p}$. motor. Motor must be in good condition and in running

WILI, EXCHANGE TELEGRAPH LEARNER'S outfit, a Knapp motor with 3 -in. fan, and a Mesco electric motor, both are new and in good condition William Stockton. 10 Bloomfield Ave., Flemington, N. J.

[^17]WE CAN FURNISH ANY BOOK PUBLISHED. Write llook Dept., Modern Electrics, 981 Fulton St., New York, N.
WANT WIRELESS GOODS IN EXCHANGE for a Henrick's three-bar type dynamo-motor, with cither self:governing friction pulley or a 2 H -in pulley for a $\neq 6$-in. round belt. Would prefer a complete receiving set of same value. Meredith Elliott, 1102 S. Denver St., Tulsa, Okla.

WANTED-PLATINUM, SILVER, QUICKSIL. ver, Bismuth, Nickel, Magnesium, Cadinium, Bas Mantle Dust, Oils and Chemicals and all similar goods. Joseph Radnai, 36 Fulton St., New York City.

WANT 1-IN. SPARK COIL AND 2000-OHM phones for 2 -slide tuner, Mesco 3 -section condenser, Bunnel mineral detector, 14-plate condenser, buzzer, knife switch and 600 -shot Daisy air rifle. Louis R. Kess, Hawthorne, N. J.

WILL EXCHANGE A SINGLE-CYCLE, 3-H.P. Indian motorcycle, a $1 / 4-\mathrm{h} . \mathrm{p} .$, 4-cycle water-cooled horizontal gasoline engine, Iver Johnson and Crescent zontal gasoline engine, iver johnson and crescent bicycles, a 100 -ft., ${ }^{6}$-wire aerial, for a good lathe.
Wm. J. Bablonka, 211 Bridgeport Ave., Shelton, Conn.

HAVE A NEW SINGLEBARREL, 12-GAUGE Meridan shotgun and a 4×5 plate camera outfit, with tripods, focusing cloth, plate holder, developing outfit, and complete instructions; gun valued at $\$ 6$ and camera outfit at $\$ 8$; want offers in wireless apparatus. Wallace Bruce, care Mrs. Thomas Uffendell, R. F. D. Rocky River, Ohio.

WANTED - REVOLVER IN EXCHANGE FOR 2 -slide tuner, $11 \cdot \mathrm{in}$. core, single slide tuner, $4-\mathrm{in}$. core, Hunt \& Macree make, brand-new detector, ebony base, double pole, double throw acrial switch, wire gase, c , porcelain tube, 10 in ., 15 ft . new No. 12 cov gauge, porcelain tube, 10 in., wired. new (14). 25 -ohm re. ceiver. Charles Preiss, 415 Central Ave., Brooklyn, Neiv. Y.

HAVE KNAPP TYPE J MOTOR, 1-10 VOLT, 2 amp. dynamo and water motor; want pair of Brandes rectivers with head band. Gordon D. Cole. 91 Wadsworth Ave., Meadville. Pa.
WILL EXCHANGE 1 51/2-IN. COPPER DISC with brass bushing and setscrew, 1 double-slide Mascot tuner, for variable condenser, spark coil, storage bat tery and other apparatus. J. Robt. LLange, 1988 Lemmon St., Baltimore, Md.
WANTED-A GOOD DYNAMO OR MOTOR IN exchange for the following articles: 12 back numbers of M. F.., bound, 1911 ; 12 back numbers M. E., 1912; 1 Business Course of 100 Lessons; 1 Course in Bookkeeping; the courses are brand new; everything is valued at $\$ 50$. A. E. Poreda, Box 31, Greeneville Station. Norwich. Conn.
WHAT HAVE YOU TO EXCHANGE FOR ANY or all of the following: 1 y/in. spark coil, hox type; 1 primary and 4 pies fo rsecondary of $1-\mathrm{in}$. coil; $1 / 2 \mathrm{lb}$. No. $36 \mathrm{~B}, \& \mathrm{~S}$. wire, to make 4 more pies; 1 Ajax motor; 1 Knapp Type A, with circular saw rotary disk attached; 1 electrolytic detector: 1 potentiometer; 1 -in. Wollaston wire; 1 No, 2 Rrownie camera. tripod and holder: 1 buzzer; 1 set of postake stamps in Scott's album: list, $\$ 150$. Morton W. Sterns, 29 N. Main St., Bethelehem. Pa.
WANT A FOCUSING 4×5 CAMERA. WILI exchange Dinch spark coil and spark gap. Will add cash if necessary. H. Kicnzle, 450 E. 85 th St., New York, N. Y.
FIRST STEPS IN ELECTRICITY OR ELEC. tricity for the Beginner! Doesn't that title sound interesting? It is just what it denotes, or maybe more hecause it starts of with the development of electricity, explaining fully in a purely descriptive man ner how to perform simple experiments with as little expense as possible. 283 pages, 114 illustrations, nocket size, cloth cover. Price, $\$ 1.00$ postpaid. Mod. ern Publishing Co., 231 Fulton St., New York.
WANT AUDION OR OTHER INSTRUMENTS for developing box. valued at $\$ 1 ; S$. S. tuning coit, $10 \times 33 \mathrm{in} ., \$ 1 ; \mathrm{D} . \mathrm{S}$. coil $18 \times 31 / 2 \mathrm{in} ., \$ 2$; Amco vertical detector, $\$ 1.25$; Tunior fixed condenser, 35 c. vertical . Lee, 225 Pine Ave., Wildwoon. N. T
WILL EXCHANGE $\$ 13$ WORTH OF ENGT neering books for wireless apparatus, receiving only; loose coupler coil preferred. Donald C. Foster, Ifomer. N. Y.

WILL EXCHANGE 1 HAMILTON RIFLE, 1 telegraph sounder and key, knife switch, post card projector, and a book entitled "The Photo Play Plot: How to Write It and Sell It," for tuning coil, electrolytic detector stand, spark gap and receiver with cord. Bryan Decker, 270 S. Sandusky St., Dele ward. Ohryan

WILL EXCHANGE $120.0 H M$ GIANT SOUND er and key, cost $\$ 33$, and 1 bicycle gas lamp, cost $\$ 2.50$, both new, for a Ferron detector, Blitzen variable condenser, aerial insulators, or anything of equal value in a receiving outfit. Austin G. Corkeran, Oxford, Md.
WRITE US IF YOU WANT TO GET IN TOUCH with a wireless dealer in your city. Modern Electrics Trade Inquiry Dept., 231 Fulton St., New York, N. Y.

WILL EXCHANGE "MODERN ELECTRICS" for about three years for a small omnigraph set or small 28 catibre riffe; also have a pair of transatlentic small 28 calibre rifle; also have a pair of transatlentic
wireless phones which 1 have used on board ship, for wireless phones which have used on board ship, for good Cobe coupler or Blitzen tuner.
1607 Carondelet St., New Orleans, La.
EXCHANGE-I WANT A SET OF I. C. S. SURveying and mapping volumes, late edition and O. K. condition I have set of I. C. S. gas engines, and others; plate cameras, $81 / 4 \times 51 / 2$, holders, tripod, etc. cornet, case, mandolinetto. Write. Eugene Lewis, Kittery-Depot, Maine.
ONE SET TWENTY-OHM TELEGRAPH IN. struments (sounder and key), 1 22-cal. gun with case, and one good gas bicycle lamp, al! in good condidition, value, $\$ 12.00$. Will exchange for wireless instruments. Would like complete set in good condition. R. E. Wason, Ellsworth Sta., Ohio.

HAVE AN ELECTRIC CAR AND SOME track, a large X-Ray sperk gap, 10 volt pony dynamo, and 4 -inch water motor in exchange for type-writer, or good 110 volt a. C. motor, or anything electrical. Roy Dudley, 256 Lincoln Road, Brooklyn, N. Y.

WILL EXCHANGE $3 / 2 \mathrm{KW}$. TRANSFORMER (Open cou.), electrolytic interrupter, loose coupler, 13 plate rotary, electrolytic detector, fixed condensers, 20 ohm sounder, $6 \nabla .60$ a. auto storage, single S tuner $\$ 25$. Hypnotism course, every article is complete and like new; used only 3 months; want motorcycle in fair condition or twin motor complete. C. Brown, No. 125 Bergen St., Brooklyn, N. Y.

HAVE FOR EXCHANGE MODEL STEAM ENgine; will run models; has fixed slide-valve cylinder, lieavy nickel plated fly wheel. Size over all is 10 x $121 / 2$ inches. Also a telescope when extended is 2 ft . 9 in., good lenses and a cap to fit on end to see sun value of $\$ 6.00 \mathrm{~S}$. J. Woods, Kyle P. O., Sask., Canada.

WILL EXCHANGE A WIRELESS TUNER $41 / 3$ $x 21 / 2$ in. diameter wound with enamel copper wire, for anything in the electrical apparatus line. John Baganzi, 936 Washington St.. South Braintree, Mass.
MODERN ELECTRICAL CONSTRUCTION, BY Henry C. Hopstman and Victor H. Tousley. A new revised and enlarged edition, $16 \mathrm{mo}, 858$ pages, 178 diagrams. Pocket size, full leather limp. Price. $\$ 1.50$ postpaid. Modern Publishing Co., 231 Fulton St., New York.

Abstract

100-MILE TRANSFORMER, THOMSON-HOUSton variable impedence coil, $\$ 7$ switchboard. Type 0-15 voltmeter. Blitzen rotary variable for $1 / 8 \cdot \mathrm{~h} . \mathrm{p} ., 110 \mathrm{v}$. high-speed induction motor Navy, Transatlantic or Holtzer-Cabot phones or Ferron or Perikon detector and hot-wire ammeter; all of reliable make. Southgate, 12 South St., Halifax, N. S.

WILL EXCHANGE SENDING HELIX, POTEN. tiometer, sending condenser, Junior fixed condenser. tiometer, sending condenser, Junior fixed condenser.
Blitzen rotary variable condenser, for a standard make storage battery; may be Exide sparking batmake storage battery; may be Exide sparking bat-
tery, Gould or Willard. Moses James Metzer, 617 tery, Gould or Bump Ave., Brooklyn, N. Y.
WIL.L EXCHANGE FOR A $11 / 2-I N$. OR 2-IN. spark coil and 2000 -ohm receivers, with cords, the following: 1 box campra. Buckeye No. $1 ; 1$ breakopen revolver, 32 calihre; 1 telephone key; 1 pair ice skates, sire 11; 1 hox huzzer: q punching hars;
1 fontball: "How to Make Wireless Instruments": 1 football: "How to Make Wireless Instruments";
complete foothall ron St., Chicago, Ill.

MR. AMATEUR! TO LEARN ELECTRICITY you should start from the beginning. You should know all about the minor details before you take on the big ones, and here is the book that is going to take you all the way through. "Elementary Electricity Up-to-Date, ${ }^{\prime \prime}$ by Sydney Aylmer Small, M.A.I.E.E 18 mo , cloth, 500 pages, 206 illustrations. Price, $\$ 1.25$ postpaid. This book starts on the primary characters of electricity and goes clear through to the end. Tells you all about storage batteries condensers, flow of current, power of efficiency etc Modern Publishing Co., 231 Fulton St., New York.

WISH TO EXCHANGE COMPLETE PRIMARY and secondary of a $1 / 2 \cdot \mathrm{in}$. coil in insulating compound. primary condenser for same and an L. E. B. pocket
 Blitzen rotary variable condenser. Allen W. Coven, 1103 East Ave., Elyria, Ohio.

PRECISION LATHE-SWINGS 4 INCHES AND takes 4 inches between centers, cross and lateral feeds. Will exchange for 1 to 2 h . p. gasoline engine or what have you in the electrical line? LaRoss Vandling, 417 8d Ave., New Brighton, Pa.
HAVE FOR EXCHANGE 1-IN. SPARK COIL, used very little; current regulator; fixod condenser; $75 \cdot$ ohm receivers; Little Hustler motor; D. P. S. J. witch; also S. P. S. T. switch; door bell, 4 -in. gong, small buzzer; desire recelving apparatus, 2000 -ohm motors, or other electrical apparatus Wepeating rifie, Baker, R. R. No. 1, Clayton, Ohio.

HAVE PLATE' CAMERA, $31 / 4 \times 53 /$. AND OUT fit; cornet, case, mute; mandolinetto case; Internstional Correspondence School's Gas Engines volumes; tional Correspondence School's Gas Engines volumes; also others; will exchange for National automatie
telegraph transmitter, I. C. S. bound volumes, or telegraph transmitter, I. C.
other offers.
Eugene
Lewis,
Kittery
WANTED - A MURDOCK OR BLITZEN \$15 loose coupler or Brandes Navy receivers for Sphtdorf $2-$ in. coil and tesla for same; a $\$ 5$ omnigraph on base with sounder, and Kent 1800 r.p.m., with average load motor and as a dynamo, 2 to 12 volts at 2 amperes. John Findlay, Jr., Pomona, Cal.
WILL EXCHANGE MURDOCK VARIABLE condenser, ammeter, 150 ohm head set. sounder and key, 2 motors, 2 coils, lightning arrester, strap key, small switch, push button, 3 wireless books, 3-bar generator and bell for same, etc. for a good motorcycle. Send for complete description of goods. Lyles V. Stry, Box 556, Kissimmee, Fla.

BRANDES SUPERIOR HEAD PHONES, LOOSE coupler, large tuning coils, spark coils, 1 and $1 / 2$ in., and other insrtuments, in exchange for lathe, stor: age batteries, shop tools and saw material. Brent Daniel, Box 15, Friona, Texas.

1 VEST POCKET KODAK, COST $\$ 6$; 1 BENjamin air rifle, cost $\$ 2.25$; will exchange for spark coil or other wireless apparatus. Haskell J. McFadden, Milford, Texas.

HAVE NATIONAL GRAPHOPHONE, ARMY tor, Chambers fixed receiver, Amco vertical detector, Chambers fixed condenser and pick detector to exchange for any of the following: 2-in. Mesco coin, Murrock variable condenser. Brandes phones or other wireless roods. W. C. Powers, 225 E. Pine Ave.

WII.I EXCHANGE MODERN ELECTRICS, May, 1908, to Aug., 1909, Dec., 1910, for something in the line of electricity or wireless. Allen Foster, 707 14 th St., Ashland, Ky.

WILL EXCHANGE - 1 ELECTRO VARIARLE sending condenser; 1
electrolytic detector:
in. double slide tuning coil; 1 electrolytic detector; 1 battery rheostat, 8 -point switch; 1 battery voltmeter, switchhoard type, reading ${ }^{1}$ to 3 volts; 1 telegraph kev, good for wireless; 1 Mesco hattery engine large size; 1 4-volt pony dynamo, with grooved pulley; 1 Krapp Type S dynamo motor; what have you to offer in exchange for the above. senarate or in one lot? Arthur Quattlander,
552 Ninth Ave., New York,

WIIL EXCHANGE 1 HEILEER BRIGHTTY surveyors instrument for rotary condenser and 2000 ohm phones of rond make, or a $1 / 1-\mathrm{kw}$. closed core Grant, 280 Douglas St., Wenatchee, Wash. Write Gray

HOME-MADE $1 / 4-K W$. CLOSED CORE TRANS. former, magnetic leakage type, 60 cycles, 110 volts primary, 6000 volts secondary; in fine condition; exchange value, $\$ 11$; want good telescope or small single phase motor, 110 volt, 80 cycle, approx. $1-6 \mathrm{~h}$.p.; photo of above transformer and other apparatus for exchange. M. E. Todd, 141627 th Ave., N. E., Minneapolis, Minn.

WILL EXCHANGE A STATIC MACHINE, ROtating plates, 8 ft . in diameter, and inclosed in glass case, for wireless apparatus. Armand Hammer, 28 Bronson Ave.

HAVE 1 YALE BICYCLE, 1912 MODEL, clincher tires, used 1 season, in good condition, 1 post card projector, new; to trade for wireless goods of card projector new; to trade for wireless

WILL EXCHANGE \& WIRELESS KEYS, 11000 ohm receiver with cord, 375 ohm receivers, 120 ohm sounder, 14 ohm sounder, switches, fuses, electrical books-want good headband receivers or receiving coil. Ezra Saunders, 141 Fourth Ave., Gallipolis, Ohio.
HAVE NEW ELECTROLYTIC DETECTOR ANI a Mesco potentiometer to trade for a goon tuning coil. Geo. B. Storer, Jr., 2249 Glenwood Ave., Toledo, Ohio.

WILL EXCHANGE 1-INCH SPARK COIL, CONdenser, wireless key, l pair of amateur receivers, 1 peroxide of lead detector, 1 spark gap, I tuner for a peroxide of receiving outfit. John G. Dyben, 987 W. 34th St., Chicago, Ill.

TO EXCHANGE FOR WIRELESS OR ELECtrical instruments of equal value, telephone receiver, 750 ohms, rotary printing press; all in good condition. Frank Bean, 31 Stone St., Concord, N. H.
FOR EXCHANGE - 1 LITTLE HUSTLER MO tor, $175 . \mathrm{ohm}$ receiver, 1 telephone magneto and 1000 ohm ringer. 15 -ohm sounder, some No. 36 S. C. C. wire, 1 piece silicon, 6 copies Modern Electrics, 1910 books, How to Make Wireless Instruments, Induction cors ${ }^{\prime}$ 'Wireless Telegraph and Telephone Handbook $\$ 1$; tors Wireless Telegraph and Telephone Handbook $\$ 1$ want folding camera or kodak, usin

WILL EXCHANGE NEW 1-CYLINDER JUMP spark coil for 1 -in. wireless coil; spark coil cost $\$ 4$. R. I. De Vore, 1628 K St., Lincoln, Nebr.

HAVE LOOSE COUPLER AND J. J. DUCK ferron detector to exchange for Blitzen variable condenser or $110 . \mathrm{v}$. A. C. Menominee motor; also have 200 -meter loading coil. James A. Crowdus, 5047 Washington Ave., St. Louis, Mo.
WILL EXCHANGE 25 OHM W. U. SOUNDER. portable leather case oil condenser, with tank and plates, 2 fonts of type, with cases, helix; will exchange plates, $1-32$ h.p. A. C. motor for rotary gap. Herman Lubinsky, 619 Congress Ave., New Haven, Conn.

WILL EXCHANGE A LARGE SHOCK MAchine, run by batteries. valued at $\$ 3.50$, having nice switch and regulator, for a good pair of phones or a tuning coil. Walter Jacobsen, 172 Rector St., Perth Amboy, N. J.
WII.L EXCHANGE 1 DOUBLE.STIDE TUNING coil. 1 electrolytic detector, 1 potentiometer detector and potentiometer, 1 telephone for extension on common battery system. 2 inner phones. 1 hand microphone, complete, with 5 -ft. cord, 110 -volt, $1-16$ h.p. D. C. motor, 1110 -volt ceiling fan, and $11-i n$. spark coil; also 2 secondaries of 1 in. coils for a 110 -volt A. C. motor or Clapp-Eastham rotary variable condenser or other wireless instruments. Kenneth McLoad, 3962A Blaine, St. Touis, Mo.

HAVE A HOOSE COUPT,FR TO EXCHANGE for a variable condenser and "Modern Electrics" for 1910-1911; or a one-inch spark coil and "Modern Electrics" for 1910.1911. Otto Hinsch, Wenatchee, Wash.
IVILL EXCHAN゚GE IOOSE COUPIER (NEW) $1 / 4-\mathrm{in}$. spark coil. Leyden jars, fixed condenser (new), teiegraph key. silicon detector, reverse switch and eight larce hall porcelain insulators for a good dynamo and motor. Arthur Haake, Box 253, Closter, Bergen County, New Jersey.

HAVE SEVERAL ARTICLES TO EXCHANGE for a 25 cal. Colt automatic pistol. A .S. Bradberry, Box 462 . Athens, Georgia.
SENDING AND RECEIVING LOOSE COUPLED MURDOCK PHONES, $1-\mathrm{in}$. coil, etc, value $\$ 30$. Would like bicycle motor attachment. M. Henninger 48 S . 2nd St., Shamokin, Pa.

I/2 KW. COIL WITH VIBRATOR, ELECTROlytic interrupter Thordarson step-down transformer (3 to 26 volts) and a 600 volt, 100 ampere lightning switch, for a closed core transformer or a pair of good phones and a rotary variable condenser. \mathbf{R}. Fritz, 1212 Dewey Ave., Cincinnati, O.

WILL EXCHANGE ONE NEW MURDOCK variable condenser for a good detector worth about three dollars or a good aerial switch. John Podesta, 267 First St., Portland, Oregon.
WANT A 4×5 PLATE FOCUSING CAMERA; will exchange a one-inch spark gap mounted on top. Write for particulars. Henry Kienzle, 450 East 85 th St., New York City, N. Y.

WILL EXCHANGE COMPLETE SENDING AND receiving wireless outfit, high grade professional in receiving wireless outht, high grade professional in-
struments; also a number of parts and fixtures in struments; also ${ }^{\text {a }}$ number of parts and fixtures in-
cluded, value $\$ 85.00$, for motorcycle or anything of cluded, value $\$ 85.00$, for motorcycle or anything of
like value. Frank Kraft, 1061 Brown St., Peleslike vall, N. Y

WILL EXCHANGE 1 LOOSE COUPLER OF solid mahogany; 1 tuner, 10 in. long; 1 Brandes re ceiver, 1000 ohrms; $21 / 2$-in. spark coils, ene E. I. and Mesco make; 2 D. P. D. T. switches; 1 6-v. Mesco dynamo; 68 -in. Geisler tubes for a bicycle. M. P. Schlosser, 11 River Ave., East Port Chester, N. Y.

WHAT HAVE YOU TO EXCHANGE FOR TUNing coil, home-made core for $1 / 4-\mathrm{kw}$., 8 -in. Geisler tube, 6 -v., 4 -amp. dynamo, $0-10$ ammeter, home-made Leyden jar, 50 boys' books, 5 years' issues Scientific American, heavy key, pedometer, magic lantern, 180 slide pictures, 2 tubular flashlights, $31 / 2 \mathrm{ft}$. telescope, 70 ft . $1-32 \times 1.2$ spring fashlights, $3 / 2 \mathrm{ft}$. telescope large dynamo motor, gas soldering torch, hard rublarge dynamo motor, gas soldering torch, hard rubber rods, magnet wire, Audion detector, good piece
carborundum, turnbuckles and other wireless articles. Ben T. Elkins, R. F. D. 8, Box 92, Belfast, Me.

HAVE FINE MANDOIIN THAT I WILL EX change for wireless instruments; also Morse instrument. 20 ohms, with 2 Jove batteries; a fine instru ment for learning telegraphy. Samuel Cohen, 161 North Third St., Brooklyn, N. Y.
WHAT WIRELESS GOODS HAVE YOU IN EX. change for any or all of the following: 2 looec couplers, $2 \$ 1$ detectors, 1 1000-ohm phone for wireless, 175 -ohm telephone receiver, 1 voltamp motor, 3 1/4-in, high, about $1-80 \mathrm{~h} . \mathrm{p} ., 1$ Weeden steam engine, No. 40 , on $12 \times 6 \mathrm{in}$. base, and $1 . \$ 1$ watch. John Starrett, 204 South St., Plymouth, Wis.

2 TELEPHONES, 6-10 STORAGE, SINGLE leather-covered head band, helix, fixed condenser, strap key, medical coil, water motor; total value, $\$ 16$; will exchange separately; want Brandes receiver, split head band, double, loose coupler, 6-60 or 40 storaze. Edwin Koukol, 436 West 28d St., New York.

WILL EXCHANGE I.OOSE COUPIER FOR Knapp type S dynamo motor and Little Hustler motor: must be in good condition. Emile Hirscb, 105 East 10kth St., New York.

WII.L EXCHANGE $1 / 4-I N$. SPARK COIL, WITH. out vibrator, and 1 electric bell for Type S Knapp motor or loose coupler, or other gonds in electrical line. Guy A. IIunter, 518 Willow St., Port Townsend. Wash.

[^18]WANTED-A PAIR OF BRANDES NAVY type phones or a Clapp-Eastham or Murdock loose coupler, in exchange for a $1-\mathrm{in}$. coil, pocket voltmeter, pocket ammeter, 1 large 8 -slide tuner, 1 battery motor, 27 -ohm receivers, some cords and some sockets. John Stauffer, Jr., 601 Broderick $\mathbf{S t}_{\mathrm{t}}$, San Francisco, Cal.

LYON-HEALY CORNET WITII B-FLAT ANI) A set pieces music lyre, and good carrying case; cata\log price of cornet alone $\$ 18$; new and in perfect condition; to exchange for Brandes Navy or Holtzer. Cabot 3000 -ohm phones or apparatus of equal value. C. W. Mercer, Box 142, New Wilmington, Pa.

WANTED-A FOLDING FILM TYPE CAMERA; have to exchange Commercial loose coupled inductive tuner, practically new; switch on secondary, wound taps; slider on primary; variable condensers and detectors, Universal, with upper and lower cups and point; transformer core, complete, for $\$ / 4-\mathrm{kw}$. closed; and other apparatus. Edw. Dewfello, care Pairpoint Corp., New Bedford, Mass.

WHAT HAVE YOU TO EXCHANGE FOR AN 8×10-inch commercial view camera and outfit valued at $\$ 120.00$. Chas. J. E.llsworth, 900 Riehl St., Waterloo, lowa

MOTORCYCLE (MERKEL, 1912), BANJO, OLD violin, folding camera, 4 -cyl, auto coil, storage battery 60 a. 6 v., Edison phonograph, 182 records, Savage dry, plates, y x 7 photo dry platew sweaters never dry plates,
worn, for exchange for anything in the "Wireless" line. C. W. Wornge for anything in 21 W. Market St., York, Pa.

WILL EXCHANGE ANY OR ALL OF THE following for anything in the wireless line: A pyrography set worth $\$ 3.00$, a M. E. S. Co. telegraph set worth $\$ 5.00$, and a one-inch spark coil worth $\$ 4.50$. William C. Jamison, 244 W. Washington street, Sullivan, Ind.
FOR EXCHANGE-ONE COMPLETE SET OF Am. Corr. School's "Cyclopedia of Tel. and Teleg." in 4 Vol., Brand new, in exchange for high grade wireless apparatus. Set costs $\$ 13.00$. Joln Hoff, Effingham, Ill.
"WIRELESS HOOK-UPS," CONTAINING 96 "WIRELESS and 100 hook-ups, is full of diagrams fully illustrating every possible wireless connection. This book will enable wireless men to get excellent results. Sent postpaid for $\$ 0.25$. Modern Electrics, Book Ibept., 231 Fulton St., New York City.

WANTED-AN EASTHAM FOLDING KODAK taking pictures about 4×4 for a one-inch soark coil and single barrel, 16 gauge Iver Johnson shot gun. Will trade either or both according to condition of Kodak. N. E. Blackie, 110 Norfolk St., Dorchester, Mass.
AUTOMATIC ROTARY SELF-INKING PRINT. ing press, prints $31 / 2 \times 5$; H. \& M. detector; salena detector; fixed condenser. Want camera, switches, No. 6, 24, 28 and aerial wire. C. Hammond, High St., Abington. Mass.

Abstract

WANT A CLAPP.EASTHAM ONE-HALF KILO. watt glass plate condenser, must be in perfect condi. tion electrically with capacity of 08 MF. Offer in exchange Savage repeating rifle, 22 cal . with two thousand smokeless cartridges for same. Devine $1 / 4$ h. p. water motor, Voltamp type L dynamo, 20 volts 6 amperes; $1 / 4 \mathrm{kw}$. helix. two-inch coil, oak cabinet with rapid vibrator. Any of above goods to the value of condenser given in exchange for same. Savage rifle fitted with Maxim silencer, uses clips, eight cartridges to the clip. W. B. Pope, P. O. Box, No. 202. Athens, Georgia.

BOORS. AS A RULE, ARE FILLED UP WITH technicalities and are of very little use to the experimenter, but here is a book which is simple, plain and understandahle. Send your order at once for your copy of "Electricity Mare Simple," Clarke Caryl Haskins, 233 pages, 108 illustrations, 12 mo., cloth Haskins. Price, $\$ 1.00$ postnaid. Modern Publishing Co., 231 Fulton St., New York.

FOR EXCHANGE-4 VOIUMES CONDENSED American Cyclopedia, leather bound, value $\$ 18.00$, for medical battery, vihrator or electro-medical apparatus. Frank L. Steele, Gloversville, N. Y.

MR. ELECTRICIAN: DO YOU KNOW ALL about wiring diagrams and descriptions? If not you need this book, which is the latest out on the subject. "Modern Wiring Diagrams and Descriptions," by Henry C. Horstman and Victor H. Tousley, 16mo., 800 pages, 225 jllustrations. Full leather binding, size 4×6 inches, pocket edition. Price, $\$ 1.60$ postpaid. It explains dynamos and motors, alternating current and direct current, ground detectors and storage batteries, installations, etc. Modern Publishing Co., 231 Fulton St., New York.

HAVE $\$ 75.00$ WORTH OF ELECTRICAL AND wireless apparatus for exchange. Laudie Rose, Box 54, Hoisington, Kansas.

FOR EXCHANGE A 1 KW. KEY, VALUE' \$8, small rotary, gap wheel 75 c ., 6 wires of aerial No. 14 "Antenium," each 62 ft . long, $\$ 2$; 1 piece cardboard tube $41 / 2$ in. diameter and 6 in . long, $5 \mathrm{c} ; 1 / 2 \mathrm{in}$. coil and condenser, $\$ 3.75$. Want wireless key, $1 / 2 \mathrm{lw}$. transformer coil with or without vibrator, hot wire ammeter and Perili cable. R. Woodward, 110 Chestnut St., E. Orange, N. J.

HAVE 150 OHM BOX RELAY IN EXCELLENT condition, finished in polished mahogany. Will exchange for 2000 ohm head phones. Edward French, Peekskill, N. Y.

FOR EXCHANGE-16 GAUGE MARLIN (HAMmer) repeating shotgun with canvas case, loading outfit and hox of shells, all in good condition. Value about $\$ 25.00$. Will exchange for J. J. Duck receiving transformer or other good loose coupler and Crystal detector. C. E. Fisher, 427 Louisa St. Williamsport, Pa .
"CONSTRUCTION OF INDUCTION COILS AND Transformers" is a valuable book, containing 100 pages and 72 illustrations, by H. W. Secor. You cannot afford to be without this book. which is the latest work on construction of induction coils and transformers. $\$ 0.25$ postpaid. Modern Electrics, Book Dept. F, 281 Fulton St., New York.

WILL EXCHANGE COPIES OF "MODERN Electrics" from December, 1910 , to present issue. several other magazines on wireless. including "How to Make Wireless Instruments," "The Wireless Tele. phone," "Construction of Induction Coils and Transformers," two battery motors. 36 Magic lantern slides. 2 in. gauge. Would like a Premoette Junior Camera. Raymond Maguire, 529 E: 32nd St., Indianapolis, Ind.
MOTORCYCLE WANTED FOR $1 / 2$ KILOWATT transformer, 3 -inch coil, large cabinet audion receiving set and complete electrical and chemical lahoratory accessories. Jos. P. Bruell, P. O. Box 248, Ramsey, N. J.

WANTED-PAIR SUPERIOR, NAVY OR other good phones, rotary variable condenser and stamn collection. Have $\$ 5$ drawine set, large $\$ 4$ tuner, electrolytic detector, 40 issues of Electrical and Photograph magazines, and Laughter's Wireless Telegraph and Telephone Handbook. A. M. Cameron, 2905 Cleveland St., Dallas, Texas.

HERE IS THE VERY LATEST AND MOST valuable work on electricity for the amateur or practical electrician, published: "Easy Flectrical Experiments and How to Make Them," by L. P. Dickenson. 220 pazes. 110 illustrations, 12 mn . cloth binding. Price, $\$ 1.00$ postpaid. Modern Publishing Co., 231
WILL EXCHANGE FOR 1912 MOTORCYCLE. in gond condition complete wireless outfit consisting of one $11 / 6 \mathrm{kw}$. closed core transformer, wireless key , condenser, spark cap, helic, two switches, 1 single and 1 double slide tuning coils, loose coupler. two condensers, detector, one switch. \& copper wire aerial and insulators. Alex Otten, 209 Martin St., Peoria, Ill.

WANT 1 KW. TRANSFORMER OR $1 / 2 \mathrm{KW}$. transformer with key and rap for same or some gnod receiving instruments. Have in exchange $3 /$ h.n. steam ensine in fair condition. Cost $\$ 25$. W. Martin, 487 85th St.. Milwaukee. Wis.
WII.L EXCHANGE A GEISZIER G-VOI.T. BO ampere hr., 1 hard rubher storage battery. In excel. lent condition, 110 volts being used, for a $1 / 4 \mathrm{kw}$. transformer or a Murdock variable condenser and Blitzen Nupirx. or for a yood 110 volt a. c. 60 cycle motor. C. Zihlbauer, 87 Union Ave., Irvington, N. J.

COMBINATION STEREOPTICAN AND POST card projector, with light for stereoptican only; cost $\$ 12.00$; also 2 doz, slides for same. One two-sound buzzer (loud and soft Pericon, \$1.50; 1 flat helix (7 turns of ribbon), $\$ 1.50$, and $\$ 1.00$ worth of mercury, in exchange for a Brandes transatlantic head set, and a rotary variable condenser; or Brandes navy set in good condition. Hayden Roberts, 11215 Clifton Blvd., Cleveland. Ohio.

WILL EXCHANGE $1 / 2-I N C H$ SPARK COIL, Pericon detector stand copied from Pickards with silicon antimony crystals, for Blitzen rotary condenser, Blitzen tuner Audion, small 110 a.c motor or rotary gap. N. B. Stackpole, 725 Mineral Spring Ave.. Pawtucket, R. I.

WILL EXCHANGE SPECIAL WIRELESS COILS of heavy spark $1 / 2$ inch with vibrator $\$ 4$-inch without vibrator; can be used on 110 v. a. c., either one for Brandes navy phones, Audion detector or Graflex camera. T. J. P. Shannon, 1888 W. 23rd St., Los Angeles, Cal.

WILL EXCHANGF 2 PAIRS BRANDES SUperior phones, a good $1 / 4$ to $1 / 2$ rotary gap, $3 / 2-\mathrm{kw}$. trans. coil, long-distance detector with ferron, galena, variable fixed condenser in mabogany case, for a slide trombone: state condition. I. Quay, 1118 Munroe St., Chicago, In.

OSCILLATION TRANSFORMERS TO TRADE for A. C. motors, or what have you? These oscillations are of the best grade polished oak, and are well made. Clarence L. Brown, 1022 E. Tabor St., Indianapolis, Ind.

WHAT WILL YOU OFFER FOR A COMPLETE sending and receiving set, $1-\mathrm{kw}$. transformer, hightension condenser, helix, rotary spark gap, hot-wire ammeter, heavy key, aerial switch, anchor gap, loose coupler, fixed condenser, variable condenser, detectors. Western Electric Co. 2000 -ohm phones, $120 . \mathrm{ft}$. aerial, leads, cable, suitches, insulators, etc. D. F. Pancoast. 107 Prospect St., Ashtabula, Ohio.

WILL EXCIIANGE ONE GOOD DETECTOR, extra large buzzer and one spark gap and 180 feet extra large buzzer and one spark gap and condenser of Murdock make. Sidney Morgan. 208 West Gaston of Murdock make.

WILL EXCHANGE $3 / 4$-TN. SPARK COIL OUT of box, good condition; 22 calibre, 7 -shot revolver; electric bell, bi-polar réceiver. Want type. S Knapp motor or anything you have in wireless line. Guy IIunter, 518 Willow St., Port Townsend, Wash.

WILL EXCHANGE TWO DOUBLE SLIDF tuners, can tune up to 3,000 meters, fitted with sliders and binding posts, large tubular variable condenser, wireless key with silver points, helix, detector, fixed condenser, all in first class condition for a loose coupler; Charles F. Jacobs, 279 Park Place. Brooklyn, N. Y.

WILL EXCHANGE AN EXTRA LARGE WATER motor, 5 ohm telearaph set, and 100 copies of the Morse and Continental codes on large chart for scientific books or instruments; will trade all the above or part. R. F. Heath, 1007 Arizona Ave., Butte, Montana.
Montant

WILL EXCHANGE $\$ 10.00$ POSTAT, CARD PRO. jector with two liphts and double slides and a good rotary printing press for best offer of a spark coil and other experimental apparatus. Ralph Steiner, 1482 E. 84th St.. Cleveland. 0.

FOR EXCHANGE-ONF RRANDES 2000 OHM head set. Wood as new. also one $21 / 2$-inch coil, one
Dawson \& Winger $\$ 2.60$ detector, one electrolytic deDector. 2 fixed condensers, one tuning coil 13 inches tector. 2 fixed condensers, one tuning coil 13 inches long 8 inches in diameter.

THIS ELECTRICAL DICTIONARY WILL JUST fit in your vest pocket. "Carry it around with you while your are at work. "Handv Vest Pncket Electrical Dictionary," hy Wm. L. Weber, M.E., containing upwards of 4,800 words. terms and phrases employed in the electrical profession with their definitions given in the most comnrehensive manner. Full leather in the most comnrehensive manner. Full Coarn Publishing Co., 231 cover:
Fulton
St,

IT IS IMPORTANT THAT ALL INTERESTED in wireless should join the Wireless Association of America, which is helpful to those interested in any way in the wireless industry. For full particulars address Wircless Association of America, es1 Fulton St. New York.

WE CAN FURNISH ANY BOOK PUBLISHED. Write Book Dept., Modern Electrics, 231 Fulton St., New York, N.

IN THIS VALUABLE BOOK WILL BE FOUND everything that is necessary for the study of telegraphy. Rules are given for the guidance of operators in all different kinds of services, and they are very clear and comprehensive. "Telegraphy Self Taught: A Complete Manual of Instruction by Theo. A. Edison, M.A., 12 mo ., 1 1\%0 pages, fully illustrated. Price, $\$ 1.00$ postpaid. Modern Publishing Co., 281 Fulton St., New York.
"HOW TO MAKE WIRELESS INSTRUMENTS," by 20 Wireless Experts, containing 96 pages and 76 illustrations, written expressly for wireless amateurs, and is a book that you cannot afford to be without. Price $\$ 0.20$ postpaid. Modern Electrics. Book Dept., 231 Fulton St., New York City.

HERE IS THE BOOK YOU ARE LOOKING for, written in plain English so it can be easily mastered by you whether you are an experimenter or an electrical engineer. "Practical Armature and Magnet Winding," by Ilenry C. Horstmann and Victor H. Tousley, 16 mo . pocket size, leather cover. Price, $\$ 1.50$. This book is the most valuable aid to the electrician, either in constructing or operating department. Modern Publishing Co., 281 Fulton St., New York.

WANTED-A THORDARSON FLEXIBLE transformer or any other high grade transformer giv. ing 20,000 volts or high grade receiving set. Will exchange an I:C. S. Correspondence Course in patO. Frantz, Nesquehoning, Pa

WILL EXCHANGE A LARGE WATER-MOTOR, Backus make, 8 feet diameter in cast iron for case; an audion detector. Will also exchange above motor with two pieces of shafting, wheels, etc., for Brandes' with two pieces of shafting. wheels, etc, Iar Hontzer-Cabot ${ }^{\text {I }}$

WHAT HAVE YOU TO EXCHANGE FOR ANY part or all of the following: $11 / 2 \mathrm{~h}$. p. baby gasoline engine. 775 w . dynamo, $11 / 2 \mathrm{~h}$. p. motor, 1 Little Hustler motor, i 76 ohm telephone receiver, $11 / 2 \mathrm{~h}$. p. team engine. H. R. Allonier, 1045 Sunset Ave., Price IIill, Cincinnati, Ohio.
ELECTRICAL GOODS WANTED IN EXCHANGE for 2000 ohm head set. 1 one.inch coil, long distance telephone transmitter, Omnigraph . (key-sounder and disks). I.eyden jar, spark gap, 12 -inch vacuum tube, medical coil, battery, rheostat, watch case buzzer, part for 3 -inch coil and ammeter. C. Challman, 451 E. 165th St., New York.

PORTABLE RECEIVING: SET IN HAND CARrying case; adjustment of instruments from outside of case; in exchange for motorcycle or small gas engine. Also coaster brake, junior spark gap, and kine. Also coaster brake, Claude Olin, Antlers, Okla.

FAVE TEN "WHISPERING TELEPIIONE mouthpieces" which can be put on any telephone and makes any telephone a private phone, as one can talk low enoush that the others in room cannot hear and still talk is transmitted with great efficiency. Will crehange for Brandes superior head set or Electro Amateur phones. Mouthnieces are in excellent condition. Glenn Howe Joseph. 54 Parke St., Tuscola, Ill.
WHAT WITI. YOU EXCIIANGE FOR A Seneca 4×5 inch plate camera. Almost new. F. H. Barnes, 29 Cliff St., New York.
HAVE A 6 V. 40 AMP. STORACF RATTERY, 1/4-in spark coil with snark gan attached one medical hattery value $\$ 4.60$; electrolytic detector. omnigraph value \$2: dynamo-motor ${ }^{n}$ v. 4 amp. Want a very small gas engine or periknn detector. Emil Kepko, ${ }_{362}$ 7th ${ }^{\text {smas }}$ St. New York City.
ONE COII. CONDFNSFR. GAP D. S. TTNEER detector. condenser 2000 ohm amateir phones will trade all for Brandes navy

THESE BOOKS Almost Free
 Operator's Wireless Telegraph and Telephone Hand Bock, by Victor H. Laughter. 12 mo ., 210 pages, fully illustrated, showing the installation of wireless on U. S. War ships and ocean liners. This book will prove to be a most valuable helper to the advanced student, operator and others whose work brings them more or less in touch with wireless telegraphy or telephone work. Special sec-
 tion of this book is devoted to the proper method to be

 pursued in the study of wireless telegraphy, includiag naval rules covering wireless stations.

Sent postpaid on receipt of price, $\$ 1.00$.
Electrician's Operating and Testing Manual, by H. C. Horstmann and Victor H. Tousley. Illustrated, 16 mo , full leather. Plain, practical and is good for working eleotricians who have to install or care for electrical equipments in general. Almost every phase in the electrical subject is covered by this book. The authors have endeavored to treat the principles underlying the construction of the various devices very fully as well as to polnt out the practical manner in which tests are made.

Sent postpaid on receipt of price, \$1.50.

Modern Electrical Construction, by H. C. Horstmann and Victor H. Tousley. New revised and enlarged edition, 16 mo, 358 pages, 173 diagrams; pocket size, full leather limp.
This book treats almost entirely on practical electrical work. It uses the rules and requirements of the National Board of Fire Underwriters as a text and explains by numerous cuts and detailed explanation just how the best class of electrical work is installed. It begins with a short general discussion of the nature of the electric current and covers every subject in the electrical field. Each and all are discussed in turn and illustrated.
Sent postpaid on receipt of price, $\$ 1.50$.

\footnotetext{
Any of the above books sent absolutely free with a one year's subscription to Modern Electrics, "The Electrical Magazine for Everybody." The brighteat and most interesting electrical magazine published. Nearly five years old, containing iv pages. The magazine that covers the wireless field from A to Z .

Send $\$_{1.50}$ to-day in cash, stamps or M. O. and get this wonderful magazine for one year and your choice of the above books, ABSOLUTELY FREE.

```
MODERN PUBLISHING CO., 231 FULTON STREET.

\title{
I Want To Appoint YOU Local Circulation Manager for Modern Electrics
}

I You can turn your spare time into Dollars by taking subscriptions from your friends and acquaintances.
I One of our local managers writes-
"I wish I had started on this wort sooner. My commissions for the past month emebled me to bwy complete stinding apparatus that I had bect manting to buy for a year past."
I You as a regular reader of Modern Electrics, know its good points and can present its attractive features in a way which will readily make subscribers of your friends and acquaintances.
I Convince me that you are in earnest and willing to push things; send me the endorsement of three responsible business men who are willing to vouch for your fitness-
I. And I'll gladly send you your official appointment papers, together with full particulars as to how to go about the work, and how much there is in it for YOU.
I Don't delay until some one else in your territory has secured the appointment. Write YOUR application TO-DAY.

\author{
Address all Communications
}
M. C. Cooney

MODERN PUBLISHING CO.
Manager Local Agents Department

\section*{TELL US WHAT YOU WANT We Will Tell You Where To Buy It}

Ti Readerm winhins catalose, prlcem, names of mannincturera or Hother information remaralno ANY ARTMCL, in in wich they are interemted, may biain mame hy making requent on printed rorm below.
 putit In the mailm. We will put Fou in direct tonch with manding lactnrerm who wili furnigh ang information gom may require.

TRADE INQUIRY DEPARTMENT,
MODERE EUBLISFING CO.,
231 FULTON ST. NEW YORK.
Name
Tovin Aderen


\section*{Ask for Our 212 Page Catalogue C26}


\footnotetext{
When writing, please mention "Modern E ectrica"
}


The superb 19-Jewel Burlington Special with the latest improvements in watch manufacture, perfect adjustment to position, the absolute adjustment to isochronism, besides ternperature adjustment. Also the newest style Montgomery dial and the magnificent inlay enamel cases in many colors. A watch perfect in every detail and beautiful in desinn. Clip the coupon below and send for the superb Burlington watch book explaining a remarkable offer.

The Burlington watch book fully illustrates the points of a truly A DJIESTED timepisce;
it also shonos all the very latest designs in watch caves for yone it also shonos all the very latest designs in vatch cases for you to choose from. Inlay enamel monograms, riblon monograms, block monograms, diamond sel rases, ilragon designs, French art designs, etc. Allsizes, ladies' and men's. Take your pich of any of them on this startling offer.

\section*{Sent Without a Penny Down}

Yes - we want you to see and examine the watch in every particular before you decide (returnable at our expense).

\section*{ on the easiest kind of payments. Only \(\$ 8.50\) a month, at the rock bottum price, for the world's greatest watch. The Rock Bottom Price \\ We Do Not Care What It Costs}

If after examination you decide to keep the superb Burlington Special Watch, you may have it \(\%\) at the direct price-the rock bottom FRIE Book Coupon :i\% that eben the wholesale
Book Coupon :.if. jemoler must pay.

We have decided unon this direct offer-selling the public direct at the same price that even the wholesale jeweler must pay- in defunce of the contract systems-we are in this fight to win-and so the public gets the benefit of our wonderfully special offer.
BURLINGTON
WATCH CO.

cillC.IGO - ILLINOIS ": Jist put your name and address on the coupon and send it to us. lease send mu (without obliga ": Even if you do not intend buying a watch just now. you slould
 challenge, with explanation of your ": watch business. the secrets about prices and contracts which cashir or \$2.50 a month, offer on the "\&\%, this book contains. Post yourself, mobligations. So write

Name.
": today for this superb catalogue of 1913 watches.
Address.
: BURLINGTON WATCH CO.
"*: Dept. 149-Z, 19th and Marshall Blod., CHICAGO, ILL.

When writing, please mention "Modern Electrics."```


[^0]:    - Bulletin Bureau of Standards, Feb. 1, 1911, Vol. 7, No. 3. pp. 315.363.

[^1]:    - For further particulars and oscillographic curves of condenser discharges. see Dr. Fleming's "Electric Wave Telegraphy and Telephony."

[^2]:    -A copy of these rules can be purchased for loce. by addressing the American Institute Electrical Engineers. 33 West 30 th St., New York City.

[^3]:    'See American Institute Electrical Engineers' pro ceedings for Feb., 1013, page 627.

[^4]:    *See p. 359, July, 1913. issue.
    $\dagger$ See D. 359, July, 1918, issue.

[^5]:    You should take at least one semi-technical electrical magazine and keep up to date on the new wonders and advances in electricity- Wodern Idectricn illustrates and describes these subjects in a style that can he read and understood by every member of the family. particilarly the young man and boy. It is over five years old and contains from 112 to 144 pages monthly. 15 c , a copy, $\$ 1.50$ a year. Tells you how to make things at home; contains an experimental department and answers your questions free. The brightest and most interesting "Plain English" electrical monthly magazine published. The magazine to read if you want to keep up to date on wireless and progress in electricity.
    year's subscription at the regular annual rate your choice of the offer for a limited time only with one Money Refunded Immediately if of the above offers free.
    Semd ©i.50 todns in cash. stamps. M. O. or check, and get \$ODFIRNEHECTIRICS for one year and we will send you your choice of the above prepaid, Alomilutely free.
    Modern Electrics Magazine
    
    New York
    N. Y.

[^6]:    When writing, please nuention "Modern Felectrics."

[^7]:    When writing, please mention "Mombn Falectrics,"

[^8]:    When writing, please mention "Modern Electrics."

[^9]:    When writing，please mention＂Modern Electrien＂

[^10]:    When writing, please mention "Modern Electrics."

[^11]:    When writing, please mention "Moderr Electrics."

[^12]:    When writing, please mention "Modern Electrics."

[^13]:    When writing, please mention "Modern Electrics,"

[^14]:    When writing，please mention＂Modern Electrics．＂

[^15]:    The Federation of Trade Press Associations in the United States
    President
    H. M SwEtland
    New York
    President
    H. M SwEtland
    New York
    New York Entland EniN New York
    Vice-President E. C. Hole, Chicago

[^16]:    PELNAR SCHOOL OF TELEGRAPHY MADI son, Wis. Directed by retired railway officer; best of everything: expenses earned; credit extended; graduates placer.

[^17]:    WANT 110 V. A. C. MOTOR, ABOUT $1 / 15 \mathrm{H} . \mathrm{P}_{\text {d }}$ a Klaxon horn. 1 A Kodak developing tank, and folding tripod. Have late type loose-coupler (recciving) ing tripod. Fave late cost $\$ 15.00$, new; nineral devariation by switches, cost $\$ 1.00$. Photo on request. tector, very good. Empire cloth, 8 electrose, Nos. 71 Have quantity of Empire clofixed condenser. J. G. Klemgard, 947 Cedar Ave., Long Beach, Cal.

    BEAUTIFUL PHOTOGRAVURES-SIZE $7 \times 10$ in. of Thomas A. Edison and Nicola resia. den or able for framine-Just the thing for your den or station-10c each or the two mailed postpaid on receipt of 15 c stamps of coin. W. A. O. A., 231 Ful ton St., New York City.

[^18]:    OUR 80-PACE BOOR, "THE WIREIESS TELEphone." will be found invaluable to those interested in this science. This book contains 57 illustrations and is considered a masterpiece. Snd $\$ 0.25$ in stamns, coin or M. O. to Modern Electrics, Book Dept., 231 Fulton St., New York City.

    WILT, EXCHANGE THF: FOTIIOWING FOR A $3 / 4-\mathrm{kw}$. transformer with vibrator: step-down transfores giving from $21 / 2$ to 14 volts: Billiog J.in. snark coil with spark gan: 1000 -nhm receiver with head band: Mesco telegraph set and Tunior fixed condenser: all these articles in fine condition. Louis Hamilton, 803 Fast 16th Ave., Denver, Col.

