

Copyright, 1013. का Modern Publishing Co., 881 Fulton St, New York Cits If

Ozlakd J. Ridenour, President. Charlas A. Lequesnz. Ja., Editor.

Volume $6 . \quad$ CMay	May, 1913	No. 2
Contents		
Page Page		
Electricity and Magnetimm Construction of a Small Oudin Resanator.... 105	Wireless Derivation ofperiments from a Balloon....... of	ave
The Practical Electrician.................. 110		... 118
Alarm, Clock Starts Breakfast.............. 113	Ratification of Wireless Telegraph Treaty....	. 119
${ }_{\text {The }}^{\text {Bozen }}$............................. 114	Arlington "Wireless" Beceived 2400 Milles	
A Correction 116	Away in Daylight......................	... 121
Electricity from Air New Great Discovery... 117	A Novel Pocket Wireless	121
Largest in Boston a	wireles R R. R......................	.. 122
The "Insides" of nn Electric Iron......... 119	Compulsory Wireless in New Zealand......	.. 124
Train Operated by Storage Battery........... ${ }^{120}$	Argentine "Wircless" Signals Reported at Newport	
Necesity vention	Using a Wavemeter.	: ${ }_{125}^{124}$
Quite Shocking-Poem 121	Ouenched Gap for Small Spa	${ }^{131}$
Sealed.Primary Battery - Po.................. ${ }_{122}^{128}$	An Up-todate Loose Co	136
Knowledge About Thunder Storms..........: 123	A Slider for Loose.Coupler. Scoor	${ }_{137}$
Motor Cuts Ensilage and Blows it Into Silo 124	A Rotary Wireless Receiving Transiormer..	r.. 138
	Poulisen Tikke	139
A Home Made Burglar Alarm............... 133	A Cheap and Efficient Oscillation Trans-	
Separabie Connector.................... 134	ormer	... 140
ow to Make an Electrophorus. ${ }^{135}$	${ }^{\text {A Practical }}$ (igid	141
	Testing Aerial Leakase	144
A Noyll Shocking Device................. 148	The Wireless Screed	155
An Alarm for Lightirg Circuit............. 712	Wireless Crub Directory.	
New Voltmeter Method for the Measurement	The Oracie	188
of Insulation Resistance.................. ${ }^{143}$	Adrice on T	194
Easy Method of Finding Wire Resistances,.. 145	Misecllancous Subjeets	
A Simple Copper Plating Ontfit............. ${ }^{\text {Whin }}$	The World's Tallest Puilding.	106
	The Electric Acrial Line at Kohlererhers	
Advice on Patents........................... 194	Near bozen.	114
		140
Hadio Commaniention		
Field Radio Sets of the Signal Corps U. S.	\qquad	

Expiration $\begin{aligned} & \text { We enclose } 2 \text { renewal blank with the last copy sent out on each abscription. To } \\ & \text { avoid trissing } \\ & \text { valuable }\end{aligned}$ Change of Address When you change your address notify us promptly, giving old as well that our mailing list is made up when your notification reaches us. In such cases the magazine mill
go to your old address, but the postmaster will forward copy to your new address upon request. No
copies sent ofter copies sent after expiration of subscription.
Magazine iscription in U. S., \$1.50. Manhattan and Canada, $\$ 1.86$. Monirs Electrics may be had at all news stands in the United States and Canada, also at Oiginal contributions of timely interest pertaining to the electrical and affiliated arts, or on any
branch of electrical science and invention, especially with practical working directions, drawing or
 photographs are solicited. No mannuscript returned unless postage is enclosed.
Forms close the 1 st of the month preceding date of publication. Advertising rates on application.
Entered as second class matter March 31 , 1908, at the New York Post Office, under the Act of

 contents of this Magazine are copyrighted and must not be reprinted without permission.
Published by ©Modern Publishing Co., 231 Fulton St., New York, U. S. A. Trade Mark Regintered June 21at, 1910.

VICTOR M. GRAB \& CO.
744 Ashland Block Chicago, ill.

Don't envy the trained man because he gets a fat envelope on pay day. Make up your mind that you're going to $B E$ a trained man and get a fat pay envelope yourself.

You CAN be a trained man. You CAN earn a large salary. No power on earth can hold you down but your own unwillingness to try. If you WANT a better job--if you NEED a bigger salary-the International Correspondence Schools can give you the necessary train-
ing to get it.
work, witer where you live, how long trours Oir work, whether you are quick to leam or to trv--the I.C.S. will come to and are willing o try--the I.C.S. will come to you in your own
hume, at your own time and sive you the training your circumstances demand.
You don't want to grind out your life for a dollar or two a day-yout don't hase to. For over 21 years the I.C.S. have been training men for better jobs and bigger pay-they can do the ume for YOU

Just mark and mail the attacher couponit won't obligate you th the least-and the
I.C.S. will tell you how they can train you in the occupation of your choice for a good jol with a fat pay envefore

Mark and Mail the Coupon TODAY

VOL. VI.
Field Radio Sets of the Signal Corps, U. S. Army By Thos. W. Wylie

If OR radio communication in the field are carried on a second mule, while on the Signal Corps of the United the third animal is packed a light, waterStates Army has adopted a port- proof, canvas tent which is used as a able 500 cycle, quenched spark set shelter for the operator and instruments that is transported on three pack nutules. when it is intended to establish a station This set consists essentially, of an alternating current generator, band Iriven, and permanently mounted on a light tubular steel stand; an operating chest containing all apparatus necessary o trasmmit and receive radio signals and a jointed mast forty feet high when erected, with an tenna and counterpoise.
 for any length of time. There are also carried on this last animal many articles that are used when the station is established semi-permanently, such as a picket rope for the animals, folding lanterns for night work, brush cutting knives and hatchets These articles are These articles are vas cover contine a canvas cover conven-
In packing the set the generator $t a-$ gether with the sections of mast are when packed are led by mounted men, placed on one mule. The operating each animal being led by one man chest, a canvas bag reinforced with terpoise, and ang the antenna and counrepoise, and an accessory kit in which repair tools and spare parts are placed,

One radio pack set is assigned to a section of a Field Company of the Signal Corps, there being two radio sections and four wire line sections to each com-
pany. Farl radio seetion contains in men, 3 of whom are radio operators, 4 antema men who stake out the antenna and then reliese one another in turning the cramb handles of the generator neessenger and 2 hotse bolders.
In maneuvers in the fiek, or during actual watr, a radio section is assigned to duty with a suitable division or command of troops of the line of the army I suitable command may consist of a cavalry screen, a regiment, or an entire brigade or division of cavalry or infantry. It is the duty of the section to keep abreast of, or in touch with the botly of line troops to which attached, and to transmit to and receive from headquarters and other points important dispatches. It
frequeut -
by happens that i cavalry commander ont the march will demarch will desire 10 transmit a message oheat quarters
 halting his column. When such is the case tion leaves the tion leaves the column, and the command "open station is given by the sioned officer in charge. In less than two minutes the mast will be erected, the antenna staked out, the counterpoise stretched on the surface of the ground, two men will be turning the crank handles of the generator, the operator will adjust for maximum radiation, and presently will be in touch with the radio section at headquarters. In five or six minutes the message will have been transmitted and its receipt acknowledged Then the command "close staedge," will be tiven, and in another mintion will be given, and in another minthe the mant we and and in the canvas bag, the generator crank handles and gear wheel demounted, operating chest closed and fastened, and the mules repacked. The men then
mount their horses and are off at a gallop to catch up with the column. Each man in the section is assigned a definite duty $i n$ opening or closing station, and is drilled in the particular thing he is to do Hotal ice is letter perfect, hence trere is

The gemerator wes is an is pole, 500
 cycte matho, ecterains tho volts at 1.12 mperes , approximaty 123 watts. the machine is designed for an armature speed of 3.333 r.p.m. On the man shaft in addris to the alternating cturtent windings. is monnted it direct current armature which generates the exciting current for energizing the field magnets of the altermator. The mathine has remonntable
 crank handles : 11 d gear wheel whith in Transport is e a aried trapped to the ubular stami of the generator, 「he y e a rimg ycarlay ism is providcol with liraped an 11 loropect at 11 t overspreed regulator which prevent haft from rotating tuntil the crank handles are revolved at such a speed as will give approximately 3,000 r.p.m., and which releases the shaft when the rate of speed exceeds 3.500 rp.m. The ratio of the gearing is stach di at the proper armat!ire speed to give 500 cycles, or 3.333 r.p.m., is obtained when the crank handles are revolsed :it the rate of 36 r.p.m. Two men are required to turn the arablo handies of the generator.

In the operating chest are the transformer, the sending kev, condenser quenched spark gap, oscillation transformer and hot wire ammeter for indiorine the radiation. also the receiving ating the rasisting of the receiving pparal ceceiving of an inductively and stopping condensers of fixed sarie ity, rectifying detector, and a high re-
sistance double head telephone receiver The transformer is of the open magnetic circuit type, with dry insulation. The secondary is wound in twelve "pies" which are connected in series, the entire wanding being tapped at three point

mberating chest, antenna, counteriolse, eil
nad leads comnected to outside contack The ito volss in the primaty are steppot ip to approximately 7.000 volts in the secondary.
A small mica condenser of alout 0.006 micro-farad capacity is phaced neross the circuit between the quenched spark gap and the oscillation transformer.
The quenched spark gap consists of eseral metal disks, separated by mica washers, the space between disks being made air tight by clamping the whole to the proper tension. Connection is made of one site of the gap through the edge of one of these disks by means of sotted contact, this contact being placed in the disk which itl series with others gives the proper amonnt of samping in the conslenser circait. Tthe the of this gap it is fomm that all of the energy in the closed oscillating circuit is trans erred wishout loss, and in a few oscillat ions, to the radiating circuit, after which the statrli is quenched and the cir cuit is, in effect open When the occil ations in the clome circuit cence the liatine circuit continues to ordilate in it own period, radiating a wave of its own dectrical length without any retransfer of energy to the closed oscillating ciresistance of continues open until the down. Tlye lighl pitch of the note of thi
spark makes it exceptionally casy to tane in even when the air is full of waves of identical length, but lower group frequency, and in bad cases of that common foe of all radio telegraphers, static, messages have been copied with ease.
An inductively coupled receiving transformer, perikon rectifying detector, and fixed condensers, are used for the receiving side. The primary of the transformer is wound with 170 turns of No. 22 enameled wire divided into two groups, one of to turns, and one of 160 turns. Fach turn of the small group is tapped oft and the leads conected to to switch contacts. At every 10 turns the large group is tapped. there being i6 leads to 16 switch contacts. The switches for each of the two groups are so connected that the contacts on which placed nected that the contacts on which placed oring in series the turns of the primary to which they correspond. The secontary winding is tappied at four places and leads connected to switch contacts. The relative position of the coils can, of coturse, be varied by sliding the secondary in and out of the primary.
The mast proper consists of seven light. hollow, wood sections, each 5 feet 8 inches in length, by about 3 inches in diameter, containing in one end a steel tube 2 inches in diameter which projects I foot beyond the end of the wood seclion. In erecting the mast in insulator containing the antenn ends is placed in the hollow space at the top of the first scction. whith is then

generator ant sections of mast
while in the space in the ether end of that section is inserted the steel tube of the next section, and so on until all of
the sections have been erected. In the lower end of the last section an insulator is permanently placed to insulate the entire mast from the earth. Three extra sections of mast are carried with the set and are used as poles for the shelter tent when required.

The antenna wires, consisting of four leads of stranded wire each 85 feet in length and attached by means of insulators to guy ropes 75 feet in length, are carried out in opposite directions by four men, and when all of the sections of the mast have been erected the ropes are mast have been erected the ropes are fastened to iron stake pins, in this manner guying the pole. The antenna lead consists of three stranded conductors, the same as user braided together and extends from the

shelter tent and extra sections of mast
top of the pole down nearly to the ground. The lower end is attached, by means of a spring chip, to a short inst1lated lead which connects to the instruments.

The counterpoise consists of four leads of rubber covered stranded wire 85 feet in length laid on the surface of the ground,-the wires, however, not being in direct contact therewith,-and parallel to the antenna leads.
The antenna and counterpoise leads, and the leads from the generator are connected to the instruments by means of plugs pushed into sockets permanently wired to the set. This feature material ly reduces the time necessary to "open" or "close" station

The normal range of these sets is 20 to 30 miles, but under very favorable conditions this range has been extended to 50 and 60 miles.

WIRELESS EXPERIMENTS FROM A BALLOON
A series of experiments of exceptional interest to the up-to-date wireless man have been carried on recently in Los Angeles, Cal., under the direction of Mr. H. D. Hayes, who is at the head of the Los Angeles Y. M. C. A. Radio School.
Through the courtesy of one of his pupils, Mr. Hayes has had an anchored balloon at his disposal for some weeks, and has utilized this to experiment with radio telegraphy from a balloon.
The balloon was at a height of about five hundred feet in all experiments. The anchoring cable, being connected to the earth, made an excellent ground
The type of aerial found to give best results was merely one copper wire about one hundred feet long dropped down beneath the balloon, parallel with the ground connection and about three feet away from it.
Several types of receiving apparatus and hook-ups were tried. Surprising distances were covered with all, but best results were obtained with a sim ple set consisting of loose-coupler, variable condenser, detector and phones. Using this outfit, the experimenters copied the steamer "Siberia," equipped with a five kw. set, two hum dred and fifty miles west of Honolulu, at nine o clock in the evening
No attempt has been made as yet to use a transmitting set, on account of the weight of the necessary coil, storage battery, condenser, etc. However, surprising results would undoubtedly be obtained even with a small coil. It is planned to thoroughly insulate the aerial from the balloon and connect it to a two kilowatt Marconi transmitting set on the ground. Great results are expected from this.

An interesting point to be noted throughout these experiments is one which has been emphasized so many times before in Modern Electrics-the simpler the apparatus, within reason simple limits, the better the results ob tained.-G. S. Corpe.

Construction of a Small Oudin Resonator

By Stanley E. Hyde

\mathbb{U}^{1}HE apparatus about to be described will make a nice addition to a set of high frequency instruments consisting of a step-up transformer, condenser and spark gap. Many interesting experiments can be performed with it.
A resonator of f
this type is really a sort of auto-transformer in that it raises the voltage yery much higher than it was formerly. The completed resonator is shown in the photograph. Secure a two-quart bottle, and, beginning at the bottom, wind one layer of No. 34 D. C. C. copper wire, stopping at the shoulder and bringing this terminal to a brass tip
 that can be screwed that can be screwed into the cork
denser are varied until the oudin gives a maximum spark or brush discharge. This means that the condenser must be varied until the two are tumed to the same time period or frequency, and when this is persod or frequency, and when this is tor is operating at its highest efficiency This bottle resonator can be made to operate Crooke's and Geisler tubes very beautifully. Stand on an insulating stool and touch the terminal of the resonator with the one hand while holding a tube in the other and the tube will ight up. Of course metal rod should be held in the hand that takes the current from the tip of the resonator, so that the hand will that the hand wil though if a shock at the top Imbed the winding in should be experienced it will not harm at the top. Fmbed the winding in should be experienced it will not harm an inch of wax. This can be done by making a form from stiff paper that is two inches larger in diameter than the bottle and placing the bottle in the center of this paper tube, which is then filled with wax to a position that just comes a hittle over the top of the winding. turns of Nas hardened wind on five turns of No. 12 rubber covered wire, preferably stranded, beginning at the botton as before. Wind these turns close together so that they will be as close to the bottom as possible. Wrap these turns with a layer of tape so as to hold them in place while the whole is embedded in a preparation of wax. Connect up, as shown in Fig. I . For a maximum spark lengil with this resonator it will require a $1+\mathrm{kw}$. outfit, but it call also be made to give fairly good results when operated by a small spark coil. Mount it on a block of wood, as shown in the cut, bringing out the terminals of the primary to two binding posts, as shown. To operate, the plates in the con-
the operator, except that when it is taken on the hand very much it produces a stinging sensation. Another experiment lighting to full incundescence a to-volt I6-cande power lamp through the body

Take an ordinary 16 c.p. lamp and solder two wires to the two terminals respectively, as shown in Fig. 2. Let one person stand on the insulating stool and touch the tip of the resonator with the (Confinued on bage 116)

The World's Tallest Building

By Bertrand Sherburne

相
IIES did it. You never thought, did jurneys, four electric generators are you, that those little silver pieces which slip away so easily, would make a structure Too feet high, with 55 stories and $11^{1 /}$ acres of renting area. But the little despised ten-cent piece made in the five and ten-cent store business did it: that and electricity, for, without this most powerful and flexible force, the great Woolworth building, just completed in New York City, would be as dead and useless as one of the Egyptian catacombs.
Without the electric power for the 24 passenger elevators, the business man occupying an man occupying an office on the filtictl
floor would have a foor would have at somewhat tiresome
climb, on his arrival from the subwe arrival from the sulway in the morning. Or without this same source of energy to supply the 10,000 25 -watt t 1 n ng sten lamps, which are to furnish artificial light when the daylight from the 3,000 office windows is instrfficient, the little stenographers would have a merry time during those frequent periods when the clouds wrap about the lower of the structure so thickly that it is completety hidden from the view of pedestrians on the street. At such times, the grea searchlight to be placed on the tower will be powerless, but, on clear nights, its rays will reach out over the waters of the Sound, and the Atlantic, and will serve as a welcoming signal to the home-ward-bound pascenger abourd the in coming liner
To supply lluminating power, and to speed the elevators up and down on their lengthy
basement. These ar of the (ieneral Electric, 250-volh, direc current, multi-politr tyme, and each is ditect connected to a tandem compound Rice \& Sargent engine of the Corliss Rice dive type, manufactured by the Providence .ange Company.
 ators will supply 500 kilowatts each; one, 300 , and the fourth, 200 lilowatts. A11 rin at the comparatively low speed of 100 revolutions per
minute, and all are provider with heavy balatice wheels, whose inertia makes the entire mechanis 111 move as smoothly as a seven-teen-jeweled wateh. These units atre, of course, not in simultaneous service, the plan being to keep one of the 500-kilowatt machines runwa mantiuyoucly aud to supply the and peak loads by innpressing one or the other of the smalier generators, as the neens of the service require. All of the units are controlled from a single switelboard, especially designed for this plant. The latter is illuminated from above low hidden lights which shed a soft ratliance through grotund glass panels in the ceiling.

The lighting is atranged on the 3 wire, $125-250$-volt system. There are three balancer sets to cate for the sudden fluctuations in the demand for current, which would mbatance the system, causing part of the lights to burn too brightly and the rest to burn dimly Two of these sets are designed to take care of 300 amperes in the neutral wire. The third will care for 92 amperes in the neutral wire.

Ifroadway, Vesey Streef, Patk Place, New York City

A two hundred million candle-power searchlight will probably be placed on the tower of the building. Plans for this spectacular illuminating feature are this spectacular illuminating feature are
still in the tentative stage, and several schemes have been proposed, but the one which has, so far, met with the most approval is that of a 60 -inch reflector, equipped to throw a ray of two hundred million candle-power. This great light will be rotated at definite intervals of time by a clock-work device in the base, which will actuate an electric motor
and the regular schedule starting-signal is given by an automatic device.

The elevators are of the Otis traction type. The design of the hoisting mechanism of these cars is a reversion to the principle governing the construction of the early pioneer types of cars, except that the armature of the motor is mounted on the same shaft as the drum over which the cables pass, and the hoisting machines are at the top of the elevator shaft instead of in the basement with the other machinery.

Two of $t h e$ elevators w i11 $r u n$ the entire distance from the ground to the fiftieth floor, and this distance is so great that much care was necessary in designing them to prevent elasticity of the steel cables from making the car bounce like a bounce like a
rubber ball, if rubber ball, if
stopped suddenstopped sudden-
ly. A new sig-
geared to the rotating mechanism. Should this plan be adopted the light will perform a valuable service as a signal for ships at sea, for, on clear nights, its rays will be visable far out on the Atlantic.

The elevator starter has risen to the dignity of a train dispatcher in the Woolworth building, for he is the occupant of a dispatching office located between the first and second floors. Instead of parading up and down with a pair of Spanish castanets in his hand, and making anxious passengers wait while he shoos a persistent peddler out of the front door, he will sit in dignified solitude before a signal board, whose changing lights will indicate the exact position of all cars, and his routine train orders are issued by means of a row of push buttons within convenient reach. Should a special order be required, a Should a special order be required, a
telephone at his elbow may be instantly telephone at his elbow may be instantly
connected with the telephone in the distant car. All plant offices of the building will be on this same telephone, so that the manager of the building can sit at his desk and control every operation. All elevators are to be run on regular time,
nalling device, never before used, will be employed on these two cars, for the night and Sunday service. When the problem of signal-wire cables for these two through-route cars was considered, it was found that the weight and bulk of the necessary cables to carry the current for the ordinary sigto carry the current for the ordinary sigpracticable. In addition to the mechanpracticable. In addition to the mechan-
ical difficulties was the fact that these ical difficulties was the fact that these
cables alone would cost nine hundred cables alone would cost nine hundred dollars. A reflecting periscope was therefore adopted. When a prospective passenger on a floor above presses the signal button, an electric lamp is lighted, the rays from which are reflected downward so as to become visible to the operator of the ascending car.

Fifty-five thousand feet of telephone cable, containing 460 miles of copper cable, containing 460 miles of copper
wire, enough to reach from New York wire, enough to reach from New York
City to a point 22 miles beyond Buffalo, City to a point 22 miles beyond Buffalo,
were required for the building. This were required for the building. This
house cable weighs about 20,000 pounds, or Io tons; and the weight of the copper alone is between two and three tons. These wires connect with a distributing frame having a capacity of 4,000 lines.

The estimated cost of the telephone cable work was $\$ 6,500$.

The initial estimates for power and lighting conductors for the General Electric contract alone involved the placing of an order for 271,000 feet of twin conductor, equivalent to over one hundred miles of single conductor; and a rough estimate of the total length of wire and cable required for the entire power and lighting equipment would approximate three hundred miles.

Two hundred are lights and 2,000 incandescent lamps were used in the course of the construction work on the building, and the work required the use of $\mathrm{r}, 200$ horse-power in electric motors. A force of 6 electricians was kept constantly busy making changes in the wiring, as the work progressed.
More than fifty miles of piping were used in the plumbing installation, and the total cost of the latter exceeded $\$ 100,000$. Special precautions were necessary to provide for the contraction and expansion of the vertical pipes, and the problem was met by forming a loop in each pipe at every sixth floor.
In place of the usual clumsy method of vacuum cleaning by means of a gasoline engine in the street, and leads of hose to the rooms above, the building
will be piped throughout for a plant vacuum system, with convenient outlet boxes in every office. Vacuum will be supplied by motor-driven exhaust fans in the basement, and utilized by portable vacuum cleaning tools which can be carried about the building. The terrors of spring cleaning will therefore never ruffle the tempers of the tenants.

A large swimming pool is located in the basement and a public luncheon club on the 28 th floor.
Twenty-one thousand tons of steel were used in the construction of the frame of the building, and 50,000 tons of brick were required to cover it. Five hundred tons of terra cotta formed the partitions and floors. The building is 790 feet from the street to the base of the flagpole. The main structure is 29 stories high, has a frontage of 152 feet on Broadway, and a depth of about 195 feet. The total cost approximates $\$ 7$,500,000. Excavation was commenced on November 2, 1910. The design is a combination of the French, Italian, and Modern Renaissance schools of architecture. The structure, when seen from a distance, has the stately dignity of a cathedral. The Thompson-Starrett Company was the general contractor; Cass Gilbert was the architect.

how the woolworth bullding beaks up the sky line

The Practical Electrician
 A Popular Course in Electricity on the Conatruction of Electrical Apparatus and Experiments to be Coinducted with them
 BY PROFESSOR W. WENER, of the Univertity of Eyplingen, (Germavy)
 CHAPTER IV
 (Continued)

131. Direction of Current and Lines of Force
(1) Rule of Direction. The end of the iron, which is nearest to the observer, is a north pole, if the current (positive) flows counter-clockwise, and a south pole when it flows clockwise. (See Fig. I92.)
(2) Pen Rule. If the pen-holder be the wire and if the current flows in the direction of the ink, then the north pole is at the thumb.
(3) Maxwell's Corkscrew Rule. If the current flows in the direction in which a corkscrew turns, the lines of force flow in the direction in which the corkscrew moves endwise. That is, if the current flows around a core, with a right-hand
 twist, the north pole of the magnet is at the far end of the core.

A closed fron ring, stl rrounded by a circu-
lating current is poleless; it is an electro magnetically generated toroid. The magnetization reaches a high value with the least magnetic resistance of the material. Such electro-magnets are, therefore, used in determining the magnetic peculiarities of the various sorts of iron.
132. Dimensions for Three Forms of Electro-Magnets
(a) For a ringing apparatus with a bell of 3 inches diameter, a straight leg 2 inches long is placed $1 / 4$ inch away from a simply bent round rod about 5/I6 inch diameter. If the bell is made $3 \mathrm{~T} / 2$ inches in diameter, the round rod is then made $3 / 8$ inch in diameter, and the leg is made 2.5 inches long.
(b) For the magnetizing of steel rods and the production of the usual electro-
magnetic restults, the following measurements will suffice: diameter of the core, 1 inch; length of the core $43 / 4$ inches; distance between the legs of the core, 3 inches; yoke $=51 / 2 \times$ I \times I inches: copper wire is 0.062 inch in diameter, No. 14 B. \& S., and should be double

Fig. 193

FIG. 194

अIC. 105
cotton covered. The winding should be four layers deep. The cores project about 0.4 inch above the coils. The legs and yoke are composed of annealed wrought iron.
(c) For diamagnetic purposes. Tron core, a ring; diameter of core, I inch; outside diameter of ring, 7.5 inches; wire, 0.047 inch thick, No. 17 B. \& S., and about o.g ohm resistance; winding principally at the ends.

Experiment. A thin piece of bismuth about 0.4 to 0.8 inch long suspended between the poles by a silk thread, is placed equatorial ; that is, perpendicular to the lines of force between the poleextremities by the current from 6 Bunsen Batteries. (See Fig. 193.)

Diamagnetic substances are: Bismuth, antimony, zinc, tinn, mercury, lead, copper, ete., hydrogen, and most other

gases, and flames. While the para-magnetic bodies (iron, cobalt, nickel) absorb the lines of force, Fig. I94, their number is diminished diamagnetically, Fig. 195; that is, the paramagnetic bodies are more conductive for magnetic lines
than the air-the diamagnetic, less than air.

Experiment. Plücker placed between the pole-extremities of a very strong elec-tro-magnet 0.14 inch apart, a quietly burning tallow candle, making no soot, and held the same between the pole extremities so that the latter were $7 / 8$ of

FIG. 199
the original height of the flame above the tip of the wick; Fig. Ig 6 shows the appearance of the flame in this case where the current was on.

As the flame was raised, so that the pole-extremities became $1 / 2$ their original height above the wick, the flame acquired shape shown in Fig. 197.
Finally, the candle was raised so high that both pole-extremities were just even with the tip of the wick, and the flame cooled, because of the iron poles, did not burn with its full light. When the current was shut off, it not only recovered its former light, but burned more intensely, as it had been forced down and acquired the form shown in Fig. Ig8.
A very smoky light gives entirely different results

A soap bubble filled with hydrogen, if brought between the extremities of the poles is burst
I33. Electro-Induction

Erperinient. (I) If two conductors, AK and $\mathrm{A}^{1} \mathrm{~K}^{1}$, Fig. I99, be placed parallel to each
other, for ex-
ample, a twin conductor, 30 feet long, as is used in as is in g branch
 circuits f or
electric light,
and to one wire a battery, B, be connected, with a key, S, while to the other a very sensitive galvanometer, a movement of the needle of the galvanometer would then be noticed every time that the key is pressed down. This movement is only transitory, and proves im-
mediately that the current diverting the needle is opposed to the generating (inducing) battery current. If, after the needle has come to rest, the key is opened, the needle is again deflected, but in the opposite direction. The battery current is also called the primary or main current, and the current passing through the other conductor the secondary, in ducing or galvanic induction current or also ad joining current.

If the double conduc
If the double conductor be pulled into a piece of gas pipe, the induction force is increased considerably, because the number of lines of force are increased in consequence of the great permeability of iron.
(2). Experiment likewise with two flat coils, Fig. 200, one over the other or with copper wire coils, fastened to either wood, glass or slate. The force of the individual turns is adkled up. This contrivance serves also to demonstrate the induction or influence by means of the discharging spark of frictional electricity.
(b) Fundanental rule for electro-magnetic or current induction. With the formation of a current in a conducting circuit, there is induced in every neighboring closed circuit
 a momentary current; with the decrease another current is induced, but its direction is opposed to that of the first induced current.
(2) Experiment. Upon two square boards, whose sides are about 30 inches long, large coils of instulated iron wire, 0.12 inch thick, No. 8, B. \& S., are fastened; connect a strong battery and a Morse key to the poles of one and to the poles of the other, a telephone, and then support the boards parallel to each other; the current interruptions generate induction currents in the telephone up to a distance of about 20 feet.

A careful research demonstrated that a distance of 2500 feet can positively be covered in this manner by means of a current of I ampere with coils of 9 turns, iron wire 0.165 inch thick, No. 6 B. \& S., and with the diameter of the coil 7.15 inches.
(3) Analogy. A vibrating tuning
fork produces a distant, even toned sound through the waves of air; in similar manner do moving magnets and primary currents set up alternating magnetic lines, and these, cutting across a secondary wire, induce currents in the same.
134. Magnetic-Induction
(a) Using about 20 feet of insulated copper wire of $0.03{ }^{1} 5$ to 0.0394 inch diameter, No. 18 or 20 B. \& S., and a shell of wood or cardboard, make up a

FIG. 202
coil about 4 inches long and having a hole through it about $7 / 8$ inch in diameter, with square or round extremities of wood about 0.4 inch thick (see Fig. 201), connect the ends of the wire to a galvanometer placed at a distance and vanometer placed at a distance and
plunge into the coil a strong permanent magnet of about $5 / 8$ inch diameter and 8 magnet of about $5 / 8$ inch diameter and 8
inches long. The needle shows a momentary deflection.

Observe, I, the deflection of the needle when the magnet was put in the coil to the center, then from the center to the other end; 2, likewise when withdrawing the magnet. Turn the magnet end for end and again notice a and b. Hold the magnet firmly and move the coil, and then again notice the peculiar actions.

The current generated by the movement of a magnet through a conducting coil is called magnetic induction current.
Note:-With this coil and a strong battery, the hard steel rod may be magnetized, if while the current is flowing through the coil, the rod is moved to and fro more or less and the current is cut off while the rod is still in the coil Instead of moving the steel rod, one can also hold it in the coil and shake it violently by striking it with a mallet.
(b) Wind around a soft iron rod about 6 inches long and 0.4 inch thick a
single layer of insulated copper wire, the same size as used on the above coil, and move the electro magnet up and down in the coil as before with the magnet, while the current of a strong battery flows through the winding on the rod; the galvanometer needle will make stronger movements than before because this time the magnet and current induction work together. Observe again the four possible cases. Instead of moving the prisible cases. Instead of moving the pri-
mary coil, the primary current can be mary coil, the primary current can be
broken up by means of a cog wheel, the broken up by means of a cog wheel, the positive current is led to the spring against the wheel, then from the ing against the wheel, wheel itself to one en coil and from the coil back to the battery. (See Fig. 202.)
(c) Explanation by means of the Lines of Force
The electro and magneto-induction experiments described above tend to demonstrate a relation between the magnetic and the electric currents. If a coil is in a magnetic field, whether the field be produced by means of a magnet or primary coil, a current will be induce in the coil whenever a change is made in the magnetic field; that is, that the conductor or the magnetic field change their positions.
Let us observe the case with a magnet pole. The ray-like lines of force radiating in all directions in space, as they leave the pole, spread out further from one another, so that if we move a copper ring perpendicular to the axis of the magnet, it will cut through more or less lines of force in proportion to its closelines of force in proportion to its close-
ness to the pole; likewise, the strength of ness to the pole; likewise, the strength of
the induced current in the ring will vary

in proportion to the closeness of the ring to the magnet. (See Fig. 203.)
(d) Fundamental rule for magnetoinduction.
Whenever a conductor is moved in a magnetic field, there is produced a change in the number of lines of force cut; also there is set up in the conductor
an EMF and its value is dependent upon the number of lines of force cut in a unit of time.
(e) Induction finds application in magneto and dynamo electrical machines and motors, in induction apparatus, in telephones and in transformers.
(f) Rules for Direction of Current.
(I) Maxwell's Rule. If in any action in a loop conductor, the number of lines of force are diminished, there will be a clockwise current induced, but if they are increased a counter-clockwise current is induced. It is assumed that the lines of force from north to south pole are flowing toward the observer.
(2) Right Handed Rule. Fig. 204. Hold the right index finger in the direction of the lines of force and the thumb stretched out in the direction of the

movement, the induced current will then flow in the direction of the middle finger.
(3) Conversely hold the right index finger in the direction of the lines of force, the middle finger in the direction of the current, then the thumb at the right of the other two fingers points in the direction of the movement.
(4) Lenz's Rule. (1836) By means of a movement of a conductor in a magnetic field of force there is always a current induced in such a direction that reacting electro-magnetically upon the field, it tends to oppose the movement.
(g) Rule. The EMF of induction currents increases: (I) With the number of turns of the secondary coil; (2) with the strength of the generating magnet or with the number of turns of the primary coil and the strength of the primary current; (3) with the number of alternations in a unit of time, although with a larger number of alternations, the increase is slower than with a smaller
(Continued on page II6)

ALARM CLOCK STARTS BREAKFAST
For cooking breakfast with the least amount of work in the morning, when time is usually so precious, the outfit shown in the illustration probably takes the prize. In this kitchen the food to be cooked is put into the electric cookers the night before; the alarm clock is arranged to close the circuit to each cooker

at whatever time the clock is set for When that time is reached the current comes on and by the time the family is ready to eat breakfast is all ready to serve.

GRAMERCY WIRELESS CLUB.

At the fifth semi-annual election of the Gramercy Wireless Club the following officers were elected to serve for the ensuing term: President, James Platt; Vice-President, Jas. Quigley; Recording Secretary, Helmuth Hoepfer; Corresponding Secretary, John F . Diehl, 207 East 25th street; Treasurer John Gebhard

Our two years of activity have been prosperous and we are hoping for great advancement in the coming year.

The Electric Aerial Line at Kohlererberg, Near Bozen

By Frank C. Perkins

A
PORTION of the electrically operated acrial railway up the Kohlererberg, near Bozen, in the Tyrolese Alps, may be seen in the photograph on the opposite page. This installation shows one of the best solutions of the problem of transporting goods and passengers up heavy inclines, such as a mountain side or irregular formation.

The illustration gives a good idea of the tremendous grades which are encountered.

The cars are suspended from cables and are as comfortable as a modern electric car, and travel in a smooth and easy manner.

The Kohlererberg aerial line has a total length of 1,650 metres, or a little over one mile. It is carried by 12 structural steel towers, the highest of which is about 27 metres, or albout go feet above the ground, and a distance of 430 metres, or about a quarter of a mile, from the lower station. The passenger cars are each capable of holding I5 passengers and the driver, and two cars travel, simultaneously, each way at one time. The speed is 3 metres, nearly to feet, per second, and in thirteen minntes a difference of level of 840 metres, a little over half a mile, is traveled.

Each car is pulled by two traction cables, which are operated from a power station placed close to the line. The object of duplicating the cables is to secure safety in case one of the cables should break, and the same means is adopted in connection with the suspension cables.
The cars are supported from a traveling mechanism or trolley carried by eight pulleys, four of which ride on each of the two suspension cables. Each of the steel cables on which these pulleys travel is 44 millimetres, $13 / 4$ inches, in diameter. The cars can swing like a pendulum, but a brake retards any indue oscillation. All fear of derailment due to oscillation sideways is avoided by the fact that the carrying cables themselves swing with the car.

The drive is by electric motors, and in order to secure immunity from breakdown of the transmission system, even if the power plant fails to operate, a storage battery is installed which can furnish sufficient power to operate the line. To provide communication, a system of telephones and electric signals is installed, and the driver of a car can communicate with either the upper or lower terminal station from any part of the line.

The cars cannot be started before the necessary signals have been given between the two stations and confirmed, so that there is no danger of mistake. In addition to this, safety is most efficiently studied in comnection with every detail of the equipment.
The traveling mechanism of the car contains two braking arrangements which operate antomatically if there is an excess of speed. The same device operates if either of the carrying cables breaks or if a break should occur on cither one or both of the hauling cables. In addition to their automatic action, the operator can put the brakes into service by hand, the operation being simple and quick; and when this catching device is put into action steel jaws grip the carrying cables at eight different places. The friction is sufficient to hold the car firmly in position even on the steepest incline, and, simultaneously, by the movement of the same mechanism the supply of electricity to the driving motor is stopped and the brake is instantly applied at the hoisting drums.
To provide further security and insure the safety of the passengers in the event of a breakdown, there is a spare car kept at each station in readiness to go to the point where the ordinary car is left suspended, to transfer the passengers and bring them back to the nearest station.

The regular passenger car is also fitted with a special device in the floor by means of which it is possible to lower the passengers to the ground from the

The ear uhich carries fifteen passengers travels up the mountainsith on steel cables. Though it looks datgerons it is perfectly saie
car direct. This hoist is fitted with a brake to prevent undue speed of the descent. Should the driving gear of the whole line break down, thus stranding the cars in the middle of the route, an the ciliary winder is available for bringaxiliary winder is available for bringing the cars back to the terminal stations. It is clamed that this application of electric traction has been so carefully designed in all its details that absolute safety and reliability of service is assured. In this aerial system of transmission a great number of difficulties have been avoided which would otherwise have been encountered in proceeding over such a rough and mountainous section of route, and the service has been most successful since the line was opened.

SMALL OUDIN RESONATOR

 (Continued from page 105) metallic rod that he is holding. With his other hand he takes hold of one wire that is soldered to the light while the other person who stands on the floor and is grounded takes the other free wire. The lamp will light up to full incandescence if the apparatus is properly tuned without the persons feeling any shock at all. The reader can invent many interesting experiments that when operated in a darkened room will show many beautiful and weird effects.The reason that the high frequency currents do not shock the person is that high frequency currents travel on the surfaces of conductors and do not penetrate very far into the wire. It takes 25,000 volts to jump a one-inch gap, so if the operator is taking a four-inch spark he is receiving in his body a pressure of 100,000 volts, although the current may only be I/ooo ampere.

PRACTICAL ELECTRICIAN

(Continued from page II3) number; (4) with the resistance of the winding of the secondary coil; (5) with the closeness of the primary and secondary coils to each other; (6) with the introduction of a soft iron rod or bundle of iron in the inducing primary coil; (7) the opening current dies out quicker
than the closing current, but both currents deliver the same quantity of electricity; (8) the resistance of the primary coil, also that of the source of current; (9) every induction current lasts only a moment; (10) the quantity of electricity set into motion is not dependent upon the duration of the change.

> (To be continued)

A CORRECTION

I wish to offer a correction. In the February issue of Modern Electrics, "Practical Electrician" Department, you published a diagram for an electric incubator. It appears satisfactory from the electrical standpoint,

but from the egg standpoint it would be impractical, since the heat must be applied from above. The reason for this is the construction of the egg. First is the shell, immediately under which is a thin membrane; under this is still another membrane, which separates from the first membrane at the large end of the egg, leaving the air space marked A, in the accompanying sketch. All life starts at the life spot, L, which is always up, and for this reason the heat must be applied from above. The yolk, Y, swings on the cords, C and C, thus allowing the life spot to be up at all times. W is the "white" of the egg.

I learned the above quite recently from Otis Crane, the "Chicken Man" with the Purdue Short Course, which is canvassing my state, giving three-day instruction courses.-T. Raymond Watts.

Electricity From Air New Great Discovery

By Dr. Leonard Keene Hirshberg

11ORKING quietly in the heart of Baltimore for weeks on an invention which some critics say will revolutionize the method of converting electricity to practical use has been Roy J. Meyers, who like Benjamin Franklin, extracts the electric current from the air.
Mr. Meyers' invention was made last summer while he was confined in the penitentiary at Florence, Arizona. His first finished apparatus was made in Baltimore.
A practical, unlettered electrician, Mr Meyers, while in Arizona, was arrested on a comparatively minor charge and sent to the penitentiary. There he was placed in charge of the prison electrical plant, and there he says he made his discovery that the current which the civilized world is beginning to luse most extensively for light and power could be transformed from the atmosphere without the aid of moving machines or batteries.
Miss Kate Barnard, Commissioner of Charities and Correction, of Oklahoma, hearing of Meyers invention and of his desire to have it patented, appeared before the Arizona legislature to make an appeal in behalf of the young convict. As a result a special bill was passed which granted Meyers a month's leave of absence on parole. He went unaccompanied to Washington, filed his patent applications and returned to the penitentiary. Since then he has been indefinitely paroled.
He came to Baltimore as the place where he could easily obtain the mechanical parts needed to make a more nearly perfect machine than the crude model he had fashioned in the penitentiary workshop, and is making his headquarter here while working on his invention With him is W. E. Chenot, who has been his assistant in assembling and testing the machine and who says that he has bought Meyers' patent rights for Germany.

They have proved beyond doubt that
the invention is practical and that when inally brought to a state of perfection it will introduce a new epoch in the indus trial use of electricity. By Westinghouse meters they tested the strength of the current gathered from the air, and ith with the use of only two of the four rectifying transformers the voltmeter recorded four and one-half volts, and the ammeter, which had the capacity of recording 75 amperes, was broken by the force of the current.

The machine itself is simple. It is in reality a transformer, which is familiar to anyone knowing anything at all about electricity in its practical uses. On a high tripod, which resembles somewhat the framework of a windmill tower, is the transformer, which Mr. Meyers calls his "absorber." It is made up of an iron core, wrapped with copper wire The secret of the invention is the manner in which the disks composing this "absorber" are magnetized, and this secret Meyers says he found by accident while at work in prison.
What the machine, when finally perfected, will do is yet to be seen. Its in ventor claims that it will greatly reduce the cost of making electricity. No batteries of any kind are needed, he says, and not a part of the machine turns upon the other. It is as durable, apparently, as an electric light pole. One of these machines, says Meyers, when perfected may be placed on a vehicle and transform enough electricity to give motive power, be that vehicle a locomotive or an automobile. He declared it can be placed on a building to furnish electric lights or power, and that the only wear will be upon the machinery which its current runs.

Meyers is thirty-four years old and he gained his knowledge of electricity by working in shops along the Pacific Coast. The depths of the mysteries of electricity he has not explored, but he is certain that he has found the means of absorbing it from the air and of converting it to the use of mankind.

Derivation of the Electromagnelic Wave Formula

By L. R. Jewett

师
NY wireless entlusiasts often use the well-known formulae for computing various wave-length values, but never know theit theory or derivation.
An elementary and simple explanation will be given to show how the for mula for the calculation of the length of an electromagnetic wave is worked out. When a formula is worked out it is generally done by substituting certain known values in an algebraic equation

Take the well-known formula (Ohm's Law) for clirect current:

$$
\begin{equation*}
I=\frac{E}{R} \tag{1}
\end{equation*}
$$

Where $\mathrm{I}=$ current in amperes.
$E=$ presstre in volts.
$\mathrm{R}=$ resistance in olmos.
This formula can only be used for alternating current when neither indluetance nor capacity are present in the circuit, such as measuring the current through incandescent lamps.

Now, if an alternating circuit contains both inductance and capacity, we must change the formula accordingly. The following formula, which has been compiled by actual work, is the statement of Ohm's law in such a circuit.

Where:
$\mathrm{I}=$ Current in amperes
$\mathrm{E}=$ Pressure in volts.
$\mathrm{R}=$ Resistance in olims.
$\mathrm{I}_{\mathrm{C}}=$ Inductance in henries
$\mathrm{C}=$ Capacity in farads.
$n=$ Trequency or cycles per second.
$\pi=3.14159$.
In the above equation, we may either increase the numerator or decrease the denominator. We have made E as large as possible and we now make $2 \pi n \mathrm{~L}$.
equal to $\frac{\pi}{2 \pi+7 C}$, causing them to cancel
out. Then $I=\frac{E}{R}$ and I is a maximum. This condition is known as resonance

Thus, this is true when neither inductance nor capacity are in the circuit or a condition of resonance is present.
I_{1} the transmitting circuit of our wireless telegraph, we wish to radiate the maximam amount of current from the aerial. When this is true, we have resonance, and the closed and open oscillating circuits are in that condition. Then, in equation (2), this would be
trae when $2 \pi \pi \mathrm{H}=\frac{\mathrm{I}}{2 \pi n \mathrm{C}}$
and equation (2) would reduce to equation (t).

$$
\text { Now since } 2 \pi n \mathrm{~L}=\frac{1}{2 \pi n \mathrm{C}}
$$

$4 \pi^{2} n^{2} \mathrm{~T}, \mathrm{C}=\mathrm{I}$, or $n^{2}=\frac{1}{1 \pi^{2} \mathrm{~L} \cdot \mathrm{C}}$ and
taking the siptare root

$$
\begin{equation*}
11=\frac{2 \pi \sqrt{\mathrm{LC}}}{2} \tag{4}
\end{equation*}
$$

The velocity of any wave equals the morlict of its wave-length and its frefuency, thus

$$
\begin{equation*}
\mathrm{v}=11 \mathrm{w} \tag{5}
\end{equation*}
$$

Where $\mathrm{y}=$ velocity of the wave. $11=$ frequency of the wave. $w=$ wavelength of the wave.
Then, substituting the value of the frequency, 11, in equation (4) for the vilue of, 11 , in equation (5) we have

$$
v=\frac{W}{2 \pi \sqrt{L C}} \text { or }
$$

$\mathrm{w}=2 \pi \mathrm{v} \sqrt{\mathrm{LC}}$
Where $w=$ wavelength in metres
$\pi=3.14159$
$\mathrm{v}=\mathrm{velocity}$ of electromagnetic waves or $300,000,000$ meters per sec.
T. = inductance in henries.
$C=$ capacity in farads.

In tgog the telegraph and telephone companies, together with similar concems that use electric wires in this country, expended over $\$ 7,000,000$ in the purchase of poles.

LARGEST CLOCK RUN BY ELEC- THE "INSIDES" OF AN ELECTRICITY IS LOCATED IN

BOSTON

The clock, said to be the largest in the workd, is part of an electric sign in Boston, Mass.

The outside diameter of this clock is 34 feet, the height of the numerals on the face is 5 feet, the length of the minute and the hour hands are is feet and 14 feet, respectively, and the decora tive and lighting effects are obtained by 6,500 incandescent lamps of many colors. The electric fountains on each side of the clock contain 1,480 lamps.
The operating mechanism of this clock is controlled by a master clock, whic antomatically closes an electric circuit once ever minute, thus operating a $1-20$ horsepower motor, which in turn moves the minute hand of the secondary clock throughout a space on its dial equal to one minute and then the motor is automatically cut out again. The operating mechanism is arranged so that when the master clock requires setting, through a synchronizer, the secondary clock is caused to indicate the same time as the master clock. This feature, as well as a self-winding attachment for the master clock, are features which lave been perfecterl especially for clock sigus of this character.

RATIFICATION OF WIRELESS-

TELEGRAPH TREATY

Ratifications of the wireless telegraph treaty signed at London, July 5, 1912, probably will be exchanged at the Brit ish capital within a few weeks by the thirty-one signatory powers. The Senate ratification of the treaty a few days ago paved the way for this formality, as practically all the other governments are minderstood to have approved the treaty, which will become effective July I, 1913 Ey this convention the important maritime nations of the world have linked themselves together to attain the wides range of international usefulness of the wireless telegraph without restriction as to its further development. A full transcript of the London convention and the final protocol, together with an abstract of the regulations, was printed in outr December, igi2, isstue

TRIC IRON

Among the many thousands of users of electric flat irons, many have doubtless wondered just how an electric iron is made up. The same general principles apply to all makes, and the construction, contrary to what might be expected, is very simple. All contain a resistance for converting current into heat; this resistance is surrounded by the iron proper, which applies the heat. The different parts of an iron in general use are shown in the illustration. Λ, at the extreme left

of the picture, is the conductor cord for connecting the iron to a lamp socket; all household irons can be used with either direct or alternating cturrent. B is the handle. C is the heating element, the "heart" of the iron ; it consists of resistance ribbon usually of a metal something like german silver in appeatance, but a poor conductor, and so the necessary heat is generated. The heating element, which is encased in mica, is clamped between the steel plates, D and F, which take up the heat and apply it. The ironing surface is on the other side of the plate, F. E shows the inside of the nickeled case for the iron: this case, as is shown, is lined with asbestos, which prevents the lined with asbestos, which prevents the
heat from radiating outward or upward, heat from1 radiating outward or upward,
and thus the heat is confined very effecand thus the heat is confined very effec-
tively to the ironing surface. At the tively to the ironing surface. At the
same time, it serves to keep the heat same time, it serves to keep the heat
from the person using the iron. In this iron only four screws are used; two to clamp the parts together and two for attaching the handle.

Electric smelting and refining processes are said to produce steel that is denser and more homogenous than openhearth steel of the same general composition.

TRAIN OPERATED BY STORAGE BATTERY

There sped noislessly out of the Grand Central Terminal a recent morning a railroad car propelled by electricity supplied from a set of the new high-power Edison storage batteries. It quickly attained a speed of thirty miles an hour. At Highbridge the speed was increased to forty miles and at that rate the car clipped quietly up the Hudson, over the mountains and into Boston, 310 miles away.
It was both the longest and fastest run ever made by a storage-battery car. There was not a hitch from beginning to end, scarcely a sound, and never a speck of soot or cinder. The run was made in less time than local trains of the New York Central require for the trip, but in somewhat slower time than the expresses.
Five years ago R. H. Beach left the General Electric Company and went to Edison's laboratories to build for Mr. Edison a car to which storage batteries might be successfully attached. For four years he experimented, constructing cars and then smashing them, spending in all about $\$ 150,000$ at the task Last year a car similar to the one which ran to Boston recently was completed and pronounced suitable.
In general appearance it does not look unlike a subway car, but it is much lighter. For endurance the inventor has disregarded the old principle in car construction which counts weight the chief factor in stability and has depended almost entirely on flexibility.

The essential difference in the car however, is that the wheels are free on the axles and rotate separately, the motor being attached to each wheel by a chain. This device makes it possible to propel the car with one-half the energy that would otherwise be required.
It is estimated by Mr. Beach that the battery car can be operated at a cost
of 16 cents a car mile, while a standard steam train car is operated at an average cost of $\$_{1}$ a mile. The battery car can be stopped and started at an inappreciable cost, while the same operation with a steam train is estimated to cost $\$ 5$ The new car, batteries and all, is sold for $\$ 18,000$. It has a seating capacity of sixty persons and will run 120 miles with one charge. An hour is required for recharging

The car is designed principally for short runs where frequent stops are necessary and for use on branch lines, called "suckers" in railroad vernacular, where there is not enough travel to make the operation of steam passenger trains a paying business.-Dr. L, K Hirshberg.

OUT GF THE DEEP

BN sat at his tuner one cold winter eve, The receivers clasped tight to his ear. ITwas an SOS from the SNA
He received by the Ether so clear.
He called DR with a vigor and vin, But no anszuer could he get,
For NF was asleep on an
And he may be asleep there jar rack,
So he called CX till his aerial glozved From his 15 K.W. of power,
But, alas, 'twas too late, 'tis sad to relate,
rem hour.
So Buffalo he called, they answered OK He told them a boat was in trouble, To them they must hurry and quickly give aid Or the boat zould go like a bubble.

They answered, "Too bad, but we can'i give aid,
There's not even a tuy boat here."
He must give them assistance as quick as he This course secmed to him to be clear.
He ran 'cross the snow to Lake Erie, you see And at Cleveland he ended his run He swam out to them with a load of buckshot,
And tied to his neck was a gun
He yelled to the people, "Hands up, if you please."
He commanded the people with, "Do as If say,
If you wish to be saved from the drink.
Drop your money and valuables into a bag, And throw them over to me."
And 'til Buffalo sent out assistance to them He held the whole boat up, you see. -Worth Chatfield.

ARLINGTON "WIRELESS" RECEIVED 2400 MILES AWAY IN DAYLIGHT

The United States scout vessel Salem, which has been cruising in the North Atlantic Ocean testing the transmitting range of the new government wirelesstelegraph station at Arlington, near Washington, has reached Gibraltar Despite the difficult sending conditions usually imposed by full daylight, the Salem was able to receive complete messages from the Arlington station when at a distance of 2,400 miles. Night transmission distances were considerably greater. The station at Arlington is rated at Ioo-kw, but it is reported unofficially that not more than $70-\mathrm{kw}$ was used. With its own Io-kw set the cruiser returned messages to Arlington at 1,300 miles. Both the Arlington and the Salem equipments are of the Fessenden type. The Salem reports an extremely rough eastward crossing. It has started on its homeward trip, during which the wireless experiments will be continued.

NECESSITY IS NOT ALWAYS THE MOTHER OF INVEN-
 TION

There is in London a man who surely must combine the two characteristics of laziness and invention to a remarkable degree. It is his custom to have his breakfast in bed, and, burdened with the trouble of getting out of bed for the purpose of unlocking his bed room door, he has invented a door which opens to his whistle
He has accomplished this somewhat remarkable feat by means of a simple electromagnet which draws the bolt when a current passes through it, a platinum point, and a piano wire attuned to a certain note. When this note is sounded the wire vibrates in response, and this vibration brings it in contact with the platinum point. The circuit is thus completed and a sensitive relay is brought into operation and magnetized thus drawing the bolt-Electroforce

A NOVEL POCKET WIRELESS

The name "pocket wireless" is generally applied to any set which can be handily carried about. Here is a receiving outfit, however, which can actually be slipped into the vest pocket. It comprises the three most necessary instruments, tuner, detector and fixed condenser.

The case is an ordinary mahogany watch-box, such as may be obtained at any jeweler's. In making the tuner (seen in cover) a quantity of No. 30 en(seen in cover) a quantity or No. 30 en-cigar-box wood, just large enough to fit the case. The slider is of the ordinary type, though somewhat smaller.
Some trouble was experienced in

planning a detector which would fit so small a space. The result, however, may be clearly seen in the illustration. The thumb screw was taken from an ordinary telegraph key.

A condenser of the usual tinfoil and paper variety is contained in the box at the extreme right of the case. The leads are brought out through two battery binding posts.

An ordinary umbrella serves very well as an aerial, while the ground may be taken on any convenient hydrant. A loop aerial ten or twelve feet long works exceptionally well, and in this case, no ground is needed.-Charles L. Hedwell.

QUITE SHOCKING

The storm caused giant trees to yield; The quarries. éen, were rocked; The lightning Alashed, and in the field All of the grain was shocked.
This verse vou see in print to-day, Electrical and light,
Because 'twas written in a way That made its meter right
-Howard C. Kegley.

SEALED PRIMARY BATTERY

The Burn-Boston Battery \& Manufacturing Company, Boston, Mass., has recently brought out a form of dry cell known to the trade as the "Noloss battery. The general design resembles that of the company's standard carbon, zinc and sal-ammoniac cell. It is waterproof and moisture-proof and is built in two sizes having capacities of 30 amp.hr. and $50 \mathrm{amp},-\mathrm{hr}$. The mantufacturer contends that this cell will last from five to seven times as long as ordinary dry cells at a little more than double the first cost of the latter, and that this proportion is increased in case the dry cells depreciate while standing. This cell is recommended by the maker for service where batteries alone are depended upon for ignition, without storage cells or a magneto, on two-cylinder and four-cylinder automobile engines,

with ordinary vibrating coils. On motor boats it is usual to ignite onecylinder 2 -cycle and two-cylinder 4 cycle engines for one season without attention, when tised for pleasure purposes, on six cells of this type under fairly dry conditions. The battery is designed with a zinc connection composed of a flexible wire permanently soldered under the sealed top, and the carbon terminal is provided with ack-nut washer. As shown in the ac companying cross-section, the cell is companying cross-section, the cell is
compact and can be easily filled by a compact and can
medicine dropper.
medicine dropper.
This type is also specially designed
for unse in connection with bells, tele phones, electric clocks, antomobile tail and side lights, railway signaling, electric gas lighting, medical coils, mimiature motors, fire-alarm systems and similar electrically operated appliances.

WIRELESS TRAIN DISPATCH-

 ING ON THE LACKAWANNA R. RThe Lackawanna Railroad is equipping its stations at Scranton, Pa., and Binghamton, N. Y., with wireless-telegraph transmitting apparatus capable of sending messages 65 miles. The trains which pass these points will be fitted with receiving devices so that orders, messages, etc., can be transmitted directly to the train crews while ranning at full speed. Besides the regular work of train dispatching it is also planned to use the "wireless" to deliver messages. to passengers, transmit news, ctc. Mr. T. B. Foley is superintendent of telegraph for the Lackawanna. If this initial installation proves satisfactory. initial installation proves satisfactory,
wireless apparatus will be installed wireless apparatus will be installed
throughout the system. - Electrical Whrougho
World.

An Elertrir Ainhthnare

I had a dream the other night, When all wias dark and still; I thought I zus in a 'lectric car, I speedin' doz'n a hill.
A'lectric warmer at my feet, O'er my head a 'lectric fon:
The speedometer run so fast, I couldn't see the hand.

I thought my time had surely come, I saw a bright light ahead;
It secmed to me Id reached the moon. 'Twas th 'lectric light instead.

Just then I heard sweet music, Borne faintly to my ear: 1 woke and trias the lectric 'larm A ringin' loud and clear. -1. L. Stafford.

Knowledge About Thunder Storms

By Dr. Leonard Keene Hirshberg

For the oldest inhabitant, it harelly seems that nearly two hundred years have rolled through corridors of time, since Benjamin Franklin brought proof that the lightning of a thunder storm, is actually electricity. But even Franklin and all of the scientific observers since then-until recently-were mable to explain the mystery of its origin. Briefly the electricity or lightning that accompamies a thunder stom remained one of mature's secrets until Dr. G. C. Simpson, of Simta, India, performed his series of brilli:nt experiments. Dr. Simpson by the use of an antematic rain gatuge, measured the amomit, the rate, and the lime of the rainfall, and simultaneously there was recorded at two minute periods, the discharge of lightning from the thunder clouds.

The severe storms of India, called monsoons prevail in the spring and stummer, so he was able to obtain measurements of several thousand two-minute discharges of his electrometer.
Much to the surprise of many scientists, Dr. Simpson discovered that the lighthing sent u1s, at times, negative electricity. Dut there was over three times as much positive electricity sent earthward, as there was the negative kind Furthermore, the period during which positive electricity accompanied the fall ing rain, was two and a half times longer than the period during which the negatively charged rain was precipitated.
Mr. W. J. Humphreys in his "Phys ics of the Atmosphere" calls attention to these and other facts. He says that negative electric currents occur in thunderstorms less frequently than positive currents, and the greater the current density the greater the preponderance of the positive currents. Dr. Simpson of course brought out these facts and others in his experiments. The charge carried by the rain is generally less than six units for each fifteen drops of rain or
water. There are, however, at times larger charges.

When rain fell at a slow rate, the electric charge increased as the rain decreased and decreased in amount as the rain increased. When a long wet spell occurred, that is when the rainfall lasted sometime, the lightning was more often negative than positive. But there was no constancy in this, for the reverse was also found to be true

Not only did Dr. Simpson make these careful observations upon thunderstorms in nature, but duplicated natural conditions in his laboratory and there also devised numerous brilliant experi ments to confirm his discoveries. He even produced miniature thunderstorms artificially; he produced blizzards, hail storms, disintegrated drops of water by the air pump, and found in every case that both positive and negative electricity was made, but that three times as much negative as positive electricity resulted.

A vigorous uprush of air is always associated with thanderstorms. If this uprush of air is as much as tenl yards or more per second then, says Dr. Humplreys, no water will drop; hence no rain falls. That is to say no rain drops fall nearly as rapidly as this and theretore the uprushing air prevents rain. The drops that try to fall are torn to smithereens and the ensting spray is carried upward as it evaporates.

Thus you may sce how the powerful uprushing air-currents inside the thick, darkening clouds, break up and give positive electricity to the big rain drops. These big drops sooner or later reach a point where the upwhiring air is no lonper rapid enough to keep them from falling. Then the rain descends and the drops are charged with positive electricity. Thus the bulk of descending rain and lightning is positively charged electricity. So also is the greater part of the storm. The outlying edges of the show er as well as the smaller drops are usually charged with negative electricity.

MOTOR CUTS ENSILAGE AND
BLOWS IT INTO SILO
A progressive Ohio farmer uses a motor for running a fodder cutter and also to run a blower that forces the fodder into the silo. The cutter and blower are placed beside the silo and belted to the placed beside the silo and belted to the
motor, near by. As the fodder is cut, motor, near by. As the fodder is cut,
it is forced by the blower up into the it is forced by the blower up into the
silo through a sheet metal pipe. This silo through a sheet metal pipe. This
arrangement does the work in much less arrangement does the work in much less
time and with less work than is required by the usual method of carrying it up

a ladder one armful at a time, or by other methods. The three-horsepower motor, which weighs only roo pounds, is easily moved, and is also used for other duties on the farm, such as running a corn sheller, a root cutter, a churn, etc. Power is taken from transmission lines and connection boxes are located near the silo, in the barn, and in the churn room.

COMPULSORY WIRELESS IN NEW ZEALAND

The Union Steamship Company has been informed by the Minister for Marine that there will shortly be put into operation in New Zealand regulations making it compulsory for passenger ships to carry wireless apparatus. The minister suggests that it might be advisable for the company to have wireless installed on the Wahine, the new steamer which is coming out for the Welling-ton-Lyttleton ferry service, before she leaves home. The Maori will also have to be equipped with a wireless installation.

PLUG AMMETERS AND

 VOLTMETERSThe accompanying illustration shows a type of ammeter (or voltmeter) specially designed to enable current or voltage measurements without the necessity of breaking existing connections in any

wiring installation or making special temporary connections thereto.

The instruments are arranged for attachment to either Siemens' cartridge fuse fittings or Edison type fuse boxes, fuse fare fire firrent or alternating current circuits. Any desired ternating current circuits. Anmeters or range up to 40 amperes in ammeters or
250 volts in voltmeters can be supplied, 250 volts in voltmeters can be supplied,
and the accuracy of the instruments is and the accuracy of the instruments is
amply sufficient for all practical purposes.

The makers of these handy instruments are Messrs. Gans and Goldschmidt, of Berlin, who also place on the market a somewhat similar ammeter mounted with lamp holders and flexible leads to enable the rapid determination of the current consumption of various glow lamps.-Electricity.

ARGENTINE "WIRELESS" SIG-

NALS REPORTED AT

NEWPORT

Operators at the naval wireless telegraph station at Newport, R. I., on March 4 reported catching messages which, it is supposed, were being exchanged between two stations in the Argentine Republic, 7,000 to 8,000 Argentine Republic, 7,000 o 1 , 000
miles distant. If these signals were cormiles distant. If these signals were cor-
rectly identified, this may be the greatest rectly identified, this may be the greatest
transmission distance yet reached with transmission distance yet reac
"wireless."-Electrical World.

The first electric railroad in the Canal Zone at Panama is being built. It is to run between Panama City and La Boca.

Using a Wavemeter

By P. Mertz

Part I-In Connection With The Transmitting Set.
7^{T} is surprising how few amateurs with their sets even appreciate results obtained with it. Moreover, owing to the new wireless law, they should be able to know how law, they should be able to know how pure, undamped wave, and the amateur pure, undamped wave, and the amateur
who can present curves showing a single, high-peaked wave, will stand a far better chance of getting a license and being heard than the one who knows little or nothing about it. This article will take up the method of using the wavemeter described by the writer in the last issue of this magazine. The directions can be applied to most other styles of wavemeters as well.
The most well-known use of the wavemeters is in getting resonance between the primary and secondary circuits of the transmitting set; in other words, to find out at what adjustments (practically always of inductance) the wavelengths of both are equal.
For this purpose a sheet of crosssection paper, such as is shown in Fig.

i, must be had, and along the last horizontal line numbers are put corresponding to the turns on the helix or oscillation transformer. In this instance it is assumed that the total number of turns
is ten. Along the extreme left vertical line numbers are placed corresponding to wavelengths from o to 200 meters. The transmitting set is then connected together, as shown in Fig. 2, with one

Fig. 2
turn of the helix or primary of the oscillation transformer included. The wavemeter is now adjusted for low wavelengths, the detector brought to a sensitive condition, and the potentiometer shiunt around the phones disconnected. It is brought to some convenient place in the vicinity of the helix or oscillation transformer (not too near the spark coil), and the slider adjusted until the sound is loudest in the phones. It may be that the slider can be moved over four or five turns without much perceptible change in the sound; in this
case the turn midway between these is taken as a basis for working. Then the wavelength corresponding to this adjustment is read off on the scale; let us assume it was of nuetres. Then on the cross-section paper, at the intersection of the vertical line corresponding to ans.

cross-section paper and follow the horizontal line corresponding to 175 metres. The points at which the helix clips must be placed can then be easily found. If, when transmitting, it is found that it is interfering with some more important message, the set can be quickly tuned to some ofher wavelength by referring to the curves.
If a hot-wire ammeter call be had, it should be connected in the aerial lead and the transmitting set adjusted to different wavelengths. It is most probable that a certain wavelength will be found where the hot-wire ammeter will indicate more than at any other. This should be adopted as the standard wavelengtly of the station, as the set is then giving forth its maximum efficiency.
Another use of the wavemeter is to determine the resonance curve of the set, from which many other things may be found.

To plot it another piece of cross-section paper should be obtained as in Fig. + The central vertical line should be marked at its lower end with the standard wavelength of the station. The other vertical lines on both sides should be marked with wavelengths from a minimum of not less than 0.9 of the standard to a maximum of not more

than I.I of it. For example, suppose the standard wavelength of the set is 175 metres, then the central vertical line would be marked as shown in the illustration. The other wavelengths would also be marked as indicated Along the vertical line at the extreme left, numbers are put corresponding to those on the potentiometer scale of the
wavemeter. The latter is then prepared the same as for determining the former curves, except that the potentiometer is left connected and the slider brought to the extreme left. The sending set should be connected up exactly as when actually transmitting, and the slider of the wavemeter (which latter has been switched on to low wavelengths) adjusted until the sound is loudest in the phones. When this proint is found the potentiometer slider is pushed to the right until any firther movement will entirely stop the sotnd heard in the receivers. The readsotnd heard in the receivers. The reading of the pointer is then noted; let us
suppose in this case it is 8.5 . Then on the cross-section paper, at the intersec-

tion of the vertical line marked 175 metres (the wavelength indicated by the wavemeter slider) and the horizontal line marked 8.5 (the current intensity at the above wavelength) a dot is made. The wavemeter slider is then adjusted to, say, 173 metres and the potentiometer slider (after having been pushed to the extreme left) is brought back unto the extreme left) is brought back un1-
til the sound is just audible in the retil the sound is just audible in the re-
ceivers. A dot is then marked at the ceivers. A dot is then marked at the proper place on the cross-section paper. This process is continued, gradually diminishing the wavelength until the en The wavemeter slider is then adjusted to wavelengths above 175 , which (readings on the potentiometer slider being taken and marked on the cross-section paper) are increased until the right-hand end of the cross-section paper is reached. These points are then joined together by a smooth curve, as shown in Fig. 4.

The general characteristics of this curve will usually be found to be about the same as those shown in the illustra-
tion. Sometimes. if the wavemeter slider is gradually moved (the potentiometer slider being disconnected) to lower and lower. or higher and higher wavelengths, a point will he found where the sound in the receivers will become greatly strengthened. This indicates a second hump in the resonance curve, and the intensity of the sound should be measured by the potentiometer if possible. This last hump should not be of a greater height than o.t the height of the principal one, according to the wireless law. In this case it should therefore not be above an intensity of 0.85 . The potentiometer would, of course, not he sensitive enough to measure this, so 1hat the best way is to judge by the sound, the potentiometer being disconnected. If it is not muth louder than when at its lowest (arljusted to a wavelength somewhere between the two humps, not outside of cither) it can be safely judged that the wave emitted lies within the conditions of the law. Of course, if it can be measured by the potentioneter (i. e., can be heard when the potentiometer is in circuit), or is otherwise judged to be violating the lav,

steps should at once be taken to remedy it.
Having plotted the resonance curve of the wave emitted it is now quite easy to determine the logarithmic decrement.

This cannot be a very accurate determination (unless the decrement of the wavemeter is found out, as will be explained later), but it is exact enough for most

things the experimenter will have to do with it.

The method to be described for determining the decrement is quite original. It consists in reducing the resonance curve to a standard maximum and wavelength variation and comparing the resulting curve with those shown in Fig. 8. This method will be found much better than to determine the decrement by laborious calculations from complicated formulas, which few amateurs understand, anyway.

A simple method of reducing the wavelength variation of the resonance curve to the same quantity as that shown in Fig. 8 is illustrated in Fig. 5. Two straight lines, A and B , are drawn parallel to each other and decimal scales laid off on each. On the smaller wavelaid of on each. On the smaller wavelengths corresponding to those on the resonance curve, Fig. 4, are laid off to
the left of the 175 metre (wavelength the left of the 175 metre (wavelength
at resonance) instead of to both right and left of this mark shown in Fig. 4. On A, numbers corresponding to those shown in Fig. 8 are marked (in Fig. 8 the ratio $\lambda_{1} / \lambda^{2}$ means the wavelength at resonance divided by the wavelength on the resonance curve). The point, C, on line, B, is found by the formula

$$
C=\lambda^{1} \pm \frac{-}{10}
$$

or, in the case of the particular resonance curve shown in Fig. 4;
$C=175 \pm \frac{175}{\text { Io }}=192.5$, or 157.5.
It will be found that these two values for C always represent the same point on line, B. Then a line is drawn through points, A and C. Another line is drawn through the opposite extremities of A and B, and will intersect the first line at point, D. Lines are now drawn from every tenth graduation on A to D . The places where these lines intersect B should be noted and marked by means of crosses on the lower part of the resonance curve, as shown in Fig. 4.

The intensity of the current (γ) corresponding to these values of wavelength are to be noticed. They are then laid off on one of two parallel lines graduated with a decimal scale, as shown in Fig. 6. It will be noticed that the points on one side of the scale do not correspond with those on the other; in other words, the curve is not quite symmetrical. Why this is so will be explained later. The maximum point (i. e., the one corresponding to the highest

value of (γ) on line, B, is then joined to the corresponding extremity on line, A, by a straight line, which is prolonged until it meets another line at point, C . This last is a projection of the straight line joining the zero points of lines, A and B. Then the several points just laid off on B are connected with C by straight lines, which are extended till they meet A. In the illustration, for the sake of clearness, in the case of some lines only the part lying between A and
B is drawn. These lines are those corresponding to the right half of the resonance curve.
A piece of cross-section paper like that shown in Figs. 7 and 8 is now to be obtained. The heavy vertical lines are numbered at their lower extremities as illustrated in Figs. 7 and 8 . A mark is then made at the intersection of the extreme right-hand vertical line and the horizontal line numbered io. (The horizontal lines should also be numbered as in Figs. 7 and 8.) Then another mark

is made on the next heavy vertical line (.99-I.OI), where it intersects the vertical line 8. (The value of γ shown in Fig. 6 on A by the second complete diagonal line from the top.) The value of γ shown by the corresponding partially drawn line in Fig. 6 is also laid off in Fig. 7, on the same vertical line. The same is done for all the heavy vertical lines in Fig. 7. These points are then joined by two smooth curves; one, A connecting the points denoted in Fig. 6 by the completely drawn diagonal lines; the other, B , connecting the points denoted in Fig. 6 by the partially drawn diagonal lines. Now, one or two curves from Fig. 8 are directly transferred to Fig. 7, as shown by the white lines in the latter The logarithmic decrement can then be approximately determined by comparing the dark curves with the light ones in Fig. 7. It will be seen that the average decrement of the two curves is about 0.23 . This, it may be remarked, is the sum of the decrements of the wave emitted plus that of the wavemeter. Say-
ing the latter is about 0.05 (roughly speaking only), it leaves a net decrement of about 0.17, which is then just about within the law. For accurate results the actual decrement of the wavemeter can be found when the latter is calibrated with a standard wavemeter (the procedure is about the same as above described for a transmitting set; it will not be given here in detail as the owner of the standard wavemeter will in almost every case be able to do it for himself).
Now it will be easily seen why the resonance curve is not symmetrical. For as the wavelength of the wavemeter is increased the resistance of the inductance coil also increases. This in turn increases the damping. For this reason, if every accurate determinations of logarithmic decrement are desired, the damping of the wavemeter must be determined for a number of wavelengths within its range. These values of decrement ar marked down on the third row of figures on the scale of the wavemeter.* If the latter were of the type consisting of a variable condenser and a fixed inductance, the resonance curve would be symmetrical, and there would be only one value of damping for the wavemeter.
Now that the damping of the transmitting set is known, it is not a hard matter to determine a curve representing the actual oscillation in the aerial. A piece of profile paper similar to Fig. 9 should be procured, and the horizontal and vertical lines numbered as shown. Then the appropriate curve in Fig. Io is laid off symmetrically on both sides of the zero

line. The plotting, from this of the os cillation curve need not be explained. It will be noticed that in Fig. Io the curves extend only as far as 12.5 cycles. If a long piece of profile paper can be had, and it is desired to plot the whole curve, ${ }^{*}$ See p. 36, April issue.
the latter may be found by the following formula :

$$
\operatorname{antilog}(2 \times \delta \times t \times 0.4343)
$$

where
$\mathrm{a}=$ amplitude
$\delta=$ logarithmic decrement
$t=$ number of cycles.
It may be explained to those not familiar with mathematics that "antilog," in the above formula, means the number of which the value within the parentheses is the logarithm. In other words, the number within the parentheses is the logarithm of the denominator of the fraction.

It might be interesting to find out how much time it takes to go through, say ten, of the oscillations. Basing our computations upon the formula ${ }^{\lambda}=300,-$ $000,000 / \mathrm{n}$, we get the formula:

$$
T=\frac{\lambda \times \mathrm{t}}{300,000,000}
$$

where
$T=$ the time taken for t cycles (in seconds).
$\lambda=$ wavelength in metres
$t=$ number of cycles.
Substituting the values in case of Fig. 9, we get
175×10
$T=\frac{175 \times 10}{300,000,000}=0.00000383$ seconds.
This means that the first ten complete oscillations in Fig. 9 occur in 0.00000383 seconds. This gives an idea of how rapid the oscillation of the current in the aerial really is.

Based upon the experiments described in this article, a great many others can be performed, such as the relations between damping and coupling, damping and a change of capacity in the transmitting circuit, etc., so that the wavemeter will become a profitable source of enjoyment and instruction. In part II of this article, the uses of a wavemeter in connection with the receiving set will be taken up.
(To be continued)

NOTICE TO N. Y. AMATEURS
The Metropolitan Wireless Association has been formed for the special purpose of assisting and benefiting wireless amateurs in Greater New York and surrounding territory. New members are desired at once; there are no dues nor fees of any kind.

The real benefits of this club are as follows: Some of our members are expert electricians, and others are wireless experts; these will assist all other members in constructing and maintainmerg sor ing good statrus and assistance will service. Instruction trying to pass the govbe given to those trying to pass the government's examination. A permanent club-room is under way, with a very complete wireless telegraph and telephone station-open to all members day and evenings. The maintenance of a reference library of books and magazines. Illustrated lectures and demonstrations.

If you have a station, or want to build one, join this club. But you must live one, Join thiles of Columbus Circle, New within 20 miles of Columbus Circle, New York.

Officers: H. Spencer Lewis, presiOfficers: H. Spencer Lewis, presiWest 63 d Street, New York.
Our own wireless message blanks furnished to all members.

ELECTRO AND MECHANICAL

ASSOCIATION OF COLUM-

BUS, OHIO.

This club was recently organized and the following officers elected: Howard Meyer, president; Robert Poole, vice president; Stephen Davis, treasurer; Fred Dennis, chairman; Lawrence Luckhaupt, operator; Chester Otto, li brarian; John Dobby, secretary, 5I2 West State Street, Columbus, Ohio.

LEXINGTON ELECTRICAL AND

WIRELESS CLUB

Recently the "Lexington Wireless Club" joined forces with the "Red Tri angle Electrical Club," both of Brook lyn, N. Y., under the name of "Lexington Electrical and Wireless Club.
The new secretary and treasurer is John H. Schlichting, 517 Throop avenue, and the operators are Paul Hoer nal and Frank Wilson.

This department has been started with the idea to encourage the experimenter to bring out new ideas, Every reader is welcome to contribute to this department, and new ideas will be welcomed by the Editars
WHEN SENDING IN CONTRIBUTIONS IT IS NECESSARY THAT ONLY ONE SIDE OF TH WHEN SENDING IN CONTRIBUTIONS IT IS NECESSARY THAT ONLY ONE SIDE OF THE
SHEET IS USED SKETCH MUST INVARIABLY BE ON A SEEARATE SHEET NOT IN THE
 contributions enclose return postage if manuscript is to be returned if not used ALL CONTRIBUTIONS

FIRST PRIZE TWO DOLLARS

UUENCHED GAP FOR SMALL

 SPARK COILMany experimenters are anxious to have some form of a quenched spark gap for small coils; but lack the necessary data for construction of same.
I have made one which I will describe.

It has given entire satisfaction, having worked ten miles on a three-quarter inch coil under trying conditions.
The electrodes are made of one inch brass washers, $1 / 16^{\prime \prime}$ thick having a $3 / 8^{\prime \prime}$ hole, Fig. I-A. It is necessary to select washers having true surfaces, otherwise the spark will not be uniform. Cut a groove $3 / 32^{\prime \prime}$ wide and more than half deep leaving a rim on the outer edge about $x / 32^{\prime \prime}$ to rest on the mica separators, then remove all burrs due to cutting. The cutting is best done on a lathe, though they may be etched out by nitric acid. The washers should be first dipped in melted paraffine and when cold the wax may be scraped off where the groove is to be.

The separators are made of mica. They were cut from sheet mica about $0.005^{\prime \prime}$ thick, with a pair of dividers having sharp needle like points. First inscribe the inside measurement, going over the inscription several times, until the mica is cut through, then cut the outside measured in the same manner. Care should be taken in this operation, as too much pressure will chip oft pieces of mica around the edges and that will weaken the insulation of the separators.
The frame, Fig. 2, is constructed of two pieces of brass, D and E, measuring $13 / 4^{\prime \prime} \times 3 / 16^{\prime \prime} \times 5 / 8^{\prime \prime}$, and a piece of hard rubber, $C, 5 / 8^{\prime \prime}$ square by $\mathrm{I}^{1 / 4^{\prime \prime}}$ long. F is made of a circular piece of brass, 9 $I^{\prime \prime} \times 1 / 16^{\prime \prime}$, with one side perfectly true On the other side, in the center, a bat tery nut, L, is soldered, into which a screw is fastened. This acts as the

lower support of the gap. 9 has no groove in it, as electrode, 8 , has the necessary groove
The frame is assembled, with excep-
tion of E, Fig. 2, and fastened in a vise. F is now inserted and fastened with nut I. Next put one separator, 17 , on the surface of 9 , then lay electrode, 8 , on it so that the groove faces down which will the case with all electrodes, then sep be the case with all eleodes, then separator, 16 , and so on. Be sure that they are all laid accurately. Fig. 3 shows partly the method of assembling- $1,2,3$, etc., are electrodes, 10, II, 12, etc., are the separators. The separators should cover half the groove in each of the electrodes.

K is a circular piece of brass $1 / 16^{\prime \prime}$ by about $1 / 2^{\prime \prime}$, large enough to cover the hole in electrode, I, so that screw G, may be used in clamping and adjusting the gap. H is a lock nut
E is now put in place and G screwed down until the gap is clamped. The gap is now ready for use.
The spark occurs on the inner surfaces of all the electrodes, Fig. I, and generally covers the whole surface of X if the instrument is constructed with a little patience. Adjustment can be made by screw, G, to a certain extent. However, if no spark occurs, cut out one of the gaps. The testing of the gap should be done in a dark room where the spark can be seen through the thickness of the mica separators.

This gap works to perfection with small coils having high speed interrupters. It cannot be recommended for coils over I" spark, as the dimensions would have to be altered.

Be careful in assembling that the separators don't get into the sparking surface as this will short circuit the gap.

Contributed by
Ernest Hubner.
SECOND PRIZE ONE DOLLAR A THREE FOOT TESLA TRANSFORMER
A Tesle transformer to be operated on either a $3 / 4$ or a I kw. transformer, and which, when properly operated, will give a good 36 -inch spark, can be made as follows:

First obtain a cardboard or wood tube 38 inches long and 12 inches in diameter. Give this about eight coats of orange shellac. Allow this to dry and then subject it to a heat of approximately 150 degrees Fahrenheit in an oven, so that
no trouble will be experienced in the future from shrinkage. After giving it two more coats of shellac, allow it to stand for about an hour. Then wind on this cylinder one layer of No. 30 D.C.C. wire. Space turns apart about the thickness of a No. 26 wire. Care must be taken to see that turns do not overlap each other, which would cause a short circuit between turns. Apply

one more coat of shellac to tube and set aside to dry.

Next construct a helix frame 12 inches long and 20 inches in diameter. Around this wind to turns of No. o aluminum or copper wire. Cut round holes in both ends large enough to allow completed secondary to be inserted and securely fastened. The coil, up to this point, is shown in Fig. 1 .

The next step is to connect ten short pieces of No. Io rubber-covered wire to each of the ten turns on the primary. A cabinet should then be constructed out of oak or any other suitable hard wood. The outside dimensions should be 40 by 20 by 28 inches. This should be made watertight by melting hard tar into joints on the inside of box.

On top of cabinet should be screwed three pieces of polished hard rubber, one piece 6 by 2 by $3 / 8$ inches and the other two should be 3 by 3 by $3 / 4$ inches. These pieces should be mounted in a relative position, shown in Fig. 2.

Two hard rubber tubes 8 inches long should be placed on top of square pieces of hard rubber. Brass rods should then
be attached to large binding posts and inserted through tubes and fastened by bolts on the bottom. Mount a large ten point switch on side of box, as shown in diagram, and to the points connect the taps from the primary in their relative order. On rectangular piece of hard rubber affix two large binding posts about 4 inches apart. Permanently attach the secondary to the primary and place in cabinet fastening ends of secondary to ends of box by six wooden dowels. Connect switch arm to one binding post on the side of top and connect the first point of switch with the other one. Lead secondary with the sen ive binding posts. Fill the cabinet to tive binding posts. Fill the cabinet to
within $1 / 2$ inch of the top with the best within $1 / 2$ inch of the top with the best
ransformer, or linseed oil and then seal on top with about 36 round head nickel

FIG. 3
lated wood screws. This box should ither be finished with dead black ashaltum or with some other insulative reparation. The finished coil is shown Fig. 2 and the hook-up to be used as hown in Fig. 3. This transformer can be onstructed at an extremely small cost onsidering the benefits derived thest rom, and when completed presentseat and businesslike appearance. It is specially adapted for demonstrative specially
urposes.
Contributed by
Edward A. Werner.

A HOME MADE BURGLAR ALARM
The construction of this apparatus is ery simple, as the drawings are selfplanatory.
Fig. I shows a plain block of wood nd gives its dimensions. Start the lock by making it $3 / 4$ inches square and inches long, then shape it, keeping its op surface $3 / 4$ inches square, but slantng it so that its bottom surface slantneasure $3 / 8$ by $3 / 4$ bottom surface will ole clear by $3 / 4$ inches. At A drill a le clear through the block large
enough to draw a bell wire through same. At I and 2 drill smaller holes. These holes are for the purpose of fastening with nail or screw the block to the window frame. Drilling a hole first will prevent the wood from splitting. After these operations the block may be stained the color of the woodwork.
Fig. 2 shows an ordinary safety pin mounted on the block. At A the cleaned

end of the bell wire has been drawn through the block and is fastened firmly by a good sized screw. The head of this screw will be the contact point of the circuit when closed. At B the safety pin is mounted very tight by a screw to pin is mounted very tight by a screw to at this point lies the second wire cleaned at this point lies the second wire cleaned of its insulation, as shown in the drawing. At C the other end of the safety pin is mounted to the block with a smal hold it in its, only sufficing the pin to retain its natural springy qualities. The drawing shows the pin resting on its contact point (the screw A), closing the circuit.
Fig. 3 shows the block as fastened to

the window frame, close to the window sash. The arrow, D, points to a small haped screw hook screwed into the window sash. Notice the hook is hold-
ing the pin away from its contact point, A. The circuit is broken, or in other words, the burglar alarm is set, and the slightest movement of the window in cither direction will clear the pin from the hook, D, the spring will return it to the point, A and ring the bell. Furthe point, A, and ring the bell. to ring thermore, the bell wither by the switeh until it is stopped, either by the switch, E, Fig. 4, or by resetting the alarm. This switch is necessary for breaking the circuit when the apparatus is not to work in the daytime. It may be installed at any suitable place. This apparatus as a whole has many distinctive features not found in some expensive ones. By adding a few hooks up and ones. By the window frame it will down along the the windows permit one to keep the windows open during the summer months at any desired height.

For the doors, this block may be placed on the framework alongside the doors, fastening the block upside down. A small screweye or ring, F, tied to a strong thread and fastened to the doors will hold the pin away from its contact point. The slightest movement of the door will let the ring slip from the pin, door will it the bell. Turn Fig resulting in ringing the bell. Turn fig. 2 upside down and it illustrates the idea.
By running one continuous set of bell wires above all the doors and windows and by leading down to all the safety blocks from the same, as indicated in Fig. 4, by following this diagram for the connection of the battery, bell and switch, the premises will be burglarproofed in a manner equal to any sysem and a very small expenditure.
Using the apparatus as previously ex-
plained are not its limitations. It will plained are not its limitations. It wiln equally well protect the distant barn, garage, chicken coop, etc. Running the wires from the house to the same, the bell at home will give the alarm.
The apparatus in its entirety may even be installed in a drawer containing valuables, in an automobile, etc.
The interested reader will find use for it somewhere and undoubtedly will be able to solve the additional problems suited for his purpose himself.
Contributed by Herman Knutzen.
Note.-If used to protect the barn, garage, run in a pipe, underground, to prevent their being cut.-ED.

A SEPARABLE CONNECTOR
A small separable connector, whic can be very easily made and is often very useful is shown in the accompany ing illustrations.
As can be seen in Fig. 1 , it consists 0 two parts, the plug and the receptacle The plug is made from a short lengt of fibre or hard rubber rod, A. In thi are drilled two holes, which are the tapped with an 8-32 thread. The pins B , on the plug are made from two $8-3$ brass machine screws, with the heads cu bri mad the away in th off, and the thread flew is then slotte lower part. Each screw is then slott at the upper end with a hack-saw, ends of the connecting wires, C, at soldered in these. They are then ea

fig. r
screwed through a nut, to repair thread, which may have been sligh damaged during the slotting and sold ing. One of them is then screwed it the plug, turning the latter so as not twist the cord. The other pin is th twisted about 16 turns to the

slipped into the FIG. ${ }^{2}$, and screwed untwisting the cord. If fastened o this way there is little danger
ver screwing out, especially if it fits ather tightly, as should be the case.
If the flexible cord is already provided ith tips, no new ones have to be made. he holes in the plug are simply drilled he same size as the base of the tips, nd these pushed in tightly. If the small nd of the tip is too long, it may be ecessary to cut it down to the right ength.
The receptacle consists of a hard ruber or fibre tube, D, of the size shown, which tightly fits a rectangular piece, also of hard rubber or fibre To this also of tha pieces of thin ece are screw pieces of thin eet brass, F, cut and bent as shown. order that the pins may be held more ecurely, grooves, G, are filed in the inlating piece, E . The pieces F are eld to E by means of small No. 2-56 rews, H , which also serve as binding osts. If E is of fibre, the holes for hese need not be tapped, as the screws ill of themselves form the thread. If ard rubber is used, however, the holes ist be tapped. Care should be taken t there is no electrical contact be at there is no
The receptacle can now be forced into The receptacle can now be forced into ter being connected, it is ready for Wir
Wireless amateurs would often like

 FIG. 3
have some method by which they
have some method by which they that one of their friends present can that one of their friends present can
sten in at the same time, and disconected when through using it. A very mple way of accomplishing this is to ake as many connectors as above deribed as there are sets of receivers, following detail being changed in construction of the receptacles (see g. 3).

A small tongue, J, is left on one of the rass pieces, \vec{F}. This tongue is bent in uch a manner that when the plug is not the receptacle it touches and makes ectrical contact with the end of the crew, H. When the plug is inserted,
however, it slightly pushes F away from E. At the same time this separates J from H and opens the connection between these.

The use of having this tongue is to keep the receiver circuit closed all the time. That is, the different sets of receivers are generally connected in series (connecting them in parallel has not

been found so advantageous), so that when the ordinary type of connector is being used and one set disconnected the whole circuit is opened. This is often annoying, but is entirely done away with by the little tongue, J .
Contributed by
P. Mertz.

HOW TO MAKE AN

ELECTRO PHORUS

An electrophorus that will give a $1 / 2$ inch spark can easily be made as follows:
Fill a pie pan with melted sealing wax and set it aside until it is hard. Cut a dise of tin a little smaller in diameter than the cake of sealing wax. Make a paper tube about 5 inches long and close one end. Fill this tube with melted seal ing wax and when it is hard take the paper off. Fasten this insulating handle to the center of the metal disc.
To obtain a spark rub or strike the cake of sealing wax with fur or flannel, place the metal disc upon it and touch it with the finger. Lift it by means of the insulating handle and upon bringing the finger near a spark may be obtained. This can be repeated any number of times without again rubbing the sealing wax

Contributed by
C. E. Mielke.

Although it requires a little work to make this instrument it repays you for your work. You could not wish for a better and more simply adjusted piece of apparatus than this.
This instruemnt has one hundred turns of No. 22 D.C.C. Copper wire wound on the primary. It is wound on a core three and one-half inches in diameter. These dimensions are the same as most all com-

mercial coils of this type. The secondary mercial coils of this type. The secondary
taps are taken every 20 turns and soltaps are taken every 20 turns and soldered to the points of a switch on the end of the coil. The diameter of the secon dary is three and one-quarter inches.
The way the primary is tapped is shown in Fig. r, starting at one end of the primary tap every turn for ten turns These ten taps are soldered to a ten-point

fig. 3
switch mounted as shown in Fig. 2-B. After this is done, as shown in Fig. I, tap off one more turn and then after that tap off every ten turns. This will make ten more taps for the second ten-point switch mounted as shown in Fig. 2-A. This will make ninety-turns on one switch and ten on the other, making one hundred turns.
For the taps on the switch instead of using brass-headed tacks I used small round-headed brass bolts as shown in Fig. 3. The easiest way to tap off the primary, instead of soldering a wire to the primary wire, is to take up some slack of the desired length in the primary slack of twist it. In doing this it will only be necessary to solder the end of the

ELECTRICS

twisted wire to the switch point. switches can be made by the reader as desires them. Connect one of switches to the aerial and the other to ground.
The secondary is connected the as other loose-coupled coils.
The primary is boxed up with oak ome kind of hard wood and staine reddish color. When this is polishe ed a cory neat appearance and add very
To operate this coil tune first on sw A, Fig. 2, which cuts in from to to turns of wire. After tuning on swit A, then tune on switch, B, which cuts from I to 10 additional turns. It is pl therefore that we can use any number turns of the primary.
With a little practice you will soon able to operate this loose coupler m quicker than with sliders.
Contributed by
John Clark

HINTS ON CONSTRUCTING

 WIRELESS KEYIn constructing the wireless key scribed on page 479 of the August i of Modern Electrics, I made the foll ing improvements, which resulted better looking job and made the easier to construct.
In place of the two $1 / 4$ by $3 / 4-1$ brass rods, get a piece of $1 / 4$-inch b rod $2^{1 / 4}$ inches long. Then, after ting up the two brass end standards, the $2^{1 / 4}$-inch piece across the standa and mark on the inside of each. the center from these lines and mak mark $1 / 8$-inch on either side from ce line. Now, using these lines as a gu file down each end and the center that they will fit the holes previo bored. After filing, cut through with a hacksaw. Now fit each piece brass standard and head over.

The lever may now be set in plac fastening one standard to base, after putting lever in place, put on 0 standard.

In fastening the contact dimes, a thin battery nut to dime in ce then screw onto bolt in lever. Fix other dime the same way. The holes in the dimes should be cou sunk a very little to hold the rivet
is filed off flat with the surface of the ime.
In making the lever, be sure that you end it to proper shape before boring oles, as it will surely break if you do

This makes a very good key, and will well worth the time and money exended upon it.
Contributed by
Ben T. Elkins.

SLIDER FOR LOOSE-COUPLER SECONDARY

Since I have been reading Modern lectrics I have not noticed a really ood device for a slider on the seconary of a loose-coupler. The device wich I shall explain has the advantage being simple, inexpensive and accuate.
First take a brass tube ($1 / 4$ by $1 / 4$ inch

FIG 3
 回
 FIG.I

n the inside) and split it as shown in Fig. 3. This tube should be about $21 / 4$ nches in length. Then bore holes in he sections A, B, C, D, to fit any sized vood screw which the experimenter nay have. Fasten the brass tube a hown in Fig. I and 2 . A brass rod $/ 4$ by $1 / 4$ inch is then obtained. To nd the length of this rod add 4 inches the length of the secondary. At one nd of this brass rod a hole is bored and hard rubber telegraph knob is atached, as in Fig. 2. The other end of the rod is passed through the square tube, as shown in Fig. 2. From the ther end of the secondary a slider is astened on the brass rod with sealing wax. Care must be exercised to see that the contact between the slider and d is not destroyed.
In order that this plan should work
is necessary to cut away the secon-
dary, as shown at A in Fig. 4. The wire exposed, when A is cut away, is scraped in order that the slider may make good contact with the wire.

Contributed by

A PRACTICAL ELECTRIC TOASTER

I have seen some descriptions of electric toasters in Modern Electrics, but in my estimation they were rather crude in appearances. I am going to describe a simple toaster, the construction of which

will be found most simple and the appearance equal to that of toasters sold at high prices. It not only answers the at high prices. It not only answers the purpose of a toaster, but can be used for other ope
ing, etc. ing, etc.

Purchase a bread pan (a tin one, for it has the appearance of nickel) 6xiox2 inches deep. Punch four holes in the bottom $1 / 2$ inch from each corner, large enough for a $3 / 16$ inch bolt. Next get four split porcelain knobs, and, using the long portion, fasten them with bolts to the bottom of the pan, as shown in Fig. I. These form the legs. Obtain a piece of asbestos board $3 / 4$ inch thick and just a trifle smaller than the inside of the a Dr Drill ten $3 / 16$ inch holes in same pan. Drill ten $3 / 16$ inch holes in same, five at each end and $1 / 2$ inch from the edge, drilling them at equal distances. Next get ten $3 / 16$ inch bolts 1 inch long,

rig. :
and 20 small washers. Put the bolts in the holes with the heads all on the same side with a washer under each head. Next procure 24 feet of No. 24 German
silver wire and cut it into five equal pieces, which will be a little less than 5 feet for each piece. Wind each one of the pieces on a $1 / 4$-inch rod, leaving a space the thickness of two wires between turns. Stretch the coils between

the bolts, as in Fig. 2, and fasten them there, connecting all the wires together on the other side of the asbestos by putting pieces of wire on to the screws, as shown in Fig. 3. This will give all the heating elements a chance to operate and give the top a better appearance. Next procure two pieces of asbestos covered wire and fasten them to screws I and 2 , as shown in Fig. 3. Place several sheets of asbestos paper in the bottom of the pan and tighten all the screws. Punch pan ano in the end of the pan $5 / 2$ inch two holes in the end of the pan $1 / 2$ inch
from the bottom and 2 inches apart, fit from the bottom and 2 inches apart, fit
porcelain bushings in them and put the porcelain bushings in them and put the

asbestos board in the pan. To hold the board in the pan put a screw in each corner, as shown in the sketch. The asbestos board must be set down $1 / 2$ inch from the top of pan. Next procure a piece of the finest sand screen $61 / 8 \times 101 / 8$ inches. Cut four pieces of tin $1 / 2$ inch wide and the dimensions of the screen, and fold as in Fig. 5, which gives it a neat appearance. Place this on the toaster, first soldering a few pieces of tin on each under side, so the top cannot slip off. Get a piece of lamp cord that will reach to your supply and connect with toaster and attachment plug. For frying, a piece of sheet iron placed on top of the toaster can be used.
I have had such a toaster for over two years, using it every day, and it is as
good as new. In case it burns out, can always be fixed without mut trouble.

Max Hagspiel.

A ROTARY WIRELESS RECEI

 ING TRANSFORMERWhen the wooden parts have planed to the proper size, and the bin ing posts mounted on the base, wind t two coils.
The primary coil should be woun

with No. 22 B \& S enameled wire on cardboard tube, 5 inches in diameter a $3^{1 / 2}$ inches long. The secondary should be wound in six sections, section containing 20 feet of wire, No. 30 B \& S wire, a tap being ta from each of these sections to a point the switch, F.
Wind the primary to within $1 / 4$ of each end, thus leaving space to fas the rod for the slider The core of he rod ory should be turned out flanges $1 / 8$ inch thick and projecting fanges $1 / 8$ inch thick and projecting done so that a cardboard cover may done so that a cardboard cover may wound around it after the wire has put on.
After the coils have been wou mount the primary on the base by me of screws, I and J. Next put the ondary in place by means of rod, G, fasten with nuts, A and A^{\prime}. There pin on either side of B, wh kin on G from slipping, B, w keeps rod, G, from slipping; the should be mounted on the primary
After the adjustment screw has fastened, and the base varnished, the strument is complete and ready for eration.

The secondary coil is operated
means of adjustment screw, B, and switch, F .
This instrument will be found very efficient as well as compact.
Contributed by
S. Coleman.

USEFUL TABLES

The accompanying tables are for computing the feet of wire per linear inch of winding on tuners. In table I, the number of turns per inch is given at the op, and the diameter of the coil, in the hight hand end column. To find the number of feet required to wind a coil 6 inches diameter and io inches long, wound with wire having 40 turns per inch, is found in the following manner: Look along the top until 40 is found. Then down until the number opposite the 6 inch column is reached. This number, 63 feet, when multiplied by 10, the num ber of linear inches of the coil, will give 630 feet, or the required number of feet for the coil.
Table II gives the number of turns per inch for various kinds and sizes of magnet wire.
Contributed by Milton B. Sleeper.

USE FOR A NAIL SET

When wiring an "old" house it is necessary to take up the flooring in order to conceal the wires. To do a neat job is not always easy, for in getting up the first board the electrician often splits the wood or otherwise mars its appearance. The boards are nailed to the joists and until the first board is up the nails hold the board securely from being pried out.
An excellent way to accomplish this easily and without destruction to the flooring is to go along with a slim nail set and drive the nails, head and all, down through the floor. After sawing the tongue off between the joists, the board will come out readily enough, since the nails no longer hold it. The nail set does not leave a mark because it is narrow enough to go in the crack or seam and find the nail. It is one of the most useful tools for this work and gives gratifying results. When one board is up, the others are no trouble at all.

Contributed by
Marshall Loke.
TABLE I.

Table II.										
Size B. $\& S$. Gauge	Turns per Linear Inch Single Double Enameled Cotton Cotton			Single Silk	$\begin{gathered} \text { Double } \\ \text { Silk } \end{gathered}$	Size B. $\& S$. Gauge	Turns per Linear Inch Enameled $\begin{array}{ll}\text { Single } & \text { Double Single } \\ \text { Cotton } & \\ \text { Cotton } & \text { Silk }\end{array}$			
20	29	25	23	${ }^{27}$	26	38	225	89	${ }_{151}$	1117
21 22 20	39 86 86	28 31 31	28 28 28	31 34	29 32	89 40	$\begin{array}{ll}256 \\ 288 & 122 \\ 130\end{array}$	95 102	163 178	1818
${ }_{23}^{22}$	86 41	${ }_{84}^{31}$	${ }_{31}^{28}$	34 88	36 36					
24	45	${ }^{37}$	33	42	39		Dovares	Corto		
25	51	41	${ }_{89}^{36}$	47 52	${ }_{48}^{43}$	${ }_{\text {B. }}^{\text {Size }}$ S.	No. Turns ${ }_{\text {per }}^{\text {Linear }}$	Size B S.		No. Turns
26 87	56 64	45 49	89 49	62 57	48 52	${ }_{\text {B }}^{\text {Gauge }}$.	${ }_{\text {per }}^{\text {Inch }}$ Linear	Gauge		${ }^{\text {per }}$ Inch
	71	54 68	${ }_{48}^{45}$	63 70	56 62					6.08
${ }_{80}^{29}$	88	64	$\stackrel{48}{56}$	${ }_{77}$	${ }_{67}$	$3-0$	2.00	8		6.80
31	100	${ }_{75} 69$	${ }_{60}^{57}$	${ }_{98}^{85}$	78	${ }_{1}^{2-0}$	2.32	9		${ }_{8.51}^{7.64}$
32 33	112	75 81	60 64	93 102	78 84	1	2.65 2.98	11		${ }_{9} 9.56$
84	140	87	${ }_{68}^{68}$	112	91	2	3.86	12		10.60
35 36	158 178	94 101	73 78	120 130	97 104	8	3.80 4.28	13		118.10
${ }^{37}$	201	108	84	141	110	${ }_{6}^{5}$	(4.83	${ }_{18}^{15}$		14.68 16.85

POULSEN TIKKER

I have noticed several articles in Modern Electrics on the construction of tikkers. All of these had faults, while the following described tikker has few, if any. It is of the same construction as the ones used by the Federal Wireless Co., the only difference being in the size of the motor.
Get a small battery motor; one which has a metal pulley wheel on the shaft.

Mount the motor on a base and fasten a binding post about $11 / 2$ inches from the pulley wheel, as shown. A piece of fine steel wire is fastened to this post and rests in the grooved pulley wheel. Connect the frame of the motor to another binding post. Procure a small battery rheostat and connect in series with motor. By changing the speed of the motor, the tone of the incoming signals can be varied. In most cases loading coils in the primary and secondary of the loose coupler must be used. The connections are shown in the diagram.

Contributed by
Charles E. Richardson, Jr.

HOW TO LACQUER BRASS

Most experimenters believe that lacquering brass is a very difficult and expensive proposition, so that they either nickel plate the brass parts on their instruments or else just polish them without lacquering. As a matter of fact, it is quite easy, even for a beginner, and in appearance it surpasses nickel plate, especially when the base of the instri1ment is hard rubber or some dark shade of wood.
A very good formula for a brass lacquer that has been successfully tried and used by the writer is as follows:
Liquid shellac.............. 8 parts
Wood alcohol............... 8 parts
Turmeric part
All quantities are by volume. The liquid shellac should be of about the same degree of thickness as when used
in ordinary electrical work. If a gol hue is desired to be given the brass small amount of spirit mahogany st (not containing turpentine) or red co tar dye, should be added.
Before being lacquered the br should be well polished, if possible or buffer, using Paris red. The lacquer then applied with a small brush, same as paint. Care should be tak in applying that there are not too ma air bubbles in the lacquer or the finish surface will appear spotty. It will noticed that a good amount of alcoho mentioned in the formula, making lacquer very liquid. This is done that with a little care striping of surface, which is so difficult to do aw with in many lacquers, can be eas overcome.
If the color is not dark enough one coat of lacquer has been appl more can be added. Care should taken that each coat is thoroughly before the next one is put on.
Sometimes the lacquer takes on a frosted surface. If a piece of cloth rubbed over it rather vigorously, frostiness will disappear and a bright finish will be obtained.

This type of lacquer should not baked, as this would burn the shel The surface is quite hard enough out baking, being difficult to scratch with the finger-nail.
Contributed by

LATION TRANSFORMER

The accompanying diagram show: cheap but serviceable oscillation tr former. The primary is built on a

spiral, and fixed to the base by means of two-wire split porcelain knobs or insulators. The center of the spiral is fastened to the spark gap, and the outer end is connected to the condenser. On the base are fastened four upright posts four inches high, to hold the crosspieces of the secondary. The crosspieces of the secondary are 12 inches ong and one inch thick. Twelve holes must be bored in the cross-pieces for the wire to pass through. After the crosswire to pass through. Are fastened, string through the pieces are fastened, string through the the center) about eight feet of No. 8

B. \& S. aluminum wire. Then mount in the center of the cross-pieces a fourpoint battery switch. Connect the first post with the outermost wire and also connect the third wire to the second post, the sixth to the third, and the ninth wire o the fourth. The lever of the switch o the fourth. The leve of the switch of the spiral is connected to the ground. of the spiral is connected to the ground
The wiring of the secondary can be con The wiring of the secondary can be con-
cealed by running the connections along cealed by running the connections along
the cross-pieces. The transformer can the cross-pieces. The transformer can
be made for about 50 cents. Besides bebe made for about 50 cents. Besides
ing cheap, it is compact, and suitable for ing cheap, it is compact, and suitable can be changed by means of a switch mounted on the box. This transformer is adapted only for coils from $1 / 2$ inch to I inch.

Contributed by
Joseph Gorman.

A PRACTICAL DETECTOR

SWITCH

The accompanying plan and hook-up of connections are for a detector switch of my own design. The switch is made of sheet brass and the connections are made by means of little plugs, such as are used on telegraph cut-out switches and lightning arresters. These plugs
two of which are required, may be bought of any supply house carrying telegraph instruments.
To make the switch, first procure some heavy brass as near as possible to No. 20 B. \& S. gauge. From this cut one piece $23 / 4$ inches by $1 / 2$ inch, which is labeled "potentiometer" on the drawing; two preces $13 / 8$ inches by $1 / 2$ inch for the parts "off" and "on," as many pieces 2 inches by $11 / 2$ inch as you have detectors, and one piece $3 / 4$-inch wide and as long as the combined widths of the last-named pieces, plus the spaces between them
Now drill holes in the corners for small brass screws, to hold the parts to the base. If desired, the various names may now be etched on the plates. First coat each piece with wax and then scratch the lettering through the wax with a sharp instrument. Then place the pieces in a dilute solution of nitric acid for a time, and after a thorough washing the wax may be scraped off, and the pieces are ready for assembling.
The base may be made of hard rubber, fibre or wood, or the parts may be assembled directly on the switchboards.

The pieces are now mounted on the base with a space of $I / 16$ inch between the adjacent parts, connections being made through small holes beneath each plate, the wire being soldered securely before fastening them down.

Holes are now drilled at the points of junction of the plates, as shown in the drawing, made deep enough to allow the plugs to fit snugly. The whole is now polished and lacquered if desired.
In operation, if the electrolytic detector is desired, the first plug is placed opposite the plate on which is the word

"Electrolytic." This connects that detector in circuit. Now to connect the potentiometer, place the second plug between the plates "potentiometer" and "on." When not in use the plugs may be kept in the holes in the blank plate, provided for that purpose.

If desired, the base may be made larger and binding posts mounted upon it for making connections.

If properly made and finished this switch will be a worthy addition to any switchboard or instrument table.
Contributed by
Bryan G. Barker.
.A NOVEL SHOCKING DEVICE
The other day while experimenting I discovered how a shocking machine could be made from simple apparatus,

and I believe it would interest the readers to know how it is done.
The only apparatus that is needed is an electric door bell, a switch and a few cells of battery, connected as shown in the diagram.

With three batteries I received all the shock I desired. It is surprising how this simple apparatus can give such a shock.

The diagram being lettered and accompanied by a chart is self-explanatory for those desiring to try this experiment.

Contributed by
Russell Black.

AN ALARM FOR LIGHTING CIR-

 CUITSThe accompanying diagram represents an alarm for cellar or basement lights, which, if left on, will ring a bell. I have read one or two accounts of how to turn off cellar lights, but they were either too complicated or did not work, so I constructed this plan myself after experimenting about a week.

The regular lighting circuit is shown in heavy lines, while the wiring I added

is represented by light lines in the diagram. AA are service lines and S is a snap switch at the head of stairs leading to the cellar. L is a light or many lights. C is the contact made at the door, which is shown in detail in Fig. 2. One wire is connected at F and the other at G. B is an ordinary telephone magneto bell, either of 600 or 1,000 chms, mounted on a block of wood.
When the lights are turned off and the door is closed the bell will not ring, but if the lights are on and the door closed the bell will ring.

Contributed by
Leo C. Reichert.

TELEGRAPH WITHOUT BAT

 TERIESIt is very hard to explain why this telegraph works, but if you follow the directions here given it can be put up with very few materials and little cost

The articles needed for one station are as follows:

A watch-case receiver, about 75 cents; telegraph key, about \$1.75; enough No. I4 galvanized iron wire to reach once between the two stations.
In the first place put up your wire between the stations. If your houses are not very near together, run it through

the trees, insulating it from the ground as much as possible.

If you follow diagram carefully it is sure to work.
If you live very far away from any other electrical wires batteries will have to be used.

Contributed by

J. Alexander Pool.
 Granville Worrell.

Note.-If the line wire is parallel to a street lighting circuit the current in the telegraph line is due to induction from the lighting circuit. In some parts of the country the set would work satisfactorily on "earth currents" if the line happens to run in the righ
direction.-ED.

NEW VOLT METER METHOD FOR THE MEASUREMENT OF INSULATION RESIST-
 ANCE

It may be profitable at the beginning to outline briefly the voltmeter method in its simplest form. Suppose, in Fig. I, that X is the device the resistance of which is to be measured. A voltmeter is connected as shown. Terminal P is connected to M and then to N , a reading of the instrument being made at each connection. Suppose when at M the reading is 120 volts and when at N the reading is 20 volts; then if the resistance of the voltmeter is 15,000 ohms, the resistance X may be computed from $X=\underline{E-e}$
e Rv, where Rv resistance, $\mathrm{E}=$ reading with P on M , $\mathrm{e}=$ reading with P on N .

In this case $X=\frac{120-20}{20} 15000=$ 75,000 ohms.
In employing this method a reading of I volt is considered as the lowest one may care to use, then the highest resistance this voltmeter can measure is $\mathrm{x} \quad 120-\mathrm{I}$
$X=\frac{1}{\mathrm{I}} \mathrm{I} 5000=\mathbf{1}, 785,000$ ohms.
It is possible to purchase voltmeters the "sensibility" of which is greater, but they are bulky, expensive and so essentially delicate as to be undesirable for most purposes.
The range of high resistance meas-

urement possible by using the everyday voltmeter may be increased very much by employing my method, which is given by emple
below.

Connect R a resistance of $1,785,005$ ohms in parallel with the device the resistance of which is to be meastred, as shown in Fig. 2; now when terminal P is at M suppose the reading is 120 volts, and when at N its reading is I volt, then
the joint resistance (J.R.) $=\frac{120-}{I} \times$ $15,000=1,785,000$ ohms. Hence X,

the unknown resistance may be comput-
ed from $\frac{I}{(J . R .)}=\frac{I}{R}+\frac{I}{X} \therefore X=$
$R \times(J . R$.
R-(J.R.)
In this case we have
$X=\frac{1,785,005 \times 1,785,000}{1,785,005-1,785,000}=637,246,-$
785,000 ohms, or $X=637,247$ megohms (approximately).

This method is therefore worth consideration, for the highest resistance the Evershed Bridge Megger measures is 2,000 megohms, and then, when measuring the insulation of apparatus having considerable capacity the measure ment is not reliable, for the FMF is not constant, because it is impossible to turn the crank with constant speed.
While the voltage used with the volt meter for testing is commonly the same as that regularly in use on the line, the voltmeter can be used for a number of other purposes, and it is less expensive than an Evershed Bridge Megger.
Contributed by
P. W. Etkes

Note.-This method is very ingenious, but unless a precision voltmeter is used the re-
sults are not likely to be very accurate. As sults are not likely to be very accurate. As
an approximate method, hozvever, it appears an approximate meth.

A RIGID AERIAL MAST

A good aerial mast which I have erected and which is very rigid and substantial is shown in the accompanying sketch.

The mast is made of iron gas pipe The bottom section is 20 feet long and is two inches in diameter. The second section is also 20 feet long and is smal enough so as to slip into the bottom

section easily. The third section can be made as long as desired and is small enough so as to slip into the second joint enough so as to slip into the novel part of the mast is the method by which the sections are the method by which the sections are bored at each end of the pipes, one foot apart, and two more bored at right angles to them, as shown in sketch. A step made of strap iron is fastened on the first joint to aid in erecting it.

To erect the mast, telescope the pipes and set the bottom one in concrete. Raise the top joint and bolt it onto the second joint, having fastened the guy wires on first. Then raise the pipes and bolt onto the bottom joint. When this is done you will have a mast that will withstand all the storms and is pleasing in appearance.

Contributed by
R. F. Denton.

TESTING AERIAL LEAKAGE

The drawing I am contributing is of a leakage testing method for aerials

With this arrangement I have detected leakage in my aerial
Contributed by
Laurence Southrvick

A GOOD ELECTRIC FURNACE

Most boys' chemical laboratories and electric experimenting stations could find good use for an electric furnace, but the cost of the furnace or the inability to get high voltage direct current prevents them from having one.
The furnace described in this article is very simple, having only four parts, and it may be operated with excellent results on 110 voits alternating current. First procure a firebrick, selecting it as smooth as possible, and measuring as near as possible to $8^{1 / 2}$ by 4 by $2^{1 / 4}$ inches. A hole is then chiseled in th center and two channels running from

fig. 2
it, as shown in Fig. I. This may be as large as circumstances require, but it is usually gauged by how tired the builder becomes.
Another smaller brick is now made
for the top, as in Fig. 2. The hole is made shallow and shaped like a concave mirror to reflect the heat on the object. Care must be taken not to get the channels too deep for the carbons which are

to be slipped through them to form the electrodes. The carbons may be se cured from supply houses, or from arc lamps after they have become too short for further use.
The whole furnace is now set up on four porcelain insulators and connected up with the IIO volt lighting current in series with a water rhoestat. It should not be connected to a lamp socket, but to wires run direct from the meter.
If crucibles are not used, a lip may be formed on the lower block and the melted material poured out.
Be sure to have the furnace protected well with fuses in the circuit.
Contributed by
H. C. Hunter.

EASY METHOD OF FINDING

 WIRE RESISTANCESQuite frequently electricians, mechanics or engineers are called upon with short notice to solve problems in which the resistance of copper wires must be known. The table of wire resistances may not be at hand or else it may have been mislaid, and if the person asked is unable to obtain a result it may bring him into an embarrassing position. The problems present them selves in various forms, such as: (r) To find the resistance of a given size and length of wire; (2) T_{0} find the voltage drop in a line of given size and voltage drop in a line of given size and
length in which the current is known; length in which the current is known; (3) To find the size wire required for a given length and current with an allowable voltage drop; (4) To find the maximum load or current which a given
wire will stand with a given allowable voltage drop.
By remembering a few simple relations which are given below any one may find the resistance of any B. \& S. copper wire at $68^{\circ} \mathrm{F}$. within a few minutes The table shows the values from No 0000 to No. 20 wire only, with the corresponding per cent. error, because these are the sizes which are used most.
Short relations to be remembered
(a) Let the resistance of No. Io wire at $68^{\circ} \mathrm{F}$. equal I ohm per 1000 feet.
(b) To find the resistance of every third wire number from No. Io wire, going in the direction of the higher numbers, double the resistance of the preceding and when going in the direction of the lower wire numbers use half of the preceding resistance
(c) To find the next higher resistance from those by (b) add one-quarter of each of these to themselves to get the respective resistances.
(d) To find the next lower resistance from those found by (b) multiply each of these from (b) by 0.785.
Examples to illustrate each of the above (all resistances given per 1000 feet):
(a) Resistance of No. ro wire equals 1 ohm.
(b) Then resistance of No. 7 wire equals $1 \times 1 / 2=0.5 \mathrm{ohm}$, and resistance of No. 4 wire equals $0.5 \times 1 / 2=$ 0.25 ohms, and so down.

Resistance of No. 13 wire equals $1 \times 2=2$ ohms, and resistance of No 16 wire equals $2 \times 2=4$ ohms, and so up.
(c) Resistance of No. 4 wire equals 0.25 ohms, then resistance of No. 5 wire equals $0.25+(1 / 4 \times 0.25)=0.3125$ ohms.
(d) Resistance of No. 4 wire equals 0.25 ohms, then resistance of No. 3 wire equals $0.25 \times 0.785=0.1963$ ohms.
The value 0.785 used in (d) can be remembered very easily, since it is equal to $\pi / 4$, which is the quantity by which the square of the diameter of a circle must be multiplied to find its area.
If the calculation in which the resistance is required be a very rough one, then the values found by (d) might even be found by subtracting one-quarter of the resistance found by (c) from
themselves, thereby obtaining the respective resistances. Thus:

Resistance of No. 2 wire equals 0.1563 ohms, then resistance of No. 3 wire equals $0.1563+(1 / 4 \times 0.1563)=$ 0.1954 ohms. (In the table the method given in (d) was used.)

In the table the resistance from the B. \& S. wire tables are given together with the resistances found by the above short relations (a), (b), (c) and (d). The error in ohms per thousand (1000) feet is almost negligible, that the error in the resistances of wires below No. 10 is very minute and that the maximum error is less than $I T / 2$ per cent. in any one of the resistances between No. 0000 and No. 20 wire, is clear.

B. \& S. Numbe Numbe	Resistance per $1,000 \mathrm{ft}$. at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$			
	As obtained by Simple Relations	d As Given in B. \& S. Wire Table	$\begin{gathered} \text { Error } \\ \text { in } \\ \text { Per cent. } \end{gathered}$	$\begin{gathered} \text { Error }_{\text {rer }}^{\text {per }} \\ \text { poor } \mathrm{ft} \end{gathered}$
0000	. 049	. 04893	0.143	. 00007
000	. 0625	. 06170	1.300	. 00080
00	.078I	. 07780	0.386	. 00030
o	. 098 I	.098ir	0.010	.0000I
I	. 1250	. 12370	1.050	. 00130
2	. 1563	. 1560	0.192	.00030
3	.1963	. 1967	0.204	. 00040
4	. 2500	. 2480	0.806	. 00200
5	-3125	. 3128	0.096	. 0003
6	. 3925	. 3944	0.48 I	. 0019
7	. 5000	. 4973	0.543	. 0027
8	. 6250	. 6271	0.335	. 0021
9	. 7850	. 7908	0.733	. 0058
10	1.0000	. 9972	0.28 I	. 0028
II	1.25	1.2570	0.558	. 0070
12	1.57	1.5870	1.010	. 016
13	2.00	1.9990	0.050	. OOI
14	2.50	2.52 I	0.832	. 021
15	3.14	3.179	1.230	. 039
16	4.00	4.009	0.225	. 009
17	5.00	5.005	1.090	. 055
18	6.28	6.374	1.473	. 094
19	8.00	8.038	0.473	. 038
20	10.00 I	10.140	1.383	. 140

The great advantages which this method possesses are, that the relations are easily remembered and that not even a slide rule is needed to find the respective resistances, due to the simplicity of the calculations.

Contributed by
Edwin J. Israel.

A SIMPLE COPPER PLATING OUTFIT
As I have not seen a copper plating outfit in Modern Elactrics I will explain how to make one with which it is not necessary to use an extra battery

The jar is an ordinary battery jar. The porous cup is also out of a battery Make a zinc cylinder a little longer than the porous cup and solder a brass rod, E., 5 inches long on one end as shown in drawing. Then take a piece of copper rod about $I / 8$ inch thick and make a spring about I inch long leaving a piece protruding out like A in drawing. Solder a binding post on the end so that the

hole of the binding post is over the center of the zinc cylinder. Take a rod about 6 or 7 inches long and put it through the hole in binding post and tighten set screw, C. The spring, A, is made so it will slide up and down rod, E . To operate fill the porous cup with a saturated solution of sulphate of copper, and the jar with water to which has been added a little sulphuric acid. Fasten the article to be plated on rod, B, by means of a small copper wire. Push the spring, A, down until the article is covered with the solution in the porous cup. The plating will go on until the article is taken from the solution. This outfit does not need a battery for it is a cell in itself. If the solution becomes weak add more crystals of sulphate of copper.
Contributed by,
Arthur T. Kupferle.
Note.-The article to be plated should be thoroughly clean and bright or plating will

Electric flat irons are so well known as to have become more or less of a necessity, but a roll-flat-iron, and one that will heat and propel itself at that, is a decided innovation. The inventor is Edward F. Stegman, of Rollinsville, Colo., and the accompanying view gives Colo., and the accompanying view gives a general idea of the device, which 'is
illustrated and described at great length illustrated and described at great length
in the Letters Patent No. 1,055,95I. The bottom of the outer shell, 2 , is closed by the plate, II, formed with apertures, 12 and 13 , through which the supporting rolls, 14 and 15 , protrude slightly, so that the lower face of the plate is tangental to the peripheral surfaces of said rolls. The handle consists of curved metal end portions, 68 and 69 , and the wooden grip portion, 70 , formed of longitudinally split sections, 71,72 , with a hollow centre communicating through the passages, 74,75 , with

the interior of the casing, 2. 94 is a finger contact lever for reversing the motion in the propelling roll, 15 , said lever being shown here in its normal, neutral position, in which both the motor and the heating elements are cut out of circuit. The roll, 14, is hollow in construction and is provided with a cylindrical shaft, I9, whose extremities are journaled in suitable bearings carried by the side walls, IO, respectively, of the by the side walls, IO, respectively, of the
lower section of the frame. Suitable
heating elements, 22 , in the form of resistance coils are provided within this roll, and are connected by conductor with the collector rings, 25 and 26 , mounted upon the shaft, 19, at one end thereof and exteriorly of the roll. Suitable brushes, 27 and 28 , are secured to the corresponding side wall, Io, of the lower section of the frame for a purpose to be described more fully hereafter. 15 is the propelling roll, mounted on shaft, 29, having squared ends, 3 r , so as to be held rigid within brackets, 32 , carried by the side walls, 10 , of the lower section of the frame. The central portion of the shaft, 29, is cylindrical. The motor, which is adapted to rotate the said roll, 15 , is of the rotary feed type, the armature being rigidly mounted upon the shaft, 29.

Heavy shell and rolls are used for efficiency without inconvenience to the operator, as the device is self-operating, since the user has merely to guide the iron in its course and to operate the switch device, 94 , which may be done without removing the hand.

The utilization of magnetism for the separation of mixed liquefied gases is the subject of Patent No. 1,056,043, issued to Abraham Cressy Morrison, of Chicago, Ill., the process being especially designed for the production of gaseous oxygen and nitrogen from liquid air, based on the facts that oxygen is a paramagnetic-element and that its magnetic susceptibility is higher than that of nitrogen. The process comprises the steps of placing liquid air within a strong magnetic field and then allowing the liquid to become heated to a temperature slightly above the boiling point of nitrogen, whereupon the nitrogen distils off, the oxygen remaining by reason both of its relative involuability

Heretofore when it was desired to ascertain any variation from the original dip and bearing as the hole proceeded the customary method was to employ hydrofluoric acid in a glass tube for the dip, and to mark the drill rods as they went down, for the bearing, a process that was both laborious and inaccurate, and which consumed much valuable time.
In the accompanying views Fig. I I represents a longitudinal section of the device; Fig. 2, a perspective of the magnetic indicator used; and Fig. 3, a fragmentary section of a modification adapted for use where the inclination of the bore is unusual. Disregarding the minor details of construction described in the specification and shown and lettered in the views, it is sufficient for an understanding of the invention to say that in Figure I, I represents a cylindrical casing interposed between the head, 3 , and the stopper, 5 , which latter is attached to the cable, 17 , containing an electric circuit communicating with the electric bulb, 15 . Arranged in the casing, I , is a bulb, 15 . Arranged in the casing, I, is a
cylindrical sensitized paper, 26, held in cylindrical sensitized paper, 26, held in
place by a transparent cylinder, 27 . On the top of the mercury, 28 , floats a magnetic indicator, 29 , mounted on a pearl ring, 30 , to prevent contact between mercury and indicator, which latter has a central opening, 32 , by which it is positioned on the point, 33, of a fibre needle, 34. In the modification shown in Fig. 3, flexible connection is made with the lamp, Y , through the member, S , so that a greater degree of inclination is provided greater degree of inclination is provided
for, the arrangement being otherwise esfor, the arrangement being othe
sentially the same as in Fig. 1 .

In operation the device is lowered into a drill hole the required depth, when time is allowed for the mercury to come to rest and the indicator to assume the magnetic meridian, and the light is turned on, the sensitized paper exposed above the mercury affording a record of inclination as related to the north and south simultaneously registered by the magnetic indicator,-the sensitized paper being of course removed and developed after the device is withdrawn from the bore. In this way an exact record is procured of the conditions at the point at which the exposure was made, which may be filed for future reference.

The advantage of the parabola in the concentration of light or sound waves is well known, and there is nothing basic in the application thereof to a telephonic transmitter. Therefore Patent No. 1,54.58I issued to William John Merchant, of London, England, is necessarily confined to minor details shown in ily confined to minor details shown in
the accompanying longitudinal section of the accompanying longitudinal section of
the device, in which a, represents a parabola or mouthpiece of suitable material with the inner end cut away, so as to terminate in the focal plane of the paraboloid.
b, represents the box of the transmitter, and c, represents the transmitter

diaphragm which is positioned approximately in the focal plane of the paraboloid and contiguous with the rear edge of the horn.

This apparatus is secured in a casing d, costructed with an annular clamp d, co e, means of a bayonet catch to an inwardly projecting flange, d^{1}, of the casing to which the outer edge of the horn, a, is focused. The object of the clamping ring, e, is to provide means for locking over the mouth of the horn, a, one of a series of screens for the purpose of grad uating the intensity of sound produced in the receiver. For convenience the box or casing, d, is made with a compartment, d^{2}, at its rear end adapted to accommodate these screens which are made of material of varying thickness or mesh stretched over the rings, f, which are of a diameter adapted to fit within the edge of the casing, d, and abut against the flange, d^{1}, when clamped in position by the clamping ring, e.
It would thus seem superficially that our English cousin seeks first to concen-
trate the air vibrations to augment the sound transmitted, and then to muffle and modify his success in this respect by the use of "a series of removable sound graduating screens," which together with "means carried by the casing for the securing of the screens one ,"t a time over the large end of the horn," constitute the limitations of the claim.

A small portable incandescent hand lamp not dependent on a storage battery is a desideratum because the battery soon runs down and is liable to fail when the light is most needed. Victor Sence, of New York, N. Y., in his paSence, of Now
tent
$1,054,872$ this difficulty by the use of a thumbactuated generator in the lamp-handle, as shown in sectional elevation in the accompanying illustration.
In use the operator holds the flask I in his hand and periodically forces lever i6 into the position shown in dotted lines by pressure of the thumb of the han whe the

leasing the pressure spring 18 forces the lever back. Each inward movement of the outer projecting end of the lever spins the armature of generator 4, through action of the pawl and ratchet
gearing, and generates a current which charges battery 3. This battery transforms the pulsating current so generated into a constant current supplied to lamp 2, incandescing the same. In this way the power necessary to generate a useful amount of light can be easily and continuously exerted by a person of ordinary muscular development for some time without fatigue.

It is a well-known fact that an electric arc is affected in such a manner by a

magnetic field, that the arc-in case the same passes through the magnetic field across the direction of the lines of force -is forced out to one or the other side perpendicular to the magnetic lines of perpendicularing the electric current force according as the electric current flows in one or the other direction in relation to the direction of the magnetic lines of force. If the electrodes should be in alignment with each other, so that the ends of the arc have an opportunity of moving along the electrodes, the socalled "Birkeland"-arcs are formed on account of the physical law above referred to. But if the ends of the arc are prevented in some manner from moving along the electrodes, which in such case
different metals, respectively, and coiled within the soft iron rings in the shape of the letter C, with one end rigidly secured to the ring, 4 , and the other end operatively connected to the ring, 14 .

Patent No. 1,052,065, issued to Ernst August Kruger, of Seehausen, Germany, assignor of one-half to Sigbert Bloch, of Charlottenberg, near Berlin, Germany, is for a method of regenerating burnt out electric glow lamps by providing them with new filaments, the novelty consisting in the manner in which the cemented joints connecting the filament to the electrodes aredried while removing the black deposit from the interior of the glass bulb.

The method hitherto adopted consists in making the cemented joint conductive by drying it with the aid of an electric arc, which frequently results in damage to the filament joint, and in removing the black deposit inside the bulb by heating the latter with a blow lamp, which causes intense and rapid local heating and is also liable to cause breakage. These drawbacks are obviated by the present invention, according to which the cemented joints are only heated to an accurately regu latable temperature of approximately 270 C., whereby the black deposit in the bulbs is simultaneously removed. The heating is gradual and well distrib uted as regards the bulb, so that there is no risk of breakage.

The lamp b, held together with a number of others, not shown, in the box, has its cap a, outside the box and has three leading-in-wires, c, c^{1}, c^{2}, to which the new filament is fastened by cement joints, d, d^{1}, d^{2}. The cemented joints are in this case dried and heated by introducing highly heated air into
the bulb by means of the tube g, inserted in the opening e. The current of air may be directed against the cemented joints so that the same are rapidly dried. As the whole lamp, with the exception of the cap, is inclosed in a chamber, the heat is concentrated as much as possible, and the deposit in the lamp bulb is likewise removed The drying of the cement and the re moval of the black deposit may be synchronous or successive operations. In the latter case the temperature in the inclosed chamber, or of the air introduced thereinto, is at first only raised sufficiently to dry the cemented joint, whereupon the temperature is gradually increased until the black deposit entirely disappears. In the first case the temperature is somewhat higher to begin with, so that the cemented joint is dried and the deposit is removed from the bulb simultaneously.

Patent No. 1,053,390, issued to Albrecht Heil, of Frankfort-on-the-Main, Germany, assignor of one-half to Conrad Hubert and one-half to Samuel Stern, both of New York, N. Y., relates to a galvanic battery which is characterized by a high output with small weight and long life, hitherto not ob tained. These characteristics are ob tained by employing as the substance acting as the depolarizer, not manganese dioxide, for example, pyrolusite or suitable sulphate, chloride or the like but the dark brown manganic hydrate which is the hydrate of the sesquioxide of manganese, and which corresponds in chemical composition to the formula $\mathrm{Mn}(\mathrm{OH})_{3}$, and which readily conducts electricity. If this dark brown powder is intimately mixed with finely powdered carbon (graphite) and used in the ordinary manner as the depolarizing electrode in a porous envelope with a carbon element opposed to a zinc element in ammonium nitrate or ammonium chloride solution or the like, a battery is thus obtained whose depolarized electrode, with the same weight and the same electrolyte, has about 100 per cent. greater efficiency than a depolarizing electrode of the best and purest pyrolusite. Experiments have shown that 70 parts by weight manganic hydrate can advantageously replace 240 parts by weight of the high-
est percentage of pyrolusite. Such batteries give a very constant and strong current, keep excellently during periods of rest and produce no fumes, for which reason dry batteries can also be very advantageously manufactured in this manner The electromotive force is 6 volts. The internal resist force is somewhat smaller than in the ance is pyrolusite battery, while its recovering capacity is greater than in the Le clanche battery.

Patent No. I,053,940, issued to Jame Burke, of Erie, Pa., assignor to th Burke Electric Co., a corporation of Pennsylvania, relates to an electric motor which is adapted to be actuated by either single phase alternating currents or direct currents, and to a method of varying the speed and changing the direction of rotation of the motor when supplied with alternating current of the same voltage.

Thus, a motor may be applied to any commercial alternating or direct current circuit without the use of any accessory apparatus or any change of adjustment by simply applying the alternating or direct current voltage to its terminals, and will in either case give the same speed and high torque; is capable of being operated at a high efficiency for either character of current, and may be readily regulated without auxiliary devices. Furthermore, the motor is free from all injurious sparking of the brushes and all excessive heating, and requires no additional parts, such as resistance leads, auxiliary field windings, or extra brushes. The above highly advantageous results attained are substantially independent of the number of cycles of the single phase alternating current
A salient feature of the construction, which is of great utility, is that under conditions of the same applied potential and equal load, substantially the same speed of rotation is attained when said mator is supplied by a single phase alternating current or by a direct current, and at substantially the maximum efficiency for either character of current.
The view shows the stator and frame in central vertical section, the rotor,
commutator and brush elements being shown in elevation

The rotor, I, comprises a laminated core, 2 , of magnetic material, said core being fixedly mounted on a shaft, 3 , the commutator being shown at 4 . The laminae of core, 2 , are provided with openings at or near their periphery to form slots, which in the present in stance, are twenty-two in number, and in which are mounted the insulated

conductors, 5 , constituting the coils of he armature winding. Each slot contains windings of two coils, the windings of one coil at the end of said slot passing in one direction and the windings of the second coil at the ends of said slot passing in the opposite direction. One coil passes from the first slot to the fourth slot, and the second coil passes an equal number of slots in the opposite direction, namely, from the first slot to the twentieth slot, and so on around the core; thus completing the arrangement of armature windings to be connected to form a serieswound armature.

The slots in the armature core are disposed at a suitable angle to the axis of the armature core, which angle in the instance cited is sufficient to bridge one stator tooth. This slant in the rotor core slots in relation to the field gives such uniform relationship as to assist in permitting a large range of flexibility in brush position without in jurious sparking because of the gradual entrance of the rotor teeth into the fields of the stator, and thus assists in securing uniform action with either direct or alternating currents.

All business houses and dwellings in the city of Stavanger, Norway, wili be heated by electricity derived from a nearby waterfall if present plans are carried out.

BUG
 NUMBER

THE ETHER: SLIPPERY

No. Naughty 1.

Olyp 排ureless Srath

A rip-snorting, red.blooded Maga zinelet devoted entirely to the explanation, acceleration, accentuation, adaptation, advocation, affiliation, affirmation, agitation, amplification, application, appreciation, approbation, argumentation, 2ssimilation, avocation, clarification, confabula tion, confirmation, contemplation, cultivation, delineation, demonstration, edification, germination, organization, oscillation, propagation, promulgation, radiation, ramification, regulation, remuneration, revelation, sensation, undulation, valuation, variation, and vexation of wireless telegraphy.

Who edits these wireless senseliess quips?
Who gives you these worthless brainless tips?
Who lets all this wisdom fall from his lips?-
Mohammed Ulysses Socrates Fips!

Subscription price: Free in all countries except those in the eastern and western hemispheres, where double the above rate is charged. Payable in easy marks (Germany); sucres (Ecuador); piastres (Turkey); bolivars (Venezuela); gourdes (Hayti); drachmas (Greece); or any old coin that can be turned into eats.

MSS, submitted in person at your wn risk. Get an accident policy first.

Subscribe for the Screech. How do you expect us to be a red-blooded magazine without circulation?

Jintaturtal

Has the Electricity Bug bitten ou?

Has the Wireless Weevil wormed its way into your inner works?
Then join the Wireless Screechers and let's all go crazy together!

the editor
Even if we anateurs are limited to a 200 -meter wave, you can gamble your last copper on it we are going to make some splash in the ether! Here is a

Reelpe for Becoming n

 Screecher.To an old kitchen table add one fexible transformer, a rotary spark gap, a sending condenser, transformer coil, electrolytic interrupter oscillator, wireless key (may be taken from any old bunch of keys) a tuner (a piano tuner will do in a pinch), a silly con-detector, a receiver (get the court to appoint a receiver for you), batteries (any baseball team can supply you), and a few switches (hair goods counter four aisles to the left!). Stir thor oughly in a bread mixer, add dash paprika, eight ohms of electric currents (which may be obtained free by skillfully tapping the electric light power wires any dark night), and bake in slow oven.

Whan dona

serials garnished with conper fires Swallow in big doses, take a pink Swallow in big doses, take a pink
pill, throw a fit and subscribe for the Screech.

Price: One Grin

Wiry wille, the Wireless

 wisAn Operetta, Chack Full of Throbs and Thrills, Pirates and Poils

CAST
Wiry Willie, Wireless Wiz.
Wiry Willie, Wireless Wiz.
Dip the Blood, Leader of Crooks. Hy Jinx, Captain of Steamship Pa-
peete.
Chers of
Chorus of Pirates, Disguised as Sailors.
A Hertzian Wave.
Atmosphere.
Ether.
Ether.
U. S. Revenue Cutter Sneakbex's Column of Smoke.

ACT I

Scene opens aboard steamship Pa peete, two days out from Tahiti with cargo of pearls.
Dip the Blood: Sh-b-h-h!
Chorus of Crooks: (Tune-"Never

Bold pirates are we (tee hee, tee heel),
The scourge of the sea (tee hee, tee hee1),
And we plunder treasure ships wherever they may be.

Dip the Blood: Sh-b-h! In an hour we will reach Raratonga Reef. We will scuttle the ship, cop the poils, toss the captain and that meddlesome wireless wiz to the sharks, and
lives.
Wiry Willie (Hiding behind a Hertzian wave): Oomps!

ACT II
Ten minutes later an hour clapses. Wireless Willie discovered in standing position, seated at radio instruent with phones to ears.
Wiry Will: Excelsiort Also Eurekal They are coming! They are carning! Got an answer at last 1 Now, let those inhuman piratical fienda do their worateat 1
Enter chorus of crooks on tiptoe, to tune of that sneaky, freaky, ever melodious (BINGI), "Mysterious
Rag."

Chorus (Singing - tunc, Stein
We srited out from Papecte We sailed out from Pape
In the Island of Tahith,
nd our ship is loaded down with poils, poils, poils;
We're gona cop the treasure.
And live a life of pleasure-
will be as rich as fruit cake from
the spoils, spoils, spoils.
Dip the Blood: Have yout any-
Chorus (Singing) :
Before we croak yuh,
Before we croak yuh!

Wiry Willie: Gee! I never leave hat door open but a lot o^{\prime} rubbish owe in!
Dip: Chop that vaudeville stuff! You die at sundown. Have you any
favorite method of dying? We have avorite method of dying? poils, and s good-night, nurse, for yours. Chorus (Singing) :

> Good-night, nurse;
> He's going for a ride, He's going to ride inside;
Here comes the hearse,
So, good-night, nursel
Wiry Willie (Whipping two teninch rapid-fire guns from his vest ocket): Hands upt The first one man! Now, you listen to me. got wise to your little scheme. You didn't know the revenue cuttar neakbox passed us an hour ago, did you? Well, she did; and she was just out of sight. I was talking with her, and she has your
number. Take a peep out that winnumber. Take a peep out that win-
dow and you will sec her smoke now! In half an hour you'll all be wearing bracelets! You will now join in the chorus and sing that eautiful ballad to the tune of "The Bowery":
The wireless, the wircless
They do such things and they say
such things on the wireless , the
We'll never rob the wireless,
Shells from Sneakbore screech across the ship's bows. Pirates run up the white flag.

Quick Curtain.
©hr (ITratilp
I wish you would announce to a waiting world that I have discovere a wonderful alloy. It is a conductor nearly 100 per cent. efficient, just what the
seeking.
J. M., Lincoln, Neb.

Ans.: Marvelous! This ought to make you rich enlough to hire Car negie for a scrub lady. Send us full particulars, and we will make a feature article in next month' Screech.
(Just as we go to press the following letter comes from J. M.: "I neglected to state that the place I discovered this wonderful new conductor, cupric-boronsuboxide was on Modern Electrics.")

Alurrtispntents

(Rates, one dollar a word;
less than one word received.)
WANTED: Position as lineman for wireless telegraph company

HELP WANTED: Amateur operator, who fell from aerial poles onto wires sixty feet above ground re-
quires services of any person witb a sixty-foot ladder. No references required. B. Z.

ment

The Electro-Magnetic Perpetual Motion Power Plant As soon as the patent is granted on my Electro-magnetic Perpetual he full details and publish working plans. At present, however, I can give to my fellow Screechers only a few hints as to the general mechan ism.
This machine, as finally perfected by yours truly after eighty-nine years
of ceaseless labor, is a device for furnishing power to motor vehicles or boats. It consists of a powerful electric coil magnet supported in front of the boat or vehicle on nonconducting rods. A large steel bar across the front of the vehicle a few
attracted by said magnet, and, obey ing the impulse, moves forward drawing the car with it
The magnet is charged and controlled by storage batteries, and the speed of the car is regulated by the mount of current allowed to enter the coil.
I conceived this wonderful idea one time when I saw an old darkey cure an obstinate mule from baiking by tying a bundle of hay on a pole sttached to the animile's head. The hay dangled in front of the mule's nose, just out of reach, and, in his efforts to catch up with the eats, he forgot the balks.

An important part of this patent is the device for recharging the batteries without any expense whatever, making the cost of operation absolutely nothing. In hilly country, and very few roads are without hills, the batterics are kept charged by the self-starting motor-generator device now being installed on all new cars. In coasting the generator is turned on by automatic switches, and is run by power taken direct from the wheels. In all but very level country there is more than sufficient to keep the batteries charged.
But we have provided auxiliary means for making assurance doubly sure. We have invented 2 jointed fish pole apparatus supporting a feed wire hooked at the upper end. This may be used on country roads, where there is a trolley. The wire on the pole may be hooked over the
trolley into the batteries.
This also may be used on any noninsulated feed wires from power

plants. For an insulated feed wire, we have an attachment t fit the pole which works on the principle of a ver the wite the lever of the prun ver the.wie, the lever of prus ing knife is jerked a few times, nd allows the current to be taken by the hand and led gently into y.

Wireless Club Directory

Until further notice we will publish here from time to time a list of wireless clubs These notices are inserted free upon receipt of proper information. Notices of the organization of ally.
us promptly.

Allegheny County (Pa.) Wireless Associa-
tion-Leetsdale, Pa.
Alpha Wireless Association-Box 57, Valparaiso, Ind.
Amateur Experimental Association-Spokane, Wash. Wireless Association of New Amateur
Bedford- 8_{4} Dunbar Street, New Bedford, Mass.
Amateur Wireless Association of Schenec-tady-R. F. D. Route No. 49, Schenectady N. Y.

Amateur Wireless Association of Schenec-tady- 405 Lenox Road, Schenectady, N. Y. Amateur Wireless Club of Geneva - 448 astle Street, Geneva, N. Y.
Amateur Arkansas Wireless Association-216 West 20th Street, Little Rock, Ark.
Atlanta Wireless Association-159 Capitol Avenue, Atlanta, Ga.
Austin Wireless Association-406 West roth Street, Austin, Texas,
Back Bay Wireless Club of Boston-295 Walnut Street, Brookline, Mass.
Adams, Mass.
boise Radio Club-715 North 9th St., Boise,
Boys' Experimental Club - Box 214, Virginia, Minn.
Bridgeton Wireless Club-275 Bank Street, Bridgeton, N. J.
Bronx Wireless Association-500 East 165th Street, Bronx, N. Y.
Brooklyn Wireless Club - I3I Ryerson Street, Brooklyn, N. Y.
B. W. T. A. Wireless Department-Scars-

Canadian Central Wireless Club - Central Avenue, Armstrong's Point, Winnipeg, Man., Canada.
Cantabridga Wireless Club - 351 Harvard St., Cambridge, Mass.
Cardinal Wireless Club-South Division High School, Milwaukee, Wis.
Chicago Wireless Association-4418 South Wabash Avenue, Chicago, III.
Cincinnati Wireless Signal Club-r839 HopColorado Wireless Association-1545 Milwaukee Street, Denver, Colo.
waukee Street, Denver, Colo. Street, Danvers, Mass.
De Kalb Radio-Transmission Club-205 Augusta Avenue, De Kalb, III.
Detroit Y. M. C. A. Radio Club-Detroit, Mich.
Dorchester Wireless Association-222 Harvard Street, Dorchester, Mass.
East Buffalo Wireless Club-yor Walden East Glenville M. E. Wireless Association -634 East 124th Street, Cleveland, Ohio.

East Side Y. M. C. A. Radio
East 66th Street, New York City.
North Third Avenue, Knoxville, Tenn
Electric St. Louis Wireless ClubAllen Avenue, St. Louis, Mo.
Electro and Mechanical Association of lumbus, Ohio-512 West State Street, Colum bus, Ohio.
Everett Wireless Association-2716 Gr Avenue, Everett, Wash.
Ever Ready Wireless Club- 167 East
Street, New York, N. Y
Club of Cincinnati-1214 Jack Fargo Wincinnati, Ohio.
Street, Fargo, N. Association - 518 N Flushing Wireless
Avenue, Flushing, N. Y.
Franklin Wireless Telegraph
Franklin Wireless Telegraph and Teleph
Association-Bronx, N. Y.
Frontier Wireless
Frontier Wireless Club-1034 Elmwoo
Avenue, Buffalo
Avenue, Buffalo, N. Y.
Fruitvale Wireless Club-25io Fruitva
Avenue, Chicago, Ill. mantown Avenue, Germantown, Pa .
Glenville M. E. Wireless Club-
Woodside Avenue, Cleveland, Ohio.
Gramercy Wireless Club-207 East
Street, New York, N. Y.
Granby High School Electricity Club, G by, Mass.
Greater Boston Wireless Association Lawrence Street, Wakefield, Mass.
Guilford County (N. C.) Wireless As Hamilton Wireless A
lin Street, Hamilton, Ohio.
Hamlin Wireless Atio. Avenue, Chicago, Ill.
Hannibal Amateur Wireles Hill Street, Hannibal, Mo
Haverhill Wireless Association-Haverhi
Mass.
Harriman Wireless Association-8or ton Street, Harriman, Tenn,
Hartford Wireless Association
ersfield Avenue, Hartford, Conn. Soudependence Wireless Associatio
South 6th Street, Independence, Kas.
Irving Park Wireless Club-4908 Street, Chicago, Ill.
Italian-American Wireless Club-146 Bleecker Street Inter-Mountain Wireless Association 5th Street, Salt Lake City, Utah.
Killington Radio Club- 36 Lincoln Aven Killington Radio Club- 36 Lincoln Ave
Rutland. Vt.
Lane Radio Association-2147 Lincoln P Lane Radio Association-2147 Lincoln P Chicago, Ill.
${ }_{517}$ Lexington Electrical and Wireless 517 Throop Avenue, Brooklyn, N. Y. Beach, Cal.

Madisonville Wireless Club - 5609 Tompkins Avenue, Madisonville, Ohio.
Manchester Radio Club - 759 Pine Street, Manchester, N. H.
Massachnsetts Wireless Association - 245 Commonwealth Avenue, Boston, Mass.
Metropolis Wireless Association-181 West 63 d Street, New York, N. Y.
Metropolitan Wireless Association - 181 West 63d Street, New York, N. Y. Mrooklyn, N. Y. Murray Hill Wireless Association-334 East 34 th Street, New York City.
New England Wireless Association, Inc.125 Milk Street, Room 99, Boston, Mass.
New Haven Wireless Association-27 Veron Street, New Haven, Conn.
Northern New Jersey Relay Club-102 High Street, Passaic, N. J.
Nore Association-Haw-
Oklahoma State Wireless Association-Box 627, Tahlequah, Okla
Óakland Wireless Club-916 Chester Street, Oakland, Cal.
Oregon State Wireless Association-Lents,
Oregon.
Pacific Radio Communicating Association1109 Washington Street, Vancouver, Wash.
Wilcox Avenue, Los Angeles, Cal 288 Wilcox Avenue, Los Angeles, Cal.
Market Street, Portland, Ore. Pittsburg Wireless Association-603I Kirkwood Street, Pittsburg, Pa.
Plaza Wireless Club-156 East 66th Street, New York, N. Y.
Power City Wireless Association-Niagara Falls, N. Y.
Progressive Wireless Club - Poplar Bluff,
issouri.
Progressive Wireless Club-Seattle, Wash. Radio Club of Baltimore- 904 N. Fulton Avenue, Baltimore, Md.
Radio Intercommunication Club- 25 Terrence Street, Springfield, Mass.
Ranger Nautical Signal and Wireless Club -Nautical Training School, State House, Boston, Mass.
Rochester Wireless Association-Rochester, Rock
Rockland County Radio Wireless Associa-tion- 54 Catherine Street, Nyack, N. Y.
Roslindale Wireless Association-962 South Street, Roslindale, Mass.
Sacramento Wireless Signal Club-2ing H Street, Sacramento, Cal.
St. Paul Wireless Club-igri Ashland Ave., St. Paul, Minn.
Santa Cruz Wireless Association-184 Wal-
nut Avenue, Santa Cruz nut Avenue, Santa Cruz, Cal.
Clay Avenue, New Orleans, Clay Avenue, New Orleans, La
Springfield Wireless Association-323 King Spring Hill Amateur.
2 Benton Road, Somerville. Mass
Stoneham Radio Association-33 Warren Street, Stoneham, Mass.
Technical Wireless Association-Sullivan, Ill.
Capitol Street, Washingsociation-1206 East

Texas Wireless Association - 1212 Prairie Avenue, Houston, Texas.
Toledo Wireless Club-IO24 Erie Street, Toledo, Ohio.
Tri-County Wireless Association - Green-
field, Ohio. field, Ohio.
Tri-State Wireless Association-Room Ior, Falls Bldg., Memphis, Tenn.
United Wireless Relay Club-102 High Street, Passaic, N. J.
Wate Wury Wireless Association-26 Linden Waynesburg College Wireless Club Waynesburg College, Pa.
Welcome Wireless Association-185 Chauncey Street, Brooklyn, N. Y.
Westchester Wireless Association-37 West Main Street, Tarrytown, N. Y.
Western Division High School Wireless
Association-Milwaukee, Wis,
Pine Avenue, Wildwood, N. J. Wireless and Electrical Asso
borg, Kans.
Wireless Association of Atlantic City-Atlantic City, N J.
Wireless Association of Buffalo, N. Y.142 Dorchester Place, Buffalo, N. Y.
Wireless Association of Canada-r89 Harvard Avenue, Notre Dame de Grace, MonWirelebec, Cana
wireless Association of Central California
Wireless Association of Central Pennsyl-vania-409 Kelker. Street, Harrisburg, Pa.
Wireless Association of Easton, Pa.-123 North Main Street, Phillipsburg, N. J.
Wireless Association of Greater Fort Smith Wireless Association of Greater Fort Smith - Greater Fort Smith, Ark.

Wireless Association of Illinois-303 North th Street, Marshall, Ill.
Wireless Association of Keene- 172 Elm
Street, Keene, N. H.
Wireless Association of Milwatukee - 824
Nineteenth Avenue, Milwaukee, Wis.
Wireless Association of Montana - 309
Wireless Association of New Orlean3 2022 State Street, New Orleans, La.
Wireless Association of Pennsylvania-Odd Fellows' Temple, Philadelphia, Pa.
Wireless Association of Savannah-303
Wireless Association of Sout
Wireless Association of Southern Califor-
nia-935 Denver Avenue, Los Angeles, Cal.
Penn Street, Woodbury, N. J.
Wireless Club of Newtonville- 47 Gibson Road, Newtonville, Mass.
Wireless Society of Springfield-P. O. Box 562. Springfield, Mass.

Wireless Telegraph \& Telephone Association of U. S.-Boys' Club, 161 Avenue A, ew York, N. Y.
Young Edison Society-Rogers, Ark
Young Experimenters' Society-Box 25I, Young Marconis' Wireless Association1024 Erie Street, Youngstown, Ohio,
Y. M. C. A. Wireless Club-2II West

Fourth Street, Williamsport, Pa.
Zanesville Wireless Association-105 South
Seventh Avenue, Zanesville, Ohio.

Flying

CORRECT

Teacher-By what is the Earth surrounded and by what is it lighted?
Pupil-It is surrounded by air and water and lighted by gas and electricity.

E 5

HAPPY THOUGHT

Office Boy-"There are two men out there, sir, who want to see you; one of them is a poet and the other a deaf man."
Editor-"Well, go out and tell the poet that the deaf man is the editor, and let them fight it out between them."-TitBits.

S

MISSING

Two farmers of Kansas were discuss ing a recent cyclone. "Was your barn damaged any?" asked Si , "Wal, I dunno; I ain't found that barn yet."-Electroforce.

Be

THE QUESTION
First Doctor-"I operated on him for appendicitis."
Second Doctor-"What was the matter with him?"-Life.

EPITAPH OF A SPEEDER

 No more he'll run a buzz machin Gone where they don't use gasoline. Judge.
家

NEW POWER UNIT

"Is you gwine ter let dat mewel do he please ?" asked Uncle Ephraim's wif "Wha's you' will power ?"
"My will power's all right," he swered. "You jest want ter come ou hyar an' measure dis here mewel's won power."-Christian Register.

GOOD EXERCISE

It was a very hot day and the f_{2} drummer who wanted the twelve-twent train got through the gate at just twelve twenty-one. The ensuing handicap wa watched with absorbed interest boti from the train and the station platform At its conclusion the breathless and per spiring knight of the road wearily too the back trail, and a vacant-faced cap" came out to relieve him of his grip
"Mister," he inquired, "was you tryin to ketch that Pennsylvania train?"
"No, my son," replied the patient man "No, I was merely chasing it out of th yard."-Electroforce.

Our Wireless Station and our Laboratory Contest will be continued every month until further notice. The bert photograph for each contest is awarded a monthly prize of Three (3) Dollara Ify you hovice.
 wireless station or laboratory (no matter
craphs not used
will be returned in
no day
graphs neASE NOTE THAT THE DESSCRIPTION OF THE STATION MUST NOT BE LONGER
THAN 250 WORDS AND THAT IT IS ESSENTIAL THAT ONLY ONE SIDE OF THE SHET
 UUEESS ARE CLOSELY ADHERED TO.
It ise also advisable to send two prints of the photograte
have the choice of he one best euited for reproduction.
This competition is open freely to an who may desire to compete, without charge or conalderation of
any kind Prospective contestants need not be subscribera for (the publication) in order to be eatitled uny kind
to compete for the prizes offered.

FIRST PRIZE, THREE DOLLARS
I am submitting an arc light photograph of my radio outfit.
The antennae is of the T type, consisting of five wires of phosphor bronze, 80 feet long, 50 feet high, with 12 -foot spreaders.

The receiving set consists of one

hadden station

Bunnell three-slide tuner used as a loading coil, a Murdock receiving transformer, a small Murdock variable condenser, two large Amco variable condensers, audion, galena and perikon detectors, with necessary switches, receptacles for two sets of phones, one pair Mesco receivers and one pair Holtzer-Cabot new type receivers, which is not shown in the photograph.
The sending end consists of a $1 / 4 \mathrm{kw}$. Amco transmitting set, an Amco quenched gap, a Murdock line protector and a plug cutout under table

One Amco transfer switch, a testing btizzer and a shelf full of Modern Electrics completes my set.-Weston Hadden, New York.

HONORABLE MENTION

The engraving shown herewith is reproduced from a photograph of my wireless station, taken by myself.
My receiving set consists of a loosecoupler, two variable condensers, a loading coil, and a Wallace valve and silicon detectors.
My sending set consists of a $11 / 2$-inch spark coil run by a 6 -volt, 60 amperehour storage battery, and a helix, leyden

kaltenbach station
jar, spark gap, and a key, as well as the necessary switches.

The aerial is ino feet long, composed
of 4 strands of copper wire, the strands being spaced 2 feet apart.

With this set I pick up the important naval stations along the coast from Portsmouth, N. H., to Key West, Fla., and on two occasions I have heard the naval station at Guantanamo, Cuba (NAW). My sending range is about five miles.
I think Modern Electrics is a fine magazine. and recommend it to any amateur. - Henry Kaltenbach, Jr., Nezu York.

HONORABLE MENTION

The accompanying view shows my wireless receiving set.
As I have no sending station, I have concentrated my attention and have succeeded in obtaining a remarkably efficient receiving outfit. The wiring is extremely short, and is of stranded wire, with all connections securely soldered. The set consists of a loose-coupler, home-made, with the exception of the primary, which was wound by the Clapp Eastham Co.; a 1500 metre loading coil, and a double-throw switch, giving me a choice of using an atudion or a perikon set made from Pickard's licensed crystals.
With this set and my aerial, which is 150 feet long, comprising five wires

metcale station.
spaced three feet apart, I have heard nearly every Government station on the coast from NAB (Cape Elizabeth) to NAM (Norfolk, Va.), and nearly every night hear NAR (Key West), and NAL (Washington). These latter two stations come in clearly, although not loud, and I have no difficulty in reading them.

I use Murdock AM phones. This set has such a high minimum wave length that I rarely, if ever, hear amateurs.-Her bert E. Metcalf, Massachusetts.

HONORABLE MENTION

In the accompanying view may seen the various instruments comprising my wireless station.
The small table on the left holds the sending set, while the large table hold the receiving set. The sending set con sists of Clapp Eastham Blitzen $1 / 4 \mathrm{kw}$

colt station
sending transformer, condenser, helix and a Murdock 1/2 kw. spark gap.

The instruments on the large table from the left to the right are: Home made aerial switch, Murdock variable condenser, receiving transformer, home made variometer, Clapp Eastham Blit zen variable condenser, Murdock send ing key, buzzer key. In front of the re ceiving transformer is a Murdock fixed condenser, 2000 ohm phones and shor circuiting switch. In front of the vario meter is the Clapp Eastham Ferron de tector, with silicon crystal. The aerial i 75 feet high and 80 feet span. I have received about $\mathrm{t}, 500$ miles and sen about 20. As the picture is very plain it will speak for itself.-Fay E. Colt Washington.

HONORABLE MENTION

The accompanying view of my wire less station was taken some time ago and since then I have made severa changes.
My receiving set consists of loose coupler of 1500 meters range, two ro tary variable condensers, fixed conden

IMPORTANT. In April the first of a series of advances in price made and outfits will now be forwarded prepaid on receipt of new price.

The amateur has not been backward in realizing that most of our outfits have been sold at about $1-3$ the cost all other houses charge. At present prices our costs are still far below ordinary charges and all purchasers will receive considerable extra value.

Be sure to send for new Bulletin M:

Complete Portable Sending and Receiving Wireless Telegraph Stations

Here is a Set you will be proud to own.
Our biggest seller among amateurs.
Ideal outfit for Home, Ranch, Camping, Picnicing, Motor Boating, Sailing, Aeroplane Work, Etc.

No. 802. One-hair inch ecil type foperales in a dry latteries. Sends 1 to 3 millee. Receives 300 to 100
No. 802A. Equilysed with 1000 chm recelver
No. 102 B

No. 803. One Inch coil type (operates on a dry batteries; seluds 8 to 15 millees. Recelves 600 to 1000 mules
No. 883A. Equipped with two reecirers 2000 chims, headiand aid silk corf
. Priee $\$ 12.00$
Cornect nerial wire to the right hand binding ruat of double pole doalle throw aerial switch. To the teft hand po

SEND POSTAL FOR BULLETIN M

HUNT \& McCREE, 92-94 Murray Street, New York
ser, silicon detector and 2000 ohm Murdock AM phones.
My sending set comprises a one-inch coil, helix, glass plate condenser (not shown), rotary spark gap and key.

All instruments except coil are homemade. I have copied several coast sta-

fox station
tions, Key West, University of Michigan and numerous other stations.

My aerial consists of four aluminum wires, No. 14, 200 feet long, 50 feet high at one end and 55 feet at the other. It is of the inverted L type.-Corbin C. Fox, Ohio.

HONORABLE MENTION

The two accompanying illustrations show both my receiving and transmitting apparatus.
The receiving apparatus I have set up in a mahogany cabinet with hard rubber

osborn station-receiving
top. The loose-coupler and loading coil were made by myself and are operated by three ro-point switches. A ferron and silicon detector are mounted on the center of the cabinet and an audion is in the pigeon hole on the right side, regulated by a rheostat and switch. A variable condenser is fitted inside the case
and is operated by a rod, the handle of which is shown to the left of the audion. Receivers are of 3000 ohms resistance. The sending apparatus is also constructed in a case. Helix and rotary gap I have built myself. The helix I made from quarter-inch brass ribbon wound round four ebony posts, and the rotary gap consists of a $1 / 8 \mathrm{~h}$. p. high speed mo tor with hard rubber wheel four inches in diameter. In the case is a $1 / 2 \mathrm{kw}$ closed core transformer and a set of 12 plate glass condensers in a rack, which I also constructed. I use an ordinary telegraph key fitted with heavy silver contacts.
My aerial is of the straightway type, consisting of six copper wires spaced two feet apart and 60 feet long. Height on one end is 80 feet and on the othe end 50 feet.
With this set I do very satisfactory

osborn station-sending
work, the sending averages from 60 to Ioo miles and receiving from all large stations between San Diego and Seattle. -Chas. W. Osborn, California.

HONORABLE MENTION

The accompanying illustration shows my wireless station, which is located in the attic of my house. It consists of the following instruments: On the left is seen a United Wireless Telegraph Company type B tuner, to which I added a variable condenser. A potentiometer, battery, detector and shunt switches are on the top. Two detectors-one car borundum and one perikon, with 1800 ohm phone complete the set.

To the right of this set is another that I made myself. It is composed of the following: An Adams-Morgan induc tive tumer, variable plate condenser fixed condenser, three detectors-car

EXTRAORDINARY MOTOR BARGAIN

The followink molors are new but shop worn, are all in perfect funning condition, and are
offered at $1 /$ to $1 /$ regular prices. They are all of
 are exceptionally well built and poweff
$1 / 12 \mathrm{H}$. P at usual city water pressures.
If you require a small power motor for operating a rotary, spark घap, sewing machine, dynamot lathe, washing machine, or for future use, do
moi let this ooportuntty pass. Avoud disappoint. not let this opportunity
ment. and act quickls.

$$
\begin{aligned}
& \text { Art ucratemat. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6.00 } 13.00
\end{aligned}
$$

 promplty relurned if motors are sold previous to CLAPP-EASTHAM CO.
143 Main Street,
Cambridge, Mass.

WrReIES COURSE FREE
 Complete In 20 Lessons

With each purchase of $\$ 1.00$ worth of our Wireless Material we give you a
Lesson, from 1 to 20 .

Western Distributors for the Electro Importing Co. SAME CATALOG

SAME PRICES

$\rightarrow 2$
chicago and vicinity are \ln vited to call and look over our
line. We elso carry a General Line of Hlec trical Suppli.s and Novelties.

Static Machine $\$ 4.00$
Anderson Light \& Spec. Co. 176 No. La Salle Street, CHICAGO
(Between Lake and Randolph)

BRANDES

Wireless Receivers
Do you want the record for long distance
receiving in vour locality? Then you must
receiving in your locality? Then you must
lave a BRANDES beadset.

Improved Navy Type $\$ 13.00$
$\left.\begin{array}{l}\text { Tranantlantic type........ } 89.00 \\ \text { Superior Type............ } \\ \mathbf{5 . 0 0}\end{array}\right\} \begin{gathered}\text { Complete } \\ \text { with headband }\end{gathered}$ The. and cord. Single
$\begin{gathered}\text { Superior Receivers, } \\ \text { eacll, postpaid. }\end{gathered}$ Hot Wire Meters for Both Spark Coils and
Transformers.............................5.50 Send Stamp for Descriptive Matter

C. BRANDES, Inc.

 111-113 Broadury, Nen Yarkan Francisco, Ford King, 610 Balboz Buildin Chicago, Dawson \& Winger Elec Co., 727 So.

SOLE AGENT FOR AUSTRALIA, G. C. HAMILTON, LTD.; ${ }^{177}$ Elizabeth St.,

LOOSE COUPLER

borundum, perikon and galena-also a potentiometer, battery, detector and shunt switches. With this set I have covered 1,500 miles with the aid of Brandes phones.
The sending consists of a Splitdorff

austin station
one-inch spark coil, which is operated on a six-volt 60 -ampere-hour storage battery, a commercial leyden jar and a United Wireless small type helix. My spark gap is mounted on the center of the switchboard. To the left of it is a double-pole, double-throw switch, which is used for changing sets. The switch on the left of that is used for breaking the battery circuit. The one on the right of the board is my transfer switch, and the large one at the top is my grounding switch, which is supplemented by another outside of the house.

I would like to hear from any amateurs, either by person or wireless. My call is WA or 2CI-Edward C. Austin, Nezo Jersey.

HONORABLE MENTION

In the accompanying illustration may be seen a view of my radio station. All the instruments are of my own make

wunder station
with the exception of the telephones. The receiving set comprises a loosecoupler, single slide tuner, used as a
loading coil; four detectors-two sili con, one galena and one perikon-a con denser, a pair of 1,000 ohm Brande 'phones and a solid receiver which I em ploy for friends desiring to listen in.

The sending set consists of a two inch coil of my own make, spark gap of the stationary type, two sections o Murdock condenser and helix. The helix and condenser belong to my portable set and are contained in the box on the table.

On the shelf above the table I have wire and motors which I use in trying new hook-ups and for general experimenting.
I am a constant reader of Modern Electrics, from which I have copied the designs for different instruments of my sct which have been published from time to time.-Willian Wunder, Pennsyl zania.

HONORABLE MENTION
The illustration shown herewith is

flindt station
reproduction from a photograph of my wireless station.

The transmitting set consists of a $1 / 2-$ inch spark coil, spark gap, helix, leyden jars and telegraph key. The spark coil is run on four bichromate cells, which appear in the photograph. The helix, and spark gap were made by me.

The receiving set combines a silicon detector, tuning coil, two condensers and a 1,000 ohm receiver.

The aerial consists of four strands of aluminum wire spaced $11 / 2$ feet apart, and is about 50 feet high. I have obtained good results from my station.Walter Flindt, Pennsylvania.

Murdock Receiving Transformers

represent the ideal in experimental wireless apparatus. Thoroughly workmanlike in appearance and in operation, distinctively correct in
design, and particularly adaptable for the design, and particularly adaptable for the
varying needs of the experimenter, they are truly the best on the market.

Battery Fals Mot Toys-Axy Yattace Same Prite

Tubes absolutely unshrinkable Bare copper primary. Silk covered copper secondary with six point variation switch. Especially selective in operation. Has no real rival for real value.
\qquad ..58.00

PopularFans
 1 (1)

NDEST FINISH IN NICKEL FROM WALL OR TABLE.

110 Volts, A. C. or D. C.

75-cent silk cord and plug included if dealer's name is given. Guaranteed back if wanted.
(1) fir Comicton

172 Summer, Boston
The Holtzer-Cabot Elec. Co. Chicago, Ill.

Brookline, Mass.

Essentially the same as No. 341, differing mainly in the variation devices on both inductances. These difirerences detract little from the working efficiency. With intelligent use, this transformer will give as good results as any instrument at double the price.

The total efficiency of your receiving unit depends largely upon your tuning device. With a Murdock transformer in circuit, you are assured satisfactory tuning.

Wm. J. Murdock Co. 40 Carter St., Chelsea, Mass. 680 Howard St., San Francisco

When writing, please mention "Modern Electrics."

 pubished free of charge.
the benefit of al recors.
On weco On account of the large amount of inquiries received, it may not be possible to print all the
answers in any one issue, as eacli has to take its urnh. Correspondents should bear this in mind
when writing.

 Owing to the additional labor required in the gradual advance of the date of publication of this
magazine, there will be more or less delay necessary in answering questions and we therefore cannot magaine, there will be more or less delay necessary in answering questions and we therefore cannot
undertake fo furish quick replies, for the next Special information requiting a arge amount of calculation and labor cantot be furnished without
remuncration. THE ORACLE has no fixed rate for such work, but will inform the corresppondent remuncration
promply as to the charges involved.

SHARP WAVES FROM TRANSMITTERS
(2373) Franklin Dulany, New Jersey, states:
Q. I.-I am using the following instruments to transmit: One incl spark coil, glass plate condenser, zinc spark gap, helix and key. I have a friend of mine with whom I communicate a great deal, and he informs me that he can hear my station on almost every portion of his tuning coil. Why is it, and how can it be remedied?
A. I .-This is a very common characteristic of most transmitters using helixes, and is due to the close coupling of the oscillating and aerial circuits, which react upon each other and cause aerial oscillations which are highly damped. As a result, the signals emitted have no pure wavelength and in consequence may be heard over a wide range of your friend's tuning coil. You might obtain a purer wave from your transmitter by replacing the helix with an oscillation transformer, which will reduce the interplay of energy between the aerial and oscillation circuits to a considerable extent. depending on the degree of coupling between them. In this manner a sharp wavelength can be secured and your trouble eliminated.

In the article on Quenched Spark Sys tems appearing in the February, 1912, issue of Modern Electrics, you will find the subject of sharp tuning discussed at length.

UNDERGROUND WIRELESS SYSTEM
(2374) Frank Merritt, New Jersey writes:
Q. I.-Will you please tell me where I can buy a book on wireless suitable for an advanced person, who knows practice but not theory? The book must contain formulæ for figuring out wavelength of coils, for calculating capacity, etc. If there is any such book on the market, kindly let me know the name and author.
A. I.-What is perhaps considered the best authority on wireless telegraphy thus far published is entitled "The Principles of Electric Wave Telegraphy," by J. A. Fleming, M. A., D. Sc., F. R. S. It contains between 600 and 700 pages, profusely illustrated with diagrams and engravings of instruments and stations and covers the subject thoroughly in both theory and practice. Calculations and formule for every phase of wireless telegraphy and telephony are comprised in this

Of all possible annoyances the "bell-out.
of-order", is the worst-and there's no need
of and , possible annoyan
to endere it it if wourst
tise

Thordarson's

Junior Bell-Ringing Transformers

The
always
Tectly always works per-
fectly. Current
consumed does not consumed does not
register on an orregister on
dinary meter.

Short + circuitin in the least. Are
or-
firc, fool and moist-
wre proof. Write today for
for particulars and new
disconnts.
New List Price, \$2.50.
For sale by all leading Electrical Jobbers. THORDARSON ELEC. MFG. CO. 509 S . Jefferson Street Chicago, ill.

Price $\$ 2.00$

The Blitzen Duplex

loading coil will prove to be the most efficient "step. ladder" you can use to clinıb to the long wave lengths
employed by the new government station and other high power stations now beyond the reach of your set. This little device will double your pleasure and the utility of your set. It may be used in connection with any receiving transformer. The two coils wound in a slotted hard rubiver dise have coupling between them, and are connected in both the primary and secondary circuits.

Blitzen Receiving Transformer

Constructed of hard rubber throughout, mounted on a mahogany base. When buying a receiving transformer,
be sure to get a genuine "Blitzen"; its users envy no one, but are the enyy of all others.
Why not be up to date and send ic stamps for complete catalog of apparatus a little better than the best.

CLAPP-EASTHAM COMPANY

143 Main St, CAMBRIDGE, MASS.
Aylsworth Ageneiea Co., J. J. Duek Co., 143 Second Street, \quad 432-434 St. Clisir Street,
San Francisco, Cal.,
Toledo, Ohio,

work. Copies of the 1910 edition, the latest, may be obtained from our Book Department at the price of $\$ 7.50$ net.
Q. 2.-In a book not long ago I no ticed an idea for short distance wireless telephoning using two wells. Will you please tell me how far this will work and also if I can employ a gas and water pipe for short distances for my circuit? Below is the diagram of the well telephone system.

A. 2.-The telephone system employing the wells would only be practical for fair distances, perhaps up to a mile, with satisfactory conditions, but we are unable to estimate the definite range that it might cover. This system is very similar to that of the Murgas wireless telegraph system, in which no aerial was employed. Instead, a connection was made to a certain stratum of earth perhaps 10 feet under the surface, and another connection at 100 feet below the surface to another stratum. As a result of these two strata with separating earth between them, it was possible to send high frequency current through the two layers in sufficient quantity as to be detected at the receiving end by means of a sensitive receiving set. While there was naturally a large percentage of leakage from one stratum to the other, a sufficient amount of current reached the receiving end to be detected by the sensitive instruments. The use of the two wells is based on a similar principle, namely, the utilizing of two sections of the earth which are sufficiently separated so as to form distinct conductors to a greater or lesser degree. It would depend entirely upon the mineral condition of the earth, as well as the nature of the separation between the strata reached by the wells and other ground connections in the system shown in the diagram, as to the actual distance that could be secured. Water and gas pipes may be employed successfully for a telephone system, provided that they are not absolutely short circuited by actual contact or by damp earth.

HERE IS YOUR CHANCE

MAGNET WIRE ON $5 / 2 \mathrm{lb}$. SPOOLS
Below are pound prices.
Divile by 2 and add 5 c . for $1 / 2 \mathrm{lb}$. prices. Add parcel post for 2 lb . on 1 lb . orders. Add parcel post for 1 lb . on $1 / 2 \mathrm{lb}$. orders.
No. DCC. Enamel

Insulators

16	$\$.40$	$\$.35$
18	.42	.38

22
24
26
28
30
32
3
3
3
28
30
32

| 34 | 1.38 | 1.22 | Receiver Cords |
| :---: | :---: | :---: | :---: | :---: |
| 36 | 1.85 | 1.62 | For one receiver, |
| 38 | 2.51 | 2.29 | For $230 \mathrm{c}$ receivers, |
| 40 | 5.46 | 3.31 | $5 \mathrm{ft}35 \mathrm{c}$ |

Prices subject to change without notice. Enclose 5 c , for catalog. Not sent otherwise.
J. ELLIOTT SHAW CO.

632 ARCH STREET
PHILADELPHIA

Columbia Batteries

Cost No More Last Longer National Carbon Company CLEVELAND, OHIO

 F. B. Chambers \& CO., 217 N. 9th St., Philadelphin, Pa.

 , buise

THEL 8. \& S. CHEMICAL CO
ind fint rex

PERIKON CRYSTALS

For Amateur use only, $\$ 1.00$ per set
LONG DISTANCE WIRELESS CO. SUPPLIES

When writing, please mention "Modern Electrics."

THE NEW ARLINGTON STATION (2375) Geo. Y. Barnes, Canada, states:
Q. I.-Although I have a receiving range of over 2,000 miles, I have not heard the new Arlington station (NAV), which is 600 miles away from me. Is it because they use a very long wavelength? I can tune to 3,200 meters. When is the best time to listen in for them, and do they send noon signals.
A. I.-The wavelength of the Arlington station is 4,000 meters, so you will have to increase your receiving wavelength in order to tune in with that station. However, to our knowl edge, the station is not, as yet, in reg ular operation, but the preliminary testing and adjusting of the transmit ting apparatus is in progress. There fore there is no definite time to listen in for them. They transmit noon signals on a 2,500 meter wave length.
Q. 2.-When Cape Cod (MCC) starts sending press, he states: "To ships equipped with Marconi and D E B E G apparatus and subscribing to," etc. What is the meaning of D E BE G?
A. 2.-These letters are the abbreviation for the name of the German company controlling the Telefunken stations on certain steamers. The name in full of the firm is-Deutsche Betriebs Gessellschaft für Drahtlos Telegrafie, M. B. H.

DIRECT CURRENT MOTORS ON
ALTERNATING CURRENT
(2376) Frank C. Watson, New York, writes:
Q. I.-I have a small ino volt direct current motor, which naturally refuses to run on alternating. What could I do to make this motor run on alternating current?
A. I.-There is no practical method by which you can adapt this motor to alternating current. The only successful method would be to use a rectifier, across the D. C. terminals of which is placed a battery of storage cells. Naturally, such an equipment would be far more expensive than a regular alternat serimotor. Small D. C. motors of the series type winding can be employed on A. C. current with fair results, and as a rule, their field poles are lamin-

E. I. Co. NEWS

Rotary $\underset{\text { (Patents }}{\text { Sliding }}$ Dending.) Detor Cups

"Electro" Amateur Wireless 'Phones
 esperinly for mireless. Thich hearo extremely is adiustable and leather
covered, and impossibe to catch

 furcated Ereen cord with nlckle-
platecd tips. The phones are
pade with swivel made with swivel arrangements
which make good fit possible, A
and test win convince you that our
phones aro superior to any other

Electrose Ball Antenna Insulator

 Q Nut

No. 10001
Electrose
Balt
Antenna
Insulator
as described,
each
In dozen iots. 2.30
In Wireless Lightning Switches 5 The Undervriters' Rules in most cities now
prescribe elther 250 or 600 volt, single pole prescribe elther 250 or 600 volt, single pole
double throw sitches, which must be fastened
outsidid of the building. outside of the building
when not the aerial should always be grounded when not used.
our swictes aro of the standard tspe. A
metal parts are of pure copper. base is slat

Send to-day 5 cents postago for our famous 212 page Cyclopedia No, 11 . 2nd Edtion, containing over 450 illustra-
tiens and over 1,600 eifectrical apparatus and uupplies. No postals answered.
"the most complete electrical experimental catalog in the u. s."
THE ELECTRO IMPORTING CO., $233 Z$ Fulton St., New York City EVERYTHING FOR THE EXPERIMENTER"

Retall store $69 \mathrm{~W} . \mathbf{B}^{\prime}$ war, $\mathbf{N} . \mathbf{Y}$
New York and suburban customers will save themsolves unnecessary steps by cailing at our retail store, not 233 Fulton Stret.

You Can Vary the Tone or Pitch of Your Spark

at will by using the
BARNES VARIABLE SPEED A.C. MOTOR
on your revolving spark gap.

 mithout the uise

 efficiency
epeeeda. tor is inditpeneable to Dentists, The Jewelera, Toolmakers, and all who require is reliable sonnce of power at veriable speed on A. C, and D, C.
For the Motion Picture Machine, the motor trol is invaluable under such circumstances.

BARNES MFG. CO.
777 Belmont Street
SUSQUEHANNA, PA

[^0]ated to withstand the action of the alternating current
Q. 2.-What is the definition of alternating current?
A. 2.-Broadly considered, an alternating current is one which reverses its direction of flow at fixed and regu larly recurring intervals.

WIRELESS LAW. ELECTROLY TIC INTERRUPTER
(2377) John Sigvaldson, Minnesota, asks:
Q. I.-Must I use a rotary spark and oscillation transformer with a one inch coil operating on 1 Io volts A. C with an electrolytic interrupter, though I am located over 100 miles away from the nearest station, to comply with the law?
A. I.-You might better take up the question of licensing your station with the radio inspector at Chicago. Considering your distance from the near est station, it would appear that a li cense for your station is not necessary nor do you necessarily have to employ it rotary spark gap and an oscillation transformer. If yon will refer to the December and Jantary issues of Modcon Electrics you can find detailed in formation on the new law
Q. 2.-Does an electrolytic inter rupter cause the lights to flicker in a house, when used with a one inch coil? A.*2.-Not if a suitable choke coil is employed in series with the primary of the coil, and the primary leads run direct to the meter.

GLACE BAY STATION
(2378) II. M. Hammett, Massachu setts, writes:
Q. I.-I have a 200 -foot aerial, loose coupler and a loading coil six inches in diameter and 23 inches long. I use about io inches of the coil, which brings in SLI very clear, but I have never been able to hear Glace Bay. Do yout think that I should get him with my outfit?
A. 1.-Your receiving wavelength is probably not long enough. Glace Bay operates on a wavelength of $7,100 \mathrm{me}$ ters. Furthermore, it has a directive aerial and for this reason its signal do not carry very strongly to the south, in which direction you are located. However, this station can be heard by some amateurs in New York

Manufacturers of the Most Complete Line of High Grade Apparatus in America

TRANSFORMERS Designed and Built for WIRELESS
 Mounted in Mahogany Cases Wri'e for full particulars

EDGCOMB-PYLE WIRELESS MFG. CO
031 KIRKWOOD ST. EAST LIBERTY, PA.
Inside View

DUCK'S

CELEBRATED FERRON DEIECTOR It yet remains the peer of sill outectors Thcensed for prifate co.
Ferron Detector contans the same high

 celieded the larger stlantic Coast stations
(700 to 800 miles) and hase heard Key West ery cleariy (1500 milles) all over lang Appliances
Sand

FOR PORTABLE OR STATIONARY VACUUM CLEANING OUTFITS

Cat. No. 138 Blowers
Cat. No. 139 Vacuum

THE J. J. DUGK COMPANY $432-434$ St. Clair St, TOLEDO, OHIO
For Al LEIMAN BROS. Rotary Gasand Oil powerful-durable-noiseless LEIMAN BROS. ROTARY
POWERFL-DRABLENOSELESS
BLOWERS-VACUUM

Mailed for 6c. stamps or coin, which you may deduct on first
order of $\$ 1.00$. Great cost of catalog and low prices prohỉit dis order of $\$ 1.00$. Great cost of catalog and low prices prohisit dis
tribution except to those really interested. Save $5 \% \%$ to $\mathbf{3 B \%}$
on Standard Electric Goods by wetting this an Standard Eleetric Goods by Eetting this big
Catalor. There is no catalog to take its place; neither will yo Catalog. There is no catalog to take its place; neither will you
find elsewhere as large a variety of Standard Electrical and Wireless oods at such attractive prices.

WHAT OUR BIG CATALOG CONTAINS 100 dp. Wireless Instruments for Experimental and Commerclal
(Wireless section four times as large
zs contains over thirty diagrams showing how to connect all combinations or
instrumenta.) 15 pp. Telegraph Instruments of same
quality as used
 20 DD. Flash Lugl
Plants Mechanical
Electrical Supplies
$\mathbf{\$ 1 7}$ UP For Blowing or Suction

 BROS. NEW YORK

The Omnigraph Automatic Transmitter combined graph messages at any spound just Sends your tele
ator would. Five sin expert operOmaigraph Mfg. Co., $39 \frac{1}{2}$ Cortlandt St. New York

LEARN WIRELESS

See the World.-Big Opportunitien
Our Graduates Make Gont
Kenosha Wireless School
AVE, M. KENOSHA, WIS
WIRELESS ENGINEERING Study under a Marconi Engineer graduates are making good on land and sea Operating, Engineering
oby elfice M Methods, and sea.
Drafting
by experts. Also languages. -by eleven experts. Also languages.
Y. M. C. A. TELEGRAPH SCHOOL

143 East 86th Street ${ }^{\text {East }}$, ${ }^{\text {sideciation Institute }}$ New York City

Learn Wireless, Railroad, and commercial telegraphy; classes
day and evening; latest wireiess apparatus used; pupils receive wircless messages from ships and stations many miles away. Write or call for descriptive matter, terms and bulletin
giving positions beld by our graduates, giving positions held by our graduates.
Box A" 1931 Broadway, near 65 th St., \quad New York City
Electricians

 462 Sanchez SENT SPEC,

When writing, please mention "Modern Electrics"

City, and you should have little difficulty to hear it if you increase your wavelength.

INTERRUPTER ROD. CONDEN-

 SER(2379) Wm. S. Graves, New Hamp shire, asks :
Q. 1.-Should the metal rod fur nished with an electrolytic interrupter wear away to a point? I have one in which the rod fails to wear away to a point and if I file it to a point it becomes blunt again in a short time.
A. I.-The metal rod is supposed to wear evenly and maintain the point. If in proper working order, the point will not become blunt. Perhaps your solution is not mixed in proper proportions, and the manufacturers can advise you as to your trouble if you communicate with them, giving all the details.
Q. 2.-How large a condenser needed for an open core $1 / 2 \mathrm{kw}$. trans former working with an electrolytic interrupter on a 104 volt, 60 cycle, A. C circuit, and how far apart should the spark gap.be?
A. 2.-The condenser should con tain 1,360 square inches of tin foil i 0.05 inch thickness of glass is employed This area can be divided among is glass plates measuring 12 by i4 inches coated with 8 by io tin foil on both sides. This is the maximum capacity that can be employed with the inter rupter working at utmost efficiency The spark gap should not be drawn over $1 / 4$ inch.
Q. 3.-Does the new Arlington sta tion have any special time to send Can a person compete over once for the prize in the wireless contest?
A. 3.-For the first half of this question, see answer to No. 2375, this issue. As to competing for the wire less contest prize, a person may enter his station only once. However, i through subsequent changes of apparatus the station is so modified as to be greatly changed from the previous description submitted, it may again be entered in the contest, with a photograph showing its appearance at this time.

RECEIVING SET HOOK-UP

(2380) Henry Fisher, New Jersey inquires :
Q. I.-What is the matter with my station that I do not receive? I have

Marconi Wireless Telegraph Company of America

We have the best equipped radio telegraph school in the United States. New apparatus has recently been installed at an expense of thousands of dollars. There are now vacancies for 30 pupils and applicants repreferred who have some knowledge of the telegraph codes. A personal interview with the instructor can be had between 9 and 10 2. m., Monday to Friday.

Write for a pampblet of information,

THE GORDON BATTERY

a most practical battery that can give a long sustained service, being able to deliver powerful current without undue drop in voltage or amperage.

A special feature of the battery is its extreme simplicity of construction, the only permanent parts being furnished with each recharge.

The renewals are low priced and the weight he battery considering its capacity is very low.
The Gordon Primaty Cell is made in the following sizes

Gordon Cells are particularly well adapted for wireless purposes, the small types for working small spark coils, signalling, etc., and the large ones for
large spark coils, charging storage battery and for constant continuous work where a steady strong current is required.
You should know more about the GORDON PRIMARY CELL and a fully descriptive 36 -page catalogue will be sent you for the asking.

GORDON PRIMARY BATTERY COMPANY

 50 CHURCH STREET, NEW YORK CITY, N. Y.house of electrical novelties
Famous "FRANCO"
Flashlights, Batteries
and Miniature Lamps

The above illustrates our Pistol Flash= Light-A Favorite

Complete with Tungsten
Lamp and Battery
\mathbf{L}
$\mathbf{1} .50$
amp and Battery . . Interstate Electric Novelity Co.

$111 \begin{gathered}\text { San Pranoiso } \\ \text { Hontgomery } \\ \text { st. }\end{gathered}$

Ask for Catalog and Dealer in Your City
Knapp Electric \& Novelty Co. 517 West 51at Street New York

WE CARRY A STOCK OF KNAPP GOODS
LEVY ELECTRIC CO.
539 Market Street - San Francisco, Calif.

When writing, please mention "Modern Electrice"
an aerial consisting of two wires feet long and 35 feet high. My comprises a loose-coupler, loading co silicon detector, two condensers and I ohm 'phones.
A. I.-You should be able to p up all the local stations and have receiving range of at least 100 mile You might improve your receiving s by using higher resistance telephone If your connections are correct and th instruments are in proper shape, y -should have good results.
Q. 2.-Please give me hook-up the instruments.
A. 2.-We are giving you the hoo up herewith.
\sum_{\sum}^{\sum}

Q. 3.-Do yout think I could he Cape Cod with these instruments? A. 3.-It barely seems possible. B substituting a higher resistance set head-phones, and a galena detecto you would probably be able to he that station without much difficulty.
INDOOR AERIALS AND RECEIV ER WIRING
(2381) Clifford Jones, Oklahoma asks:
Q. I.-If I have my aerial under tin roof will it work?
A. I.-The tin roof decreases the ef fectiveness of the aerial to a great ex tent, though you may still be able to receive signals from some stations provided they are sufficiently powerful Q. 2,-Are there any wireless stations near me, and if so what are the names?
A. 2.-We do not know of any com mercial or Government stations in your State. The nearest stations are located along coast of the Gulf of Mexico and in Texas, with the possible exception of army posts, which perhaps have wireless stations.
Q. 3.-What kind and size of wire should I use to connect my receiving instruments?
A. 3-There is no particular size or kind of wire for this purpose. The most suitable for connections, how-

Electric Light from Kerosene!

Sandow Light Plants use kerosene as fuel and furnish electricity for almost nothing. Cheap to buy and cheaper to run. Sold on trial and absolutely guaranteed. Bulletin 306 describes an electric light outfit to suit your needs and your pocketbook. It's free.
DETROIT MOTOR CAR SUPPLY COMPANY, DETROIT, MICHIGAN

NEW RECEIVING TRANSFORMER, ONLY $\$ 10.00$ Heres the simplest, most selective and highest grade Receiring Transormer on
the market. One special non-shrinkable tubular body supports the primary and the marky windings. An easy moving rod brimgs about a most perfeet inductivo

 and all metnn parts hearily nrckeled. Guaranteed to do an that we claim for it
If pot satisfed wlut this instrument you may returu it within 10 days and your wones will be reftumded.
COLBY'S TELEGRAPH SCHOOL

Auburn, N. Y.

WANTED

Wireless Operators and those capable of obtaining Government License. GOOD PAY.

MARCONI WIRELESS TELEGRAPH COMPANY OF AMERICA

Pacific Coast Divislon

 SAN FRANCISCO, CAL.
Let The Acres You Buy Be The Makings of a Real Farm START RIGHT
 I mean by this that a real farm is a combina- tion of both BIG and LITTLE advantages.

It is the little Hidden advantages of a farm place that count in the long run, but it is just
these tittle points that many land buyers overlook. Al they can see, or care to see, is the Big
Money Promise, the pretty landscape and the beautiful Sunshine. DEAL WITH A PRACTICAL
As a practical farmer I look into these small details closely and handle nothing that is not superior in
all respects. So, in a sense, with my initial care in selection, I ensure the success of all my customers. biggest bargain of my 14 years successiul career.
This land has all the natural advantages peculiar to the Guif Coast section, 12 growing months,
splendid chimate Thle hidid climate, perfect health avonditions, abundant sunshine. plenty of rain, beautiful surroundings, etc., and in addition, many features that you will find it hard to duplicate, search as you may.

For instance, you secure a clear transfer from the real owne
For instance, you secure a clear transfer from the real owners, of carefully surveyed land,
 mmunity from mosquitoes and malaria; a near-by market that buys for cash; easy distance to
Mobile, and live towns round about; fine roads; and a soil that can be worked after any rain.
 hatd this same soil is highly resistant to drought, which indicates the subsoil is practically imp-
pervious-a vital point and the top soil a rich tark loam with humus, the essence of fertility.
Here, too, you can raise cattle and hogs at a ridiculously low cost and thus materially increase Here, too, you can raise cattle and hogs at a ridiculously low cost and thus materially increase
your income, comfort amd permanent welfare. Finally, your efforts to succeed will be power-
fully reinforced by one of the wealthiest firms in the south, who intend to force the prosperity
your incone, comfort and permanent welfare. Finally, your efforts to succeed will be power-
fully reinforced by one of the wealthiest firms in the south, who intend to force the prosperity
of this section.
of this section. WONDER AT THESE TERMS AND PRICES
Manage them properly, and on 10 acres of Lampton Lands you CAN make $\$ 5,000$ a year. You can
raise here almost evcrything-corn, cane, cotton, forage, fine vegetables, figs, paper-shell pecans, raise here almot everything - orn, cane, cotton, forage, fine vegetables, igg, paper-shell pecans,
walnuts, grapes and oranges. And yet I sell them, while they last $\mathrm{at} \$ 10$, to $\$ 35$ an acre- on terms
that that appeal to earnest men. I offer you a straight, business-like arrangement that will cause you no
SEND FOR BOOK OF FACTS
But write for my new free book and get the facts in detaii. Read it for important information before
you buy land anywhere. Send for your copy today. Don't wait-for this Lampton Tract is
settling up fast.
SAMUEL S. THORPE, Sales Mgr., LAMPTON REALTY CO.
DEPT. 31, 1627 FIRST NATIONAL BANK BLDG., CHICAGO ILL.

LET ME START YOU IN
THE MAIL ORDER BUSI-
NESS ANYWHERE

 Tut; get grit get bacibone, wake upand start Now.
 Mail Order Success," tells all about my own achieve-
ments and how I equip, teach and get you started on vents small capital. This book tells how to quickly
vtart in your home, while otherwise employed. It is a start in your home, while otherwise employed. It is a
B tine to a large income. Send for my new free
in B tine to a large meome. Send for my new free
book if you want to starta mail order business and
start making money now. Address President, Mail Order School, Suite 5824 Brecht Bldg., Denver, Colo

Artists, Cartoonists, Illustrators

 and tilustrating by most thoroubgh up
to-dite correspondence methods.

 are no "Ifs" and "ands" about our courses - you can surceed
if you will Send 10e. in stamps for our handsomely ill trated catalogive to corer cost of postage
98 Park Place,

I NEED GOOD MEN
everywhere-
part or all
pime-Lime-learn
my methods
 years-Authorized capital $\$ 1,000,000-$ no experience
needed-desk and completc business outfit free-
write to-day-W. M. OSTRANDER, Dept J.
LEARN TYPEWRIIING AT HOME

* Wenploy Your Spare Time learning a ition and machine. Full outfit and
iachine for $\$ 25$ on monthly payments. Every typewriter guaranteed.
Consolidated Typewriter Exchange, Inc. (Established 1881)

To Entertain ${ }^{311}$ Jolese and Ridales 73
 J. C. DORN, 709 So. Dearborn St., Dept. 37, Chicazo, III

When writing, please mention "Modern Electrics."
ever, would be either standard lam cord or stranded conductor cord, whic can be obtained at local supply house DIAGRAM FOR RECEIVING IN STRUMENTS
(2382) Wayland Alfred, Texa asks:
Q. I.-Please tell me how to connec the following: Double-slide tuner fixed condenser, 1,000 ohm 'phones, g lena detector and potentiometer.
A. r.-We are giving the correc hook-up herewith, but omit the potel ∇^{A}

tiometer, which is innecessary whe using galena detector.

WIRELESS STATION LIGHTNING ARRESTER
(2383) Phillip E. Selden, South Da kota, states:
Q. I.-A friend and I are erecting small wireless stations, and we are go ing to employ lightning arresters tc protect our instruments. This devic consists of a small spark gap place between the aerial and the ground jus before the lead enters the building. fuse is placed in the lead-in wire ci cuit. Will this arrangement protec the instruments satisfactorily?
A. I.-It has been stated time and again in this publication that the ont safe protection against lightning is t ground the aerial through a substantia and heavy single pole switch. The con

nection running to the ground from this switeh should be as straight as possible, with no sharp turns or abrupt bends. A diagram is appended here

$$
365 \text { Titus Building, } 156 \text { East 23rd Street, New York City }
$$

12C FOR A 51 RING. ROIIed Gold

Just Send Me One Dallar And I will ship to any onen R. R, Station
U.r. east oon Rockies, this Right In

\qquad

FAUCET WATER MOTOR

 your whole time, liberal salary and
conmission wiill be paid, LAMPS
ALCOHOL STOVES, ALCOHOL STOOVES, LAMPS ENGINEERS WANTED to send for catalog of
indicatora, Reducing Wheels Planimeters, Addrens LIPPINCOTT M. S. CO.
Kewark 62 Columbia Ste, Now Jerney

Make Money Making Photos
 /1/: \quad Thew York Ferrotype Company
He Can Do It-Why Not YOU?

F. A Course of Lessons in Drugless Healing FREE Nota cent to pay Fin IF YOU WANT TO EARN $\mathbf{2 , 5 0 0}$ ro $\mathbf{\$ 6 , 0 0 0}$ A YEAR-if you want an estabishca
profession that is remarkably proftable- then send fo: protession that is remarkably proftable- then send for
the free course and see what Drugless Healing has to
offer you. Hundreds of suceessful graduates demonatrate the won-

REMEMBER-This Offer Is Limited! Write NOW for FREE Course of Lessons. Get $\underset{\text { Dept. } 785}{\text { AMERICAN COLLEGE OF MECHANO-THERAPY }}$

SHORTHAND IN 30 DAYS

Ask this Man to Read Your Life.

His Wonderful Power to Read Human Lives at Any Distance Amazes All Who Write to Him.
Thousands of people in all walks of life haye bene fited by this man's advice. He tells you what you are capable of, and how yout can be successful. H mentions your friends and enemies and debad periods good and bad
life.

His description as to past, present and futurc events will astonish and help you. All he wants
is your name (written is your name (written
by yourself), your birtis date and sex to guide him in his work. Money is not necessary. Menion the name of this paper and get a Trial Reading free. If you want to take advantage of this special offer and
obtain a review of your life simply send your full name, address, the late, month and year of birth (all clearly written), state whether Mr., Mrs. or Miss, and
 also copy the
handwriting:
"Your advice is useful,
So thousands say
wish success and happitess.
If you wish your may enclose 10 cents (stamps of your own country) to pay postage and clerical work. end your letter to Clay Burton Vance, Suite 720 , Palais-Royal, Paris, France. Do not enclose coins in

with showing the necessary connec tions. We would advise you to aban don the idea of using the spark gap for in the event of lightning striking the aerial, the charge would pas both through the spark gap as well a through the instruments and totall destroy them.
Q. 2.-I have a wind-mill at home the platform of which is about 45 fee from the ground. It is about 330 fee from the house. I wish to place a aerial between this structure and the house. Will the arrangement give greater wavelength than that lais down by the law?
A. 2.-Yes, the natural wavelengtl would be over 400 metres. This ca be cut down, however, by using a se ries condenser for sending, as discussed in the article on the Wireless Amateu and the Wireless Law in the Decem ber, 1912, and January, 1913, issues o Modern Electrics.
Q. 3.-Are there -any Governmen stations near me?
A. 3.-We do not know of any stations in your State operated by th Government.

TRANSMITTING CONDENSER

 AND RANGE(2384) J. W. Durbin, Pennsyl vania, inquires:
Q. I.-Are 16 sheets of tin foil 5 b 5 inches, and 17 plates, single thick ness window glass, 6 by 6 inches, suff cient capacity for a sending condense for use with a two inch coil?
A. I.-This condenser is of sufficient capacity if the coil is operated on bat tery current.
Q. 2.-With an aerial composed four wires spaced two feet apart, 100 feet in length and 50 feet high, wil there be much difference between the range of my set situated between two mountains, and another set like it situ ated in open country near Philadel phia?
A. 2.-Other conditions being equal the station located in the open country will have perhaps a greater range for mountains, especially if they con tain mineral deposits, act to a greate or lesser extent as screens to wireles waves. This effect, however, depend largely on the nearness of the moun tains to the station and their height

HOW TO MAKE WIRELESS INSTRU MENTS, by Twenty Wireless Experts, 9 Pages, 75 Illustrations, Third Edition. thows how to make different instruments and wiveless appliannes and information not usually
found in other books. Yoin will be suprised found in other books. You will be surprised
loow carefully this book is gotten up and how casy it is to make your own instruments. Priee by mail, 25 e.

CONSTRUCTION OF INDUCTION COILS AVD TRANSFORMERS, by H. Winfeld tion. If you want to build your own induction his or transformer we unhesitantly say that his book will give you more information on price. Important tables for spark coils from 1 nch to 20 inch and for transformers from $1 / 2$ K. W. to 3 K . W., both closed core and open core are given. A multitude of information is
found in this book which cannot be found in thers. Price by mail, $\mathbf{2 5}$ cents.

WIRELESS HOOK-UPS, 100 Pages, 171 Thistrations, with a chapter by H. Gernsback This book fills a distinct want and is the 71 different hook-ups recciving and transitting, and giving incidentally a lot of in ormation about other things in the wireless this book you wonder how you could be with-
out it before. Price by maii, 25 cents.

THE WIRELESS TELEPHONE, by H. gernsback, second edition, 86 Pages. 57 Hllusgood insight of the wireless telephone as it is today. In the next five years wircless telephony will play a tremendous role in the progress of the World, and the wireless student will do well to obtain this book as it will give him a close insight of the intricate problems as yet to be solved. The book is writterr noo
technically and even the layman will have no echnically and even the layman will have no
rouble to thoroughly understand it. Price by mail, 25 Cents.

MODERN PUBLISHING CO., 231 FULTON STREET,

NEW YORK

It may mean the opening wedge to the opportunity of your life

THE New York Electrical School teaches men practical electricity and shows them the way to earn big money by becoming expert electricians. No profession has a more splendid future than electricity.
We teach our students how to become master electricians by painstakingly drilling them in the actual work they will be called upon to do
when they accept a situation at big pay. Each when they accept a situation at big pay. Each
scholar is personally taught from the day he enters, and individual instruction is given in all practical branches of the work. Students are first taught the simpler electrical work and as they gradually progress they are taken from department to department until finally they can completely equip a building from the blue prints the students themselves have drawn. ready to go out in the world with a profession that will never forsake them. Not a correspondence school-you "Learn by Doing.'

Good Electricians

Are Always in Demand

and the money they earn is often twice as much as other men earn from ordinary trades.
Write for Our Free Catalog and Get Full Particulars
It is more than likely that this is your opportumity. There is no work that a man can
do from which he will get more pleasure and do from which he will get more pleasure and proft than from electrical work. Write to-day.
The New York Electrical School 26 West 17th Street, New York

CONSTRUCTION OF OZONE GENERATOR
(2385) John Hadler, Ohio, r quests:
Q. I.-Could you tell me how an ozone generator is made, and give the principle?
A. I.-The principle of the ozone generator is based on the use of a silent high tension electrical discharge, which creates the ozone gas. In their sim plest forms ozone generators comprise one or more sheets of heavy glass separating metal surfaces which are connected to a high tension transformer The charge being unable to pas through or around the glass, forms a violet glow or silent discharge, identi cal to that formed in transmitting condensers of wireless stations, known as the "brush discharge," when they are strained by a heavy charge. An electric fan maintains a current of air between the metal plates and the glass, which passes through the opening in the generator case into the surrounding atmosphere. An excellent description of the construction of a simple ozone generator is given on page 411 of the October, igir, issue of Modern Electrics.

INDUCTION INTERFERENCE (2386) Wayne Bonser, Washing ton, writes
Q. I.-My aerial is about 30 feet away from a telephone line, and when I send it is almost impossible to talk over the telephone. I only have a one inch coil. How can I stop this?
A. I.-This is a very common trouble and there is practically no remedy that we know of. If your aerial is running parallel with the telephone line at the present time, you can decrease this interference to some degree by swinging the aerial at right angles to the telephone line.
Q. 2.-We have a gasoline electric lighting outfit and when it is in operation the click of the spark can be heard in the telephones of my receiving set. Can this be avoided?
A. 2.-This is another difficulty in which we cannot aid you.
Q. 3.-How can I fix my set so that it will be passed by an insurance company?
A. 3 - - By securing a copy of the

The Greatest Book on Wireless Ever Published

Wireless Telegraphy and Telephony Simply Explained
 By ALFRED P. MORGAN, Wireles Expert,

Author of "Wireless Telegraph Construction For Amateurs," Etc.

Abstract

175 Pages 156 Illustrations This is undoubtedly one of the most complete and comprehensive most complete and comprekensive treatises on the subject ever pub- lished, and a close sudy of its pages linhe, enable one to master all the details of the wireless transmission of messages. The author has filled a long-felt want and has succeeded in furnishing a lucid, comprehensible explanation in simple language of the theory and practice of wireless the theory and practice of telegraphy and telephony. A Book the WIreless Experimenter Cannot Afford to be Without. It enables one to Deslgn and Construct Apparatus. Also Valuable to the Layman.

CONTAINING CHAPTERS ON I. Introductory: The principles of Wireless Transmission and Reception; Ether; Electro magnetic Waves; How waves Are Created; High-frequency Oscillations; Transmitting and Receiving Apparatus. II. The means for Radiating and Intercepting Electric Waves; The effect of Inter- vening Country Upon Electric Waves; Effect of Locality "Static"; Lightning and What It Is: Aerial Masts; Types of Aerials; Directive Action of Aerials; Insulation of the Aerial; Earth Connections. III. The Transmitting Apparatus; Current Supply; Magnetic Induction; Magnetic Fields; The Induction Coil; The Interrupter; Electrolytic Interrupters; Open Core Transformers; Closed Core Transformers; Direct Current; Alternating Current; Oscillation Condensers; The Helix; Spark Gaps; Rotary Gaps; Gaps; Keys. IV. The Re IV. The Receiving Apparatus; The DetecAffect the Receiving Apparatus: Perikon De tector; Silicon Detector; Pyron Detector; Car- borundum Detector; Galena Detector; Molyb borundum Detector; Galena Detector; Molybing Coil, What Tuning Accomplishes; How Undesirabe Coil, The Fixed Condenser; Variable Condensers; The Purpose of the Condenser. V. Tuning and Coupling; How Tuning Accomplished; The Results of Tuning; The Accomplished; The Results of Tuning; The Effects of Coupling; Inductive Helixes; The Loose Coupler: The Hot Wire Ammeter; DiLoose Coupler; The Hot Wire Ammeter; Di- rective Wireless Telegraphy; The Braun Sysrective Wireless Telegraphy; Th tem; Bellini and Tosi Method.

Price $\$ 1.00$ Handsomely Bound in Cloth The book treats the subject from an entirely new standpoint. Several very novel and original ideas have isen carried out in its making. It intustrated by over one hunred and fifty interesting photo raphs and drawings. All diagrams hhowing the instruments as they a thoult tually appear in practice. ually appear in practice. The drawings are carefully keyed and drawings Mre carcfur Many of thotographs abeled are accompanied by phantom draw- ings which reveal the name and purpose of each part. VI. The Dignity of Wireless Telegraphy Its Applications and Service; Wireless Teleg; raphy in Warfare; Wireless in the Army; raphy in Warfare; Wireless in the Arrmy; Wireless in the Navy; The Wireless Telegraph Nut Automobile; Wireless on an Airship; Wire- cess Telegraphy as an Aid to Press Work; less Teiegraphy as an Aid to Press The Wireless Codes . How a Message Is Trans: mitted and Received; The Breaking in System. VII. The Ear; How We Hear; Sound; Sound Waves: The Nature of Sound; Speech The Larynx and Vocal Chords; The Structure of Specch; Manometric Flames. VIII. The Telephone; The Telephone Photophone; Selenium Cells; The Thermpphone; The Electric Arc; The Speaking Arc; Wireless Telephony by Means of a Beam of Light. IX. The Wireless Telephone; The Difficul- ies of Wireless Telephony; A Simple Wireless ties of Wireless Telephony; A Simple Wireless Telephone; The Effects of Speech Upon Wireless Telephone Apparatus; The Requirements of Wireless Telephone Apparatus; The Production of Undamped Electrical Oscillations; The Poulsen Arc; Wireless Telephone Apaceiving Apparatus; The Audion; Transmission of Wireless Telephone Messages. D. Remarks; Maxwell's Theory; Hertz's sition of Wireless Telegraphy in the World To-Day; The Field for Wireless Telcebon To-Day; The Field for Wireless Telephony; The Status of the "Amateur"; Wireless of the The Status of the "Amateur"; Wireless of the Future; The Transmission of Power by Wire- less. less.

COPIES OF THIS BOOK SENT ON RECEIPT OF PRICE MODERN ELECTRICS, umpenten 231 Fulton Street, New York City

ELECTRICAL B00KS

Electricity Simplified
Ey Tirconor Sloane. The object of "Rectricity
Simpilled" is to make the subject as planin as possible, nud to shawe what subject as plain as
tion of electricity 1 s ; to show homotern concep-
direer tro

this age of electrieity. 158 pages. Price, $\$ 1.00$ in
How to Become a Successful
Electrician
wisthes to bonor Sloane. Exery young man who

Standard Electrical Dictionary

Wiring a House
By H. Pratt. Shows every step in the wiring of
a modern house and oxplains everythink 6 a as to

Electric Toy Making. Ing and Electric Motor Construuildmy T O Conor Sloane. This work treats of the making at home of electrical toys, electrical ap apme
ratus, motors, dymamos, and instruments in
eral, and is isn-
 young and old the manufacture of genuune and
pusfol ale electrical applances. 140 pages. Price,
s1.00.
Arithmetic of E ectricity
By To OConor Sloane. A practical treatise on
clectrical calculations or an kin
series of rules, all of the simple recued to ${ }^{2}$

Telephone Construction, Installation,
Wiring Operation and Maintenance By Rng Oplife and Cuthing. A practical reference
book and

Commutator Construction
$\underset{\mathrm{By}}{\mathrm{B} y \mathrm{Wm} \text {. Baxter. The businesa }}$
By Wm. Baxtor. The business end of a dynamo
or motor is the commutator, and this is what is
apt to give trouble apt to Eive trouble This shows how they are
made, why they get out oo whack and what to do
to put 'em ribht agaln. Price, 25 conts.
MODERN ELECTRICS
231 FULTON ST. NEW YORK

When writing, please mention "Modern Electrics"
booklet published by the Nationa Board of Fire Underwriters, you ca secure detailed information on thi rules for approved wiring and electrica installations.

REMAGNETIZING MAGNETO MAGNETS

(2387) W. L. Clunie, Wisconsir asks
Q. I.-Will you please explain method by which I can magnetize th magnets of an ignition magneto by the use of storage or dry cells and give the voltage and amperage necessary a well as the size wire?
A. I.-There is no practical method by which you can remagnetize the magnets with either storage or dry cells. At the factory the magnets are magnetized by a large pair of eiectro magnets operating on 110 volts and drawing a very heavy amperagc. It requires an extremely powerful magnetic field-impossible for you to secure with your facilities-for the mag netizing of the steel magneto bars.

TELEPHONE RECEIVERS
(2388) William Bernstein, New Jersey, asks:
Q. 1.-Whose type of telephones are the most sensitive wound to 2,000 ohms? How much would they cost, and where could they be bought?
A. I,-We are not open to controversy regarding the relative merits of either telephone receivers, wireless instruments or other apparatus, and accordingly can state no opinion in this matter. However, we have in our advertising columns a number of manufacturers making the highest grade refacturers making the highest grade rether information and prices.

COMPLETE WIRELESS EQUIPMENT
(2389) Lawrence Jakes, Ohio, tates:
Q. I.-Being a beginner and wishing to purchase a good wireless outfit that will send about 30 to 40 miles, and receive from 500 to 600 miles, will you kindly advise me what instruments I will need, where I can buy them, and what power to use?
A. I.-For receiving we would rec-

NEW BOOKS

for the Wireless Amateur
Electriclan's Handy sook, $\$ 3.50$
ynamo Bulliding for Amateurs, or How to Con-

Wireloss Telegraphy \& Teleopheny, 81 mply Ex-
By Alfred P. Morgan.
Practical Applled Electrielty,
By Darid Penn Moreton.
By Darid Penn Moreton.
Wireless ${ }^{\text {Tolegraphy }}$ at Tolephony,
By C. I. Hoppoush.
oynamo Eloetrlo Machines.
By Calvin F. Swingle
By Calvin F. Swingle.
Railways
By S. Aylmer-Small.
Modern Eleotrical Construotlon,
By Henry C. Horstmann \& Victor H, Tbusles.

By Henry c. Horstmann \& Victor H. Tousle
Practical Armaturo \& Magnet Winding, Toustey.
By Henry a . Horstmann \& Victor H.
Electrician's ${ }^{\text {Operating }}$ \& Testing Manual,
By Henry C . Horstmann \& Victor H. Toualey.
Elementary Electricity Up-to-Date,
By Sldnesy Allmer-Small.
Electricity Mades Simple,

$\$ 1.00$
$\$ 1.00$
Easy Eliectrical Exporimsnta \& How to Make 81.00
By LL P. Dickenson.
$\$ 1.00$
The Handy Vost, Pooket Eloctrical Dletionary
(Full Lestber),
By Wm. IL Weber.

Telegraphy Solif Taught.
By Theodore A Edison.
Operatora Wiretess Telograph $\&$ Tolophons Mand
By vietor H Leushtor.

Telegraphy and how to Learn it,
By wilson F. Frederick
100. Extra for any of the above books by mall.

When ordering alman stre name of author.
MODERN ELECTRICS
231 Fulton Street
NEW YORK

Free Trial

 No Modey Now ONLY \$4.00 A MONTH SENSATIONAL PRICE

This is the offer that has startled the type Typewriter salesmen and agents simply can-
not comprehend how we do it. We actually not comprehend how we do it. We actually
sell to the user at a price very much less than
the dealer payments are exactly the same. as rent. More than 10,000 orders have been filled
We have no salesmen, no agents, no dealers. We have no salesmen, no agents, no dealers.
The quality of the typewriter, the extreme low price, the small payments, the broad guar-
antee-these are our only arguments The antee-these are our only arguments. The
typewriter we supply on this remarkable offer is not some unknown, untried make, but the
world-wide Famous Model No, 3 Oliver. The worldwide Famous Model No. ${ }^{3}$ Oliver. The
typewriter that everyone knows, It is a Visi typewriter that everyone knows It is a Visi-
ble Writer, just as perfect, just as full
equipped as though you paid the full cash price. get every perfection and every device that goes out with this Model. You get all o
the extras; metal cover, base board,
tools, in the extras; metal cover, base board, tools, in-
struction book, and the broadest guarantee ever
given on a tyewriter given on a typewriter.
The Oliver is the machine with the type bars that strike downward; that has made the
"write-in-sight" principle mechanically prac-"write-in-sight" principle mechanically prac-
tical
It is so simple that children learn to operate It is so simple that children learn to operate
it in ten minutes; yet it is faster than the
fastest strest expert. It possesses
strength, and will last a life time. No Money Until You See It, until you actually
try it in your own home or office. Thentry it in your own home or office. Then-
you make your decision. There is no salesman to infuence or hurry you. If you keep it you pay only
thereafter. mortgage, no collectors, no publicity, no deatiay. This is positively the best typewriter offer eve
made; the best selling plan ever devised.
If you own a typewriter now we will take If you own a typewriter now we will take it
in trade and make you a liberal allowance for
it. If you are renting a typewriter you will it. If you are renting a typewriter you will
want to send it back when you see this onc.
Send your name and address today. We will
send wend your name and address today. We will
send you a cataloue of the machine. It
won't cost you anything. You will be under send you a catalogue of the machine. It
wan't cost you anything. Xou will be under
no obligation-and-we promise not to send a

TYPEWRITERS DISTRIBUTING SYNDICATE 166C-7 North Michigan Boulevard, CHICAGO
ommend: Loose-coupler, variable condenser, galena detector and 2,000 ohm telephones, all of which should be of the best grade. . For sending: 250 watt closed core transformer operating on IIo volts A . C., oscillation transformer, rotary or quenched spark gap, key, condenser and aerial switch. As stated in the previous answer, we can form no opinion or suggest any particular firm from whom you might obtain these instruments. If you will refer to the advertising columns you will find the names of firms making the instruments enumerated in the foregoing list.

EFFECT OF DUAL AERIAL
(2390) Charies Burton, Michigan, writes:
Q. I.-Will you tell me the best way to hook up my set, which consists of a loose-coupler, variable condenser, a fixed condenser, galena detector, two slide tuner and 2,000 ohm receivers?
A. I.-We are giving you a diagram herewith in which you will note that the two slide tuner is being used as a loading coil.

Q. 2.-I have two aerials, one a fourwire and the other a two-wire aerial. Both are connected to the same leadin. Do you think that the small twowire aerial cuts down my sending and receiving range?
A. 2.-If the two aerials differ much in length you will find it difficult to tune both your sending and receiving sets, sharply, on account of the difference in the natural wavelengths of the aerials. If the two aerials are parallel, increased receiving efficiency may be obtained by using separate lead-ins and receiving on the larger aerial and grounding the smaller aerial at the same time through a single slide tuner by which it may be tuned to the same wavelength as that of the signals being received. If the aerials are not parallel, but the two leads can be made parallel, nearly as good results may be

ANY OF THE ABOVE BOOKS SENT POSTPAID ON RECEIPT OF PRICEE. MODERN ELECTRICS, dipanturnt 231 Fulton Street, New York

ABookThat EveryMarried Couple Should Own
 "The Science of a New Life"
By JOHN COWAN M D By JOHN COWAN, M.D. bundrend of dollern to any married couple or those contemplating mar-
riage Endoned and recommended
Eal

 Note
PA
Me ages. Age at which to Marry. The Tam of Choleo. 1Ove Qualities the Woman Should Arovid in Choosing. The Antiany and Physiology of Generation tn Woman The Anatomy
and Physiology of Generation In Man. Amativenees: It Uso and Abuse. The Law of Continence. Chlldren: Thelr Desira-

 Nomen. Diseases Pexuliar to Men. Sterility and Impotence. Sarried Iffe. How Secured MIGBT BE SATD. A Hapdy

 pecents sent free to any addreess. Agents Waited. Special Offer of a rexular price of "Solence

 within ten dast of the reeelpt of the book, you and it is no Take advantage of this
J. S. OGILVIE PUBLISHING COMPANY

22 Rose Street,
Now York Cli
THIS B00K Belongs in the Best Clasz of Modern Scientific Literature This, is what oue purchaser wrote about thit book,
HOMAN'S A B C OF THE TELE-
PHONE, BY J. E. HOMANS, A.M. Young men you need $1 t$. It will prove
of gasistances to those who desire an ex-

Only $\$ 1.00$

 Postpaid

 end Is a genuinely good book without reference to enst.
OUR GUABANTEF: Money will be returned to pur-
 WRITE TO-DAY. It belongs in your laboratory.
You mas romit by cath, stamps, money or express ordor.

MODERN ELECTRICS St. BOOK DEP'T NEW YORK
231 Fulton St.
obtained. The reason for the increased efficiency lies in the fact that the second aerial, having little or no damping, oscillates freely on the wavelength of the incoming signals and re-radiates nergy which is picked up by the aerial to which the receiving set is connected. This method is used to some extent at the Marconi Transatlantic stations at Glace Bay and Clifden to strengthen the received signals, the sending aerial being tuned to the incoming wave and then grounded.

CONNECTIONS FOR LOADING COIL
(2391) Chas. Snyder, Pennsylvania, O. I. Kindly advise me how I can connect a loose-coupler with a single slide tuning coil so as to increase the receiving wave-length of my station.
A. I. Place the single slide tuning coil in series with the aerial and the loose-coupler, so that the slider of the tuning coil is connected to the aerial and one end of the winding to the loosecoupler.
QUENCHED SPARK GAP, COIL CONNECTIONS, WIRELESS SCHOOLS
(2392) C. Challman, New York, asks:
Q. I. Is it possible to construct a square quenched spark and obtain as good results as with the round form? A. I. We have no available data regarding square plates for quenched spark gaps, but believe that if the plates are made embodying the same principles as the usual round type, the results should be about the same.
Q. 2. Can I connect two one-inch coils in order to obtain a two-inch spark? I intend to connect the primaries in multiple and the secondaries in series.
A. 2. Provided you connect the primaries together in the correct manner so that the current (if it is D. C.) does not flow in opposite directions in both coils, and the secondaries likewise, you will obtain satisfactory results. However, both coils if operated on direct current must be operated by one interrupter common to both. Probably the spark produced will not be as long as the sum of both separate spark lengths of the coils indicates.

Real Encation exeels

Because you live in this elect-
rical age you are interested in exrical ate you are interested in ex-
periaenting in and learning about periment
electricit
you is

ELECTROFORCE

"The Technical Magazine for Everybody"

This contains live up-to dale educational and practical articles and notes describing and illustrating how to run wiring for lights and motors, and giving experimen additional fea-
science Electro-chemistry. An ture beginning in the April number is the JUNIOR DEPARTMENT
Which shows the boy and electrical beginner how to make his own apparatus, giving full details.

A Quarter For Three Months Wrap up a quarter now and we will put you
on our paid-up subscribers list for a quarter on our paid-up subs
of a year. Address
ELECTROFORCE PUBLISHING co.
Stroh Bldg.
Milwaukee, Wis
Q. 3. Are there any places in New York City where one can learn, the telegraph and wireless codes?
A. 3. Yes, there are several schools where telegraphy is tatught and by referring to our advertising columns you will find the names of a number of well known institutions, located in New York.

INTERRUPTER TROUBLE AND PILOT LAMP CONNECTIONS
(2393) Glem Howe, Illinois, states: Q. I. I have an interrupter which I Q. I. I have attached to a lamp socket and upon pressing the key the first time secured a fairly good sized spark from my coil. The second time, the socket badly fused, and the third time I could obtain no results whatever. What is the trouble?
A. I. The interrupter in the first place drew a heavier current than the socket could withstand, with the result that the metal parts of the socket melted. As a result, the connections of the socket were probably broken rendering your set inactive. When using the form of interrupter containing a metal rod within a porcelain tube, a choke coil should be employed in series to reduce the amount of current taken from the supply lines. Better still, both a choke and a resistance coil will be found more satisfactory as they will prevent the excessive cessive amperage drawn from the sup-
ply lines when the interrupter and coil ply lines when the interrupter and con
are connected directly to the lines through a key.
Q. 2. When the key was pressed using the above-mentioned interrupter all the lights in the house were nearly extinguished. What was the trouble and how can it be remedied?
A. 2. The answer to the first question applies likewise to this question.

GLENVILLE M. E. WIRELESS CLUB.
At a recent meeting of the Glenville M. E. Wireless Club, the following new officers were elected: president, George Aldridge: vice-president, James Stuart; secretary, Howard Campbell; treasurer, James Battles; instructor, Dr. Aldridge.

Address any communications to the secretary, 12620 Woodside Avente, Cleveland, Ohio.

MIATT ${ }_{\text {Procures }}$ PATENTS $1868=1913$

G. W. MIATT, Counselor at Law
 Solicitor of U. S. and Foreign Patents, etc.

Offices: Temple Court, 5 and 7 Beekman St., NEW YoRK
'Phone, 5437 Cortlandt; Night, 3390 Morniiggide

Electrical Engineering

If you could only realize that this offer
places within your reach the results of the
experience, exclusively published, of scores of places when
experience, exclusively published of scores of
America's most able electrical engineers!
ETiCCTRTC ELLECTRICAL ENGINEERING is a great
manthly technical magazine for electrical engi-
 will bring you over 1,000 pages, covering every
phase of electrical work. A veritable encyclophase ofectrical work. A veritable encyclo-
pedia. Not a cheap, common or inferior article ${ }^{\text {ever appear }}$

> WHAT lc.
> A WEEK
> WILL DO!

Or $\$ 1.50$ buys ELECTRICAL ENGINEER ING 2 yrs. and "Questions and Answers on the National Electrical Code, 232 p., $4863 / 4$
inches. 4 This bok is just out. It is by an authority. It tells exaetly and pt is anly what
the code requires for every iob the code requires for every job. $\$ 2.00$ buys both books and ELECTRICAL
ENGINEERING ENGINEERING for two years; the best bar-
gain ever bught, but MONEY BACK IF
gain ever bought, but MONEY BACK
YOU ASK IT.
This offer will not be accepted
This offer will not be accepted.
through news companies or agents.
Old subscribers may take advantage.
of it by extriers may take advantange
of ions two years.
ELECTRICAL ENGINEERING, Grant Building

Books That Really Teach

sunt filustract mataloszis mill
 , ar wo pullach
 compure viree lit. IT IS FREE
 Pages. 108 CIllystrasions. 12 mo
Cloth Binding. Price....... $\$ 1.00$ Just the book for beifners and
electrical workers whose opportuntities for gaining informa-
tion on the bitiches of electricity hare been limited. ELEMENTARY ELEGTRICITY UP TO DATE. B
 THE HANDY VEST POGKET ELECTRICAL DIC Thed Edy. By Wm \qquad For sale ${ }^{\text {at }}$ all Book Stores or sent Postage paid on
recelipt of price bs
Frederick J. Drake \& Co. Publishers of Self-Educational Books,

Dept. 22, 1325 Mehigan Ave. CHICAGO, v. S. A.

Patents \& Trademarks Secured

PATTON SERVICE MEANS PATENT PROFITS

Personal Work Moderate Fees

HARRY PATTON CO.
McGill Blde. Suite 310 Washington, D.C.

Send your business direct to Washington Saves time and insures better service. Personal Attention Gularanteed 30 Years Active Pradice
BOOK WITH TERMS FREE
E. G. SIGGERS Patent Lawyer
SUIIE 2, N. U. BLDG., WASHINGION, D. C.
Patents Precured and Sold Your idea will have a cash value when patented;
build a business on your idea or patent and sell it outright; good inventions make fortunes; copyright,
trademarks and designs also; BOOK FREE; send trademarks
sketch to-day.
2 Crilly Building, HERS
PATENTS C. L. PARKER 8 McGill Bldg, Washington, D. C. Patents, Trademarks, Copyrights, Patent Litigation

LAURENCE J. GALLAGHER

Formerly Assistant Examiner in the
United States Patent Office
Patent Matters in the
Electrical Arts Specially
2 RECTOR CTREET $\begin{gathered}\text { Correspondence Invited } \\ \text { NEW YORK }\end{gathered}$

ARTHUR PHELPS MARR

Electrical Enginter and Solicitor of Patents american and foreign patents TRADE MARKS AND COPYRIGHTS Expert Advice and Assistance FREE Write tor Bookiets

108 fULTON ST. HEW YORK CITY
When writing, please mention "Modern Electrics."

Alutire un 据atents

DECTOR STAND
(tor) Oliver Metzler, of Wymore, Nebraska, sends in a sketch of a universal detector stand and wants to know if a patent can be obtained on same, or if it infringes on any other detector.
(A) This detector closely resembles detector stands which are already on the market and we feel quite sure no patent can be obtained on same.
As a matter of fact we believe it would be impossible to secure a fundamental patent on any detector stand, and any other patent which might be secured could cover only details of construction and would therefore be worthless as it is a comparatively simple matter to make up a detector stand which would do all what one which was patented would do, and still not infringe upon the patent.

LOOSE COUPLER

(02) Chas E Apgar, of Westfield, N. J., states that he has devised a small loose coupler which, in connection with a small aerial allows, him to tune in distant stations having wave lengths up to 2,8oo meters, the loose coupler being equipped with a special form of winding which permits of this He wants to knich if we would recommend securing know if we would recommend securing a patent and also, what the commercial
possibilities of the device would be.
(A.) It is possible that a patent could be secured on the winding, but we think that except for portable sets such a loose coupler would have no advantage ove ordinary loose couplers of the same tuning capacity, and therefore it would appear that the commercial possibilities would not be great enough to warrant the securing of a patent on it.

PERPETUAL MOTION

(ro3) Owen Lowe, of Baltimore, Md.. sends in a sketch of a device to be attached to the pulley of a dynamo and furnish the power necessary to drive the dynamo by means of atmospheric pressure.
(A.) An examination of the device shows that it is similar to attempting to lift oneself by pulling up on one's boot straps. It is simply a perpetual motion scheme and it will not work. In all probability the patent office would not

F PROTECT YOUR IDEA!
 Patents That Pay

Our business will have my persome attention

FREE: Instructive 112-page Guide Book mailed upon request REFERENCES
Lincoln National Bank............Washington, D. C Flectro Importing Co................New York, N. Y. Y. Farmers' Mfg. Co,..............................iko Virginia Grifin Mfg. Co... Butler Engineering Co Gray Electric Co.... \qquad
 Gray Lithograph Co New York, N. Y
E. E. VROOMAN Registered Patent Attorney, Patent litigation, Patent Lawyer 809 F St., N. W., WASH., D. C.

THAT PROTECT AND PAY FREE Send sketch or model for search. Hishest References
$\underset{\text { W24 F Street, N. W. }}{\text { W. }}$. Coleman $\begin{gathered}\text { Patent Lawyer } \\ \text { Washington, D. C }\end{gathered}$

PATENTS TRADEMARKS AND COPYRIGHIS

 Secured or Fee Returned Send model or sketch and description of yourinvention for free search of the U. S. Patent invention for f
Office Records.

OUR Hooks mailed free to miny address. Send for these books; the finest pablications ever issued for free to obTain trated 80 page Guide Book is an invaluable book of reference for inventors and 100 mechanical movements illustrated and describ vent for profit and gives history of succesfful
inventions. nventions.
WHAT TO INVENTT. Contains a valuable list New Ideas Wanted. Also information regardPrize of One Milifon Dollars offered for one invention and $\$ 10,000$ for others. successful clients. List of Patent Bayert Also endorsements from prominent Buyers. manufacturers, senators, congressmen, governors, We advertise our clients' inventions free in a list of sunday newspapers with two milion circulotion
and in the World's Progress. Sample copy free. Electrical Casea a Specialty. Wo have

Victor J. Evans \& Co.
Yirtor Blgg., 724 9th St., N. W. WASHINGTON, D. C.
PATENTS BMIG weatir
A. Wedderburn, Pat. Atty., Dept. M., Washington, D. C

We can furnish any book pablished. Write Book Dept..: Modern Ellectries 231 Fulton St., N. 1

"RED DEVIL" of course means The Standard of Excellence in Tool Quality

No. 1650
$\underset{\text { Plier stands at the "RED DED of ALL Pliers. } 1650 \text { Ab- }}{\text { Ounded }}$ solutely guaranteed for two years' hard service. You want this tool. Get it from your local one only sample pair $8^{\prime \prime}$ will be sent you
postpaid.
SMITH \& HEMENWAY CO., 215 Chambers St.,N.Y.

If You Will Take Advantage of This Right Away
In addition to sending GAS ENERGY, which is the liveliest and newsiest for those
interested in gas engines, , for one year, we will send you free a copy of "How to Run and nstall Gasoline Engines." GAS ENERGY covers the Stationary, Portable. Automobile, in postage or currency and we will enter your subscription for a year and mail you gratis
copy of the above mentioned book. GAS ENERGY CO., 22 Murray St., NEW YORK CITY

A HALF DOLLAR

Pats you in possesslon of a cloth bonnd volume of the

1912

MOTORCYCLE MANUAL

A Motorcyciopaedia of useiul Information-Motorcycle Engine and Frame Parts Illustrated and Described: Their Functions Set Forth and reuse and Remedies Given-How to Tour: State Licenserds: Other Regulations-Oficial Racing Recolan Horsepower and other Mechanical Fo
Motoreycle Trade Directory, Etc., Etc-
All you want to know about the Motorcycle, in handy reference form.
The Manual is Magarine size, 7×9 inches, beautifully printed throughout on coated papper. Indispensable to Motoreycle riders and dealers, and to those about to buy machines.
Bound in cloth, 50 cents; Daper covers, 25 cents, postpaid. Send stamps, money order or cash to

Motorcycle Illustrated 51 CHAMBERS ST., NEW YORK

The
 Boys'Magazine FREE

Send us the names and addresses of 5 boys (from 8 to 18 years old) and we'll send you a copy of this splendid magazine free. Great stories. Beautiful illustrations. Handsome covers in colors. Edited by WALTER CAMP. Departments devoted to Electricity, Mechanics, Athletics, Photography, Boy Scouts, Carpentry, Stamps and Coins.
THE SCOTT F. REDFIELD CO.
214 Main St., Smethport, Pa.
even accept an application for a patent on the device.

BINDING POST

(104) David Kuskin, of New York City, sends in two sketches of spring binding posts and ask if they can be patented.
(A.) We do not think that either of these posts could be patented as Type I resembles the spring clip used on a wellknown battery conector while Type 2 resembles one of the forms of binding post shown in the Fahnestock patent described in our March number.

LOOSE COUPLER

(105) Sam Place, of Norristown, Pa., sends us a drawing of a loose coupIer of ordinary design and wants to know if he would infringe any patents if he made and sold such a loose coupler.
(A.) We do not think he would be running any more risk in making and selling this instrument than does practically every other manufacturer of wireless apparatus.

LOOSE COUPLER

(106) F. R. Peebles, of Lincoln, Nebraska, asks if it will be necessary to get a patent on a new style loose coupler the shape being entirely different and having two sliders on both primary and secondary.
(A.) Unless the loose coupler gives much better results than those now on the market we do not think it would be necessary or even advisable to spend the money necessary to secure a patent.

PHOTOMETER

(107) R. Michaelis, of Ridgway, Mo., sends in a design for a new form of photometer and asks if we think a patent could be obtained on it,
(A.) This looks like a good device and would be worth patenting if the scheme has not already been patented. It would be well to have a search made of the Patent Office records for photometers embodying the principles disclosed in this one, before spending much money for a patent.

25c. Books

on Practical

Subjects

COMMUTATOR CONSTRUCTION By William Baxier, Jg.
The business end of any dynamo or The business end of any dynamo or commutator. This book goes into the
designing, building and maintenance of commutators: shows how to locate
troubles and how temedy them troubles and how to remedy them,
everyone who fusses with dynamos everyone $\underset{\text { who }}{\text { fusses }}$ with dynamos
needs this.
Price........................25 centa WIRING部 HOUSE

By Herbert Pratt
Shows a house aliteayy buit; tells just how to start about wiring it, where to begin; what wire to use; how to run it
according to Insurance Rules; in fact just the information you need. Direc.
tions apply equally to a shop.
Foritith
Fortion BRAZING;AND SOLDERING

By Jases F. Hobart
The only book that shows
The only book that shows you just how
to handle any job of brazing or solderto handle any job of brazing or solder-
ing that comes along; tells you what
mixture to use, how to malke a furnace mixture to use,
if you need one. Fuil of kinks. Fifth
edition. Price............25 cente
TURNING AND BORING TAPERS

$$
\begin{aligned}
& \text { By Fren. H. Colvin } \\
& \text { There are two ways to }
\end{aligned}
$$

There are two ways to turn tapers;
the right way and one other. This the right way and one other. This
treatise has to do with the right way; it tells you how to start the work
properly, how to set the lathe, what tools to use and how to use them, and
forty and one other little things that forty should know. Fourth edition.
you shice...................25 cent DRAFTING OF CAMS

Evy Louls Rouilition
Every mechanic is interested in Cams,
and for any kind of work you may have. There is more real information
in this little book than in others that cost more. Third edition. Price......................25
THREADS AND THREAD CUTTING
By Colvin-Staber
This clears up many
of thread cutting such of the mysteries triple threads, internal threads, catching threads, uses of hobs, etc. Con-
tains a lot of useful hinte and several tables. Third edition.
Price......25 cents SPECIAL OFFER :
We will send gou any five of these books if
ordered at one time, on receiptof One Dollar D-8 Any of these books sent prepaid on MODERN ELECTRICS - BOOK DEPT. 231 FULTON ST., NEW YORK

A BARGAIN

As you are doubtless aware, the wireiess
question is settlert by act of Congress, and question is settled by act of Congress, and
the standing of amateurs is clearly set torth. There will be a areat revival in wireless telegraphy this fall, and if you
are interested in the subjet, you will be
glad to know what ELEECTRICIAN glad to know what EILECTRICIA
MECLANIC will do in this respect.
We have published in our October, 1912 ,
issue the complete text of the wireless law issue, the cost valuable collection of wireless andicies which has been contanined in any number for the past year. Future numbers
will have full information in regard to the
tegut well haye ful information in regard to the
regulations of the government for amateur
stations, and intructions for complying stations, and instructions for complying
with the law, as well as very strong articles wn every phase of wireless operation. If
on
you are interested you will find ELECyou are interested you will find ELEC-
TRICIAN \& MECHANIC an indispensable
magazine of reference on wireless telemagazine
graphy.
This subject will by no means monopolize
the contents of the magazine.
Every one the contents of the magazine. Every one
interested in electricity will find practical articles on other plases of the subject in each number. We aim to cover the whole
field of actual electrical work; and the magazine is indispensable to any working ectrion or student of electricits:
The other departments of woodworking,
metal working and general mechanical work will receive their full share of attention, wild the magazine will be the best rounded

If you have not been a subscriber of reability, a large number of very valuable and useful articles. We have a few sets
of the back numbers of this year. While of the back numbers of this year. While
they last we are willing to give ail of the
numbers for 1912. and the sulscription for numbers for 1912 , and the subscription for
nue compiete year of 1913 for the resular
the
 postage 35 cents extra for each year. For-
eign postage 60 cents extra for each year.

Send us in your order at once and get
the magazine for tweenty-four months for the price of twelve. Do it now for the stock of back numbers is not inexhaustible.

SAMPSON PUBLISHING COMPANY

519 Pope Building, Boston, Mass.

Gentlemen: Enclosed find \$1.50, for
whichter please enter myy subscrition for
ELECTRICIAN \& MECHAANIC for twelve
months begining with the isse for Janu.
mary, 1913, and ending December, 1913, and
arward me free all numbers for 1912.

Name
\qquad
\qquad
\qquad

Classified Advertisements

Advertisements in this department $\overline{5}$ cents a word,
no display of any kind.
Payable in advance, by no display of any kind. Payate in advance,
currency, check, money order or stamps. Count currency, che

$\mathbf{1 5 \%}$ disconnt for $\mathbf{9}$ insertions
With 80,000 subscribers. we have over 400,000
waders of MODERN ELECTRICS, which makes eaders of MODERN ELECTRICS, which makes it he United States. Advertisements for the May issue mus

AGENTS WANTED

AGENTS WANTED, QUICK-CLEAN, LEGITI mate money-making proposition. Niars space exclusive
planations. Write for full particulars and
lerritory. Krueger Mfg. Co., Dept. 10A, 167 W Washington, Chicago.
$\$ 50.00$ PER WEEK AND UP. HOW FAR UP
EDends on yout. Enormous sums are being made by
 years; another $\$ 6,000$ in one year; another $\$ 4,500$ in
ix months. Western Oxygenator Co., Beatrice, Neb

AGENTS-HERE'S WHAT THEY ALL WANT-
Concentrated Beer Tablets. Makes Genuine Beer
By
 AGENTS, \$10 DAILY CAN BE EARNED BY
 A. Ste
cents.)

WRITE FOR SPLENDID SPARE TIME PROPO
sition. Pliilip Edelman, Minneapolis, Mimn.

AUTOMOBILES

KEROSENE FOR AUTOMOBILES-OUR NEW est grades kerosene and gasoline. Satisfaction guar anteed or money refunded. Greatly increased power,
very slow speed on high. Stats easy at zero. Spe.
cial agents prices. Dept. P. The Air-Friction Car. bureter Co., Dayton, Ohio. CYLINDER REBORED INCLUDING $\begin{gathered}\text { RIS } \\ \text { and Rings. } \$ 7 \\ \text { to } \\ \$ 11 .\end{gathered}$ and Rings. \$7 to ${ }^{\text {Clinton, Chicago, } \mathrm{Ill} \text {. }}$
HERE IS THE BOOK YOU ARE LOOKING tered by you whether you are an experimenter or an electrical , engineer. "ractical Armature and Mictor H.
 This book is the most valuable aid to the electrician,
either in constructing or operating department. Modeither in constructing or operating department.
ern Publishing Co., 231 Fulton St., New York.
BOOKS, BLUEPRINTS AND FORMULAS "RHYMES OF DAVID," RACY. RARE. TRUE
to Nature. One Dollar. Fetter Book Co., Robinson. ELECTRICAL AND MECHANICAL BOOKS. 100

THE REAL ESTATE EDUCATOR CONTAINS inside information not generally known. Don'ts in
Real Estate. tells all about the real estate business U. S . on receipt of price. Modern Electrics, Book NEW SIX' EENTH EDITION., "TFI.EPHONE
Troubles and How to Find Them," 56 pazes illus.
trated 25 cents. New matter on cable troubles and rated 25 cents. New matter on cable troubles and
phantoni circuits. W. H. Hyde, 1835 th St., Milwau-
Wis. phantomis.

BOOKS, BLUEPRINTS AND FORMULAS
FREE! GET MY LARGE MONEY SAVINC circular before buying wiid
man, Minneapolis, Minn.
3,000 RECIPES. FORMULAS 40C. ROADMAN'S Guide- 100 Mones-making schemes, 25 . ${ }^{250}$. Machinery
Books, 92 Titles, 25 c . each. List Free.
Book Shop, Syracuse, N. Y.
GUUND VOLUME NO. 8 OF "MODERN ELECtrics" is now ready, which contans 740 pages, ove 1,000
articles of untrations and and writings interest whith 1,173 questions and 800 authors, 6 and answers. Bound in
stampedi. $\$ 1.25$.; $\$.30$ extra by mail. Mock cloth, gold
Modern Eilec stampedi $\$ 1.25 . ;$; ${ }^{\$.30}$ extra by mail. Modern Elec
trics, Book Dept., 231 Fulton St., New York City.

BUSINESS OPPORTUNITIES INCORPORATE YOUR
Arizona laws. Cost small. No franchise tax.
Stock holders exempt from corporate debts. Do busines
anywhere. Law and forms free. Southwestern Se anywhere. Law and forms free. Southwestern Se
curities \& Investment Company, Box U 488, Phicenix "MONEY MAKING IDEAS," PUBLISHED monthly, turns your spare time into cash. Sampl
cony free. A. Kraus, 409 Chestnut St., Milwaukee copy free. A. Kraus, 409 Chestnut St., Milwaukee,
(10) THIS ELECTRICAL DICTIONARY WILL JUST fit in your vest pocket. "Carry it around with you
while you are at work. "Handy Vest Pocket Electriwhile you are at work. "Handy Vest Pocket Electri
cal Dictionary," by Wm. L. Weber, M.E., containing
up upwards of 4,800 words, terms and phrases employed

in the electrical profession with their definitions given in the most comprehensive manner, Full leather $\stackrel{\text { cover; }}{\text { Fulton }}$ St., | Sow |
| :--- |

by 20 Wireless Experts, illustrations, written expressly for wireless amateurs, and is a book that you cannot afford to be without,
Price. $\$.20$ postpaid. Modern Electrics, Book Dept.,
231 Fulton St., New York City.

ELECTRICAL APPARATUS

AMMETERS, 1000 WATCH SIZE, NICKEL plated, guaranteed, battery testers, in chamois leatiner
cases.
Read $0-30$ amperes, 25 c postpaid.
Stamps cases.
taken.
Ead
Tork. W. Electrical Co., 3525 Broadway, New OUR , 80-PAGE BOOK, "THE WIRELESS TELE. phone," will be found invaluable to those interested in
this science. This book contains 57 illustrations and is
considered considered a masterpiece. Send \$. 25 in stamps, coin
or M. O. to Modern Electrics, Book Dept., 231 Ful-
ton St, New York City,

IT IS IMPORTANT THAT ALL INTERESTED in wireless should join the Wiresess Association of Way in the wireless industry. For full particulars,
addeses, Wireless Association of America, 231 Fulton
St Ne. Yorle address, Wireles
St., New York.
HERE IS THE VERY LATEST AND MOST valuable work on electricity for the amateur or prac-
tical electrician, published: "Easy Electrical Experitical electrician, pubbished: Easy Electrical Experi-
ments and How to Make Them," by L. P. Dickenson,

ENTERTAINMENT

105
logues. MAGIC
Klcin,
TRICKS
Broadway, , N. Y. Y. 3 CATA.
 order. L. Dolson. Hampton, Lowa. Magazine wi-1

FOR MEN

SEND 12C FOR "SEXUAL PHILOSOPHY," clearest, best, most instructive sex manual published
Actually teaches. not merely argues. Write today Actually teaches. not merely argues.
"Health-Wealth". Publishing
St. Lawrence. Mass.

FOR SALE
\$1 SILK TIES THREE FOR \$1 POSTPAID, $\$ 50$ GRANDFATHER'S CLOCK WORKS, $\$ 5.00$
 ciock cases, exceptional bargains. Clock Company
$1 末 07$ Cayuga St., Philadelphria, Pa. \$25 GENUINE DIAMOND TIFFANY ENGAGE ment ring, $\$ 1.00$ weekly. Catalog. Metro
Jewelry Co., 129 West 125th St., New York.
WIRELESS SET, RECEIVES 800 MILES AN1 sends $25 ;$ good condition. Will sell for $\$ 12.50$.
Llewellyn T. Savage, Box 368 , Ayer, Mass, MACHINE MAKING BUILDING STONES 50 cents. William Barten, Gordon, Nebraska. ood taste to TEN THOUSAND GENTLEMEN OI good taste to try our "Figola" Havana cigar,
box $\$ 1,00$, prepaid. ${ }^{2,}{ }^{2}{ }^{\text {Beaver Cigar Co., Canton, }}$ Ill

ARC LAMPS, NEVER USED, FOR 110 VOLTS siving 1000 c.p... sold regularly at $\$ 16.00$. Through at the bargain price of $\$ 3.50$ complete, with rheostat and carbons; no casing and no globe. Just the mas easonable proposition for wireless stations, labora-
sites or other purposes. Cosmos Electric Co., 136 M, Liberty St., New York.
ELECTRICITY - JUST WHAT YOU HAVF been looking for, Our Modern Blue Print Char Aplained so that you can easily understand them. House Wiring, Condinit, Anunciators, Telephones,
Dynamos, Transformers,
Isolated Plants Dynamos, Transformers, Arc Lights, Special Treatise
on Motor Wiring. Write now for information. Elec on Motor Wiring. Write now for information. Elec
rical Wiring Diagram Co., Box E 173, Altoona
"WIRELESS HOOK.UPS" CONTAINING pages and 160 hook-ups, is full of diagrams fully ${ }^{96}$ book will enable wirecss men to get excellent resultts. 31 Fulton St., New York City.

HELP WANTED

I WILL START YOU EARNNING \$4 DAILY AT
home in spare time silvering istructive booklet. giving plans of operation. G. F.

I NEED GOOD MEN-EVERYWHERE-PART lass business; established 13 years; authorized capital, $1,000,00$; no experience needed; desk and complete
usiness outfit free; write to-day. W M Ostrander Dept. 15, 12 West 315 st St., New York City. (tf) \star
DETECTIVES WANTED-YOUNG MEN WANT exponerate in own locality, secret service work, Universal Detective Agency, 804 Colcord Bldg., Ok.
(1)
ahoma City, Okla.

FREE ILLUSTRATED BOOK TELLS OF about 300,000 protected positions in U. S. service. chance for you, sure and generous pay, lifetime employment. Just ask for booklet S. pity, No obli-
gation. Earl Hopkins, Washington, D. C. No

DO YOU WANT THIS BOOK, WHICH TELLS you how to test and operate all different kinds of electrical apparatus, from generators and motors to
lamps and bells? Only 1 , 1.50 , postpaid. "Electricians'
Operating and Tosting Manal, lamps and bells? Only 1.50 , postpaid. Electricians
Operating and Testing Manual," by Henry C. Horst.
mann and Victor H. Tousley, 16 mo., full leather, and mann and Victor Hig. Tousley, 16 mo., full leather, and
chuck full of the right kind of information, which can

HELP WANTED

YOUNG MAN, WOULD YOU ACCEPT AND wear a fine tailor-made suit just for showing it to
your friends? Or a Slip-on Raincoat Free? Could you use $\$ 5$ a day for a little spare time? Perhaps we smaller than 10,000 , write at once and get beautiful

LEARN REAL ESTATE RUSINESS, PLEAS. ant work, splendid income. Particulars free. Georg
Winstel, 1624 Pleasant St., Cincinnati, Ohio. (tf) LOCAL REPRESENTATIVE WANTED. SPLEN did income assured right man to act as our repre-
sentative after learning our busness thoroughly by
maii. Former quire is honesty, ability, ambition and willinene re learn a lucrative business. No soliciting or traveling All or spare time only. This is an exceptional
opportunity for a man in your section to get into
a big paying business without capital and become opportunity for a man in your section to get into
a big paying business without capital and become
independent for life. Write at once for full particu lars. National Co.Operative, Reanty Company, L- 599
Marden Building, Waslington, D. C.

INFORMATION
RAPID WAVE LENGTH CALCULATOR plicated Wave Length problems without use of com Rule principle in its simplest form. Eliminates binty of arithmetical errors. Sent postpaid for 25
cents in coin. ${ }^{25}$. D. Livingston, Box 144.C. Ann
Arbor, Mich.

GET MARRIED-MATRIMONIAL PAPER CON aining advertisements, marriageable people from all

ARE YOU EFFICIENT:-HOW SALARY TS increased, higher wages secured, advancement as
sured, your condition bettered.
Our membership s growing amazingly and is destined to becom headed by experts to aid members in every line of ark. If benefits fail servicc is frendled individuPresent enrollments at $\$ 1.00$ will include ieague
badge. Write fully and get best results. Address

INSTRUCTION

FREE-ILLUSTRATED BOOK ON HXPNOTISM nd other accult sciences to all who send their a control orthers.
Mich. DRY BATTERIES REGENERATED - THRE methods fully explained 10 c . Unity ${ }^{\text {In }}$ Supply Co., 2394
Jamaica Ave., Richmond Hill, L. I. MR, ELECTRICIAN: DO YOU KNOW ALL need thisis book, which is the latest out on the not, you Modern Wiring Diagrams, and Descriptions," by 300 pages, 225 jillustrations. Full leather ling 16 mo
 explains dynamos and motors, alternating current and installations, etc. ground detectors and storage batteries,
St., New York.

MODERN ELECTRICAL CONSTRUCTION BY Henry C. Horstmann and Victor H, Tousley. A new revised and enlarged edition, $16 \mathrm{mo} ., 358$ pages. 173
diagrams. Pocket size. full leather limp. postpaid. Pocket size. full leather limp. Price $\$ 1.50$,
New York. ew York.
BOOKS, AS A RULE, ARE FILLED UP WITH menter, but here is a book which is simple the experi understandable. Send your order at, once for your Haskins, 283 pages, 108 illustrations Clarke Cary Haskins, 283 pages, 108 illustrations, 12 mo. cloth
binding, Price $\$ 1.00$ postpaid. Modern Publishing
Co., 231 Fulton St., New York.

wireless

quicky Pronnt on ANY SIZED CRYSTAL quicky brought under any contact or crystal, on
our new detector stand. Nickel finish. Send S2.o0 to-day. Money retarned if in not more than satiffied.
Hi. Shaw, 825 Franklin Pll, Milwauke, Wis.
PERICON DETECTOR, SAME AS SHOWN ON
 OUR NEW CATALOGUE ON WIRELESS AND

FIRST \$12 TAKES LARGE LOOSE COUPLERR, \$7.50 Western Electric phones, pericon detector,
fixed condescr, pll good condition. Carl Davis, Main SL, Watervile, Me.
PACIFIC CALL
many additions and corrections.
SHEET many additions and corrections. Gives call letters
(alphabetically arranged) and name of 400 ship and (alphabetically arranged) and name of 400 ship and
land wircless stations on Pacific Ocean. Price 25 cents, silver preferred. Ford King, 610 Balboa

NEW "EUREKA" DETECTOR. PERFECT AD. justment
postpaid.
given by crystal floating on mercury.
Eureka Co.,
4813 Leiper St.
St. Phila, Pa

SERIES, SPARK GAPS, WITII RADIATORS, aces, finely fristhed. Prices, 2 sparks, $\$ 2.50 ; 3$ parks, $\$ 3.25 ; 4$ sparks, $\$ 4.00 ; 5$ sparks, $\$ 4.50$; fixed
paps, $\$ 1.50$. Rotary sparks disks made to order.
 Aull-Ziegler W
St. Louis, IIl.

SPECIAL PRICES TO CLOSE OUT STOCK OF

SEE OUR DISPLAY ADV. ABOUT NEW RE ceiving Transformer for only $\$ 10$. Patented and
guaranteed to do all that is claimed for it. Colby's
Telegraph School, Auburn, N. Y.

YOU CAN ACCURATELY RECEIVE MESSAGES in any code, faster than the human hand can send,
by The Simplified Telegraph Reciving System. Re. Auced price, ${ }^{25}$ cents; no stamps. Sudbury Technical
Institute, Box 7, Roxbury Station, Mass.

A $\$ 300$ STATION FOR SALE; NO REASONA-
JOB LOT WESTERN UNION STYLE TELEraph sounders and repeaters, 4.20 ohms, 75 . each (weight of package, 1 lb.).
M, Liberty $\mathrm{St.}$,New York
SPECIAL! PERIKON DETECTOR STANDS, hard rubber and nickeled brass, $\$ 2.50$. Other instru-
ments. List and photo for stamp Radio Apparatus
Co., 383 Maxfield $\$ t$ New Bed FREE! LARGE ILLUSTRATED FOLDER showing wave meter, variometer; valuable informa
tion. Philip Edelman, Minneapolis, Minn. MR. AMATEUR1 TO LEARN ELECTRICITY you should start from the beginning. You should
know all about the minor details before you take on he big ones, and here is the book that is going to Up.to-Date," by Sydiney Aylmer Small, M.A.I.E.E,
12mo. cloth, 500 pages, 206 illustrations. Price $\$ 1.2 s^{\prime}$, 12mo. cloth, 500 pages, 206 illustrations. Price $\$ 1.25$,
postpaid.
of electricity and book starts on the primary characters
onear through to the end. Tells of electricity and goes clear through to the end. Tells
you all about storage batteries, condensers. flow of

Apparatus Exchange Department

 This department is for the free use of our subscrib.ers and readers, to enable them to exclange teclinical
articles for which they have no further use for other articles for which they have no further use for other
articles or apparatus which they need. articles or apparatus which they need.
Advertisements under this heading containing more
than fifty words cannot be accepted; the right is also than fifty words cannot be acceptedt the rinht is als reserved to rewrite or reject any advertisement whic
will not be for the best interests of vertisements under this heading will be inserted one time only free of charge.
Advertisements of articles intended for sale cannot Advertisements of articles intended for sale canno
pe aceepted as a regular classified department is con ducted for advertising of this character at a cost o c per word.
Advertisements should be addressed to "Apparatus
Exchange Department," care Modern Electrics, 231 Exchange Department,"
WILI EXCHANGE L/2-LNCH SPARK COIL and double side tuning coll; both in excelient con or heavy wircless key. Elmer Madson, 903 Jeffer-
son St., Albert Lea, Minn. $1 / 2$ KILOWATT STEP.UP TRANSFORMER IN
perfect condition; cannot use same on account of lack of current; 1 all around mineral detector; $1-1,000$
shot Daisey air rifle in perfect condition. Would like to exchange rifle and detector together. Ralph Vaser
berg, 57 Marion St., Pitisburg, Pa. WILL EXCHANGE MOVING PICTURE MA-
chine and films costing $\$ 25$, in good condition, for Blitzen tuner or variable condenser and A C. moto
Frank Reb, 1635 Gratiot Ave., Detroit, Mich. WANTED, SET OF 3,000 OHM 'PHONES, lose coupler or rotary variable condenser or dyna
no motor, in exchange for 2 complete long distance telephones, less transmiters and receivers: $\mathrm{Each}^{\text {en }}$ set
worth $\$ 6.00$. C . Williams. White Plains, Ky. STORAGE BATTERY, FINE CONDITION, AI
most new, also well-made helix constructed wit most new, also well-made helix constructed with
No. 000 copper wire, handsomely finished, good to $1 / /-\mathrm{Kw}$. What have you to exchange? Apply to
George D. Buchanan, care of The Ashton Valve oston, Mass.
HAVE 48 SLIDES, $31 / 4 \times 1,20$ BALKAN WAR $\$ 17.50$. Want $/ 3$ Kw. trinsiormer, 4 -inch coil, 2,000 ohm 'phones, Helix, tuning coil or, small A. C motor
Valjean Hentz, General Delivery, Dallas, Tex. PARTS OF TWO I-INCH COILS, WITHOUT boxes, fixed condenser, self inking printing press,
air rific, motor, pair of adiustable
roller
skates and many other articles. in cxclange for a variable
condenser oo a typewriter. A. Perry Roberts, Ten

FOR EXCHANGE, A $\$ 6.00$ POST CARD PRO jector, $\$ \$, 75$ omnigraph, with two discs, 2 buzzers,
step-down transformer, ino to 111 volts, worth $\$.00$
for wireless receiving instruments, or wireless receiving instruments. Phones and de
tectors preferred. I also want chemical apparatus and
hemicals. Lonard Postill, 333 Third St. New
Lonal Leonard Postill, 333 Third St., New
chemicils.s.
Westminster, B. C., Can. WILL EXCHANGE "EASY EXPERIMENTS TN Electricity," "First Steps in Electricity," "Electric
Dictionary," 4 ont key and sounder and plug board
(Bunnell type) 1 -No, 5000 theostat regulator (Bunnell type), 1 No. 5000 theostat regulator, ${ }^{1}$ buz zer, 1 magnetic compass for any wireless goods. Wm.
L. Harrison, 5 . College St., Box 64 , Lindsborg. Kan WILL EXCHANGE ONE LEARNER'S TELE graph mstrument with instruction book and one ne
departure motor, type C, both in first-class condition,
for $1 / 4$ or $\%$ inch spark coil. Wm. M. Meads, 354

HAVE A NO. 2 OMNIGRAPR, 2 -inch MESCO coil and spark pap for a kodak, or good pair of
phones. D. Dufficld, 102 Albion Ave., Paterson,
N. I.

WILL EXCHANGE FOUR COMPLETE TEST berg-Carlson magnetos, nickeled trimmings, for a or $2 y / 2$-inch spark con or and parts to exchange. Ralph Carnahan, 337 E. Church St., Urbana, Ohio. WILL EXCHANGE 110 -VOLT A. C. TRANS. former which gives 1 -incheral apparatus. Want almost any experimental appationes. or 3 lbs. No. 34
spark coil, 2,000 ohm head phones. Ferris, 710 Pros enameled wire. Write to Joll
pect Ave., Milwaukec, Wis.
HAVE ONE SET OF DRAWING INSTRL HAVE
MENTS liandy case, cost $\$ 2.50$, nearly new.
Also two volumes of Modern Electrics. Will ex.
 descriptio
WILL EXCHANGE A MOVING PICTURE MAchine with carbite tank, cost $\$ 10$, for a Ferron detector, rotary variabie. I have a $\$ 3$ Murdock de-
made by a reliable firm. I
tector and a Stevens $\$ 3$ single shot rife for a goo
rint 11 or $11 / 2$-inch spark coil. Y .
Hodge Ave., Butialo, N.
VOLTMETER, SWITCH-BOARD TYPE (DIAM. VOLTMETER,
$41 / 2 \mathrm{in}$.), registers 14 volts, in exchange for a Mur.
Ing. Balazs, 152 dock rotary variable
West 141 st
St., New
WILL EXCHANGE HOMEEMADE VARIABLE ondenser in fine oak case, with two separate $\$ 3.00$ for moving picture machine. John Starrelt, St. Plymouth, Wis.
HAVE A 1M OHM DOURLE HEAD SET, ONE oscillation transformer, one varialle condenser and one powerful 6 volt motor, dyamo.
A. Motor or water power
922 Prospect St., Indianapolis, Ind.
WILL EXCHANGE A QUANTTTY OF HARD
 ameter $1 /$-inch,
inches, for wiress apparatus.
Harward St., Rochester, N. Y.
WILL EXCHANGE A MOVING PICTURE MAchine which I value at \$15, one one touthen chinc coil. telegraph key, single pole dotice, for a
spark
switchboard and five new cll bateries, fory good pair of 3,000 olim Plitzen receiving set. F. Mur-

able condenser or a | ray, |
| :--- |
| Mass. |

cor. Granite and HAVE 1-INCH BULL DOG COIL TO TRADE
for Brandes Superior phones or other good make, Also have a Mesco 1,000 ohm receiver to trade. Both
articles were bought recently and are in the best of articles were bought recently and are in
condition. Malcolm Magers. Parkville, Mo.
WILL EXCHANGE A FINE STAMP COLLECion of 600 stamps with two International aloum col lections worth between a Clapp Eastham closed core
Scot's catalog. I need
I ransformer, 2 Blitzen rotary var, phones. Everything ng transs be in perfect condition. Donald S . Van Nos must be in perfect condition.
rand, 3 North St., Binghamton, N.
WILL EXCHANGE ENCLOSED BATTERY WILL EXCHANGE ENCLS revolver and pocket fashi light for a Brandes superior also a 75
thing else in the wireless linm reciver for buzzer. W. C. Powers, 3114 N . Carlisle St., Phila, Pa.
WHAT HAVE YOU TO EXCHANGE FOR THE following: Clapp-Eastham Ferron detector condenser (rotary), helixes. relays,
tector, key spark coils, books, $\$ 20$
elec. engineering tector, key spark consformer, rectiver, hand-drive dy-
set, oscillation trane
All of these are new. C. E. Gill, 81 Winthrop namb. All of these as
St., Brockton, Mass.
$31 / 2 x 33 / 2$ Eastman kodak, Locke adding machine new Ford acetylene generator and outfit, pair short
line (battery) telephones, to exchange for 6 volt 60 A ${ }^{\text {H. }}$. storaee battery, or sman trans tor 10 volt from 110 volt. E E.
gusta Ave, Spokanc, Wash.

WILL EXCHANGE 18 LESSONS OF THE Electro Importng Co.'s wireless course, electrolytic
 WANTED, DODGE'S AUTOMATIC TRANS. mitter or ornnigraph No. 2 , in exchange for 1 -inch
spark coil, 150 ohm relay, key, telegraph transmitter spark coil, 150 ohm P. D. T switch and several volumes of clectrical mag.
East, Hutchinson, Kan.
ONE 5 HP. MARINE 2 CYCLE COMPLETE with valves, reverse gear costing $\$ 45$, propeller coni,
hish tension leads, ctc., will exchange tor best offer: high tension leads, ted., Loftulus E. Sparling, 333 Dawon St. Sault Ste. Marie,
FOR EXCHANGE-Have several telephones and parts, stereo-came never used. Send for list. Wan Blad
Blitzen variable condenser, Blitzen tuner and Brandes
Vavy avy. type phones. Amateur, Box MOVING PICTURE MACHINE IN GOOD order, one film; also place for slides with twenty-two
slides included; electric light altachment if desired; want wireless supplies,
son, Greenwicl, Conn.
WANTED-UNITED WIRELESS OR A BLIT-WANTED-UNITED WIRELESS OR A RLIT

 Trans. Coils to close core, als. Trans., etc. Arthur S. Riley, ${ }_{147}$ Bank St., Bridgeton, N. J.
I HAVE A REVOLVER FLASHLIGHT AND A $\$ 3$ Waterman fountain pen, both in good condition
will exchange for liquid or mineral Detector or Potenwill exchange for liquid or mineral
tiometer. W. Lyon, Hempstead, L. I.
WILI EXCHANGE 1 SILICON DETECTOR, 1 WILL EXCHANGE 1 SILICON
cectional condenser, 1 Clapp Eastham type variabl condenser rotary, ${ }^{1}$ Murdock rotary variable conden ser, brand new. 1 Pancake tuner in wire worth $\$ 25,1$ ${ }_{t}$ tion, 1 Westinghouse Ammed spark gap brand new, 2 tw pole single throw switches for cutting out

three pole, $\overline{500}$ volt, 75 am. switch worth $\$ 8.75$, 11 | three pole, 500 volt, |
| :--- |
| Combination ground |
| swith ch case of |
| hard rubber, 1 | Tuning Variometer $2,000 \mathrm{M}$. capacity, 1 spark gap for $1 / 3 \mathrm{~K}$. W. or under, 1 Plug sectional sending 12 lbs, worth ser, ${ }^{16}$ a sectional condenser mounted in a case of Ma-

 $\mathrm{S}_{\mathrm{S}}^{\mathrm{m}} \mathrm{t}$, Sault Ste. Marie, Mich
WANTED-A TUBEETYPE SECONDARY VARI able condenser in exchange for three new $1 /{ }^{1 / 2}$ coit secondaries: the secondaries never used. and are seondary; als
 vibrator, or both secondaries and vibrator for a 1326 Southern able receiving condenser.
Blvd., Bronx, N. Y. City.
WILL EXCHANGE ONE NEW PAIR 1,000 OHM WILL EXCHAN Brownie camera and finder, 2 prac

 24 wire, 1 book arran detector or other wireless goods:
$\$ 1.75$; want a fer
also also have a 110 volt A. C. stepdown trans.
Martin, 1918 Eye St., N. W., Washington, D. C.
WILL EXCHANGE A $31 / 2 \times 4 \frac{1}{2}$ FOLDING PREMO cancera, 3 section metal tripod, daylight developing
tring
tank triple cell medical battery,
tungsten flashilight tank, triple cell medical battery, tungsten flashinght, potorcycle. A. . . Bennett, 1227 Darlington Ave.,
meaver Falls. Pa. Beaver Falls, Pa.
WANT $1 / 2 \mathrm{~K}$. W. TRANSFORMER COIL AND
 camera, cost $\$$ flashlight, cost $\$ 1.50$, the camera takes
and , pocket
fine, clear pictures and will hold 10 plates, plate hold. fine, clear pictures and will horice J. Craven, Box 248 ,
ers given with camera. Marlen ers given with cam.
Spring Valley, 111.

Ktorage Batteries in exchange for a good 1 inch spark Storage Batteries in exchange for a good 1 inch spark
coil. Emil Rohracker, 1719 N. Laundale Ave., Chicago, III.
WILL EXCHANGE A $1 / 2-$ INCH SPARK COIL for a rotary protetiometer. P. Kemper, 420 Franklin
St., Butier, Pa. WILL EXCHANGE STORAGE BATTERY, 6 volts, charging rate 5 amps. for 14 hours, standard
make, Helix, double slide tuner, key, detector, spark gap, 1,000 ohms receiver, 5 ohms sounder, Leyden jar, engine, voltammeter, for motor cycle of
Sylvester H. Davis, 712 Fairview Ave gas engine. Sylvester
WILL EXCHANGE 110 V .16 A . CONNECTICUT namo, first class condition, or a 5×7 Rochester p camera with tripod, etc, for $1 / 2 \mathrm{~K}$. W. wireless trans-
former. former, L. I.
A NEW 50 V . MOTOR, NEVER USED, COST \$20, and $20 \mathrm{~V} ., 10 \mathrm{~V}, 6 \mathrm{~V}$, motors; make offer on re ceving apparatus and a small ${ }^{\text {R. D. }}$. Shlichter, Sellersville, Pa.
A 22 CAL 1902 MODEL WINCHESTER RIFLE as good as new and a 22 cal. Hopkins \& Allen revolver
wlich 1 can guarantee, to exclange for a pair of 2,000 ohm head band wireless receive
71 Church St., Westbrook, Me.
WILL EXCHANGE FOR MOTORCYCLE THE following: 1 small motor, 1 helix, 1.22 rifle, 1 camera,
$1-2,000$ ohm head set, 1 tuner wound with No. 30 wire, bare on maple roll 12 in. long, 6 in, dia., 1 one point switches, 1 set of xylophones (low pitch). J. W. Scort,
238 Chelmsford St. Lowell, Mass. 238 Chelmsford St., Lowell, Mass.
WILL EXCHANGE 1 SMALL WIRELESS RE-
ceiving set for $\mathrm{t} / 4$-inch spark roil. J . Cummins, 85% ceiving set for $1 /$ ininch spark
Amsterdam Ave., New York City
COMPLETE RECEIVING SET CONSISTING OF
 simmal receivers, will exchange for Blitzen tuner or profes. exchange separately for anything in wirceless. Albert Perkins, 4008 West Prospect St., Kansas City, Mo
WILL EXCHANGE 100 WATT HOME-MADE 8, $10,12,16$, with small rotary gap suitable to be rum paiir of Brandes' Superior 'phones in good condition.
E. C. Jackson, 52 Hillerest Ave., Yonkers, N. Y. WILL EXCHANGE WITH ANYBODY IN THIS city: ${ }^{3}$ size Red Real dry batteries and l pound
tinfoi, for porclain tubes, cleats and insulators of
all kinds. Howard S. Pyle, 3316 York Road, Seattle. Wash.
WILL EXCHANGE A $\$ 75$ COLLECTION OF postage stamps of all nations mounted in, Scott',
arge International album, aiso a double slide coil, lectrolytic detector, two inches of Wollaston wire, a als, for a Bitzen ring tuner, Brandes nawy of crys. scillation transformer or small magnetic leakagc

WILL EXCHANGE A FOOT POWER SCROLT saw, cost $\$ 3.50$, for a pair of receivers in good condi-
tion or wireless goods.
ton Pl., East Orange, N. J. ton P1., East Orange, N. J. FOR EXCHANGE-IN EQUAL VALUE, A COM300; good condition; also a good, complete set of elecrict good condition; also a good, complete set of elec-
rict rains; prefer a smalt gasolene engine at least $1 / 1 /$
rorsepower. George Robinson, 353 W . 56 th St, New York City.
WHLL EXCHANGE - HOT WIRE AMMETER
 Western Electric 2000 -ohm pair phones; Gillettee elco ric clock; want rotary converter about 1 1.h..... or
tandard wireless apparatus. C. H. Stone, 230 W. standard wireless apparatu
Division St., Chicago, Ill.

WILL EXCHANGE ELECTROLYTIC INTER-

TO EXCHANGE-COMPLETE CORE PRIMARY B. S. micrometer; want variable condenser. Albert Anderson, 1373 Carroll Ave., Chicago.
WILL EXCHANGE ONE 3-BAR TELEPHONE magneto (very powerful), "Ferron" model detector, cord and receiver, with German silver head band, ratus, for Winchester or Marlin $30-30$ rifle in Eood
condition. W. E. Hagemann, 301 7th ${ }^{\text {St., Brooklyn, }}$,

WILL EXCHANGE A FINE STAMP COLLEC. tion in a brand new album that holds 10,000 stamps
for a good make transatlantic head set or other wirefor a good make transatlantic head set or other wire-
less apparatus; write me what you have. Melvin Dan-
heiser, 406 W . Holmes St., Huntsvile, Ala.
HAVE A 1 INCH COIL (WITHOUT VIBRATOR) for Ceco Tumer, Brandes Superior Receivers exchange for Ceco Tuner, Brandes Superior Receivers, or Fer
ron Detector. James Reed, Kennewick, Wash.
LOOSE COUPLER, NEVER BEEN USED, FOR nin Audion detector or for apparatus either sending or receiving or for accessories of an Ives Electric
Railway; have a s 45 bicyele. C. B. Weed, 346 Wil-
low Si. New Haven, Conv. WILL EXCHANGE 110 V. 6 A. DYNAMO FOR I/ kw. transformer and will exchange a carrom board
for a volt-anmmeter. Clarence V. Purssell, 1257 Morton
St., Dorchester, Mass.
A 110 V. D. C. MOTOR, A PAIR OF 3,600 OHM phones in exchange for a rotary gap; write
Van Slyck, 836 Main St., Lake Gcneva, Wis.
HAVE AN OXYDONOR AND BOOK OF IN. structions in first class order, for which I paid $\$ 25$,
will exchange for a wireless set. A. R. Coleman, Pal yyra, Va
porcelai EXCHANGE EIGHT LARGE BALL porcelain insulators, have never been used for instru-
ments. Arthur Haake, Closter, Bergen County, N. J. TYPE "S" KNAPP MOTOR, EUREKA TELE coil, well insulated and taped, Heics. 11 turrs 4 in.
and
aluminum 14 in aluminum. 14 in. in diameter Pilot Light, interrupter
for 1 in. coil for Murdock 3,000 ohm receivers, $1 / 2$ kw. transformer coil rotary spark ghap, or hot wire
ammeter. J. L. Knapp, Evansville, Wis.

WILL EXCHANGE MURDOCK RECEIVER corc, 7 ft mercerized cotton 6 , tips, carbon holder for
arc light, made of brass, mid, with carbon, 2.5 ohm "Eureka" Sounders complete less magnets, I porcelain candelabra receptacle, adapter for charging to minia
ture base furnished also; total value $\$ 2.30$. Want in xchange any of the following: $410 \% / 2 \mathrm{in}$. electrose msulators for antenna, 4 fixed condensers or detector
Howard S. Pyle, 3316 York road, Scattle, Wash.
WANTED-A SET OF STANDARD RESIST ance cois for and name manufacturer and value f have good assortment of wireless and experimental appa ratus to exchange; can also use 110 v. motor or
meters. Lee B. Clark, Vici, Okla. WILL EXCHANGE FOR MOTORCYCLE $1 / 2$ KW tion transformer, spark gap, vibroplex, reguiar key recerving extra large double slide tuner, silicon, gaiena denser, necessary switches, six wire aerial with 1 strain insulators, two horsepower engine and ten volt
D. C. magneto. Arthur Carden, Gen. Del., San Jose,
I HAVE 2 VARIABLE CONDENSERS, SLID ing plate type, 1 large size, cost $\$ 3.75$; the other, small
size, cost $\$ 2.25$, f fixed condenser, cost $\$ 1 ;$, also have
$31 / 2$ in. coil and $11 / 2$ in. coil former is of a $1 / 2$ in. coil and $11 / 2$ in. coil, former is of Spitdor
make; a tuner $(2$ slide); all instruments are in splend
did condition except the tuner, which is a bit marred did condition except the tunner, which is a b bit marred;
will exchange all (except spark coils) for a Blizen rotary condenser and good spark gap. Rey W. Ne
ville, 37 Darwin St., Rochester, N. Y.

When writing, please mention "Modern Electrics,"

WILL EXCHANGE A GOOD COMPLETE WIREless outtit for a motor cycl
Dox 371, Calument, Mich.
WILL EXCHANGE 1 STEVENS CRACK SHOT WILL EXCHANGE 1 STEVENS CRACN long; for anty ,hing of equal valu
Box 102, Jackson, Ga.
PERFECTION PRINTING PRESS WITH TYPE, cost $\$ 9 ; 2$-inch Americoil, cost $\$ 9 ;$ Murdock tuner,
cost $\$;$ shocking coil, cost $\$ 1.25 ; 2$ spoois No. ${ }_{36}$ enameled wire, ${ }^{50} \mathrm{c}$., , wireless books; all in
 motor, torch. James Bean, Jr., $17 \% 5$ Alat.
San Jose, Cal. FOR EXCHANGE-A SMALL GAS ENGINE, aluminum crank case, in fine shape, Write me if you pound anything in the wireless line, John Straub, Fayettervin. N. Y.
FOR EXCHANE-ONE ROBBINS \& MEYERS

condition
$\mathbf{N} . \mathbf{Y}$.

DESIRE TO EXCHANGE A MURDOCK $\$ 3$ DESIRE TO EXCHANGE A A M decorative out-
rotary variable condenser for a 9.ight fit, $8-14$ volt colored lights connected on
with sockets, nttachment plug and extra light; cost
noward with sockets, atrachment ping electrical.
$\$ 3.50$ or or will take anything
Pyle, 3311 37th Ave. So.. Seattle, Wash.
WIIL EXCHANGE THE FOLLOWING MAGA. Wines for wireless instruments: Modern Electrics, ${ }^{4}$
 ${ }_{13}$ Audubon St., Rochester, N. Y.
FOR EXCHANGE - HELIX, MAHOGANY mounted, with pilot lamp, loose coupler, potentio-
meter, electrolytic detector, sending condenser,
con meter, electrolytic detector, sending, condenser,
tubes, electrice bell D. P. D. T. swith, all brand-new
the tubes, electric exthange for a good 6 -volt, 100 -ampere
cost $\$ 16 ;$ will exp
storage battery or 3 -inch coil. Write W. W. Avera, storage battery or 3 -inch coil.
Box No. 6. Watkinsville, Ga.
HAVE A 1000-SHOT ATR RIFLE, IN GOOD condition; very powerful; and a target of daisy make rings when bull'se eye is hit; can be used in the house
 New York City. WILL EXCHANGE AN ELECTRIC SOLDER-
min iron, 500 ohm receiver, 3 -bar telephone magneto.
5in

 and secondary of anser, audion or ferron detector. John
variable condenser Stadler, 210 Plymonth St., Toledo, Ohio.
WANTED-A $1 / 2 /$ KW. CLOSED CORE TRANS ionmer for the forlowing: $1 / 2 \mathrm{~kW}$ transiormer
equipped with a vibrator, electrolytic int interrupter, Emequipped
merson's
$1 / 6-$ h.. . motor for
220
D.
D. C., new runs at
 which has received 100 miles, detectors, a 10 volt,
5 cells, storage battery and a, rheostat for 110 volts.
L Falconi, 617 Crawford St., Portstnouth, Va. L. HAVE A 1-IN. SPARK COIL AND 2-IN. SPARK HAVE A 1-IN, SPARK COIL AND
coils also electroiytic inter inupter; will exchange 1 -in.
coil for 2000 or over ohmp phones. Brandes or Holtzer coil' also electrolyte ihm phones. Brandes or Holtzer
coil for 200 or over ohm
Cabot preferred, also 2 -in. coil for a good hot-wire

 new, Oliver
land, Ohio.
WILL EXCHANGE LOOSE COUPLER. PRACtically new; has been used on distances of 100 miles ticaly unew, No. 20 primary, No. 28 D. C. C. secondary,
and und
for foiding kodak and tripod. C. Coleman Berwick,
1935 Hearst Ave., Berkeley, Cal.

CROCKER-WHEELER 110-VOLT. D. C. MOTOR wireless instrumentso D. H. H. Volland, will exchange for
Ave., N. W. Washington, D.

DESIRE A 2 KW TRANSMITTING SET, COM plete, standard make, rotary or quenched gap, in exchange for $1-\mathrm{kw}$. Clapp Eastham Type E set, complete;
$1-\mathrm{kw}$. Worts-McKisson 2 -h.p. Detroit electric light gasoline engine condenser; moters, yasfos, induction coils, condensers, and receiving transforme
Port Hill, Idaho.
WILL EXCHANGE A SET OF A. S. OF COR.
 change for high-grade instruments. Gco. Junkin, W.

I HAVE A 2000 OHM SET OF RECEIVERS OF Western Electric make; will exchange them for a good
loose-coupler or a hot-wire ammeter; also have 500 ohm potentiometer, wound with Gergan silver wire; ohm potentiometer, wound with Gergan silver wire;
1 will exchange this for something of equal value.
Stanley Strauss, 5225 Lexington Ave. Chicago, Ill WILL EXCHANGE $1 / 8$ - H.P. BRAND - NEW water motor for a 6.60 or 6,40 storage
Binis, 177 Lovejoy St., Buffalo, N. Y.
HAVE A MURDOCK DOUBLE-SLIDE TUNER, cost $\$ 4$; also ${ }^{3 / i n .}$. coil, cost $\$ 2.20$; both in fine con-
dition; would like a Mesco 10 volt Pony dynamo and water motor to run same, in good condition. Edgar
Darlington. $25 \mathrm{So}, 4$ tth TELEGRAPH KEY AND SOUNDER WANTED IN exchange for two
French, Peekskill, N. Y. Y.
WANTED- $1600-$ OHM BRIDGING TELEPHONF, parts unmounted; have 4 -in. Geissler tube, 1000 -metre spark coil, detector ${ }^{30}$, 1 , spark coil, detector, 32 cal. revolver, potentiometer,
camera, film $31 / 4 \times 21 / 4$ etc. John Burleigh, New Stan-
ton, Pa.
for the equal Realue in wireless BOKS AND CAMERA for the equal value in wireless sending and receivin sets; value of books is $\$ 15$; will exchange all for $\$ 14$,
with a good camera. Geo. Tranwell, 308 E. Sixth St.,
Seventh Ward, Rome, Ga.
WILL EXCHANGE FOR BLITZEN VARIABLF
condenser, in good condition and original condenser, in good condition and original capacity cake type, 4 -plate sending condenser, and 10 -in, Geiss.
ler tube, with liquid. William B. Snow, 11 Devon rd., ler tube, with liquid. William B. Snow, 11 Devon זd.
Newton Centre, Mass.
WILL EXCHANGE A PAIR OF HOLTZER-CA bot 2000 -ohm phones, 1 Murdock rot. var. condenser.
or Chambers 3 Sin. coil and 1 Murdock rot. var. con.
denser for denser for a Bintzen rotary tuner or large size Mur dock loose coupler; all my instruments are in first.
class condition.
H. L. Blee, 326 E. Main $S t$, Fort Wayne, Ind.
EXCELLENT LOOSE-COUPLER, FINISHED IN dull dark oak; No. 20 on primary and 30 on second ary; will trade for either a Blitzen variable or a pair
of Brandes 2000 -ohm phones in oood condition. Paul
E. Diederich, 915 E. Grand Blvd., Detroit, Mich.
WHAT DO YOU WANT IN EXCHANGE FOR marble switchboard, about 2 feet wide by 4 or 5 feet
long? H. N. Swain, 405 Franklin St., Hamilton,

ONE DOZEN PIECES SELENIUM, EACH enough for ${ }^{2}$ cells; quantity selected long distanc
silicon points, for like value also experimental $1 / 4 /$ h. $/ \mathrm{D}$
motor, copies of Modern Electrics and many motor, copies of Modern Electrics and many othe
items to clean up; mention what you have and en close stamp for ren, Pention what wou have and en- Edel
dale Ave., S., Minneapolis, Minn. Edman, 2438 Lyndale Ave., S., Minneapolis. Minn.
WILL EXCHANGE THE FOLLOWING FOR Worts-McKisson \quad y/2-kw. set: 2 telephones, $\$ 22$: 1 -in coil spark gap, helix, double and single slide tuners
loading coil, potentiometer, 3 detectors, variable and
fixed condensers 1000 and 500 ohm receivers, traction fixed condensers, 1000 and 500 ohm receivers, traction
car, medical coil, secondary $3 / 4-\mathrm{in}$. coil, Conley 4×5 camera and outfit, post card projector, and nameles other things. Carl Kudell, Slane and Elsmere Aves.

WHAT WILL YOU EXCHANGE FOR 6x9 EXelsior printing press, 16 type case, type, cards, paper,
 COMBINATION BILLIARD AND POOL TABLE, liard bails and 15 pool bills, 6 cues; 1 -kw. closed core transformer: want induction motor, typewriter gas enine, saxophone or metal turning lathe. W. M.

FOR EXCHANGE-A 3-BAR DOUBLE TIIROW witch, with slate base; has 14 posts; also have 2 etector or other wireless instruments. Write me, Ralph Marbury, 9 Greenville St., Newnan, Ga.
IIAVE FINE FOOT-POWER SCROLL SAW, tuncr and expo watch camera, for wireless gooss;
would like storage cells. S. Anderson, Jr., 150 Manhattan Ave., New lork City.
HAVE 46 COPIES OF MAGAZINES, COSTING $\$ 5$, to exchange for 1 -in. spark coil, in good condition.
Russell Wade, P. O. Box No. S. La Grange, Ky.
WILL EXCHANGE A $1 / 2-$ IN. SPARK GAP FOR a pair of 1000 -olim phones or 1000 ohm phone and ${ }_{\text {Brooklyn, N. Y. }}^{\text {mineral }}$.
TO EXCHANGE-FINE RELAY, WITH 5 POL ished brass binding posts RELAY, WITH 5 POL
Carlson trans and stromberg. Carlson transmitter; 1 would like a rotary variable mitter worth, $\$ 1$.
Savannah. Ga.
WILL EXCHANGE DETECTOR, RHEOSTATregulator, double sidie tuning coil, Junior fixed con-
denser, large fixed condenser, $\overline{75}$-ohm receiver.
 double headband, and 20 -ohm sounder and key; need
omnigraph, No. 2 Eastman camera, pocket volt-ammeter, relay, telephone transmitter, etc. Send descrip-
tion of articles to William J. Baker, R. R. No. 1,

WILL EXCHANGE FOR EQUAL VALUE 1 K
WILL EXCHANGE FOR EQUAL VALUE 1 K
\& D. motor No. 5 and 1 . 20 .ohm telegraph instrument
with crowfoot battery, cost $\$ 4$: both in good condiwith crowfoot battery, cost \$4; hoth in good condi-
tion and practically new; would like a set of Brandes tion and practically new; wound like a set of Brandes
Transatlantic phones or orther wireless instruments.
R Earl Dawes, Bozeman, Mont.

ONE SMALL MOVING PICTURE MACHINE, with 1100 -foot piece of film; also 6 slides and 3 con-
tinuous band films; 1 Stevens Crack Shot rifle; also 1 Knapp dynamo motor; Type S; prefer carbide moving ficture machine: must be in good sh
Henderson, P. O. Box 102, Jackson, Ga.
A LARGE 4-6 VOLT, 1.16 H.P. BATTERY MOtor, it is shunt wound, has 12 section commutator
and 2 field wound in good insolation; in Al condition: will exclange for a rotary variable condenser or a Mrion detector. Edw. G. Wagner, 458 Layton Blvd., Milwaukee, Wis.
WILL EXCHANGE WITH EACH IOWA AMA. teur a typewritten copy of Iowa amateur calls and
capacities, for your call and capacity. Enclose camped, envelope for return, Vere M. Moen, 216
stamper St. Boone, Iowa.
Cedar St Cedar St., Boone, Iowa.
VOLT-AMMETER, 75.OHIM PHONE, GEISSLER tube, cut-out, spring binding posts, $21 / 2$-in. beli, ${ }^{2}{ }^{2}$
phone induction coils, $110-\mathrm{v}$, D. C. fan motor, $1-6 \mathrm{~h} . \mathrm{p}$. motor castings, machined; want motor cycle engine or
 WILL EXCHANGE AN EDISON 300 AMPEREhour battery and 3 4-in. gong electric bells for Knapp Type S or Type D dynamo; battery and hells are
same as new. Dee A. Yount, 156 W . Main S., same as new.
Westminster,
Md.
WILL EXCHANGE 1 REFLEX-SCOPE, VALUED at $\$ 3$; contains 2 powerful electric lamps and 1 elec-
tric ruby lantern for photographic work, valued at $\$ 2$: for 1 Type J valtamp. Marvel dynamo motor; must be
in good condition; will exchange 1 bicycle lamp and pair mud guards, valued at $\$ 3$, for 1 battery medical coil giving 3 different currents. Jordan, 152 S N .

THESE BOOKS Almost Free
 Operator's Wireless Telegraph and Telephone Hand Bock, by Victor H. Laughter. 12mo., 210 pages, fuily illustrated, showing the installation of wireless on U. S. War ships and ocean liners. This book will prove to be a most valuable helper to the advanced student, operator and others whose work brings them more or less in touch
 with wireless telegraphy or telephone work. Special sec-

 pursued in the study of wireless telegraphy, including pursued in the study of wireless
naval rules covering wireless stations. Sent postpaid on receipt of price, $\$$ r.oo.
Electrician's Operating and Testing Manual, by H. C. Horstmann and Victor H. Tousley. Illustrated, 16 mo., full leather. Plain, practical and is good for working eleculicias who have to install or care for electrical equipments in general. Almost every phase in the electrical subject is covered by this book. The authors have endeavered to treat the principles underlying the construction of the various devices very fully as well as to point out the practical manner in which tests are made. Sent postpaid on receipt of price,
$\$$ I.50.
Modern Electrical Construction, by H. C. Horstmann and Victor H. Tousley. New revised and enlarged edition, 16 mo, 358 pages, 173 diagrams; pocket size, full leather limp.
This book treats almost entirely on practical electrical work. It uses the rules and requirements of the National Board of Fire Underwriters as a text and explains by numerous cuts and detailed explanation just how the best class of electrical work is installed. It begins with a short general discussion of the nature of the electric current and covers every subject in the electrical field. Each and all are discussed in turn and illustrated.
Sent postpaid on receipt of price, \$1.50.

Any of the above books sent absolutely free with a one year's subscription to Modern Electrics, "The Electrical Magazine for Everybody." The brightest and most interesting electrical magazine published, The magazine that covers the wireless field from A to Z
Send $\$_{1.50}$ to-day in cash, stamps or M. O. and get this wonderf
one year and your choice of the above books, ABSOLUTELY FREE

MODERN PUBLISHING CO.,

 231 FULTON STREET, NEW YORK CITY

SSeeing Foreign America
including all expenses for travel, berth and board, is offered by the

RED CROSS LINE

visiting Halifax, Nova Scotia and St. John's, Newfoundland. The most delightful, unique, healthful vacation cruise from New York.

Excellent Fishing and Shooting

New tourist steamships - "Stephano" and Florizel"-fitted with every device for comfort and safety-wireless, bilge keels, submarine bells, etc. 7 days at sea; 5 uays in port; the ship is your hotel. No transfers. Splendid cuisine Orchestra Sea sports. This cruise will be one of the most novel and wonderful experiences of your life.

Reduced rates for superior accommodations during May and June.

Send for Illustrated Booklet if5
BOWRING \& COMPANY, Battery Place, N. Y. or your Tourist Agent.

Ask for Our 212 Page Catalogue C26

" Gee! I'm Glad I Have On B. V. D."

THAT's what the cool, comfortable, coated man is thinking, while the cross, comfortless, coatless ones are eying him enviously. Don't you be caught without B. V. D. when warm days "put you on the griddle." B. V. D. weather is here-B. V. D. is sold everywhere.

To get genuine B. V. D. get a good look at the label. On every B. V. D. undergarment is sewed

This Red Woven Label

(Trade Mark Reg. U. S. Pat. Off. and Foreign Countries.)
B. V. D. Coat Cut Undershirts and Knee Length Drawers, $50 \mathrm{c} ., 75 \mathrm{c}$., $\$ 1.00$ and $\$ 1.50$ the garment.
B. V. D. Union Suits (Pat. U. S. A. 4-30-07.) $\$ 1.00, \$ 1.50$, $\$ 2.00, \$ 3.00$ and $\$ 5.00$ the suit.
The B.V. D. Company, New York.
London Selling Agency: 66, Aldermanbury, E. C.

When writing, please mention "Modern Electrics."

[^0]: When writing, please mention "Modern Electrics"

