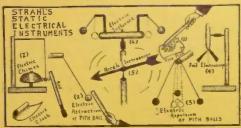

Special Wireless Number

PRICE 10 CENTS

NOVEMBER, 1908

Published by MODERN ELECTRICS PUBLICATION, 84 West Broadway, New York, N. Y.

Copyright 1908, by Modern Electrics Publication.


VIRELESS

15 CENTS

Increase sending, receiving distance by using Strahl Special Insulator.

Scientific Instruments \$1.00

INSTRUCTIVE-INTERESTING. Twenty Experiments.

Pith for Pith Balls 10c Box.

WM. STRAHL

Stewart Bldg. Broadway, cor. Chambers St. NEW YORK CITY

When writing please mention "Modern Electrics."

ELECTRICITY Girdles the Globe

It is the giant force of the Century. Electricity offers larger rewards to PRACTICALLY trained followers than any of the other professions.

Learn it and you have mastered the most fascinating and BEST PAID calling of to-day

Our school, the most thoroughly equipped in the United States, teaches PRACTICAL ELECTRIC-ITY in all its branches, and nothing else. Individual instruction, day or evening

by skilled teachers.
Write for 64 p. illustrated book. It's free.

The New York Electrical Trade School 391/2 West 17th Street, New York No connection with any other School or Institute.

When writing please mention "Modern Electrics."

NEW ENGLAND GETS FIRST SERVICE

RESIDENTS of Portland, Me., Old Orchard, Me., Saco, Me., Biddeford, Me., Dover, N. H., Portsmouth, N. H., Exeter, N. H., Hay. erhill, Mass., Lawrence, Mass., Lowell, Mass., Boston, Mass., and adjacent points, are now communicating by wire at rates so low and service so accurate and prompt that they are wondering at their former patience with exorbitant rates and their former patience with exorbitant rates and inadequate service.

New lines will be opened as rapidly as physical and financial conditions permit until every city in the United States will be sending—

25-word TELEGRAMS, any distance, for 25c, 50-word TELEPOSTS, any distance, for 25c, 100-word TELETAPES, any distance, for 25c, 10-word TELECARDS, any distance, for 10c.

An interesting illustrated booklet has been prepared, describing in detail the invention, its operation, its economy, its rapidity and its acacy. Mailed without cost to anyone asking for Booklet No. 359.

TELEPOST COMPANY 225 Fifth Ave., New York

When writing please mention "Modern Electrics."

Send for our large Catalogue "M" containing 94 pages, with useful information. Just out

When writing please mention "Modern Electrics.

"Modern Electrics" guarantees the reliability of its advertisers.

ACCURATE COMPACT INEXPENSIVE

Voltmeters, Ammeters and Volt-Ammeters Send for Complete Catalogue of PORTABLE and SWITCHBOARD PATTERNS

L. M. PIGNOLET

82 CORTLANDT ST., **NEW YORK**

When writing please mention "Modern Electrics."

Wireless Telegraphy Taught Quickly by Correspondence.

Positions secured.

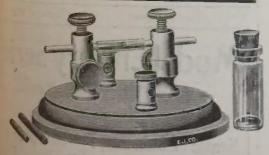
BOSTON SCHOOL OF TELEGRAPHY

18A Boylston St., Boston, Mass.

The largest and best Telegraph School in New England. We make a specialty of qualifying ambitious young men and women for Railroad, Commercial, Brokerage and Wireless Telegraph service. Send 10c postage cash or stamps for free wireless telegraphic book. With this we furnish FREE OF CHARGE two handsome Telegraph codes, mounted on fine cardboard, one showing the Wireless Telegr. code, the other Morse code. Size 6 x 6 inches.

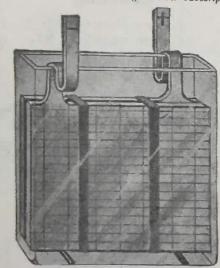
When writing please mention "Modern Electrics."

OUR NEW FREE PREMIUMS


Modern Electrics wishes to become the greatest American Electrical Magazine. There is no doubt that from the hundreds of new subscriptions received weekly. In order to further stimulate our readers to bring us new subscribers, we list below a few Free Premiums which we will send to any subscriber sending us new subscriptions.

GEISSLER TUBE

OEISSLER TUBE with fluorescent liquid, six inches long, works on any spark coil, even the smallest. The most fascinating apparatus in existence; marvelous color effect. Sells at 50 cents; by main 10 cents extra.


Given Free for One Subscription

THE AUTO COHERER

Best cheap Detector made; will receive messages from several hundred miles away. Extra carbon, iron arms and bottle of mercury given free, making therefore five different Detectors in one. Most sensitive combination is iron plug and carbon plug with drop of mercury between Sells for 90 cents; by mail 15 cents extra.

Given Free for Two Subscriptions

20 A. H. STORAGE BATTERY

STORAGE BATTERY as cut, type R. E., twenty ampere hours. Size 6 x 6 x 1 inches. Without a question the best storage battery made. Comprises one positive, one negative plate with lugs and binding posts (not shown in cut), one heavy vulcanite jar, one hard rubber perforated separator, two rubber bands, and bottle pure acid. Plates are formed already. Sells at \$1.90. Can only be sent by express. Weight 4 lbs.

Given Free for Three Subscriptions

Modern Electrics Publication

84 WEST BROADWAY NEW YORK CITY

When writing please mention "Modern Electrics."

PREE. Two Books: 84.Page 'Inventor's Guide " 76-Page roof of Fortunes in Patents -what and flow to Invent.'' AND

de-Maras, Copyrights. db., Labels, Registered. ADVICE PREE.

YOUR IDEA! That Pay

SPECIAL OFFER: Send sketches or model and description of invention for FREE SEARCH of Patent Office Records and Report as to patentability. You will save TIME and MONEY.

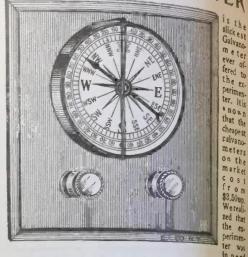
Registered Parent Attorney
Patent Lawyer (Patent Litigation)
1109 F STREET, WASHINGTON, D. C.

REFERENCES:

American National Bank,
Washington, D. C.
Little Giant Hay Press Co.,
Dallas, Texas.
Gray Lithograph Co.,
New York City, N Y.
Farmers M'fg Co.,
Norfolk, Va.
New Era M'fe Co,,
Farmers M'fe Co,
The Park Stationery Co. The Parry Stationery Co., Oklahoma City Okla. Bell Show Print Co., Sigourney, Ia

When writing please mention "Modern Electrics."

"Modern Electrics" guarantees the reliability of its advertisers.


When writing please mention "Modern Electrics."

Why light your Christmas Tree with ill smelling candles and endanger your home with fire? Our BLECTRIC LATIP FESTOONS connect directly with a 110V lamp socket and produce a beautiful effect, which must be seen to be appreciated. Festoons last for years - SAFE, DURABLE, CHEAP.

1 FESTOON CHEAP
8 sockets, 9 lamps, colored and clear
Same with Fruit Lamps
Flower Lamps. 4.75
16 sockets 18 land 2 FESTOONS 5.25
sockets, 18 lamps, colored and clear
2 FESTOONS Same with Fruit Lamps. Flower Lamps. 2 FESTOONS 6.38 5.25 6.38 7.38
Flower Lamps 7.38
32 sockets, 38 lames 4 FESTOONS 7.88
Samps, colored and clear
32 sockets, 36 lamps, colored and clear Same with Fruit Lamps, Plower Lamps 12.25
A. WOLER & CO
47 Vacan Ct
A. WOLFF & CO., - 47 Vescy Street, N. Y. City
When writing please mention "Modern Electrics."
Blodern Electrics."

THE TELIMCO-METER

in need of a GOOD and ACCURATE but low priced instrument and after several months of experimentation we are non in a position to offer the new "Telimco-meter" for

50 CENTS, PREPAID

We absolutely guarantee that the instrument will register currents as low as 1-300 volt and that fine measurement can be performed with it, just as good and better it with instruments costing \$5.00 and more.

with instruments costing \$5.00 and more.

Send two cents postage for 8 page booklet of experiments to be performed with the "Telimon-meter" such as Pole finder, Rotating needle, Thermo currents Sensiliver lay, Minute battery, etc. Size of Meter, 3\frac{1}{2}\text{3}\frac{1}{2}\text{ inches, or polished oak base. All metal parts finely nickel plats, weight 3 ounces, packed in handsome box.

If you have'nt got our 100 page cyclopedia catalog No. 4, containing over 100 experiments and valuable information, send 2c stamp for postage

Everything for the Everything for the Experimenter

86-Z W. Broadway, N. Y Cry

When writing please mention "Modern Electrix

Model Library Series The Three Latest.

Simple Ex-Static Electricity. periments in. By P. G. Bull 73 pages, 51 illustrations 25cts.

The Wimshurst Machine. How to Make and use it. By A. W. Marshall. 112 pages, 30 illustrations.

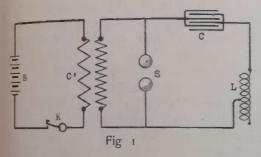
How to Protect, Sell and Buy Them. A practical Inventions. instruction book for the In By F. B. Wright ventor. 114 pages. 25cts.

Our New List Nearly 60 Books Sent Free.

SPON & CHAMBERLAIN, When writing please mention "Modern 123 G Liberty St.,

MODERN ELECTRICS

Vol. I.


NOVEMBER, 1908.

No. 8.

The Production of Sustained High Frequency Oscillations

By M. A. DEVINY.

From the many excellent articles appearing from time to time in Modern Electrics on the subject of aerophony, its readers have, no doubt, become more or less familiar with the greatest of all practical applications of "sustained"

or "undamped" waves, and owing to their rapidly increasing importance in the fields of wireless telegraphy and aerophony, a brief description of some of their more important characteristics and the methods employed in their production may be of interest.

For the benefit of those who are not familiar with the differences existing between "undamped" oscillations and those of the "damped" variety, it might be well to briefly describe the conditions necessary for the production of both kinds. The different forms of apparatus for the production of electrical oscillations or high frequency currents as follows:

Those by which the oscillations are produced by suddenly discharging a cuit possessing capacity and inductance,

tions directly without employing a distiptive discharge. To the first of these dasses belong the ordinary methods such as are at present employed in nearly all of our wireless telegraph stations, while the second form includes the various arc devices and high frequency alternators of every description.

In order to set up high frequency currents or electrical oscillations of any kind by the disruptive discharge of a highly electrified source, such as a condenser or a static machine, it is essential that the discharging circuit possess the factors of capacity and inductance and that the ohmic resistance be less than a certain maximum value. The exact functions performed by each of these elements require very complicated mathematical consideration for their thorough comprehension, but their general characteristics may be described as fol-

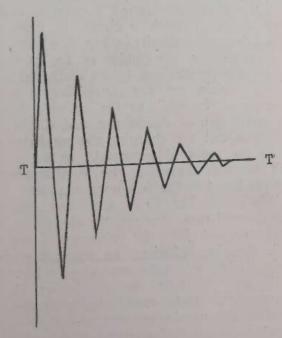


Fig. 2

lows. The capacity, or condenser effect, imparts to the circuit the ability to store up the electrostatic charges imparted to it by the induction coil, static ma-

chine or other source of electrification, while the inductance gives it the property of "electromagnetic inertia" or the quality of resisting all sudden changes in the value of the current flowing through it. This latter property is an-

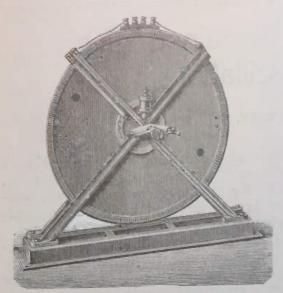


Fig. 3

alogous to the mechanical inertia possessed by all material substances.

In the ordinary tuned wireless systems the oscillations in the aerial are produced by the discharge of a condenser in a circuit connected to the aerial or inductively coupled to it by means of an oscillation transformer. In any event the discharge circuit is always found to possess the above mentioned properties in some degree. Such a circuit is illustrated diagrammatically in Fig. 1, wherein C represents the condenser for producing the oscillations by its discharge; L, the inductance for supplying the necessary "inertia" to the circuit; S, the spark gap or discharger, and C, the induction coil for charging the condenser to the required potential. In a circuit of this character, the oscillations are produced in the following manner:

When the key K is depressed, the current will rush through the closed interrupter and into the primary of the coil, thereby inducing an exceedingly high E. M. F. in the secondary which is impressed upon the condenser C, charging the latter until its potential reaches the maximum that the coil is At this point capable of producing. the interrupter suddenly breaks the primary circuit, thus inducing a powerful reverse E. M. F. in the secondary which suddenly falls to zero, leaving the condenser to discharge through the gap S.

The flash which occurs, although as a single spark, is in rank The mash white pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing as a single spark, is in realing the pearing the pearing as a single spark, is in realing the pearing the pearin a number of exceedingly rapid spark in succession caused by the rapid spark in succession in succession of the current to and from in the oscillating circuit by reason of the pres ence of the inductance L. The first of these flashes which occur tries to establishment lish an electrical equilibrium between the two sides of the circuit, but on account of its inertia it overreaches its mark and charges the other side up to a potential which is nearly equal to its initial value. This causes it to discharge backward again and to raise the potential of the first side to an almost equal value, and the process is repeated in this manner until the oscillations die awar and equilibrium is restored; after which the interrupter again closes the circuit and the process is repeated.

We may compare this with a V tube filled with liquid. If we raise the !quid in one side, the column in the other will fall. If left to itself, the liquid oscillate back and forward, till equilibrium is again established.

A train of oscillations is produced with each discharge of the condenser but after each surge of the current its value becomes less and less, due to the smaller E. M. F. producing it as equil-

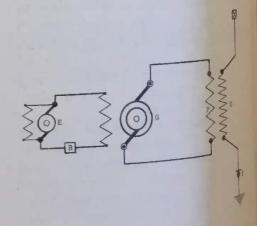
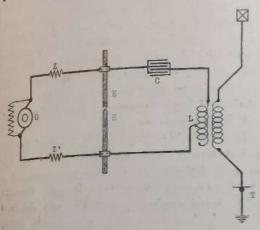
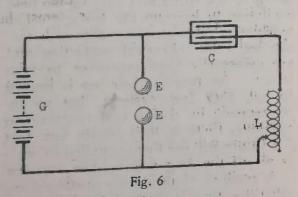


Fig. 4

brium is approached, thus causing the current wave to resemble that shown Fig. 2. From this it can readily be seen that that the oscillating current decrease very rapidly as the discharge progression and is finally reduced to zero. This it ducing effect or "damping" action it duces the effectiveness of the waves po duced and renders them useless

It will also be noted that the oscillations are and tions are only produced when the denser is disal denser is discharging; the Oscillatory tem being idle during the charge, which naturally causes the produced oswhich naturally causes the produced oswhich naturally causes the produced oswhich naturally causes the produced oswance. In sending a message, for character. "dot" may represent two or example, a "dot" may represent two or example, a separate damped wave three hundred separate damped wave three hundred separated by an interval of trains, each separated by an interval of time which is relatively very long in comparison to the total time the oscillations are actually taking place.




Fig. 5

As a practical illustration of this, suppose the oscillations in the circuit to be taking place at the rate of 500,000 per second and that each discharge of the condenser consists of 50 separate surges of the current. If the speed of the interrupter be, say, 100 per second, there will be 100 distinct discharges during that interval. This will make the time during which the oscillations are actually taking place only one per cent. of the total time of the operation, since 50 times 1/500,000 of a second is only 1/10,000 of a second.

From what has been said it is evident that the oscillations produced by discharging a condenser through a circuit Possessing inductance are of a very intermittent nature, thus rendering them very inefficient for the transmission of anything but signals. Accordingly, the thoughts of investigators have been turned toward the production of some method whereby the oscillations might be sustained and made continuous throughout the entire time the circuit was closed, and thus render it possible for the aerial to emit waves continudepressed one as the sending key was depressed. These investigations have to the production of two very impresent systems, both of which are at present employed in the transmission of erophone messages.

Perhaps the simplest of these, from an electrical point of view, is by the use of a high frequency alternator or a machine capable of generating alternating current of a frequency of 1,000 or more cycles per second. forms of high frequency alternators were designed by some of the earlier experimenters which were capable of delivering about 10 amperes at a pressure of 100 volts or so, but it has only been recently that machines have been so perfected as to render them suitable for aerophonic work. In fact, the difficulties, both of a mechanical and an electrical nature, that must be overcome, are so great that there have been but very few of such machines ever constructed. A prime requisite of machines of this character is the enormous speed at which they must be driven, in order to produce the required frequency. Tesla designed one which employed 384 field poles which were mounted on the periphery of a massive wheel which revolved inside of a stationary armature structure also consisting of 384 poles (Fig. 3). When driven at a speed of 3,000 r. p. m., or 50 revolutions per second, it produced a frequency of 10,000 But even this frequency is entirely too low for practical work in wireless telegraphy and aerophony, and until a few years ago it was impossible to produce machines suitable for this pur-

Most of the recent high frequency alternators are of the "inductor" type, being provided with both a stationary

armature and a stationary field, but employing a rotating mass of iron with teeth-like projections which rapidly change the magnetic relations existing between the armature and the field. This method obviates the necessity for all sliding contacts and renders it possible to give much greater mechanical strength to the moving member. Still

other forms employ both a revolving armature and a revolving field which are rotated in opposite directions by means of suitable gearing. This method increases the relative speed between the two members without requiring as great

a rotative speed of the shafts.

Among the most notable machines in use at the present time is that used by Prof. Fessenden at his aerophone station at Brant Rock, Mass., which is capable of producing a frequency of 150,-000 cycles or more when driven at a speed of nearly 150 revolutions per second. In fact, it is claimed that by the use of modern methods of construction and good design, it is possible to produce machines capable of generating alternating current with frequencies as high as 300,000 cycles. On account of the high speeds at which they must be driven, the machines are necessarily of small size and of low output, and a peculiar condition observed in their use is that as the speed is increased to raise the frequency, the output is greatly reduced, thus diminishing the efficiency.

In aerophone stations employing such machines, they are invariably connected to the aerial through an oscillation transformer, one method of which is shown in Fig. 4. These stations, although being limited to the use of comparatively long waves, are capable of much closer regulation and tuning than those employing other methods for producing the oscillations, as the frequency can be made anything desired by simply changing the speed and varying the field excitation to keep up the voltage. machines, however, must approach mechanical and electrical perfection and are necessarily very expensive to con-At present their use is limited to but very few systems, but as improvements in design and construction continue, there is little doubt but that the future will see them installed in nearly all of the larger aerophone stations.

A method of producing sustained oscillations that is very extensively used in many of the most successful aerophone systems, notably the Poulsen, De-Forest and the Collins system, is by means of the "Duddell arc" or modifications thereof. The general principle of this apparatus was first evolved by Prof. Elihu Thompson, who in 1893 obtained a patent for the production of high frequency currents by "shunting a capacity

and inductance around a direct current arc." His apparatus, a diagram of which is shown in Fig. 5, consisted of a direct current generator G, which sup. plied current at 550 volts to the metallic electrodes E and E between which an arc was drawn. This arc was shunted by the condenser C, which was connected series with the inductance coil L When the capacity and inductance had been adjusted to the proper values, an alternating current of very high frequency was found to be produced in the shunt circuit of the apparatus. This arrangement, however, was of very little practical use at that time as the possibilities of high frequency oscillations had not then been realized.

In 1900, Mr.W. Duddell found that if a condenser and an inductance of the proper values were shunted around a D. C. arc of a certain length, formed with solid carbons, that the arc emitted He also made many a musical note. researches on the subject of these musical arcs and so improved the apparatus that it was capable of producing frequencies far in excess of any then obtainable. It was also observed by him that in order to produce the effect, the following conditions had to be observed: 1. That the D. C. supply should be absolutely steady, such as that furnished by a storage battery. 2. That solid carbons were necessary, no oscillations being produced when the cored variety were used. 3. That the ohmic resistance of the inductance coil should be very low; and, 4. That the condenser should be capable of withstanding very high voltages. The Duddell method is illustrated in Fig. 6.

Subsequent investigations by Poulsell, in DeForest, and others have brought to light many new features in the apparate tus that when applied, greatly increase the efficiency and the obtainable fre quency. The chief among these are the use of carbon and metal electrodes in combination and the enclosure of arc in are in an atmosphere of hydrogen of other grant other gases. By the aid of these refinements it is ments it is possible to produce frequencies as high cies as high as 2,000,000 to 3,000,000 cr

The exact action of these arc devices, wever however, is not very clearly understood.

Many theories Many theories have been advanced from time to time time to time as to the exact cause of the production of the oscillations, each with its army of all its army of adherents, but none of these

250,000 Volt Discharge

We are all accustomed to spark discharges of our regular spark coils, but there are few people who ever witnessed the discharge of a 250,000 volt transformer, giving flames two to four inches in diameter and three feet long.

This was actually demonstrated each night at the "National Electrical Show," which recently took place in New York. It goes without saying that the tests drew enormous crowds, who were soon fascinated by the weird antics of the fames and sparks, which played around the large insulators.

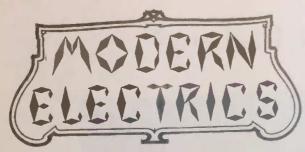
Six 14-inch diameter petticoat insulators of the underhung type, were suspended, one below the other.

Two wires leading from the high potential transformer led to the insulators.

One wire to the upper, the other to the lower insulator.

To test the insulators the current was turned on by an operator. It was very water rheostat, till the highest potential was reached. No discharge was to Than the insulators being dry.

Then the insulators being dry.


seen at the left in our engraving, was streams on the insulators and thus imitated a heavy rainstorm.

At the moment the water spray touched the insulators, flames and sparks commenced to play on the insulators in a truly remarkable manner. Violet-blue flames of incredible size shot actually out in the free air and disappeared, the same as if they had left a burning log. These flames did not shoot out with great rapidity, but were rather slow in action. Neither did they form in straight lines, but they wound and twisted themselves in snake fashion, doubled back and formed the strangest shapes

At the same time heavy blue sparks—the same as those of a spark coil—hit around the edges and over the surface of the insulators with a deafening roar and rattle that could be heard through the entire length of the big hall.

Finally one of the thin wires leading to the insulators fused and fell to the floor. A long flame immediately shot over the floor, but before the flame could reach the nearest onlookers, who were turning to run, the operator had switched off the current and the test was over.

Made important discovery. By greasing up my antenna, I find that the waves slip off much easier during sending, and when receiving they tumble down in the detector to make a greased lightning feel like fly paper. Better try it—"FIPS."

A Magazine devoted entirely to the Electrical Arts.

PUBLISHED MONTHLY BY

Modern Electrics Publication NEW YORK CITY, N. Y.

H. GERNSBACK, EDITOR.

Subscription Price: For U.S. and Mexico \$1.00 per year, payable in advance.

New York City and Canada, \$1.25.

Foreign Countries, \$1.50 in Gold Stamps in payment for subscriptions not act cepted.

Checks on out of town Banks cannot be accepted unless the usual exchange is added.

SINGLE COPY, 10 CENTS.

Forms close the 20th of the month preced ing date of publication. Advertising rates on application.

The Editor is always pleased to receive original contributions of timely interest pertaining to the electrical and the affiliated arts. Articles with good drawings and clear photographs especially desired. If accepted, articles will be paid for on publication, at regular rates. No manuscripts will be returned unless return postage is enclosed. Address all communications to:

MODERN ELECTRICS PUBLICATION 84 West Broadway, New York, N. Y.

> Furopean Office: 23 Rue Henri Maus, BRUSSELS

Copyright, 1908, by MODERN ELECTRICS PUBLICATION.

Entered as Second Class matter March 31, 1908, at the New York Post Office, under the Act of Congress of March 3, 1879

Vol. I. NOVEMBER 1908.

No. 8

The Editor is in receipt of several communications from government and commercial wireless stations, all whom file complaints against wireless amateurs, who annoy the large stations throughout the country.

By publishing the call letters and names of the wireless stations in the U. S., we simply wished to keep our

readers informed, so that when any of them "caught" a message they would be in a position to know from whence

MODERN ELECTRICS being the leading wireless telegraph magazine, naturally was appealed to by the large stations. It seems that a number of experiment ers are in the habit of calling up government and commercial stations, thus interfering with regular work and annoying them a great deal. Usually the large stations do not know the location of the sender and they are thus quite powerless to stop the mischief.

This state of affairs can naturally not go on, and we most earnestly request all those who are in the habit of calling up the large stations to refrain in future

from doing so.

We say this in behalf of all those interested in the wireless art, as several large companies are now endeavoring to have a law passed licensing all wireless stations in the U.S. This, of course, would be the end of the amateur and experimental wireless stations, as under the new law heavy licenses would be imposed.

In view that the art as yet is in its infancy, such a law would be deplorable, from the standpoint of the experimenter and amateur, and the Editor earnestly hopes that the mischief will

come to a speedy end.

Nobody cares how many messages the amateur catches, as long as he keeps in the dark and does not "talk back"

While we talk of wireless mischief making, we must mention the wireless This pest located in Chicago or anywhere "joker" (?). will send a plausible message, calling up an ocean liner, stating that the man chinery of his ship is damaged, or some other plausible yarn. He signs off, give ing the name of a large ocean boat, and does of course of a large ocean boat. does of course not forget to state posttion of his ship which—in the message —is about 2,000 miles from land.

Of course the result is that some stations in the result is "jokers"

stations in the vicinity of the "jokers one, catch the one, catch the message and next day were owners go braces: owners go bragging about that they were able by means of a "new connection" the ar such and such boat miles away far out in the ocean. miles away, far out in the ocean.

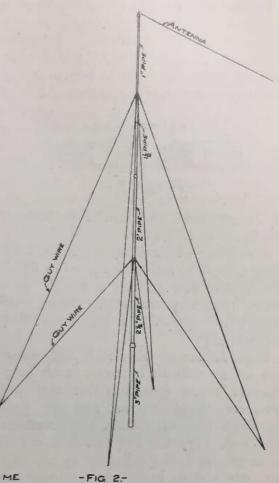
Naturally this nonsense only mislead others, as it cannot wrong impressions in the minds of street.

wrong impressions in the minds of specific control of specific con

dents who usually do not receive messages from more than 100 miles away and who perhaps are trying hard to and who perhaps are trying hard to improve or invent new instruments, etc. improve earnestly hope that those in the We earnestly hope that those in the habit of sending these "fake" messages habit of sending these "fake" messages will see the harm they are doing and that they will turn their efforts to more fruitful directions.

IRON PIPE AERIAL. By CARL CHUPP.

Realizing that Modern Electrics readers will welcome a few hints how to erect quite tall antennæ, the writer in the following lines will describe a cheap but very efficient method, used by himself.


Purchase four or five joints of 20 ft. iron pipe (threads at both ends) from one inch to three inches (1 inch, 1 1/2 inch, 2 inches, 2 1/2 inches, 3 inches), also reducers to fit the different sizes. This is practically all that is needed in the construction of the aerial except the guy wires and wooden post. Erect your wooden post

ANTENNA Sold Sala 182 Sala 182

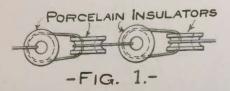
(about 25 or 26 feet) where you wish raise your aerial, then fasten a small lead in place. Connect the two small-

ler joints together and slip through collar on post.

Rent from some supply house a good block and tackle and fasten one end on top of post and let other be fastened to

the lower end of pipe. If the pole is to be raised 60 or 70 feet it will need one set of guy wires (fig. No. 1), but if it is to be raised 80 or 100 feet, it will of course need two sets, one near the top, the other approximatly half way down (fig. No. 2).

Raising. After having connected the first two joints together slip through collar on post and fasten block as was stated. Next, get a few helpers and let them hold the guy wires. Pull on the block and raise the pipe high enough so as to fasten the next size into it. Loosen the block and fasten at lower end of joint and proceed as before.


To fasten the antenna it is only necessary to attach a large insulator on top of the pipe, but the antenna should be fastened before raising.

What's the fastest thing on earth? A New York office boy. He tells you the boss isn't in before you ask him.—"FIPS."

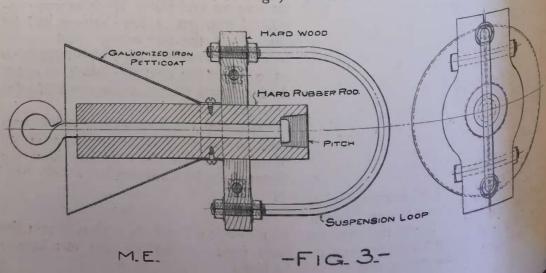
Suspension and Insulation of Aerials

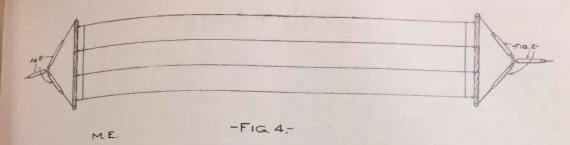
By A. C. Austin, Jr.

It is quite important that an aerial used for wireless telegraphy should be well insulated, and the insulators used must be capable of withstanding the strain impressed upon them by a heavy storm. The writer has used various methods of

aerial suspension and insulation, some of which are as follows:

A number of ordinary porcelain insulators placed in series as shown in figure No. 1 give fair results, although in a heavy rain they sometimes leak. Another point against their use is that they


are unsightly.

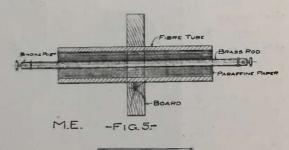

Hard rubber or fibre rods three-quarters of an inch in diameter, with longshanked screw eyes at either end will give very good results, and are used at a number of commercial stations. The rods vary from 6 inches to a foot in length, and if the power is too high for one rod to hold, two or more are This insulator is placed in series. shown in figure No. 2. The only objection to rubber rod is that it carbonizes after continued use, and must be renewed about every year. Perhaps the best insulator which can be constructed by the amateur is shown in figure No. This consists of a hard rubber rod with a small diameter hole bored through, and a cup at one end. A metal rod runs through this hole and the head of the rod sets in the cup. After placing this rod in position an eye is made on the other end and the cup is filled up with pitch. The whole tube is clamped be

M.E.

tween two pieces of oak about one inch thick to which the suspension loop is fastened. A galvanized iron petticoat may be added to further lessen the possibility of leakage. This insulator may be built of a size suited to the power used at the station. A complete aerial with hard rubber insulators and wooden space bars is shown in figure No. 4. The four wires forming the aerial are strung 18 inches apart and the connecting wires are twisted once around the main wires and soldered. The writer has used No. 14 B. & S. soft drawn copper wire but is now using stranded phosphor bronze antenna wire. This same wire is used on government aerials. Aluminum wire No. 14 gauge also makes a very good aerial, the greatest point being its light ness and cheapness. If the mast from which the aerial is suspended is guyed with steel guy wire this should be into sulated at intervals of 10 to 15 feet with

strain insulators. A good waterproof pulley should be placed at the top of the pole and a stout paraffined rope run through same and doubled similar to a

The aerial should be attached to this rope, this making it possible to raise


or lower same very conveniently. Insulation should be particularly well taken care of at the point of leading in to the operating room, as this is practically the hardest point to efficiently insulate. While the method mentioned in the October issue may be all right, still the writer's experience has been that the porcelain tubes will allow a certain percentage of the high frequency discharge to ground through the wood, consequently causing a loss in radiation. Personally the writer has used a fibre tube two inches in diameter with a glass tube onehalf inch in diameter in the center of same, and the space between the two tubes filled in with pitch. These tubes are about ten inches long and are placed in a board one inch thick in the same manner as described in the October is-

Pirelli cable is put through the glass tube, connecting the instruments and

A very good method of leading in is to take a brass rod one-fourth inch in diameter and about two feet long and place to wide, leaving 3 inches rod projecting on the wide, leaving 3 inches rod projecting on the mathematical paper about 18 in. The whole should then be loard, as previously mentioned. The pends upon the transmitting wrapping defined as proviously mentioned. The method is shown in figure No. 5.

A large number of amateurs have the deathat standard forms of lightning can be used for safe-deathat, but this is entirely erroneous.

low the potential impressed upon the antenna when sending, to leak into the ground in exactly the same manner as the lightning discharge. The writer's experience has been that there are only two safe ways of protecting wireless telegraph instruments and the house in which they are located in an electrical storm. The best is to lower the aerial. However, if the aerial is disconnected from the leading-in rod and connected to a wire (not smaller than 10 B. & S. gauge) running on insulators in a straight line to a good ground it saves the trouble of lowering the aerial and is to all intents and purposes, just as safe.

WIRELESS IN BALLOON.

Interesting experiments were recently made by Robert Goldschmidt, an aeronaut, at Forest, a suburb of Brussels. Mr. Goldschmidt in his large balloon, "Condor," had a number of wireless instruments on board and he actually obtained messages from Paris, a distance of 180 miles (airline).

The main object of the ascension was to get in touch with the aerophone station erected in the lofty tower of the Brussels "Palais de Justice."

The experiments were indeed very successful, and left nothing to be desired. This in view of the fact that obviously no ground connections could be used.

Ether, they say, is an incompressible something. I suppose that vacuum is a compressible nothing!—"FIPS."

Electric Cleaner

It seems that people are beginning to get alive to the fact that it is not particu larly good for their lungs to be fed day after day with germ-laden dust. It is therefore not surprising that the socalled "vacuum cleaners" are heavy in demand.

Until quite recently it was not possible for the housewife to actually get rid of the dust in her apartment. The or-

dinary brush will only scatter the dust into another part of the room. The dust, therefore, stays in the house. The important question was how to remove the dust out of the house.

Here the vacuum systems made their entrance. The method, however, was far from satisfactory. You had to write the company to send their wagon to your house, after which the operator w. o. u 1 d stretch a long unsightly

hose all through the apartment, while below on the street a puffing gasolene engine did its best to suck down the dust, which was collected in tanks and carried away as "fertilizer," by the wagon. While satisfactory in operation, the "dust-sucker wagons" could not be called every day or even every week, on account of the great expense. This may be the reason that wagon vacuum cleaners lost much of their popu-

larity.

Next we have the electrically operated house vacuum system.

A rectangular box has three compartments. At the bottom we find the electric motor which drives a small but very efficient rotary pump. In the center compartment a removable sheet metal box partly filled with water, is located which collects the dust and destroys it

at once.

The entire arrangement is quite light and is easily t ransported from room to room

All that is required is to connect the attachment plug with your electric ch andelier and lo! the machine starts to eat dust. A flexible hose and different aluminum cleaning tools are on hand. some wider and some narrower all depending if a carpet or your clothes are to be undusted, un germed. The rather entire opera-

tion of the machine is ridiculously simple ple and the wonder is why the machine has not the has not been in every up-to-date house

One great advantage of the machine dust is that it actually removes the less This makes it possible to do much less cleaning and a possible to do much dust cleaning and dusting as once all the dust is removed for the dust is removed f is removed from a house it will be quite a while to quite a while before a same amount has found its war. For "brushing" clothes the electric leaner is unsurpassed. Not alone does deaner is unsurpassed, but it freshens it remove all the dust, but it freshens it remove of the material by righting the texture of the material by righting up crushed and pressed down ing up crushed and pressed down

threads.
A word of warning to the uninitiated:
Do not let \$100 bills protrude from your
pockets while using the electric cleaner. It has a bad habit of swallowing
them in an alarming manner.

TWO NEW DETECTORS.

By Our Berlin Correspondent.

Detectors promise to be soon as worn out as trolley wheels. There is hardly a good electrician living to-day who has not to his credit at least one "new" detector, and although one would think that almost every possible and impossible substance and combination has been tried, we have surprises every day in form of new detectors. However, there is one point of advantage to most new detectors, compared with new trolley wheels. The latter get worse and worse the newer they are, while the former seem to improve every day, one more sensitive than its precedent.

Under the German patent No. 193,383, the "Gesellschaft fuer Drahtlose Telegraphie" shows a new gas, or rather metal-vapor detector, composed as follows:

a is the antennae, b aerial inductance, ca variable condenser, in series with the

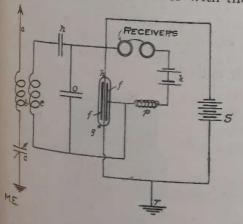
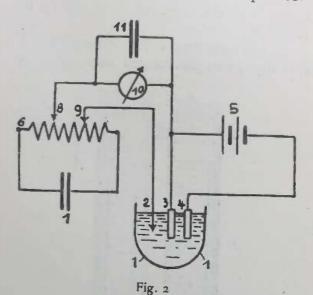


Fig. 1

Inductance e, condenser n, and parallel


The detects.

The detector itself comprises a glass the shode f is cylindrical in shape of the cathode h is a single

wire h, passing through the center of the anode f.

The cathode h is covered with oxide of an alkaloid metal and then heated to a dull read heat by means of the supplementary battery s. Negative ions are thus shot from the hot cathode to the cold anode, which allows the current to pass between the two.

Under the influence of electrical waves the conductivity of the thin vapor col-

umn between f and g is changed, and these disturbances are recorded in the receivers i. This detector is said to be very efficient in aerophonic work.

The above-named company recently obtained another patent on an electrolytic detector as shown in Fig 2.

3 and 4 are two electrodes connected with battery 5, while the active point 2, is connected with the jigger 6, through 9; 10 represents the telephone receiver, 11 is a condenser, shunted across the latter.

The underlying idea of this arrangement is to prevent a constant current from flowing through 10, which may be a galvanometer, if desired.

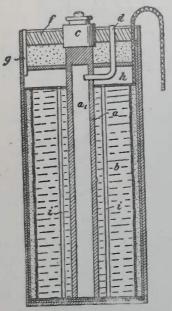
THE FUTURE OF ELECTRIC-

by Prof. Chas. P. Steinmetz, A.M., Ph.D., is the name of a handsome 24-page book issued by the New York Electrical Trade School.

This little book gives us an insight how things will look in 300 years.

The book will be sent free of charge to anybody by addressing the New York Electrical Trade School, and by mentioning Modern Electrics.

New Batteries


By OUR BERLIN CORRESPONDENT.

A German firm obtained lately a patent on a new dry battery, which, as official reports show, is fully 100 per cent. more efficient than any other dry cell ever constructed.

Tests of the Imperial Testing Laboratories with the new cell have shown the

following results:

A cell weighing 4 lbs., which was 16 cm. high, was discharged through a re-

sistance of only 10 ohms. At the beginning of test the voltage was 1.60. The test was started February 29, 1908. The cell was never disconnected from its resistance and consequently never had a chance to recuperate. Despite this when a reading was taken on July 6, 1908, the voltage was still 1.18. total capacity of the battery, consequently, was 163 ampere hours, which is a remarkable showing for a dry cell.

There are no new chemicals used in this dry cell. The usual zinc cup, peroxide of manganese and carbon in center are used. However, the inventor provides a great many air channels, i, i, in the depolarizer and also uses a hollow carbon cylinder (a), with the purpose to bring as much oxygen as possible in the depolarizing mass.

In this respect other dry cells lack, especially American ones, which are virtually choked to death, by letting the harmful gases act on the depolarizer because there are no channels to let the

gases escape, nor can oxygen from the air help to regenerate the cell,

In the German battery this can not possibly happen. The small tube in connection with the hollow (a) brings constantly new oxygen to the carbon, and keeps same free from hydrogen, which is the greatest enemy of a battery. The hollow compartment (h) serves the pur. pose to keep the salts from creeping out of the cell.

The other battery shown in the accompanying cuts is constructed on the principle of the well known Edison. Lalande cells.

However, instead of using copper oxide plates, the Delef Battery uses Cupron plates, which not alone are more efficient than copper oxyde ones, but they never wear out. We had occasion to test out several of these cells and found that no matter how often the battery was discharged we could re-use the plates, simply by heating them in a hot oven, or exposing them to the rays of the sun for several hours.

When exposed to heat or sunlight these plates have the peculiar proper ty to absorb great quantities of oxygen which reduces the copper to cupron.

The new battery furthermore does not need to be covered with paraffin oil of other oils, as it has a very clever screen top cover which practically shuts off it air entirely.

In the small cells there are two ron plates and one zinc plate on open circuit 0.9, closed circuit volts. volts. Capacity of smallest cell made

ampere hours. This cell furnishes 10 short circuited. For amperes when short circuited. For continuous current the cell gives 1.5-2 continuous Size, seven cm. long, 7 cm. amperes. Size, seven cm. long, 7 cm. wide, 12 cm. high. Weight, 1 1/2 lbs. wide, 12 cm. high. Weight, 1 and do

These cells are transportable and do not spill, no matter what their position. They are used for continuous work and replace storage batteries as they give continuous and powerful currents.

The only parts which wear out are the zinc plates and caustic potash.

We found that when using tantalum lamps, we could obtain steady light for hours and days at the remarkably low figure of about 1/3 cent per hour.

ARC LAMPS AS DETECTOR.

A curious fact has been observed recently in Brunswick (Germany). An operator of a moving picture machine, which was operated in connection with the usual arc lamp, one evening heard strange hissing sounds coming from the arc of the lamp.

The operator, who was a former telegraph operator, when listening attentivetound that the hissing sounds were ling words and entire telegrams.

He found out that these telegrams were sent from a wireless station about the kilometers distant.

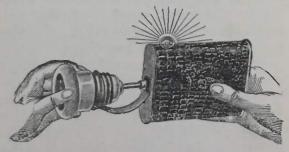
The surprising part of the discovery, is that one cannot suppress distant. The surprising part of the discovery, these hissing sounds in the arc. Consert used, however, without any suctions whatsoever.

The sounds emitted are by no means that the greater part of the attendance was visibly annoyed by the sharp

FISHING BY MEANS OF TELEPHONE.

It appears that Norwegian fishermen are quite scientific as far as fishing goes, and they now use the well known telephone instrument for fishing with unquestioned success.

A very sensitive microphone, encased in a water tight steel compartment is submerged below the surface of the sea. The microphone is then connected with an ordinary telephone receiver and battery.

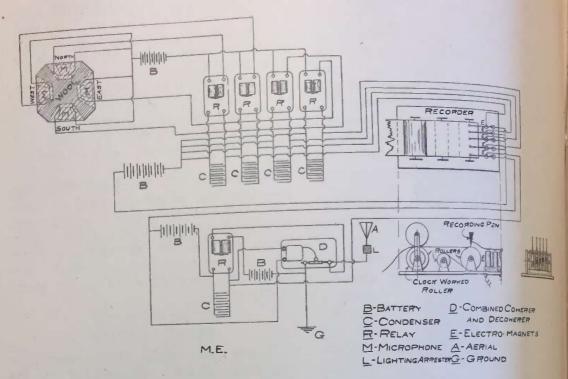

As soon as a band of fishes approaches, the telephone receiver emits certain low sounds which strange to say, vary with different kinds of fish. Herrings, for instance, are said to produce a whistling sound, while codfish make themselves known by a humming sound in the receiver.

FUSE TESTER.

If any one thinks that a flash light can only be used successfully in the dark, he will find himself very much mistaken.

A clever German has just obtained a patent to use flashlights in connection with the usual fuse plugs in the method illustrated in our cut.

As every electrician will readily assert, one can never tell when a fuse plug is in perfect condition, and by means of the new tester, one can


quickly prove if the lead wire inside the plug is in good condition or not.

By inserting the plug in the projecting metal ring, contact is made on the side and at the bottom connection of the plug. Lamp, battery and plug are then in series. If the lamp lights, the plug is in good condition.

Now that the roller skating craze is on why don't you equip your skates with a little dynamo? The power costs nothing, besides you can light up your sky-piece with the current thus obtained. Now, sports, get busy!—FIPS.

The Micro-Ceraunograph

B. WM. H. CAPEN.

This apparatus is designed to show in what direction and approximately how far off lightning takes place.

Four microphones are placed in an elevated position, as for instance the roof of a house, etc. One of these microphones faces North, one South, one East and one West. They are then surrounded, except on the side in which each is pointing, with two or three inches of pressed wool or similar material (see diagram). Wool is also placed above and below them.

Each of these microphones, which must be quite sensitive, is then connected from a battery of five or six cells to a sensitive relay. Another battery of similar size is arranged in connection with these relays, so that when the contact in either one of the relays is made, it throws this battery into circuit with a pair of electro-magnets on the recorder. Each relay works one pair of magnets (see diagram).

The fifth pair of magnets of the recorder is connected with a battery and another relay. A combined coherer and decoherer is also connected with the relay, battery, aerial and ground connection, as in regular wireless telegraphy. Another small tery in with COelectro - magnets of and

lay, while the previously mentioned battery works the decoherer and the fifth pair of electro-magnets of recorder.

Small condensers are introduced a contact points of relays and decoherer to prevent local sparking.

The recorder is a board on which is mounted an arrangement of rollers The middle roller is set lower than the others and is wound with the cross lined paper, fig. 2, which passed around the right-hand roller (see agram) and between the two left-half ones. The upper one of these is conered with blotting paper, and is held against the lower roller by a spring each end. The lower roller, which covered with rubber, is run by cloth work, at such a rate that one of the cross-lines on the paper, passes a cel tain point a second.

The record is made on the paper a it passes over the right-hand rices. The five recorders are short pieces glass tubing drawn to a fine point and filled with filled with ink. Each of the state tubes is for the state of the state tubes is for the state of tubes is fixed, as shown in diagnost similar at the end at the end of an arrangement single to a bell harm to a bell hammer, which is hingely the other and the other end and adjusted by a shand seem and screw above the pair of electronic magnete With this apparatus in order magnets.

proaching thunderstorm will be reproaching the lower or lightning recorder before any visible signs are nodiced. As the storm comes nearer, the lightning recorder will make more fre-

quent dots on the paper.

The thunder will be heard awhile before any records of it are made, but when the storm has come within ten or fifteen miles the noise of the thunder will be great enough to affect the microphones, thus operating the relays and the electro-magnets on recorder, and dots and dashes will be made on the recording paper.

If the thunder comes from the north. the sound will strike and affect the microphone facing that direction. It will not affect the others, as the sound waves can not pass through the wool, therefore, only the recorder which is connected with this microphone will make a record.

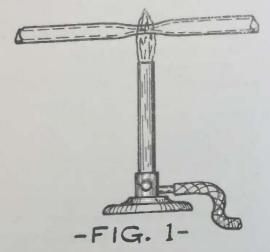
If the thunder comes from the north east, both the north and east recorders will register simultaneously.

Fig. 2 When it lightens the lightning recorder will make a dot on the paper which will move on at the rate of one space a second, each space representing one mile. A few seconds later the thunder is heard, and one or two of the thunder recorders will make a seties of dots and dashes. By counting how many spaces there are between the lightning record and thunder record, and by noticing which thunder recorders made the record, it is possible to tell in what direction and approxmately how far away the lightning The lightning is as far away, approximately, as there are seconds be-The flash and the thunder.

The record made by the micro-cetaunograph will be similar to the rec-

Must be pretty cold at times in Alas-Rellow writes and asks the "OR-What to do in case the electricity sets frozed up" in the wires in the wineline wires in the wires in the page until it gets red hot, and place pans under the wires to collect." FIPS."

A BALLAD IN IX. MODERN ELECTRIX, Certainly clix. It shows you some trix, Where the rest show you-nix. You don't ride on old rix, But you get the best mix. There ain't no false wix, Guess nobody kix. It hatches its own chix, Before you count six, It usually lix The rest and does fix Their poor old jix. It fairly prix You with news and stix To it. Each month it tix Louder and it also dix Deeper without using derrix. It throws brix At mathematix And all theoretix, Go in the River Stix. The wireless mix Each month has new twix. No wonder everybody stix To the youngster, Modern Elec Trix. "FIPS."


WIRELESS CRAZE.

The year gets old, The weather is cold, Rig up your station Without hesitation. Wireless is in the air. To catch it is only fair. Get out your coil, Adjust the gap, You have to toil, No time to nap. For the year gets old, And the weather is cold. Don't forget the antenna And do it now, because when a Snowstorm is setting in, You'd better not fool with the riggin'. You should be at the switch, Trying to tune to the right pitch. You ought to be at the 'phones, And not outside chilled to the bones. You learn telegraphy free, Better get busy. See? The cost is slight, Wireless career quite bright. The quicker you get the craze The sooner you find it pays. It won't take many days Before you get a "raise." There's no charge for all these tips; They're given cheerfully by "FIPS."

How to Make an Electrolytic Detector

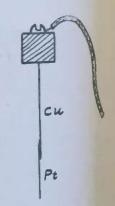
By C. C. WHITTAKER.

The following directions will enable the amateur to make a very sensitive wireless detector, one which will receive messages up to five hundred miles. However, the operating radius of any detector depends largely upon the height

of the aerial, the ground connection, and

the tuning coil.

The material needed is a piece of thermometer tubing about three inches long, having a bore of not more than 1/64 in. diameter, two pieces of platinum wire, one 1/2 in. long and .001 in. diameter, the other 3/8 in. long of No. 20 or 24, a piece of glass tubing 2 in. long having an inside diameter of 1/4 in., a brass cap which will just fit over the top of the thermometer tube.


Hold the thermometer tube in the flame of an alcohol lamp or bunsen

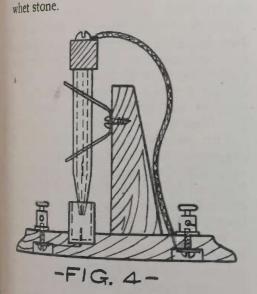
-FIG. 2-

burner, preferably the latter, turning it continually. When it begins to be red-hot pull gently upon each end until the thin-

nest part of the tube is about 1/16 in diameter (Fig. 1). Quickly take the tube from the flame and hold it sus pended by one end and allow it to cool When cool cut or break it in two at its thinnest part. Take the smaller piece of platinum wire and solder one end to a piece of copper wire. Place these joined wires in the best piece of the tube so that the tip of the platinum wire protrudes at the end of the pointed part of the tube. Place the cap on the other end of the tube, letting the copper wire stick through a small hole in the top of the cap (Fig. 2). Bend the wire over on the cap and remove both cap and wire from tube. Solder this wire and the flexible lead to the cap as in Fig. 1 Replace the wire in the tube and seal the

M.E. -FIG. 3-

cap to the tube by means of sealing wat Seal the small end of the tube to platinum wire by directing the flame the blowpipe upon it. When cool rottle point or the point of the point o the point on an oil stone to make that the alar. that the platinum point is exposed.


The cup which contains the acid is made.

made by fusing the larger piece of the remains wire into one end of the remaining glass that ing glass tube. This is done by done to the form ing the flame of a blow pipe und the edges of the end of the tube opening left. opening left is slightly larger than diameter of the wire. diameter of the wire by means of an entire with a twisting motion by means of an entire of all of al of pliers until about 1/16 of

is left projecting. Now direct the flame is left projecting and the glass immediately around it so as to thoroughly fuse ately around it so as to thoroughly fuse ately around its or as to thoroughly fuse ately around its order to the flame.

As soon as this is finished, a small As soon as this is finished, a small piece of copper wire, about four inches should be soldered on to the outling, should be soldered on the outling, should be soldered on to the outling, should be soldered on to the outling, should be soldered on the outling,

Cut off the end which contains the platinum wire, making it 3/4 of an inch long. Fig. 4 shows the detector complete. The solution for the cup is sulphuric or nitric acid one part, water four parts. The platinum point will need cleaning from time to time on a

No, Alexander. You cannot charge Leyden jars by connecting your cat's tail to the jar and stroking pussy. You better try it on Fido first.—"FIPS."

At last we have the electric boy. Must but, stick it in the mouth, and, lo! she lights Mighty convenient too, in summary: Here, Freddy; swallow this plug to have such a boy around. You have the fan go!" Or when the lack of juice, presto! Freddy kneels the rail, and zz! the car

WIRELESS REGISTRY.

This Department has been started with the idea to bring the wireless amateur in closer touch with commercial land and ship stations. Each month a list of new members will be printed here and once each year an official BLUE BOOK will be issued by MODERN ELECTRICS, giving a list of all the members who registered during the year. Each member will receive the Official Blue Book free of charge. The Blue Book will also contain a complete list of commercial and government stations, their call letters, wave length, etc.

To register a station requires: Total length of aerial (from top to spark balls), spark length, call letter (if none is in existence M. E. will appoint one), name and address of owner.

Fee for Registry (including one Blue Book) 25 cents.

For other particulars see June issue of this magazine.

NAME AND ADDRESS OF OWNER.	CALL LETTER	APPROXIMATE WAVE LENGTH IN METERS.	SPARK LENGTH	OF INDUCTION COIL.
Melvin Getchell,				
West Medford, Mass.	. M.G.	185	11/2	ine.
Fred Klingenschmidt,	Avr. Ave.			
New York City, Coke Flanagan,	T.T.	61	1/2	4.6
Montclair, N. J.	F.N.	530	1	4 .
V. S. Ivey, Lenoir, N. C.,	S.I.	100	4	6.6
David Marcus,				
St. Louis, Mo.,	D.M.	500	2	66
Neat M. Tate, Vacaville, Cal.,	N.T.	218	2	616
Ben Orr, Dallas, Texas,	B.O.	77	1	4.6
Bowden Wasington, New York City,	B.W.	185	1½	66
Melvin M. Bonham, Covina, Cal.,	M.B.	75	1/2	. 6
John D. Kattenhorn, Jr.		.0	/2	
New York City,	D.K.	135	1/2	34

Mr. C. Ries, a German scientist recently read a paper on the effect of humidity on the electrical properties of selenium. He said: The electric resistance of selenium and its sensitiveness to light depend primarily on the method of heating and the humidity of the selenium and of the air, while all other factors are only of secondary importance. Humidity may have a very great influence. With respect to the heating process, care must be taken to heat continually without interruption tothe proper temperature and for the proper length of time. The time of cooling and the atmosphere are also of great im-It seems advisable to place portance. the selenium in an evacuated tube.

Department Wireless

Antenna Phenomenae

By Sewall Cabot.

In the October number of Modern ELECTRICS there appeared an article by Mr. A. M. Curtis, describing experiments in selective tuning, using an antenna consisting of a single wire about 1,000 feet long, running over the roofs of houses, and mentioning difficulties in receiving the shorter wave lengths used about New York City.

It has been the writer's experience that a number of wireless experimenters are using similar forms of antenna, and are noticing the same difficulties with the shorter wave lengths. It therefore seems that a discussion of the reason for these difficulties may prove of interest and save considerable time in looking to the wrong

source for their remedy.

To obtain the best results in an oscillating system comprising an antenna connected to ground through an inductance, to which is coupled a secondary resonant circuit including the detector, we should take pains to make sure that the point of maximum current in the circuit or "current loop" exists at this inductance so as to give the greatest possible magnetic field wherewith to excite the secondary circuit. This state of affairs will always exist if the wave length received is longer than the "fundamental" of the antenna, thus causing the antenna to be the electrical equivalent of a condenser which when an inductance of the proper value is placed in series with it to ground will form an oscillating circuit in resonance to the wave length in question.

Now let us consider the electrical state of affairs which exists as we gradually shorten the wave length we desire to receive from the condition of longer than the "fundamental." we approach the "fundamental" the antenna becomes the electrical equivalent of an increasingly larger condenser in a closed oscillating circuit

and the inductance necessary to produce resonance correspondingly de. creases. When the fundamental is reached this inductance vanishes and the antenna is in a resonant condition when put directly to earth. In order to get a magnetic field to excite the secondary circuit, an inductance completely neutralized for this wave length by a condenser in series must be inserted between the antenna and the ground.

As the wave length is still further diminished a distressing state of affairs commences. The point of maximum current flow no longer exists at the foot of the antenna, but commences to climb up. We are therefore unable to couple our secondary circuit where there is the greatest magnetic field without the use of 2 stepladder. During this period the antenna is the electrical equivalent of an inductance increasing to infinitely

When we finally reach a wave length half as long as the fundamental, this point of greatest current flor is in the middle of the antenna, and at the ground end there is no flow of current, and therefore no possibility of producing a magnetic field to excite the secondary circuit, thus repr dering reception inefficient unless me resort to the use of an artificial line enabling us to pass over this current "node" to the next current "loop.

The antenna will always length

tremely inefficient at all wave lengths anywhere in the neighborhood of the the fundamental as the the fundamental wave length as the bulk of the bulk of the energy picked up is the radiated on distributions radiated or dissipated in heating antenna itself It may be of interest to the yard

on still further decreasing the current current meners mences to make its appearance and foot of the anternal appearance and anternal appearance and the anternal appeara foot of the antenna, reaching a magic

mum when the wave length is onemum of the fundamental. During third of the antenna is the electhis period the acondenser changtrical equivalent of a condenser changing from infinitely small to infinitely

Let us now return to a consideration of Mr. Curtis's antenna which approximately 300 meters in

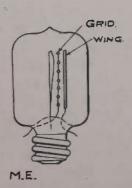
length.

The fundamental wave length of an The fundamental wave length of an antenna consisting of a single wire cannot be less than four times its length. Owing to the fact that it length. Owing to the fact that it consisted of a single wire the fundamental would in all probability be not much greater than this value.

Assuming then a fundamental of Assuming then a fundamental of 1,200 meters, it would be inefficient to receive wave lengths in the vicinity of 600 and 300 meters due to their forming "nodes" of current at the foot of the antenna, and possible to receive wave lengths in the vicinity of 400 and 240 meters due to their forming "loops" of current. Even in this latter case, however, the antenna would be inefficient as most of the energy picked up would be reradiated or turned into heat in the antenna.

This antenna would be excellent for receiving wave lengths of 1,000 meters and over, such as Wellsfleet and Brant Rock, if it were pointing away from the direction of the source of waves to be received. It would, however, be inefficient for other purposes. The obvious remedy would be to un wires, not over 150 feet long, out adially in as many directions as possble, instead of using one wire 1,000 leet long. This would form an antenla giving good results for all wave lengths over 300 meters, and would pick up all the energy of the ether in 300 foot circle instead of that in a

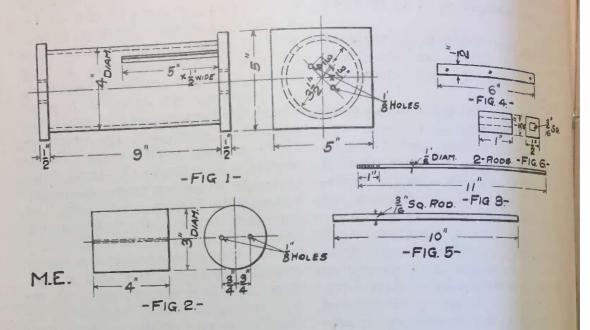
To sum up the problem of antenna design is to get a grip on as large an ingradiant electrical energy as possible without allowing the fundamental the shortest wave length it is desired


An insight into the electrical belive think of it as a condenser having one plate and the anten-

na for the other plate with air for the insulating medium. The wire of the antenna has a certain amount of inductance so that it is the electrical equivalent of a capacity and an inductance in series. Starting with a slow frequency of impressed alternating EMF corresponding to a long wave length and gradually increasing the frequency we arrive at a point where the reactance of the inductance completely neutralizes the reactance of the capacity. This is the "fundamental" frequency. A farther increase in frequency causes stationary waves with "nodes" and "loops" of current to manifest themselves at the base of the antenna, the first current "node" appearing at twice the fundamental frequency, the second at four times the fundamental, etc. As we pass through one of these nodes at increasing frequency the antenna changes from the electrical equivalent in a closed resonant circuit of an infinitely small capacity.

Thus to obtain perfect resonance at these frequencies it must be completely disconnected from ground and allowed to oscillate by itself with a "loop" of potential at each end.

AUDION.


We hasten to correct two mistakes made in Mr. J. L. Hogan's article of the "audion" in the October issue. Our artist when showing a side view of the instrument made a slight mistake. The grid should be placed between the filament and wing as per our illustration herewith.

The last words of Mr. Hogan's article should read thus: "In the serious undertakings of radio-communication."

Selective Tuner with Weeding Out Circuit

By H. H. HOLDEN.

Tuning is probably one of the most important points to be considered in constructing a wireless telegraph set, especially where one has to work under difficulties, such as being unable to secure the proper height from which to suspend the aerial wires, and the cost or inconvenience in using powerful transmitting instruments, and interference from various other stations. The last difficulty is possibly the one which will be most hard to overcome.

However, by the use of proper tuning instruments this interference can be, in a great many cases, partially if not nearly altogether overcome. The following apparatus, if carefully constructed, will be found to give good satisfaction.

First, have a wood tube turned four inches outside diameter by nine inches long and three and one-half inches inside diameter; sandpaper it so that it will be smooth, then saw two pieces five by five inches out of a board one-half inch thick, fig. 1, and have a round stick turned, three inches in diameter and four inches long, fig. 2. Now get two brass rods one-eighth inch in diameter and eleven inches long, cut a thread one-half inch long on one end of each to fit the thread in a binding-post, fig. 3. Procure two

strips of sheet brass one-fourth inch wide and six inches long; drill three small holes in each, one near the ends and one in the center, fig. 4. These are to be screwed to the inside of the tube one-half inch apart, having one end of each come even with one end of the tube. Drill two holes lengthwise through the round stick one and one-half inches apart, and large enough to allow the brass rods to slide through easily, but not too loose.

Get a piece of brass rod ten inches long and three - sixteenths inches square, fig. 5; file the holes in two large binding posts (made to hold wires) so that the holes will be square and large enough to pass the brass rod through them. Now cut a piece of hard rubber 1 inch by 1/2 inch by 1/2 inch by 1/2 inch, making a square hole lengthwise through the center of it slightly larger than three-sixteenths inch, fig. 6. This should slid should slide over the square rod snug ly, and without binding. Now attach a small piece of spring brass to this so that it will that it will rub on the brass rod and also on the also on the wire which is to be wound

on the tube later.

The tube should be well shellated and allowed to dry, when one layer may be wound closely with No. 27 and allowed to starting at one end and D. S. C. wire, starting at one end and allowed to starting at one end and the starting at one

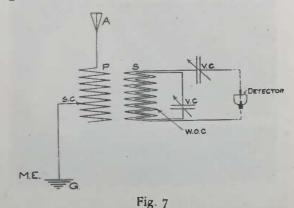
winding toward the center until four winding toward the tube has been covered; inches of the tube has been covered; inches of the tube fastened under the the ends are then fastened under the wire and leads of small screws, the wire and leads of small screws, the wire and when dry the covering on the wire and when dry the covering on the wire and when wide and the whole length last an inch wide and the whole length of the coil may be scraped off and the wire made bright. This bare part of the coil is to come on top, so that the siding contact can travel over it. This is the primary coil.

The round stick may then be shellaced, dried and then wound with one layer closely with two No. 30 D. S. C. wires parallel to each other, the entire length and the ends fastened under screws; the finished part may be given a heavy coat of shellac. This rep-

resents the secondary.

The two five by five-inch pieces of board can be held together and two one-eighth inch holes drilled through them three-fourths inch each side of the center; one of these is fastened to the end of the tube so that the wire comes even with the two strips of sheet brass fastened to the bottom of the inside of the tube one-half inch apart and on the end on which the wire has not been wound.

Cut four pieces of spring brass onefourth inch wide and one inch long,
bending two so they will, when screwed on to one end of the secondary bobbin one-half inch apart, slide over the
brass strips in the tube. Now bend
the other two so they will, when
screwed onto the opposite end of the
bobbin, make contact with the brass
tods on which the bobbin will slide.
Connect the springs at each end with
the ends of the coil, terminating at


Saw out a slot one-half inch wide and five inches from the end of the tube, not wound, two inches below the can be attached to the bobbin) to slide out of the portion of the tube wound with wire.

The two rods may now be put the two rods may now be put the two the bend which has been fasin on them, the other head put on, and the binding posts screwed onto the rods, having brought two the tube to binding posts on the

other end.. In the center of the top of each of the two heads, screw one of the large binding posts and slide the square rod through with the sliding contact on it.

It should be understood, of course, in making this coupling that primary, secondary and weeding out circuits must be wound all in the same direction.

Two variable condensers of fair capacity must be used with this system. Figure 7 shows all the connections, P, Primary; S, Secondary; W.O.C., weeding-out coil; S.C., sliding contact; V.C., variable condenser; A, aerial; G., ground.

It may be seen from diagram that very sharp tuning can be realized by varying the inductance in the primary, by sliding the secondary and weeding-out coil in or out of the primary, or by varying one or both condensers.

NEW KEYLESS BANK.

We are in receipt of a sample of Grab's keyless basket bank. We do not hesitate to say that it is the slickest bank of this kind we ever came across. It takes only dimes, locks after the first dime and will not unloc!: unless 50 dimes are deposited. It fascinates you to save.

We know it must be good because "Fips," our office boy, tried to get out a dime which he tried on the bank, but somehow or other the bank refuses to "cough up." He tried a hammer with poor success, then tried to feed the bank with pennies, which it promptly refused to take. He'll have to wait now till there are 50 dimes in the bank! Poor "Fips!"

Mireless Telegraph Contest

Our Wireless Station and our Laboratory Contest will be continued every month of the best photograph for each contest is awarded a monthly prize of months of the contest o Our Wireless Station and our habitatory of contest is awarded a monthly prize of The further notice. The best photograph for each contest is awarded a monthly prize of The further notice. If you have a good, clear photograph send it at once; you are doing yourself (\$3) Dollars. If you have a wireless station or a laboratory (no matter than the property of the prop (\$3) Dollars. If you have a good, creat purpless station or a laboratory (no matter to an injustice if you don't. If you have a wireless station or a laboratory (no matter to an injustice if you don't. If you have a wireless station or a laboratory (no matter to an injustice if you don't. If you have a wireless station or a laboratory (no matter to an injustice if you don't. an injustice if you don't. If you have a matter for small) have a photograph taken of it by all means. Photographs not used will be returned in 30 days.

FIRST PRIZE THREE DOLLARS.

I am sending you herewith photographs of my wireless telegraph station. I am nineteen years of age. I have done

considerable work experimenting with and comparing the various systems of wireless telegraphy. As a result of my experiments I have just completed a system of "Spontaneous, automatic repeating wireless telegraphy," which for the benefit of the many readers of your most valuable paper I will endeavor to ex-

By the aid of my system I can positively determine whether the station I am in communication with is receiving my message, and whether that station is re-

ceiving my message properly.

As soon as the station I am communicating with receives a signal from my station, the coherer from the receiving station spontaneously and automatically closes a local circuit communicating with the sending apparatus of that station, and thereby repeats back to sending station the signal that has been received.

This system though seemingly complicated is very simple and accurate in-

Fig. 1 shows the writer receiving a message by the aid of a 1,000 ohm head receiver used in connection with the E. I. Co. electrolytic detector, which can be seen on the table at the elbow of the writer's right hand.

Fig. 2 shows a side view of the complete apparatus consisting of several 'Hertz oscillators," a five-inch spark coil, a Morse key, a transmitting tuning coil, a receiving tuning coil, a 200 ohm sounder, a 1,200 ohm relay, a coherer-decoherer, auto coherer, an "Electro" lytic detector, corborundum and silicon detector, several switches and cutouts, several E. I. Co., rheostat regulators, a powerful reflector for night work, several Leyden jars, and storage batteries underneath the table not shown in the photographs.

The mast, network, antenna, spark coil, oscillators and several other instruments such as the receiving and transmitting tuning coils were made by the writer through the aid of instructions given in "Modern Electrics," which latter I heartily recommend to all inter-

ested in wireless telegraphy or general electrics.

St. Louis, Mo.

HONORABLE MENTION.

Enclosed please find a photograph my wireless of my wireless station, which is fitted up in a corner up in a corner of my work shop.

My transmitting apparatus consists
of a one in a

of a one-inch induction coil, seen in the picture the picture, in the right-hand coils of the bench of the bench. To the left of the collist a telegraph a telegraph key, and two terrupters of terrupters of my own construction.

The receiving instrument is of an arranged in a box in electrolytic type, arranged in a box in on the box are standards which front of two brass standards which suspend a zinc rod and a platinum suspend a solution of sulphuric acid point in a solution of sulphuric acid point in a solution per cent. strong, and water, twenty per cent. strong, and the box is a small condenser, and in the box is a small condenser, and in the wires connecting the different binthe wires, besides a buzzer for ding posts, besides a buzzer for ding posts, the line."

On the front side of the box is a pole changing switch to throw in my where and relay outfit, seen in front of the dynamo. I only use this set for calling purposes, as I find the electrolytic much more sensitive, and capable of receiving messages with greater speed.

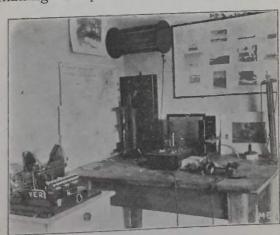
Between the coherer and electrolytic box is a piece of glass covering copies of different codes, abbreviated words, and call signals. This is a very convenient way of having the codes always before you.

The dynamo shown is of 1/5 K. W. RPM, It is run by a one-horse power breton waterwheel. I use the current To the right of the dynamo is a conjunction with the induction coil the switchboard is made of one-

the switchboard is made of onetich red wood. At the top are four the two rheostats. The left-hand one the current generated by the dynamo, and the other regulates the alternating current which lights the house. Near the bottom are switches and cut-outs controlling the current distributed throughout the work shop and part of the house. The double throw switch in the center throws in alternating current when it is up, and direct current when down.

My aerial is suspended from a twenty-five foot pole mounted on our house and has a total height of sixty-five feet.

I have been experimenting with wireless telegraphy for about a year, and must say that MODERN ELECTRICS is the best paper published on that subject, which I have ever come across.


RICHARD B. CATTON. Honolulu, Hawaii.

HONORABLE MENTION.

Herewith a photo of my wireless station.

On the left, in the corner, will be seen the coil; to the right of it is the glass plate condenser which I use in the transmitting circuit. Above the coil is the transmitting tuner. The key is on the right hand side of the table.

At present I am using the silicon detector, which may be seen in the picture mounted on the box in the center. The phones which I use in connection with this wave detector are seven hundred and fifty ohms resistance each, making the pair fifteen hundred ohms.

On the extreme right is a small tuning coil, used in connection with the detector.

The typewriter shown is used when receiving from the local government station, which "comes in" like a "goat on a tin roof." It is difficult, though, to take a distant station on the mill, as it makes too much noise to hear the signals above.

The coil shown is capable of giving a

four-inch spark. I use about a quarter of an inch in actual work,

At the present time I am using three wires strung on my attic for an aerial. Each wire is about fifty feet long and they are about two feet apart. I intend to erect a mast on the top of the house before long. With my small aerial I have been able to receive steamships about a hundred miles away. The Marconi station on the Cape Cod "comes in" here so strong that I can lay my headgear on the table and hear it.

The silicon is a good wave detector, but for real fine work the Electro-lytic is the best that I have ever tried.

The local station at Newport is about a mile away and makes a great deal of noise when it starts up, but with the little tuning system that I use, I am able to cut it out completely and tune Cape Cod in very strongly. This may seem an easy matter considering the difference in the wave lengths, but the government station is so close that it is quite a difficult matter.

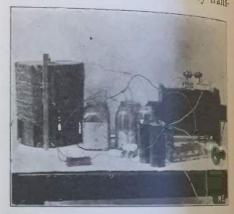
Wireless telegraphy is the greatest of modern inventions and Modern Elec-TRICS is doing a great deal in developing the ideas of the ones that are interested in it. It is the amateur's friend.

Rhode Island. LLOYD MANUEL.

HONORABLE MENTION.

Enclosed find photographs of my wireless outfit. The coil used is a 10-inch induction coil operated as a 1/2 k. w. transformer, and is connected to the A.

C. lighting current through an impedence. The inductance coil shows plainly in the photo and contains the spark gap enclosed in hard rubber tubing. The condenser is composed of 1/4-inch glass plates enclosed in a box and set in wax. It is made in three sections and the


total capacity is .02 microfarad aerial used is horizontal and 175 feet long, three parallel wires, No. 8.

My receiver consists of the usual tune. ing coils and I use both electro-lytic and

I do not subscribe to your magazine but buy it from our local dealer every month and enjoy it immensely. W. ALLEN TAFT, JR.

HONORABLE MENTION

Enclosed you will find a photograph and description of my wireless apparatus which I made myself. My trans-

mitting apparatus consists of an induction coil, five Leyden jars, tuning coil, plate glass condenser, antenna switch ground switch, and an ordinary telegraph key.

The induction coil was made as for

lows:

The secondary of the coil has thirty, one miles of No. 34 double silk covered The wire is wound into one hundred sections 1/8 inch wide,

The coil was assembled by placing the ebonite tube vertically upon the work bench. The sections were put on alternately with three thicknesses of paper cut into discs that had been previously boiled in paraffine to er clude the air. As the coil was being built up the inner ends of the sections were connected. After the coil was completed, it was placed in a hernet ically seed ically sealed cylindrical shaped steel tank, and with the aid of a merculy pump all the air was exhausted.

At the bottom a hole was bored and to it and the was bored and to it and the was bored and the was bored

to it a brass tube with a valve was fitted and fitted, and when the valve was open the paraffer. the paraffine which was under the being heated to being heated to a certain temperature by a gas storm by a gas stove, was allowed to the land.

After the property of the land the land. After the paraffin had filled the land it was allowed to cool.

After cooling it was heated a little so as to loosen the sides of the paraffine entire mass would slip table so the entire mass would slip

out. the coil was taken out of the After the surplus paraffine was taken out of the surplus para

The ebonite tube is two feet long, The ebonite tube is two feet long, to the ebonite tube is two feet long, The core consists of a mumber of bundles of fine Swedish

Over the iron wire is placed some over the iron wire is wound four insulation, and over this is wound four layers of No. 12 double cotton-covered layers of No. 12 double cotton-covered layers of wire, and all slipped in the ebmagnet wire, with ends left out for termit tube, with ends left out for termit tube, with ends left out for termit tube.

My receiving apparatus consists of a uning coil, microphone detector, ground switch, antenna switch, telephone receiver, two dry batternes. The tuning coil is made by winding on a frame of 14-inch diameter and two feet long, one layer of No. 18 bell wire, consisting of one hundred and fifty turns.

The antenna was made of three iron barrel hoops ten feet apart, with ten small wires fastened to the hoops, equal distance apart, and same supported horizontally between two poles approximately seventy-five feet high.

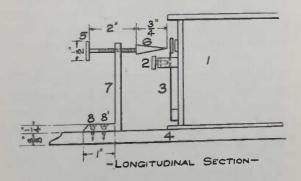
I might say in conclusion that I read your very instructive and interesting magazine each month and gain a great many good points on carrying out my experiments.

While the above described apparatus may not be of the very best, I feel that it might be of interest to boys like myself, fifteen years of age, carrying out some of their work.

Chicago, Ill. CARSON SHAFFNER,

AEROPHONY IN ITALY.

Prof. Majorana, who actually established aerophonic transmission in a very manner over a distance of majorana, is now experimenting, with the establish permanent stations on the establish permanent stations on


VIBRATOR ATTACHMENT.

By Joseph Peters, Jr.

Some time ago the author, while experimenting with his induction coil, accidentally discovered that, if a piece of iron or steel was held against the vibrator spring, the interruptions were very perceptibly increased. With this fact in mind he constructed an attachment at a cost of practically nothing, as the materials used are generally found in the kit of every experimenter.

Only the more important dimensions are given, as the others, such as height of standard, distance from coil, &c., vary with almost every different make of coil.

The sub-base of "4" is made of oak or other hard wood, and is stained and varnished to match coil-case. Make

M.E.

1. OAK CASE.
2-BRAGS THUMB-SCREW.
3-STEEL VIBRATOR SPRING.
4- WOOD SUB-BASE
5-BRASS THUMB-SCREW
6-STEEL-WITH BLUNT POINT
7-COPPER OR BRASS STANDARO
8-8' BRASS SCREWS.

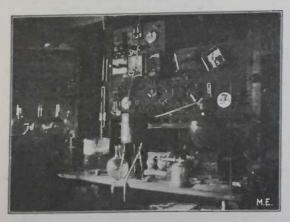
this sub-base I and I/4 inch wider, and about 5 inches longer than "I" as shown on drawing. Mount coil on same 5/8 inch from one end. procure some 1/8 inch, or better, some 1/4 inch copper or brass, one inch wide, and about 5 1/2 inches long. About 1 in. from one end bend same over until a perfect right angle is formed. If the experimenter is handy, this part may be cast. This is the standard marked "7" on drawing. The brass thumbscrew "5" was taken from an old "Edison" primary battery, but any brass bolt 1/2 inch in diameter, and of proper length, will answer the purpose. Thread same with any convenient small thread. Trim up a piece of iron or steel to the shape as shown at "6," making same 1/4 square at the heavi-Next drill two holes to acer end. (Continued on Page 291)

Caharatary Contest

FIRST PRIZE THREE DOLLARS.

The enclosed pictures show the arrangement and a part of the contents of my laboratory.

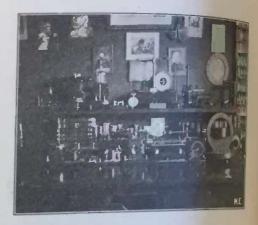
No. 1. This is my workshop where I have constructed most of the instruments shown. I have a small lathe not shown in the photo which I use for winding and turning small metal parts.


I derive my current from 40 dry cells which are placed on a shelf behind the switch board. I also have a half-dozen Leclanche cells. All of these are controlled by three 12-point switches, two reversing and three knife switches, A volt and shown on switchboard. ampere meter are attached to the board. A wire rheostat is also included. The jar at the left is used for nickel-plating.

From the switchboard I have four wires running up to my room on the second floor, where I do most of my ex-

perimenting.

Picture No. 2 shows the table with some of my more efficient instruments.


From left to right: Electro-lytic detector, mirror galvanometer for bismuth, antimony couple, analytic balance and weights, mirror galvanometer (1,000 ohm) with reading mirror attached, halfinch Ruhmkorrf induction coil and two reading telescopes for the mirror galvs. The lower row consists of voltmeter,

one to twenty volts, oil condenser, telegraph set, 1,000 ohm relay, commercial sounder, commercial type transformer, ratio one to ten, 1 1/2 inch induction coil and 12-inch Geissler tube, standard rheostat and a Scranton tangent galvanometer. The collection of small vials shown at the extreme right consists of specimens of rare minerals and elements. I have used and made all kinds of detectors except Marconi's mag-

netic, which I intend to construct short ly, but I prefer the Electro-lytic with a good 1,000 ohm receiver. I get rather good results with my filings auto coherer as a detector, also with the relay-tapping arrangement. To the right of the spark coil is shown a Tesla coil not yet completed.

A milliamperemeter and a pocket volt ampere meter are also shown.

Most of the instruments are home constructed, some have been purchased in a worn and damaged condition and repaired and made serviceable, while the rest have been much cheaper to buy than

I wish to state that I am greatly indebted to Modern Electrics for many a good suggestion and solution to many questions relative to electricity.

W. FERD OHLSON. Chicago, Ill.

HONORABLE MENTION.

Enclosed is a photograph of my labor At the lower right-hand corner is a motor which I made from directions in a book, and connected to it is a rhees tat of my own design, containing 7 feet of small iron wire, and having 7 contact points. contact points. In the lower left hand corner is a motor which I designed and made. It consists of an electro magnet attracting in turn eight iron pieces at tached to the tached to the wheel, the current being broken at a control to the broken at a control to the current being broken at correct intervals by a toothed

In the upper left hand corner two coils are seen, one of which is coil. as the secondary in an induction collaboration of the Toward share reconstruction of the Toward share reconstruction collaboration collaborati

Toward the right is another wife on a hich I made which I made by winding iron wire on a small board for the small b small board five by seven inches, copper rivets copper rivets for contact points.

Further to the right is a little battery wire and other things which experimenting.

Tuse in my experimenting.

I use in my experimenting.

I use in my experimenting.

I was taking another electrical magaine, but when I saw a copy of "Modaine, but when I stopped the other and
ERN ELERTRICS I stopped the other and
ERN ELECTRICS. It

is the best paper for the amateur I ever saw. PLEASANT W. DENNISON. Indiana.

HONORABLE MENTION. "MY LABORATORY."

My laboratory occupies about half of our attic, and is quite a mixed-up affair, for I have a little of everything. To make the picture clearer I will explain a few of the important things. With the exception of a few instruments that it would be quite impossible for me to make, I have made all of the apparatus myself at a slight cost. In front of the table at the extreme nght and on the floor is a movable with two dynamos attached, a that of 36 watts and a series of 60 The shunt dynamo is belted to bicycle that is raised up on but only the rear wheel can be on in the picture. By shifting the hem con right to left either one of ben can be brought in line with the beycle and belted to it. There is a theostat connected to both in the usual the controlled

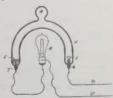
Kext comes the table at the right, which is my wireless table, and intended outfit. I have experimental with nearly all of the popular lateral base had best results and half-inch spark, but it is a me, and delivers a great

deal of energy, which is important in sending. My antenna is about 35 feet high, and is on the roof. I have caught messages from ships coming in and going out of New York harbor, and heard the Brooklyn Navy Yard.

Next comes my batteries, which are on the floor at the left of my wireless table. I have practically two batteries, one primary of ten Leclanche cells, and a secondary of three storage cells, which I charge with the bicycle power dynamo. I use my batteries mainly for testing and for wireless. A few dry cells and a water rheostat can also be seen with the batteries. The rheostat reduces the electric light current, which is A. C. 104 V., so I can use it at the arc light, which is on the table right above it.

Next comes my switchboard, just above the batteries. With same I can control all the electrical apparatus in my laboratory, and can at any time tell just what voltage or amperage either the batteries or dynamos give.

Now comes my work bench, where I construct and mend all my instruments. On it can be seen an A. C. motor, a small model steam engine, a transformer I am constructing, and the arc light.

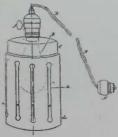


I also have a wire telegraph that goes over to the next house, where there is a boy also interested in electricity, and I have a fine library on electricity, and every number of MODERN ELECTRICS that has been published, and I can tell you truly that it is the best book of its kind on the market, and I for one would not be without it. Yonkers, N. Y. Lewis A. Morrison.

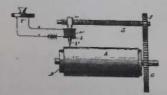
Electrical Patents for the Month

901.394. APPARATUS FOR ELECTRIC LIGHTING.
PETER C. Hawitz, New York, N. T., assignor, by meno
assignments, to Cooper Hewitt Electric Company, a
Corporation of New York. Original application died
Apr. 5, 1900, Berial No. 11,009. Divided and this appilection iled May 3, 1902, Serial No. 10a,723. Renewed Apr. 15, 1908. Serial No. 427.208.

1. The combination with a U-shaped vapor lamp having
electrodes, at least one of which is vaporisable, the operating position of the and lamp being one in which the
arms of the U are lower than the bend, of a couling chamber located above the bend and a neck or constricted period
connecting the cooling chamber and the main body
of the lamp.

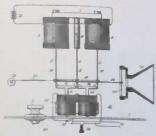


900,292. ELECTRIC CURLING-IRON HEATER. WYNN MERCHTH, San Francisco, Cal., assignor to Pacific Elec-tric Heating Company, Ontarlo. Cal., a Corporation of California. Filed Sept. 25, 1907. Serial No. 384,589.

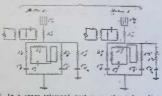


1. An electric curling iron heater comprising a tibe adapted to receive a curling iron, a heating wire wound close to the tube, a thin electric insulation between the wires and tube, a thick heat insulation around the heating wire, a perforated shell surrounding the latter insulation, a ring of insulation space between the shell and said insulation, a ring of insulation supported at the lower end of the shell, in insulating cap at the other end of the shell at the lange end and fitting the shell for holding the tube at sach end and fitting the shell for holding the tube at shell at the lange and and fitting the shell for holding the tube concentrically in the shell.

900,402. APPLIANCE FOR THE CURE OF RHEUMA-TISM AND OTHER DISEASES. DANIEL R. DEWEY, Hamilton, Ontario, Canada. Filed Dec, 26, 1907. Serial No. 608,603.


10.382 SOUND RECORDING AND REPRODUCING INSTRUMENT. GEORG KIRKEGAARD, New York, N. Y., sasignor to Silinon Hutchins. Washington, D. C. Filed Nov. 18, 1899, Serial No. 737,406. Renewed Mar 5, 1908. Serial No. 419.301.

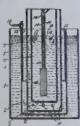
1. A sound recording and reproducing instrument constating of a number of magnetizable bodies arranged in a series, means for successively magnetizing said bodies in accordance with sound waves and a disphragm subjected to the successive artion of said bodies.


901.807. APPARATUS FOR RECORDING AND REPRIX. 901.847. ELECTRIC MAIL DELIVERING AND REPRIX DUCING BY THE TELEGRAPHONE PRINCIPLE. LECTING MACRINE. OTTO E STORY, Deep in the No. 418,690.

Serial No. 418,690.

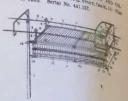
In a telegraphone, the combination of a recording body, 'a vibratory diaphragm, two magnets of constant force, and means whereby the vibrations of said diaphragm will aiternately cause the lines of force of said magnets to traverse the recording body, substantially as described.

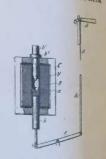
901,849. SPACE TELEGRAPHY. Oscan C Roos, Newton. Mass., assignor to Stone Telegraph and Telephone Company, Boston, Mass., a Corporation of Maine Filed June 10, 1907. Serial No. 378,993


I In a space telegraph system, an elevated conductor, a parallel-branch circuit connected in series therewith and containing capacity and inductance in each of its branches, a resonant receiving circuit associated with both branches of said parallel-branch circuit and an oscillation producing circuit associated with said devated conductor, the said resonant receiving circuit having a very high impedance for oscillations of the frequency cenerated by said oscillation-producing circuit and the system comprising said elevated conductor and parallel-branch circuit having a very low impedance for oscillations of the frequency to which said resonant receiving circuit is attued.

991,498. CONDENSER. ELITE THOMSON, Swampscott, Mass., assignor to General Electric Company, a Corporation of New York. Filed May 5, 1904. Serial No. 206,479.

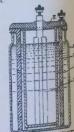
In a condenser, a pair of active conductors of opposite polarities, and one or more stress-equalizing conductors between said active conductors and insulated therefrom.


900,278, ELECTROLYTIC ALTERNATING CURRENT RECTIFIER, ARTHUR S. HICKLEY, Manasquan, N. J. Filed Nov 12, 1907. Serial No 401.835



An electrolytic alternating-current rectifier having insulating members extending into the electrolyte and above, the cell for protecting the terminals against short circulting.

890.634. HIGH-POTENTIAL SPARK-COIL. CHESTER H THOSDARSON, Chicago, III. Flied Dec 23, 1907. Serial No 407,808.



1. A solecold motor having a core competity in actions normally tending to move inwardly in speak extensions, one of said sections having a possible time to deal section having a possible time to deal section having a possible time to deal the other a conical recens in its master root is need an appropriate time to the section on the inward movement and provide this section on the inward movement and provide this section on the inward movement ander the information for the section of the section of the source of the colds.

Septial No. 92.324.

1. In primary batteries of the soules but type of combination of sodium hydroxid at sentant with a for instance consisting of chromic soid states in a selection of hydroxygen person of with the addition of hydroxygen person of the solutions of hydroxygen person of with the addition of hydroxygen person of the solutions of hydroxygen person of which the addition of hydroxygen person of the solutions of the solutions of hydroxygen person of the solutions of hydroxygen person of the solutions of hydroxygen person of the solutions of the solut

2 9 0 . 3 6 6 TELEPHONE TRANSMITKE that STATE AND A ST

Original Electrical Inventions for Which Letters Patent Have Been Granted, for Month Ending October 20th

Copy of any of the above Patents will be mailed on receipt of 10 cents

queries and questions pertaining to the electrical arts addressed to this department will be queries and questions pertaining to inquiries of general interest will be published here for published free of charge. Common questions will be promptly answered by mail.

The published free of charge. Common questions will be promptly answered by mail.

The property of the large amount of inquiries received, it may not be possible to print all the on account of the large amount of inquiries received, it may not be possible to print all the on account of the large amount of take its turn. Correspondents should bear this in any one issue, as each has to take its turn. Correspondents should bear this in the property of the property of

operation sheet must be time. No attention above rules.

Said to letters not observing above rules.

If you want anything electrical and don't know where to get it, The Oracle will give you

such information free.

COIL QUERIES.
THOS. H. BLOUNT, JR., N. C., asks: What is the size of enclosed wire? A 1a-Sample of wire enclosed is No. 24

angle cotton covered. h-How many pounds would it take to

mite a ten (10) inch spark coil?

A 1b.-Wire in question is altogether too hary for a 10-inch spark coil. No. 30 or No. 38 is about as heavy as you should use. 2-Will a magneto of 10 volts light a 10-

relt lamp? A 2.-Yes

3-What number wire will it take to carry

be discharge from a ten-inch coil?

A 3-Any wire will do, even the thinnest, whe amperage of the 10-inch coil is very litof course, if the wire is too thin, it will wat up somewhat.

4-l have an aerial made of No. 14 wirestrands. Will it have to be enlarged? It is

5 feet long and 6 feet wide.

4-It all depends how far you wish to There is no way of telling by the way ra put your question.

1-Can a pair of oscillators be made from or dies of brass?

15-Brass or zinc balls are used usually. DETECTORS.

GEORGE W. TAYLOR, Pa., asks: What are the best kind of carbons to to the microphone detector as described in May issue, soft or hard carbons, and 1-2 or

Hard carbon, such as is used in arc serve the purpose.

Row far could I receive with an "Electhic delector, 75 ohm telephone receiver, arial, and potentiometer as described in

la la depends on your apparatus, but day had depends on your apparatus, but all all depends on your apparatus, but all all depends on your apparatus, but all all depends on your apparatus, but all depends on your apparatus, but

an to 250 miles.

Solid in June issue?

This will increase the range of your as you can then get wave This will increase the range of your with stations having greater wave than you could catch without using the

CARBORUNDUM DETECTOR. Could messages be received for a distance of 52 miles with a carborundum detector and 1,000-ohm telephone receiver and 60-foot aerial? What is the greatest distance such an equipment could receive?

A. I.—Yes, you should be able to receive about 100 to 150 miles with your equipment.

2.—Are carborundum detectors as good as liquid or electrolytic detectors as regards sen-

sitiveness, etc.?
A. 2.—The "Electro" Lytic detector is a good

deal more sensitive.

3.—Can you tell me where I can obtain practical information on the construction of a wireless telephone?

A. 3.—We recommend vou our new book, "Wireless Telephony," by Ernst Ruhmer, showing all the different systems, for \$3.75.

STATIC MACHINE.

(93.) Roscoe Frey, Ia., asks:

I.—Please tell me if a static machine giving a three-inch spark will work satisfactorily in a wireless set, and if so, will it send as far as a coil, giving the same length spark?

A. I.—A static machine will not work as far as a spark coil. The machine you are speaking of will not work further than 1-4 mile, while a 3-inch spark coil under good circumstances, will work as far as 20 miles and more.

AERIAL.

(94.) F. W. Morris, California, asks:

I.-Will an aerial composed of a triangle 75 feet by 30 by 30, strung in the shape of a large harp, with wires in between, and stretched between two poles 50 and 50 feet high, be as good as the same suspended from a mast 70 feet high?

A. I.—We believe the former arrangement

is the better one.

2.-Where can I get a silicon button (not crystal), for use in a silicon detector?

A. 2.—From the Electro Importing Co., New

3.—With my carborundum detector, which is supposed to use batteries, I find I can get better results without batteries. Can you ex-

plain this? A. 3.—You probably have a large station working in your vicinity, and you will find that even if you leave the detector away altogether, you can get just as good, and proba-

bly better results.

RECEIVING DISTANCE.

(95.) V. S. IVEY, N. C., writes:

1.—Would it be possible for me to catch signals from the Cape Hatteras station by using a temporary aerial erected on the summit of a mountain near here which rises abruptly 1,100 feet in height above sea level, being 2,200 feet? The Hatteras station is about 300 miles distant. I propose using the electrolytic detector in conjunction with sensitive re-

A. I.-We believe so; there should be no trouble to even receive messages from further distant stations. See article on "Aerials," by

Mr. Austin, in this issue.

2.—Should a filing coherer, when used for calling, be placed in the same tuned circuit with the microphonic detector which is used for general conversation, a switch being arranged of course to throw out either?
A. 2.—Yes.

PIERCING GLASS PLATE.

(96.) Eddie C. Estes, Minn., asks:
1.—Will a 1-inch E. I. Co. spark coil work
up to 1 1-2 miles with a "Electro"-Lytic detector under best conditions and a 50-foot aerial (with a 4x4 foot screen)?

A. I.—Yes, it should work up to about 6

2.-Would two masts, each 50 feet high, and 6 copper wires running horizontal, be better for an aerial than the above named in No. 1?

A. 2.—Yes, much better.

3.-What is meant by "Sustained Oscillation"?

A. 3.—Undamped.

A. 3.—Undamped.

4.—In finding the "wave length" do you multiply the length of the aerial wire or the height of the antenna by 4?

A. 4.—Multiply the total length of the aerial wire. This is, of course, only approximate.

5.-Will a one-inch spark coil pierce a glass plate 1-16-inch in thickness; if so, how do you adjust the spark balls?

A. 5.—Yes, if condensers are used, shunted around the spark gap and sharn points are

used instead of spark balls.

AUTO COHERERS.

(97.) Douglas Hillyer, N. Y., writes: I.—Should the sound be regular, or interrupted, at the proper point of tuning, when heard in the receiver?

A. I.—The sound should be regular and

2.—Which is the more sensitive coherer, with mercury and carbon grains, or with either

A. 2.—The most sensitive combination is with the carbon rod and iron rod, and a drop of mercury between, forming the so-called "Solari" detector.

3.—How far should the space be between the two arms of the coherer when it contains the mercury, etc. (inside coherer glass)?

A. 3.—Adjustment is found by forcing the arms together until a sharp click is heard in the telephone, and then drawing apart until a. hissing noise is heard.

4—How far away will I be able to receive messages from, with 5 square feet of chicken netting on a pair of 60-foot poles, and a tuning coil, 75-ohm receiver and auto-coherer?

A. 4.—We refer you to article on aerials by

Mr. Austin, in this issue.

MILLIAMPERE METER (98.) D. L. HAY, Wis., asks:

I have a milliampere meter which has the I have a minimalipere meter which has the needle suspended by a thread of some kind of, but have tried everything I know of, but have turn easy enough. Do you but have wouldn't turn easy enough. Do you know anything I can use?

ivthing I can use:

A.—We would suggest what is known as a cuspension. Write to Manufacturen Vork Ch. quartz suspension. & Inventors' Electric Co., New York City.

MAGNETIC DETECTOR.

(99.) J. R. WEEKS, N. J., asks:

1.—Would No. 30 S. S. C. wire or No. 49 S. S. C. be right for the magnetic detector, and how much would it need of each?

A. 1.—We would refer you to Query No. 79 answer to Question No. 1, in October issue. 2.—Does it need a tuning coil and condenser

with same?

A. 2.—Answer to Question No. 2 in the same query will give you the desired infor-

WIRE RESISTANCE.

(100.) HARRY FREUND, N. Y., Writes:
1.—How much of No. 40 S. S. C. wire in required to make 1,000 ohms resistance?

A. 1.—979.84 teet.

2.—How much wire of the same size is required for 75 ohms resistance?

A. 2.—78.67 feet.

3.-Which poles are placed together in the

Marconi magnetic detector?

A. 3.—North poles of the magnets are placed together in the Marconi detector. These magnets should be mounted on a adjustable holder.

TUNING COIL.

(101.) Fred G. Waldron, Mass., asks: If the receiving tuning coil described in June issue were prolonged to 36 inches, would it be of any advantage?

A.—Not particularly, as the one described in the June issue is large enough to tune of

for almost any wave length. WAVE LENGTH.

VERN LAWLER, Wis, writes: 1.—What is meant by wave length in meters

A. 1.—A meter is equal to 39.25 inches. For finding wave length in meters we would release to editorial in the colonial in the you to editorial in July issue. Calculation is

2.—What is the general use of the approximate. of course, only approximate. gap; does it regulate the spark or electron

which passes through the air? A. 2.—The anchor gap acts as a switch of the aerial the aerial, to prevent the waves passing the ground the the ground through spark coil when recent

3.—Would a Leyden jar put in circuit of park coil spark coil, key and batteries reduce sparking on key point ing on key points the same as a made condenser?

A. 3.—A Leyden jar when connected to be sints will reduce points will reduce sparking thereon.

4.—About what part of a horse-power part mo would be right for a part of the sparking thereon.

mo would be right for a one-sixth horse water motor with 20 1b.

SPARK FROM COIL asks of the control of the control

A land insulated wire no; if A 1-11 you include a suspended wire—no; if on mean insurance of suspended—yes, if it is

Por Why don't I get the same length spark Why don't have a serial and ground are how my coil when the aerial and ground are how my coil when they are not? from my con that I get when they are not?

miched on account of the large capacity addwhen the aerial and ground are switched in.
What spark coil should I purchase to

a message one-half mile? 1 32 One-half inch would transmit sat-A sa state above distance under almost any

%-What kind of batteries, other than storwells, are best suited to this kind of work? A 3b.-Edison primary batteries.

WIRELESS QUERIES.

(104.) J. M. WALSH, Pa., asks: What is the greatest distance a message the sent with a ½-inch coil, having an aerial feet high, and a tuned transmitter?

A 1.-Approximately 1 mile, depending upon the sensitiveness of the receiving instruments. lider good conditions you may reach as far

2-What is the greatest distance messages and be received with above antenna using B Electro Lytic Detector and tuning coil?

12-With apparatus mentioned general rage should be from 200 to 300 miles. It is possible to sometimes get 800 to 1,000 miles. in the antenna mentioned.

3-What is the greatest voltage and amrage you could use on a 1/2-inch coil?

A 3-Two amperes and anything up to 6

1-How many amperes does a 1/2-inch coil cosume in 1 hour?

14-Two amperes.

i-What is the best form of antenna? 45-We refer you to article on "Aerials" nor October issue.

COIL QUERIES.

(16) Leslie Mills, Iowa, asks: I-What size spark should I use for send-

A 1-A coil rated at 5 to 6 inches should for accurate transmission over this trance under all conditions.

Would the insulation be good enough af or 8-inch coil, made as follows: Windhare wire and thread alternately by a and shellacing each layer and then some said snellacing each layer and then, the said layer with paraffined paper; then, the the coil is wound, to boil it in paraffine? 12 No, any coil wound to give more than spark should be made up in sections. teler you to our book. "Coil Making," Andrie Price, postpaid, \$1.00.

TUNING QUERIES.

ARTHUR A. OSWALD, Mont., writes: Month is the coil of wire on the exciter the other instruments? The wire on the coil of th to the other instruments? The the start only shows the connections of the took sap in your July issue.

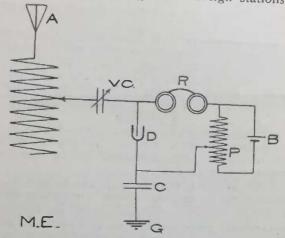
She flexible connections clipped on.

condenser is tin

the secondary condenser is tin foil on both sides of the glass plates?

the wiring diagram, what is the sign the wiring diagram, what is the significant with the two parallel lines crossed that around the two parallel lines crossed that are two parallel lines crossed atow, below the receiving tuning

A. 3.-Variable condenser.

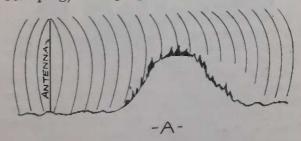

4.—What does the arrow across these lines point to?

A. 4.—Arrow across lines of the condenser means that same is variable.

5.-Is the switch in the closed receiving circuit between the condenser and variable resistance open or shut when receiving? A. 5.—Closed.

TUNING.

(107.) ANTHONY VERINSKY, N. Y., asks: For diagram of wireless receiving station, using tuning coil, potentiometer and Electro Lytic detector. Also is variable condenser necessary for receiving from foreign stations.

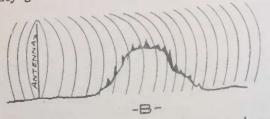

Ans.—The above diagram shows a very sentitive receiving arrangement. While it is not absolutely necessary to use a variable condenser, it is by all means preferable, as by using same, stations not wanted may be tuned out, also the sound in the phones will be greatly increased.

DIRECTION OF WAVES.

WILLIAM H. CAPEN, Mass., asks: (108.)

1.—My aerial is between two houses, the top of it is about 50 feet above the ground and comes only three or four feet above the top of one of the houses. The houses are not close together. By using a "Telim" auto-coherer with one iron and one carbon plug, and carbon grains and a drop of mercury between them, in connection with a 1,000-ohm receiver and a tuning coil, how far should I receive messages from? Do the houses hinder any?

A. 1.—With the instruments mentioned, you should be able to receive stations within a radius of 150 miles. We would suggest leaving out the carbon grains, and using only carbon plug, iron plug, and small globule of


M.E.

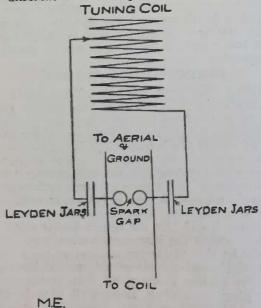
mercury between them. If the buildings mentioned do not contain any iron work there will be hardly any interference.

2.—How much battery power should I use with the above receiving arrangement?

A. 2.—One or two dry batteries, in connec-

tion with potentiometer. 3.—How do the wireless waves travel? Do they run at the same height above the ground as the aerial from which they are sent, or do they go right through a hill which is in the

Which of following diagrams shows way?


correct way?

A. 3.—Diagram A is the generally accepted theory of the propagation of wireless waves. Diagram B is not accepted as being correct. For further information we would refer you to page 54 of the May issue, article by Mr. G. Marconi, "Wireless Telegraph Oddities." TUNING

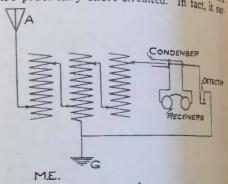
(1091) ROBERT F. ADAMS, Tex., asks: 1.—Can I tune a wireless transmitter with the tuning coil, etc., connected like shown on

enclosed diagram?

A.1.—While it may be possible to use this connection, we would advise connecting the aerial by flexible connection to the tuning coil, taking the ground from the point shown on the negative side of the gap. Connection shown in diagram seems to us to be but slightly different from the open circuit tuning.

2.- If the discharge from the secondary of a 1-inch spark coil should accidentally pass through the windings of a high resistance telephone receiver, would it injure same?

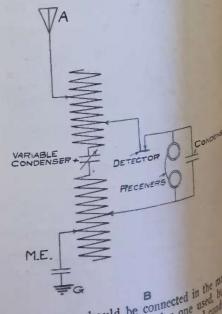
A. 2.—Passing discharge of a 1-inch coil through the coils of a high resistance telephone does not always injure same. We have several times accidentally allowed a discharge from a 2-inch coil to pass through our phones, and same are still uninjured. However, we do not mean to say that this would hold good under all conditions.


WIRELESS CONNECTIONS.

(110.) NEW ORLEANS, La.

One of our correspondents encloses diagram "A," showing connections of his wireless in-

struments and saying he has tried various with condenser, and everyther the condenser, and everyther the condenser, and everyther the condenser and everyther the condenser are the condenser and everyther the condenser are the condense are the con struments and saying he has tried various connections with condenser, and everything else suggested, but failed. The extreme limit his set is less than 5 miles. He also else suggested, but taned. The extreme in of his set is less than 5 miles. He also san his instruments are carefully made and san his instruments are carefully made and san his instruments. Soldered, inlets the his instruments are soldered, inlets through tubes. His aerial is hung tubes. shellaced, an joined tipology insulating tubes. His aerial is hung on portion insulation in particulators, and his insulation in insulating tubes. This action is nung on poccelain insulators, and his insulation is celain insulation is Says he fails to see what he was a see which he was a see which he was a see whe was a see whe was a see celain insurators, all through. Says he fails to see what he can present conditions are can all through. Days present conditions, and as a


A.—We are not surprised that receiving dis A.—We are not surprised tance of our correspondent's station is less provided we have interpreted than 5 miles, provided we have interpreted the diagram correctly. The detector in the above diagram is practically of no use at all and the head receivers connected to the condense are practically short circuited. In fact, it sur

prises us that any result at all is obtained with the above connections. The only way we can explain this slight result is that when the high power government station a few miles away from this station is operating, the energy is ceived is enough to cause a condenser active We believe that by connecting the phones rectly between the aerial and the ground the this government station could be heard quit a little better than is now possible.

The "Oracle" suggests the use of two two

coils only, connected as per diagram B. silicon detector is shown in this diagram, we are under the impression from diagram that our correspondent is using this detected Of course it is understood that any other kind

of detector should be connected in the best suited best suited to the particular one used would suggest would suggest that tuning coils and combe connected be connected as per diagram B.

CLASSIFIED ADVERTISEMENTS. Advertisements in this column 2 Advertisement of any kind.

cents a word, no display of any kind. cents a word, stamps not accepted.

Payable in advance, stamps not accepted.

Payable in advance per line. Minimum Payable in accepted.

Payable in words per line. Minimum, 2

Coult reavy face type 4 cents Count Heavy face type 4 cents a word. Ninimum, 3 lines.

Advertisements under "Wireless" Advertisence Minimum, 4 lines. 5 cents a works and blueprints not listed Wireless books and blueprints not listed Wireless "Wireless" 2 cents a word.

Advertisements for the December issue must is our hands by Nov. 25.

ELECTRICAL APPARATUS.

TIDY ELECTRICITY AT HOME-A complete STUDY ELECTRICITY AT HOME—A complete sectical course at home, containing 30-page detail 220-page text-book, 200 experiments and with 220-page text-book, 200 experiments and with 100 pieces of apparatus. Price, complete, only 1800 (Catalogue "M. "E. S." explains this and the remarkable offers. Thomas M. St. John, 848 with Ave., New York.

The writing please mention "Modern Electrics."

ELECTRICAL and METAL specialties of earliescription made to order. High grade sork. Frompt service. Correspondence in-tied. Stocking & Shay, Chicago. 111.

When writing please mention "Modern Electrics."

EXPERIMENTERS send for our special bargain is of motors and supplies. Also samples of the most redeful aluminum solder, bars by mail 25 and 50 cast. Electrical Maintenance & Repair Co., 200 linet street, Newark, N. J.

Wen writing please mention "Modern Electrics."

PRUAL. New Rheastat for Wireless, also reduce currents of lamps, motors, etc., subvally. Price for November enly, 70c. CARN ELECCRIC Co., Denver, Col.

Then writing please mention "Modern Electrics."

ELECTRICAL BOOKS, BLUEPRINTS, ETC.

Wireleys Codes. Send loc. for b'ue print daring Morse. Continental and Navy Codes. La Austin, Jr., Hasbrouck Heights, N. J.

Day writing please mention "Modern Electrics." WIRLLESS EXPERIMENTERS. If you wire me instruments according to our set of ten blue-flat of tuned transmitting and receiving circuits and ransmit and receive the longest possible distances. Seents. Blueprints for Electrolytic Detections, is cents. Four blueprint of wireless telephone. Seents. Imperial Wireless Co., 230 S. Dan writing plantage, Pa.

han writing please mention "Modern Electrics." WIRELESS TELEGRAPH.—Complete list of Luters" of the ships and land stations, in the said list, 20 cents. No stamps. W. E. Beakes, N. Y.

writing please mention "Modern Electrics."

? WIRELESS ?

WIRELESS ?

10 con receive we have it. Coherers, Detectors, its description of the Richards and the Machines, what it is machines, which knacks out the Richards of the Richards and its first of the Richards and its first of the Richards from the East? Come is street, s., Louis, Mo. Ring please mention "Modern Electrics."

Modern Experience of this month, we will formulated this month, we will formulated this month, we will formulated on one base, having approximaters wave length. The resistance of the control of the con Priling please mention "Modern Electrics."

NAVY TRANSATLANTIC type Double Head receiver, 1,800 ohms, 20,000 turns copper wire. Highest efficiency, latest improvement, very sensitive, \$10.00. Do rewinding of receivers of any kind, also make receivers of very high resistance. William street, New York City.

When writing please mention "Modern Electrics."

WIRELESS. Discard your simple relay. Get a POLARIZED RELAY at one-third its cost while they last. On trial for sixty days, at \$1.75 per 100 ohms, \$3.50 per 500 ohms. Either relay will respond to long distance calls. Address, Meacham Coil Winding Co. Oklahoma City, Okla. ing Co., Oklahoma City, Okla.

When writing please mention "Modern Electrics."

ATTENTION WIRELESS EXPERIMENTERS!
Fused silicon, piece large enough for one
Detector, 20 cents; Pneumatic Rubber Ear
Cushion, fits any telephone receiver and positively excludes all outside noise, each 50c;
Wollaston Wire, 25c, per inch; Condensers
for receiving stations, 40c.; Carbon Cups for
Electrolytic Detect r 20c; Carbon undum,
finest selected crystals, 25c, per once; Pirelli
High Tension Rubber Cable, 10c, per toot,
Send 2c, stamp for 100-page Catalogue No. 4,
ELECTRIC IMPORTING CO., 86-Z West Broadway, New York City.

When writing please mention "Modern Electrics."

FOR SALE.

MOVING PICTURE MACHINE (French), finest precision, guaranteed in every respect. Everything but the lenses, Big electric, hand fed are lamp Generator (enclosed in metal square box) and gas apparatus goes with machine. Will sell for \$20.00. Big bargain. Photo sent upon request.

B. S., care of Modern Electrics Publication

When writing please mention "Modern Electrics."

PONY RELAY, \$1.50; Precision coherer and de-coherer, \$2.50; Telimco coherer and de-coherer, \$1.00. Address, T. W. Huntington, 2629 Pacific avenue, San Francisco, Cal.

When writing please mention "Modern Electrics."

FOR SALE.—Magneto in good condition; has been used only three months. Price, \$6.00. New 10-Watt Dynamo, price, \$3.00. Thomas H. Blount, Jr. Box 242, Washington, North Carolina.

When writing please mention "Modern Electrics."

FOR SALE—1-8 H. P. dynamo castings. Photo and price for the asking. Crihfield Motor Works, 225 Third street, Lincoln, Ill.

When writing please mention "Modern Electrics."



A handsomely illustrated weekly. Largest circulation of any scientific journal. Terms, \$3 a year; four months, \$1. Sold by all newsdealers.

MUNN & CO. 365 Broadway, New York

Branch Office, 625 F St., Washington, D. C.

When writing please mention "Modern Electrics."

Which is the Trained Man's Home

It's in the home where training affects you most. It's in the home where the size of your pay envelope really counts. The trained man who holds a responsible position paying a good salary is able to have a home in which are found the luxuries of life.

The untrained man who cannot do any one thing well, who must work by the day at jobs paying low wages, must put up with many hardships and do without a great many of the comforts of life.

But such a man can better himself if he chooses. An institution backed with a capital of six million dollars, whose sole business for 17 years has been to raise salaries of ambitious men, will help him.

If you wish to better your position, increase your salary, and secure a happy and successful life, it is your duty to mark and mail this

coupon. If your work is uncongenial, if you desire to advance in your trade, if you wish a better salary, find the way that thousands upon thousands of men have made their start for promotion and multiplied earnings. You do not have to leave home, buy books, or give up your present work. This is the most practical and simplest way in the world to secure promotion, so if you really want a better salary and a happy life, make a definite attempt to get it by sending in this coupon NOW.

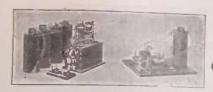
International Correspondence Schools Box 992, Scranton, Pa. Please explain, without further obligation on my partial can qualify for a larger salary and advancement to the post before which I have marked X. Electrical Engineering Electric-Lighting Supt. Electric-Railway Supt. Electrician Electric Car Running Electric Mach. Designer Dynamo Foreman Dynamo Tender Witeman Wireman Telegraph Engineer Telephone Engineer Civil Engineer Street and No.

When writing please mention "Modern Electrics."

City_

"Modern Electrics" guarantees the reliability of its advertisers.

VIBRATOR ATTACHMENT.


(Continued from Page 281)

commodate I/2 inch brass woodcountersinking them to add of the finished part. Before mounting standard on subbase, ascertain just at what point vibase, ascir will work best with this attach-This is done as follows: Operate coil and speed up vibrator as much as possible, then take a small screwdriver and place same against ribrator-spring just above contacts. By moving screwdriver up or down, or forward or backward, just a trifle. until vibrator "sings," the proper adustment will be obtained. Mark the point on vibrator where interruptions are the most rapid, and on line with this mark, make a mark on standard. Drill and tap a hole at this point, to accommodate brass thumb-screw "5," as shown in drawing. Before inserting "5" in standard, equip same with a check nut (not shown on drawing) to secure adjustment, as the vibrations speedily jar "5" out of place. Now insert thumb-screw "5" in standard, and secure part numbered "6" to ";" The author used solder for this purpose. Next screw standard to subbase by wood screws as shown. Connet up your coil, start same operat-Is and adjust attachment by turning bumb-screw until it bears against vivalor-spring with just the right pres-This adjustment is easily astertained, by the increased length of scharge from secondary terminals. The author finds that attachment best when three to nine dry latteries are used.

Wireless Telegraph Experimenters

we after results that justify the cost of the thing Coil adapted especially for use with ling Coil in the Adjustments. This the transled wire, and handsomely finished with the latest design, wound with the latest design, would with the latest design would with the latest design. The latest design would with the latest design would with the latest design. The latest design would with latest design would with latest design would with latest design. The latest design would with latest design would with latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be latest design. The latest design would be latest design would be late and may now obtain a new type of s equipped with Two Separate Sliding macts it may be used with Adjustable Conden-The Price of this Tuning 300 0hm Potentiometers \$3.25. Ohm Potentiometers potential of the State of Thing please mention "Modern Electrics."

WIRELESS TELEGRAPH OUTFIT

GREATEST INVENTION OF THE AGE.

A MODERN CHRISTMAS PRESENT

Not a toy. A scientific high grade apparatus. Will work up to one mile, Comprises: Powerful 1-inch Spark Coil, Oscillator Balls, Key, Coherer and Decoherer, 75 Ohm. Relay, Sending and Receiving Wires. etc., etc. Guaranteed in every respect. Price remarkably low.

CARRIED IN STOCK IN BOSTON Address: ALFRED J. HAYWOOD. e/o Stuart-Howland Co., Boston, Mass.

When writing please mention "Modam Fleatrics

_uu St., New York

Electric "Modern Electrics."

Ketteman Electric, Co., Il8a Twenty-third St., Toledo, O

When writing please mention "Modern Electrics."

Faucet WATER MOTORS

Complete with emery \$2.50 wheel, buff wheel, pulley \$2.50 to run sewing and washing machine, polish. In some cities where we have no agents and where the we have no agents, and where the water pressure is good, a sample motor will be given free; apply at once if you want to make some extra money, or if you can devote your whole time, liberal salary and commission will be paid.

ALCOHOL STOVES, LAMPS AND FLAT IRONS.

ENGINEERS WANTED to send for catalog of indicators, Reducing Wheels, Planimeters. Address,

LIPPINCOTT M. S. CO., 52 Columbia St.,

Newark,

::

New Jersey

When writing please mention "Modern Electrics."

ELECTRICAL Novelties, Motors, Dynamos, Telephones, Toys, Transformers, Batteries, etc. We are the worlds leaders. Cut Prices. Send 5c for WIRELESS large catalogs and sample Burning Wire. The 5c returned with first order. Can save you money on your magazines and papers. We give valuable premiums with orders.

MEYER'S ELECTRICAL HOUSE

EVANSVILLE, WIS

When writing please mention "Modern Electrics,"

VICTOR H. LAUGHTER

CONSULTING WIRELESS ENGINEER

Wireless Telephone and Telegraph Instruments supplied for experimental use. Drawings, plans and specifications. High wound receivers, condensers, silicon detectors, transformers. Send for descriptive matter. Address,

VICTOR H. LAUGHTER. Byhalla, Miss.

When writing please mention "Modern Electrics."

in 60 and 40 ampere, 4 and 6 volt ignition sets from \$3.00 up. Just the thing for coil work. State your requirements and let us hear from you as these wont last long.

Sunday Call Building M. & K. Co., NEWARK, N. J. Sole Agents for NOFLUX ALUMINUM SOLDER

When writing please mention "Modern Electrics."

DAYLIGHT AT NICHT

The Beck-Iden Lamp

This lamp is in appearance not unlike other artistic table lamps, but it is as different from ordinary but it is as different from ordinary lamps, as day from night. It burns Self-generated Gas, regulated like City Gas, having more than twice the illuminating power of gas or electricity. The light is WHITE and very soft as easy to the eyes as daylight There is no chimney, wick or manula no dirt smoke. as daylight There is no chimney, wick or mantle, no dirt, smoke heat or smell. Nothing but a flood of light. Burns at a cost of about one cent an hour. Good Agents one cent an hour. Good Agents wanted. Write for booklet 44 for full description to

Acetylene Lamp Company 50 University Pl., New York City

When writing please mention "Modern Electrics."

A Sensational Novelty. Will Last a Lifetime THE IMPROVED FLAMING POKET LIGHTER.

Patented July 9, 1907, and Sept. 10, 1907 Infringers cautioned.

Every smoker wants it. Will light in windy weather. Better than matches. A little deodorized wood alcohol once in a while does the trick. Nothing to wear out. Sample mailed upon receipt of 55c. Special prices to dealers in dozen or gross lots. If you wish to make big money this summer write at once to

The Auto Igniter o., 1947; B'dway, N. Y. City

When writing please mention "Modern Electrics."

just discovered that we have about 100 used Storgs. which were put aside when we install Just discovered that we have not aside when we installed storage hattery on our premises. These plates a larger battery on our premises. These plates were in stalled a larger two months and are in good conditions. a larger battery on our product which plates were use only for two months and are in good condition in use only for two months and the soul condition is fact if we wanted we could pass them as new plates by fact if we wanted we could get a new plates to our customers who deal with us know that we give to deal, that's why we tell you eroot. body a square deal, that's why we tell you exactly what we wish to sell. Plates are in perfect shape, but bare to

Only one size plate on hand, 8x5 inches. As long as they last, each 10 CENTS, either positive or negative.

Electro Importing Co. 86-z West Broadway, New York

When writing please mention "Modern Electrics"

STUDY ELECTRICITY

Practical Books for Everybody, at Popular Prices 10c. Each.

How to make:

A Dynamo. A Telephone.

3. A Motor.
4. A Storage Battery.
27. A Jump Spark Coil, &c., &c.

50c. Each.

Questions and Answers About Elect. Dynamos and Motors, all about them.

Make and Use How to Induction Coils, &c., &c.

25c. Each. How to Make: A Transformer. A Condenser.
Electric Batteries at Home-Automobiles, &c

\$1.00 Each.

Arith, pf. Mag. and Eletricity.
New Experimental Elec tricity.

\$1.50 Each.

The Storage Battery, Con-struction and Use.

All books sent postpaid.

M. Bubler Publishing Co., Lynn, Mass.

When writing please mention "Modern Electrica

Anything Electrical.

OUR NEW CATALOGUE-100 Pages of Electricity

Flash-lights to Dynamos. Containing also the la gest assortment of unexcelled German toys. Highest Quality. Lowest Prices.

J. J. DUCK, 432 St. Clair Street, Toledo, 0.

When writing please mention "Modern Electrical

When writing please mention "Modern Flectra INDUCTION COILS SPECIALS Testing Instruments
Testing Instruments
Telegraph Apparais
Experimental void
Experimental kinds
of all kinds

Foote, Plerson & M 160 Duane St., New


When writing please mention 'Modern gh

When writing please mention "Modern Electrics."

Electric Power Motor

Sample Prepaid for 35c. Agents Wanted eeer EMPIRE ELECTRIC

1063 BRIDGEPORT, CONN

writing please mention "Modern Electrics."

Get our new Double Head Receivers, 75 Ohms each Phone. Finest Head Receivers made for short distances.

Complete with cords, postpaid \$2.20.

Fletcher Stanley Co. 36 Frankfort St., :: New York

hg please mention "Modern Electrics."

on the table or hangs on the wan Invaluable as microscopic, focusing or dark room photographic lamp. Strongly constructed, all parts metal except insulations, nickel plated and japanned.

Price, complete with Reflector (no lamp). \$1.00. By mail, extra 15 cents.

Headquarters for Electrical Goods

Manufacturers' and Inventors' Electric Company

82 Nassau St. New York When writing please mention "Modern Electrics."

"ELECTRO" SENDING HELIX

(PATENT APPLIED FOR)

At last a sensible sending inductance, having at least 75% more inductance than other inductances 3 than other inductances

not satisfied.

1101 Ashland Block,

VICTOR M. GRAB & CO. Chicago, III.

Agents Our offer will interest you-Write.

When writing please mention "Modern Electrics."

"YOU NEED ONE on YOUR DESK"

THE .. TRADE LOUISVILLE:KY-

MARK

MULTI-INDEXING

FOLLOW-UP-SYSTEM

Automatically calls to your attention all matters to be taken up on any future date. Letters, memoranda and the like, filed alpha= betically and at the same time by date.

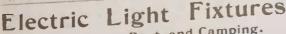
SIMPLE-PRACTICAL-ECONOMICAL

Approved by thousands of office men at the National Business Show, New York, Oct. 1908. Used in the offices of "MODERN ELECTRICS."

Write Today for Circular "ME-11"

OFFICE SYSTEM

LOUISVILLE, KY. 222-F 4th AVE.,


When writing please mention "Modern Electrics."

TELEGRAPHY TAUGHT

in the shortest possible time. The Omnigraph Automatic Transmitter combined with standard key and sounder. Sends you telegraph messages at any speed just as an expert operator would. 5 styles \$2 up; circular free.

omnigraph Mfg. Co. NEW YORK 391/2 Cortlandt St.,

When writing please mention "Modern Electrics."

For Residence, Boat and Camping.

We construct special designs to order. We manufacture all specialties of metal goods in quantities only.
Write us your requirements.
We issue no catalogue.

Gothberg Manufacturing Co. New York City

112 Duane Street,

mention "Modern Electrics." Battery BARGAINS

in 60 and 40 ampere, 4 and 6 volt ignition sets from \$3.00 up. Just the thing for coil work. State your requirements and let us hear from

When writing please mention "Modern Electrics."

If it's printed we do it-and do it well. No matter where

you are located We Can Save You Money. Our work is clean, our services more than prompt, our prices reasonable. Catalogs, Circulars, Pamphlets a specialty. Write us your requirements to-day. Schoen & Kellerman, 13 Vandewater St., New York City

When writing please mention "Modern Electrics."

Advice Free. Highest References. Rates Reasonable Best Services

SEND FOR FREE BOOKS

WATSON E. COLEMAN

Patent Lawyer

Washington, D. C.

When writing please mention "Modern Electrics."

STUDENTS EXPERIMENTAL - INSTRUMENTS -

MANUFACTURED BY

Palmer Electrical Instrument Co Enclose Stamp for Circular or Catalog

12 N. 38th St., - Philadelphia, Pa.

When writing please mention "Modern Electrics."

出ats Uh!

you often say, when you see a new piece of apparatus, and wished you could dispose of your old style instruments, to enable you to buy the up-to-date kind. Well, why don't you spend 20 cents and try a "For Sale" Ad in the classified columns of MODERN ELECTRICS? Remember there are close to 13,000 people reading the magazine, and it is absolutely impossible not to dispose of your apparatus, if your conditions are right. Better try it this month. Remember, rate is only 2 cents a word. 14 cents for 2 lines, 21 cents for 3 lines, etc.

Modern Electrics Publication, 84 W. Broadway, N. Y.

PRODUCTION OF SUSTAINED HIGH FREQUENCY OSCILLATIONS.

(Continued from Page 260)

has as yet been verified or accepted as fi-The theory proposed by Mr. Dud. dell is that the production of the 05cillations depends upon a certain "negative resistance" possessed by the are it self. When the current is first admitted to the shunt circuit the latter tends to absorb from the arc some of its current in order to charge the condenser C (Fig. 6). This current, he claims, does not de crease the potential difference between the carbons, but slightly increases it which causes it to further charge the condenser. As soon as the charge is complete, the current through the areis once more normal and the condenser discharges back through the arc. This, of course, increases the current through the arc and decreases the potential difference of the carbons, thus causing the condenser to charge again and repeat the process; these operations occurring with tremendous frequency as long as the arc is maintained.

In the systems employing this method the inductance used in the shunt of cuit is usually in the shape of the pri mary of an oscillation transformer, the secondary of which is connected in the aerial as shown in Fig. 6. The frequency and consequent wave length are controlled by the value of the current supplied to the arc, which may be done by varying its wave length.

Various modifications of the above methods are sometimes employed will more or less success, and as improve ments in this field are rapidly being made, there is but little doubt, that in view of the many advantages possessed by undamped waves, that they will find ally be added. ally be adopted by most of the leading systems now employing the older form condenser discharge methods.

A GREEN WRAPPER

means your time is out. Renew post subscription to-day without fail subtively no coniced subscription to-day without fail subscription to-day with subscription fail subscription fail subscription fail tively no copies sent to expired subscriptions. MODERN ELECTRIC is mailed almost the first of th is mailed always before the first of the month. If your copy is a post-ceived in due time drop us a postceived in due time drop us a postulation and we will and we will send another copy.

NEW LINE is shown below. Illustrations taken from actual photos speak for themselves. Several of our instruments rank with those of finest precision.

OUR NEW LINE is shown below. Illustrations taken from actual photos speak for themselves. Several of our instruments rank with those of finest precision.

OUR NEW LINE is shown below. Illustrations taken from actual photos speak for themselves. Several of our instruments rank with those of finest precision.

OUR NEW LINE is shown below. Illustrations taken from actual photos speak for themselves. Several of our instruments rank with those of finest precision.

OUR NEW LINE is shown below. Illustrations taken from actual photos speak for themselves. Several of our instruments rank with those of finest precision.

OUR NEW LINE is shown below. Illustrations taken from actual photos speak for themselves. Several of our instruments rank with those of finest precision.

OUR NEW LINE is shown below. Illustrations taken from actual photos speak for themselves. Several of our instruments rank with those of finest precision. Several of our instruments

DETECTOR STAND

Has heavy oak base, and double spring adjustable clamping discs, one nickel plated, the other silver plated. This gives excellent results. Can be used with any substance, such as carborundum silver tel-

F No. 9280

Juride. carbon blocks, etc. etc.

Our stand gives you ressurts and four tax your pocketbook.

Two springs press the wires, (bedon't tax your pocketbook.

Tension can be varied for any sensitiveness.

Tension can be varied for any sensitiveness.

Tension can be varied for sany sensitiveness.

No. 9950

DOUBLE SLIDE "ELECTRO" TUNER Jr.

(PATENT PENDING)

Has 300 turns of our No. 25 enameled wire and our famous ROLLING BALL contact slider. Ball cannot wear out wire, found in inferior makes, as the ball located in tube under slider, is pressed gently on the wire ABSOLUTE CONTACT at all times.

Oak finish throughout. Metal parts heavy nickel. Hard rubber slider handles Size 8x3½x3½.

No. 9950 as described. (patent pending)......\$2.25

ADJUSTABLE CONDENSER

for sending only (patent pending). The slickest condenser out Six imported Leyden jars SNAPPED IN OR OUT jars snapped in or out to increase or decrease capacity A 1 inch coil in connection with this condenser and our No 9220 Gap will give a crashing discharge, which can be heard for blocks

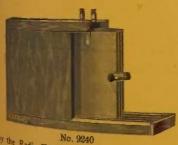
Jars can be snapped No. 9280 Jars can be snapped in and out White Sending! No wires used to connect jars.

 No. 9260, Adjustable condenser, with 6 jars
 \$2.50

 No. 9261, Stand only complete
 50

 No. 9262, Leyden jar with snap-clip
 35

"ELECTRO"


SENDING HELIX

(PATENT APPLIED FOR)

ing inductance, having at least 75% more inductance

At last a sensible send-

"ELECTRO" VARIABLE CONDENSER

Has 4 movable, and 5 stationary brass plates 5 in. square, 1/16 in. apart. Increases the sound in phones fully 50%. Invaluable for precise tuning.

by the Radio Telephone Co. Size 10 inches long, 2 inches wide, 6 inches high, weight 3 lbs.

Note.—Do not compare our condenser with two pieces of tin viking over each other and selling for \$1.00-1.50. We don't sell junk.

No. 9220

"ELECTRO" ZINC SPARK GAP

Increases the sending distance of your coil 50% or MONEY BACK. Used now exclusively instead of spark balls. The peculiar properties of zinc make such a gap a great deal more efficient, especially for distances over 1 mile. Our zinc rods have insulated rubber handles; gap can be adjusted while sending. adjusted while sending.

No. 9220 "Electro" Zinc Spark Gap as described, \$.60 By mail extra.....

"ELECTRO" POTENTIOMETER

(PATENT PENDING)

This is IT. You wanted it long. It is NON INDUCTIVE, a feature never realized heretofore in potentiometers. Instead of wire, on spool or drum, we use HIGH RESISTANCE GRAPHITE rods. Each rod is about 8 inches long. We furnish with each instrument two rods, one 300 ohms inches long. We furnish with each instrument two rods, one 300 ohms inches long. Rods are EXCHANGEABLE, which is another resistance, the other 500. Rods are EXCHANGEABLE, which is another resistance, the other following ball contacts on rods, which makes the sliding the state of th

No. 9250 "Electro" Potentiometer (patent pending).

"Wireless Diagrams, and also Wireless Codes, etc. etc. Write at once.

No. 9250 "Electro" Potentiometer (patent pending).

"Wireless Diagrams, and also Wireless Codes, etc. etc. Write at once.

No. 9250 "Electro" Potentiometer (patent pending).

"Wireless Diagrams, and also Wireless Codes, etc. etc. Write at once.

No. 9250 "Electro" Potentiometer (patent pending).

"Wireless Diagrams, and also Wireless Codes, etc. etc. Write at once.

No. 9250 "Electro" Potentiometer (patent pending).

"Wireless Diagrams, and also Wireless Codes, etc. etc. Write at once.

Electro Importing Co. 86-z West Broadway, New York

Few of us have sufficient judgment at the outset our careers to select the trade or profession for hich we are best suited.

If you are misplaced, the sooner you are displaced,

the better.

To-day you are face to face with an opportunity to advance—a chance to become just what you have been waiting to be. Your help, guide and instructor will be the New Six Volume Edition of

Cyclopedia of Applied Electricity

The information contained in the 3,000 7x10 inch pages will be found of the utmost value to the man who is face to face with "Opportunity" and wishes to grasp it. The 2,000 illustrations, diagrams, tables to grasp it. The 2,000 illustrations, diagrams, tables to grasp it. The yellow the value of the books and formulas greatly increase the value of the books are hand as a Home Study Instructor. The books are hand somely bound in half red morocco and are carefully indexed for ready reference—supplemented with a series of practical text questions.

All types of electrical appliances are given special attention, and every subject treated by a practical, attention, of Electrical appliances are given special technical expert—written plainly and clearly. The chapters on Theory, Calculation, Design and Construction of Generators and Motors; Electro-pneustruction of Generators and Motors; Electro-pneustruction of Electric Railways; Single-phase matic control of Electric Railways; Single-phase matic control of Electric Railways; Single-phase matic control of the entire set to the wide-awake Electrical Engineer.

FREE FIVE-DAY OFFER

Without deposit—on receipt of Coupon—we will send you, express prepaid, a set of these practical books absolutely Free for five days' examination. If the books are satisfactory and you wish to keep them, send us \$2.00 within five days and \$2.00 a month until you have paid the special \$18.60 price; otherwise notify us and hold the books subject to our order. Regular price is \$36.00.

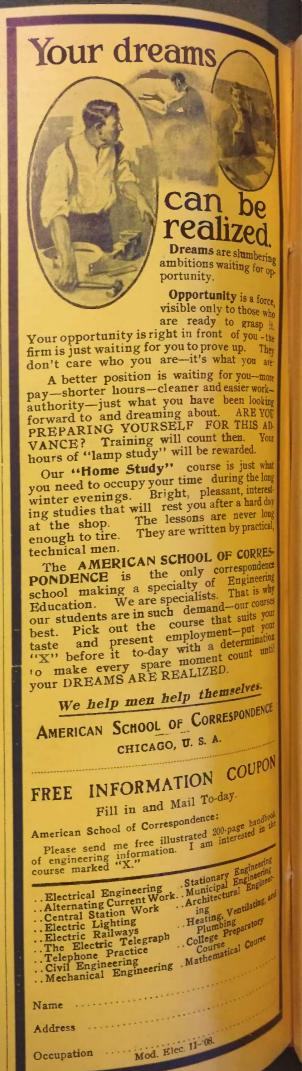
Order promptly and we will include FREE for one year as a monthly supplement, the

TECHNICAL WORLD MAGAZINE

TECHNICAL WORLD MAGAZINE

A popular magazine with a technical turn containing the latest discussion on timely topics in Science, Invention, Discovery and Industry, also the best Fiction, Biography, Travel and Humor, in fact, the best of everything. Illustrated with scores of interesting photographs.

SOME OF THE SUBJECTS TREATED.


Electric Wiring—Electric Bell Wiring—Electric Telegraph—Wireless Telegraphy—Theory, Calculation, Design and Construction of Generators and Motors—Types of Dynamos aand Motors—Elevators—Direct Current Motors—Direct-Driven Machine Shop Tools—Electric Lighting—Electric Railways—Electric Welding—Management of Dynamos and Motors—Power Stations—Central Station Engineering—Central Station Design—Storage Batteries—Power Transmission—Alternating Current Machinery—Telephony—Automatic Telephone.

AMERICAN SCHOOL OF CORRESPONDENCE CHICAGO, U. S. A.

FREE OFFER COUPON

Clip and Mail To-day.
American School of Correspondence:
Please send Cyclopedia of Applied Electricity for
FREE examination, also T. W. for 1 year. I will
send \$2.00 within five days and \$2.00 a month until
I have paid \$18.60; otherwise I will notify you and
hold the books subject to your order. Title not to
pass until fully paid.
Nome

Name	 ٠.,							÷								÷			*			
Address .	 																				į.	
Occupation																						
Employer	 				 										. ,			 				
		y	1c	d.	E	le	c	t.	,	1	1.	.7(98									

When writing please mention "Modern Electrics." "Modern Electrics" guarantees the reliability of its advertisers.