MARCH 20, 1975
A frequency standard from color TV/107 Using the versatile C-MOS flip-flop/123 Low-cost solid state temperature sensor/127

Our puzzle just may have the answer to your puzzle!

Weंve formed this tangram puzzle out of some amazing materials - FOTOFORM ${ }^{\oplus}$ glass and FOTOCERAM ${ }^{\ominus}$ glass-ceramic. The pieces can be arranged in more than 100 different designs. But this kind of flexibility is only superficial.
FOTOFORM and FOTOCERAM materials are chemically inert, non-conductive, non-porous, and dimensionally stable. They don't shrink, stretch or warp, even in sheets as thin as 0.010 -inch.
We can cut, etch or machine them to fit almost any application. They hold such close tolerances that we can precision-etch 10,000 holes per square inch. Holes of almost any shape, or depressions, or circuit paths. And the finished products can be polished or metalized.
We think FOTOFORM and FOTOCERAM materials have more than 100 industrial applications. Want more information? Write under your letterhead, tell us the application you have in mind. We'll send you a puzzle just like this one.* You may solve all of the puzzle designs, and a few production problems as well. *Limited quantity available.

FOTOFORM and FOTOCERAM materials by
Fotoceram Products Group

Corning Glass Works
Corning, New York 14830
(607) 974-8583

Network analysis, control systems, logic simulation, magnetics, microwave... whatever your engineering problem, our calculator-aided design brochure will show you how to slash days - perhaps weeks - from your design schedule. It describes fully-proven combinations of computing calculators and engineering software that can give you fast, accurate solutions to your most complex problemsperhaps to the very design problems that confront you now.

From electronic super slide rules to the most powerful calculator-aided design system, there's a combination that fits your needs... and your budget. HP puts the computing power where you need it-right at your fingertips. Get out from under tedious number crunching and back to creative engineering design. We'd like to show you rather than tell you, so call your local HP Sales Office. Or send for our 12-page, illustrated brochure... it's free.

Shouldnnt a CRT display reflect your system's true performance?

(Model 1317. 17" Diagonal Display)

Count on it with an HP display... including new large-screen models with improved performance your OEM systems demand. The high writing speed and fast settling time of our 14- through 21 -inch displays means simplified output programming and greater information density in computer graphics, analytical research, radar and other display -applications. Yokeless electrostatic deflection simplifies operation, eliminates geometric correction circuitry and unnecessary delay lines, and reduces required power by a factor of 5 or more. Bright, easy-toread displays result from the 28.5 kV accelerating potential. And dy-
namic focusing assures a sharp trace at any screen location, over a wide range of intensities.

You also get versatility in HP displays. A variety of standard options allow you to tailor a display to your system's needs. Our rugged new 1317A and 1321A models give you options of TTL blanking input, differential inputs and gamma correction to match your system design and simplify interface problems. You have a choice of CRT sizes and shapes for stand-alone or rackmounted applications. And you can get various phosphors that range from slow P7 and P39 to fast P31 In addition to top performance
and versatility, you get the quality, reliability, and product safety you expect from a leader in CRT technology. Optional UL listing is available. Plug-in board construction simplifies servicing... and HP's worldwide support means rapid parts replacement and service-an important consideration when you're designing a display into your system. So, for a display that reflects your system's true performance, look into HP's large-screen display family. For more information, contact your local HP field engineer. Or, write Hewlett-Packard.

Sales and service from 172 offices in 65 countries. 1501 Page Mill Road, Palo Allo, California 94306
for technical information circle 2 readers service card for immediate applications assistance circle 231 readers service card

29 Electronics Review
SOLID STATE: TRW's bipolar logic sets density highs, 29
Motorola readying LSI emitter-follower logic, 30
MEMORY: Superchip boosts RAM size to 40,000 bits, 30
INDUSTRIAL: Metal-rolling microprocessor takes care of tuning, 31
MEMORY: French introducing domain memory, 32
CONSUMER: Subaudible tones protect recordings, 34
PACKAGING \& PRODUCTION: Flexible circuits get cheaper laminate, 34
MICROWAVES: Microwave transistors withstand infinite VSWR, 36
MICROPROCESSORS: Bipolar microprocessor has two-port RAM, 38
NEWS BRIEFS: 38
MICROWAVES: CO laser is built small enough to fly, 40
COMPONENTS: Plastic-packaged transistor goes to 200 watts, 40
5E Electronics International
JAPAN: Oki's optoisolator can drive up to 10 TTL stages, 5E
FRANCE: Image converter multiplies gain of streak camera, 6E GREAT BRITAIN: Intensifiers have proximity focusing, 8 E Digital adaptive equalizer in BPO modem reduces distortion, 8 E
WEST GERMANY: Biological matter sorted by computer, 13E
NEW PRODUCTS INTERNATIONAL: 19E
66 Probing the News
SATELLITES: NASA seeks standard parts, 66
THE ECONOMY: A little optimism edges into view, 68
SOLID STATE: The business of partials, 72
INSTRUMENTATION: Microprocessors await the call, 76
101 Technical Articles
CIRCUIT DESIGN: Preparation is key to microprocessor use, 101 INSTRUMENTS: Calibrating oscillators with TV color references, 107
DESIGNER'S CASEBOOK: Silent timer warns of tape run-out, 114
Antilog functior zenerator keeps VCO output linear, 115
Radiation monitor has linear output. 117
INTERCON/75: IEEE is toiling against the economic slump, 118
COMPONENTS: C-MOS flip-flop does more than logic jobs, 123
INDUSTRIAL ELECTRONICS: Temperature transducer is efficient, 127
ENGINEER'S NOTEBOOK: Multiplying factors correct ac waveforms, 133
HP-45 calculator speeds rf amplifier design, 134
139 New Products
INTERCON/75 PRODUCT PREVIEW:
Low-priced portable scope has modular design, 139
LSI multimeter warms up in 10 milliseconds, 140
'Calculating oscilloscope' is programable, 140
Digital voltmeter offers versatility, 143
Thin-film resistor networks are sold off-the-shelf, 145
COMPONENTS: Stable ac source is all-passive, 158
COMMUNICATIONS: Laser system runs at 1.5 megabits per second, 169
SEMICONDUCTORS: User can program logic arrays, 177
INSTRUMENTS: Rugged cable testers are portable, 187
MATERIALS: 194

Departments

Publishers letter, 4
Readers comment, 6
News update, 8
Editorial, 10
People, 14
Meetings, 20
Electronics newsletter, 25
Washington newsletter, 49
Washington commentary, 50
International newsletter, 55
Engineer's newsletter, 137
New books, 198
New literature, 200

Highlights

The cover: Confronting microprocessors, 101
Would-be designers of microprocessorbased systems need first to familiarize themselves with the chip characteristics. Also, they should either make a special study of low-level programing languages or hire a software consultant. Cover is by Art Director Fred Sklenar.

What microprocessors can do for Instruments, 76
A microprocessor can simplify an instrument's operation, improve its accuracy, and add novel self-test and self-calibration features. But the chips are too expensive to be worth designing into equipment costing less than $\$ 200$.

TV signal is a handy frequency standard, 107

Accurate calibration of a crystal oscillator takes a quarter of an hour if the phase comparison is made with a television color-reference signal. With NBS radio signals, the same job takes days.

Intercon/75 and IEEE shift their emphasis, 118

The show will be more sales-oriented than before, and the technical sessions will stress straightforward engineering. In becoming more career-oriented, IEEE is investigating EEs' employment problems and is seeking to develop greater continuity of policy.

A preview of products to be introduced at the convention starts on page 139.

And in the next issue . . .

Special report on batteries . . . foldout chart of electronic symbols . . . the rapid evolution of data acquisition.

Electronics

EDITOR-IN-CHIEF: Kemp Anderson

EXECUTIVE EDITOR: Samuel Weber
MANAGING EDITORS: Lawrence Curran, News; Arthur Erikson, International

SENIOR EDITORS: John Johnsrud, H. Thomas Maguire, Laurence Altman, Ray Connolly, Stephen E. Scrupski

ART DIRECTOR: Fred Sklenar

ASSOCIATE EDITORS: Howard Wolff, Gerald M. Walker, Alfred Rosenblatt

DEPARTMENT EDITORS
Aerospace/Military: Ray Connolly
Circuit Design: D.J. Blattner
Components: Lucinda Mattera
Computers: Stephen E. Scrupski
Consumer: Gerald M. Walker Industrial: Margaret A. Maas
Instrumentation: Andy Santoni
New Products: H. Thomas Maguire, Michael J. Riezenman
Packaging \& Production: Jerry Lyman
Solid State: Laurence Altman
COPY EDITORS: Margaret Eastman, Everett C. Terry, Bill Dunne
ART: Charles D. Ciatto, Associate Director Patricia Cybulski, Assistant Director
PRODUCTION EDITOR: Arthur C. Miller
EDITORIAL SECRETARIES: Janet Noto, Julie Gorgoglione, Penny Roberts

FIELD EDITORS

Boston: Gail Farrell (Mgr.), Pamela Leven Los Angeles: Paul Franson (Mgr.) Judy Phelps
Midwest: Larry Armstrong (Mgr.)
New York: Ron Schneiderman (Mgr.)
San Francisco: Bernard Cole (Mgr.) Judith Curtis
Washington: Ray Connolly (Mgr.)
Larry Marion
Frankfurt: John Gosch
London: William F. Arnold
Paris: Arthur Erikson
Tokyo: Charles Cohen
McGRAW-HILL WORLD NEWS
Director: Ralph R. Schulz
Bonn: Robert Ingersoll
Brussels: James Smith
London: Marvin Petal
Madrid: Dom Curcio
Milan: Peter Hoffmann, Andrew Heath
Moscow: Peter Gall
Paris: Michael Johnson, Richard Shepherd Stockholm: Robert Skole
Tokyo: Mike Mealey
PUBLISHER: Dan McMillan
DIRECTOR OF MARKETING: Pierre J. Braudé
ADVERTISING SALES SERVICE MANAGER: Wallis Clarke
BUSINESS MANAGER: Stephen R. Weiss CIRCULATION MANAGER: Nancy L. Merritt MARKETING SERVICES MANAGER:

Tomlinson Howland
RESEARCH MANAGER: Margery D. Sholes

With winter officially over, can Intercon be far behind? The annual convention of the IEEE is about to open again, but the institute's officials are wondering if Intercon's winter is over yet.

According to associate editor Jerry Walker, who wrote the article starting on page 118, exhibit-space rentals are running even with last year, and officials even expect a slight increase. "If so, and if attendance matches or exceeds last year's figure of 25,000 , it may be a harbinger of better times ahead."

But if the institute's leadership is wondering about Intercon's future, its members are wondering about something else-when the IEEE's two-year-old mandate to be more active in career-related affairs will really blossom. As you'll read in our Intercon-time round-up, and in our editorial on page 10 , most of the initiatives that IEEE has undertaken since the members voted to change its constitution have yet to bear fruit. Still, important first steps have been taken as IEEE gingerly tries out its leadership role.

Part of our Intercon coverage, incidently, is a preview of some of the more interesting new products that are due for their debut at the show. You'll find that report on page 139.

M_{f}icroprocessors, among the fastest movers in the already fast-paced solid-state field, are rapidly working their way into instruments. This issue, we have put together a double-barreled status report on how the microprocessor is changing the ways in which instruments are designed.

First, on page 76 you'll find a look at what's here now and what's com-
ing as microprocessors add worthwhile new capabilities to instrumentation. "For example," as we point out in the article, "they could be used for instrument self-test, diagnosis, and calibration."
Then, on page 101, we have a detailed presentation on just what to watch out for when working with microprocessors. "Hardware problems, while formidable, can be solved by traditional methods," say the article's authors. "But not so for software. The problems associated with becoming familiar with the microprocessor and its interfaces, and with learning programing, can, at best, lead to some extremely harried designers or, at worst, to a poor design."
Just how fast the microprocessor wave is moving in instrumentation is still not clear. But one thing is certain: instruments will never be quite the same again.

Rarely has one of our periodic spot-checks of the economic health of the electronics industries meant so much to so many readers. With the national economy in such rocky shape-and amid predictions of worse things to come-what is the short-term outlook for electronics? For our latest "how's business?" report, company officials from all industry segments were asked what they see now and what they expect in the months ahead.
Their conclusion: things don't look as bad as expected. But turn to page 68 for their reasons.

theKEPCO PTR

is an OEM modular power supply with a difference!

The Kepco PTR is an OEM modular power supply . . . with a difference.
The difference is that for $\$ 273.00$ you don't get a stripped-down, open-frame module with external heat sink fins, skimpy capacitors and a tricky derating chart versus ambient temperature-nor do you get a limited-range voltage stabilizer with fold back overcurrent protection.

For \$273.00, you get a Kepco PTR . . . a fully. programmable, automatic crossover voltage and current stabilizer that functions with its self-contained, convection-cooled heat sink to produce full output to $+71^{\circ} \mathrm{C}$ with no derating.

PTR's produce from $0-7$ volts at 5.5 amperes to $0-100$ volts at 0.6 amperes in six different models. All units have two control channels with plug-in I-C control amplifiers for excellent stabilization (0.005%) and temperature immunity $\left(0.01 \% /{ }^{\circ} \mathrm{C}\right)$.
For an extra \$25.00, you can get a built-in overvoltage-sensing crowbar.

The PTR is a truly remarkable value-the features and performance of lab and systems-type power supplies in an inexpensive, value packed OEM module. Write for Catalog 146-1278 for the full details.

Contact your local Kepco Representative:
BRITISH ISLES-TECHMATION, LTD. 58 Edgware Way, Edgware Middx. HA8 8JP-Tel.: 01-958-5636 FEDERAL REPUBLIC OF GERMANY- Muenchen (Main Office)
KONTRON ELEKTRONIK GmbH Industriegebiet 1, 8051 Eching b. Muenchen-Tel.: (08165) 77-1
NETHERLANDS-C.N. ROOD B.V. ELECTRONICS 11-13 Cort van der Lindenstraat, Rijswijk (Z.H.) 2100-Tel.: 070-996360 SWEDEN-TELEINSTRUMENT AB Box 490, S-162 04 Vallingby 4-Tel.: 08/38 0370

Start Getting Your Money\$worth Out of Power Modules

Now, you can really start getting your moneysworth out of power modules with Abbott's new LOW COST series. Designed to give you 100,000 hours of trouble-free operation (that's 11/1/2 years), these reliable units meet the needs of OEM engineers. Their purchase price is about $\$ 7$ per year of service. The model LC series feature:

- $47-420 \mathrm{~Hz}$ Input Frequency
- 0.1.c Regulation
- $+50^{\circ} \mathrm{C}$. Ambient Operation
- Single and Dual Outputs
- 1 Day Stock Delivery

These units provide more quality per dollar compared to similar items on the market. See table below for prices on some of our LC models. Many other LC models are listed in our catalog.

If analyzing the many similar power supplies on the market is confusing; if you are concerned about the long-term reliability of those units, then decide on an Abbott power supply for your system. Your best buy in OEM power modules is ABBOTT.
Abbott also manufactures 3,000 other models of power supplies with output voltages from 5 to 740 VDC and with output currents from 2 milliamps to 20 amps. They are all listed with prices in the new Abbott Catalog with various inputs:

> 60 to DC
> $400 \sim$ to DC
> 28 VDC to DC
> 28 VDC to $400 \sim$
> 12-38 VDC to 60 f.

$5 V @ @$ 6 Amps	$5 V @ @$ 10 Amps	$12 V @ @$ 10 Amps	$15 V @$ 4 Amps	$28 V @$ 1 Amp	$\pm 12 V @$ 1.2 Amps	$\pm 15 V @$ 4 Amps
LC5T6	LC5T10	LC12T10	LC15T4	LC28T1	LLC12T1.2	LLC15T4
$\$ 79$	$\$ 89$	$\$ 108$	$\$ 89$	$\$ 79$	$\$ 108$	$\$ 148$

Please see pages 307-317 Volume 1 of your 1974-75 EEM (ELECTRONIC ENGINEERS MASTER Catalog) or pages 853-860 Volume 3 of your 1974-75 GOLD BOOK for complete information on Abbott Modules.

Send for our new 60 page FREE catalog.

Readers comment

Will not crack

To the Editor: In the new product writeup about our glass-tube heaters [Electronics, Feb. 20, p. 125] it is stated that these devices will crack when the applied power equals or exceeds their continuous power rating. This is not true. Our tubes will definitely not crack at rated power or even at three times rated power. They must be significantly overdriven, as indicated in the second paragraph, to make them crack.

As a matter of fact, a major mi-crowave-oven manufacturer, as well as a leading thermal-cutoff manufacturer, are using our tube heaters to dissipate more than 50 watts for one-time-only operations.

Prabodh Shah Corning Glass Works Corning, N.Y.

'Dip effect' probed

To the Editor: Your interesting article "Gain up, size down" [Electronics, Dec. 26, 1974, page 23] discusses the phenomenon of the inhibited "emitter dip effect," but in my opinion the explanation seems either incomplete or incorrect.

In early 1971 we conducted research on the emitter dip effect with the result that the observed increase of diffusion depth is, in fact, an oxy-gen-induced phenomenon. When using doped oxides as a source for the emitter diffusions in a neutral gas ambient $\left(\mathrm{N}_{2}\right)$, the "emitter-push-out" disappeared completely, even for very high surface concentrations of the base diffusion. The same result has been obtained by protecting the diffusion windows against oxygen (after a standard predeposition) by means of a nitride layer.
In contrast to this technique, standard emitter predeposition and drive-in diffusion cycles always proceed in an oxygen ambient.

It is evident that a layer of polysilicon will act in a similar way, protecting the surface of the monocrystalline silicon against the action of oxygen.

R. Taubenest
Neuchatel, Switzerland

Want a prime source for all your components?

The fourteen Electronic Components Divisions of TRW, Inc. produce over 50 major product lines. Passive, active and electromechanical components-we can supply virtually any part you need. High volume, high technology, or both. We either already make it, or we can make it to your specifications. If you're looking for diversity in your prime source, you've just found it in a company called TRW.

Only Sprague bantam 4-pin DIP capacitors can give you these advantages...

quaranteed max. high frequency impedance

low inductance and low ESR ... 4-terminal connection mode option

preferred capacitance values to optimize performance when tantalum and ceramic capacitors are paralleled

Type 935C MONOLYTHIC CERAMIC CAPACITORS

Proven multi-layer construction. COG(NPO) and X7R temperature characteristics. Preferred ratings are .01, .047, and $.1 \mu \mathrm{~F} @ 100$ WVDC. Operating temperature range, -55 C to +85 C.
Circle 119 on reader service card

Type 935D TANTALEX SOLID-TANTALUM CAPACITORS

Dual in-line plastic package for mechanical protection and increased reliability. Preferred ratings are $6.8 \mu \mathrm{~F} @ 35 \mathrm{~V}, 15 \mu \mathrm{~F}$ @ $20 \mathrm{~V}, 22 \mu \mathrm{~F}$ @ 15 V , and 33 $\mu \mathrm{F}$ @ 10 V . Operating temperature range, -55 C to +85 C .
Circle 233 on reader service card

[^0]
News update

- Solarex Corp. had an idea, and the people who run the company figured that the best way to convince people that it was a good one was to start small. So the Rockville, Md., firm set out to prove that solar cells designed just for terrestrial applications can do the job [Feb. 21, 1974, p. 32]. The result has been a successful initial product and, now, an expanding line. Solarex started with a solar energizer designed to maintain the charge on batteries of parked cars and docked boats. A major factor in making silicon cells available for such jobs is to get their cost down, something that Solarex apparently has done in developing a cell with the surface electrode in chevron-shaped patterns. What's more, says president Joseph Lindmayer, the cells, sliced from an ingot that's 10 mils thick, don't need any structural support in mounting or anti-reflecting optical coating. Lindmayer says the cells are 15% efficient even without the coating. Now, says Lindmayer, the product line includes larger arrays for remote locations such as lighthouses, and data buoys.
- UGLI is getting prettier. UGLI, which stands for Universal Gate for Logic Implementation, is a joint project of the Air Force Avionics Laboratory at Wright-Patterson Air Force Base and Hughes Aircraft Co. A year ago, it had resulted in development of a prototype universal logic gate expected to be less expensive than custom-designed LSI circuits, more powerful as a design tool than read-only memories and programed logic arrays, and as fast as MECL 10,000 [Feb. 7, 1974, p. 42]. Now, an improved version of UGLI has emerged. It can be used with LSI, where a large pad-relocation-interconnected wafer is used instead of individual gates. The new universal logic gate forms a 4-by-4-bit three-stage multiplier with 34 cells and a delay of 10 to 11 nanoseconds; with conventional logic, up to seven stages-with a delay of more than 20 ns -would be needed, say the developers.
-Howard Wolff

Why pay $\$ 2400$ for a TRUE RMS Digital Voltmeter that won't do as much as ours for \$1395...

Make Us Prove It ... Send for the "TRUE EVIDENCE" and/or request a demonstration.

The Ballantine Model 3620A measures pure sine, complex and pulse waveforms from over 1 MHz down to below 1 Hz . . . to 0.1 Hz optionally. Full scale ranges are from 10 mV to 1000 V . Push "DC Coupled" button to read true rms of combined ac and dc component present.
Now just check these other important features: - Measures ac, dc and ac+dc to beyond 1 MHz - Accuracy \pm (0.1% RDG $+0.1 \%$ Range) - Resolution to $1 \mu \mathrm{~V}$ - ac measurements to $1 \mathrm{~Hz}=$ Line or Battery operation ■ Fully guarded input; floating or grounded $=90 \mathrm{~dB}$ common mode rejection @ 60 Hz = No thermal lag - direct computation of true rms - fast response to 300 msec - 41/2 digits, high contrast, $1 / 2$ " high; 19,999 counts = Automatic test equipment systems compatibility $\square \mathrm{dB}$ display 120 dB total range; resolution to 0.01 dB .

BALLANTINE LABORATORIES

P.O. Box 97, Boonton, New Jersey 07005,

Phone (201) 335-0900, TWX (810) 987-8380
Four Decades of Innovation in Electronic Instrumentation

IEEE as professional activist

It's been almost two and a half years since an overwhelming majority of its members voted to change the IEEE's constitution to permit the addition of career-oriented activities. In that time, the institute has been struggling to handle that mandate.

On the positive side, it has taken membership surveys on salaries and fringe benefits and distributed the resulting averages as guides for members in job negotiations. It set up an office in Washington, D.C., as an outpost in dealing with the Federal Government on matters pertaining to technology. It also hammered out a set of ethical guidelines for engineers and recently used the guide as the basis for entering a trial as a friend of the court.

And the IEEE has been working on pensions for the EE. Earlier this month, it joined the Pensions for Professionals operation to provide members with machinery for planning various kinds of retirement funds. All of these actions indicate a growing awareness of the professional aspirations of its members.

On the negative side, the institute has still not come anywhere near establishing itself as the voice of EEs in the outside world. Because of an unsteady beginning, the Washington office has not yet made significant impact on Government.

More important, however, members can wonder if the institute is living up to what might reasonably have been expected when the constitution was changed. Is the organization simply reacting to economic conditions, rather than promoting the profession? There are still conflicts within the IEEE between management-oriented and design-oriented members, between "town" and "gown," and between technical-firsters and career-firsters. The result is that the leadership is still not completely comfortable with a professional activist role.

Time will certainly solve some of these
problems, but there is room now for positive steps. These include:

- Putting the general manager in the forefront. It's not practical to expect the IEEE president to articulate and carry out a professionalism program in one year. Instead, this role should be shifted squarely to the general manager. He should be responsible for initiating careerrelated plans, as well as ensuring continuity. - Beefing up the Washington office to make it the center for professional action. To be heard in Washington today requires a conscientious, all-out effort of the kind that is, so far, lacking from the IEEE. This step is being planned, but will require undivided attention and followthrough.
- Refining the means of planning professional activities to open up ideas from rank-and-file members-and even outsiders. By now the board of directors and headquarters staff must realize that there are many sources of good ideas on the careers front. Committees headed by electronics companies' top brass or academicians from engineering schools may not be representative. There should be a permanent, top-level "jobs committee," which would be active on behalf of working EEs in good times as well as bad. - Continuing the initiative begun a couple of years ago to get the IEEE's name before the general public. This effort has been discouraging, because the mass media are not knowledgeable enough when it comes to sorting out technology and engineering. It's still painfully true that newspaper and TV reporters think engineers run trains.

Yet to be resolved is what to do about Intercon. It undoubtedly must change if it is to adjust successfully to a new environment. But we have reservations about the effectiveness of the regional fragmentation presently planned for Intercon. Possible alternatives will be the subject of a future editorial.

The fastest 2102's and the easiest-to-use 2102's

are 9102's.

	$\underline{9102 \mathrm{D}}$	$\underline{9102 \mathrm{C}}$	$\underline{91 \mathrm{LO2C}}$
Specifications	$\underline{290 \mathrm{~mW}}$	330 mW	175 mW
Power (worse case)	250 ns	300 ns	300 ns
Access and cycle times			
Operating Temperature Range	$0-70^{\circ}$	$-55-125^{\circ}$	$0-70^{\circ}$
Data Hold Time	Zero	Zero	Zero
Address Hold Time (Write Recovery Time)	Zero	Zero	Zero

Blazing speed and design simplicity: Advanced Micro Devices' 1K static RAM's. The 9102's.

Zero data and address hold times eliminate write cycle delays and extra timing slots in your system. You can change address \& data and address \& write pulses simultaneously.

Get the full story. Write or call for a free copy of our new 9102 Family brochure.

Get the best 2102's you can buy. Just ask for them by name: Advanced Micro Devices' 9102's.

Advanced Micro Devicesin

[^1]
Intel's 18-pin 16K single card memories

Intel's new 2416 CCD Serial Memory stores 16,384 bits in a single 18-pin package, allowing you to build bulk memories with a density of at least a million bits per card. Furthermore, the Intel 2416 is organized as 64 recirculating 256bit shift registers, so it has the speed and format flexibility of an assembly of small registers. In a program swapping operation, for example, your system could transfer data as fast as any CPU could use it.

Any of the 16,384
 bits can be accessed in less than 200 microseconds at a shift cycle of 750 nanoseconds. Between
shift cycles, you can read or write a bit, a byte or a word at serial data rates faster than 2 megabits per second (a speed easily multiplied at the system level). A RAM-like I/O control with a cycle time less than 500 nanoseconds makes any register or a succession of registers accessible between shift cycles.

Yet the Intel 2416 is economical to use, with its standard $+12,-5 \mathrm{~V}$ supplies and standard 18-pin plastic DIP (or 22-pin ceramic DIP). You can build fast, versatile bulk memories into computers or microcomputers, business equipment, POS

CCD makes megabit a reality today.

systems and programmable calculators, or replace conventional shift registers at low cost in CRT terminals, instruments and communications buffers. And it readily emulates any small disc or drum system wherever the lower cost of CCD, better speed, high reliability, compactness and low power are needed.

For instance, the single-card, million-bit serial memory system shown here can work in disc or drum modes with a maximum latency of $200 \mu \mathrm{sec}$ and data rates to 64 megabits per second. The 64 Intel 2416 packages are organized as 128 kilobytes. Eight identical cards would operate as a megabyte system.
Start upgrading your bulk memories from electro-mechanical to solid state today. For immediate delivery, or further information, contact our European Headquarters, 216 Avenue Louise, Brussels B1050, Belgium, Tel: 649-20-03, Telex: 24814; or Intel Japan, Kasahara Bldg., 1-6-10, Uchikanda, Chiyoda-ku, Tokyo 101, Japan, Tel: 03-295-5441, Telex: 781-28426.

intel delivers.

Costs far less than regular miniature Rotary Switches, maintaining RCL's high quality standards.
(Edgeboard type available in production quantities at $\$ 1.29$ each.)
(Comparable low costs available on Printed Circuit Board Mounting Type)

Call our hotline for prompt service and delivery. (201) 374-3311

AMF

RCL Electronics

General Sales Office: 700 So. 21st Street
Irvington, N. J. 07111

People

Zraket giving Mitre's touch to socially oriented systems

Change of pace. Mitre's Zraket looks toward energy, CAI, and urban transport.

The Mitre Corp. is best known for its systems engineering for the Air Force and the Department of Defense. But having made Charles A. Zraket the new senior vice president for technical operations, the company is also out to make its mark in energy-especially photovoltaics, urban transportation, and computeraided instruction. Zraket himself initiated these programs when for 12 years he headed Mitre's Washington, D. C., operations. "They've been personal as well as business interests of mine for a long time," says the energetic Zraket.

The 51-year-old electrical engineer, who has been with Mitre since it was founded in 1958, is responsible for all of the Bedford, Mass., company's technical and administrative activities.
"Obviously our first priority is to look at the future support of the Air Force," he says. "It has undergone major changes in the cost of doing business, in manpower constraints, and in applying advanced technology. We must help decide how the electronics revolution can be applied in more effective and less costly systems." Air Force and other DOD work accounts for about two thirds of Mitre's budget, which was \$64 million in fiscal 1974.

But he expects Mitre's budget in the energy field-now 10% of the to-
tal-to double in the next two or three years. Mitre is already involved with planning national energy R\&D for the new Federal Energy Research and Development Agency. In Washington, Mitre has set up what Zraket says is the world's largest photovoltaic-cell test facility, and the corporation is talking to ERDA about establishing a facility to demonstrate the ability of photovoltaics to generate appreciable amounts of power.
In computer-aided instruction, Mitre has developed a system for interfacing ordinary television sets with a computer through a wideband cable, called Ticcit for timeshared interactive computer-controlled information television.
Zraket also sees the computer helping urban transportation systems increase their operating efficiency. "You have to talk computerbased automation," he says. "The problems are not in vehicles but in controlling them."

Although Zraket doesn't see many brand-new programs coming along for a while, he isn't worried. "We'll have our hands full in the next five years just doing what we've started."

Bowmar's new chief

starts the cleanup

Bowmar Instrument Corp.'s new chairman and chief executive officer is wasting little time or sentiment in trying to put the troubled company back on a firm financial footing. William M. Crilly, the former Pan American World Airways executive vice president who succeeded Edward A. White at Bowmar's helm in New York a month ago, is already talking with several unnamed interests about the company's prized (but expensive) MOS-production operation in Chandler, Ariz.
"We'd rather not sell the Chandler facility, but that's something we'll just have to consider," says Crilly, an aeronautical engineer whose background also includes executive positions with Eastern

Cast-moulded capacitors

WILHELM WESTERMANN

Spezialfabrik
für Kondensatoren
D-68 Mannheim 1
Fed. Rep. of Germany
Augusta-Anlage 56
P. O. Box 2345

Tel.: (0621) 408012

Airlines and Douglas Aircraft Co. Bowmar filed for protection under Chapter XI of the bankruptcy laws last month after losing $\$ 23$ million during the fiscal year ending Sept. 30, 1974 [Electronics, Feb. 20, p. 26].

It may not be a seller's market, but Crilly says something has to go if Bowmar is going to survive its predicament. "At this point, it's a matter of dollars and cents at Chandler. There is no way you can run at 20% capacity and make money. The least desirable approach would be to mothball the plant."

Hopefully, he says, "We might find a joint-venture partner [for Chandler]. We might even take it outside the Chapter XI proceedings and still operate it with a partner. I can tell you one thing-we've been approached by a lot of bargain hunters."

Dropped. Bowmar has already dropped its microwave-oven operation in Newbury Park, Calif. Security systems for the home, produced at Bowmar's Fort Wayne, Ind., facility, is a potential disposable. Desktop calculators are "under review" and may be dropped altogether. At this point, says Crilly, who appears to be going about his business with aplomb, "we would sell them in bulk if someone were interested."

Of calculators-the company's mainstay and yet, ironically, the heart of its problems-Crilly has already dropped the top-of-the-line MX100 and MX140 and cut prices $\$ 10$ to $\$ 20$ on three of its middlepriced units. As for Bowmar's European marketing activities, which have been criticized in the past as competitively weak, the new president says, "If anything, we'll step up foreign marketing in calculators, watches and light-emitting diodes."

Most consolidations are already completed. Consumer activities have moved to the Phoenix area with most manufacturing now in Nogales, Mexico. The $\$ 1.5$ million in financing recently received by Bowmar "looks adequate for six to eight weeks," Crilly concludes. "That's our long-term planning at this point."

The first 24 med LIEID lamp!

And thats 24 mcd at only 10 mA for our brightest red lamp.
At 20 mA you can get over 48 mcd of light output.

	RED	YELLOW	GREEN
NARROW BEAM $5082-$	4658	4558	4958
	4657	4557	4957
WIDE BEAM $5082-$	4655	4555	4955
	4650	$\mathbf{4 5 5 0}$	4950

HP's new high efficiency material makes these new bright LED's possible. With our brightest yellow you get 16 mcd at 10 mA . Our brightest green offers 16 mcd at 20 mA .

Three colors, two beam angles, and two luminous intensity categories are available in the popular T 1-3/4 package. Twelve new LED's, one just right for your application.

All are available for immediate delivery, just $\$ 0.89^{*}$ each or $\$ 1.15^{*}$ each at the 100 piece level, depending on brightness category.

Contact Hall-Mark, Schweber, Wilshire or the Wyle Distribution Group
(Liberty/Elmar) for immediate delivery. Or, write us for more details. They offer you new ways to apply solid-state technology
in your products.

HEWLETT hp PACKARD
Sales and service from 172 offices in 65 countries, 1501 Page Mill Road. Palo Allo, Calitornia 94304

REVEAL RN SECRET

 "sumewre Dip sockets

Here's microscopic proof that high reliability Robinson-Nugent "side-wipe" DIP sockets make 100% greater contact than any edge-bearing socket on the market. This advance design provides constant low contact resistance, long term depend-ability-trouble-free IC interconnects. Yet RN high reliability DIP sockets cost no more than ordinary sockets!

At 30X enlargement, all IC lead frames look like this. Because they are punched out of metal, the edges are rough, jagged and irregular. In contrast,
 the flat sides of the lead frame are smooth, even and perfectly plated. Microphoto unretouched.

WRITE TODAY for catalog and informative book "What to Look for in IC Interconnects." Free fromRobinson-Nugent-the people who make more kinds of high reliability IC sockets than anyone.

Circle 19 on reader service card

First Ever.

A Point Plotter Module For Generating CRT Displays.

Easily display digital information on CRTs or pen plotters . . . from any computer or microprocessor. The DT212 Point Plotter does it all . . . it interfaces directly to Tektronix, H-P, and DEC scopes . . . also to analog instrument or control devices.

Imagine, for $\$ 245$ in 100 's you get a complete point plotting system that:

- Displays graphics and alphanumerics
- Yields more flicker-free data with high speed X, Y, and Z drive
- Provides accurate position placement with dual 12 -bit D / A converters
- Interfaces directly to computer I/O

DATA TRANSLATION

109 CONCORD STREET, FRAMINGHAM, MA 01701
Call us at 617/879-3595 for a complete set of applications data. Or call your local representative below.

$205-539-4411$	$303-934-5505$	$904-243-6424$	$504-366-5766$	$215-337-1573$	$919-489-1546$	$713-688-9971$
$602-947-7841$	$305-425-5505$	$305-723-0766$	$301-953-3724$	$505-299-7658$	$216-585-8421$	$214-231-2573$
$213-938-2833$	$305-776-4800$	$404939-1674$	$314-997-1515$	$201-569-2230$	$615-584-2614$	$703-527-3262$
$415-941-4410$		$913-649-4000$		$716-334-2445$		$206-454-0900$

Circle 20 on reader service card

You get a lot in a little package with General Electric Reed Switches

GE Reed Switches feature rugged design, fast operation, long life For complete information, use the reader service card, or write GE, 316 E. 9th
St. Owensboro, Ky. 42301

heavio00 VDC
 GENERAL ELECTRIC
 364-01

Digital's solution to the micro madness.

 THE 5634 LST-N.You can stop worrying about who's coming out with what next in microprocessors, chip sets, microcomputers, and all the rest.

You can stop worrying and start getting to work right now.

The LSI-11 is here.
The LSI-11 is an unbundled, honest-to-goodness PDP-11 that LSI technology has enabled us to put onto an $81 / 2^{\prime \prime} \times 10^{\prime \prime}$ board and sell for a mere $\$ 634$ in 100's.

This single board contains an n-channel MOS CPU which executes the instruction set for the PDP-11 family up through the $11 / 40$, a 4 K word MOS random access memory (RAM), a 16-bit
parallel buffered I/O bus, a real time clock input, power fail/auto re-start, and bootstrap.

And best of all, the LSI-11 is truly flexible. You can expand the system with a minimum of additional hardware. Options include serial line interface, parallel line interface, 4 K word programmable and masked read-only memory (PROM/ROM), 1 K word static RAM, 4 K word dynamic RAM, 4 K word core memory, fixed and floating point hardware multiply/divide, and four-slot backplane.

Now that you have this kind of flexibility and performance, in this kind of size, and at this kind of price-
backed by Digital's experience with over 15,000 installed PDP-11's - you can put real processing intelligence into a whole lot of places it's never been before.

If you'd like to find out all the possibilities for the LSI-11, just give us a call: 1-800-225-9480, (Mass. 617-481-7400 Ext. 6653).

LSI-11. A \$634 stand-alone PDP-11 on an $81 / 2^{\prime \prime} \times 10^{\prime \prime}$ board. Components Group, Digital Equipment Corp.,One Iron Way, Marlborough, Mass. 01752. Digital Equipment of Canada, Ltd., Box 11500, Ottawa, Ont. K2H8K8, 613-592-5111. Europe: 81 Route de l'Aire, 1211 Geneva 26, tel. 427950.

Beckman's one-piece money saver saves time and space, too.

To keep working with discrete standard resistors just isn't logical. Not when there are ceramic DIPs available that do the same jobs in less space-quicker, easier and cheaper. Whether inserted automatically or by hand.

Stocked locally for immediate delivery, too. At "on the board" cost-saving prices, in small or large quantities.

Beckman
INSTRUMENTS LTD.
(Check the specs.) No wasted time while they're "made to order," unless you want custom modifications, which we can do fast.

And remember, ceramic. Ceramic reliability at plastic prices.

Why wait? Call your local Beckman Representative now for applications assistance or more information.

COMPONENTS INTERNATIONAL

MODEL SERIES 899-1
Resistance Values. 78 Standard versions available 22ω to 100 K .

Common Applications: Digital pulse squaring; MOS/ROM pull-up/ pulldown; "wired OR" pull-up; power driver pull-up; open collector pullup; TTL input pull-down; TTL unused gate pull-up; high-speed parallel pull-up.
Standard Tolerance: $\pm 2.0 \%$

Head Office.

Beckman Instruments Ltd.
Components International
Queensway, Glenrothes
Fife KY7 5PU
Scotland
Tel. 0592753811
Telex 72135

MODEL SERIES 899-2
Resistance Value (ohms): 10K Common Applications: Inverting operational gain; potentiometric gain; differential gain; noninverting gain; gain adjustment. Standard Tolerance: $\pm 2 \%$

16 pin versions available. Ask for Series 898

Subsldiaries.

Beckman Instruments GES.M.B.H., Helipot Components Division,
Postfach 21 ,
Sieveringerstrasse 81,
A-1 197 Vienna
Austria.
Telephone: 322150 Telex: 07:4099

MODEL SERIES 899-3
Resistance Values. 78 Standard versions available. 22ω to 100 K .

Common Applications: Line termination; long-line impedance balancing; power gate pull-up; ECL output pull-down resistors; LED current
limiting; power driver pull-up;
"wired OR" pull-up; TTL input
pull-down.
Standard Tolerance: $\pm 2 \%$

Beckman Instruments France S.A.
52 Chemin des Bourdons
Gagny 93220
France
Tel. 92777 77. Telex 91921

Beckman RIIC GmbH,
8 Munich 40 .
Frankfurter Ring 115,
Federal Republic of Germany
Telephone: 38871 Telex: 5215761

Beckman Instruments Italiana S.p.A.
Via Arese 11 ,
20159 Milano
Italy
Telephone: 6888951 Telex: 36484

Electronics newsletter

Fairchild, Reticon
 list 1,728-element image sensors

TI puts 2-in. tape in a portable calculator

The image-sensor race between Fairchild Camera and Instrument Corp.'s charge-coupled-device arrays and Reticon Corp.'s mOS photodiode arrays is nearly a dead heat. Within a week or so of one another, both are announcing availability of $\mathbf{1 , 7 2 8}$-element linear image sensors aimed at optical page-scanning systems like those used in facsimile.
Fairchild's device, the CCD 121, contains 1,728 sensor elements, two charge-transfer gates, a pair of two-phase 866-bit analog shift registers, an output-charge detector/preamplifier, and a compensating output amplifier in a 24 -pin dual in-line package measuring 0.52 by 0.004 inch. Reticon's RL-1872F contains 1,872 photodiodes, along with shift registers and multiplex switches for internal scanning and readout in a 22 -pin package measuring 0.40 by 1.6 in . Reticon says the array can scan a page in less than a second with better than 4.5 -mil resolution, making possible facsimile transmission of highly detailed images.

Watch for Texas Instruments to announce a new portable electronic printing calculator to its retailers within a month. Unlike other "handheld" printing machines on the market, which rely on ticker-tape output, the TI unit will print up to nine digits on a 2 -inch-wide roll of heatsensitive paper. The 5-by-7-dot-matrix characters are printed a line at a time by a TI-built thermal print head.

The calculator, featuring four functions with percent, also has chainconstant and fixed/floating decimal operation. High-level buffers permit multiple entries while the unit is in a printing mode, as well as twokey rollover-a second key can be pressed before the first one is released. The unit is relatively large- 8.7 by 3.9 by 2.7 in.-for a portable calculator and will run up to six hours on rechargeable batteries.

Uranus to advise

 builders of Soviet watch facilityA visit to Uranus Electronics in Port Chester, N.Y., by Soviet Electronics Ministry officials almost two years ago is finally paying off for the privately owned digital-watch maker. Uranus president Morris Levine returned from Moscow earlier this month with a signed agreement for his company to provide technical assistance in building a Soviet elec-tronic-watch factory.

Levine says the Soviets will produce watches with both light-emitting diode and the liquid-crystal displays plus C-mOS chips of their own designs. Meanwhile, a group of Soviet electronics specialists visited facilities of General Instrument Corp.'s Microelectronics group in Hicksville, N.Y., and its corporate offices in Manhattan a few weeks ago to "talk a deal," although GI is keeping quiet about the visit.

Univac goes to semiconductor memories in 1100

Sperry-Rand's Univac division has introduced two large-scale, highperformance computers-part of its venerable 1100 series. The new machines are the first Univac mainframes to use semiconductor memory. Both were demonstrated this week at the Roseville, Minn., 1100 facility, along with new disk storage and general communications subsystems, as well as an improved version of the 1100 operating system.

The 1100/20 has an instruction-cycle time of 875 nanoseconds for a

Electronics newsletter

possible 860,000 instructions per second. It also can be expanded from a unit processor with 13,072 words of storage to a multiprocessor with 524,288 words of main memory. The $1100 / 40$, which has 300 -ns cycle time, has both primary and extended storage.

Mostek to sell CheckMaster, a two-function electronic checkbook calculator that will 2-function unit for checkbooks hold and display checking account balances for a year, will be announced early next month by Mostek Corp.'s new consumer electronics operation. The battery-powered machine, built into a plastic checkbook case and selling for $\$ 39.95$, relies on a unique circuit design for its seemingly nonvolatile memory.

In the "off" position, the p-channel depletion-load chip is continuously supplied with less than 100 microamps, and the user's balance is maintained in a static shift register memory that is clocked only during operations requiring memory access. Even in the power-up mode, the chip requires less than 2 milliamps' current. The design also includes a power-up clear circuit so the balance isn't changed when the unit is turned on.

Collins enters small-plane instrument market

Rockwell International's Collins Radio Group is expanding into instruments for single- and light twin-engine aircraft-the only avionics market area in which it does not already compete. Leading the drive is a new line of five solid-state communications and navigation instruments called the Collins Micro Line, with which the company expects to capture a significant share of a business it estimates at about $\$ 75$ million annually.

The Micro line, which Collins says it will add to later, now consists of the VHF-251 transceiver, the VIR-351 receiver for vhf navigation, the AMR-350 audio center and marker beacon receiver, the IND-351 VOR/ILS course indicator, and the GLS-350 glideslope receiver.

Mostek's Corvus Mostek Corp. has sold its Corvus consumer electronics subsidiary to sold to Colex

Colex Ltd. of Hong Kong. Mostek will manufacture and market its new CheckMaster calculator, and digital electronic clocks, under its own name.

Addenda National Semiconductor Corp. is planning to introduce by midsummer a Schottky bipolar version of its IMP-16 microprocessor. The new chip will be twice to four times as fast as the mos device and will be followed by an 8 -bit bipolar version later in the year. . . . New FAA signs warning airline passengers of X-ray scrutiny aren't complete, says Frank Munley of Ralph Nader's Aviation Consumer Action Project. He says the signs do not warn of the cumulative effect of X-rays on commercial film; the Nader group may sue the agency to have the warning signs amended, says Munley. . . . Fairchild is closing its Shiprock, N.M., semiconductor facility in the wake of a recent takeover of the plant by militant American Indians.

The fastest data acquisition system. Anywhere.

Our 4855 ultra-high speed sample-hold ahead of our 4133 ultra-high speed 12 -bit ADC. System aperture time is an ultra-low 1 nsec. Guaranteed throughput rate is 350 kHz . And you get this system speed at 0.03% total accuracy.

The 4855/4133 combination gives you a functional capability you can't achieve elsewhere. For example, the exceptionally low feedthrough of the 4855 allows you to multiplex during conversion without affecting system speed and accuracy.

FFT, high speed data acquisition, video digitizing, radar pulse digitizing and multi-channel simultaneous sample and hold-applications where greater than nanosecond uncertainty slow you down.

The 4855's 250 nsec acquisition time to 0.01% accuracy assures exceptionally high throughput rates for precision systems. The 4133 gives you high linearity, excellent stability and $2.5 \mu \mathrm{sec}$ max. conversion time.

Together they're unbeatable for highly accurate, high speed data acquisition. And they're only available from Teledyne Phillbrick at unbeatable prices ($\$ 160$ and $\$ 485$ in 100 's).

For complete information, write for our Application Bulletin today. Or "DIAL" (our Direct Information Access Line) 617-329-1600. Teledyne Philbrick, Dedham, MA 02026. In Europe, Tel. 673.99.88, Telex: 25881. Or write, 181 Chausee De La Hulpe, 1170 Brussels.

Ultra-low-distortion oscillator

See this at INTERCON, too
It's an ultra-low-distortion oscillator for use in measuring lowest distortion amplifiers. Has less than . 001 年 distortion. Covers 10 Hz to 110 kHz . Push-hutton frequency selection. Output vanable from less than 1 millivolt to 3 volts.

TRW Systems sets gate-density record for bipolar logic

Emitter-follower logic is applied to 11-chip, 16-bit microprogramable computer; 50,000-device chip possible

Emitter-follower logic, although 10 years old, has been fashioned by TRW Systems Group into one of the industry's most powerful computercircuit technologies. So the big payoffs from bipolar LS may not all go to glamorous new processes like integrated injection logic.

Under the direction of the manager of the Microelectronics Center, Barry Dunbridge, one-chip processors containing more than 17,000 EFL devices (over 5,000 gates) have been built at the Redondo Beach, Calif., company. Such device density is over 10 times that of today's most complex transistor-transistorlogic LSI processor chips.

The improved EFL process was developed for in-house custom programs under Air Force contracts, but can easily be transferred to commercial semiconductor production. TRW already has agreements with semiconductor manufacturers, who are enthusiastic about the high yields on large chips offered by the relatively simple three-diffusion (3D) process (see '"Motorola readying LSI emitter-follower logic . . ." p. 30). For example, the onwafer yield for a die measuring 300 by 300 mils is 30%.

Such high yields signal TRW's near-attainment of a major semi-conductor-development goal-a low-defect bipolar process capable of packing 10,000 gates on a chip [Electronics, March 6, p. 57]. This so-called 10 K bipolar LSI excites computer and semiconductor manufacturers alike, many of whom are counting on it for the step-function improvement in price and perform-
ance that will explode demand for medium and large computers even further.

Hardware. Using only 11 chips, Dunbridge's group has built a highperformance 16-bit microprogramable parallel computer for an Air Force signal-processing system. A companion circuit for the system's front end is a signal-processing arithmetic unit that contains 14,000 bipolar devices on a single, high-yield 302-by-360-mil chip [Electronics, March 6, p. 32]; it dissipates only 5.1 watts at clock-cycle speeds of 120 nanoseconds. Better yet is another TRW processing chip, the MPY-1, which, with over 17,000 devices, must hold the bipolar density record.

According to Jim Buie, one of the key designers on the EFL project (and also the inventor of TTL in 1961), the 16-bit computer has now reached the final debugging stage. The machine is composed of eight

Speeder. Sixteen-bit computer built with TRW's high-yield emitter-follower logic has a typical instruction cycle time of 120 ns. Under TRW license, Motorola Semiconductor plans to start producing the parts and may announce a new MC5800 chip family by September.

4-bit-slice microprocessor chips that make up both the central programable address unit and the operand arithmetic unit (see p. 29). The three remaining chips are a 16 -bit parallel multiplier [Electronics, Jan. 23, p. 29], a control chip for microprograming, and a single jumbo input/output chip.

More coming. Buie points to even more impressive developments with a triple-diffused LSI process that has been extended into the higher-performing current-mode-logic configuration. "With CML," says Buie, "we can boost the frequency range of our 3D transistors to approximately 30% of the actual transistor cutoff." This permits the devices to operate two to three times faster than before. And since CML and EFL can be made directly compatible, a designer can use them side by side on
a chip to optimize the performance of different segments of the circuit.

For example, CML is faster but more limited for combinational logic functions than EFL, so that in an EFL-CML D-type flip-flop, the internal registers could be built with CML, the gates with EFL. The resulting flip-flop runs with a propagation delay of only 25 ns (for a typical load of 80 picofarads) while dissipating only 32 milliwatts.

Paralleling these circuit advances is the development of advanced 3 D LSI designs that could improve still more dramatically the speed-power product of today's 3D techniques and lead to still higher levels of bipolar complexity. It all boils down to gates that occupy a quarter of the space of TRW's already tiny EFL structures.

In addition, these gates may be

Motorola readying LSI emitter-follower logic based on license from TRW

Motorola's Semiconductor Products division, Phoenix, is starting production of large-scale emitter-fol-lower-logic devices. The company plans to announce a set of standard EFL minicomputer chips, probably in September.

The 11-chip set forms a 16-bit miniprocessor with transistor-tran-sistor-logic speed and microprocessor size. The chip set is made from masks developed by TRW Systems, which has granted Motorola a technology license. Jack Saddler, Motorola's government marketing manager, says, "We have been working on the EFL process for about one and a half years, and we know we can produce it. We have even enhanced it some."

The minicomputer set, says Saddler, is oriented toward military applications, notably electronic countermeasures, speech, and radar processing. The firm is now checking out software for such functions as fast Fourier transforms and digital filtering. As to commercial uses, "the computer is a number cruncher," says Saddler. "We know
the military needs this capability, but we aren't sure whether many commercial applications do." He adds that Motorola will only produce hundreds of the chips this year.

Saddler notes that the microprocessor concept is especially exciting to military customers because they need sophisticated systems in small quantities. 'They've been wrestling with how to implement custom applications without the low-quantity orders the semiconductor suppliers don't want. With microprocessors, the customizing is all done in software.'

Saddler predicts wide applications of microprocessors in military systems-so wide, in fact, that the company will also introduce a special military version of its commercial MC6800 series n-channel MOS microprocessor. Motorola plans to discuss and show these products at the 1975 international Symposium on Military and Industrial Microprocessor Systems in San Diego, June 3 to 6 . The symposium is sponsored by AH Systems Inc. of Chatsworth, Calif.
built with transistors operating at cutoffs as high as 500 MHz , almost five times faster than in present EFL circuits. As a result, a typical 300-by-300-mil processor chip dissipating only about 5 w could accommodate an incredible 50,000 de-vices-probably enough for a full 16-bit miniprocessor.

Memory

Superchip boosts

RAM size to 40-k

Large semiconductor-memory systems are built up from lots of relatively small memory chips that have been cut from a silicon slice, packaged, and interconnected on a printed-circuit board. Obviously, things would be much easier if those chips could be interconnected while they're still in the slice.

This is exactly what Honeywell Information Systems is trying to do with its developmental Superchip-a metal-oxide-semiconductor memory which, measuring 1.1 by 1.2 inches, occupies most of a 2 -inch-diameter silicon wafer. The super-sized chip is fabricated with 256 arrays of shift registers containing 256 bits each for a total of 65,536 bits. Functionally, Superchip, designated the SC-2, is divided into four groups of 64 arrays all connected to each other via a common bus system.

The result is that Honeywell doesn't need a 100% yield to produce a useable device. Rather, only the good arrays are interconnected; faulty arrays and even entire groups of arrays can be omitted without ruining the wafer.

So far, the best chip Honeywell, working with a semiconductor manufacturer, has produced of the block-oriented, random-access memory had about 40,000 operating bits, although it hopes to produce 100,000-bit devices. With its approach, however, Honeywell hopes eventually to be able to produce a memory for its computer systems that falls between high-speed RaMs

More blts. Honeywell's Superchip contains 65,536 bits divided into four groups on silicon slice measuring 1.1 by 1.2 inches. Common buses for 256-bit array at at the top of each group.
game," he says. Bremer's goal is to obtain memories for half to a quarter the price of commercially available semiconductor
memories and to keep assembly costs the same or lower. A packaged 4,096bit device will cost about $1 / 4$ cent per bit in 1975, he estimates.

Each 256-bit shift register is a dynamic, $p-$ channel, silicongate MOS device. Each register ar-
and slow but inexpensive memories such as disks.

Honeywell's work is reminiscent of Texas Instruments' discretionarywiring and Hughes Aircraft Co.'s pad-relocation techniques of a few years back. These were efforts to increase the number of useable logic gates on a piece of silicon, as well as custom-design the gates' interconnections.

Unfortunately, those systems required an extra mask unique to each wafer, to lay down metalization that would connect good arrays and avoid faulty ones. And discretionary wiring turned out to be more expensive than the standard devices that semiconductor manufacturers were beginning to turn out in large quantity.

Step ahead. "We developed Superchip in an attempt to be a slight step ahead of the semiconductor industry," says the director of advanced technology programs, John W. Bremer. Primarily, Bremer wants to be ahead in cost. He notes that the support of a 1,024 -bit chipwiring, testing, assembly and pack-aging-can equal the price of the part.
"If we can get more bits per semiconductor, even if the semiconductor is bigger, we are ahead of the
ray also contains a clock driver, a 13-bit programable read-only memory and associated pads, an address comparator, and a 22-bit-wide common bus.

Avalanched PROMS form one input to the comparator; the other input comes from the bus. After the wafer is fabricated with the PROM devices left open, each array is probed to determine if it works. If it does, 12 PROMs are programed with a unique address by applying current to the probe pads. If it doesn't, a 13th PROM is activated to disconnect the array from the common bus.

This connect/disconnect philosophy can also be applied to the buses. Each of the four groups of arrays has its own bus with group clock drivers, for increasing speed, and bus disconnects. A faulty group can be disconnected from the main bus while the rest of the wafer continues to function.

The address buses and comparator logic allow random access to each shift-register array, which then cycles through an entire 256 bits. Access time of the SC-2 is 5 to 10 microseconds to set up all drivers and to go to the address comparator. The cycle rate is 1 megahertz, so the actual time it takes to transfer
an array's worth of information is 256 microseconds. The memory is refreshed every time that it is accessed.

Industrial electronics

Metal-rolling micro takes care of tuning

Computerized thickness controls have been available to the metalrolling industry for probably 10 years, but shops unable to justify the expense must use manually adjusted analog systems. These are not only time-consuming to adjust, or tune-they must also be retuned each time, for example, the mill changes the metal or the thickness that it's rolling.

At last week's IEEE Industrial Applications of Microprocessors meeting in Philadelphia, Industrial Nucleonics Corp., Columbus, Ohio, introduced a system that brings computer control to the analog-systems users. It's doing this by applying the logic and memory capabilities of a microprocessor system to a gage controller that can be set for any metal and thickness merely by dialing two thumbwheel switches. The system itself takes care of the tuning-holding the metal to tolerance by controlling the dc motors that regulate the tension on the sheet-metal payoff reels, and the force on the bite rollers between which the metal is squeezed.
"Tight tolerances have become increasingly important to the rolling industry because of a growing trend to specify sheet to a minimum instead of a nominal thickness," explains John Underwood, senior product engineer at Industrial Nucleonics. "The customer pays for the sheet based on what it would weigh if it were the same minimum thickness throughout. Undertolerance is not acceptable, and any overtolerance is money out of the mill's pocketbook."

The new controller, priced at about $\$ 45,000$-which is competi-
tive, says the company, with analog gage controls-is used in conjunction with Industrial Nucleonics' AccuRay 510, an isotope-based thickness gage that determines thickness on the basis of the amount of radiation penetrating the metal. Its output, in volts per mil, is sampled by an analog multiplexer which also samples roll speed, roll force and sheet-metal tension. The values are fed to an analog-to-digital converter and made available to the micro-processor-an Intel Corp. 8008 in the initial field-test unit, but production systems may use the 8080.

Dialed in. Also fed to the microprocessor are 33 bits that represent the metal-thickness set point and the type of material being rolled. These numbers, set by dials on the thickness gage control panel, are used in the special control algorithm which the microprocessor solves.

Switches on the controller panel turn on simple or differential backlash compensation for the screws that control the roll loading and reset the metal tension. The switches also select the variables to be displayed and can be used to modify operating constants during the initial setup. But once the system is set up for a metal, the controller never has to be retuned if, for example, thickness must be changed.

The controller memory typically consists of about 3,000 8-bit words of programable read-only memory, 256 words of random-access memory, and 32 words of field-alterable ROM. Because the controller must retain its memory without power, RAM is used only to hold cur-rent-variables and status bits. The bulk of the control program and information relating to the installation are contained in PROM. Set points, limits and control algorithm constants which may be changed periodically are stored in the Farom.

There also are on-line diagnostic routines for go/no-go self-checks that are run once per second. Bit patterns, outputted to a diagnostic port at points in the programs, provide an oscilloscope or logic analyzer trigger, as well as a visual indication of controller operation.

Memory

French introducing domain memory

Magnetic bubbles hold a great deal of promise for mass-storage of digital data, but many observers say they won't hit the market in a big way until the 1980s. Meanwhile, a French company is poised to enter the market with a competitive tech-nology-moving-domain memories. The European entry is Crouzet SA in Valence, France, which will join Cambridge Memories Inc., Cambridge, Mass., a company that has domain-tip hardware on the market.

Moving-domain memories are attractive for a number of reasons: they're nonvolatile, like core memories, but much smaller; they operate reasonably fast; they need no external magnetic bias to form and hold the domains, as do bubble memories; and they can be batch-fabricated using conventional microcircuit techniques.

This summer, Crouzet's aerospace and systems division will deliver a prototype 2-megabit image-refresh memory destined for a military dig-ital-TV system. The company also has in the works a refresh memory
for a cockpit display, and for the French space agency there's a prototype study for a satellite memory.

Disk replacement. Claude Battarel, the Crouzet technical executive who heads the memory program, also sees a potential commercial application, as a small high-performance replacement for small disk memories. "By the end of 1975," says Battarel, "the cost on a memory card for MOD memories should run 0.2 cent per bit, which looks competitive with 6-micrometer bubbles" (the size most people are working with). And Battarel is convinced that MOD can compete with a second contender-the charge-coupleddevice semiconductor memory-as its prices go down the learning curve.

Crouzet's current MOD has 35,000 bits per substrate. But the company already is working on an improved MOD with a density four times thatgeometry will change, magnetic tracks will be smaller, and conductors will be smaller. At the same time, there'll be a significant cut in the memory's power consumption to about 2 watts per megabit from the $30 \mathrm{~W} / \mathrm{mb}$ per second or so of the present version.

Crouzet builds its MOD memories on glass substrates that measure 63 by 54 by 0.8 millimeters. Each carries eight independent shift registers

Magnetic-memory movement. Sequence of sketches shows, from left to right, how magnetic fields created by currents in lateral and central conductors are able to move a magnetic domain from one finger-like area to the next in shift-register fashion.

If you can't bring your troubleshooting into your lab, roll Tektronix TM 500 to the problem.

\author{

- digital multimeters
}
- counters
- generators
- amplifiers
- power supplies
- oscilloscopes
- a blank plug-in for your own circuitry
- and more

The TEKTRONIX Rollabout Configuration of TM 500 modular instruments helps you conveniently take your test and measurement "laboratory" right to the problem . . . whether it's routine maintenance, calibration, repairs, QC or production testing, or whatever. TEKTRONIX TM 500 modular instruments are designed to fulfill your needs in such widely divergent areas as: computer circuitry and data handling equipment, numerically controlled machines, laboratory instrumentation, communications equipment, and medical instrumentation.

The modular Rollabout Configuration provides up to six operating test and measurement instruments, which you can tailor from a growing line of 29 , plus the TEKTRONIX portable or plug-in oscilloscope of your choice . . . all on a SCOPEMOBILE ${ }^{\circledR}$ cart. TM 500 modular instruments can work together through a common interface circuit board within their mainframe enclosures, and they can also function totally independently. Some are general purpose, such as DMMs, some are highly specialized, such as those for oscilloscope calibration. They comprise a test and measurement system that is difficult to duplicate with "monolithic" instruments.

The TM 500 Product Line is a growing, compatible family of 29 plug-in modular instruments, accessories, and one,
three, four, and six-compartment mainframes providing the common power supply. The modular Rollabout Configuration can accommodate two TM 503, 3-compartment mainframes. Select the plug-ins from 11 signal sources, 5 counters, 2 digital multimeters, 5 power supplies, 3 signal processors, 1 oscilloscope, and an $\mathrm{X}-\mathrm{Y}$ monitor. There's also a blank plug-in kit to make it more convenient for you to assemble the specialized circuits you require. A TM 500 modular Rollabout Configuration lets you take the instrumentation you need where you need it.

Find out what TM 500 instrumentation can do for you. Send for the TM 500 Booklet A-3072 with full specifications and suggested selections of instruments for typical applications. Or contact your local Tektronix Field Engineer for a demonstration of how TM 500 instruments can solve your needs. Write to Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97077. In Europe write Tektronix Limited, P.O. Box 36, St. Peter Port, Guernsey, Channel Islands.

of 4,352 bits. The clock cycle is 2.8 microseconds, and the average access time for an octet (the bits in the eight registers are transferred in parallel) is 6 milliseconds. By astute utilization of the memory, however, the access time can be cut when the full 32 -kilobit bit capacity is not required. Improved units will have 512-bit registers, and average access time of about $300 \mu \mathrm{~s}$.
The shift registers are based on a magnetic track with a central path flanked on either side by "fingers" that store the domains. Actually, the track is made up of two 1,000 -ang-strom-thick layers of nickel-cobalt, a continuous "soft magnetization" layer with a "hard" layer atop it. It's the pattern etched into the "hard" layer that guides the domains as they step along the register in response to writing and reading pulses fed to the register.

Here's the cross section of a substrate from the bottom up: glass substrate, 8 millimeters; two layers of nickel-cobalt, each 1,000 angstroms thick; a $15-\mu$ m layer of insulation; the central conductor meander of copper $8 \mu \mathrm{~m}$ thick; a second $15-\mu \mathrm{m}$ layer of insulation, and on top the lateral conductor of copper $15 \mu \mathrm{~m}$ thick.
The width of the track, from the tip of one finger to the tip of the finger opposite, is $200 \mu \mathrm{~m}$. The width of the finger (along the track axis) is $12 \mu \mathrm{~m}$, and the pitch is $50 \mu \mathrm{~m}$. These dimensions are well within the range of the thin-film microcircuit techniques Crouzet employs to produce the substrates.

Consumer electronics

Subaudible tone

protects records

Top recording stars are not only big business but big losers as well when their records and tapes are pirated and sold by "outside" interests. Lost sales and royalties could amount to as much as $\$ 200$ million annually, according to industry estimates.

But a small company in New York, Audicom Corp., thinks it can put an end to the pirating with a subaudible tone-coding system that would be tagged onto each recording. Originally developed by the late Murray G. Crosby, the inventor of fm multiplex stereo, for keeping track of radio and television commercials as they are broadcast, the tones could be used to identify a recording's original source, according to Audicom.

Typically, says Alex J. Rutman, Audicom's executive vice president, a "pirate" of records or tapes will superimpose material onto the stolen recording, such as an occasional guitar chord. When challenged, he usually claims that the entire recording was made by different artists as a "sound-alike" production, pointing to the minor differences as proof. The Audicom system is expected to change all that.
The system places a subaudible identifying code on the original master recording, actually a narrow frequency "notch" of 200-hertz bandwidth, centered at $2,877 \mathrm{~Hz}$. The code runs for 2.5 seconds. Within this notch, a carrier 55 decibels below peak audio amplitude provides an 8 -character signal code in frequency-shift form. A receiver/monitor detects and decodes
the signal and a built-in electronic clock adds time information. The code, which can be applied to any recorded medium, may be inserted several times in each recording or commercial.

Unmistakable. Rutman says the same signal will appear on any recording produced by a pirate, thereby identifying the material as that of the original producer. And the signal can be detected when the recording is broadcast. This is important, says Rutman, because broadcasters are required to pay royalties to the producers of the recording. In fact, he says that the final version of the proposed general copyright revision bill now before Congress includes an amendment that would force broadcasters to pay for every play of every record. Obviously, says Rutman, Audicom considers this will generate a major market for its system.

Audicom is now in the midst of raising capital to complete the testing required by the Federal Communications Commission and to market its system to record companies, broadcasters, and advertising agencies. The company plans eventually to place receiving stations in the top 200 broadcast markets in the country.

Decoded signals would be recorded daily and polled by telephone at the end of each broadcast day. The data would be fed into a central processing unit for generation of proof of performance and billing and collection reports, station logs, competitive media reports, music-publisher royalty reports, and advertiser audits.

Packaging \& production

Flexible circuits get

cheaper laminate

A Los Angeles inventor has developed a relatively inexpensive technique for coating a thin plastic film on copper foil. The technique is said to make high-temperature flexible

A lot of people make flat cable. A lot of people make flexible circuits. We're one of the few who make both.

But the big difference isn't only what we can manufacture, it's what we can design.

Hughes CONTOUR ${ }^{\text {TM }}$ Cable solved problems for the Viking Mars probe. We worked out solutions for the Minuteman missiles. We cracked tough packaging problems for shipboard and airborne systems, radar, sonar, high-speed computers.

And we can crack your tough ones, too.

Not wild-eyed, super-expensive,

forever-and-a-day solutions. Practical solutions. Maybe even less-expensive-in-the-long-run solutions.

And once we design it, we'll make it. In one of the industry's newest, most complete facilities.

Think of it this way. If it's simple and easy, anybody can do it, including us. But the tough nut is our specialty.

A tour? Or a consultation to discuss your design requirements? Just call (714) 548-0671 and ask for Dave Cianciulli.
Or write: 500
Superior Ave.,
Newport Beach,
California 92663.

Cables, circuits, connectors . . . only Hughes puts it all together.
printed circuits cost-competitive with those manufactured for lowtemperature applications.

The developer, a chemist named George Wilhelm, claims an operating temperature higher than $400^{\circ} \mathrm{F}$ for foil coated with polyimide, compared to the $120^{\circ} \mathrm{F}$ for low-temperature polyester.

If the technique can be translated into large-scale production, it may be suitable for high-temperature applications like kitchen ovens and, more significantly, for high-volume applications such as cameras and automobile dashboard assemblies. Flexible circuits are needed in these applications because of the tight space requirements that only they can meet. However, the fact that the circuits could be soldered in production is more important than their heat tolerance. Existing low-temperature circuits must be soldered under carefully controlled conditions to avoid peeling or melting of the dielectric. The auto industry, in fact, uses press-fit mechanical contacts to avoid the need for solder.

High-temperature circuits now available use an expensive Kapton film laminated to the copper with an even more expensive sheet adhesive. But Wilhelm says his process should yield circuits 50% to 75% less costly than Kapton circuits. Other attempts have been made to coat copper with bulk liquid plastic, says Wilhelm, but, to his knowledge, they have been unsuccessful.

Curling. When a plastic such as the polyimide is applied in liquid form it shrinks as it solidifies, causing the laminate to curl. Wilhelm claims to have overcome this to a large degree with a proprietary process. He hopes to place the technique in production or license it. He says a large computer company is now evaluating some of his circuits.

Using the laminates he has made, Wilhelm has fabricated several flexible circuits, some of which were shown at a London trade show in December by Frank P. Recchia. Recchia is in market development at D.S. Gilmore Laboratories, the polyimide supplier in North Haven, Conn.

Although the dimensional stability of the laminate is not as good as one using Kapton, "it's still an excellent high-temperature material and is acceptable for many applications to upgrade Mylar," says Recchia. He adds that there was "much interest" in the circuits at the London show.

Wilhelm sees some applications for the film in semiconductor packaging. In particular, he cites the tape-fed bonding techniques, such as Minimod, which are receiving increasing attention at integrated-circuit makers. He says he has eutectically bonded silicon chips to a copper laminate with 30 seconds of scrubbing at $800^{\circ} \mathrm{F}$ without delamination.

Microwaves

Microwave devices

withstand VSWR

Microwave transistors are usually judged by their gain and output, with electrical ruggedness coming in a distant third for consideration. But in transistors developed for the 1,640-megahertz uplink transmitter for the Marisat marine satellite system, TRW Semiconductors Inc., Lawndale, Calif., has used a combination of techniques to ensure that the devices can withstand an infinite voltage-standing-wave ratio. This means the transmitter output can be opened or shorted without damage to the output transistors-important in mobile and shipboard applications where antennas are subject to damage or misuse.

Thomas J. Kelly, project manager at Scientific-Atlanta Inc., the prime contractor for the Marisat terminals [Electronics, Nov. 14, p. 39] says, "The other units we tried were extremely delicate, but you can do anything to the TRW units and it doesn't hurt them. They work well even at the high temperatures."

Contributing to the ruggedness are diffused emitter-ballast resistors, with monolithic zener diode protec-
tion. These resistors allow the transistors to be operated without the expensive load isolators normally required, explains TRW microwave sales manager Bill Sebastian. In addition, the transistors use a proprietary gold-metalization system for long life.

The diffused emitter-ballast resistors equalize current drawn by each "finger" of the interdigitated structure normally used for such high-frequency transistors. Conventional microwave transistors either omit this step or use thin-film resistors. Sebastian points out that this thin film is, unfortunately, the hottest part of the transistor; it is deposited on an oxide layer that acts as an insulator, preventing heat dissipation.

Better dissipation. The diffused resistor, being part of the silicon, has, unlike a thin film, better heat dissipation while also having the same thermal coefficient. The diffusion also can be designed to run out of carriers before the device draws a destructive level of current. Another advantage is that a higher resistance level is possible-50 ohms rather than the 10 ohms obtainable with thin films of nichrome.

The diffused resistor, because it has a different resistivity than the substrate, also forms a zener diode to the collector. TRW uses the zener diode to provide overvoltage protection. Another zener added between base and collector serves a similar function. Sebastian says the devices appear to have one disadvantage: "They're a little harder to broadband because of slightly higher feedback capacitance."

The gold metalization process substantially reduces metal migration a problem in fine-geometry devices such as microwave transistors if conventional ahuminum is used. The transistor, for example, has 50 3-micrometer-wide fingers spaced 1 $\mu \mathrm{m}$ apart on a 20 -by- 20 -mil chip. TRW uses a titanium-tungsten-gold system. Platinum rather than tungsten had been used but led to processing problems, says Sebastian.

The metals are sputtered onto the wafer, giving better coverage than

Here's proof that AZ positive photoresist gives better device yields than negative photoresist.

Shown here is a series of SEM's illustrating the unlimited capabilities of our AZ Positive Photoresist Systems. We want you to see for yourself the excellent resolution, edge acuity, and line width control our photoresists provide in both thick and thin coatings. AZ Systems excel in: contact, proximity and projection exposure; aqueous development and removal; wide processing latitudes; accurate reproducability of photomask geometries in coatings 0.3 to 2.5 microns thick. All of these factors combine to give you increased yields and profitability. Shipley Company Inc., Newton, MA

AZ-111 0.8 microns thick on silicon dioxide provides excellent edge acuity, etch resistance and line width control.

AZ-1350J on aluminum showing excellent step protection through the use of thick coatings.

Contact layer coated with 1.8 microns of $\mathrm{AZ}-1350 \mathrm{~J}$ is covering 1.5 micron steps. Thick coatings help eliminate pinholes and step breakdown.

AZ-1350J on aluminum gives excellent edge acuity despite wide thickness variations.

Contacts after etching and resist removal. Note absence of pinholing and sharp edge acuity.

AZ-1350J allows " 0 " pinholing during etching.
collimated deposition, especially over steps in the oxide. A proprietary plating process instead of back etching is used to define the metal, thereby reducing undercutting and permitting thicker metalization.

The Marisat transistors are $10-$ watt devices, but 1 - and 3 -watt units have already been designed. Moreover, TRW is adopting the process for all of its radio-frequency products, including high-frequency single-sideband devices.

Microprocessors

Bipolar micro has two-port RAM

Most semiconductor microprocessors to date have been MOS LSI devices aimed at controller applications. Only recently have a few companies turned to developing comparable bipolar units that also meet the needs of computer designers. The latest firm to do so is Advanced Micro Devices of Sunnyvale, Calif., which has used its low-power Schottky process to build the AM2901 4-bit slice microprocessor.
amd joins Intel Corp., Santa Clara, Calif., and Monolithic Memories, Sunnyvale, Calif., as suppliers of microprocessors based on conventional bipolar logic. These products offer a maximum potential of about 1,000 gates per chip and should not be confused with the more powerful bipolar LSI being developed with newer processes like integrated injection logic and emit-ter-follower logic. Both $\mathrm{I}^{2} \mathrm{~L}$ and EFL chips promise 10,000 logic gates per chip and minicomputer-like performance (see p. 29).

AMD plans to start sampling the AM2901 next month and hopes to displace Intel's series 3000 2-bit slice [Electronics, Sept. 5, 1974, p. 89]. Monolithic Memories fabricates a 4bit slice.
"For the applications we have in mind-emulating minis, CPUs, peripheral controllers, and program-

News briefs

Squabble intensifies between BART and Westinghouse
The squabbling in San Francisco between the Bay Area Rapid Transit and Westinghouse Electric Corp. has intensified since BART's board of directors voted to remove the Westinghouse gear from all of its 176 lead cars, the special cars in the front of each train that contain the propulsion equipment and train controls. BART says it's making the move because of Westinghouse's refusal to provide detailed specifications for its equipment. At this point, says Harvey W. Glasser, chairman of BART's engineering committee, the board decided "there was no point getting in deeper [with Westinghouse], since the stuff was failing." Next stop is in the courts, where BART and Westinghouse hope to settle the $\$ 109$ million suit filed last November by BART. Meanwhile, BART will continue to use the Westinghouse on-board equipment until it can redesign the system.

Air Force plans new 1,100-person lab

A new Air Force Command, Control and Communications Laboratory will be created at Hanscom AFB, Bedford, Mass., during fiscal 1976 if Congress approves. The new organization, with a proposed staff of 1,117 , will consolidate 252 jobs at AF Cambridge Research Laboratories on the base with another 865 from Rome Air Development Center, Griffiss AFB, Rome, N.Y. which is to be closed.

Canadians give up on semiconductor producer

Microsystems International Ltd., which has lost $\$ 45$ million since it was formed in 1969, is phasing out of semiconductor production over the next three months. Operations of the 88%-owned Northern Electric Co. subsidiary in Ottawa, Ont., and Penang, Malaysia, will close because of what Northern Electric officials say is an accelerated drop in demand for MIL's products and a substantial price erosion in semiconductor markets.

Business data processing gets Data General system

With its new C/300 data-base-oriented medium-scale computer system, Data General Corp. is after a market now being served to a large extent by big mainframe computers. The first business system from the Southboro, Mass., mini maker is aimed at data-processing users who want to expand central data bases downward to operational levels performing functions such as sales, manufacturing, and distribution. As such, the C/300, which ranges in price between $\$ 77,000$ and $\$ 160,000$, fills a gap between intelligent terminals and large general-purpose systems.

Interdata 8/32 Megaminl computer Introduced

Interdata Inc. of Oceanport, N. J. introduced its 32-bit Model 8/32 Megamini computer [Electronics, Feb. 20, p. 26], designed to compete directly with Data General Corp.'s Eclipse 200 and Digital Equipment Corp.'s 11/70 16-bit general-purpose minis. Available in June, 1975, and priced at $\$ 51,900$ with 1 megabyte of memory, Model 7/32, which the company considers to still be at an early stage of its product life cycle, will continue as Interdata's low-price entry in the 32-bit minicomputer market.

Signetics sale to U.S. Phillips proposed

Hardly anyone was surprised when Signetics Corp. confirmed rumors that it was for sale by reaching a preliminary agreement with U.S. Philips Trust, a majority owner of North American Philips. The proposed sale price is $\$ 43.8$ million for Philips to buy Corning Glass Works' 70\% interest in Signetics. Philips' German component-producing subsidiary, Valvo Gmbh, which regards Signetics as a threat in the European market-especially in linear ICs for entertainment electronic products-is happy about the proposed move. One Valvo official says, "We've now gotten a strong competitor off our necks.' The sale is still subject to Signetics, Corning, and U.S. Philips Trust approval.
 expensive high speed op amps - they're right on the chip!
Precision Monolithics monoDAC-02's unique sign/magnitude code or monoDAC-04's handy two's complement code allow a perfect match to any application. These DAC's are 100% tested for monotonicity over the entire $0 / 70^{\circ} \mathrm{C}$ temperature range. The other specs are just as impressive tight $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max tempco, fast $1.5 \mu \mathrm{sec}$ settling time, low 225 mw power consumption @ $\pm 15 \mathrm{~V}, .015 \% / \mathrm{V}$ power supply rejection - these DAC's are true performers! Don't let the low cost fool you - these easy-to-use converters are 100% burned-in at $+125^{\circ} \mathrm{C}$ for assured reliability. And they're available. Get 'em from your Precision Monolithics distributor today.

MONOTONICITY	INPUT	CODE	PRICE
GUARANTEED, $0 /+70^{\circ} \mathrm{C}$	SIGN/MAGNITUDE (10 BITS PLUS SIGN)	TWO'S COMPLEMENT (BIPOLAR - 10 BITS)	@ 100 PCS.
7 BITS	monoDAC-02DDU1(U2)*	monoDAC-04DDU2*	\$15.00
8 BITS	monoDAC-02CCU1(U2)	monoDAC-04CCU2	\$20.00
9 BITS	monoDAC-02BCU1(U2)	monoDAC-04BCU2	\$30.00
10 BITS	monoDAC-02ACU1(U2)	monoDAC-04ACU2	\$60.00
* ± 10 VOLT OUTPUT - U1 SUFFIX ± 5 VOLT OUTPUT - U2 SUFFIX			

NEW YORK mETROPOLITAN AREA Harvey Radio, Westbury, N.Y.: (516) 921-8700 - NEW ENGLAND abea Gerber Electronics, Dedham, Mass.: (617) 329-2400 - UPSTATE NEW YORK Harvey Federal Electronics, Binghamton, N.Y.: (607) 748-8211 - NORTHEAST Newark Electronics, Woburn, Mass.: (617) 935-8350 - BALTIMORE-WASH' INGTON Whitney Distributors, Baltimore, Md: (301) $944-8080$ - PENNSYLVANIA Hallmark Electronics, Huntingdon Valley, Pa.: (215) 355-7300 - Pioneer/Pittsburgh: (412) 391-4846 - MICHIGAN RS Electronics, Detroit. Mich.: (313) 491-1000- SOUTHEAST Kirkman Electronics, Winston-Salem, N.C.: (919) 724-0541. EAST CENTRAL Pioneer/ Cleveland, Cleveland, ohio: (216) 587-3600. - Pioneer/Indianapolis, Indianapolis, Indiana: (317) 849-7300 Pioneer/Dayton, Dayton, Ohio: (513) $236-9900$ - CENTRAL Hallmark' Electronics, Elk Grove Village, III.: (312) 437-8800 - Minneapolis, Minn.: (612) $884-9056$ - St. Louis, Mo.: (314) 291-5350. TEXAS-OKLAHOMA Sterling Electronics, Houston, Texas: (713) 627-9800 - Dallas, Texas: (214) 357-9131 - SOUTHWEST Sterling Electronics, Albuquerque, N.M.: (505) $345-6601$ - Phoenix. Ariz.: (602) $258-4531$ - WEST Westates Electronics Corp. Chatsworth, Calif.: (213) 341-4411 - Sunnyvale, Calif.: (408) 733-8383 - Intermark Electronics, Sunnyvale, Calif.: (408)
 Almac-Stroum, Seattle, Wash.: (206) 763-2300 - Portland, Ore.: (503) 292-3534 - CANADA Intek Electronics, Vancouver, B.C.: (604) 324-6831.
able microprocessors among other things-Intel's is far better than anything else previously on the market," says Sven Simonsen, AMD's technical director. "So in our design we felt it was necessary to go Intel's 3000 series one better in every way we could.
"For one thing," he says, "the AM2901 is fabricated using AMD's low-power Schottky process [Electronics, Feb. 6, p. 142] which allows the dual in-line 40 -pin package to dissipate typically only 750 milliwatts."
Two-port ram. Functionally, the AM2901 consists of a 16 -word-by-4bit two-port random-access memory, a high-speed arithmeticlogic unit, and associated shifting, decoding and multiplexing circuitry.
"Particularly important in our design is the use of a two-port RAM, as compared to the one-port approach that Intel has taken with its 3000 series," Simonsen says. "The twoport memory gives our system an edge in speed. Our total microcycle time is about 100 nanoseconds compared to the typical 125 ns of a oneport design.
"But it is what you can do in the microcycle that is important, as well as how many microcycles it takes to do a particular operation. That is where the two-port approach comes in."
In an operation like $\mathrm{A}+\mathrm{B}$, for example, the AMD two-port device can read and add in 1 microcycle of 100 ns. By comparison, says Simonsen, a one-port machine is quite a slowpoke: it must first take the A out of memory and put it in an accumulator and then in the next microcycle take the B out of memory, put it in the accumulator, and add the two.
"What this means is that in most of the applications for this kind of device-add, subtract, AND/OR-a one-port design must go around the microcycle twice to do the same thing a two-port machine can do in one," he says. He adds that the 2901 CPU should be available by early summer.
Following its introduction, he says, work will begin on fabricating the elements to go with the 2901 .

There will be three of these-a sequencer to handle the 479 -bit instruction words, an address register, and an incrementer.

Lasers

CO laser is built small enough to fly

The Air Force Avionics Laboratory has developed a carbon-monoxide laser compact enough for use in airborne avionics. Starting a year ago with an "enormous" lab version of a carbon-monoxide gas-dynamic laser, the laboratory stripped it of much of its size and weight by redesigning the electric discharger and by modifying the laser's aerodynamic flow. The resulting 3 -cubicfoot package produces the most power for its size of any laser in the Air Force inventory.

Built under contract by Calspan Corp., Buffalo, N.Y., the new laser functions at outputs up to 500 watts with efficiencies greater than 10%.

Match. It's well suited for atmospheric transmission, say its developers, because it's a good match for the 4.8 -to- 5.1 -micrometer atmospheric window-a part of the spectrum that allows laser transmissions unhindered by absorption in water vapor. The new version achieves 90% of its optical output at wavelengths below $5.1 \mu \mathrm{~m}$, compared with previous carbon monoxide lasers that have only 60% output in that range.

Calspan has a $\$ 100,000$ contract for optimizing the device and delivering a prototype with even higher power levels by the end of the year.
Lasing in gas dynamic lasers is caused by electrical, chemical, or thermal excitation of the gas in a head-end chamber; the excited gas is pumped out of the chamber through a constricted throat and allowed to expand in a nozzle to yield supersonic velocities, as well as lowered temperature and pressure. It's .this cold, excited gas-30 to 50 kelvin in the co version-that gives
the laser its characteristic spectrum. The optical cavity downstream consists of two internal mirrors mounted on the nozzle perpendicular to the direction of gas flow.
Conventional electrical discharges resemble fluorescent lights, achieving full-volume excitation with very low pressures but requiring large pumps to pull the gas into the nozzle. But a redesign of the electrical discharger enables the new laser to work at higher pressure so that the size of the downstream gas pump and the size of the laser can be trimmed sharply.
The co is injected through a narrow orifice around an annular electrode, creating enough turbulence and sonic velocity to break up and sweep away the instabilities that cause undesirable arcing. With the new discharger, the designers found they could get large-volume excitation at the high pressures; the prototype chamber typically runs at two atmospheres.

Solid state

Plastic package goes to 200 W

With power semiconductors in plastic packages winning acceptance in automobiles, television, and computer and industrial power supplies, Texas Instruments has boosted the ratings of its plastic power devices. TI hopes it can cut further into applications served by devices packaged in metal cans with a new plastic TO-3 package that will dissipate 200 watts at $25^{\circ} \mathrm{C}$.
Previously, the top power dissipation had been 125 w at that temperature. At $100^{\circ} \mathrm{C}$, the TI package now being sampled will dissipate 65 w. Moreover, the plastic parts will be priced 15% to 20% less than metal-can equivalents.

The new high-power epoxy pack-age-roughly twice the size of the 125 -w unit and with a larger heat sink-has mounting holes that align with its metal-can equivalent. But

Get a Single Integrated Reading of the Total Power Density from Several Sources 300 MHz to 18 GHz

Now in one instrument you get more value, more measurements than ever before - at no extra cost. New Model 8306 has 30 dB dynamic range, full scale in three ranges $1 \mathrm{~mW} / \mathrm{cm}^{2}$, $10 \mathrm{~mW} / \mathrm{cm}^{2}$ and $100 \mathrm{~mW} / \mathrm{cm}^{2}$ with the same probe.

The Narda 8300 series are compact, easy-to-read, radiation monitors which accurately measure near and far field power densities over broad frequency ranges . . . they simultaneously respond to different polarizations and direction of incident power. Read the total power density at any one point from CW, FM, pulsed RF and microwave sources used in communication, radar, ECM and industrial applications.
Write for complete information.
"'SEE US AT IEEE SHOW - BOOTH \# 2418, 2420 \& 2422."
Circle 41 on reader service card

PHILIPS

Give us the opporsunixy to demonstrete our 120 Nidn of 58 hat oscittoscope side by side with whatever you're now using or with what you're accustomed to buying (TEK 465, M.P. 1707, or other), and we'll make you a free subscriber to the Philips Bigital Instrument Cousre, an in-degrth understanding of digital circuits and the mathomatical theory behizd them. Divided into five soft covered books and starting with - detaided instrtetion of number cheory and Boolean algebsa, the course progresses through digital blocks anfl circutisy right up so dall communicaribas apd conteof. The first two boeks. Basic Binary Theory and Logic Circuits, and Digital Timers and Coumters are availabte now. This offer is good for a firnited time anly; so ACT NON ! Call our toll free mumber soday and make sure vou don's miss ous on this special offar !

```
P43240-50 MHz
    - Dual irace/delaying sweep
    - Lighi weighe: 18.5 lbs.
    - Bright IOKV 8 }\times10\textrm{cm}\mathrm{ display
    - Low 23 Watt power consumprion
    - X-Y capability
    - Easy to use delayed sweep
```


PMB260E - 120 MHz

- Dual trace/delaving sweep
- Light weight: 19.5 lbs .
- Bright $20 \mathrm{KV} 8 \times 10 \mathrm{~cm}$ display
- Low 45 Watt power consumption
- X-Y capability
- Easy to use delayed sweep

WHETHER OR NOT YOU'AE CONVIACEB THAT OUR SCOPES ARE THE BEST VALUE FOR YOUR PARTICULAR APPLICATION YOU'LL JUST BE A LITTLE WSER FOR THE EXPERIENCE!

Philips Test \& Measuring lastruments, Inc.
400 Crosmay Park Dive Woodlary. New Yopk 11797

Electronics review

unlike earlier TI parts in plastic, the leads will not fit printed-circuitboard holes drilled for equivalent parts in metal cans.
'Instead, we're giving the customer the option of below- or above-board assembly," notes Tom Palmer, consumer/industrial marketing manager in Tr's power department. "The leads are arranged to accept a slip-on connector." The three leads, however, are long enough to be bent and soldered below the board if the user drills the special holes.
To connect the new package, Molex Inc., Lisle, Ill., has developed a lead-clip connector with flexible, stranded copper wires that can be mounted on the board. And Thermalloy Co., Dallas, has a socket that will accept either the TO-3 metal can or the plastic package.

But the price break contemplated by TI does not necessarily worry other semiconductor manufacturers working to bring down the prices of metal-can parts. For example, Thomas Ruggles, product planning manager for power transistors at Motorola Semiconductor, says Motorola is not planning to use plastic for anything above 100 w . "At that level, most of the cost is in the die and not in the package," he says. "Metal cans are not any more costly, but are more reliable because of the hermetic seal they offer. So we're concentrating on automating the assembly of metal-can devices."

First devices in the new TI package being sampled include a $1,400-$ voIt, 7.5-A horizontal-deflection transistor for color-television sets. For the automotive industry, TI will be using the package for a $400-\mathrm{v}$, 7.5-A high-voltage transistor. Since these are fast-switching devices, they can be used for switching regulators, as can a new 400-v transistor rated at 10 A .

These parts will be in volume production by the third quarter, Palmer notes. Further down the road are general-purpose transistors, including a $400-\mathrm{v}, 25-\mathrm{A}$, silicon-controlled rectifier, and $30-\mathrm{A} n \mathrm{nn}$-pnp complementary pairs in $40-, 60-, 80-$, and 100 -v versions.

for 10 kW new-look UHF TV Transmitters $470-860 \mathrm{MHz}$

The TH 392-10 kW peak video, pyrolytic graphite grid Pyrobloc* and TH 327-1 kW sound offer low-voltage operation, small size and lightweight, and unparalleted linearity and efticiency

\square Save electrical energy
 \square Save capital expenditures
 \square Save operating costs

Q

IHOMSON-CSF

THOMSON-CSF ELECTRON TUBES. INC. / 750 BLOOMFIELD AVENUE / CLIFTON NJ 07015 /TEL (201) 779.1004 / TWX : 7109897149
France - THOMSON-CSF Groupement Tubes Electroniques / 8, rue Chasseloup-Laubat / 75737 PARIS CEDEX 15 / Têl (1) 5667004
Germany - THOMSON-CSF Elektronenröhren GmbH / Am Leonhardsbrunn 10 / 6 FRANKFURT/MAIN / Tel. (0611) 7020.99
Italy THOMSON-CSF Tubi Elettronici SRL / Viale degli Ammiragli 71/ROMA / Tel. (6) 3814.58
Japan - THOMSON-CSF Japan K. K. I Kyosho Building / I. 9. 3. Hirakawa-cho / Chiyoda-ku / TOKYO / 102 / Tel (03) 2646341 Spain-THOMSON-CSF Tubos Electronicos SA / Alcala $87 / 7^{\circ}$ Dcha / MADRID $9 /$ Tel. (1) 2267609 Sweden - THOMSON-CSF Elektronrör AB / Box 27080 / S 10251 STOCKHOLM 27 /Tel (08) 2258.15
United Kingdom - THOMSON-CSF Electronic Tubes Ltd. / Ringway House / Bell Road / Daneshill / BASINGSTOKE RG24 / OQG / Tel. (0256) 29155

We try to build an edge into General Electric panel meters.
For instance, you won't see a GE panel meter turn yellow, because we use a special white paint that stays white. You won't get eyestrain either. GE panel meters come with extra-wide scales, big numerals, tapered pointers, and shadow-free cover plates for quick, sure readings. We're fussy about things like that.

Once you've installed them,

 forget 'em.GE's famous reliability just doesn't happen, we build it in! We designed-out a lot of extra parts that might fail, just to give you extra instrument reliability. To make sure, we added a 20% overload capability to our voltmeters and ammeters. Still not satisfied, we decided to measure instrument quality from parts to finished product in order to screen out anything marginal. Now, it's just too tough for a lemon to squeeze through.

GE panel meters come from a good family.
They look good individually and they look good together. Choose the rounded BIG LOOK® design for unique style and wide-eyed readability. Or choose the clean HORIZON LINE ${ }^{\circledR}$ case for its behind-panel mounting flexibility (without the usual bezel), and its snap-off mask available in six colors. GE makes panel meters to suit you and to add snap to your application.

For a complete catalog of competitively priced and readily available GE panel meters, see your nearby authorized GE distributor. Or write to General Electric Company, Section 592-43, One River Road, Schenectady, N. Y. 12345.

You can count on

 General Electric panel meters.They're built to help you do a better job. At GE, we're not interested in product equality. We want ours to be better than the rest.

Specify
 General Electric.... just for good measure.

0 がいいいいいいいいいいい
 A－C AMPERES
 GENERAL 66 ELECTRIC

Wanta half million opto-isolators?

single channel

dual channeltwo independently isolated channels

Just as?

quad channelfour independently isolated channels

You can't see the LEDs in our optoisolators...but they're there.

That's one reason why the No. 1 producer of LEDs has now become a high-volume producer of opto-isolators. Our opto-isolator production capacity has multiplied ten times in the past 12 months. And our line has become broad enough to satisfy nearly every application. For example:

General purpose, Litronix has a full line of phototransistor/LED opto-isolators in standard dual-in-line packages.

Low cost. If you're looking for optoisolators at a really competitive price, we can offer units for less than 60ϕ each in quantity orders of 1,000 .

High CTR. If you need plenty of output current, we have models that match an IR LED with a photodarlington sensor to give you a current transfer ratio of 300%.

High speed. If you want ultra-fast response, we have an opto-isolator that uses a built-in IC to transmit data at rates up to 5 megabits per second.

Our innovative, solid-state line runs from the simplest to the most sophisticated.

We're a dependable source for optoisolators because we're a vertically integrated company-a fancy phrase meaning that we make everything in-house. We don't buy any high technology parts outside. This gives us better quality control. Better price control. And better delivery.

So don't forget: our expertise in LEDs has made us a leader in opto-isolators, too. Solid-state reliability comes in many forms.

For details on Litronix opto-isolators write us at 19000 Homestead Road, Cupertino, California 95014. Phone (408) 257-7910. TWX 910-338-0022.

No wonder we're No. 1 in LEDs

If you've been looking for a function generator that plugs into an automatic system about as easily as it plugs into the wall, Wavetek is your stop. Our Models 152 and 159 are both ASCII coded and are fully compatible, which means they can be used with the new generalpurpose instrumentation bus and just about any computer. They also have pushbutton manual
controls if you'd rather keep them on the bench. Either way, you'll be able to see what's happening with the LED digital display panels.

Model 159 is a generalpurpose low-cost function generator with programmable frequency, amplitude, offset and waveform. Its frequency range is l Hz to 3 MHz .

Model 152 provides two to
eight separate outputs, each with individually programmable phase, amplitude, waveform and offset. Frequency is programmable from 1 Hz to 100 kHz . For more information, contact Wavetek, P.O. Box 651, San Diego, CA. 92112.
Telephone (714) 279-2200, TWX 910-335-2007.
N距
Circle 48 on reader service card

Buy our ASCll programmable function gencrators and youll be ready for the bus.

Washington newsletter

> IBM takes itself out of the running for NASA contract

IBM Corp.-under heavy Government fire for a proposed takeover of CML Satellite Corp.-has taken its Federal Systems division out of contention for the $\$ 600$ million tracking and data-relay satellite system wanted by NASA [Electronics, Feb. 20, p. 50]. As an IBM marketing official put it: "Timing was the problem. With the CML deal questioned by the Federal Communications Commission and the spate of antitrust lawsuits against us, we couldn't afford to look like we were trying to muscle into another market." However, IBM has not withdrawn from the CML acquisition. Comsat General Corp., which owns one-third of CML stock, also would have been IBM's partner in the data-relay work.

The IBM decision leaves two corporate combinations considered the leading contenders for the data-relay satellite work: one is Western Union with TRW Systems group, the other is an RCA/GE/Philco-Ford combine.

Anti-skid suppliers

 brace for hearingsMakers of electronic anti-skid hydraulic brake systems for mediumand light-weight trucks are girding themselves for an April 1 hearing called by the National Highway Traffic Safety Administration. A lot of business could be riding on it, for the NHTSA has agreed to consider a proposal to postpone indefinitely a Sept. 1 deadline for the installation of anti-skid devices on new light and medium trucks. Truck manufacturers, who fear that the added $\$ 600$ to $\$ 700$ per vehicle for the brakes (including $\$ 100$ for electronics) will further depress sales, are on the other side of the debate. It remains to be seen what the NHTSA will do, having previously refused to lift a March 1 deadline for air-brake antiskid systems on heavy trucks.

Questions of reliability have usually headed up attacks on the electronic anti-skid requirements. In that regard, the chief engineer for brake safety at the NHTSA, Vernon Bloom, says the systems developed thus far are at the "half-way-decent point."

Economy affects EIA member roll

The Electronic Industries Association, evidently reflecting the nation's economic condition, recorded the loss of 16 member companies at its Spring Conference in March. Some of them are big names, like Monsanto Co. and the multi-division member International Rectifier Corp. Also quitting was Philco-Ford Corp. following its withdrawal from entertainment electronics. But it posted a gain of seven new membership applications, the most notable of which was one from Quasar Electronics Corp., successor to Motorola, Inc., within the EIA Consumer Electronics group. The changes leave EIA with somewhere between 185 and 190 members. The association also stands to gain 100 or so members through its recent merger with the Association of Electronics Manufacturers. The AEM is now part of EIA Distributor Products division.

The EIA Board of Governors reallocated its 56 seats among the association's eight divisions to reflect the changing membership. The March reallocation, performed every three years, doubled the number of seats allocated to Distributor Products to six to accommodate the expansion following the merger with the AEM. At the same time, the Government Products and Solid State Products divisions each lost two seats, reflecting their declining income.

Washington commentary

Prospects and pitfalls for electronic funds transfer

Electronic funds transfer or EFT is regarded by many in the banking and electronics communities as a massive new market for computers, communications, and point-of-sale equipment, as well as a giant step toward the much-discussed "cashless society." Congress last year established a 26 -person National Commission on EFT to study the issue and its impact on competition, credit, and privacy. The commission, still to be named, must report no later than November, 1976. Donald I. Baker, deputy assistant attorney general for antitrust, recently proposed an agenda for the commission and speculated on the future of EFT. Highlights of Baker's presentation follow.
-Ray Connolly
Congress has created a big commission to do a big job: to tell us where to go in the burgeoning field of electronic funds transfers. The job is big because it involves technology of yet uncertain dimensions. The job is also big because any such change necessarily affects economic interests rooted in the past.
The inquiry should start with what we have in the paper-based world. How does it work technically? What are its costs, its scale economies, and its operating characteristics? What subsidies are built into it? How would it perform and develop if left to carry on on a "business as usual" basis? These are just basic, technical questions.
Next, we must ask a parallel set of questions about EFT technology. What kinds of com-puter-communications systems are in place, or have been tried? In the financial sector, these must include both clearance systems between institutions, and various systems which enable the customer to direct financial transactions (including point-of-sale systems, automated tellers, check guarantee systems, and on-line terminals in the corporate treasurer's office). Each should be looked at separately and in relation to each other.

Policies by design

The relationship between technology and services must also be investigated. Does a particular technical development change what is actually being offered to the public, or does it simply change the cost and operational characteristics of an old service? This distinction may prove important because it may well affect the incentives for introducing EFT technology.

In a sense, these questions are simply directed to the engineer and the entrepreneur. They ask how would EFT be likely to develop if
freed of either legal restraints or special subsidies. Nobody expects, in the real world, that this would be allowed to happen entirely, but it is important to make this "norm" clear. Only if we do so will we have a factual basis for designing public policies.

Having developed a full factual record, the commission can then turn to the task of developing policies and legal tools to implement those policies. This exercise in turn requires a very careful scrutiny into the whole issue of values. The Congress has already given the commission some very general guidance in this area and no doubt will prove more willing to sec-ond-guess the commission's judgment on value questions than technical questions.
The importance of the commission's mission is, alas, underscored by some of the sadder chapters of modern American economic history. We have been among the most innovative people on earth in developing new technology. We have been [also] among the least successful in implementing those technological inventions in regulated environments where the technology threatened the economic status quo.

CATV's message

Cable television represents perhaps the best-or worst-example. About five years ago, everyone looked on cable the way we now look at EFT-as the wave of the future. Unfortunately, cable ran into the broadcasters and their regulators. The conflict was not compelled by technology or logic: our system of broadcast regulation exists because frequency spectrum is scarce and thus Government regulation was necessary to avoid interference. Cable television greatly reduced the spectrum scarcity as a practical factor. Unfortunately, cable thus threatened the economic value of the existing scarcity. This proved too much for the regulatory system. The broadcasters' regulator, the Federal Communications Commission, assumed some de facto jurisdiction over cable systems and placed on them legal limitations which increased their costs and severely limited their growth-especially in large metropolitan areas where broadcasting spectrum is both the scarcest and most valuable.

The same thing can happen to EFT. It can be loaded down with legal restrictions to protect existing interests and with expensive obligations to serve the dreams of social engineers. If this happens, it is likely to lose cost-effect advantages it now has and to become a relatively minor factor in the muddled future.

This is an ad about an unusual tape reader: Step-Mate. And about what makes it even more unusual than it already is: our new spooler.

With the spooler, Step-Mate can handle up to 1200 feet of tape at a time, on $71 / 2$-inch spools. The whole unit, only $83 / 4$ inches high, fits in any RETMA rack. And, with a choice of three different connector types (edge card, ribbon, or subminiature 25-pin), it's exceptionally easy to interface.

Step-Mate, if you don't mind our reminding you, is our reader which reads one character per command pulse. And it does this at speeds up to 150 characters per second. In addi-

tion it has a life expectancy greater (probably) than yours, with LEDs for never-fail light sources, error-free phototransistor read sensors, a gentle-on-the-tape barrel sprocket, a genuine step-motor drive, and a selfcleaning read head. Finally, it reads virtually all $5,6,7$, and 8 -level tapes without adjustment.

So there you are, a new tape reader without equal, at a price also without equal, $\$ 905$ with power supply, $\$ 795$ without.

Our brochure will tell you more. Write for it. Or, for instant action, call collect.

1441 East Chestnut Avenue, Santa Ana, California 92701 Phone 714/835-6000

SIEMENS

Indispensable capacitors In computer power supplies, for example

Intensive-care station in a hospital. A computer monitors heart action, circulatory system, respiration of the patients. Human lives may depend upon the computer and the associated measuring equipment performing all their functions faultlessly. Constant operating voltages, even with varying loads, are a basic requirement for this.

The power supply facilities of highquality electronic equipment supply such voltages, bridge short-duration power failures, and, in the event of prolonged disturbances, cause no-break changeover to emergency power operation. In the process capacitors perform crucial functions.
Reliability, long life, high alternating current rating for continuous
operation, small residual currents, good impedance behavior over a wide range of temperatures - those are the main characteristics of the aluminum tubular-case electrolytic capacitors from Siemens, such as are mainly used in power supplies. These capacitors are available with capacitances from 150 to $150,000 \mu \mathrm{~F}$ for rated voltages from 16 to 350 V . And at very competitive prices at th

For the present and the future Capacitors from Siemens
 Circle 124 on reader service card

Eectronics International

Oki optoisolator protects computer systems: page 5E

Schlumberger's portable two-channel scope
is built around three pc boards: page 19E

The signals and nothing but the signals

10 MHz continuous displays for real time and storage

True dual beam operation is used in these three $10 \mathrm{MHz}: 2 \mathrm{mV}$ oscilloscopes to give bright, continuous displays and thereby eliminate the phase error problems of time-shared instruments.

All models feature comprehensive triggering facilities and a logical front panel layout, plus a rigid construction and line or 24 V DC operation. In addition the storage version employs variable persistence to bring important additional display benefits.

What is true dual beam operation?

 This is an improved display technique in which two beams are generated in one gun. The X-plates are shared but the Y -plates are entirely separate and driven independently thereby removing the need for chopped or alternate modes.The resulting continuous display eliminates ambiguity in the triggering conditions. This often occurs in timeshared instruments: for example, if the signal or part of the signal appears just as the beam is switched then it is lost completely!

As well as this important benefit, the technique also allows twice the

PM 323210 MHz : 2 mV large $8 \times 10 \mathrm{~cm}$ screen; line $/ 24 V D C$
normal light levels to be employed. Maximum advantage can therefore be taken of the 10 kV crt (8.5 kV for the storage instrument).

Universal triggering

All controls are logically grouped and push-button selected. The oscilloscopes have DC and AC coupling, plus a special TV position that gives fully automatic line or frame derived triggering (for models PM 3232/33).

All instruments also have an "auto" position in which the trigger level is derived from the signal itself. In the absence of a signal the time base is free running, when the signal appears it triggers automatically. It is thus easy to find the trace at all times.

Easy operation

The front panel layout speaks for itself. There is no clutter or confusion, making the instruments ideal for education and service applications. The screen is a large $8 \times 10 \mathrm{~cm}$ with continuous, bright traces that do not need to be interpolated and that allow extremely low duty cycle signals to be displayed.

You can therefore see and measure more, and measure it more easily.

PM 3233 As for '32 plus signal delay in both channels

New storage possibilities
The combination of true dual beam operation and "half tone"storage is absolutely ideal for single shot and random signals. These phenomena are exactly the kind that can and do get lost in a time-shared instrument, that are difficult to interpolate and that may be impossible to repeat. The storage model PM 3234, however, ensures that the whole signal is seen and captured, either for 15 minutes at min. brightness or 3 minutes at max.

Another new display dimension comes from the use of variable persistence. This is adjustable from 0.3 seconds to 1.5 minutes and provides clear displays of difficult-to-see signals like low frequency signals suffering from flicker or high frequency, fast rise time pulses with low duty cycles.

All the previously described "real time" features are also found in the PM 3234, making it one of the most versatile and easy-to-operate storage instruments on the market.

For more information on these advanced and universal 10 MHz oscilloscopes write to:

Philips Industries, Test and Measuring Instruments Dept., Eindhoven, The Netherlands.

PM 3234 As for '32 plus variable persistence and storage

$\int \subset$ From 0,2A to 500A Youare right to choose SLEE-SEMI-CONDUGIEURS

- RECTIFIER DIODES / ZENER DIODES
- THYRISTORS / TRIACS • UNIJONCTION TRANSISTORS
- GLASSIVATED CHIPS • EPOXY BRIDGES...

FOREIGN SUBSIDIARIES GERMANY AND AUSTRIA SILEC HALBLEITER GmbH 7536 Ispringen Plorzheim industriestrasse 20

Vertretung und
Distribution fur Bayern ME TRONIK GmbH 8025 Unterhaching bei Munchen Munchener Strasse 60 ITALY
SILEC S p a
Piazza Buonarrotı 32
20149 - MILAN
SPAIN
Guzman el bueno 114 MADRID - 3

FOREIGN AGENTS
AND DISTRIBUTORS SSC
SOUTH AFRICA
LIBERTY ELECTRONICS
LIBERTY ELECTRONICS
PO Box 334 BOKSBURG PO BOX 334 B
ARGENTINE
ARGENTINE
CARLOS ALBERTO BANETT
Casilla Correo 1733
BUENOS AIRES
BELGIUM
CLOFIS S.pr
539 Steenweg op Brussel
1900 OVERIJSE
BRASIL
APLICACOES ELECTRONICAS ARTIMAR LTD A
PO Box 5881 . SAO PAULO
DENMARK
AB RIFAKONTAKT BUREAU Vermundsgade 19
2100 KOBENHAVN
GREAT BRITAIN
TRANSWORLD SCIENTIFIC LTD
Shor Sireet
HIGH WYCOMBE (Bucks
FINLAND
O Y LM ERICSSONA B
02420 JORVAS
GREECE
MAKONIK
Rue Amfipoleos 18 .
Botanikos - ATHENS
THE NETHERLANDS
CLOFIS NEDERLAND B V
Oudemanstraat ?
2010 DEN HAAG
NORWAY.
SVERRE HOVEM A S
PO Box 919 - OSLO
SINGAPORE
GENERAL ENGINEER
CORPORATION
173 B Cec,l Streel
SINGAPORE
SWEDEN
AKTIEBOLAGET RIFA
16111 BROMMA 11
SWITZERLAND
ROTRONIC AG
Rautistrasse 12 - 8047 ZURICH
POLAND HUNGARY USSR
YUGOSLAVIA BULGARIA
CSSR RUMANIA
SEMIRA
40. rue des Tilleuls

92100 BOULOGNE

Oki’s optoisolator can drive up to 10 TTL stages

Device has short propagation delays and high breakdown voltage to protect computer and communications systems

Optoisolators are being used in ever increasing numbers to isolate dataprocessing and transmission systems from peripheral equipment. For this purpose, a device should have short propagation delays to avoid degrading system characteristics and a high breakdown voltage to isolate and protect the equipment. Such a device has been introduced by Oki Electric Industry Co.
The configuration of the optoisolator eliminates mechanical problems of earlier devices, and the new device also has better electrical characteristics. The optoisolator, encapsulated in an eight-pin dual inline ceramic package, contains three semiconductor elements-a diffused gallium-arsenide light-emitting diode, a p-i-n silicon photodiode, and an integrated circuit that has two directly coupled stages of amplification, a Schmitt-trigger circuit for waveform shaping, and a transistor with an open-collector output. A strobe terminal is also available. The gain and current-handling capabilities enable the optoisolator to drive as many as 10 stages of tran-sistor-transistor logic.
Propagation delay of the device, developed under the supervision of Shigeo Wako, is less than 200 nanoseconds. This is good enough for present requirements. Distortion of the pulse waveform is only 1% at a transmission rate of 50 kilobits per
second, and voltage is rated at 1,500 volts.

Certain aspects of the development were guided by Kazumasa Ono of the Musashino Electrical Communication Laboratory of the Nippon Telegraph \& Telephone Public Corp. This interest indicates an NTT desire for the device.

Configuration. The diffused LED is planar, a handier configuration than that of the liquid-epitaxial devices usually used in photocouplers. Zinc is diffused into a portion of one side of the n substrate to form a p region. Leads from both the p and n regions are bonded to one side of the diode in the same manner as in other planar diodes, thereby eliminating the need to bond a lead to the substrate side.

The diode radiates from the n , or substrate, side in the normal manner because the infrared absorption of the n side is smaller than on the p side. The LED is separated by a sheet of glass 100 micrometers thick from the photodiode to which it is optically coupled. The small spacing gives high coupling efficiency, and glass provides a high voltage breakdown. This configuration also makes it easy to align the LED and photodiode precisely.
Radiated output of the LED is maximum for junction depths of about $20 \mu \mathrm{~m}$, which is close to the mean free path of minority carriers. The propagation delay time is degraded as junction depth is increased, but impurity concentrations in excess of 10^{18} atoms per cubic centimeter give faster response than lower concentrations. The combination of deep diffusion and the high concentration of impurities yields
an adequate diode output while maintaining the desired response time of less than 100 ns . Most of the other 100 -ns delay is from the amplifier that follows the photodiode.

The LED's quantum efficiency is 4%, an unusually high value for diffused LEDS, even though it is on the low side for liquid-epitaxial leDs. The diode radiates at 9,000 angstroms. A silicon photodiode has greater efficiency at this wavelength than at the $9,400 \AA$ of LEDs in most other optoisolators, thus enhancing transfer efficiency.

Photodiode. The p-i-n silicon photodiode operates at a reverse bias of 5 v , the voltage at which most logic circuits operate, and the same voltage is used for the amplifier circuit. On an n substrate with an intrinsic epitaxial layer $10 \mu \mathrm{~m}$ thick, a diffusion into the epitaxial layer goes about $2 \mu \mathrm{~m}$ deep. This type of device is extremely fast and has relatively high sensitivity. Delay time is about 10 ns .

Previous optoisolators have been made of a liquid-epitaxial LED and a phototransistor with leads bonded to both sides of the chip. In general, these leds have a response time from about 1 microsecond to 800 nanoseconds at best. A phototransistor has a higher gain than a photodiode, but operating speed falls as an inverse function of the increase in gain and typically ranges from 1 to 10μ.

These two semiconductor elements are usually mounted on cantilevered extensions of the lead frame inside the package, and the space between them is filled with silicone resin. This method of mounting needs about $500 \mu \mathrm{~m}$, and
this fairly large spacing contributes to low coupling efficiency.

Coupling efficiency is also variable because the accuracy of spacing and lateral positioning tends to
be low. And since the leads from the LED and the phototransistor are on opposite sides of the same space, there is always the danger of arcing between them.

France

Image converter helps multiply gain of Thomson-CSF's streak camera

Nuclear bombs give off plenty of light when they explode, so the low light gain of the original streak cameras developed to record bomb tests turned out to be an important virtue.

But streak cameras have since been turned to humanitarian tasks-plasma-fusion studies, basic nuclear investigations, and laser chemistry, for example-where light levels are not always high enough to be photographed at nanosecond exposure speeds.

The more gain, the better, asserts Pierre Nodenot of the special-applications department in ThomsonCSF's Avionics and Space Equip-
ment division. Thomson-CSF has boosted the variable light gain that ranges from 2 to 30 in the model TSN503 streak camera it put on the market four years ago [Electronics, Electronics International, Nov. 8, 1971, p. 10E]. Now, the department has wrought a startling improvement with its TSN504: the gain has been boosted to values as high as 5,000.

To be sure, there's a tradeoff. The fastest exposure time for the TSN504 is 50 nanoseconds, compared to 2 ns for the TSN503. But the tradeoff is temporary, maintains Nodenot, sales engineer for the camera. "As soon as we get to know

Electrons from the photocathode of this streak camera are multiplied by secondary emission as they pass through the image-converter plate to the fluorescent screen.
the tube better," he says, "we'll get down to 2 ns."

Multiplying. The tube Nodenot refers to is an image converter that has been developed by Laboratoire d'Electronique et de Physique Appliquée and recently put into production by Hyperelec, which, like LEP, is a Philips-group company. This tube, designated the PF500, differs from conventional image converters in that it has a channel electron-multiplier plate.

Electrons from the photocathode, after they have been focused and accelerated, are multiplied by the thousands through the process of secondary emission as they pass through the plate. (To keep the gain homogeneous over the surface of the plate, it is tilted to an angle of 13°.)

The enhanced electron stream emerging from the plate is converted back to photons by a fluorescent screen deposited onto a fiberoptic faceplate. The recording film is held flush against the outer face of the fiber-optics. This proximity of the two surfaces eliminates light loss.

Potentiometer setting. The optical gain is set from zero to 5,000 by adjusting a potentiometer that varies the voltage applied across the channel multiplier plate. To trigger the camera, a 50 -volt pulse with $2-\mathrm{ns}$ rise time and 200 -ns duration is applied to the camera's control electronics.

Pulses are then generated to drive the control grid, the channel multiplier plate, and the deflection plates. The triggering delay is 25 ns , and jitter is no more than 1 ns. Maximum sweep speed is 0.8 millimeter per nanosecond over the screen, which has a usable area of 25 by 40 mm . The resolution is 10 line-pairs per millimeter.

Both the tube and the camera were developed in close collaboration with France's atomic energy agency, Commissariat à l'Energie Atomique. And-not surprisinglythe first six TSN504s have been delivered to the CEA.

Sales to outsiders-at prices ranging from $\$ 55,000$ to $\$ 66,000$-will

We, the unbending gnomes of Neuchâtel, present a world "first." Namelyour B-5450

First, it is a frequency standard with the highest short- and longterm stability. Second, it is a quartz clock with built-in interval meter for time companison.

start this spring. Nodenot already has found prospects in the United States, Russia, and France.

Great Britain

Intensifiers have

proximity focusing

Proximity-focused diode-image intensifiers are about to challenge such conventional intensifiers as inverter models. That's the message from English Electric Valve Co., which is about to market a range of the compact devices after overcoming some problems that had hung up the technology.

Development is being finished on devices having useful diameters of $18,25,40$, and 75 millimeters, says B.R.C. Garfield, assistant manager of the Light Conversion division.

John Hadland (PI) Ltd., which is developing a new image-converter camera, may be the first to use the intensifiers. Two of the diodes with fiber-optic windows will replace lenses and some four-stage magnetic intensifiers.

Basically, a proximity-focused diode is an image intensifier in which a plane photocathode is parallel to and closely spaced from a plane phosphor screen. An applied accelerating field causes electron imaging by the direct transfer of photoelectrons across the narrow gap between the phosphor and the photocathode.

Useful. The proximity diodes were originally developed by EEV as low-light preamplifiers for channel intensifiers, but other potential applications include television-camera systems, preamplifiers for vidicon tubes, and shutter image converters for gating applications in aerial-reconnaissance cameras. An undisclosed manufacturer also is trying the diode as an output intensifier for ultrafast streak or framing-image tubes, and the diodes are being considered for astronomical uses in the impending international ultraviolet Explorer satellite.

Proximity diodes should be tough competition for other intensifiers where compact size, weight, and shape are important. Garfield says they compare favorably in gain, resolution, and background-noise characteristics. Each diode is only 14 millimeters thick.

Other companies making proximity diodes include Galileo Electrooptics and ITT Electron Tube division in the U.S., Garfield says. EEV claims that the higher voltages across the gap improve resolution and gain of their devices. However, because inverter intensifiers have thousands of times higher multiplication of intensity than proximity diodes, military markets seem to be safe for them, even though they suffer from some distortion and are comparatively large.

The proximity-focused diode requires no additional electron focusing, and the biplanar structure is compact. The device operates with no geometrical image distortion and resolution is uniform over the entire image area, Garfield explains. But to achieve these performances takes 10 kilovolts applied across the gap of less than 2 millimeters. Heretofore, this presented tough problems in manufacture and materials technology.

Developments. EEV, however, has developed a vacuum-transfer process that overcomes problems inherent in the process, such as complexity, expense, and long process times. Normally, two tube sections, one containing the photocathode faceplate and the other the anode, are mounted in separate units in a large
vacuum chamber. EEV shrank the size of the modules for better process control.

Improving materials technology helped, too. Garfield says better phosphors now can handle the stresses required. The company uses standard S25 photocathodes and P20 phosphors. The phosphor screen can withstand operation at field stresses in excess of 10 kilovolts per millimeter without damage. The resulting tubes are rugged and are packaged in a brazed ceramic-tometal envelope, he says. Input and output faceplates, usually fiber-optic, are sealed to metal flanges, which, in turn, are argon-arc-welded to the tube envelope. Garfield reports good shelf life and operational life characteristics.

Because of the improvement in the transfer process, the uniformity of sensitivity is excellent, Garfield reports. Photocathode sensitivities in excess of 200 microamperes per lumen are typical under low field conditions of less than 10 kilovolts per millimeter. The Schottky effect causes sensitivity to rise markedly under high field conditions.

The good resolution characteristics are aided by EEv's use of black backing on the phosphors to cut down on backscatter, which can cause blurring. The improved vac-uum-transfer process also eliminates two of the three causes of background noise in proximity diodesdust particles that cause bright spots and glows on the image edge caused by field emissions coming from the walls. Thermionic emission is under control, Garfield says.

Digital adaptive equalizer in BPO

modem reduces digital-data distortion

Digital filtering is one way to equalize distortion on telephone lines. Hovever, the modems for the British post office's upcoming 4.8-kilobit-per-second data-transmission system for the switched telephone network represents a giant step in the technology.

Plessey Telecommunications Research Ltd. has developed a digital adaptive equalizer that acts as a small digital processor in a modem now undergoing BPO prototype testing. The modem also has export potential because its power and narrow bandwidth enable it to

PLUMBICON'CAMERA TUBES FOR THE VENETIAN NEW GENERATION OF TV CAMERAS
 All the latest technology is combined in our 1-inch diameter Plumbicon TV camera tubes of the XQ1080 series for colour and black/white applications. The XQ1080 tubes, introduced in 1971, feature an anti-comet tail electron gun for better highlight handling, light biasing to boost 'dynamic resolution', low output capacitance for optimal signal-to-noise ratio and a ceramic centring ring for precision optical alignment. The XQ1080 series has now been completed with the release of the XQ1083 and the XQ1085 which combine the
 above features with extended red response for better colour fidelity. The tubes are similar but the XQ1085 has an infrared cut-off filter on the antihalation disc. The spectral responses of the two tubes are identical to those of the XQ1073/XQ1075 series. The main application of the new types will be in the red chrominance channels of threetube colour cameras.
 -plumblcon is a registered trade mark of N.V. Phillips' Gloellampentabrieken, EIndhoven. The Nelheriands.
 Circle 710 on reader servid card.

RECTANGULAR CATHODE RAY TUBES NOW WITHIN REACH FOR LOWER BANDWIDTH EQUIPMENT

Rectangular cathode ray tubes are becoming increasingly important with the tendency to more compact, high component density equipment. In addition to providing an attractive modern appearance, they enable optimum use to be made of the available front panel space and take up less room inside the equipment.
Until now, the general use of rectangular envelopes has been restricted to tubes, mainly with post-deflection acceleration, intended for medium and higher bandwidth instruments. Meanwhile, for reasons of economy the more simple mono-accelerator tubes, used in lower bandwidth applications, have appeared in round hand-blown envelopes. Our advanced technology, backed by 80 years' experience in glass manufacture, has provided a new approach in which many of the hand oper-
ations have now been replaced by automation. The result is a new family of rectangular tubes at prices comparable to round tubes. The first tube of this new family is the mono-accelerator type D14-250GH, intended for
oscilloscopes up to 10 MHz band width. It has a useful screen size of $10 \times 8 \mathrm{~cm}$ and, at a typical accelerator voltage of 2 kV it has deflection coefficients of $24 \mathrm{~V} / \mathrm{cm}$ (horizontal) and $13 \mathrm{~V} / \mathrm{cm}$ (vertical). The overall length is only 331 mm , including socket. The D14-250GH has a $6.3 \mathrm{~V}, 300 \mathrm{~mA}$ heater: a special version for battery operation. the D14-251GH, has a 6,3 V, 95 mA heater.
In addition to its use in oscilloscopes, the new tube will find application in waveform displays and in monitors, e.g. in medical applications such as electro-cardiography.

Another new, highly stable photomultiplier tube for nuclear physics is announced under the type number XP2050. The tube is intended for use where the number of photons to be detected is very low or where a good collection from each point of the photocathode is required, as for χ-ray spectroscopy.
The XP2050 is a head on 10-stage tube with a flat window and a semi-transparent bialkaline type D photocathode

NO PARALLEL RESISTOR NEEDED WITH DUAL PTC

Dual PTC thermistors for degaussing colour TV picture tubes have hitherto required a parallel wire-wound resistor to reduce the residual current in the degaussing coil. Our new PS-PTC dual thermistors do not need this additional component, so there is no longer any danger of overheating the resistor if the coil is disconnected, and the print board size can be reduced.
The function of PTC thermistors is to gradually reduce the initial degaussing peak current of 5 A to a steady state current of less than 2 mA peak. In the conventional circuit, the residual peak current through the "mains" PTC is higher than 2 mA and the parallel resistor is necessary to reduce the residual current through the degaussing coil.
The new PS-PTC" (parallel-series) has a parallel PTC connected across the supply, with a series PTC in the coil circuit. The series PTC would not by itself lower the current to 2 mA , but would stabilize the current above this value. By applying further heat to the
having a typical spectral response of $95 \mathrm{~mA} / \mathrm{W}$ at 401 nm . The useful photocathode diameter is 111 mm . The Cu -Be venetian blind dynode construction gives the tube an outstanding stability of 1% over 24 h as well as after change of count rate. The pulse amplitude resolution for ${ }^{137} \mathrm{Cs}$ is as good as $7,5 \%$.

Circle $\mathbf{7 1 2}$ on reader servid card.
series PTC, its resistance will increase to the point where the coil current is limited to 2 mA . This extra heat is provided by the parallel PTC which is in thermal contact with the series PTC. The parallel PTC is connected directly across the mains and has a higher switch temperature than the series PTC.
*Patent applied for.

Conventional method
$\mathrm{AB}=$ mains PTC $\mathrm{BC}=$ series PTC

New PS-PTC
$A B=$ parallel PTC $\quad B C=$ series $P T C$

Circle $\mathbf{7 1 3}$ on reader servid card.
Philips Industries
Electronic Components and
Materials Divlsion
Eindhoven - The Netherlands

Techsnabexport

au Salon International des Composants Electroniques

Stand 20 Allée M

Matériaux de base pour l'électronique

- Structures épitaxiales de silicium, arseniure de gallium
- germanium monocristal, polycristal
- silicium monocristal, polycristal
- monocristaux de composés semi-conducteurs
- monocristaux optiques
- titanate de barium

Exportateur:

V/O TECHSNABEXPORT

Moscou 121200 (U.R.S.S)
Tèl. : 244.77.27
Telex : 7239, 7628

Renseignements auprès de l'Agent exclusif pour la France

COPCI

44, rue la Boétie
75008 PARIS
Tél. : 225.96.50
Telex : 28837 Copci
compensate for poor conditions on some dial-up connections.

The system operates in the time-division-multiplex mode, the shift registers have virtually an infinite storage time, and digital circuits are relatively insensitive to temperature variations. The equalizer, which uses mainly low-power transistortransistor logic with mOs storage, occupies three plug-in printed-circuit boards measuring 10 by 20 centimeters.

When installed, the modems will enable data users, such as banks and airlines, to access a data service by dialing through the switched telephone network, instead of having to use more expensive dedicated private lines. This should be particularly useful for companies that need less than four hours of telephone time daily.

Speedy. The modem is designed to be ready for data transmission within 2.5 seconds of connection, and it handles echoes up to -6 decibels having delays as long as 20 milliseconds. Turnaround time is less than 100 ms . The bandwidth is 1.5 kilohertz between the $15-\mathrm{dB}$ points of the spectrum vs 2.2 kHz in eight-phase systems used by some private-wire carriers, says R. Keith P. Galpin, senior principal engineer.

In operation, the modem receiver's signal is sampled at the equalizer's input and converted into 8 -bit words by an analog-to-digital converter. These words are processed by the digital processor so that the modified words, when converted back to analog voltages, represent the original transmitted levels. The function hardware consists of only one adder and one multiplier.

So that the equalizer can adapt itself to any new telephone line, as well as keep up with any new line parameters, the designers used a mean-square error-minimization algorithm. An error signal, derived by comparing the equalizer's output with the nominal quantized levels, is used to adjust the tap coefficients in the equalizer. The error signal is correlated with the delay-line signals, and the polarity of the correla-
tion is used to adjust the corresponding tap coefficients, explains Martin N.Y. Shum, design engineer. An integration process reduces noise on the correlation.

Cells. In studying the filtering and adapting algorithms, the designers saw that they could represent the delay line signal and its corresponding tap as a cell. The filter cycle requires a multiplication within each cell and a running summation between the cells, whereas the adaptation cycle requires a multiplication and an addition within each cell separately. A single multiplier and adder in the central processor can be time-shared by both algorithms. A built-in program that controls the sequence of operation is repeatedly used throughout the modem's operation.

Galpin says the equalizer uses 64 taps, divided between 16 for the feed-forward transversal filter and 48 for the quantized-feedback filter. Since a distorted signal spreads distortion both forward and backward, the first filter lets the signal go through 16 delays "before the equalizer takes it seriously," he says, and "makes a judgment as to what to do with it." The processor, shared among the 64 , samples one tap, stores the signal, and so on-all within one cycle of the data-symbol period.

Summing. Each tap consists of a correlator multiplier feeding to a variable-gain amplifier, and the output feeds a summer. The summer's output goes to a threshold-limited quantizer. The quantizer's outputs go to the feedback filter and provide an error signal to each correlator multiplier.

The digital processor's two basic circuits, the feed-forward transversal filter and the quantized feedback filter, compensate for each other's faults. Since signal processing with a feed-forward transversal filter is a linear process, the configuration tends to enhance any noise in the input and increases the dispersion of the original distortion.

The quantized-feedback filter, on the other hand, is nonlinear, doesn't increase input-noise level, and han-

Perez Publicité. 102A

THOMSON-CSF

[^2]

QUALITY, TECHNOLOGY, SERVICE, RANGE, VOLUME, APPLICATION are our trademarks

We make components for a wide range af consumer, Industrial and professional applications.

Carbon composition resistors
- Metal glaze resistors
- Metal film resistors
- Wirewound resistors

- Wirewound precision trimmers
- Cermet precision trimmers

SEIMART COMPONENTI

Via Torino 177-10040 LEINI' (TORINO) Italy - Tel. (011) 9989553 - Telex: 37597

\author{

- Carbon potentiometers
 - Wirewound potentiometers
}
dles echoes of long delays. However, it can't deal with intersymbol interference caused by trailing signal elements and may suffer from errors.

Thus, since long time-delay echoes are common in public switchedtelephone networks, the feed-forward transversal filter equalizes intersymbol interference caused by following signal elements, while the quantized-feedback filter deals with echoes and intersymbol interference from preceding signal elements.

West Germany

Biological matter

sorted by computer
As biological research focuses more and more on cellular structure, viruses, and bacteria, there is an increasing need to collect, sort, and isolate such material. But the collection, sorting, and separation processes are beyond the capabilities of many laboratories.

Two American researchers, Thomas Jovin and his wife Donna, working at the Max Planck Institute for Biophysical Chemistry in Göttingen, West Germany, have now developed a computer-based setup for high-speed collection and processing of cells and other microparticles, as well as sorting according to various measured criteria. The computer operates on line so that measurements are performed while the particles are being processed.

In preliminary tests with their equipment, the Jovins have automatically measured and sorted 10,000 cells per second. Besides high speed, the equipment processes living organisms without destroying them. For example, the delicate isolated cells of fresh-water polyps, or hydras, originally 5 millimeters long, recombined to form living organisms after the analysis.

Operation. In the process the bioparticles, which are suspended in an appropriate protective fluid, first pass through a small nozzle. Then,

MULTIPULSE ${ }^{\circledR}$ is a new family of fully compatible pulse generators which includes :

TE 10 PULSE GENERATOR

- Repetition rate : adjustable from .01 Hz to 10 MHz : 9 coarse switched ranges and fine control.
- Delay : adjustable from 50 ns to 1 s
- Width : adjustable from 50 ns to 1 s
- Pulse amplitude :
- Simultaneous positive and negative outputs + and -, 10 V into 50 SL (two output amplifiers).
- Attenuation : adjustable from 10 V to 1 V by individual positive and negative controls.
- Output fully protected against short-circuits and overloads.
- Waveform aberrations : less than 5%
- Transition times $<5 \mathrm{~ns}$
- Square wave, double pulse, normal/complement, single shot, output current sources, synchronous or asynchronous gating, dimensions $222 \times 270 \times 85 \mathrm{~mm}$.

Call or write TEKELEC-AIRTRONIC, P.O. Box N ${ }^{\circ} 2,92310$ SEVRES (FRANCE), Phone : (1) 626-02-35 (Paris), Twx: TEKLEC 25997. Sales offices all over the world.

these particles, which may be cells, bacteria, viruses, or any other organ of intracellular structure, are illuminated by a laser beam. About 2 millimeters below the nozzle, an electronically controlled sonic oscillator chops up the fluid stream into tiny droplets, diluted so that each droplet contains only one particle.

The laser-illuminated particle scatters the light, absorbs part of it, and, when appropriately colored, the particle is excited to fluoresce. An optoelectronic measuring setup registers the scattered and absorbed light, as well as the amount of fluorescence. The data obtained on these optical parameters is sent to the computer a Digital Equipment Corp. PDP-11/45. The computer determines the sorting criteria as the particles continue on their way through the apparatus.

Depending on its optical characteristics, a droplet containing a particle is either negatively or positively charged, and both the polarity and the amount of charge identify the droplets in the subsequent sorting process. The droplets are sorted as they fall through an electrical field produced by parallel anode-cathode plates.
Separation. Negative droplets are attracted by the anode, and positive ones are deflected toward the cathode. The degree of deflection depends on the amount of charge in the droplets. Five different vessels collect the droplets according to the degree of their deflection. After the suspending fluid is separated in a centrifuge, the five categories of particles, each with identical optical characteristics, are obtained. The particles can then be studied under a microscope.

The optical data, determined while the particles are illuminated, accurately characterizes the cells, Jovin says. Scattered-light values indicate both the form and the size of the cells. Whats more, the fluorescence tests make it possible to trace certain antibodies bound to the particle or cell surface. These tests, Jovin points out, are important because they can trace the origins of particular virus infections.

Spare money because you can buy now only the function you need, at the moment you need it. And assembling your functions you get a superior product.

GERMANY : Tekelec-Airtronic GmbH, Munchen, Ph 59.46.21 * AUSTRALIA Kenelec Systems PTY LTD Victoria, Ph 288.7100 * AUSTRIA : Mr FOLGER, Vianna, Ph 65.62.364 * BELGIUM : Regulation Mesure Sprl, Bruxalles, Ph 771.20 .20 - DENMARK : Erik Ferner, Copenhague, Ph 31.16.07•SPAIN: 77.20.20 © DENMARK: Erik Ferner, Copenhague, Ph 31.16.07. SPAIN: Unitronics, Madrid, Ph 241.14.96 - FINLAND : Oy Hedengren, Helsinki,
Ph 620-211 - GREAT BRITAIN : Euro Electronic Instruments, London, Ph 620-211 - GREAT 8RIAND : Tekelec-Airtronic, Amstardam, Ph O20) 92.87.66/7•1TALY : Tekelec-Airtronic Spa, Milan, Ph 73.85 .674 - NORWAY British Import AS, Solli-Oslo, Ph 415.935°. SWEDEN, Erik Ferner, Stockholm Bromma-I, Ph 80.25 .40 - 'SWITZERLAND : Tschappeler AG', Zurich, Ph 34.07.77 - U.S.A. : Tekelec-Inc, Saddle Drive, Oxnard, California, 93030.

They know where you're going Bertha

Confronted by the unpredictable fury and erratic courses of hurricanes, men, with the chauvinism of which they are so generally accused, naturally gave them women's names. The habit sticks though hurricanes are no longer so unpredictable. They zig-zag across the low latitudes as erratically as ever; the change is in the amount of data on the meteorological events
that drive them - and other, less spectacular, kinds of weather - which is now continuously collected and rapidly processed.
By far the largest and most sophisticated centre for such processing is that at Kansas City, where data from weather ships, satellites and groundstations are collected automatically by a huge Philips messageswitching installation, with five separate

processors, handling a total of 485 telegraph circuits. Every hour it interrogates thousands of measuring stations - that takes two minutes.
This vast amount of data is processed, and the resulting detailed forecasts are distributed to several hundreds of thousands of destinations. That takes twenty minutes.

1 Visual Communication Display. Some animals probably see objects only when these move. The human eye retains something of this primitive selectivity which is, maybe, why moving text signs are such an effective way of communicating information. The Philips system is particularly simple to operate. The moving legend can be generated from punched tape or directly from a keyboard.

2 Page a man, anywhere in the plant? Sure. We have extended the transmitting range of our inter-office paging system to ten kilometres. A small pocket pager will alert individuals, or groups with the same call numbers, by a tone only or by a tone followed by a spoken message. The system can be linked-in with mobile radio networks.

3 You know all about electronics, what about telephony? Apart from being deeply involved in electronics, Philips have wide experience in telephony, telegraphy and telex. It might pay to call us in as consultants, to make sure that all telephone and data network facilities are used to maximum business advantage - perhaps in conjunction with mobile radio links or (city-wide) paging systems. And if extension or improvement of the network is considered, we might come up with some novel ideas.

4 Data communication over public telephone networks. We call it SEMATRANS 2403. It is a fast modem having a capacity of 1200 to 2400 bits per second in duplex traffic. It is our latest commodity to connect computer to terminal over the same lines you use to call your office.

If you would like to know more about us, mail the coupon, or write to Philips,
GAD-EMB-2/room 16, Eindhoven, Holland.

THOMSON-CSF

SEMICONDUCTOR DIVISION
50, rue Jean-Pierre-Timbaud / B.P. 120 / 92403 Courbevoie Telephone 7885001 Telex Sescom 61560 F
SALES REPRESENTATIVES IN EUROPE
eflgiaue - Bruxelles - Thomson S. A. Tel. 648.64 .85 Twx : 23.113 - BRD - München - Thomson - CSF GmbH Tel. (089) 76.75.1 Twx : 5.22.916- DANMARK - Kobenhavn - Scansupply Tel. Aeyir 5090 Twx : 19037 ESPANA - San Juan Despi (Barcelona) - Componentes Electronicos S.A. Tel. $\mathbf{3 1 9 . 4 6 . 5 0 ~ T w x : 5 3 . 0 7 7 - F I N L A N D ~ - ~ H e l s i n k i ~ - ~ O Y ~ S u f r a ~ A B ~ T e l . ~} 49.01 .37$ Tlg: Pierrejoly Helsinki - GREAT BRITAIN - London Thomson CSF UK Lted Tel. (01) 579.55.11 Twx : 25.659 - ITALIA - Milano - Sescosem Italiana Tel. 68.84 .141 Twx : 31.042\& ROMA Tel. 31.27.22/35.30.05 Twx : 61.173 Telonde - NEDERLAND - La Haye Compa gnie Générale d'Electricité Tel. 60.88 .10 Twx : 31.045 - NORGE - Dslo - J.M. Feiring A/S Tel. 02.68.63.60 Twx : 16.435 - OSTERREICH - Wien - Transalpina Tel. (0222) 56.15 .71 Twx : Ausland 12.717 - PORTUGAL - Lisboa 2 - Sd. Com. Rualdo TIg: Rualdo Lishoa Tel. PP.C 33725 - SuISSE - Berna - Modulator S.A. Tel. $232.142 / 43$ Twx : 32.431 - SVERIGE - Solna - Elektroholm AB Tel. 08/ 82.02.80 Twx : 19.389

New products international

Portable 85-MHz scope uses ICs for most functions

by Arthur Erikson, Managing Editor, International

Two-channel instrument from Schlumberger aimed at analyzing communications, computer logic equipment

Any product in the pipeline at Schlumberger Instruments and Systems gets a thorough checkout after
each major design stage. But the designers, production engineers, and sales engineers at the company's St . Etienne Center worked together more closely than ever to produce their new 5212 portable 85 -megahertz oscilloscope that is hitting the market this month. They met at least once a month for the past year and a half.

The collaboration has paid off,

TIght design. All circuitry for scope is on three boards: the vertical amplifier one shown under test, a time-base board (right, foreground), and the power supply.
the St. Etienne crew is convinced. "We've got a complete instrument, with all the operating gadgets imaginable and an exceptionally bright screen," enthuses Georges Bertron, marketing manager for the St . Etienne Center.
Most of the 5212 's functions are performed by integrated circuits; the production people have only three printed-circuit boards to worry about-one for the time base, one for the vertical amplifier, and one for the power supply.
The mechanical layout is equally spare, being essentially an open girder with the cathode-ray tube mounted inside, the pc boards on three sides, and the front and rear panels at the ends.
Add the covers, and the model 5212 weighs in at approximately 9.5 kilograms, which corresponds to about 21 pounds.
Schlumberger will sell the 5212 for less than 10,000 francs. For their money, buyers will get what they need to analyze digital communications equipment and computer logic systems.
The oscilloscope can produce a stable display with just about any kind of digital input signal, according to Alain Quéau, who heads up the oscilloscope design team at St. Etienne. Adds Queau, "It's also good for picking up transients in analog circuits since the rise time is four nanoseconds."
The 5212 has two channels, each with sensitivity at 85 mHz , adjustable from 5 volts/division to 5 millivolts/division. When higher sensitivity is needed, one channel can be switched for one mv /division up to 20 MHz while the other retains the 5 $\mathrm{mv} /$ division value. If the signal level and the sensitivity don't jibe and the spot goes off the screen, a diode lights to show which way it went off.

Choices. The two channels can work independently or together in

New products international

several ways. By pushing a button, for example, the input signals can be summed. Or the " B " channel can be inverted to obtain the difference. There's a tap, too, at the vertical amplifier outputs to pick off the input signals at a level of about 25 $\mathrm{mv} /$ division.
As for the two time bases, they can be used singly or mixed, too. Full-sweep speeds range from 100 nanoseconds/division to 1 sec ond/division, with a 10 -to-1 expansion possible for a better look at key parts of waveforms.
Synchronization can be internal, from either vertical channel, both of them, or the sum or difference of the two. "You can synchronize on a clock and a signal that occurs every ten pulses, for example," says Quéau.

External sync is possible with signals as high as 100 MHz and if a look at the external synchronizing signal is what's wanted, there's a pushbutton for that, too. For particularly complex signals, the hold-off of the sweep delay can be adjusted.
Although the 5212 rates only as a medium-range instrument as far as frequency goes, 85 MHz is high
enough that Queau based his vertical amplifier and his time bases on emitter-coupled-logic technology. For the vertical amplifier, Schlumberger worked out a custom IC design that puts 21 ECL-like transistors to work in an analog amplifier. The 5212 has three of these ICs; two serve as preamplifiers for the two channels, the third as the final stage of the vertical amplifier. "The transistors actually have cutoff frequencies of 1.5 GHz ," notes Quéau, "and the amplifier's passband is 250 MHz."

Queau didn't fully integrate the vertical amplifier, however. Fieldeffect transistors are needed to get the high impedance required for an oscilloscope, and Quéau felt that no supplier in Europe had an industrial technology for integrating FETs. Hence, discrete FETs plus some standard TTL packages for the switching logic are used along with the three custom ICs.

No custom circuit. Again because the technology isn't yet available, Queau avoided a custom IC for the time bases, whose sweep circuits are based on FETs. Pulse-shaping and control circuitry for the time bases

Bright. Schlumberger built new scope around a special Thomson-CSF tube that has no field mesh; gives traces bright enough to be photographed with 3,000 ASA film.
are implemented by standard ECL packages. "There are no tunnel diodes in the design," he says.

The technology was there, however, for the CRT. It's a ThomsonCSF "quadrupolar" type with an 8-by-10-centimeter screen. The traces are bright and sharp enough to be photographed on 3,000 ASA film at writing speeds up to 2 centimeters per nanosecond.

The tube was optimized with the 5212 in mind. It has a slot lens and two sets of quadrupolar lenses instead of a field grid for post-deflection acceleration. Since the writing beam's electrons don't get partially scattered by a mesh, the spot on the screen is very fine.

Also, the quadrupolar lenses amplify by five or six the effect of the electrostatic deflection plates. Still another advantage: the post-acceleration voltage, which is nominally 15,000 volts, needn't be precise, and that simplifies the power-supply design.

Schlumberger's design team packed all the pertinent operating features they could think of into the 5212. But they also remembered the people who have to maintain oscilloscopes.

The boards for the vertical amplifier and the time bases are largely accessible with the instrument's cover removed. And there are a half-dozen test points to facilitate troubleshooting. The vertical amplifier board and the time-based board can both be unscrewed from the backbone "girder" and still operate through their connectors. "You can demount either board in about a quarter of an hour," says Quéau.

Quéau expects that companies or government agencies that use the 5212 heavily will handle their field maintenance by replacing entire boards, repairing the defective ones in base shops.
Schlumberger Instruments and Systems, 5 rue Daguerre, 42030 St. Etienne Cedex, France [441]

Mobile Radio Test Set for VHF/UHF bands

This test set is a measuring instrument composed of a signal generator and an output tester which are capable of carrying out following characteristic measurements for the maintenance of single channel FM mobile radio equipment. In the outdoor operation this test set can be operated by a built-in battery (optional) instead of AC mains, so the testing of a mobile radio equipment is very convenient. This is an economical, easy-to-use test set which can be employed in the measurement of equipment having a narrowed bandwidth.
For Transmitter - Output power and frequency deviation

For Antenna

- VSWR

For Receiver - S/N and sensitivity

- IF center frequency adjustments
- Discriminator characteristics
- Audio output power
- Overall selectivity

The Signal Generator MG54C for 60 and 150 MHz bands is available in addition to the MG54B. The MG54C can be used for the maintenance of mobile radio equipment for 60 and 150 MHz bands in conjunction with the Output Tester MS52A.

Tester debugs microprocessors that use Intel CPU chips

Microprocessors are costing less and doing more. But the more circuit functions that designers pack into one chip, the harder it is to locate faults and programing errors. Sometimes the result is that the money saved with the system in the first place is wasted through extra time spent in debugging. Now a small electronics team in Geneva, Switzerland, has developed a debugger it claims can cut troubleshooting time from two and a half months to between one and three weeks for the average application.

The debugger is built by the Electronics division of Oxy Metal Industries S.A., an Occidental Petroleum subsidiary.
Jacques Lederrey, manager of Oxy microcomputer applications and leader of the development effort, describes the equipment somewhat dramatically as a means of carrying out "open-heart surgery" on microprocessor systems built around the Intel 8008 or 8080 CPU chip. "The complexity of circuits is such
that we often use it badly or make mistakes," he says, "The program is never right the first time, and the problem is that we don't have the means to find the mistakes. You can't examine the inside of an IC."

At least, until now you couldn't. Lederrey defines his debugger-one model each for the 8008 and the 8080 -as "a window through which we can analyze a CPU chip."

The trick is to build the debugger around a chip similar to that in the system under analysis, and then to use the debugger as an interface between the microcomputer and the external process it has been designed to control.

Tracking. To track down the faults in his system, the user takes out his CPU chip and replaces it with the debugger's interface connector (left foreground of photo below). To narrow the search for the errors, the systems engineer can then switch the debugger into one of several modes. He can use it to operate the memories and interfaces of his sys-
tem, or he can use the debugger's own memory in combination with the interfaces of the end-application of his system.
In any of these modes, the debugger is built to zero in on any function for close analysis. It operates in an instruction-by-instruction mode rather than in response to each machine cycle. It can examine and deposit instructions in any register of the central processing unit. It can do the same thing for any memory location or for the input-output interface. After any stop or break point, the debugger can trace the source of the last programed step even when the CPU itself cannot answer the question.

To check on the speed of the system, the debugger can provide a display of the execution time between any two program steps. Once a fault is located, the debugger can then be used to load, read, move and substitute memory content in hexadecimal or binary formats. The whole testing procedure can be done in real time through direct connection with the process or an electronic simulation.
If the process has to be kept rolling during the testing and fault analysis, the debugger's own ran-

RIGHIT ON TARGET AGAIN

...and clever too

TDA 1190-the complete TV sound channel

And we do mean complete. The TDA 1190 processes the signal all the way from the sound IF to the audio power stage. All in a single integrated circuit. No less than 6 functions are built into those 7000 mils ${ }^{2}$ of silicon:

- IF amplifier limiter
- Active low-pass filter
- FM peak detector Starting with a $30 \mu \mathrm{~V}$ input limiting threshold to stop you
worrying about that IF amplifier.
Then the low pass filter means that the peak detector operates on a nearly-sinusoidal waveform - so there's no radiation.

The DC volume control, with a range $>90 \mathrm{~dB}$, eliminates the need for tricky screened cables to the front panel.

And last but not least, the audio amp gives you almost hi-fi sound (4.2 watts of it) straight into a 16Ω loudspeaker.

You can use the TDA 1190 on any system with FM sound and in any size of receiver from a B \& W portable to a big screen colour set.

New products international

dom-access memories can be loaded with correct instructions and used as a temporary bypass for a defective or wrongly instructed read-only memory.
Flexibility. Some U. S. companies have already built debugger machines using their own interfaces and memories to directly monitor the process application. But Lederrey claims they do not offer the same flexibility in enabling the debugger to switch from one mode to another. Neither are they yet capable of working with Intel 8080 chips, he says, adding, "Such systems cannot check the customer's hardware, only his software."
In such a fast-moving business, no claim remains wholly valid for long. Motorola, for example, has put together an attaché-case-sized unit-the MES 6800-to evaluate systems using the M6800 microcomputer family. The compact unit (it measures 45 by 30 by 10 centimeters) needs only to be plugged into a regular power point and coupled up to a teleprinter to produce a fully operational debugger for the approximately 10 products that are in the M6800 range.
The Motorola approach may herald a new trend. Officials at Motorola's European headquarters in Geneva look upon a debugging package like MES 6800 as a more manageable replacement for the old-fashioned data book or "owner's handbook." A data book for sophisticated equipment like microprocessors would be so fat that an engineer would spend too much time finding the right page. Instead, a debugger system can be offered fairly cheaply to big customers as part of the sales package.
Motorola policy is not yet formulated, but Geneva engineers who designed the system figure it could be offered for a price as low as $\$ 1,000$. That would shake potential rivals (although in different product lines) like Oxy Metal Industries, which is thinking in terms of 11,500 Swiss francs, or close to $\$ 5,000$.
Microcomputer Applications, Oxy Metal Industries (Suisse) S.A., Avenue de l'Etang 65, 1211 Chatelaine-Geneva, Switzerland [442]

A solid-state synchronous relay designated the SC-5 can handle 4 to 20 amperes, 110 to 220 volts ac, with inrush current up to 10 times nominal current. A light-emitting diode and a photodetector isolate the input and output circuits. CELDUC, 42290 Sorbiers, France [443]

Fifty-ohm triaxial connector, series BNT, is designed for connecting cables consisting of an inner conductor and two concentric shields. It handles frequencies from dc up to $3,000 \mathrm{MHz}$. Suhner Elektronik GmbH, 8 Munich 90, Pfaelzer-Wald-Str. 68, W. Germany [444]

Reed relays, series 813 and 814 , for applications in measuring and control equipment, have contact resistance of ± 2 milliohms. Isolation resistance is better than 10^{14} ohms. Devices measure 30 by 27.5 by 11 millimeters. Elfein, 6 Frankfurt, Wiener Str., West Germany [445]

The SAJ310H C-MOS clock circuit pulls only $100 \mu \mathrm{~A}$ from a single $1.5-\mathrm{V}$ cell. The IC, designed for 4.1948 MHz operation, needs no external components other than a quartz crystal; no trimming capacitor is required. Intermetall (ITT), 78 Freiburg, West Germany [446]

Frequency counter type 100 is a $50-\mathrm{Hz}$-to-$40-\mathrm{MHz}$ instrument with a six-digit display. It features a sensitivity of 50 mV and a quartz crystal-controlled time base accurate to one part in 10^{6}. List price is only about $\$ 320$. Dietechnik. 8041 Grossnoebach 53, West Germany [447]

Disk diode type DSA505 is designed for a maximum peak voltage of $2,300 \mathrm{~V}$. It can be used as a free-running diode in chopper circuits. Measuring 57 mm in diameter, the diode is fully diffused and has ceramic insulation. BBC, 68 Mannheim 1, P. O. Box 351 , West Germany [448]

THE BREAKTHROUGH HAS BEEN MADE... NOW, A SOLID STATE

 SWITCH WITH THESE UNBELIEVABLE

 SWITCH WITH THESE UNBELIEVABLE CHARACTERISTICS ???

 CHARACTERISTICS ???}

LOAD HANDLING:
Low-level analog - nanoampere,
microvolt levels
Power - 100 VA, 2 Amps, 500 Volts
Common mode - 1500 VAC
Frequency - DC through MHz range
SWITCHING IMPEDANCES:
ON -20×10^{-3} ohms
OFF - 10^{16} ohms, 2.0 pt .

ISOLATION PROPERTIES:

True four-terminal
input/output isolation -
10^{10} ohms, 1.5 pf ., 1000 VAC
MULTIPOLE FLEXIBILITY:
Up to 5 isolated outputs

PACKAGING:

No heat sinks. PCB mounting

New products international

Resistance decade box RD 705 covers the range from 1 ohm to 11.1 megohms. The seven-decade unit is calibrated to an accuracy of 0.05% and has a temperature coefficient of less than 1.5 parts in $10^{4} /{ }^{\circ} \mathrm{C}$ AOIP, 83-85 Blvd. de la Gare, 75013 Paris, France [449]

Photoelectric detector pairs a gallium-arsenide emitter and a silicon receiver for counting applications up to 50 kHz . The detector includes an amplifier so it can drive relays directly. It operates on $5,12,15$, or 24 V . Baumer Electric, CH8500, Frauenfeld, Switzerland [450]

Insulation tester type 5491 is a battery-powered logarithmic-indicating instrument with two measuring ranges, each covering three decades: 0.1 to 100 gigohms and 0.1 to 100 terohms. Measuring voltage is only 7.5 V . Kistler AG, CH-8408 Winterthur, Switzerland [451]

High-power circulator is intended mainly for industrial microwave ovens operating at $2,450 \mathrm{MHz}$. The unit can handle 5 kW average power, with peaks to 30 kW . Insertion loss is 0.3 dB maximum; isolation, 20 dB minimum. Datron, 14 rue de Fontenay, 94300 Vincennes, France [452]

Programing block mounts directly on pc boards with 0.1 -inch spacing. It has a 10-by10 layout with gold-plated contacts that can handle 2 amperes at 50 volts. Several blocks can be ganged together for large matrixes. Ghielmetti AG, CH4500 Soleure, Switzerland [453]

Multipin connectors have nickel-plated and tinned, rather than gold-plated, pins for the mating function. Prongs for wire-wrapping are tinned phosphor bronze. Contact rating is 5 amperes, isolation is 5,000 megohms. GTE Sylvania, BP 20, 76710 Montville, France [454]

CLARE

DISTRIBUTOR NETWORK EUROPE

1 A	YY
Transistorvertriebsgesell-	Herbert M. Müller
	triebsgesellschaft mbH
Auhofstrasse 41a	5600 Wuppertal 1 Posifach 130956 Tel. 02121 426016-421064
A-1130 Wien	
Tel. 0222/829451	
DENMARK Texas Instruments A/S Supply Division	
	Tisco
	Zweigniederlassung der
Marielundvej 46 D	Texas Instruments
2730 Herlev	Deulschland GmbH
Tel. 01917400 Tx 19471	805 Freisin
ENGLAND	Kepserstrasse 48
	Tel. 08161/74.11 Tx 0527549 texin d
A Division of Texas	
Instruments	
165 Bath Road,	Frankfurter Ring 243 Tel. 089.32.50 11-15
Slough, Berks, SL1 4AD	Tel. 089.32.50 11-15
Tel. 075-33411 Tx 848363	
Carlton House, Carlton Place	7000 Stuttgart 50
Southampton, SO1 2DZ	Krefelder Str. 11-15
Tel. 27267 Tx 47580	Tel. 0711/54.70.01
2259 Coventry Road, Sheldon, Birmingham 26 Tel. 021-743-5293 Tx 338815	Tx 07254501 texin d
	6230 Frankfurt-Griesheim, Akazienstrasse 22-26 Tel. 0611/39.90.61 Tx 0411195
Mersey House, Mersey Industrial Estate, Heaton Mersey, Stockport, Cheshire Tel. 061-432-0645 Tx 667478	
	Lazarettstr. 19
	Tel. 02 01/2 0916 Tx 0857513 texin d
24 Rutland Street, Edinburgh, EH1 2AN Tel. 031-229-1481 Tx 72637	HOLLAND
	A Division of Texas Instruments Holland B.V. Freeport Building - Kamer 223-227 Schiphol Centrum Post Box 7603 Tel. (020)159.293 Tx 12196
FINLAND Into OY	
Po Box 153	
00101 Helsinki 10	
Texas Inslruments OY	ITALY Comapel Via Inama, 19 20133 Milano Tel. 2-738.30.82 2-738.14.06
Supply Division	
Fredrikinkatu 75 A7	
00100 Helsinki 10 Tel. 441275 Tx 12	
FRANCE	Via Mentana 26 10133 Torino Tel. 11-650.96.61
Dimac	
rue Michelet 5-7	
92604 Asnières	
Têl. 790.62 .32 Tx 61652	Via Canova 19 40100 Bologna
rue du Maréchal Joffre 15 35000 Rennes	
Tél. 99-30.59.81 Tx 73016	Intesi
cours du Docteur Long 149	Div. ITT Standard filiale Italiana Corso Europa 51-53 20093 Cologno Monzese (MI) Tel. 2-254.70.43 2-254.70.46 Tx 32351
69003 Lyon Monchat	
Tél. 78-84.31.37 Tx 38010	
rue du Caillou Gris 75	
31200 Toulouse	
Tél. 61-47.62.67 Tx 52130	Via Valadiet 35 C 00193 Roma Tel. 6-35.07.51 6-38.99.30 Tx 68179
avenue Emile Zola 30	
59000 Lille	
Tél. 20-55.43.05	
Tisco France	NORWAY
Division de Texas Instruments	Texas Instruments Norway A/S
Fran	Ryensvingen 15 Oslo 6
La Boursidière - Bloc A R.N. 186 92350 Le Plessis-Robinson Tel. 630.23.43 Tx 25687	
	Oslo 6 Tel. 2/689487 Tx 19628
	Arthur F. Ulrichsen A/S Hasleveien 28 Oslo 5 Tel. 216510 Tx 16941
1, av. de la Chartieuse 38240 Meylan	
Tél 90.45 .74 Tx 32589 8 , Bld de la Gare	
8, Bld de la Gare	SI Supply
31500 ToulouseTél. 80.64 .70 Tx 53462	
	Box 19094 40012 Göteborg Tel. 31;913525 Tx 21561
GERMANY Gonda Elektronik GmbH Rommelshauser Strasse, 25 7012 Schmiden Tel. 0711/511071 Tx 07254663	
	8048 Zürich

NOT WITH SOLID STATE !!! THIS PERFORMANCE IS STANDARD WITH CLARE HGJ AND MHMG MERCURY-WETTED RELAYS

A proven approach Claie meicury-wetted contact relay's solve complex switching problems which cannot be economically; handled by solid state devices. They easily switch low-level or logic loads as well as the high cummon mode voltages or power levels so often tound in system applications. V'ersatile signal handling capability, positive-ott switching, immunity to transients, stable parameters plus multipole outputs make Clare mercury-wetted contact relays hard to beat. Clare is already supplying these new relay's in quantity to inanulacturers oit computer contiol systems, telecommunication equipment, and autoniated testing instrumentation.
Reliable The heart of buth the MHMG and HGI series is a Clare man!utactured hermetically sealed glass capsule. Contact stvitching is mercury-to-mercury So there is no contact wear, no contact bounce, constant UN and OFF impedances - every operatron.

The mercury-film contact surfaces are constantly rene:ved. thus assuring reliable and consistent operation. Clare inercury-w'etted relays are rated toir billions ($>10{ }^{4}$) of operations.
Flexibility The HGI2N.1T version is specifically designed for low-level analog multiplexing and data logging applications in high rommon mode environments The MHMC series are compact packages with up to 5 separate contacts.
Please use the magazine reader reply card to request a copy of the Clare Catalog 800 and the Technical Application Reference brochure on mercur'-wetted relay's.

For more information, contact
C.P. CLARE INTERNATIONAL N.V.Rue Géneral Gratic; 102 1040 Brussels, Belgium - Tel. 02/;36.01.97-Telex 24157

A4 sizeX-Yrecorder

with 0.3% accuracy

and

$5 \mu \mathrm{~V} / \mathrm{cm}$ sensitivity

The YEW Type 3083 is a multi-selectable, ac servo system $\mathrm{X}-\mathrm{Y}$ recorder having a recording area of $250 \times 180 \mathrm{~mm}$. It is packaged in a compact die-cast case to assure long-life and stable operation. Its modular construction makes maintenance and inspection easy, and a complete line of plug-in units, including a Time Base Unit (with 10 dc voltage ranges), makes selection of the measurement range and function simple. In addition to an excellent inking system, Type 3083 provides a pen holder which permits recording with general-use felt-tip or ball-point pen, or even a pencil. The standard model is provided with a remote control of chart drive and pen lift.

- Main Specifications

Number of Pens: 1
Recording Mechanism: Ink writing (felt-tip and ball-point pen also usable)
Effective Recording Area: 250 mm (x-axis) $\times 180 \mathrm{~mm}$ (y-axis)
Accuracy: $\pm 0.3 \%$
Max. Sensitivity: $5 \mu \mathrm{~V} / \mathrm{cm}$
Chart: Roll chart paper or A4 size sheet
Position of Use: Horizontal, vertical and inclined use
Plug-in Units Available: Time Base Unit $(0.5 \mathrm{mV}$ to $5 \mathrm{~V} / \mathrm{cm}$ dc voltage ranges in 10 steps and 0.5 to 10 sec . time sweeps in 5 steps), DC Voltage Units (single -, 13-, 17- and 19-range, $5 \mu \mathrm{~V}$ to $5 \mathrm{~V} / \mathrm{cm})$, AC Voltage Unit and Offset Unit Zero-set; Adjustable full scale (240 mm) Input resistance; $1 \mathrm{M} \Omega$ constant
Paper Take-up Unit (Optional): Chart speeds; 2 to $60 \mathrm{~cm} / \mathrm{min} ., \mathrm{mm} / \mathrm{min}$. and $\mathrm{cm} / \mathrm{hr}$. in 4 steps

- Both roll chart and sheet recording - Plug-in flexibifity

New products international

Spark-suppression capacitors, types F1771, are metalized-polyester-foil versions for a nominal 250 volts. They come in a round plastic can, in a rectangular plastic can, and as a foil-surrounded cylinder. Ernst Roederstein $\mathrm{GmbH}, 83$ Landshut, Ludmillastr. 23-25, West Germany [455]

Water-cooled ac current switch SKW, with two anti-parallel thyristors, can be used in welding equipment. It is designed for periodic peak voltages up to $1,400 \mathrm{~V}$ and current values up to $1,450 \mathrm{~A}$. Switch-on time is 40 milliseconds. Semikron, 85 Nuernberg 5 , Wiesentalstr. 40, West Germany [456]

The TDA1043 integrated sound circuit for line- and battery-powered television sets contains an fm/i-f amplifier, a coincidence demodulator, a volume controller, and a low-frequency amplifier with a power-output stage. Intermetall (ITT) GmbH, 78 Freiburg, West Germany [457]

What are your colleagues doing around the world?

Find out in ELECTRONICS.

Go first class. Go to ELECTRONICS and you'll find out first hand where the biggest growth potential is today. And where it'll be tomorrow.

ELECTRONICS knows, because its 31 editors,
11 World News Bureaus and 200 correspondents make it their business to stay on top of what's happening in the ETM-the Electronics Technology Marketplace-worldwide. Only ELECTRONICS offers readers annual market reports and forecasts on Japan and Europe as well as the U. S.

ELECTRONICS is the Source, disseminating information, and establishing and maintaining communications among people in electronics,
wherever in the world those people may be.
We sell over 86,000 subscriptions to 122 countries all over the globe. You should be getting your own copy of ELECTRONICS right off the press because the world of electronics-your world-is between the covers of ELECTRONICS magazine.

Fill out the enclosed subscription card and send it off. ELECTRONICS is the one magazine you can't afford to be without.

Electronics $e^{\prime \prime}$ IS THE SOURCE. ITHATH

New products international

Subminiature coaxial termination resistors for 50 -ohm systems and for frequency ranges up to $4,000 \mathrm{MHz}$ handle $1 / 4 \mathrm{~W}$ and are available with MIL-C-39012 connectors series SMB, SMC and SMS (male and female). Suhner GmbH, 8 Munich 90, Pfael-zer-Wald-Str. 68, West Germany [458]

''Miniohm'' is a miniature precision wire resistor 4 millimeters in diameter and 8 mm long. It is available at values from 1 ohm to 300 kilohms and with tolerances of 1%, $0.1 \%, 0.025 \%$, and 0.01%. IV Electronic, 6 Frankfurt 50, Erbsengasse 27. West Germany [459]

In simulator of pH values, the electrode's temperature compensation and automatic compensation are taken into account. The device simulates 24 pH steps from 0 to 14 pH with accuracy within $\pm 0.2 \%$ of the preset value. Elementa GmbH, 85 Nuernberg, Hallerstr. 8, West Germany [460]

Procond

Electrolytic capacitors series ELKO 541-2
capacitance: $1.000 \mu \mathrm{~F} \div 100.000 \mu \mathrm{~F}$ $\mathrm{Vn}=10 \mathrm{~V} \div 100 \mathrm{~V}$ $-40^{\circ} \mathrm{C} \div 85^{\circ} \mathrm{C}$ DIN 41332 Tipo II A DIN 41250

Applications: power supplies measuring equipments hi-fi amplifiers

PROCOND S.p.A.

32013 Longarone (Belluno) Italy

phone (0437) 76145/76355 telex 44029
Circla 114 ori reater service card

New products international

Series M34 connector is a two-shell plastic structure designed to save space. Leads can be brought in from behind or from the side. Connector has two contact levels in an easily accessible area. Contact GmbH, 7 Stuttgart 80, Schulze-Delitzsch-Str. 29, West Germany [461]

Planar photoelement BPW35 is 10 by 10 mil limeters in size. Manufacturing technology gives it high sensitivity, even in the 450nanometer (blue) range, making it suitable for quantitative light measurements. AEGTelefunken, 6 Frankfurt 70, AEG-Hochhaus, West Germany [462]

High-frequency disk capacitors, series FP, have nominal power ratings of 6 to 60 kVA and operate on voltages from 2 to 6 kV . Capacitance values are from 25 to $6,000 \mathrm{pF}$ Applications are in hf and medical electronics equipment. Dralorig GmbH, 8672 Selb, P.O. Box 1180, West Germany [463]

Nuw, in one cumprehensive volume. a complete working grasp at large and medium scale integration for electronics ergineers en ${ }_{5}{ }^{3}$ ged in the design of electronic systems, equipment and products.
A wealth of practical wothing data on large alid medium scale integration has been culied frum the most impertant aricles in Electronics rimgazine by Samuel Weber, Executive Editor. Enfiphasis is of design problems at the system or slibsyste:n leivel, as well as on the economics of tuday's design. Whatever the desinn prublem -. from partitioning a digital system: to worhing with a semiconductor company in producing the best LSI design, this boak covers the fuli range of today's important technol.gies on a practical, rathe. than a theoretical. leve:
It's yours for \$15.00. Keep up.

"Virtual storage helped us handle increasing production while maintaining high standards of customer service".

Few developments so greatly enhance the usefulness of the computer as does virtual storage. By increasing the effective or "virtual" capability of the IBM System/370 to manage information, virtual storage opens the way to a wide range of user benefits.

Here one company reports on its experience with a virtual storage system.

Motorola's Thomas Koch demonstrates communications equipment at Schaumburg, Ill. division headquarters.

At Motorola,"it's the key to our worldwide data system."

"We strive to maintain a tight delivery schedule for our customized communications systems-worldwide. Our two Model 158s with virtual storage are the key to a worldwide data system that helps makesuch quick deliveries possible."

So says Thomas Koch, manager of international manufacturing operations of the Communications Division of Motorola at Schaumburg, Illinois. Plants in the United States and abroad now share a common data base for order entry, purchasing and material control, with the application running under virtual storage at Motorola's Chicago computing center. As a result, manufacturing operations are closely adjusted to product demand, production can be scheduled with closer tolerances and shipment dates made with assurance.
"Growth is a fact of life at Motorola," says Koch."We wanted to be able to handle constantly increasing production while maintaining our high standards of customer service. Virtual storage has been of immense help in enabling us to achieve this.'

For further information, call your local IBM Data Processing Division office. Or write IBM Corp., Dept. 83F-E, 1133 Westchester Avenue, White Plains, N.Y. 10604.

Computers help get things done.

E 5101

LD-30 Group Delay and Attenuation Measuring Set, 200 Hz - 20 kHz

For exact distortion measurements on data lines, even more precise and easier than proposed in CCITT Rec. 0.81. In LD-30 we have invested over 15 years experience with the carrier changeover principle (which the CCITT adopted from us) plus the knowledge gained from the practical and proven experiences with our Measuring Setups, LD-2 and LD-3. The new LD-30 offers all that a craftman wants.

- Economical sender/receiver in one case.
- Speech facility plus loudspeaker built into setup.
- Simple operation, ergonomic arrangement of front panel.
- Remote control of send level and frequency via transmission path as well as measured values retransmitted to send side.
- Also suitable for level measurements.
- Push buttons for simple calibration of $X-Y$ axes on a recorder.
- Measuring ranges: group delay distortion $\pm 50 \mu \mathrm{~s}$ to $+15 /-10 \mathrm{~ms}$, attenuation frequency distortion ± 0.5 to $\pm 50 \mathrm{~dB}$.
- Resolution, 1 Hz , for setting of sweep limits, measuring and reference frequencies.
LD-3 Group Delay and Attenuation Measuring Set, 200 Hz - 20 kHz
For all those who want a separated sender and receiver corresponding to CCITT O. 81, completely compatible with the LD-30.

points is a data transmission line.

it's in good shape.

Attenuation and Group Delay Equalizer DLZ-4

Telephone Channel Simulator TLN-1

Data Circuit Test Set DLM-1

DLZ-4 Attenuation and Group Delay Equalizer, $300 \mathrm{~Hz}-3.4 \mathrm{kHz}$
For fast and extremely accurate equalization of CF channels and lines with loading coils. The given and the required characteristics of the transmission circuit determine the type and number of partial equalizer plug-in units.

- Exactly reproducible equalizer settings.
- Line-up with computer or equalizer catalog.

TLN-1 Telephone Channel Simulator, $300 \mathrm{~Hz}-3.4 \mathrm{kHz}$
For simulating group delay distortion and attenuation frequency distortion of 1 to 6 CF or loading-coil line sections. Isolated inputs for the introduction of impairment signals.

DLM-1 Data Circuit Test Set

The versatile setup for in-service measurements on data lines. Sender and receiver in one case.

- Phase jitter measurements, according to CCITT Rec. 0.91, in a range within $\pm 300 \mathrm{~Hz}$ of a 1020 Hz test tone. Measurement ranges: $3^{\circ}, 10^{\circ}, 30^{\circ}$.
- Frequency shift measurements corresponding to CCITT Rec. 0.111: two tone measuring method ($1020 / 2040 \mathrm{~Hz}$); in ranges: $1,3,10 \mathrm{~Hz}$.
- Noise measuring from -80 to -30 dBm , psophometrically weighted.
- Level measuring in range -50 to +10 dBm with 1020 Hz or 2040 Hz test tone.

S Wandel \& Goltermann AB. STOCKHOLM. Tel. 472920
USA W \& G INSTRUMENTS Inc LIVINGSTONE N.J. Tel. 201994-0854

setabsrecorders

Light-beam Oscillographs

SE692 Portable Recorder 6 channels on a four speed 92 mm chart. Low cost galvanometers up to 2 kHz . AC mains and/or dc power input. Only 2.2 amps and weighing in at 7.6 kg - a truly portable recording package at a good price.

SE3006 U.V. Recorder The best "all rounder" for simple straight forward recordings. No fuss no frills performance at a very economical price. 6 in. chartwidth up to 12 channels.

SE3006DL U.V. Recorder

 De-Luxe performance at low cost, 6 in chartwidth, 12 channels. Full facility unit.SE6008 U.V. Recorder
Our latest model - superb performance at really economical cost. 8 in. chartwidth, servo drive to $4 \mathrm{M} / \mathrm{sec}$. Up to 25 channel capability, many, many novel features.

SE3008 U.V. Recorder Tried and proven model - a general purpose "workhorse". 8 in. chartwidth. 25 channels. Many options.

SE2112U.V. Recorder
Another tried and proven model - 12 in. chartwidth economically priced. Many options available. Up to 50 channel capability.

SE6012 U.V. Recorder Our ultimate model - the latest tech nology coupled with years of experience. 12 in chartwidth 50 channels. $5 \mathrm{M} / \mathrm{sec}$ forward, reverse drive, integral take up etc.

Galvanometers
SE precision galvanometers provide these oscillographs with measurement sensitivities from $0.8 \mu \mathrm{~A} / \mathrm{cm}$ to $36 \mathrm{~mA} / \mathrm{cm}$ and high fidelity recording capability from 0 to 8 kHz .

Potentiometric Recorders

A versatile series of recorders and modules for all applications of potentiometric recording. Single and two pen versions. A choice of writing mechanisms. Input modules for differing sensitivity requirements and many add on function modules eg. AC true RMS, integrating module, etc. Build up from a simple single channel unit to a complex 8 channel dot recorder!

Two new models for A3 operation to be announced shortly!

A general purpose $X-Y$ recorder with a good specification at a realistic price. Choice of sensitivity configuration giving a maximum $0.05 \mathrm{~V} / \mathrm{cm}$ on an A4 chart. A compact unit with many features and a specification to equal more expensive recorders. Time base unit gives added versatility and there is also a chart adaptors available.
Galvanometric Heat Stylus Recorders Economical direct write units. Single double, triple channel recorders with vertical or horizontal chart travel. Frequency response to 100 Hz Sensitivities $10 \mathrm{mV} / \mathrm{mm}$ choice of chart speeds; full 50 mm pen travel; available in OEM or cased configurations.

Super 8
Superlative performance from this eight channel pen recorder. Unique variable drive from 0.25 to $100 \mathrm{~mm} /$ sec. Frequency response to 100 Hz ; Sensitivity $10 \mathrm{mV} / \mathrm{mm}$; channel width full 50 mm : OEM configura tion.

> Hire For a smal" charye "oul can hire any of the instruments shown here, singly or as nait of a system which we can dessig: for you.
> or Buy
> If you decide later to purchase the equipinent, we call refumed pirt of the hive tee to you. You save your capital and soace. You beat obsolescence. Wíly not ring our Hirc Department for details? Included in the range are Transtiucers. Recorders, Oscilluscopes. Digital Instruments, Data Systems, Magnetic: Recorders. Computer Terminais. Modiems, Harci Copy Printers. Facsinnte Transceivers.

HENERYOUS

\qquad

ロATAAMETER II

The Danameterll
We guarantee this instrument will hold its spees for at least one year.

This means you won't have to re-calibrate it for a year. And you won't
have to change its battery for at least one year. (When you finally do, it'll cost you about 70 cents.)

You can take it out in the field and kick it around. And a year from the day you buy it. The Danameter II

EDOF BRAMDOONK.

Compare Multiwire:

costs less than wirewrapping...

ifritere
II : \%

works better than multilayering.

Two major systems - wirewrapping and multilayering have been used for complex electronic interconnection in the last 15 years. Despite improvements and refinements, each still has inherent disadvantages. That's why Multiwire was created by Photocircuits. It overcomes the disadvantages of wirewrapping and multilayering.

A Multiwire board is basically a customized pattern of insulated wires laid down on an adhesive-coated substrate by a machine operating under numerical control.

Multiwire vs. wirewrapping.

Today, interconnection costs are more important than ever. So take a long, hard look at a key advantage of Multiwire panels. They cost much less than wirewrapping in small or production quantities.

Here's an example of how much less: a Multiwire replacement of a 60 DIP wrapped-wire panel. Total tooling costs were just $\$ 750$. In order quantities of 1000 pieces, the Multiwire boards at $\$ 45$ each were more than $\$ 30$ less than the wrapped-wire panel. (A 40\% cost savings.) Multiwire prices also include a 100% continuity check.

But cost is not the only reason for the superiority of Multiwire over wirewrapping. There are also design advantages. For example, Multiwire offers two-dimensional packaging density equal to wirewrapping. But with Multiwire panels, you reduce board-to-board spacing. And Multiwire weighs much less too. So it can contribute substantially toward improving the envelope or three-dimensional package of your product.

Electrically, Multiwire is also superior. The extreme repeatability of the manufacturing process provides much higher electrical reliability as received - this is an important cost-saving factor. In addition, you get the controlled impedance characteristics required without variations.

Multiwire vs. multilayering

With Multiwire, reliability goes up and inspection cost goes down. Multiwire doesn't need extensive inspectionlike multilayering does - for nicks, pinholes, hairline cracks, spacing violations and bridging. Yet Multiwire regularly yields better than 99% reliability at incoming inspection.

Compared to multilayering, designing a new Multiwire board is a far simpler operation. Component locations and a wiring list are all we need. Our computer-aided system does the rest.

Since the computer also takes care of deletions and/or additions, engineering changes are simplified. What's more, Multiwire makes it easier to find paths for interconnections, because the insulated wires can cross one another. For these reasons we can deliver finished Multiwire boards to your door in weeks rather than months.

The advantages of Multiwire over wirewrapping and multilayering vary from case to case. We'd like to help you evaluate possible time, cost, design and reliability benefits. For information and price estimates, call the Multiwire Marketing Department at 516-448-1111.

	Wrapped panels	Multi- layers	Multi- wire
Design \& tooling cost	Low	Very High	Low
Design \& tooling time	Short	Very Long	Short
1st piece delivery	Short to Very Shor	Long	Short
Board cost in small quantities	High	High	Medium
Board cost in production quantities	High	Medium	Medium
2 dimensional packaging density	High	High	High
3 dimensional packaging density	Medium	High	High
Weight	High	Low	Low
Ease of changes	Excellent	Poor	Good
High speed electrical characteristics	Foir to Poor	Excellent	Excellent
Interchangeability with other techniques	Fair	Excellent	Excellent
Repairability	Excellent	Poor	Good
Controlled impedance	Poor	Good	Good
Electrical reliability as received	Fair	Good	Excellent

Multiwire from Photocircuits

Division of Kollmorgen Corporation, Glen Cove, New York 11542

NASA seeks standard parts

Important savings expected in planning for 41 spacecraft in the
Earth Observatory Satellite series; electronics worth $\$ 200$ million

by Larry Marion, Washington bureau

NASA is trying to counter rising costs by asking contractors to use standard parts for the 41 Earth Observatory Satellites (EOS) to be launched from 1979 to the 1990s. Contracts for more than $\$ 200$ million in standard EOS electronics modules will be sought beginning in July for applications such as command- and datasignal transceivers, electric-power, and attitude control systems, according to Frank J. Cepollina, manager of NASA's modular spacecraft program.

The EOS series, which evolved from the Applications Technology Satellites (now called Landsats), will include land, air, and water surveying missions. The Landsats are limited to land observation.

NASA estimates EOS cost, including modules, assembly, and testing, at approximately $\$ 7.2$ million per spacecraft. But the three design contractors involved have come up with their own numbers. The TRW Systems group says $\$ 5.7$ million, Grumman Aerospace Corp. estimates $\$ 6.3$ million, while General Electric's space division is high guesser at "less than $\$ 8$ million." William A. White of NASA's modular spacecraft staff says redundancy requirements were revised after corporate cost estimates were prepared, and that a high-level NASA committee is reviewing them for comparable figures. Industry and NASA officials agree, however, that the final costs will be a bargain.

Standardized spacecraft can save "hundreds of millions of dollars" compared to the cost of custom-designed spacecraft, Cepollina says. "This program can reduce system costs by one-third to one-half."

Grumman's project manager, John Marino, and Aerospace Corp.'s Ernie Pritchard, who is director of a cost review for NASA, hold similar expectations. Marino figures that
"cost benefits can be expected after two missions, while for 10 missions the savings would be on the order of $\$ 100$ million." And Pritchard says: "Standardization of EOS satellites

Standard parts. That's the way NASA wants to handle its EOS family in an effort to cut costs. Three contractors-Grumman, TRW, and GE-are in the running. This is Grumman's version.
significantly reduces design, development, test, and evaluation costs. There will be a 36% to 54% savings for $E O S$ projects."

While the economies are not questioned, some NASA project managers do not relish standard parts in experimental spacecraft. "When do standardized spacecraft become standardized missions?" wonders a deputy project manager for a major NASA earth study program. "I'm worried about what happens during the interim phase, between custom design and the availability of standard parts."

Another manager questions whether NASA would be able to maintain a warehouse of parts for up to five years to amortize development costs. And a 15 -year veteran of spacecraft design wonders, "Have they studied the problems involved in guaranteeing shelf-life for five years?"

Three design contractors submitted similar EOS configurations to NASA in December 1974, recommending that the basic modules be matched with various earth-scanning sensors on a metal skeleton. Although all three contracters recommended a command- an datacontrol signal-transceiver moduleconsisting of a central processor and memory modules, plus S -and Ku - or X-band transponders-system capacities differed. Contractors also recommended a twisted-pair data bus to connect the command module with "mission-peculiar" instruments.

How many bits? Grumman suggests a CPU with 32 kilobits of memory, GE suggests 40 kilobits, while TRW suggests 16 kilobits. "With an on-board computer, EOS can execute a mission by itself," says nasi's White. Grumman's Marino says the CPU will permit faster signal processing-up to 120 megabits per second-compared to currently operating spacecraft transmitting similar data at up to $15 \mathrm{Mb} / \mathrm{s}$.

NASA says the computer will be one of the most sophisticated ever to be placed on a satellite, and certainly the most independent one. Moreover, its MTBF will be at least two or three years, with an upper limit of four years.

Between 1,000 and 2,000 watts of

Coat curve. NASA would save more than $\$ 100$ million over the course of 10 missions if it standardizes spacecraft parts, according to this chart from Grumman Aerospace Corp.
peak power will be needed for EOS in most cases, says White. TRW's design includes up to four, 40amp/hour batteries with a total output of 333 watts of peak power. With solar arrays directly adding power to the system on a power bus, total system output is 2,000 watts.
GE's power system includes up to five batteries with a total of 100 $\mathrm{amp} / \mathrm{hr}$. capacity- up to 2,250 watts from a full-up system, including solar arrays. Grumman's power system promises up to 3,500 watts peak power, with an average power rating of 1,500 watts.
Precision pointing and stability for EOS is vital for accurate earth scans, so three-axis stabilization is required. A gimbaled star tracker, three momentum wheels, and three magnetic torque bars are recommended by Grumman to provide attitude pointing accuracy to within 0.01°, and stability to within 10^{-6} degree/second. GE has a fixed-head star sensor coupled with three magnetic torque bars and three momentum wheels for 0.006° stability.
TRW predicts 0.009° stability with three of each-wheel, bars, and star trackers. Accuracy is estimated to be within 30 seconds of arc. Electronics in the attitude-control module are linked via the data bus to the command module's on-board computer for position correction.
The first standardized EOS mission will be "Egret," a low-orbit satellite to monitor gamma radiation in the atmosphere. Egret modules will
be sought in a request for proposals due close to July 1. "The RFP will be worth about $\$ 4$ million," says Ce pollina.
Egret's first sibling, called the Solar Maximum Mission (SMm), will measure radiation during solar flares. The White House has promised NASA that the agency could begin hardware procurement of SMM in the 1977 fiscal year beginning October 1976, important for development of sophisticated electronic controls to enable the satellite to focus on the sun during solar flares expected in the next few years. Following SMM will be the EOS-A twins, improved versions of Landsat 1 and 2 already in orbit. EOS-A will have a mapper capable of 30 -meter resolution, compared to the 80 meters of Landsat. A more sophisticated EOSB will have speedier data rates of up to $240 \mathrm{Mb} / \mathrm{s}$.
Other EOS missions include waterand air-pollution monitoring, called EOS-C and E. Another series of monitors will be launched into geosynchronous orbit around earth. The National Oceanographic and Atmospheric Administration has requested a cloud-monitoring satellite, called Tiros- 0 , to be launched in 1983 or later. Included in NASA plans is a biomedical experiment with an instrumented monkey, reminiscent of the 1960s.
Despite this return to the past, industry officials say standardized spacecraft are the beginning of a new era.

The economy

Optimism edges in

Some companies see business improving as customers' inventories have been brought into line and money eases

Don't uncross your fingers yet, but business for the electronics industries doesn't seem to be as bad as generally expected. While 1975 won't be a good year, and some companies surveyed are not too optimistic, others are beginning to see some light penetrating the recession's gloom.

In the semiconductor industry, layoffs and production cutbacks during the second half of 1974 apparently have had the desired effect. Robert Noyce, Intel Corp.'s chairman, believes that the industry is headed for improvement and will turn around late in the year. "Unless there is a continued decline in the general business environment," he says, "we have probably reached bottom." Contributing to this feeling, says Noyce, is the fact that "customers' inventories are getting down to a minimum."

Noyce says that Intel's shipments have been "down but firming." Last year's third and fourth quarters were down 10% each from the previous quarter, but 1975's first quarter was only 5% behind the last quarter of 1974.

Fairchild sees "no V-notch recovery" for the industry, but rather a gradual one that should start in the second half. For the first two months of 1975 , bookings are up from last year's corresponding period, and though Fairchild's sales dropped last year, "inventories came down as well," says an official. And compared to the 1970 recession, when it lost $\$ 18$ million, the company is in solid shape because it earned \$26 million last year, says the official.

At Advanced Memory Systems,

How's business? At Zenith Radio Corp., president John J. Nevin (top) predicts industrywide TV sales will be down slightly from last year. As for semiconductors, Intel's president Robert Noyce (above) is more optimistic, predicting business will turn around late in 1975.
inventories for the quarter ended Dec. 31 were down $\$ 800,000$ from the $\$ 7$ million total of the previous quarter. Shipments, meanwhile, were valued at $\$ 7.5$ million, the same as those of the comparable year-ago quarter. AMS' backlog is up 12% from a year ago, but president Orion L. Hoch says that "part of that is because we're working with longer lead times" of six to nine months due to the need to order critical materials.
"Some weeks we see signs of turning up," says Hoch, "others, I'm not so sure. But compared with three months ago, Hoch says, "There are more positive signs but no trends. It was hard to close orders three months ago; now, there is a little more activity."

Mostek Corp.'s Berry Cash, executive vice president, sees a reluctance on the part of customers to
build up big inventories. "Distributors are beginning to buy a little," he says, "and customers' inventories are in better shape, so they are beginning to buy." But orders are small; customers are buying only for two to three months at a time.

Inventory buying was forecast in January, points out J. Fred Bucy, chief operating officer at Texas Instruments Inc. [Electronics, Jan. 9, p. 67]. Warning of false indication of growth, Bucy said, "In the first half of the first quarter we'll see some increase in orders because customers just did not buy for inventory in the last quarter of 1974. They'll be buying for replacement in inventory in the first quarter. Some people will read this as an upturn, but I think that history will show that this is just a flash in the pan, and we'll continue to slide."

Among components makers, Les-

What's new in solid state...

Four RCAop amps that make the CA3130 what it is.

Our CA3130 gets many of its winning ways from four very capable relatives. Four RCA op amps that can fill special requirements you may have. If you need programmable linear gain control, check the CA3080. For high crossover frequency plus high slew rate, there's the CA3100T For high output current and easy programmability, the CA3094E. For low power supply drain, the CA3078T.

The CA3130 is the ideal choice when you're looking for a good measure of all of these characteristics in one device. That's what makes the CA3130 so great. Its versatility comes from the unique combination of MOS/FET, bipolar and COS/MOS on the same chip. And its surprisingly low 1 K price of $75 ¢$ makes it a
natural for your high-volume products.
Beyond the table, here's more typical data about the CA3130:

Input Impedance: $1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$.
Input Current: 5 pA .
Input Offset Current: 0.5 pA .
Input Offset Voltage: 0.8 mV (CA3130B).
Settling Time: $1.2 \mu \mathrm{sec}$.
An output voltage swing to within 10 mV of either supply rail.

Strobing terminals.
If you are interested in one or all of these op amps, contact your local RCA Solid State distributor Or RCA.

Write: RCA Solid State. Box 3200, Somerville, New Jersey 08876; Ste. Anne de Bellevue 810. Canada; Sunbury-on-Thames, U.K. FujiBIdg.,Tokyo,Japan.

Probing the news

lie W. Chapin of Helipot says, "most manufacturers are still experiencing pretty much of a downturn." Chapin, vice president and manager of the Beckman Instruments division, says that sales to the military are strong, but that high-end consumer and industrial products are off. "The distributor business," he says, "is firming just a shade." He attributes this to the working off of excess inventory. As for an upturn, Chapin says, "Everyone is exhibiting a little wishful thinking and talking about the last half," but he believes 1976 will be a good year.

Business at the Amphenol division of Bunker Ramo Corp. has been improving ever since last fall's low point was reached. Herbert F. Motz, president of the division, says, "We've seen what I believe to be a trend since about November-business is improving in very, very small steps." Motz adds, "A good part of the downturn was the reduction of inventories at distributors and oEMs. Now they're getting their inventories in order, so the climb that we're seeing reflects actual usage out in the field. After we get back up
to the actual usage plateau, growth will depend on the economy and the confidence of people." But Amphenol's figures reflect Motz' conviction that this recession is much deeper than 1970's. In the first two months of this year compared to the same period in 1974, inventories are up 15%, shipments are down 15%, and bookings are down 20%.

Edson D. de Castro, president of minicomputer maker Data General Corp., is cautiously optimistic. The order rate, he says, is "tough to read because of stretch-outs and cancellations, but we see some signs of this unrest subsiding. People have gotten a little better reading of where they are, and they know the level they'll be operating on." De Castro says Data General's inventory of components and subassemblies is too high-at the end of December it exceeded that of the previous quarter and year. Despite this, de Castro expects Data General to grow by about 25% this year from last year's $\$ 83$ million in sales; he says that minicomputer trends are so steep and strong that business cycles don't have much impact.

Also holding its own is mini maker Computer Automation Inc. President David H. Methvin says,

'Not as bad as you think'

With inventory playing such a big role in determining when the recession hits bottom, distributors should have a pretty good line on the condition of business. "It's not as bad as you think it is," says Paul Carroll, president of Semiconductor Specialists Inc. of Chicago. "We hit our low in November, and since then we've seen shipments increase at a steady 10% per month. And bookings are climbing even more dramatically."

However, says Carroll, inventories are still too high. "The only way to get them down is to sell, since manufacturers have taken back all they will. And they're still unbalanced, particularly in 7400 [TTL] and C-MOS.'

Carroll attributes the growth since November-which is still 20% less than the peak a year ago-to the depletion of customers' inventories and the drop in interest rates. As for a turnaround at the manufacturers' level, he says, wait until the second half. And he expects midyear shortages in CMOS and certain memories-like the 1103 and 2102.

In Newton, Mass., Timothy X. Cronin, president of Cramer Electronics Inc., says Cramer is about 10\% ahead of 1974's fourth quarter in sales and 15% ahead in shipments and bookings.

Cronin says that he thinks there is a lot of inventory on manufacturers' shelves, but they have reduced capacity about 25% to 30%. Demand is flat now, but in the near future it will outstrip the capacity to produce, he forecasts. Starting in June, manufacturers will find themselves in a shortage position, says Cronin, adding that "selective holes" will develop during the summer months.
"We planned for $\$ 5.1$ million in volume for each quarter this year, and we should just about make it." He says sales for the year will be up a little over last year's, but they will be down this quarter from last year's comparable period.
"I don't see any upturn," says Methvin, "but I don't see things going to hell in a handbasket, either." The company president says that his gut feeling is that business will turn up toward the end of the year.

Methvin notes that the order rate is pretty steady. "Backlog has been drifting down for several quarters with the big guys stretching out some. We've also redefined some of our backlog to make it more conservative." He says that new customers seem to be healthy, and that bright spots include oil-related in-dustries-"They're still spending money at a prodigious rate."

Hewlett-Packard Co. is "right on target," says Alfred P. Oliverio, vice president of marketing, even though first-quarter 1975 sales dipped to $\$ 212$ million from the $\$ 245$ million of the previous quarter. The reason, he says, is traditionally slow firstquarter buying. First-quarter orders are up over the previous period, $\$ 240$ million to $\$ 203$ million, and H-P anticipates a 1975 order growth rate of 15%, although 10% of that is for inflation.

Perhaps hardest hit by the recession has been the consumer electronics industry. It's a highly competitive arena where manufacturers consider disclosure of backlogs, order rates, and inventories aid and comfort to the enemy. However, Ze nith Radio Corp., the nation's largest maker of color television sets, expects to see the industry's sales to dealers this year in the range of 7 million to 7.5 million sets, slightly less than 1974's 7.8 million and dramatically less than 197 .' $^{-r}$ record 9.3 million.

Zenith's president, Jc I. Nevin, says that at the end of i, industry inventories were i o above year-end 1973 levels. Of this, Nevin says, Zenith had 12%, with 20% of industry sales. Zenith production in January was down 23% from the previous January's totals, compared with 49% for the entire industry, says Nevin.

What's new in solid state...

Leak-proof, forque-proof thyistors from RCA.

Now readily available: RCA thyristors with our no-strain solution to lead torque problems. It's flexible-lead packaging, and it works this way. We attach long flexible leads to the cathode and gate terminals - and then completely embed those couplings plus the glass hermetic seal in epoxy. Device leads are solidly locked in position, so there can be no strain on the glass-to-metal seal. You have an extra barrier against dust, dirt, oil and moisture. Wiring into your equipment is much easier. And so is meeting UL and IEC creepage specs.

On short notice, you can have flexiblelead packaging on any RCA standard
commercial press fit thyristor, mounted either on a stud or TO-3 base, and in both isolated and non-isolated versions. Many are available off the shelf: Triacs $(10,15$, 30 and 40 amps ; 200-600 volts), and SCRs (20-35 amps; 200-600 volts). For availability information and prices, contact your
local RCA Solid State distributor. Or RCA.
Write: RCA Solid State, Box 3200 , Somerville, New Jersey 08876; Ste. Anne de Bellevue 810. Canada; Sunbury-on-Thames, U.K. ; FujiBIdg.,Tokyo, Japan.

RCA. A powerhouse in thyristors.

Solid state

'Partial' devices being revived

Some memory makers find that RAMs with only $1.5,3$, or 6 good kilobits help recover development costs along low part of learning curve

by Bernard Cole, San Francisco bureau manager

Back in the mid-1960s, Texas Instruments sold a "relaxed" transistor-transistor-logic family-devices had fanouts of 6 or 4 instead of the normal 10, and counters had one bad flip-flop. The advantage of these socalled partials to the buyer was, of course, a lower price. But as TTL climbed the learning curve, yields improved and the price per device dropped. The profits from TTL partials became marginal, and TI discontinued the practice.

Now, history appears to be repeating itself, this time, with memo-ries-particularly random-access memories. Companies are looking to partial devices as a way to recoup the substantially increased cost of developing memories as early as possible in the learning curve. As the industry digs out of the recession at the time it is moving toward larger-scale integration, manufacturers are selling partially defective 2,048 -bit or 4,096 -bit devices-they will eventually sell 8,192-bit partsas memories with capacities of 1 or 1.5 kilobits, 2 or 3 kilobits, 4 or 6 kilobits.

Many companies-including Intel Corp., Mostek Corp., Motorola Semiconductor, Fairchild Semiconductor, and National Semicon-ductor-have started to use and sell partials, or they are considering the step. A few others-among them Advanced Memory Systems Inc. and Cambridge Memories Inc.have been using and selling partials for a number of years. Some, like TI and American Microsystems Inc., have studied the problem and decided it is not worth it.
"There's a lot of good memory being thrown away at present," says

Partially good. The sale of partial memories raises some questions: How good must they be? What's the profit cut-off point? Some makers, as a result, are staying out of the business.

Durrell Hillis, n-mOs marketing manager at Motorola Semiconductor Products Inc., Phoenix, Ariz. "But setting up a system to use them is not as simple as it seems at first." He says that Motorola is investigating, but has not decided what to do.
Identify and test. The reasons for this hesitation are clear from the beginning, when it is necessary to first identify and then test and separate partials from fully operational devices. Mike Markkula, Intel's North American marketing manager, says, "First, it's important to determine the reasons for the defects in the partials. If the reason is related to a lousy process, selling or using all the partials in the world won't help you. If it's a random defect, it is just a matter of determining which quadrant and marking it."
But how many quadrants of a RAM can be defective before it becomes uneconomical to use? That
depends on a delicate balance between component cost and system cost. Motorola's Hillis estimates that it takes at least a $2: 1$ price advantage for partials to be attractive. Certainly, all three kinds of par-tials-those with one, two, or three quadrants out-fill the bill. Ron Livingstone, memory marketing manager at National, points out that system cost is something else altogether. "From this point of view, three fourths is the best rule of thumb," he says.

TI approached. Edwin S. Huber Jr., MOS memory marketing manager at TI, says the company has been approached by several custom-ers-principally makers of fairly large add-on memories-to supply them with "three-quarter" good 4-k RAMs, but TI has turned them down. The major reason for this, he says, is the reliability problem.
"We took our parts that were partially good and ran accelerated life

For $\$ 1,975$ you have no right to expect a signal generator like this.

For $\$ 1,975$ you should have to settle for tubes, or for a non-phase-locked generator.

But here's the Wavetek 3000, so you can toss your expectations out the window. This solid state signal generator is not only phase-locked and accurate ($\pm 0.001 \%$), it's programmable as well. And it covers the entire range from l to 520 MHz in a single band. Yet once we've
received your order, you can expect a signal generator like this one right away ... for just $\$ 1,975$.

That may not be right, but it sure is reasonable.

SPECIFICATIONS

Frequency Range: $1-520 \mathrm{MHz}$
Frequency Accuracy: $\pm 0.001 \%$
Resolution: 1 kHz
Stability: Less than 0.2 ppm per hour Output Range: +13 dBm to -137 dBm Flatness: $\pm 0.75 \mathrm{~dB}$

AM Modulation Range: 0-90\% FM Deviation: $0-5 \mathrm{kHz}$ and $0-500 \mathrm{kHz}$ Internal Modulation Rates: 400 Hz and 1 kHz

Dimensions:

12 " wide x $5 \frac{1^{\prime \prime}}{}$ high x $13 \frac{3}{4}{ }^{\prime \prime}$ deep
Price: $\$ 1,975$

WAVETEK

INDIANA INCORPORATED
P.O. Box 190, 66 North First Avenue

Beech Grove, Indiana 46107
Tel. (317) 783-3221 TWX 810-341-3226
Circle 242 on reader service card

Probing the news

tests on them at $125^{\circ} \mathrm{C}$. The failure rates were two to three times worse than it was for good parts, and that's significant enough that we don't want to see those parts in a customer's system." TI's experience, however, doesn't jibe with that of most other RAM makers. Intel's Markkula says, "I think most of it
depends on how reliable your part is in the first place. Our studies show that partials are just as reliable as fully goods."

The big problem is a marketing one, says Berry Cash, executive vice president of Mostek Corp., Carrollton, Texas, which plans to offer a 3kilobit RAM. 'It's a matter of assuring the customer that the 3-k part has the same quality and reliability as the $4-\mathrm{k}$," he says. "If the part fails

Automatic 0.25\% impedance measure-

Our

new Model 251 Digital

 Impedance Meter provides the most accurate measurements of inductance (L), resistance (R). capacitance (C), and conductance (G) available in any instrument up to five times the costplus it's fast and reliable.Big, fat clains, right? But consider this: Accuracy of $0.25 \%+1$ digit, measurement speeds of a fraction of a second, highintensity $3^{1 / 2}$-digit readout has overload blanking to prevent false readings. solid-state construction packed into a rugged $10-$ pound frame. And simple to operate.

You might consider this. Our reputation. We ve led the building of precision impedance measur-
ing instruments for laboratory and quality control applications for 25 years.
Check us out, then call or write for the complete story Ask about our discrete IC testers, too. Electro Scientific

Industries

13900 N. W. Science Park Drive
Portland Oregon 97229
Phone: (503) 646-4141
because the threshold has drifted or because of leakage, it won't work as a 3-k part. But if it fails because one of the sense amps doesn't work, it will be O.K. as a 3-k."

However, the experience of at least one user, Cambridge Memories Inc., Boston, belies this. Its vice president, Richard Egan, says Cambridge has been using partial l-k RAMs from Fairchild Semiconductor and a number of other companies.

Using partials, says Egan, requires packing more devices on a board to achieve the same memory size, but there is no problem with board layout. "By using an intelligent layout, we can use all-100\% memories or a mix of partial memories," he says. "Specs and reliability aren't compromised, and the cost is considerably lower."

Motorola's Hillis adds, "Partials are attractive on the leading edge of the production curve, but become marginal as production increases and yields improve." Then the question becomes: what is the cutoff point beyond which partials are no longer profitable? National's Livingstone suggests that a good rule of thumb for cutoff is when package cost equals chip cost.

But, asks TI's Huber, how does a company keep from painting itself into a corner with a large customer using partials? He points out that it would be easy for his company, because of its volume, to supply lots of partial 4-k RAMs. "But the partially good 4-k is only a short-term patch," he says. "Over the long term, those rejects are not going to be generated by manufacturers. They'll disappear as yields continue to improve, and then the manufacturers will be stuck with a volume market that he'll have to downgrade 4 -ks for, to continue to sell."

What it may require, says Intel's Markkula, is marketing partials and complete devices as a package, rather than separately. "This approach relieves both the user and supplier of a number of problems. The supplier can be assured he isn't cutting his own throat, and the user will know he's getting good parts. He'll know the supplier runs the risk of losing his contract for fully goods as the yields improve if he messes up on the partials."

HID/CMOS achieves LSI circuit densities unmatched by any other CMOS process. HD/CMOS II is even better.

Our High-Density CMOS process for custom Large-Scale Integration was an innovative development that made CMOS ideal for use in dedicated LSI subsystems. Since its introduction over two years ago, HD/CMOS has been used in volume production for a wide variety of applications in the fields of electronic timekeeping, portable instrumentation, medical and consumer electronics.
Continuing refinement of this unique processing technology has resulted in a major new breakthrough. We call it HD/CMOS II. It gives you even greater circuit densities, lower power operation, and faster switching speeds. In fact, it's presently providing the highest density of circuit integration yet attained for random logic designs.
HD/CMOS may be ideal for improving your product. If so, it can produce exciting and profitable rewards in the marketplace.
Applying the advanced technologies of LSI to customer products is our sole business. We can help you answer questions about cost/quantity tradeoffs, long-term profitability of the host product, and choosing the right processes to optimize performance and reliability.
If you're considering LSI, consider Micro Power. We sell more than circuits. We sell solutions.

Contact us for complete details:
MICRO POWER SYSTEMS

3100 Alfred Street
Santa Clara, CA 95050
Telephone (408) 247.5350
TWX 910-338-0154

MPS/Japan 21 Mori Bldg., 2-2.5 Roppongi Minato-ku, Tokyo, Japan Telephone 586-0471

Microprocessors await the call

> Instrument makers agree that the devices will play big role, although some jobs appear to be out of their bailiwick

Despite some reservations, instrument makers are excited about the possibilities of micro-processor-based designs and are eager to apply them in a wide variety of products. And while most instrument houses are designing and even testing such products, few executives will say precisely how their companies are using semiconductor microprocessors. Instead, they prefer to save their enthusiasm for the general concept.

Microprocessors do not only supply internal and external controls, they are also reducing maintenance problems by providing internal equipment diagnosis, self-test, and self-calibration. The devices are also improving reliability and accuracy. And the microprocessor can convert instrument-output codes into dig-ital-transmission form or for computer use.

However, the designer must assure himself that the microprocessor offers the best operation for his in-strument-microprocessors are relatively slow-and that the expense is justified.

The most obvious applications would be to have microprocessors handle the same kinds of tasks as minicomputers, but on a smaller scale. If a minicomputer gives a system flexibility because its operation

you have a number of variables that bear some relationship to one another," says Fred L. Katzmann, president of Ballantine Laboratories Inc., Boonton, N.J. Process control, for example, may require monitoring pressure, volume, and temperature signals.

Functions. Within instruments, microprocessors can perform certain functions that would be too ex-
can be changed by software, a microprocessor can provide the same kind of capability to an instrument. Such instruments as digital scanners can employ microprocessors so that one design can be adapted to many jobs, says Albert Frowiss, vice president of Doric Scientific Corp., San Diego, Calif.

Control. Also, like minicomputers, microprocessors can control processes, either internal or external to the instrument. Internally, a microprocessor can scan front-panel controls, stimulate the appropriate circuitry, and turn on the proper displays and other outputs, as does the John Fluke Mfg. Co. microprocessor-controlled frequency synthesizer (see p. 104). Externally, a microprocessor can perform many process-control functions, as in Doric's instruments. "The real need is in an area where
pensive or cumbersome to perform any other way. For example, they could be used for instrument selftest, diagnosis, and calibration; an estimated 25 million man-hours are devoted each year to calibration in the United States alone. Normally, says Alan B. MacLane, general manager at Systron-Donner Corp.'s Instrument division, an instrument has to go in for calibration every 90 days or so, and it stays in the shop for about a week. "Many companies might spend 10% of the value of the test equipment in calibration and maintenance," or $\$ 100$ per instrument per year, he notes. Using a microprocessor for self-calibration could cut calibration time by 25%, says MacLane, and could lower the price of some components within the instruments because high precision would not be necessary.

Self-calibration would not only

HERMES LOOP ANTENNA

THREE SAMPLE SITES ON THE NORTH AMERICAN CONTINENT -

DIFFERENT LATITUDES DIFFERENT CLIMATE

FROBISHER BAY, CANADA

MARSHFIELD, MASS.

NEAR SAN DIEGO, CALIF

Even in the solitude of the forest depths, from rooftops, arctic tundra, swamps to sweltering tropics, 'neath snow, sand or ice,
the Hermes Loop antenna keeps an ear to the sky.
The amazing aperiodic antenna does away with vast log periodic and rhombic arrays - those towering antenna farms.
Excellent directional characteristics in rosette configuration, the Hermes loop antenna provides an omnidirectional broadband receiving array in space merely $1 / 100$ th that of the traditional antenna farm.
More than 53 government agencies around the world have pressed the loop antenna into service.
A new, even more compact version is available.

ASK US Send for our Brochure

Hermes Electronics Limited
Suite 315
2020 F Street NW
Washington, DC 20006 USA
202-296 2978
TWX 7108221106

No need to look further for a reliable R-F power source. MCL has one.

And here's what we built into it:

- solid state circuitry
- short and open circuit protection
\square frequency stability $\pm 0.1 \mathrm{db}$
- external pulse or AM modulation
- internal square wave modulation
- low tube cost/operating hour
- qualified to MIL-STD-461 and 810
It has six different plug-in heads

Model	Freq. (MHz)	Pwr. (MIN)
6047	$10-50$	65
6048	$50-200$	65
6049	$200-500$	65
6050	$500-1000$	65
6051	$1000-2000$	40
6052	$2000-2500$	25

You have now ended your search for a stable, reliable 65 watt oscillator. Just call or write for detailed engineering data. Or ask for a demonstration

MCL, INC.,
10 North Beach Avenue, LaGrange, Illinois, 60525.
(312) 354-4350

Now on GSA contract GSOOS-27086
See us in EEM-Vol. 1 pp. 284-291
Circle 78 on reader service card

Cost Cutter

NEW Electronics Buyers' Guide ... Easy-to-use, single volume source for:

- Data on over 4,000 products
- Over 6,000 company listings and phone
- EBG EXCLUSIVE: quick access to over 800 catalogs through a Direct Inquiry Service. numbers
The international world of electronics at your fingertips. Find suppliers ...fast . . accurately ...and locally! For your copy send $\$ 15.00$ (USA and Canada only; elsewhere send $\$ 25.00$) to address shown below.

Probing the news

save money, but also improve measurement accuracy because the instrument's accuracy would not be affected by calibration drift. Microprocessors can improve accuracy in other ways, too. They can average large numbers of readings and ignore "outliers"-erroneous readings far from the average. They can also eliminate arithmetic errors by performing mathematical operations and displaying answers directly.

Accuracy. Walt Fischer, group leader at the Colorado Springs division of Hewlett-Packard Co., notes that a microprocessor significantly improves the measurement accuracy of the firm's model 1722 oscilloscope. Obtaining accurate measurements from an oscilloscope, he says, generally requires a great deal of ability on the part of the operator. He must be able to interpolate readings and make decisions, and he can make significant errors if, for example, he leaves switches in uncalibrated positions. Microprocessors can help because they can improve bookkeeping by tracking switch positions, says Fischer.

One other function a microprocessor can perform in an instrument, says Wim Velsink, vice president of Tektronix Ince., Beaverton, Ore., and director of Tektronix Laboratories, is output-code conversions. Simple software changes would permit an instrument to deliver data in any of many forms: binary, BCD, ASCII, or others. Today, says Velsink, "you have a choice of building several interfaces or saying goodby to segments of the market."

Reliability. And while improving instrument performance in all these ways, says Hamilton Chisholm, engineer at HP's Stanford Park division in Palo Alto, Calif., microprocessors can also improve reliability. Microprocessor-based circuits may contain fewer parts, leaving less to go wrong, and they may dissipate less power, keeping the instrument and its internal components cooler.

Fischer adds one note of caution: microprocessors should be used only where they improve the instrument's performance. "You can't get

The AN2538 is the lowest-cost line-powered $31 / 2$ digit DPM yous can buy ... with the performance and dependability you need Big $1 / 2^{\prime \prime}$ LED displav for long life aind wide-angle viewing Autozero tor lon's term stability. High CMRR; NMRR for noise and ground-loop immun!ty Verv !ow bias current ${ }^{100} \mathrm{pA}$ max), for errortree high-impedance Superregulated power supplies All this adds up to usable $\pm 0050 \%$ accuracy

But price and performance are only part of the breakthrough The

AN2538 takes fult advantage of its monolithic curcuitry it runs except:onaliy cool ($5^{\circ} \mathrm{C}$ rise) and operates over $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. It has the longest MTBF ever achieved in a 3 $1 / 2$-diait DPM--enhanced by a 96 -rour. $50^{\circ} \mathrm{C}$ burn-in cycle its tough LEXAND case meets both NEMA and DIN standards It has a universal power transformer, for worldwide use

Last year, we broke through the interface problem with our AN2533/53 plugg̣able interface. premium-performance DPM ... still
the best for many applications The AN2538 reflects Analogic's 200 0c10DPM experience...experience unmatchod by any oher source

Want complete data? Ready to evaluate a semple? Call Anaingic at Wejhridge 41251 or 41215 , or your local Analogic distributor, or verite today Arialogic Lid 68 High St. Weybridge; Surrey. Englant Also available nev 70 page Circuit Application Handbook, write on your letterhead.

ANALDGCロ . . . The Digitizers
 Cille 120 on reader serviee cald

The amazing self-powered, self-contained, pocket-size Logic Monitor requires no adjustments or calibrations as it simultaneously displays static and dynamic logic states of DTL, TLL, HTL or CMOS DIP ICs. Now you can watch your signals work their way through counters, shift registers, timers, adders, flip-flops, decoders, even entire systems! High intensity LEDs turn on when lead voltages exceed the threshold (2 V). No power supply is needed! The power-seeking gate network locates DIP supply leads and feeds them into the Logic Monitor. Forget about grounds, pin counting or sync polarity.

Simply clip the Logic Monitor to any DIP IC up to 16 pins. Precision plastic guides and a flexible plastic web" insure positive connections between non-corrosive nickel/silver contacts and the IC leads. Logic levels appear instantly on 16 large (. $125^{\prime \prime}$ dia.) high intensity LEDs. Logic "I" (high voltage)-LED ON. Logic "0" (low voltage or open circuit)-LED OFF. Yes, now you can see your designs come alive. Order your fast, versatile, accurate, indispensable Logic Monitor today!
"Deliveries starting March 15."
ORDER TODAY! 84^{95}
Add $\$ 2.50$ postage/handlling. Foreign orders add 15%.
Prices sublect to change.

Continental Specialties Corporation

Box 1942, New Haven, CT 06509 • 203/624-3103
w. Coast Off.: Box 7809, S. Fran., CA 94119 • 415/383-4207 Canada: Available thru Len Finkler Ltd., Ontario

Probing the news

so involved in the cuteness that you don't make a measurement contribution," he says.

Ballantine's Katzmann adds that microprocessors are of questionable use in one- or two-dimensional systems like most test and measuring instruments. Like voltmeters, which measure in one dimension-volt-age-and oscilloscopes, which measure in two-voltage vs time-few test and measurement instruments operate in three dimensions. However, microprocessors could simplify operation by monitoring control settings and input levels and indicating when settings are right, wrong, or there is not enough information.

But microprocessors can't solve all measurement problems. Says HP's Chisholm, "One of the drawbacks of microprocessors is lack of speed." Processes within an instrument often require more speed than microprocessor software gives.
And microprocessor design requires a greater understanding of software than many users may realize. There's an insufficient awareness of the software impact of mi-croprocessor-based instrument design, says John Brady, vice president for engineering at Dana Laboratories in Irvine, Calif.

Price. Price can also be a drawback. Says a marketer for a French instrument manufacturer, "You can't put a microprocessor in a lowcost instrument." The lowest-priced instrument using a microprocessor has to cost $\$ 200$, he says.

And while "with a microprocessor, you approach the frontier between an instrument and a test system," says a designer for another French instrument maker, who wants to pay for a test system when he needs only an instrument?

Says Colin S. Gaskell, chief of new development and processes at Marconi Instruments Ltd., St. Albans, England, microprocessors may be too expensive or less efficient than other parts. Analog methods may be cheaper in some applications, and, even in digital systems, a better solution may be dedicated logic, a stripped-down minicomputer, or a custom chip.

Give us one of these. Find we'll give you a magnetically operated solid state proximily swich and some change.

The advantage of a mechanical proximity switch is its low price.

The advantage of a solid state proximity switch is its reliability.

The advantage of a MICRO SWITCH 103SR is that it gives you both.

For under $\$ 10$, the 103SR offers you the almost infinite cycle life of solid state design. Because its design is based on the Hall-effect chip.

And, because the 103SR is magnetically operated, you get added design flexibility. It senses only magnetic targets, not other metals.

The bushing is threaded aluminum, for easy mounting and adjustment. And the aluminum housing is environmentally sealed.

It's built to handle two

different voltage ranges: 5 VDC ; or 6 to 16 VDC with a built-in voltage regulator. Also, it provides sensing speeds from 0 to in excess of 10 KHz -in a temperature range from $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

Each unit comes with six inches of lead wire and is available with either digital or analog output. There's a choice of various magnetic targets, including multiple pole, or ring magnets. Special magnet mounting hardware is also available.

If you'd like to find out how the 103SR can lower your costs and increase your productivity, call your nearest MICRO SWITCH Branch Office. Or write for literature.

MICRO SWITCH

FREEPORT, ILLINOIS 61032
A DIVISION OF HONEYWELL

There's more to

 than

Putting a microprocessor to work for you involves a whole lot more than buying a few LSI chips and slapping them together.

You need LSI chips, of course. And National Semiconductor is the only company that makes them all: the IMP family for 4,8 , and 16 bit applications.

But to meet your cost objective, you need more. You need tools - the kind of tools that can make things easy for you. National has them.

National offers the best Prototyping Systems around; plus the only Micropro-
gram Development System in the industry, to help you develop new machine instruction sets. On top of that we supply the kind of software, documentation, and technical support that helps bring designs in on time and under budget.

No other microprocessor supplier offers you all that.

For the production end, there's our new POWR I/O,TM an instruction set option that doubles your I/O speed while it cuts your memory requirements; a Floating-Point Math Package, so you don't have to invent one;

IMP Prototyping System. and everything else you'll need in your system...right out to the sensors.

No other microprocessor supplier offers you all that, either.

The Blue Chips ${ }^{\text {rM }}$ and the Green Chips. ${ }^{\text {TM }}$

Something new.
The Blue Chips let you put together a complete 16 -bit processor with only 9 chips for less than $\$ 140.00$ in volume. And the optional Green Chips simplify your I/O interfaces.

The result: more bang per buck... more throughput with fewer components than any other microprocessor.

microprocessing microprocessors.

Here's a diagram of how it all goes together:

We've got it all.

A flock of companies are now trying to make hay out of the fact that they've just entered the microprocessor chip business.

We've been in it more than two years.
Two years during which we've developed microprocessors with unmatched performance. Microprocessors that do more useful work per dollar than any other you can buy.

Two years during which we've developed everything you need to get into microprocessing, right down to the interfaces. And we're the only company that has.

We offer the strongest support package in the industry - hardware, software, firmware, field technical support, and training.

Before you commit yourself to a company that offers you anything less than everything, you really ought to write for our microprocessor brochures.

Please send me a copy of your Microprocessor Brochures.

Name
Company
Address
City
State
Zip
Mail to: National Semiconductor, 2900 Semiconductor Dr., Santa Clara, Ca. 95051

Theright time at the right place:

The AMI Electronic Watch Works is the leading producer of one-chip CMOS digital watch circuits. And we're way ahead of the field in the design and fabrication of high-quality liquid crystal displays.

Now we have two new reasons why you should buy your watch components from us: we give you two versions of the time, date and second.

Our S1410 circuit and S23610 six-digit display work together to show the time and date constantly. Push the button and the date turns to seconds until you want the date back again.

The four-digit design (S1420 circuit and S23590 display) shows the time. Push the button once, and you get the date for two seconds before it returns back to the time. Push the button twice, and you have the seconds.

Which is best? It's really a matter of individual preference. Some people enjoy the convenience of six figures. Others prefer the compactness of four, with its built-in four-vear calendar.
second watch (S1420 circuit and S23600 display).

That's the top of your line. Here's the rest of it.

No retailer wants to sell just one or two models. So we give you all the different circuits and displays you need to suit every taste and budget.

The standard hours and minutes watch can now be produced for an incredibly low price, using our S1400 circuit and S23570 display. (Right now, we have a special deal on these 1400 chips. Ask us about it!)

The next step up is to the Compact Watch display and its back-lighted version (S23590 and S23595). And our• regular ladies' model (S23600 display) is smaller and more feminine than any other LCD watch on the market.

We make it easy for you to make watches.

In addition to individual circuits and displays, our circuits come packaged in three

A few words about quality.

We've always had a strong reputation for making reliable MOS circuits. And we've carried this strength over to our displays.

Four years ago, we set up a separate division for Liquid Crystal Display development. This experience resulted in several significant milestones. We developed a new photo process for small, sharp displays. We pioneered hermetic frit-sealing of Field Effect Displays to eliminate contamination and guarantee a strong mechanical package. We produced the first three-volt material in volume (the original ultra-low-power display), which lets us design a second generation watch module.

We've already designed special circuits for a couple of large watch manufacturers. We already supply complete modules ready for casing, as well as cased LCD and LED watches to marketers. And we're working on new generations of chips, displays and modules. So when you come to us, you always stay ahead of the times.

So call your nearest AMI sales office for information.
England • Swindon, Wiltshire • Swindon 31345 France • Vincennes • 328-0336
Italy • Milan • 293745
Japan •Tokyo • (501) 2241
West Germany • Munich • (089) 484051
Circle 85 on reader service card

You can order both versions back-lighted. And we have the makings of a petite, four-digit ladies time, date,
different ways. The circuit carrier (1) gives you a great deal of design flexibility. The PC board subassembly (2) eliminates interconnects, so you can wind up with a very thin watch. It also has a compatible display, with a backlighted option. This slim design lets you use a variety of cases and styles.

Third (and least in price) is our ceramic subassembly.

Besides standard font designs, we offer you complete freedom of choice in font styling, package sizes, silver or gold reflectors, and back-lighting options. In fact, these displays are so flexible that they're fully compatible not only with our circuits and IC chip packages, but also with most other watch chips on the market.

Need something special? Just ask.

We were the first producer of MOS/LSI circuits. And we intend to remain the Number One supplier to the electronic watch market. That means being flexible.

The six-digit: a) with time and date b) with time and seconds.

How to get the time, date and second on four digits: al standard time mode b) the temporary date mode c) the seconds mode.

Or for technical details on circuits, phone Dick Barck at (408) 246-0330; for display data, it's John Dunn at (408) 735-9210. Or write to AMI, 3800 Homestead Road, Santa Clara, CA 95051.

We'll give you all the time you need.
AMI Watch Displays

Model	Description	Special Features
S23570	Man's standard 4-digit	Operates on 3 volts
S23590	Compact. 4-digit	Operates on 3 volts
S23595	Compact, back- lighted 4-digit	Operates on 3 volts
S23600	Ladies, 4-digit	Operates on 3 volts
S23610	Time/Date Second. 6-digit	Operates on 3 volls
S23615	T/D, S, back- lighted 6-digit	Operates on 3 a olts

AMII Watch Circuits

Model	Description	Special Features
S1400	Hours.'minutes	Ceramic subassembly
S1404	Hours/minutes	Chip carrier
S1407	Hours/minutes	Printed circuit assembly
S1410	6-digit Time Date:'Second	Chip carrier
S1412	6-digit T/D/S	Printed circuit assembly
S1420	4-digit T/D'S	Chip carrier; 4-jear calendar
S1422	4-digit T/D/S	PC assembly: 4-year calendar

These semiconductor cooling ideas improve circuit performance and reliability, cut costs.

Engineers use Staggered Finger heat dissipators, Thermal Links, Fan Tops, and other IERC thermal management devices to solve
a wide range of circuit design and packaging problems dealing with power, reliability, switching speeds, circuit density, stability,
reproducibility, and cost. Here are four ideas that may suggest new ways you can put IERC dissipators to work for you.

More power, higher reliability from the same TO-66s is a paradoxical requirement, but designer met it in this amplifier circuit with LB Series Staggered Finger dissipators. Nominal case rise above ambient of $90^{\circ} \mathrm{C}$ for bare case TO-66s permits 3 watts dissipation per device. Adding LB s doubled transistor life by giving $10^{\circ} \mathrm{C}$ temperature drop while increasing power to 5.5 watts per device.

Erratic flip-flop in high-G environment posed problem until IERC Thermal Links came to the rescue. Thermal Links held the TO-5s firm, increased their thermal mass, and linked the two cases to a common heat sink. Resulting lowered junction temperature permitted more stable operation and higher reliability while thermal matching assured a balanced circuit.

Design-to-cost criteria were missed in a touchy servo amplifier because 4 parallel devices required too much testing and matching. Designers went to single TO-6 cooled by nested HP1 and HP3 Staggered Finger dissipators. At $100^{\circ} \mathrm{C}$ case rise above ambient, the single TO-6 dissipates 36 watts, plenty for the application.

Faster switching speeds and lower junction temperatures at the same power levels without spending a bundle was called for after bread board testing of this circuit. Adding IERC Fan Top dissipators to the TO-5s held junction temperatures well below maximums and substantially improved rise and fall times. And the press-on Fan Tops cost just pennies.

For more information

on heat sinks and dissipators for milliwatts to kilowatts, send for the IERC Short Form Catalog today. It covers the most complete line of thermal problem solving devices available anywhere.

Heat Sinks/Dissipators

ALTERNATE SOURCE FOR HP SCHOTTKY BARRIER HOT CARRIER DIODES

AERTECH A2S800 SERIES

CASE STYLE "H"
(Glass axial leadsimilar to D034)
$C_{p}=0.1 \mathrm{pF}$ $L_{p}=3 \mathrm{nH}$

HP
5082-2800
5082-2804
5082-2805
5082-2810
5082-2811
5082-2814
5082-2815
5082-2826
5082-2835

AERTECH A2S800 A2S804

A2S805 A2S810 A2S811 A2S814 A2S815 A2S826
A2S835

Now In Distributor Stock

AERTECH AUTHORIZED DISTRIBUTORS*

Century Aero Corp.
Hawthorne, California
Phone: (213)772-1166
Microwave Distributors Co.
Jericho, New York
Phone: (516)433-7448
E.G. Lomas LTD

Ottawa, Ontario, Canada
Phone: (613)725-2177

Intermark Electronics
Sunnyvale, California
Phone: (408)738-1111
Intermark Electronics
San Diego, California
Phone: (714)279-5200
Intermark Electronics Seattle, Washington
Phone: (206)767-3160

Intermark Electronics
Denver, Colorado
Phone: (303)936-8284
Intermark Electronics
Salt Lake City, Utah
Phone: (801)486-3411
Treeko Sales, Inc.
Beltsville, Maryland
Phone: (301)937-8260
*Distributor areas still available for: Florida, Pennsylvania, Boston, and Illinois-Indiana. Interested distributors please contact H. Crittenden for details.

Aertech is a volume producer of Schottky, PIN, Step Recovery, Tunnel, Backward, and Tuning Varactor Diodes.

825 STEWART DR., SUNNYVALE, CALIF. $94086 \bullet(408) 732-0880 \bullet$ TWX 910-339-9207

IF YOU USE RELAYS, YOU CAN'T AFFORD NOT TO HAVE THIS CHART!
 IF THE CHART IS
 MISSING, YOU CAN STILL GET ONE FREE!

Magmecraft Relays

PLEASE SEND MAGNECRAFT/NEWARK STOCK RELAY SPECIFICATION CHART

SEND COUPON TO:
NEWARK ELECTRONICS, 500 N.Pulaski, Chicago ,Illinois 60624
\qquad
NAME
TITLE
FIRM
PHONE

STATE
ZIP

FEATURE ARTICLES FROM

ELECTRONICS MAGAZINE ARE NOW

AVAILABLE IN REPRINT FORM!

Payment must accompany your order...USE THIS PAGE AS YOUR ORDER FORM

Make check or money order payable to Electronics Reprints. All orders shipped prepaid via parcel post. Allow two to three weeks for delivery.

Back Issues Now Available. 1960 to $1969 \$ 5.00$ each. 1970 to $1973 \$ 3.00$ each.

Mail Your Order To

Janice Austin
ELECTRONICS REPRINTS
P.O. Box 669

Hightstown, N.J. 08520
Amount of Order
Plus 10% Handling Charge $\$ \square$

TOTAL AMOUNT ENCLOSED \qquad

SEND REPRINTS TO

Name

Compa	Dept.	
Street		
City	State	Zip

Quality of Product is in the Strength of the Produrer.

Today a product must perform the first time! There's no ludget for a second try and no time for a second go around.

It's called product quality. Lasy enough to saly. Not so easy to produce. And product quality is usually in direct ratio to its producer's strength. Strength to açuire top grade raw material -even when scarce. Strength to acquire competent people. Strength to afford the best, most advanced terhnic al equipment

And hack up strength; financial, administratise.
Advanced Circuitry of Litton Systems, Inc.. has this strength.
The strength to deliver quality in our folal operation from inspection of art to iinal assembly.

That's why we're the largest resale house in the industry taxday. And that's why were expanding to be the fargese in the fulure.

ADVANCED CIRCUITRY

Preparation: the key to success with microprocessors

Unwary system engineers can fall victim to time-consuming mistakes, not to mention cost, when building on new breed of semiconductors; help is available, however, for those ready to pause and pay heed

by Robert Lewandowski, John Fluke Mfg. Co., Inc., Seattle, Wash

\square A design team that takes its first crack at devising a system based on a microprocessor can be in for a trying experience. But many of the usual pitfalls can be traced to two basic oversights; they involve (1) a precipitous plunge into a project with a design group inadequately prepared for the task, and (2) failure to obtain the different kinds of help available from manufacturers, time-sharing services, and consultants.

Hardware problems, while formidable, can be solved by traditional methods. But not so for software. Microprocessor manufacturers say it is easier to turn a digital designer into a microprocessor programer rather than the other way around. While this may be true, it doesn't give a realistic picture of what can happen while a hardware designer is in the process of learning. The problems associated with becoming familiar with the microprocessor and its interfaces, and with learning programing, can at best lead to some extremely harried designers or, at worst, a poor design.

Hardware problems

Analog designers probably will not be affected, but the digital designers must become familiar first of all with the capabilities, limitations, and characteristics of the many microprocessor-system components. In addition to the central processing unit, there is a clock gen-erator-driver, which supplies timing and synchronization to most parts of the system. There is a ROM, which contains the actual program statements executed by the CPU. There may be a memory interface device to provide address information in the correct format to allow a general-purpose memory chip to be used with a specific processor. And most systems will contain a RAM

Closing the loop

Readers who have questions about microprocessors and would like to discuss the problems of using them with author Lewandowski may call him during the week of March 31 at (206) 774-2211, extension 2257, between 9 a.m. and noon, Pacific time.
to store transient data generated by the processor during program execution.

Also, inputs and outputs will usually require interface hardware to provide timing and multiplexing so that peripheral circuitry can access the processor's data bus. In some systems, memory interface and I/O may be handled by the same hardware; other systems provide interface adapters for various types of I/O operations.

Additional hardware may also be required to interrupt processor operation for service requests, to change program flow, and to handle special modes of operation. And since the devices used within one system may span several technologies-p-MOS, n-MOS, C-MOS, and TTL-there are many different interface problemsvoltage levels, propagation times, etc.-with which hardware designers must be familiar.

The software problem

Many hardware designers assume that because they have done some programing with high-level languages like Basic or Fortran, their experience will be directly applicable. Such programing is, however, a world away from the low-level languages required by most microprocessors. So while digital designers may have developed the logical way of thinking necessary to become proficient programers, the time allowed them in project schedules to get up to adequate speed in programing is frequently grossly underestimated.

If a project is on a schedule in which sufficient time cannot be given to design-team members to thoroughly learn about the device to be used, an alternative to consider is the use of a consultant.

Many consulting firms are spinoffs from microprocessor manufacturers. These people have worked on many specific applications and are familiar with both hardware characteristics and programing techniques. Some consultants will undertake the whole designhardware and software-while others will only do the software and advise on hardware implementation. This course will allow in-house people to become experienced as they work with the consultants.

If, on the other hand, time does permit the education of staff designers, where can the education be obtained?

While there is a great deal to be said for self-made men, there are definite limits imposed when it comes to microprocessors. The information available for self-study from vendors, for example, is usually non-existent, and much of what is available is in the form of specifications not really helpful for the task at hand.
Many colleges and some community colleges now offer short courses in microprocessors and even courses on machine- or assembly-language programing. These can be useful-as can the general information available on programing minicomputers (in view of the similarity between the simple mini and a microcomputer system).

A better approach is to take advantage of seminars offered from time to time by vendors or consultants in various locations around the country. These usually last two to five days, are very concentrated, and cover the basics of hardware operation and the instruction sets used by specific devices or families of devices. The seminars usually include some "hands-on" time employing a hardware simulator, which allows students actually to write and execute simple programs. Under no circumstances, however, should it be assumed that these seminars are guarantees of expertise.

When it comes down to a matter of practice, timeshared computer services can be useful. Many such services offer proprietary programs supplied by the microprocessor vendors-programs that allow the assembly of "source" programs into "object" code suitable for execution in a microprocessor.

The source program, written in the assembly language peculiar to a particular microprocessor, consists of symbolic operation codes corresponding to the actual bit patterns that cause a given operation to occur. It also consists of symbolic labels corresponding to the actual binary addresses at which the instruction op-codes will reside during program execution. The assembly language frees the programer from keeping track of the absolute address of an instruction to which the program transfers control or to which the program branches after a logical or arithmetic test. The assembly language also keeps track of the start addresses of subroutines that may be utilized by various parts of the main program.

The object code generated by an assembler is the set of binary numbers that, when loaded in the correct sequence in the microprocessor's instruction memory, causes the processor to act in the desired manner. These bit codes are permanently "burned" or "hard-wired" into the system ROM during manufacture and provide the instructions for a microprocessor to execute.

To develop a microprocessor program, the first step generally is to establish the logical sequence of events to occur by using a flow chart or similar aid. Each operation is then converted into one or more microprocessor instructions written in an assembly language. The sequence of instructions is then keyed into a data file in the time-shared computer, and the program, or source file, is acted upon by the assembler program in the time-shared system. If there are no errors in the source program, the assembler generates an output record consisting of the object file in a suitable format for storage. This object file can be sent to a vendor who can convert the bit patterns into a usable ROM.

Since ROM manufacture is an LSI semiconductor process, the initial setup is rather costly and time-consuming. It is of critical importance, therefore, that the program be debugged and operational prior to ROM manufacture. In the case of production-LSI parts, little or nothing can be done to correct errors in the original hardware. The entire process of mask generation and fabrication of new parts has to be repeated-with time delays of two to four months for each correction.

To determine whether a program is operational or not, the time-sharing services also offer a simulation program that can execute the object program on the host computer in a manner similar to the actual microprocessor. A wide variety of information is available to the operator about the execution of his program, such as program timing, current contents of internal storage registers, addresses, and the actual instruction currently being executed. The simulator can stop operation at various places in the program and force conditions to occur within the simulated microprocessor. These features, combined with on-line editing programs that allow rapid modification or correction of source programs, make an extremely powerful system for developing microprocessor programs.

One drawback of time-shared services is their high recurring costs. In addition to the rental fee of a terminal for access, there are charges for connection time, and execution charges for use of the host computer. Also, there usually is a royalty for use of the microprocessor vendor's proprietary assembly and simulation programs. Time-sharing services also have a seemingly infinite variety of billing rates and schedules, so that comparison of costs of one service to another is virtually impossible. One can easily expect costs of $\$ 1,000$ to $\$ 3,000$ per month for a program development, which can easily take two to four months of peak demand time.

Prototyping systems

An alternative to the strict use of a time-sharing system (and one that provides a real-time operating-hardware situation) is the prototyping system. These are sold by various microprocessor manufacturers or independent proprietary microcomputer-systems vendors. Cost can be $\$ 3,000$ to $\$ 10,000$, depending on complexity and features. The prototype system can provide an operating setup that has the capability of entering and editing source programs in assembly language and executing the resultant object programs with the actual microprocessor hardware. These systems allow direct hardware interface to the instrument under development via plug-in "kluge" cards, and can contain the hardware to be used in the final system.

The main differences in comparison with the timeshared approach is the prototyping system's slower speed of execution and its lack of software or program features. Also, the editing capability is usually very limited, and in some cases nonexistent. That, together with the fact that most prototyping systems operate via a conventional ASR 33 Teletype and paper tape, make their use very awkward.

During operation of a prototyping system, the assem-

Why a microprocessor?

To name three of the chief advantages of a micro-processor-based instrument, a microprocessor can produce the following results:

- Reduction of the cost and complexity of hardware by replacing existing random-logic designs with fewer parts.
- Addition of arithmetic or computational capability unavailable with random logic.
- Achievement of a "smart'" instrument that can execute a sequence of instructions under program control, and possibly to control or interact with other instruments

The question remains: when is a given application suitable for a microprocessor? The rule of thumb today is that a microprocessor-based system is worth considering if an existing design uses 50 or more packages of me-dium-scale integration. But there are also other necessary preconditions, namely, that:

- There is sufficient product sales volume to approach the "knee" of the vendor's price curve.
- The application is bus-oriented, thus requiring a minimum of peripheral support hardware.
- There is a significant market advantage to be gained by features that come "free" with the addition of a microprocessor.
- There is the potential for future extension of the design techniques to other applications.

The desirability of a bus-oriented structure is based on the microprocessor's limited input/output capability. Most microprocessors transmit data on a character-serial bus (that is some multiple of 4 bits). This can, unless the system is already bus oriented, necessitate a large amount of outboard hardware to multiplex and distribute the data over wide parallel input and output structures. The extra components would seriously reduce the costeffectiveness of the microprocessor solution.

The addition of computational ability greatly increases an instrument's usefulness, allowing it to convert measured electrical parameters-volts, ohms, etc.-into engineering units-pounds per square inch, pH , feet per sec-ond-while also performing self-calibration and fault diagnosis. It should be noted, however, that although most available microprocessors have some arithmetic capability, high speed "real-time' computation is severely limited because devices generally available have no hardware arithmetic features and must use repetitive program techniques. Speeds of execution under these conditions are well-suited for human interface, but not for high speed machine-to-machine interactions.

Front-panel controls are areas in which a microprocessor can be used to great advantage in the design of a "smart"' instrument. Compare, for example, the electronic calculator to a mechanical calculator of five years ago. The mechanical calculator required that the entered data be justified with respect to the decimal location, and frequently required adjustment or re-entry of the data to accommodate the limited dynamic range of the machine.

A similar problem can be seen in a keyboard-programed frequency synthesizer that has a seven-decade display.

Entry of a number significantly smaller than full scale requires entering a number of zeros ahead of the most significant digit, making data entry rather clumsy. To implement the free-form entry with random logic requires a complex and costly design. But a microprocessor can meet the requirements easily.

One of the bonus features is the microprocessor's ability to store and recall various front-panel control settings or programs at the touch of a button. This makes it possible, for example, to store all the specific frequencies and signal levels required for production testing a nar-row-band filter. A single button recalls the data previously stored, and allows the operator to examine or adjust the device under test at each critical frequency.

This technique can be extended to allow the user to enter his own programs into the microprocessor for specific applications. This requires both a complex keyboard or program entry method and a user who is familiar with programing the particular microprocessor in the instrument. Nevertheless, it can result in an extremely powerful instrument suited for a variety of applications.

A microprocessor-controlled instrument can offer sophisticated remote programing capabilities, especially when equipped with the proposed international Electrotechnical Commission general-purpose bus interface [Electronics, Nov. 14, 1974, p. 95]. The structure of the IEC bus is ideally suited for use with a microprocessor, allowing the instrument to take the role of listener, talker, and possibly system controller when used in the appropriate application.

At present, in instruments designed with random-logic controllers, a high price must be paid for the IEC bus option because of the large amount of additional circuitry necessary to receive or send the ASCII control characters. But the only hardware needed when interfacing a microprocessor to the bus are the bus drivers and receivers, and the random logic for both timing and recognition of addresses and universal commands. The recognition and interpretation of ASCII control characters (in the case of a listener) and the encoding of data to be transmitted by a talker are all done under program control. They may even be handled by the same methods using the same subroutines, as are used to process signals from the front panel control.

An instrument with microprocessor control can be programed to perform the controller function in a bus system, although an instrument with programing flexibility of a calculator is usually assigned this task. The control programs for a microprocessor in an application as a system controller could be very complex, requiring significant execution time, but it could represent a cost-effective solution for certain applications.
bly program (punched on paper tape) is read into storage in the system via some sort of monitor or control program which resides in the system's ROM. Program control is transferred to the assembler and the user's source program is read in from paper tape. The complete assembly of the source program takes two or three entries ("passes") of the entire tape, depending on the
system. The object tape is generated during the final "pass" and can then be read into program storage within the system and executed by the microprocessor.

Loading the assembler, assembly, loading the object tape, and execution of the object program can easily take from an hour, for a small program, to well over eight hours for a large program. And the program stor-

Synthesizer. In a new application, a microprocessor has been built into a 10 -hertz to 11 -megahertz frequency synthesizer to handle a 6 digit display, a dozen LED annunciators, and a 24 -button keyboard. The chip set consists of five parts: a CPU, ROM, RAM, clock generator, and a memory interface circuit. In addition, about 30 TTL ICs are needed to handle the interfaces with other components.
age within the system is volatile. So when the system is powered down, the stored object program is destroyed and the object tape must be re-loaded for a new execution. Data on the object tape is usually densely packed so that reading a large object program is usually less than half an hour.

Some shortcuts are available-but they cost. Some of these are: storing the assembler on PROM (programable read-only memory) within the system; the use of a highspeed paper-tape reader and punch for data input and output (five to 15 times faster than a teletypewriter); or the use of minicomputer peripherals adapted for microprocessor systems, such as cassette tape systems, floppy disk systems, CRT terminals, and line printers. These devices can reduce system operating times by factors of 50
to 150 . They can also provide other benefits, such as mass data storage and low-cost/high-speed hard-copy data. But the added peripherals can easily bump system costs by more than $\$ 10,000$ and require a large amount of custom interface hardware and software.

Keep in mind that assembly of the source program is not necessary each time a change or correction is made in the object program. Most prototyping systems provide for "patching" or making program corrections via direct entry of machine code into memory. For small changes, this provides a means of keeping the original program running to check for other errors. Large changes (such as relocation of large blocks of code within memory) are very difficult and can create more problems than they solve.

Another factor that can keep the assembly of large source programs from becoming a man-killing job is that the main program can be assembled in blocks with vacancies inserted for future "patches." Only an affected block need be reassembled to correct errors. When the program is completely de-bugged, the blanks

can be removed and the program reassembled, creating one continuous program with no wasted space.

One frequently hears that microprocessor systems offer greater flexibility for design changes because all it takes is simple modifications to the program. This can lead the programer into days or weeks of debugging the "simple" program modifications. This is particularly true when the person making the changes did not write the original program. A densely packed, efficient program is like a finely "tweaked" a nalog circuit in which significant problems can be caused by subtle changes. A change to one part of the program can cause catastrophic occurrences in totally unrelated areas.

In-house computers

There is still another alternative, the use of an inhouse computer system for program development. Microprocessor vendors have available assembly programs written in languages like Fortran, which can be used on a variety of computer systems and provide essentially the same capabilities as the time-shared services, in
many cases the programs being the same. However, note that the computer required for such applications is large, costly, and may not be available.

Last of the alternative program development methods are the high level programing languages, like PL/M [Electronics, June 27, 1974, p. 103], available for some processors now on the market. They are similar in complexity to Basic or Fortran, where one program statement will generate many microprocessor instructions directly, as opposed to assembly languages which generate one microprocessor instruction from each program statement. These languages are relatively easy to learn. They are claimed to be within a small percentage of the efficiency of an experienced programer writing in assembly language, at least as far as the number of instructions to accomplish a particular task is concerned. However, the compilers for these languages are very large and usable only on large machines. Some timesharing services offer them, and they may be more cost effective than assembly language methods.

Once the program development is complete and the

Most microprocessors do not have built-in, hardwired arithmetic routines. They must use slower, software-controlled methods of computations. But there is a way to overcome this handicap, at least partially. Some computations can be done significantly faster with memory lookup techniques, in which tables of precomputed answers are arranged for rapid access by the processor at the time of program execution.

For example, in multiplication, the products, Z, of the single-digit $B C D$ numbers X and Y can be stored in readonly memory, as shown in the accompanying table. The values of X and Y are first combined to form an offset address, XY , which is then added to a base address to form the actual address of the product. For example, if $X=2$ and $Y=7$, then $X Y$ is 27 , which is added to 157 (an arbitrarily chosen base address) to form 17E (a hexadecimal number-sixteen digits, 0 through 9 , plus A, B, C, D, E, and F represent decimal 0 through 15). The product, 14, is in storage location 17E.

There is much redundant information in the table ($7 \times$ 2 and 2×7 have separate locations), but any extra logic that would be required to remove the redundancy would probably slow down the process.

One problem with this method is that the offset addresses are handled in decimal code (actually $B C D$), while the actual addresses of the rom sequentially step up in binary (actually hexadecimal). Therefore, between 09 and 10 in the offset address, there are six addresses that have no meaning in this process (OA, OB, OC, OD, OE, and OF). These correspond to the unused storage locations shown on the table. Thus it takes 260 sequential binary addresses to handle the 100 offset addresses. Again, extra logic could be used to test values and eliminate the unused storage locations, but this would also slow down the process.
Although large amounts of memory could be required with this type of computation, semiconductor memory prices are coming down. Today one can buy ROMs containing 2,048 8-bit words for less than \$30, equivalent to less than 1 cent per binary-coded-decimal digit.
$\left.\begin{array}{ccc}\begin{array}{c}\text { XY } \\ \text { OFFSET ADDRESS } \\ \text { INTO TABLE }\end{array} & \begin{array}{c}\text { ACTUAL } \\ \text { (BCD) }\end{array} & \begin{array}{c}\text { ZDDRESS } \\ \text { (HEXADECIMAL) }\end{array} \\ 00 & 157 & \begin{array}{c}\text { TABLE } \\ \text { ENTRY }\end{array} \\ 01 & 158 & \\ \text { (BCD) }\end{array}\right]$
hardware design operational, the next step in the design process will be the stand-alone prototype instrument. To make this transition, a programable ROM is used to store the object program (typical PROMs have capacities of 256 eight-bit words). These devices can be programed on the prototyping system or by peripheral programing units, depending on the compatibility of the devices being used. Some proms can even be erased and reprogramed. Other PROMS can be programed only once, by using destructive programing methods, and once a bit is set, it cannot be erased.

An alternative method is to go directly from the prototyping system to a mask-programed ROM. However, the major disadvantage in the design cycle of this route is that they require a lead time for manufacture, which can vary from about 12 weeks for a first mask device to 8 for a last mask device. It is also possible to use PROM program storage on a production basis for a small quantity of instruments with a minimal amount of program storage in each.

The final problem area is that of production testing of
the components, sub-assemblies and finished instruments. Of course, complete measurements of all parameters on microprocessor components can require extremely complex and costly test equipment. But comparable results can be attained with relatively simple functional testing, and with a minimum of additional test-equipment cost. This can be done by using a prototype instrument as a test bed and checking its performance with each new microprocessor component.

Troubleshooting and repair of functional modules or final assemblies can be best accomplished-with a minimum of aids-by direct component substitution. A word of warning, however, on preliminary inspection and handling of circuits: caution is needed so that solder bridges or other short circuits, or failed or improperly inserted parts, do not destroy expensive CPU or ROM ships at the moment of turn-on. It is relatively easy, while substituting components, to destroy several devices before a fault is located. And since most processor components are MOS, careful handling is required to prevent damage due to static electricity.

Calibrating crystal oscillators with TV color-reference signals

Phase-comparison with networks' rubidium standards yields resolution in minutes that would require days of checking against WWV or WWVH; National Bureau of Standards has designed simple measurement circuitry

by Dick D. Davis, National Bureau of Standards, Boulder, Colo.A crystal oscillator can be calibrated accurately in about 15 minutes by comparing its phase to that of the color-reference signals broadcast by the four major television networks. It would take days of comparing the frequencies of the oscillator to those of the signals broadcast by National Bureau of Standards radio stations WWV and WWVH to achieve accuracy of that order.

And since NBS monitors network signals and publishes offsets with respect to its standards, oscillator calibrations by such phase comparisons can be traced to NBS. What's more, NBS has applied for patents on a number of circuits that make phase comparison with color-TV subcarriers relatively simple. Among them are the color-bar comparator, the digital-subcarrier comparator, and the frequency-measurement computer, which are described in this article.

A TV receiver tuned to a network color program is a highly accurate reference because ABC, CBS, NBC, and PBS all use rubidium oscillators to generate 3.58 -megahertz signals, and every color-TV set phase-locks to those references. A scheme for comparing the phases of the two signals is shown in Fig. 1.

If the frequency of the reference signal is 3.58 MHz , the full-scale reading on the phase meter, one 360° cycle, is about 279 nanoseconds. If the oscillator's fre-
quency differs from the reference, the phase difference varies with time. For example, if the two frequencies differ by one cycle per second, the meter would deflect from zero to full scale in one second, return to zero, and start over again in the next second:
If the crystal oscillator is set to within one part in 10^{10}, or 1×10^{-10}, of the $3.58-\mathrm{MHz}$ reference frequency, the phase meter will accumulate 1×10^{-10} nanoseconds of phase difference after 1 ns of observation time, or 0.1 ns per second of observation time. Since the meter will move full-scale, or 279 ns , in 2,790 seconds, a high measurement resolution is possible. For example, if the 2,790 -second period is measured with an uncertainty of $\pm 10 \%-279$ seconds-the resolution is $\pm 10 \%$ of 1 $\times 10^{-10}$, or $\pm 1 \times 10^{-11}$.

Taking advantage of offsets

Several years ago, the networks began using rubidium atomic oscillators to increase the stability of their color subcarriers. These were standard $5-\mathrm{MHz}$ rubidium oscillators with added circuitry that synthesized 3.5795454. . . . MHz by multiplying 5 MHz . by $63 / 88$. Some time after these units were put into service, the international standard of frequency, the reference tracked by NBS, was changed by $+300 \times 10^{-10}$. The network

2. Phase plot. The phase difference between signals from an oscillator under test and the network's color subcarrier is never constant for more than a brief period. This must be considered when calibrating an oscillator to a TV color-subcarrier reference.
rubidium oscillators are therefore offset with respect to these standards.
Thanks to the offset of the networks' oscillators with respect to NBS standards, a crystal oscillator can be checked for accuracy in less than 10 seconds with resolutions in the range of a few parts in 10^{10}. The time required to accumulate 360° of phase shift in these network standards is

$$
P=T / Q
$$

where T is the period of the reference signal and Q is the offset of the unknown. With a $3.58-\mathrm{MHz}$ reference and 3×10^{-8} offset, the period of the beat note is 9.31 seconds.

If the offset were 3.01×10^{-8}, the period of this beat note would be 9.28 seconds, a change of 0.03 second. Conversely, an error of 0.03 second in making a period measurement yields an error in the frequency measurement of only one part in 10^{10}. What's more, the measurement has only three digits-the 9.31 - and 9.28 -second intervals of these examples. A measurement error of ± 1 digit (± 0.01 second) results in a frequency-mea-
surement error of only $\pm 3 \times 10^{-11}$.
The ultimate resolution of this measurement technique is limited by a slow continuous net change in the path length the signal travels between the network's standard and the receiver (Fig. 2). In most cases, resolution is limited to about 10 ns in 15 minutes, which corresponds to a resolution of 1.1×10^{-11}.
Figure 2 also illustrates three types of phase instabilities that must be considered: large and small phase jumps and local station originations. Large phase jumps are caused by switching from one video-tape machine or camera to another, as different lengths of cable are inserted in the path. Small phase jumps result from phase distortion in the microwave system that carries network programs and from multipath between the local station's transmitter and the receiver, as well as differential phase distortion in the receiver.
Most large phase jumps coincide with changes from a program to a commercial and back again. During station breaks, the $3.58-\mathrm{MHz}$ reference originates from the local station, rather than the network. Since few local stations are equipped with rubidium oscillators, their

3. Comparator. The output of a crystal oscillator, operating at the frequency of the color subcarrier and phase-locked to an oscillator under test, is combined with the signal entering a TV set so that the phases of the two signals can be compared.
references cannot be used for calibration to the same accuracy as with network signals because they are often offset by 1×10^{-7} or more.

Using the color-bar comparator

The simplest NBS circuit, the color-bar comparator, is shown in block-diagram form in Fig. 3. The input signal, at a frequency of 5 MHz or an integer submultiple, is divided by 88 . This divided-down signal drives a 3.58MHz voltage-controlled oscillator. The $3.58-\mathrm{MHz}$ output is doubled, then divided by two to provide a phase-locking feedback signal. The frequency-doubled signal is also divided by 455 , which provides a signal at the TV receiver's horizontal-oscillator frequency. That signal ultimately generates a stationary vertical bar on the screen (Fig. 4).

The color of the vertical bar changes as the phase relationship changes between the network rubidium and the oscillator under test. The phase modulator changes the color of the bar across its width so that times between these color changes can be measured. For example, the time between one solid red bar and the next can be measured.

Without the modulator, the entire bar would change

4. Display. The color-bar comparator generates a vertical bar on a television screen, and colors move across the bar. By timing one complete cycle-from solid red to solid red, for example-the frequency offset of the oscillator under test from the National Bureau of Standards oscillator can be determined.

5. Generator. After division by 88 , the signal from an oscillator under test phase-locks a crystal oscillator. The output of the color-bar generator can be interfaced to a color-TV receiver, either through the antenna terminals or directly into the chroma circuit.

6. Alternate. A sample-and-hold circuit can compare the phase of the $3.58-\mathrm{MHz}$ color-subcarrier standard with the phase of the signal from the oscillator under test every 88 cycles of the test input.
color at one time, making it difficult to tell exactly when a given change takes place. It would also be difficult to tell whether the frequency of the test signal is higher or lower than that of the reference signal because it would be necessary to remember in what order the colors change.

In the schematic of the color-bar comparator (Fig. 5), the input signal is divided by 8 and then by 11 in the two 8281 input dividers. The output of the second 8281 drives the base of Q_{1}, a phase-locked-loop comparator. A 741 operational amplifier connected as an RC integrator tunes the voltage-controlled crystal oscillator at the color-subcarrier frequency of 3.58 MHz .

The vCXO's output signal drives a 74123 one-shot circuit that shapes the pulse. Two signals are taken from the one-shot, and the positive-going transitions are coupled through a 7402 NOR frequency doubler to a di-vide-by-two (part of an 8280) and fed back to Q_{1} for phase lock. The crystal oscillator, operating at the colorsubcarrier's frequency and phase-locked to the oscillator under test, is required because the necessary 3.58MHz signal cannot easily be synthesized from the input signal. Part of the 8280 , which divides by two, also divides by five. Subsequent dividers at ratios of 7 and 13 provide a total division ratio of $455(5 \times 7 \times 13)$.

Making the presentation clear

Although this system can be used without access to the inside of the TV set, the rainbow will be of higher quality if the signal is injected into the receiver's video circuits. This eliminates modulation of the receiver's audio carrier, which causes a beat note that varies with the audio content of the program. An example of the circuitry required to inject the signal directly into the chroma-bandpass amplifier is shown in the schematic.

After an oscillator is connected to the color-bar generator and the color-bar generator is connected to a television set, the oscillator is adjusted so that the rainbow appears to move across the bar from right to left in abut 10 seconds. If the oscillator frequency is far off, the colors in the rainbow pattern will change rapidly, and the entire bar will move in the direction of the color change.

Since the period of the beat note equals the period of
the reference divided by the offset, the frequency of the color comparator output signal is

$$
f=1 / P Q
$$

where P is the period of the beat note and Q is the offset of the network signal as published by NBS.

When the oscillator under test is adjusted for an output of 5 MHz , the frequency of the color-comparator's output is 3.58 MHz . The period of the beat note in seconds is then approximately $279 / \mathrm{Q}$, where Q is expressed as parts in 10^{-9}.

Measuring the subcarrier digitally

The digital subcarrier comparator shown in the block diagram of Fig. 6 and schematically in Fig. 7 allows measurement of the period of a beat note to $\pm 0.01 \mathrm{sec}-$ ond. To obtain a measurement precision of $\pm 1 \times 10^{-10}$, an average of at least 10 readings, representing about 90 seconds of data, must be taken. A measurement to this precision using the $60-\mathrm{kHz}$ transmission of WWVB would require two to eight hours under stable conditions. To improve the subcarrier-comparator measurement to ± 2 $\times 10^{-11}$ would require averaging 100 sample-period measurements-about 15 minutes of data recording.

The digital subcarrier comparator provides an analog readout of phase on the screen in the form of a narrow vertical line that moves slowly from left to right, then retraces rapidly right to left when the local oscillator is high in frequency. This sawtooth response allows positive setting of the local oscillator because, if the local oscillator is low in frequency, the cursor line will move right to left and fly back from left to right.

This comparator is somewhat different from the color-bar comparator in that it does not synthesize 3.58 MHz from the oscillator under test. Instead, a sample-and-hold circuit compares the phase of the $3.58-\mathrm{MHz}$ standard with the phase of the signal from the oscillator under test, which is at a frequency of $5 \mathrm{MHz} / \mathrm{N}$, once every 88 cycles of the input. If $N=1$, the comparison rate is approximately 56.8 kHz , and the phase of each 88th cycle of the $5-\mathrm{MHz}$ signal is compared with the phase of each 63 rd cycle of the $3.5-\mathrm{MHz}$ television signal.

The effect is the same as if $63 / 88 \times 5 \mathrm{MHz}$ were synthesized and compared with the TV receiver's 3.5 MHz . The sample-and-hold comparator output passes through a low-pass filter to eliminate sampling and other high-frequency noise from the beat note.

The beat note is processed through a Schmitt trigger to provide a start-stop signal for a digital counter. If difficulty is experienced in adjusting the counter start-stop circuits to trigger on the same slope (both positive or both negative), a flip-flop may be added to the Schmitttrigger output. This will give a symmetrical square-wave output, and each half cycle will be equal to one cycle of the beat note.

The steps in calibrating an oscillator with the digital comparator are the same as for the color bar. The phase cursor is used to make a coarse adjustment of the oscillator, and then the oscillator is adjusted to the period computed from the offset published by NBS until the readout equals this period.

Another version of the digital-subcarrier comparator
computes the offsets corresponding to 1010 -period averages and displays them directly on the TV screen. By averaging 10 of these 10 -period averages, accuracies approaching $\pm 1 \times 10^{-11}$ can be achieved.
The frequency-measurement computer determines the period of the $3.58-\mathrm{MHz}$ beat note, computes the offsets, scales the results for 4-digit readout in parts in 10^{11}, and displays the one- and 10 -period averages. A block diagram of the instrument is shown in Fig. 8.
The phase-comparator-and-cursor-generator section is equivalent to the digital-subcarrier comparator. It compares the $3.58-\mathrm{MHz} \mathrm{TV}$ signal with the signal under test and generates a beat note and a cursor. The offset scaler accepts the beat and the $3.58-\mathrm{MHz}$ reference signal, f_{1}. The rate generator provides pulses at $R=\Delta f \times$ 10^{4}, which is 10,000 times the beat frequency. These rate pulses are gated on for a time T_{G} equal to $10^{7 /} / f_{1}$. The count output to the data-store counters is therefore

$$
\left.R \times T_{\mathrm{G}}=\Delta f \times 10^{4} \times\left(I 0^{7} / f_{1}\right)=\left(\Delta f / f_{1}\right) \times 10^{11}\right)
$$

The gated frequency from the offset scaler is accumu-
lated in the two 4 -digit counters in the data-store-anddisplay section. After each cycle of beat-note measurement, the single-period counter is gated on for $2.79 \mathrm{sec}-$ onds. The accumulated single-period count is then dumped to the single-period store for readout. The 10period 4-digit counter is preceded by a divide-by-10, so from each single-period average, it accumulates $1 / 10$ of its total count. At the end of 10 one-period averages, contents of the 10 -period counter are dumped to the $10-$ period store for readout.
The readout data is presented as two columns of $104-$ digit numbers (Fig. 9). The left column represents single-period offset readouts, and the right column represents 10 -period offset readouts. To start a measurement sequence, the user pushes the reset button. All readouts are reset to zero, and the top 4 digits in each column are intensified, indicating that data will be loaded in these positions.
At the end of approximately 13 seconds, the first single-period measurement is completed, and the data is loaded into the top 4 digits in the left column. The

7. Digital comparator. One output from the sample-and-hold comparator can generate a cursor on a television screen while a second output feeds a counter for digital readout of offset. Waveforms at four points in the circuitry are also shown here.

8. Signal flow. A signal of unknown frequency (A) can be compared with either the color-subcarrier $3.58-\mathrm{MHz}$ signal or another reference signal (B) for on-screen display. The B-input offset generator provides the offset necessary to make accurate measurements quickly, a selfcheck capability for the computer, or a means to make comparisons to a zero-offset color subcarrier.

9. Computer. Frequency offsets and averages of 10 offset readings can be computed. The values can be displayed, along with a phase cursor, on a television screen.
second 4 digits in the left column are then intensified. On each following 10 -second interval, data is loaded into succeeding positions in the left column until 10 single-period averages have been accumulated. The first 10 -period average is then loaded. The process continues until all 1010 -period averages have been loaded.

Adding refinements

One feature added to the frequency-time computer in use at the National Bureau of Standards permits the user to leave the instrument unattended during its 15 -
minute run. A circuit compares the result of the latest single-period measurement with the expected value and, if there is a significant difference, ignores the measurement. This compensates for large phase jumps that may occur in the broadcast signal if, for example, the broadcast switches between network and local origin.

The frequency-time computer also contains circuitry that allows the comparison of two oscillators with each other. A reference oscillator connected to one input is compared with a $+3,000 \times 10^{-11}$ offset replica of the second input. If the two signals have no offset with respect to each other, the on-screen readout will be 3,000 . Readout accuracy is within $\pm 1 \times 10^{-11}$ for 22 minutes of data, which represents 1010 -period readouts at a sampling frequency of 2.5 MHz , with $3,000 \times 10^{-11}$ offset. This mode is also useful for comparing oscillators against zero-offset color subcarriers. WTTG-TV in Washington, D.C., for example, uses an oscillator stabilized with a cesium reference by the U.S. Naval Observatory.

If the offset and direct inputs are connected to the same oscillator, the readout should be 3,000 . This provides a simple check of the frequency-time computer's circuitry.

Closing the loop

The author will answer questions about this article at the National Bureau of Standards booth at IEEE Intercon. He will also answer calls on April 22 at (303) 4991000, Ext. 3639. His address is National Bureau of Standards, MS 277.06, Boulder, Colo. 80302. Manufacturers interested in producing phase-comparator circuits should also call or write NBS.

Systems Supermarket

If you are in the market for a computer-controlled automatic testing/troubleshooting system, GR is the place to do your shopping. Here you will find a wide selection of automatic systems for testing digital, analog, or hybrid (digital and analog) circuits. And the new CAPS-VII software package that is now available is the current state-of-theart for testing/troubleshooting software.

For a guide to help you compile your shopping list, request a copy of our new Systems Brochure. It concisely describes and illustrates the several standard GR systems you'll find any day being assembled off the aisles of our systems supermarket.

1792-D Logic-Circuit Test System For high-speed, parametric digital and analog testing.

1792-B Logic-Circuit Test System Designed for the production environment, where low-cost testing and troubleshooting are mandatory.

1790 Logic-Circuit Analyzer A basic functional and diagnostic test system for logic elements.

Photo above shows several systems in production at the Concord plant's Systems Center, one of three such centers.

2210-C Analog Test System A general-purpose analog test system.

2210-A Analog Test System A low-cost dedicated analog test system.

1793 Logic-Circuit Tester
A "starter system" - provides rapid digital testing of complex logic circuits at minimum initial cost.

2214 Analog Test System A commercial-electronics analog test system.

300 BaKER AVENUE, CONCORD, MASSACHUSETTS 01742
NEW YORK .N.Y.) 212 964-2722, (N.J.) 201 791-8990 - BOSTON 617 646.0550 - DAYTON 513 294-1500 CHICAGO 312 992.0800. WASHINGTON, D. C 301948 -7071. ATLANTA 404 394.5380 DALLAS 214 234-3357. LOS ANGELES 714 540-9830. SAN FRANCISCO 415 948-8233 . TORONTO 416 252-3395. ZURICH (O1) 552420
GF COMPANIES - Grason-Stadler - Time, Data

Silent timer warns
 of tape run-out

by Vernon R. Clark

Applied Automation Inc., Bartlesville, Okla.

At concerts and lectures especially, a cassette tape often runs out unnoticed. One solution is to install timing circuitry in the cassette-recorder case that will cause a light to flash when it's time to reverse or replace a cassette or to switch to another recorder. This silent warning system is also useful in duplicating cassette masters, where a preset recording time is important.

The alarm circuit operates from any voltage in the 5 -to- 15 -volt range and can either be connected to the recorder bus or use its own battery. When the circuit is turned on, a light-emitting diode begins to blink once or twice per second, indicating that the circuit is functional and ready to start timing. When the start-timing button is pushed, the LED stops flashing and stays off for the duration of the timing period. At the end of the timing period, the LED begins to flash again, giving the signal to flip the tape.

The two main components of the circuit are a 14536 programable-timer integrated circuit and a 74 C 00 quad NAND gate IC. The timer contains an oscillator and a $24-$ stage counter. It counts pulses from the oscillator and, when some specified counter stage goes high, delivers a positive output pulse from the decode-out terminal (pin 13). Which of the counter stages triggers the output is
specified by the voltages on pins $9,10,11$, and 12 . If these pins are high, high, low, and low, respectively (logic 1100), an output appears every time that stage 12 of the counter goes high. With all four pins high (logic 1111), output appears when stage 24 goes high.

Since this system was designed for a standard C90 cassette, which runs for 45 minutes a side, the timer is adjusted to provide a timing period of 44 minutes, or 2,640 seconds.Therefore the oscillator frequency is set at

$$
f_{\mathrm{osc}}=2^{23} / 2,640=3.2 \text { kilohertz }
$$

so that counting stage 24 will go high 44 minutes after the counter starts counting pulses from the oscillator (provided the decoder logic is 1111).

With this oscillator frequency, if the decoder terminals are set at logic 1100, stage 12 goes high after 2^{11} pulses, or

$$
2^{11} / 3.2 k H z=0.65 \text { second }
$$

The oscillation frequency is set by the time constant of C_{1} and $\left(R_{1}+R_{2}\right)$. A frequency meter is connected to pin 5, and R_{2} is adjusted till the meter shows 3.2 kHz .

The circuit operates as follows: while the on-off switch is off, all pins are low. When the switch is turned on, pins 9 and 10 of the timer go high because they are wired to the positive-voltage bus. Therefore the decoder is programed with logic 1100 , and the LED begins to flash every 0.65 second. When the start-timing button is pushed, the quad NAND circuit sets the decoder to logic 1111, so the LED stops flashing and the 44-minute count begins. After 44 minutes, the decode-out terminal (pin 13) goes high, resetting the decoder to 1100 so that the alarm signal flashes again.
 ton is pushed, warning that cassette tape is about to run out. Circuit is useful at concerts, lectures, and tape-duplication sessions. It can be built into recorder case and uses either its own battery or the power source of the recorder-it draws only a matter of 200 microamperes in the timing mode and 4 milliamperes in the flashing mode.

Antilog function generator keeps VCO output linear

by J. A. Connelly and C. D. Thompson
Georgia Institute of Technology. Atlanta, Ga

Accurate voltage control of oscillator frequency is crucial for such applications as electronic music synthesizers, filter test circuits, and phase-locked loops. In the voltage-controlled oscillator (VCO) described here, each l-volt change in the control voltage changes the output frequency by one octave with a maximum deviation of $\pm 0.4 \%$ over the entire audio range. This precision is achieved by temperature-compensation and buffering.

Circuit can be built with readily available parts, and the design equations allow adjustability and flexibility to meet a variety of specific needs. The total range of oscillation frequency can be shifted down one octave, for example, by doubling the capacitance of C_{1} in the VCO.
This VCO is basically a relaxation oscillator: current source Q_{5} charges low-leakage polystyrene capacitor C_{1} until unijunction transistor Q_{4} fires (at about 9 v); C_{1} then discharges rapidly, and the cycle starts all over again. The sawtooth output voltage essentially results from the voltage across C_{1} minus a couple of junction voltages, buffered by high-impedance MOSFET Q_{2}; by Q_{3}, which carries the current to fire Q_{4}; and by the unity-gain op amp. Most of the resistors limit transistor currents to safe levels.

The oscillation frequency is determined by the charging current into C_{1}. This current, which is the collector current from $\mathrm{Q}_{5 \mathrm{~B}}$, depends upon the control voltage because the base-to-emitter voltage V_{BE} in both halves of Q_{5} is derived from the control voltage, thus,

$$
I_{\mathrm{C}}=\beta I_{\mathrm{S}} \exp \left(q V_{\mathrm{BE}} / k T\right)
$$

where β is the short-circuit current gain, I_{S} is the reverse saturation current, kT / q is 0.026 per volt at $27^{\circ} \mathrm{C}$, and V_{BE} is scaled from the control voltage V in a voltagedivider network:

$$
V_{\mathrm{BE}}=V R_{\mathrm{TC}} /\left(R_{\mathrm{IN}}+R_{\mathrm{TC}}\right)
$$

Therefore, the collector current is given as a function of the control voltage by

$$
I_{\mathrm{C}}=\beta I_{\mathrm{S}} \exp \left[\frac{q R_{\mathrm{TC}} V}{k T\left(R_{\mathrm{IN}}+R_{\mathrm{TC}}\right)}\right]=\beta I_{\mathrm{S}} K^{\gamma}
$$

In this expression, the scale factor K is just a substitution that replaces several terms: that is,

$$
K=\exp \left[\frac{q R_{\mathrm{TC}}}{k T\left(R_{\mathrm{IN}}+R_{\mathrm{TC}}\right)}\right]
$$

Current I_{C} is an antilog function (or exponential function) of voltage, and therefore the current source is called an antilog function generator.

Because the frequency is directly proportional to I_{C},

$$
f \sim K^{V}=f_{0} K^{V}
$$

where f_{0} is the free-running frequency (i.e., the oscillator frequency when control voltage V is zero). The frequency f_{0} depends on the parameters of Q_{5}, the firing voltage of Q_{4}, and the capacitance of C_{1}.

The value of scale factor K is set by the resistors $\mathrm{R}_{\text {IN }}$

$$
\begin{array}{ll}
\mathrm{a}_{1}=2 \mathrm{~N} 3904 & \mathrm{O}_{3}=2 \mathrm{~N} 3904 \\
\mathrm{O}_{2}=2 \mathrm{~N} 3796 & \mathrm{O}_{4}=2 \mathrm{~N} 2646
\end{array}
$$

It's all of those and more, much more. It's our new Microram 3400 N - a $32 \mathrm{~K} \times 16$ or 18 bit memory system using our own SEMI 4402, 4K STATIC RAM components . . . the only production 4K STATIC RAM's available today. The 4402 is fast, with a worst case access time of 200 nsec. And . . . it's second-sourced, of course!

The Microram 3400N is form, fit, and functionally compatible with all core and NMOS members of the Micromemory family, and is completely contained on a single printed circuit card. Optional features include chassis and power supply. The Microram 3400N is immediately available with a worst case access time of 275 nsec .

Call your nearest EMM sales office and discover how "The Memory Company" can give you system building block flexibility, 4 K to 32 K , core or NMOS.

EIIIII SEMI

A division of Electronic Memories \& Magnetics Corporation - 3883 North 28th Avenue, Phoenix, Arizona 85017 (602) 263-0202

EMM OFFICES: WESTERN REGION, Regional Office, San Francisco, (408) 247-9711, Los Angeles Area, (213) 644-9881, Orange County Area (714) 639-5811, Minneapolis Area, (612) 941-2404, Phoenix Area (602) 968 -2492, Dallas Area (214) 231-7207, EASTERN REGION, Regional Office, Boston, (617) 861-9650, Chicago Area, (312) 297-7090, Washington, D.C. Area (703) 941-2100, New York Area 516) 423-5800, Cleveland Area (216) 842-8920 INTERNATIONAL OFFICES, European Headquarters, Belgium (031) 76.69.75, United Kingdom (01) 751-1213, West Germany (089)714.30.40.

REPRESENTATIVES: Gentry Associates; Orlando (305) 894-4401, Huntsville (205) 534-9771, Burlington, N.C. (919) 227-3639 In Canada: Megatronix, Ltd., Toronto (416) 742-8015, Montreal (514) 488-0404, Ottawa (613) 729-4004, Vancouver (604) 52f-3215
In Japan, Nissho Electronics (03) 542-2351.
and R_{TC} in the divider network. If K is 10 , the oscillation frequency changes by one decade when V changes by 1 V . With the resistance values shown in the circuit diagram, however, K is 2 , so the frequency changes by one octave when V changes by l V .

The temperature sensitivity of I_{C} is compensated by the temperature coefficient of thermistor $R_{T C}$, $+0.34 \% /{ }^{\circ} \mathrm{C}$, which is equal in magnitude and opposite in sign to the effect of q / kT in the expression for K .

Thus, scale factor K is independent of temperature if the thermistor and Q_{5} have equal temperatures. To ensure this condition, the thermistor is mounted in thermal contact with the header of Q_{5}.

The tuning curve shows the experimental performance of the VCO. The maximum departure from the straight-line relationship is only $\pm 0.4 \%$ over the audiofrequency range from 20 Hz to 20 kHz . Outside that range, the voltage control becomes less precise.

Radiation monitor has linear output

by Paul Prazak, Burr-Brown Research Corp., Tucson, Ariz., and Lt. William B. Scott, Edwards AFB, Calif.

A commercial silicon diode can be used as a directreading detector of gamma rays and high-energy X rays in radiotherapy. Besides generating an output that is linearly proportional to the radiation intensity, the diode makes a small enough probe to map the radiation field accurately. The monitoring system of diode plus two operational amplifiers provides an output voltage that varies linearly from 0.1 volt to 10 v as the dose rate varies from 10 rads per minute to 1,000 rads $/ \mathrm{min}$.

The IN3191 or other off-the-shelf diode is operated in a zero-bias short-circuit mode. Irradiation of the diode junction creates electrons and holes that are collected by the depletion gradient, producing a nanoampere current which is proportional to the intensity of the radiation.

To amplify the small signal from the diode, a 3521 L operational amplifier with low bias current (10 picoamperes maximum) and ultra-low offset voltage drift (± 1 microvolt $/{ }^{\circ} \mathrm{C}$ maximum) is used. As shown in Fig. 1, the 3521 L is connected in a current-to-voltage configuration where the inverting input appears as a virtual
ground. This FET-input op amp delivers output voltages of $100 \mu \mathrm{~V}$ to 10 millivolts, which are well above the noise level. The 200 -kilohm resistor between ground and the noninverting input serves to balance the amplifier, and the 0.1-microfarad capacitor stabilizes the amplifier by shunting out noise and preventing oscillations resulting from positive feedback.

An additional stage of gain amplifies the signal to the desired level. The offset-voltage drift of this stage must be extremely low because it is amplified along with the signal. Therefore the chopper-stabilized 3292 op amp, which has a maximum offset drift of only $\pm 0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ is used here. The 100 -ohm resistor again balances the inputs to the amplifier. The gain of this stage should be around 1,000 ; it is adjusted by means of the 20 -ohm potentiometer so that an output voltage of 0.10 v to 10.00 V corresponds to a dose rate of $10 \mathrm{rads} / \mathrm{min}$ to 1,000 rads/min at the detector, as shown in Fig. 2.

The output voltage can be displayed on a $31 / 2$-digit panel meter, so that the numerals directly indicate radiation intensity. An alternative is to use an ultralinear voltage-to-frequency converter, an optical coupler, a counter, and a display to completely isolate the radiotherapy patient from the monitoring and recording system. An advantage of this approach is that the integrating input of the voltage/frequency converter would average out any high-frequency noise in the system.

Designer's casebook is a regular feature in Electronics. We Invite readers to submit original and unpublished circuit ideas and solutions to design problems. Explain brielly but thoroughly the circuit's operating principle and purpose. We'll pay $\$ 50$ for each item published.

1. Dosage-rate meter. Commercial diode is detector in this highly accurate radiation monitor. Low-drift FET-input op amp amplifies detector current to usable level, and chopper-stabilized amplifier then provides additional gain while minimizing any error caused by ambienttemperature fluctuations. Gain is adjusted so that output voltage is 1% of incident radiation intensity in rads per minute; therefore voltage can be displayed on $31 / 2$-digit DVM for direct reading of dosage rate. Cost of parts for this monitor is about $\$ 90$.

2. Llnear response. Output voltage from monitor is linearly proportional to radiation intensity at diode. Over dosage rate range shown, total system error is less than 1%. Small size of diode probe permits accurate mapping of radiation field.

> Institute ponders its fiscal woes and the problems of idle members, while show organizers foresee slight increase in exhibition rentals; optimists hope that good attendance will signal the beginning of a turnaround in electronics business.

by Gerald M. Walker, Associate Editor

ership has had to face. First, the cost and inconvenience for exhibitors putting up a show in New York have been escalating sharply. Second, Intercon attendance has become increasingly regional-in character if not in name, although a thousand foreign registrants are expected this year. And the show is no longer the center stage for unveiling new products. However, it maintains its draw as a major industry meeting ground. Semiconductor companies, for example, still send marketing people to Intercon even though they dropped out of booth-buying long ago.

All of these points argued for a change of scene to bring the show to more engineers. Extrapolating from this, there's good argument for launching a Midwestern version. And eventually it may be feasible for manufacturers to buy East Coast, West Coast, and Midwest booths with one commitment covering three separate ieee shows. This move, of course, depends on how well the Boston-New York plan works.

Right now, Intercon/75 promises a few innovations of its own. There's the timing for one thing. Not only are the dates changed from March to April, but there will be three days of show and technical sessions rather than four. There will be one late night, April 9, for the show at the Coliseum. This will make it easier for exhibitors to get their gear in and out of the two show floors at minimum cost and also shorten the time attendees will need to spend away from their benches. The number of show hours, however, will be virtually the same. A second change is moving the technical sessions uptown from the Statler Hilton to the Americana, which is
closer to the Coliseum and away from the rather dreary neighborhood that bothered some out-of-towners last year. There will be more booths for distributors and sales representatives this year, which will bring in products from manufacturers who did not buy their own booths. It will also continue to give the show a decidedly more sales-oriented aura than it had in the boom years of the 1960s.

As part of the selling emphasis, Intercon/75 will feature an area on each of the two floors designated Applications Forum. Individual exhibitors can apply for use of a forum for one hour at no charge to make a product demonstration to a crowd that would be too large to fit into a regular booth area.

A meat-and-potatoes program

Technical sessions this year have been purposefully kept to solid engineering fare. There are no wayout subjects or career topics. Marketing-type talks are also getting the soft pedal. The reason, as attendance last year clearly indicated, is that peripheral subjects are duds. Topics like pension plans, the engineer and social values, incorporating human values in decision analy-sis-all on the program in 1974-flopped.

So it's down-to-earth, nuts-and-bolts engineering this year (see "The program at a glance," p. 120). Program chairman Peter H. Goebel of Motorola Inc. explains: "Engineers come to Intercon to see some positive developments, to find out what their fellow professionals are doing. They don't want to hear more problems; they get enough of that at work."

The technical program is divided into five general areas: computers, control and test equipment, components, communications, and instruments. Each area has six or seven sessions arranged so that EEs can catch all of the talks related to one of the five categories in two days-either Tuesday and Wednesday, or Wednesday and Thursday-and not have to hang around for all three days.

A new feature this year, the one-on-one technical forum, will bring some of the flavor of the technical sessions at the Americana over to the floors of the Coliseum. Each afternoon, some speakers from a panel representing each group listed above will be on hand at a large area on the second floor so attendees can discuss the topics in depth. Space will be allotted for the speakers to display their illustrations and talk to EEs on a one-on-one basis, a kind of extension of the exchanges at the meeting-room podium that follow delivery of a paper.

The six topics to be aired at the one-on-one sessions are the "Microcomputer Revolution," "Advanced Techniques for Automatic Test Equipment," "Trends in Electronic Measuring Instruments," "Electronics in Modern Transportation," "Satellite Communications Systems," and "Computer Technology During Hard Times."

Hard times in the industry have had an impact on the technical program. As Goebel explains, lining up speakers during the uncertain months in the last quarter of 1974 was more difficult than usual. A would-be speaker, particularly in the semiconductor industry, might express interest in presenting a paper but add that he
might soon be out of work. By the same token, Goebel has been concerned about the impact on total attendance from the recession and industry retrenchment. Expecting a drop in the number of engineers able to travel from the Midwest and the West, Intercon organizers have intensified promotion in the New York area (see "Intercon's version of WIN," p. 119).

The technical program has gradually acquired its own personality rather than being simply a rehash of papers delivered earlier. Once again there's been an effort to provide fresh material.

Among the highlights will be discussions by suppliers and users of microprocessors. In the control and test equipment section will be talks on fault diagnosis of analog circuits and test generation, plus standardization of automatic test equipment. A couple of instrumentation meetings will be off the beaten path-these dealing with medical electronics and robotics. Among the components topics will be application of monolithic linear circuits. And engineers following communications technology will find a session devoted to loop electronics as an alternative to wire transmission. In all, there will be 36

Hopeful. With the number of exhibitors holding even, William Weber hopes Intercon will do well.

Intercon's version of WIN

One of the attendance promotion ideas that Intercon is trying this year is the "pink card" plan, also called the "uninflated' prepaid registration order. Designed for companies that may be sending several persons to the show, it works this way: after approximating how many people it wants to send, a company orders a stack of pink registration cards. Intercon then bills the company $\$ 1$ for each card that is actually presented at the show, but not for unused cards. The regular registration fee is $\$ 8$ for IEEE members and $\$ 10$ for nonmembers.

When the company receives its bill, it also receives a printout of who used the cards and their affiliations. The maximum charge to a company is $\$ 1,200$. The only hitch is that the pink-card users still have to get in line with users of the prepaid cards at the Coliseum registration counters.
sessions, plus one evening highlight based on a panel discussion of the implications of nuclear power.

In addition to the regular technical program, various groups and societies will convene 11 special sessions on Monday, April 7, before Intercon. Two such programs will deal with a systems approach to energy management, which should be a hot topic in light of the Ford Administration's energy program. These sessions, sponsored by the Systems, Man, and Cybernetics Society, will include speakers from Federal agencies.

The program at a glance

With 36 sessions covering five product categories, the intercon/75 technical program this year offers a number of down-to-earth engineering discussions. Here are some of the more important ones:

Microprocessors will get a large measure of attention. At Session 1, the topic will be the "Microcomputer Revolution," and talks will cover microprocessors for generalpurpose computation, microcomputers, and solid-state mass memories. Session 7, on "Microprocessors: An Alternative to Random Logic Design," will explore field repair of microprocessor-based systems, a new and growing problem. And "Microprocessors in Instrumentation," Session 19, will focus on reports from the John Fluke Manufacturing Co., Tektronix Inc., Norland Instruments, and Hewlett-Packard Co. The papers will advise on why, where, and how to use microprocessors.

Test equipment and systems will also get a good share of the limelight. Standardization of automatic test equipment, a controversial topic these days, will be discussed in session 9 by a panel from the U.S. Navy, Army, and NASA. It will touch on hardware and software and the interface between various ATE systems.
"Test Generation Techniques for Digital Circuits, " Session 15, and "Diagnostic Techniques for Logic Circuit Boards," Session 21, will yield a total of eight papers with nuts-and-bolts information emphasizing the automation of fault diagnosis. Session 32, "Testing LSI Devices," will include a talk on charge-coupled devices. This is a rare opportunity to hear about testing CCDs, a subject heretofore largely ignored.

In communications, Session 10 will touch on international digital-transmission standards, new data-network viability, regulatory aspects of spectrum use, and packet switching. Analog and digital transmission systems will be covered in Session 8, including talks on a digital carrier subscriber system, a frequency-divisionmultiplex subscriber system, and a single-channel subscriber carrier.

Advances in computer technology are bringing on new storage devices like high-speed cache memories, solidstate drums, and very large stores. The technology of hierarchial storage systems will be presented in Session 20 by papers from Honeywell Information Systems Inc., IBM, Sperry Univac, and Digital Equipment Corp.

A panel discussion that's bound to provide verbal fireworks from speakers and audience alike is Session 6, concerning component specs and applications, entitled "What You Don't Know Can Hurt You." Viewpoints of users and suppliers in specifying, testing, and applying semiconductors and passive components will be heard. And attendees will get a chance to chime in about their particular problems.

The Technology Forecast and Assessment Project will sponsor two pre-Intercon forums, too. One will cover "Energy-View From the Year 2000,"-and the other will be a forecast of the future of components. Solidstate devices, electron tubes, power devices, and passive components will be discussed in the components forum.

Finally, the IEEE Educational Activities Board will sponsor four special-fee, one-day courses during Intercon week covering microprocessors, data processing, computer-interface standards, and computer networks. The admission price of $\$ 60$ for IEEE members or $\$ 75$ for non-members to any course includes registration to the show and technical sessions as well.

Recession alert

Like the industries its members serve, the IEEE is under pressure to cut costs. This comes at an awkward timewhen the rising number of unemployed and underemployed EEs is causing more and more concern.

IEEE membership has been increasing for the past two years, reaching 173,523 last December, compared with 168,000 the previous year. However, the rising costs and an expected drop in income from sources other than dues will squeeze this year's budget. Meanwhile, the institute's leadership has been criticized for such alleged extravagances as holding its Annual Assembly in Bermuda and for pushing ahead with plans to move into new administrative quarters in Piscataway, N.J.

To deal with the cost problem, the institute's executive committee has asked the general manager to study all expenses and programs with a sharp eye for savings. The main objective is to head off another increase in dues that would no doubt stir up more grumbling from members. At present, however, it appears that 1975 operations can break even without an increase. There is a pitfall in this, in that if more members become unemployed, and thereby be given a break on their dues, actual income will fall short of the projected figures.

Since the membership voted in November 1972 to amend the constitution permitting the institute to take up career-related projects, IEEE has become active in promoting the profession. As a result, employment problems are high on the institute's priority list this year. And while it is not yet certain that unemployed EEs will be as numerous as they were during the 1969-71 slump, the difference this time is that the insti-
tute has some machinery to bring into play in this regard, at least to find out how bad the problem is.

The IEEE has started making monthly surveys of members to get an idea of the number of eEs having employment problems. And, since merely collecting data seemed too lame an approach by itself, the IEEE executive committee decided in December to revive a program that was tried in 1972. It involves workshops set up at the grass-roots level. These have two objectives: first, to help out-of-work EEs overcome the psychological and procedural hurdles of looking for jobs, and second, to uncover job openings by word of mouth from other members.

The latter objective may be the more beneficial. As the new IEEE general manager, Herbert A. Schulke, puts it: "A key lesson learned in 1970-71 was the need to unearth engineering opportunities. Starting at the local level gets the best results. They [at the local level] know of the vacancies better than any national data bank. We want a kind of buddy system, where those with jobs help find opportunities for those unemployed."

President Stern sets goals

Since the IEEE has expanded its scope of activities into career matters, the role of the president has changed greatly from its previous ceremonial or honorary aspect. Yet there are limits imposed by the one-year term that cut into how much a president can accomplish. Arthur P. Stern, this year's IEEE president who is vice president and general manager of Magnavox Co.'s Advanced Products division, hopes to do something about this problem.

Stern feels that the institute needs greater continuity from year to year. "In these times, the environment is tough," he says. "Members are demanding more. So we can't afford a parade of people marching through, assuming responsibility at the beginning of the year and dropping it at the end. I will be actively engaged in developing ways to improve continuity."

His first objective will be to make sure that the chief operating officer is the general manager and to keep the staff free of interference in its daily operations from the policymakers on the executive committee. This will require "restraint on the part of the executive committee not to meddle," he emphasizes. Stern's second goal is to provide close cooperation with his successor to reduce the abruptness in the change of command next December.

Stern also feels that the IEEE does not need a second president-one for professional activities beside one for technical programs-as he now has help in the form of an executive vice president (a new position held this year by Joseph K. Dillard of Westinghouse Electric Corp.). While

Retrenching. H. A. Schulke, IEEE general manager (left), and A. P. Stern, president, have tough job of cutting costs when members are demanding more services. High on their priority list for this year is dealing with rising unemployment among members.

Stern plans to concentrate on career-related tasks, Dillard will emphasize the technical and educational side.

IEEE's constant gadfly

For the last few years a burden that goes with the IEEE president's job has been dealing with Irwin Feerst. An abrasive critic, Feerst is also a source of some constructive ideas. He's never been able to muster enough support to get on the presidential ballot, but Feerst often raises issues close to the heart of working eEs as he jousts with the established leadership.

This year Stern and the executive committee will be hearing from Feerst on three topics. One is to get the IEEE out of being an international organization and make it solely American. Feerst argues that the goals of a professional career-oriented organization cannot be met unless the predominantly American membership is the sole focus. This proposal ranks with the proverbial snowball in hell in the view of the present IEEE leaders.

Second, Feerst wants IEEE to set up a legal-defense fund to help EEs over 40 who have been fired or cannot get jobs because of age discrimination. He charges that middle-age engineers have often borne the brunt of layoffs in electronics companies, based on the attitude that younger graduates bring the latest technology at lower salaries than the veteran designers. This type of discrimination is more subtle than race or sex discrimination and is far more difficult to prove, Feerst says; therefore, EES ought to have a legal-aid fund.

His third cause is to establish stronger protection for the patent rights of EEs working for employers. Feerst believes that engineers should have contracts giving them more control over their patented products than in the past. It would be a means of establishing a stronger sense of professionalism among EEs, he argues.

C-MOS flip-flop can do more than logic tasks

The high impedance and threshold properties of the complementary-MOS flip-flop enable it to handle several unconventional jobs, such as pulse generation, duty-cycle modulation, and limit detection

by Thomas T. Yen, Statham Instruments Inc., Oxnard, Calif.The advantages of complementary-MOS logic-like high noise immunity, low power dissipation, and wide operating range-are well known by now. What may not be as well known is the versatility of the C-MOS flipflop. Because of its high threshold voltage and high input impedance, it can be made to perform tasks other than the logic applications for which it normally is intended. Its input impedance, which is on the order of 10^{12} ohms, means that source loading is never a problem, and its logic-high threshold level, which is typically about 45% of the supply voltage, permits very large time constants to be realized.

For example, the model 4013, a dual data-type flipflop with set/reset capability, can operate as a one-shot with an output-pulse width that can be adjusted over a 10,000: 1 range. The device can also be wired for use as a limit detector for sensing pulse rates, as a tempera-ture-level alarm, or as a go/no-go diode-leakage tester. Other possible applications include use as a duty-cycle modulator or as a pulse generator having an outputduty cycle adjustable over a wide range. If a second 4013-type flip-flop is used, the result can be a simple
pulse-rate discriminator or even a logic-controlled dutycycle modulator.

This sort of flexibility is not limited to the 4013-type flip-flop-other C-MOS flip-flops can also be used in a similar variety of circuits. A closer look at the applications just mentioned for the 4013-type device will help to illustrate how it's done.

As shown in Fig. 1, the 4013-type integrated circuit consists of two identical D-type flip-flops, each having independent data, clock, set, and reset inputs, as well as complementary outputs. It is intended for use as an R-S flip-flop, a toggle flip-flop, or a D-type flip-flop, as well as in shift-register or counter applications. As indicated by the unit's truth table (Fig. 1), the logic level present at either D input is transferred to the corresponding Q output during the positive-going transition of a clock pulse. Either flip-flop can be set or reset independently of the clock pulse by placing a logic high on either the set or reset line.

To wire this C-MOS IC as a one-shot, an RC network is connected to the Q1 output with a feedback path to the R1 input, as shown in Fig. 2. When a trigger pulse is ap-

TRUTH TABLE					
CLK	D	R	S	0	$\overline{0}$
	0	0	0	0	1
	1	0	0	1	0
	X	0	0	N0 CHANGE	NO CHANGE
X	X	1	0	0	1
X	X	0	1	1	0
X	X	1	1	1	1
	$\mathrm{X}=$ DON'T CARE				

[^3]plied to the S1 input, the output will be a pulse having a width (T) of approximately 0.66 RC second. Because of the flip-flop's high input impedance, the maximum value of resistor R can be as high as 10 megohms. The resistor's minimum value, on the other hand, is limited by the flip-flop's maximum output current capability. Typically, resistor R can be as low as 20 kilohms. Just by varying the value of resistor R, then, the output pulse width of this one-shot can be adjusted over at least a $500: 1$ range.

The lower limit of capacitor C is determined by the flip-flop's minimum reset pulse width, which is about 125 nanoseconds. When the capacitor is discharged, its voltage should remain higher than the flip-flop's reset threshold voltage for a very short time. This duration is the minimum reset pulse width. A typical value of capacitor C is 0.033 microfarad. When the triggering frequency is low, capacitor C can be quite large, provided that its discharge current does not exceed the flip-flop's maximum output drive current. The diode in the circuit ensures that the capacitor discharges quickly.

If the values of both resistor R and capacitor C are varied, the output pulse width of the one-shot can generally be adjusted over about a $10,000: 1$ range. When the triggering pulse to the Sl input is longer than 0.66 RC, the output voltage will stay high as long as the trigger voltage remains high. The one-shot can be reset by applying a voltage to the flip-flop's CLK1 input, instead of returning this pin to ground as shown in the diagram.

Building detector circuits

If the 4013-type flip-flop is wired as shown in Fig. 3(a), the device becomes a multifunction limit detector. Here, input D1 and output Q1 are tied together and then run to the S2 input. The clock inputs, CLK 1 and CLK2, are triggered simultaneously by the same train of narrow pulses. Part of the flip-flop remains wired for one-shot operation, as illustrated in Fig. 2.

The circuit can be used as a pulserate limit detector. When the period between input pulses (T_{0}) becomes equal to or less than the one-shot's timing period (T_{1}), outputs Q2 and $\overline{\mathrm{Q}}$ 2 will change state, producing an output pulse for every other input pulse. As long as this input off-time period is greater than the one-shot's period, output Q 2 will remain high, and output $\overline{\mathrm{Q} 2}$ will remain low. The period of the one-shot is approximately equal to $0.66 \mathrm{RC}_{1}$.

Capacitor C_{2} delays the pulse to the S2 input so that the pulses to the CLK2 terminal are not overridden. Increasing the value of this capacitor, which is typically $0.0068 \mu \mathrm{~F}$, not only widens the circuit's output pulses, but also introduces a small amount of hysteresis around the cir-

2. One-shot hookup. Only one of the flip-flops in the 4013 type is needed to realize a monostable multivibrator. Because both resistor R and capacitor C can have a wide range of values, the output-pulse width of this one-shot can be varied over a 10,000:1 range.

3. As a detector. The 4013 -type flip-flop can also operate as a limit detector. In (a), output pulses are produced at Q2 and $\overline{Q 2}$ when the input pulse off-time is less than the one-shot's period ($T_{1}=R C_{1}$). If resistance R is a thermistor or a photocell, the circuit will perform as an ambient-level alam. Adding a second 4013 type, as in (b), creates a simple pulse-rate discriminator whose output is synchronized with the input and has the same period.
cuit's detection point. (Depending on the application, this hysteresis may or may not be desirable.)

In addition to being used as a pulse-rate detector, the circuit can be adapted for other applications. Since resistance R can have a wide range of values, a resistive element, such as a thermistor or a photocell, can be substituted for a resistor. If the input pulse rate is kept constant and resistance R varies instead, the circuit can function as an ambient-level alarm for sensing temperature or light. When the preset ambient level is exceeded, an output-pulse train will be produced.

The circuit can also be part of an automatic control system. Suppose, for example, that the input-pulse rate corresponds to motor speed. Suppose also that resistance R is a temperature-sensitive element. In this arrangement the circuit can be used to lower the limit of a

motor overspeed alarm on a hot summer day.
Resistance R in the one-shot's timing network can be eliminated altogether, leaving only the diode and capacitor C_{1}. Here the output-pulse width is determined by the diode's leakage current, which is an exponential function of the ambient temperature. At a controlled temperature, the circuit can be used as a go/no-go tester for diode leakage. It can also operate as a temperaturelevel alarm. And if a photodiode is substituted for the junction diode, the circuit can become a light-level alarm or a dark-current tester for photodiodes.

There are also medical applications for this detector circuit. For instance, with appropriate modification, it can be operated as a tachycardia detector for monitoring heart beat.
By adding a second flip-flop to the circuit of Fig. 3(a), as in Fig. 3(b), a pulse-rate discriminator is realized. When the input period is less than the one-shot period, the $\overline{\mathrm{Q} 2}$ output of the left-hand flip-flopgenerates pulses at every other input pulse, while the $\overline{\mathrm{Q}} 2$ output of the right-hand flip-flop produces pulses for those inputs missed by the left-hand flip-flop.

The OR gate at the output of the circuit remains inhibited until the input-threshold frequency is reached. Once this happens, the gate will produce a pulse train that has the same period as the input signal and that is synchronized with the input. Because the discriminator circuit operates in real time, its response has an unusually sharp cutoff, but practically no delay.

Generating pulses and modulating duty cycle

Another application for the 4013 flip-flop is as a pulse generator, as in Fig. 4(a). Different time constants are introduced into the device's set and reset lines. Resistor R_{A} and capacitor C_{A} control the delay from the Q1 output to the Rl input, while resistor R_{B} and capacitor C_{B} determine the delay between the $\overline{\mathrm{QI}}$ output and the Sl input.

The circuit's output will be a square wave having an on-time $\left(\mathrm{T}_{\mathrm{A}}\right)$ of approximately $0.66 \mathrm{R}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}$ and an offtime $\left(T_{B}\right)$ of about $0.66 R_{B} C_{B}$. The output pulse frequency is simply $1 /\left(T_{A}+T_{B}\right)$. Since T_{A} and T_{B} can be adjusted separately, the circuit's output duty cycle can be varied over nearly a full 100% range. The values of the timing resistors and capacitors have the same limitations as those for the one-shot circuit of Fig. 2. Again, the diodes assure fast capacitor discharge.

This simple pulse generator can be made to produce delayed trigger pulses by utilizing the other half of the 4013-type flip-flop, as shown in Fig. 4(b). Additionally, the on-time of the pulse generator can be extended.

With the switch in the TRIGGER position, the QI output will remain high for a period (T_{A}) of approximately $0.66 \mathrm{R}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}$ seconds. This signal activates the S 2 line so that Q2 goes high and resets Q1. The Q2 output stays high for a period $\left(T_{C}\right)$ of about $0.66 \mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}$ second, and the Ql output stays low for a period $\left(\mathrm{T}_{\mathrm{B}}\right)$ of around
4. Generating pulses. Half of the 4013-type flip-flop can be wired as a pulse generator (a) having an output duty cycle that can be adjusted over a wide range. By using both halves of the flip-flop, it can be made to produce a delayed trigger pulse, as in (b).
$0.66 \mathrm{R}_{\mathrm{B}} \mathrm{C}_{\mathrm{B}}$ second. The cycle repeats after the T_{B} period is complete.
With the switch in the EXTEND position, the Q1 output remains high for a period of $T_{A}+T_{C}$ before it is reset. The Q2 output again goes high at the end of the T_{A} period until T_{C} seconds have passed. Then the off-time period of T_{B} begins. The position of the switch, therefore, determines whether the delayed pulse at Q2 is within the on-time frame of the Q1 pulse or occurs immediately after the Q1 pulse.
A variation of this delayed trigger-pulse circuit enables a single 4013-type flip-flop to perform as a dutycycle modulator, as in Fig. 5(a). When D1 is low, the circuit behaves exactly like the one of Fig. 4(b) with the switch in the TRIGGER positionnamely, the output at Q1 will be high for T_{A} seconds and low for T_{B} seconds. However, if T_{B} is greater than T_{C} and Dl is high, the on-time of the Q1 output will still be T_{A}, but the Q1 off-time will be T_{C} because of the feedback path between $\overline{\text { Q2 }}$ and CLK 1 .
The circuit, therefore, can be used to modulate the duty cycle of the control signal at Dl. The off-time of the output will be alternated between T_{B} and T_{C}, and the ratio of T_{B} to T_{C} can be very large. Capacitor C_{1}, which is typically 150 picofarads, is needed to delay the pulse to CLK1 so that the reset signal does not override the clock signal.
With a second flip-flop package, a more complex duty-cycle modulator can be built. In the circuit of Fig. 5(b), the control signal is applied to the D1 terminal of the left-hand flip-flop. The on-time of the output waveform remains unchanged at T_{A} seconds, but the off-time depends on the voltage level present at the LOGIC IN data terminals of the flipflops when the Q1 output is reset.
If the D2 data input of the lefthand flip-flop and both data inputs of the right-hand flip-flop are all grounded, the off-time will be T_{B} seconds. Placing a logic high on the D2 input of the left-hand flip-flop produces an off-time of T_{C} seconds. Similarly, a logic high on either the D1 or D2 input of the right-hand flip-flop gives an off-time, respectively, of either T_{D} or T_{E} seconds. The circuit, therefore, performs as a logic-controlled duty-cycle modulator.

Other C-MOS flip-flops

As this article has demonstrated, the 4013-type C-mos flip-flop can be
used to implement low-power pulse circuits with relative simplicity. The device's four input terminals-data, clock, set, and reset-in addition to its high input impedance and threshold voltage levels, permit its inputs and outputs to be connected in a variety of ways.

The 4027-type C-mOs flip-flop, a dual J-K device having set/reset capability, offers even greater flexibility than the 4013 type because its J and K logic inputs are additional controls over the clock input. Another versatile C-mOS flip-flop is the 4043 -type quad R-S unit. With this, it is possible to build a low-power wide-range fourstage ring counter, in which all four timing periods can be adjusted individually over a broad range by simply varying resistor and capacitor values.

5. Modulating duty cycle. A single 4013-type flip-flop can be wired as a duty-cycle modulator (a). With two flip-flops, a logic-controlled modulator (b) can be built. Here, the off-time of the output depends on the logic level present at the three LOGIC IN ports. The output ontime is the same for both of these circuits.

Solid-state temperature sensor outperforms previous transducers

Temperature detector profits from linear heat sensitivity of a transistor's base-emitter voltage; the result is a low-cost package with a stable, accurate output that needs no amplification

by Robert A. Ruehle, Relco Products Inc., Denver, Colo.Although the inexpensive silicon transducer has become available to industry only in the past year or so, the military has used it for nearly 10 years. It has traveled aboard scientific satellites and high-altitude balloons, survived the steam and hot water of an active volcano, and dived into the ocean to measure temperatures in an underseas habitat.

Until the past couple of years, the costs of the highquality components required for the silicon transducer

1. Solid-state transducer. A self-adjusting bridge circuit holds base current constant; the base current, in turn, keeps the collector current constant. As a result, the emitter-base voltage is a linear function with respect to temperature.
have been so high that the device was impractical for the commercial market, which could be served by cheaper, existing transducers. What's more, the military until recently bought most of the output from the manufacturers that were making the unit.

But now the new transducer, which can be purchased for about $\$ 15$, is being built into instruments-among them a digital thermometer. Although this transducer outperforms traditional temperature-measurement devices, its temperature range is limited to a range of $-100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. Its most notable characteristic is its large and highly linear output, adjustable from 10 millivolts per degree celsius to $360 \mathrm{mv} /{ }^{\circ} \mathrm{C}$. Measurements made with the instrument are highly accurate, and the output remains exceptionally stable for long periods.

Good sensitivity and a wide range of temperatures have been offered for many years by thermocouples, thermistors, and resistance-temperature devices. However, the thermocouple requires cold-junction temperature compensation, the thermistor is extremely nonlinear, and the RTD is relatively expensive.

The silicon temperature transducer takes advantage of the characteristic that a transistor's base-emitter volt-

2. Linear output. Nonlinear portion of transfer function becomes negligible at higher outputs. And between 1 and 5 volts, output deviates from straight line by less than $\pm 0.1 \%$. The value of constants in transfer function depends on the specific transistor used.

3. Temperature transducer. Units come in a variety of sizes, shapes, and housings to fit the application.

4. Digital thermometer. Adjustment of potentiometer and internal gain of digital panel meter in (a) trims out manufacturing variations in slope and zero-intercept. Where it is not practical to adjust the DPM's gain to trim system sensitivity, the circuit in (b) can be used.
age varies directly with temperature. In a transistor, the collector current, I, is proportional to the emitter current, I_{e}.

$$
\begin{equation*}
-I_{\mathrm{c}}=\gamma I_{\mathrm{e}}-I_{\mathrm{co}} \tag{1}
\end{equation*}
$$

where the constant γ is the short-circuit forward-transfer ratio, and $I_{c o}$ is the collector reverse current. The emitter current, in turn, is proportional to the emitter's reverse current I_{eo}, the absolute temperature, T , and the emitter-base forward-bias voltage, V_{eb}. This relationship is shown by the equation

$$
\begin{equation*}
I_{\mathrm{e}}=I_{\mathrm{eo} 0}\left(e^{\mathrm{q} \mathrm{~V}_{\mathrm{eb}} / \mathrm{nKT}}-1\right) \tag{2}
\end{equation*}
$$

where q is. the electronic charge, n is a number ranging from 1 to 2, and K represents the Boltzman constant.

Taking the logarithm of Eq. 2 and rearranging the result yields

$$
\begin{equation*}
V_{\mathrm{eb}}=\frac{n K}{q} \ln \left[\frac{I_{\mathrm{e}}+I_{\mathrm{eo}}}{I_{\mathrm{eo}}}\right] T \tag{3}
\end{equation*}
$$

If the emitter current is held constant, the term in brackets becomes a constant, and the emitter-base voltage becomes a linear function of temperature. As a result, theoretically, a transistor can serve as a linear precision temperature transducer.

Applying the theory

Although this phenomenon of the transistor's emitterbase voltage to vary linearly with temperature has been known for some time, its application hasn't been practical because the proportional relationship between temperature and voltage differs from one transistor to the next. Within a production run, the V_{be} for a particular temperature may vary as much as $\pm 100 \mathrm{mv}$. To factor out this variation, a self-adjusting bridge circuit with negative feedback has been developed (Fig. 1). In this circuit

$$
\begin{equation*}
V_{\mathrm{AB}}=V_{\mathrm{AD}}+V_{\mathrm{DB}} \tag{4}
\end{equation*}
$$

Now the voltage drop between the emitter and base of transistor Q can be considered to be made up of three parts.

$$
\begin{equation*}
V_{\mathrm{DB}}^{\prime}=V_{\mathrm{eb}}+i_{\mathrm{e}} r_{\mathrm{e}}+i_{\mathrm{b}} r_{\mathrm{b}} \tag{5}
\end{equation*}
$$

where V_{eb} is the emitter-base forward bias, i_{e} is the emitter current, r_{e} is the emitter resistance, i_{b} is the base current, and r_{b} is the base resistance.

Combining equations 4 and 5 produces

$$
\begin{equation*}
V_{\mathrm{AB}}=V_{\mathrm{AD}}+V_{\mathrm{eb}}+i_{\mathrm{e}} r_{\mathrm{e}}+i_{\mathrm{b}} r_{\mathrm{b}} \tag{6}
\end{equation*}
$$

Since the base and emitter currents of a transistor are related by a constant of proportionality β

$$
\begin{equation*}
i_{\mathrm{e}}=(l+\beta) i_{\mathrm{b}} \tag{7}
\end{equation*}
$$

where β is termed the forward-current-transfer ratio or amplification factor and

$$
\begin{equation*}
\beta=i_{\mathrm{c}} / i_{\mathrm{b}} \tag{8}
\end{equation*}
$$

Eq. 7 can be substituted into Eq. 6 to yield

$$
\begin{equation*}
V_{\mathrm{AB}}=V_{\mathrm{AD}}+V_{\mathrm{eb}}+i_{\mathrm{b}}\left[(1+\beta) r_{\mathrm{e}}+r_{\mathrm{b}}\right] \tag{9}
\end{equation*}
$$

By definition, the term inside the brackets is the emit-

5. Sensitlve unlt. A remotely located 2 N 2484 serves as the temperature-sensing element. To eliminate collector-base leakage current, the collector-base voltage is adjusted to zero with the linearity potentiometer; the sensitivity pot adjusts circuit gain. Linearity is typically within $\pm 0.05 \%$. If better linearity is required, the open-loop gain must be increased by using an amplifier with a higher gain feedback.
ter-base resistance, r_{eb}; therefore, Eq. 9 can be expressed as

$$
\begin{equation*}
V_{\mathrm{AB}}=V_{\mathrm{AD}}+V_{\mathrm{eb}}+i_{\mathrm{b}} r_{\mathrm{eb}} \tag{10}
\end{equation*}
$$

The circuit is set up initially at some operating point so that any change in the collector current appears greatly amplified as the current, i_{A} through the resistor, R. And any change in $V_{A B}$ is accompanied by an equivalent change in $\mathrm{V}_{\mathrm{AD}} . \mathrm{V}_{\mathrm{AB}}$ is constant for a constant supply voltage and fixed values of R_{1}, R_{2}, R_{3}, and R_{4}, so that

$$
\begin{equation*}
\Delta V_{\mathrm{DB}}=\Delta i_{\mathrm{b}} r_{\mathrm{eb}}+\Delta V_{\mathrm{eb}} \tag{11}
\end{equation*}
$$

Since the operation of the circuit is based on maintaining the transistor current at a constant level, Eq. 11 reduces to

$$
\Delta V_{\mathrm{DB}}=\Delta V_{\mathrm{eb}}
$$

Further mathematical manipulation can show that the change in the current i_{A} is proportional to $\Delta V_{\text {eb }}$. By making the output voltage of the amplifier, Q_{A}, equal to the change in i_{A}, the output of the transducer can be expressed as

$$
V_{\text {OUT }}=M G T
$$

where M is a constant equal to the value in the brackets of Eq. 3 and G is a constant determined by the closed loop gain of the circuit. This equation shows that it is,
indeed, possible to obtain a linear voltage signal proportional to temperature by using a transistor operated under constant-current conditions.

Experimental results

Tests made on several hundred silicon temperature transducers fabricated in various configurations have verified that the transfer function can be expressed by the equation

$$
V_{\text {OUT }}=A T+B+C e^{-\alpha(T-T o)}
$$

where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and α are constants and T is equal to or greater than T_{0}.

Figure 2 graphs the output of a typical transducer at various temperatures, along with its transfer function. While the mathematical analysis assumes that the closed-loop gain is much greater than unity, this is not true at very low output voltages.

A drop in the open-loop gain initially causes a small nonlinearity to appear in the output. This nonlinearity becomes negligible at higher outputs, and between 1 to 5 volts, the output deviates from a straight line by less than $\pm 0.1 \%$.

At first, all transducers were built for temperaturetelemetry applications where an output of 0 to 5 V was typically required. As shown in Fig. 3, these transducers are built in a variety of sizes, shapes, and housings to fit the applications for which they were designed.

COMPARING TEMPERATURE TRANSDUCERS					
Type of transducer	Range	Nonlinearity (\% of span) (Note 1)	Long-term stability (Note 2)	Sensitivity	30-day accuracy $1^{\circ} \mathrm{C}$ absolute) (Note 3)
Transistor temperature transducer (Fig. 5)	$\begin{aligned} & -100 \text { to }+150^{\circ} \mathrm{C} \\ & -150 \text { to }+300^{\circ} \mathrm{F} \end{aligned}$	± 0.05	$\pm 0.1^{\circ} \mathrm{C}$	Adjustable from less than $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to $360 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	± 0.1
Platinum RTD (100-ohm ice point)	$\begin{aligned} & -200 \text { to }+600^{\circ} \mathrm{C} \\ & -330 \text { to }+1,100^{\circ} \mathrm{F} \end{aligned}$	± 0.5	$\pm 0.1^{\circ} \mathrm{C}$	$0.4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (1 mA through sensor)	± 0.1
Thermistor composite (dual thermistor)	$\begin{aligned} & -55 \text { to }+85^{\circ} \mathrm{C} \\ & -70 \text { to }+185^{\circ} \mathrm{F} \end{aligned}$	± 0.8	$\pm 0.1^{\circ} \mathrm{C}$	Adjustable to $20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ max	± 0.15
Silicon diode	$\begin{aligned} & -100 \text { to }+150^{\circ} \mathrm{C} \\ & -150 \text { to }+300^{\circ} \mathrm{F} \end{aligned}$	± 1.0	$\pm 0.1^{\circ} \mathrm{C}$	$2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	± 0.5
Iron-constantan thermocouple	$\begin{aligned} & -200 \text { to }+750^{\circ} \mathrm{C} \\ & -330 \text { to }+1,400^{\circ} \mathrm{F} \end{aligned}$	± 2.0	$\pm 1.0^{\circ} \mathrm{C}$	$0.05 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	± 1.2
National Semiconductor Model LX5700 (Note 4)	$\begin{aligned} & -55 \text { to }+125^{\circ} \mathrm{C} \\ & -70 \text { to }+257^{\circ} \mathrm{F} \end{aligned}$	± 1.0	$\pm 0.2^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ nominal	± 3.8
1. Nonlinearity is specified for the span, which is the lesser of either the range or -100 to $+150^{\circ} \mathrm{C}$. 2. Data on IC thermocouple is estimated from limits of error given in ISA Standard C96.1, together with stability data on commonly used reference junctions. 3. Accuracy figures are based on using external signal-conditioning and readout electronics having approximately equal cost. Self-heating error is included for each device 4. Data taken from National Semiconductor data sheet dated August 1974. Accuracy figure includes uncertainty caused by self-heating device, which is $2^{\circ} \mathrm{C}$ minimum, but does not include errors from reference drift and amplifier instability.					

Recently, a number of requirements have been met by a standardized version of the aerospace design.

One of these applications was a low-cost precision digital thermometer with a slope of $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ and an intercept of +2 v at $0^{\circ} \mathrm{C}$. A digital panel voltmeter connected to the transducer output as shown in Fig. 4(a) is calibrated so that the display changes one unit for every 10 mv change at the input so that temperature can be read directly to within $\pm 0.1^{\circ} \mathrm{C}$.

To calibrate the DPM, the temperature is held at $0^{\circ} \mathrm{C}$ while the potentiometer is adjusted until the display reads zero. This trims out the manufacturing tolerances on the zero intercept. To trim out the manufacturing tolerance on the slope, the temperature is raised to $100^{\circ} \mathrm{C}$, and the gain of the DPM is adjusted until the display reads 100.0 .

In applications where it is not practical to adjust the gain of the digital panel meter to trim system sensitivity, the circuit of Fig. 4(b) can be used. Here a buffer amplifier at the transducer output and a 2 -kilohm potentiometer correct system sensitivity to yield 10 millivolts per degree at points A and B.

The circuits in (a) and (b) both require a regulated voltage source, divider networks, buffer amplifiers, and trimming potentiometers, together with a transducer and readout. All these items have been combined into a single instrument that operates off either ac line power or internal batteries.

Figure 5 is a schematic diagram of one version of the new transducer. This design uses a remotely located 2N2484 as the temperature sensor. As was pointed out in the theory of operation, the circuit maintains a constant base current in the sensing transistor in order to obtain a linear output signal proportional to tempera-

Comparing transducers

Another version of the solid-state temperature transducer can be seen in the LX5600 and the LX5700 from National Semiconductor [Electronics, Nov. 14, 1974, p. 130]. These units exploit the temperature sensitivity of the emitter-base voltage, but in an entirely different manner from Relco's device. National uses a pair of matched transistors operating at different collector currents. The difference in their baseemitter voltages can be shown to be proportional to the absolute temperature of the transistors and to the natural logarithm of the ratio of their collector currents.

Since the National unit is packaged as one IC, a self-heating error amounts to several degrees. Relco uses discrete components to reduce self-heating and also mounts the temperature-sensing transistor away from the amplifying circuit. -Margaret Maas
ture. To do this, the collector-base leakage current must be eliminated from the collector circuit. This is accomplished by adjusting the collector-base voltage to zero with the linearity potentiometer. The sensitivity potentiometer is used to adjust the circuit gain for an output signal sensitivity of $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$. The linearity of the circuit is typically $\pm .05 \%$. If better linearity is required, the open-loop gain must be increased by substituting a higher gain feedback amplifier, such as the type AD508.

The table, which compares the transistor temperature transducer with other common methods of measuring temperature, shows that the circuit of Fig. 1 provides the best performance within it's range of operation. This new transducer system is also the most economical.

When your hybrid designs call for semiconductor chips, your first choice should be Solitron. We have an immediate supply of chips for power transistors, planar diodes and field effect transistors. You can order individually tested silicon chips. Complete wafers. Chip on molytab with ultrasonically bonded aluminum leads. Just about everything you need to build your own hybrids.
Solitron offers epitaxial, triple-diffused and single-diffused mesa dice, including a full line of NPN/PNP complementary devices, and planar power Darlington transistors. Our capabilities can meet design requirements up to currents of 200
amps, gains of 10,000 and reverse breakdown voltages of 1,000 volts.
The very latest state-of-the-art technology combined with exhaustive qualification testing guarantees the quality and reliability of Solitron chips. For example, our dice are 100% tested to meet the rating of the die either in chip or wafer form.
Solitron engineers are also available to assist you with your hybrid circuit designs.

Today, contact Joe Bilger, our Marketing Manager. He'll immediately send you a free copy of Solitron's new Semiconductor Chip Catalog.

RIVIERA BEACH, FLA. 33404
1177 Blue Heron Blvd.
Hi-Rel Power Transistors (Silicon)
Industrial/Commercial Power Transistors Power Tr
(Silicon)
Power Hybrids
Custom Hybrids
Schottky \& Planar Diodes Semiconductor Die (Silicon)

TAPPAN, N.Y. 10983 256 Oak Tree Road Diodes \& Rectifiers Zeners
High Voltage Assemblies Power Rectifiers Thick Film Hybrid Circuits

Now You Can Record Data On 70mm Film From 4600 Line CRT With CELCO's DSC-III

 Photo Recorder.Everything you need for data recording is here for you to start producing high-resolution photographs on 70 mm film. Right now! Our Photo Recorder is fully integrated to accept digital and/or analogue inputs. All the necessary power supplies, electronics, and logic are included to operate this self-contained system.

The CELCO digitally controlled camera includes transport drive, lens, shutter and photomultiplier assembly which can be directly interfaced to TTL control lines from a computer. Film transport speeds are available from one second per frame, and faster. Unique camera optics of the CELCO camera accomodates a variety of film transports and magazines.

THE CELCO DSC-III 70mm photo recorder provides new flexibility for diverse applications. Satellite "Quick Look" monitors for immediate recording or ERTS photos. Complete systems for Large-Format Scanning ('"MASTERSCAN") to digitize photos, letter masters and x-rays can be recorded on this 70 mm Photo Recorder for hard copy and/or digital storage and retrieval.

Operate on digital data obtained in biological experiments from a scanning CRT microscope or other method for hard copy selective storage and retrieval.
If you have a data recording application, write or call CELCO today for more information on how you can start producing your own high-resolution photographs on 70 mm film.

CONSTANTINE ENGINEERING LABS CO.

Engineer's notebook

Multiplying factors correct power for ac waveforms

by William D. Kraengel, Jr.
Valley Stream, N. Y.

The growing use of waveform generators, voltage-controlled oscillators, and multivibrators as signal sources means that engineers often have to measure currents and voltages in the form of rectangular, triangular, or sawtooth waves or pulse trains. (Conversion factors for voltmeter measurements on such waveforms were tabulated in Electronics, Aug. 30, 1973, p. 104.) The average power that one of these waveforms dissipates in a resistor (R) over an integral number of cycles is given by the root-mean-square voltage across the resistor ($\mathrm{V}_{\mathrm{rms}}$), the rms current through the resistor ($\mathrm{I}_{\mathrm{rms}}$), or both:

$$
\begin{aligned}
P & =V_{\mathrm{rms}} I_{\mathrm{rms}} \\
& =V_{\mathrm{rms}} 2 / R \\
& =I_{\mathrm{rms}}{ }^{2} R
\end{aligned}
$$

If measurements are made with meters that give true rms readings, the correct value for power can be calculated from the equations given above. But if the response of the ammeter or voltmeter is not truly rms, power values must be calculated from equations that contain a factor to correct for the meter response:

$$
\begin{aligned}
P & =\left(V_{\mathrm{m}} I_{\mathrm{m}}\right) \times M \\
& =\left(V_{\mathrm{m}}{ }^{2} / R\right) \times M \\
& =\left(I_{\mathrm{m}}^{2} R\right) \times M
\end{aligned}
$$

In these equations, V_{m} and I_{m} are voltage and current values shown by the meters, and M is a multiplier that provides the correct value for power. Thus M is a combination of the conversion factor for meter response and the form factor for the waveform. Multiplier M is dimensionless.

The accompanying table shows values of M for various waveforms and various meters. For example, if a sawtooth voltage across a resistor is measured with a meter that responds to average voltage and is calibrated to rms for sine waves, then the power dissipated in the resistor is given by

$$
P=\left(V_{\mathrm{m}}^{2} / R\right) \times\left(32 / 3 \pi^{2}\right)
$$

For meters with a true rms response, M is always 1 , so no column for true rms is included in the table.

If power is found from readings of both current and voltage meters, and the two meters have different responses, the power must be calculated from

$$
P=V_{\mathrm{m}} I_{\mathrm{m}}\left(M_{\mathrm{V}} M_{\mathrm{I}}\right)^{1 / 2}
$$

where M_{v} is the multiplier in the table that corresponds to the voltmeter response, and M_{I} is the multiplier that

corresponds to the ammeter used in the measurement.
The accuracy of some of these correction factors depends on how nearly the actual waveform approaches the ideal. Also, most ac meters do not give accurate
readings for frequencies below 10 or 20 hertz, and they do not give any indication for dc. Thus the full-waverectified square wave may produce zero readings, depending upon the meter used.

HP-45 calculator speeds rf amplifier design

by William J. Martin
Motorola Communications Division, Fort Lauderdale, Fla.

Important characteristics of an rf transistor amplifier can be evaluated quickly from the two-port scattering parameters of the transistor by using a Hewlett-Packard HP-45 scientific calculator. The calculations of stability, gain, and matching impedances use special programs for handling the complex terms in the amplifier analysis on the HP-45.

In using these programs, the designer should enter his data exactly as shown in the left-hand column and key it as shown in the center column. The result will appear as shown in the right-hand column after the last key in the center column is pressed.

The design of a 500 -megahertz amplifier is carried through here to illustrate the procedure. This amplifier uses a Fairchild 2N2857 transistor with $\mathrm{V}_{\mathrm{CE}}=10$ volts and $I_{C}=2$ milliamperes; manufacturer's data give the S parameters in polar form (R, θ) as

$$
\begin{aligned}
& S_{11}=0.394 \angle-158.7^{\circ} \\
& S_{12}=0.048 \angle / \frac{63.5^{\circ}}{} \\
& S_{21}=2.084 / 79.2^{\circ} \\
& S_{22}=0.816 \angle-20.4^{\circ}
\end{aligned}
$$

The first step is to determine whether the transistor is stable under the given operating conditions. Calculation of the stability factor, K , requires complex quantity Δ, given by

$$
\Delta=S_{11} S_{22}-S_{12} S_{21}
$$

The program for obtaining Δ on an HP-45 calculator is as follows

$\mathrm{S}_{11 \theta}$	\uparrow
$\mathrm{~S}_{22 \theta}$	+
$\mathrm{S}_{11 \mathrm{R}}$	\uparrow
$\mathrm{S}_{22 \mathrm{R}}$	$\times, \rightarrow \mathrm{R}, \Sigma+$
$\mathrm{S}_{12 \theta}$	\uparrow
$\mathrm{~S}_{21 \theta}$	+
$\mathrm{S}_{12 \mathrm{R}}$	\uparrow
$\mathrm{S}_{21 \mathrm{R}}$	$\mathrm{X}, \rightarrow \mathrm{R}, \Sigma-$,
	$\mathrm{RCL} \mathrm{\Sigma}, \rightarrow \mathrm{P}$
	\leftrightarrow

With the S parameters given above, this program yields

$$
\Delta=0.251 \quad-164.8^{\circ}
$$

Stability factor K is readily calculated from

$$
\mathrm{K}=\frac{l+|\Delta|^{2}-\left|\mathrm{S}_{11}\right|^{2}-\left|\mathrm{S}_{22}\right|^{2}}{2\left|\mathrm{~S}_{21} \mathrm{~S}_{12}\right|}=1.208
$$

Because K has a positive value greater than unity, and S_{11} and S_{22} are less than unity, the 2 N 2857 is unconditionally stable; i.e., no source or load reflection coefficients exist that can cause instability. If the 2 N 2857 had not satisfied the stability criteria, the calculations would have been repeated for other transistors until a stable device was found.

To achieve the maximum possible power gain from this amplifier, the source and load impedances must be conjugately matched to the transistor. Therefore the next step in the amplifier design is to find these impedances. First a complex quantity, C_{1}, must be found. It is given by

$$
C_{1}=S_{11}-\Delta S_{22} *
$$

(The asterisk indicates a complex conjugate.) The HP-45 routine for C_{1} is

S_{11}	\uparrow
$\mathrm{~S}_{11 \mathrm{R}}$	$\rightarrow \mathrm{R}, \Sigma+$
Δ_{θ}	\uparrow
$\mathrm{S}_{22 \theta}$	$\mathrm{CHS},+$
Δ_{R}	$\uparrow \downarrow$
$\mathrm{S}_{22 \mathrm{R}}$	$\mathrm{X}, \rightarrow \mathrm{R}, \Sigma \rightarrow$
	$\mathrm{RCL} \mathrm{\Sigma}, \mathrm{\rightarrow P}$

In this example, the value of C_{1} is

$$
C_{1}=0.202 \quad \angle-173.2^{\circ}
$$

Another necessary quantity is B_{1}, given by

$$
B_{1}=1+\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}-|\Delta|^{2}=0.427
$$

The input reflection coefficient ρ_{MS} that is required to conjugately match the transistor is

$$
\rho_{\mathrm{MS}}=C_{1} *\left[\frac{B_{1} \pm\left(B_{1}^{2}-\left.\left.4\right|_{C_{1}}\right|^{2}\right)^{1 / 2}}{2\left|C_{1}\right|^{2}}\right]
$$

The plus sign is used before the radical if B_{1} is negative. The minus sign is used if B_{1} is positive (as in this example). The value of ρ_{MS} here is

$$
\rho_{\mathrm{MS}}=0.719 \angle 173.2^{\circ}
$$

To compute the output reflection coefficient that is re-
quired to conjugately match the output of the transistor, complex quantity C_{2} must be found.

$$
C_{2}=S_{22}-\Delta S_{11} *
$$

The HP-45 routine for C_{2} is completely analagous to that for C_{1} and yields

$$
C_{2}=0.721 \angle-22.3^{\circ}
$$

Quantity B_{2} is also required. It is given by

$$
B_{2}=1+\left|\mathrm{S}_{22}\right|^{2}-\left|\mathrm{S}_{11}\right|^{2}-|\Delta|^{2}=1.448
$$

The output reflection coefficient ρ_{ML} for conjugate match to the transistor is

$$
\rho_{\mathrm{ML}}=C_{2} *\left[\frac{B_{2} \pm\left(B_{2}^{2}-4\left|C_{2}\right|^{2}\right)^{1 / 2}}{2\left|C_{2}\right|^{2}}\right]
$$

The plus sign is used for negative values of B_{2}, and the minus sign for positive values of B_{2}. Here

$$
\rho_{\mathrm{ML}}=0.910 \angle 22.3^{\circ}
$$

Reflection coefficients ρ_{MS} and ρ_{ML} can be converted to
Matched clrcult. Source and load impedances shown produce maximum possible power gain (13.6 dB) from 2N2857 operating at 500 MHz with $\mathrm{V}_{\mathrm{CE}}=10$ volts and $\mathrm{I}_{\mathrm{c}}=2$ milliamperes. Calculations of impedances and gain, as well as verification of amplifier stability, require only transistor S parameters and HP-45 scientific calculator.

source and load impedances, respectively, by a graphical method (plotting on a Smith chart) or by the following HP-45 routine, which gives polar, series, and parallel forms for the impedance.

The results, in series form, for this example are

$$
\begin{aligned}
& Z_{\text {source }}=(8.19+j 2.91) \text { ohms } \\
& Z_{\text {load }}=(59.23+j 239.15) \text { ohms }
\end{aligned}
$$

Thus, the circuit shown in the accompanying diagram provides maximum possible power gain from this amplifier at the given values of frequency, voltage, and current.

The final step in the design analysis is to calculate the value of this maximum possible power gain. It is given in decibels as

$$
G_{\max }=\frac{\mid S_{21}!}{\left|S_{12}\right|}\left|K \pm\left(K^{2}-1\right)^{1 / 2}\right|
$$

The plus sign is used in front of the radical if B_{1} is negative. The minus sign is used if B_{1} is positive. In this example the minus sign is used, and

$$
G_{\max }=13.6 d B
$$

for a Fairchild 2N2857 transistor operated at 500 MHz with $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{v}$ and $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$.

This brief presentation has shown HP-45 routines for only the complex quantities Δ, C_{1}, and Z . Routines in the same format for the other quantities discussed (K , $\mathrm{B}_{1}, \mathrm{~B}_{2}, \rho_{\mathrm{MS}}$, and ρ_{ML}) are available from the author. Also available are routines for $\rho_{\mathrm{Ms}^{\prime}}$ and $\rho_{\mathrm{ML}}{ }^{\prime}$. Quantity $\rho_{\mathrm{Ms}}{ }^{\prime}$ gives the complex source impedance once the complex output impedance is known (from constant gain circles if a power gain other than $G_{\max }$ is desired). Quantity $\rho_{M L}^{\prime}$ gives the complex output impedance once the complex input impedance is known (e.g., for best noise match).

[^4]
очацті
 IN VOLUME

When you achieve it, you can offer true competitive value. That's just what we're doing at USCC/Centralab for 1975. MONO-KAP ${ }^{\text {TM }}$ radial, and MONO-GLASS axial monolithic ceramic capacitors are now available to volume users from stock to eight weeks. Our investment and "learning curves" last year guarantee competitive responsiveness - USCC will welcome your specials and nonstock orders. Here's an offer you haven't heard lately - your money is going to buy more at USCC. Cash in on the best values in monolithic ceramic capacitors.

DISCRETE ASSEMBLY

MONO-KAP ${ }^{\text {TM }}$ radial-leaded epoxy coated capacitors are reliable performers; they're rugged enough to work in MIL environments. 4.7 pF to 10 Mfd ., 50 to 200 WVDC in 4 dielectrics, including Z5U, in a variety of case sizes featuring meniscus control to 0.032 inches. Large quantity orders from stock.

AUTOMATIC INSERTION

MONO-GLASS axials are glass encapsulated, designed for automatic PCB insertion; furnished reel-packed for high volume applications. They're available in 50 and 100 WVDC from 1 pF to 1.0 Mfd ; four dielectrics: COG, X7R, Z5U and Y5V.

CUSTOM DESIGN

We're responsive to your design requirements; get USCC's new expanded 1975 catalog.

If you need a special, call (213) 8434222 or your nearest overseas location for assistance or evaluation samples.
Remember, USCC/Centralab. Value.

FOR QUICK REFERENCE, SEE OUR PRODUCTS IN YOUR EEM, GOLD BOOK OR EBG PAGES.

2151 North Lincoln Street = Burbank, California 91504
(213) 843-4222 - TWX: 910-498-2222

Engineer's newsletter

Abstract

Add to your The IEEE has just joined Pensions for Professionals Inc., a pensionretirement income management agency whose services will now be available to IEEE members. The pension services are complicated and should be checked out pretty carefully, but the range is extensive, including everything from the well-established Keogh plan for the self-employed to conventional corporate pension plans for small companies that lack their own. PFP is also looking into the new sheltered Individual Retirement Account (IRA) pension activity of banks and insurance companies, which grew out of the pension reform bill (Employee Retirement Income Security Act) recently passed by Congress. And by the way, the IEEE is still working on trying to set up an employer-funded plan designed exclusively for engineers-but nothing's definite yet.

How to avoid drilling holes when mounting pc boards

You can mount printed-circuit boards on a prototype chassis without drilling holes in either the boards or the chassis. Simply use ordinary rubber grommets as pc-board standoffs, says Bill Schweber of Norwood, Mass. The pe board can be slid into the grooves of the grommets, and the grommets then glued to the chassis with contact cement. If one grommet does not provide sufficient clearance between the chassis and the underside of the board, two or more grommets can be glued together until they are high enough. You can even mount boards vertically, rather than horizontally, using only three to four grommets. This technique is especially handy if the final board locations are not definite or if the boards must be removed frequently for modification.

Stamp out that pure-gold plating

If you're managing an equipment-assembly operation, you'll want to know that the use of connector contacts inlaid with a gold alloy will virtually eliminate one of the biggest causes of assembly failure. Normally, contacts are plated with pure gold, but pure gold cracks or becomes porous when bent, causing the connector to fail sooner or later. Recently, however, when Technical Materials Inc. tested alloy inlays against pure-gold-plated contacts, it was found that the gold-plated samples flunked the 180° bend test at all radii (0.003 to 0.125 inch), while the alloys generally passed with flying colors.

The 15 gold alloys tested were rolled to varying degrees of hardness and then bent 180° over mandrils of varying radii. The softer the alloy and the more gold it contains, the easier it is to form.

Two books discuss logic-circuit testing and heat removal

And here are two new books to check out. For test engineers, a multivolume handbook on logic-circuit testing has been developed by a Phoenix company recently founded by the former president and vice president of test-system maker Mirco Systems. The volumes are intended to shorten evaluation time, and they give detailed data about the suppliers and their test systems. They are priced at $\$ 50$ to $\$ 100$ from Omnicorp., 7101 N. 12th Place, Phoenix, Ariz. 85020.

A 180-page book from heat-sink supplier Aham Inc. discusses heat removal. Author Jack Spoor presents methods of removing heat, calculations and precautions. Write Aham Inc., 968 W. Foothill Blvd., Azusa, Calif. 91720.
-Laurence Altman

Get more than you pay for with EIP microwave counters

Across the board, EIP counters cost less than comparable counters, yet they're simpler, can handle any application, and are systems compatible.

OUR COUNTERS AND WHAT THEY COST

The 331. 825 MHz to 18 GHz . Sensitivity -15 to -20 dBm . Minus 20 to -25 dBm optional. Below $\$ 4,000$.* No comparable counter made.

The 350D. 20 Hz to 12.4 GHz . Sensitivity -20 to $-25 \mathrm{dBm} .-30 \mathrm{dBm}$ optional. Below $\$ 5,300$.* Compares with counters costing hundreds of dollars more.

The 351D. 20 Hz to 18 GHz . Sensitivity -20 to $-25 \mathrm{dBm} .-30 \mathrm{dBm}$ optional. Below $\$ 5,700$.* Compares with counters costing hundreds of dollars more.

The E01. A 350D or 351D designed to MIL-T21200 environmental specifications. Below $\$ 8,000$.* No comparable counter made.

WHAT THEY GIVE YOU FOR YOUR MONEY

Simplicity-EIP counters are all fully automatic. Simply apply the signal to the appropriate input, and the counter does the rest. EIP's displays use bright, non-flickering

LEDs, sectionalized to eliminate decimal positioning, frequency range annunciators, and confusing overflow. And EIP counters all have leading zero suppression.

The ability to handle any application-EIP's Autohet technology allows measurement of signals with FM deviation to 200 MHz at FM rates to 10 MHz . Using an EIP microwave counter, you can easily test high density communications links without removing them from service, and test EW/ECM circuits, too.

If you're measuring signals only in the microwave range, EIP makes the Model 331 so you don't have to pay for more capability than you need.

If you need a ruggedized/environmental counter, EIP has the E01, the only such counter in the industry.

Systems compatibility-Parallel digital output and programing plus high speed reading rates up to 900/second make EIP counters ideal for use with automatic test equipment.

It'll take us only 5 minutes to prove you really get more than you pay for with EIP microwave counters. Call Rick Bush collect at (408) 244-7975 for a demonstration.
 April 8-10 at N.Y. Coliseum, to stress cost-effectiveness in instruments, other items.
Following are some of the products to be introduced.

Low-priced portable scope has modular design

Not all measurement applications require the kind of performancewide bandwidth, high sensitivity, and maximum flexibility-presently available in state-of-the-art instruments. It is often advisable to accept somewhat less than the highest performance in exchange for a more modest price.
Tektronix engineers had this kind of cost-effectiveness in mind when designing the model 455 portable oscilloscope. Its capabilities are sufficient for most scope applications, and its price is kept low by limiting some of its performance-bandwidth, for example.
Bandwidth of the 455 is 50 megahertz. Tektronix' model 465, similar to the 455 in most other respects, has 100 -megahertz bandwidth. But the 455 is priced about $\$ 300$ to $\$ 400$ less than the $\$ 2,000465$.

Like the 465 , the 455 offers dualchannel operation, vertical sensitivity from 5 millivolts per division to 5 volts/div, and delayed sweep. An optional battery pack is avail-
able, and all accessories for the 465 fit the 455.

Although the 455 does not have the plug-in flexibility of Tektronix' 5000 - and 7000 -series laboratory oscilloscopes, it does have more flexibility than many other portable scopes because of its modular construction. Its distinct display, vertical amplifier, and sweep generator modules are also designed to make field repairs easier.

But more important, modular construction permits the design of oscilloscopes customized for specific applications. An entire new series of oscilloscopes based on the 455 package could easily be built by designing variations of each module.

The 455's package marks another departure for Tektronix. Unlike earlier Tektronix scopes, which have vi-nyl-clad aluminum housings, the 455's case is made from a reinforced plastic, similar to that used in Tektronix' 200-series miniscopes. The plastic case is lighter and less expensive than aluminum, but still rugged
enough to withstand the rigors of field-service use. It also insulates the user from being shocked accidentally by the scope circuitry.

Other features of the 455 include trigger view, beam finder, lighted deflection-factor indicators, and an 8-by-10-centimeter display.

The major market for the 455, as with any portable oscilloscope, is in field service. Application areas include computers and computer peripherals, office machines, industrial

control systems, communications equipment, and military electronics. Because of its price and perform-
ance, some 455 s should also find their way to electronics assembly lines.

Delivery time is eight weeks.
Tektronix Inc., P.O. Box 500, Beaverton, Ore. 97005 [371]

LSI multimeter warms up in 10 milliseconds

In March of 1969, when Schneider Electronics started selling its Digitest 500 multimeter, the instrument included its logic and counting circuits on a single custom-built chip. Three years ago, a new version had

a chip that carried the analog-todigital converter as well. Now, the French company has put practically everything on a single custom-made chip.

As a result, the Digitest 200 has only 100 components, counting everything down to the screws and washers. Because this is about a quarter of the parts needed for the
previous version, assembly costs are slashed, and the instrument has the highly competitive price of $\$ 199$. And because of large-scale integration, Schneider has packed features into the instrument that were not possible before for low-cost, portable $31 / 2$-digit 2,000 -count multimeters.

What's most unusual about the instrument is its warmup time- 10 milliseconds or less, compared with seconds or even minutes for conventional multimeters. The chip also carries a circuit that signals when the count on any range is 199 or less, meaning a more accurate reading can be had on the next lower range. The chip corrects automatically for zero drift and full-scale voltage. Finally, a lamp automatically warns of unacceptably low battery voltage.

It's the low thermal inertia of the chip plus the method used for a-d conversion that make for the fast warmup. The chip, which carries the equivalent of 4,000 field-effect transistors, measures 4 by 5 millimeters. The conversion technique is based on the constant-charge-discharge principle. Essentially, the unknown voltage charges a capacitor, which is
then discharged in discrete steps in order to get a digital count.

Capacitors for the conversion are outboarded, along with two IC operational amplifiers and a comparator. Also outboarded are a capacitor for an on-chip oscillator, a voltage divider for the power supply, and an interface transistor for the display. All the other circuitry is on the chip, a p-channel MOS device with lowthreshold voltage and gates that are doubly isolated by oxide and nitride. The 40 -pin package is made of ceramic.
Schneider Electronique, 27 rue d'Antony, 94150 Rungis, France [372]
Schneider Electronics, 11 Riverside Ave., Medford, Mass. 02155 [338]

Major specifications	
Dc volts	$100 \mu \mathrm{~V}$ to $1,000 \mathrm{~V}$
Ac volts	$100 \mu \mathrm{~V}$ to 750 V
Ac/dc current	100 nA to 2 A
Resistance	0.1Ω to $2 \mathrm{M} \Omega$
Temperature	$-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Accuracy	From within $\pm 0.2 \%$ of range to within 1.5% of reading, depend- ing on range Weight
	600 g (without bat- teries)

'Calculating oscilloscope’ is programable

What do you call an instrument that takes almost any input wayeform, can be programed to do almost anything to it or nothing at all, and then displays it in analog and/or alphanumeric form? Cordis Corp.'s Norland Instruments subsidiary calls its product a "programable calculating oscilloscope," but that's not nearly a complete description.

The NI2001 digitizes each input waveform and displays it either as-is or after further processing, in analog
form and/or as an array of signal parameters, on a 4-by-5-inch Hew-lett-Packard monitor. (The 5-by-7in. monitor shown in the photograph at the top of page 143 is under development at Norland and should be available later this year.)

Inputs to the NI2001 are routed through plug-in data-acquisition units with controls similar to those of a standard oscilloscope. Provision is made for two plug-ins with up to four channels of data and $8-, 10-$, or

12-bit resolution, at sample rates up to 1 megahertz.

Digitized input data is stored in a 4096-by-12-bit random-access memory, so that the NI2001 also resembles a digital signal monitor. For example, it can display waveform data acquired before a trigger signal.

The NI2001's keyboard permits programing of such functions as plotting power dissipation of a circuit as a function of frequency. Pre-

The machines shown below represent a great deal of research and development. Years of experience in tape transports and recording technology. And hundreds of innovations in micro-electronics and computer-type circuits. Once they've reconded your data, they'Il feed it directly to your other equipment and help you process $i t$. We're very proud of them.

Consider the R-260 Portable Data Recordef, smallest of the units pictured below. It records on eight channets. Seven for data, one for voice. (Its big brother, the R-280, has 14 channels.)
 It has excelleme firequency response ant signal to noise characteristics, and meets IRIG and

ElA standards. It aiso features bi-directional recording and reproduction, a tape search control and automatic remote control. Pesper requirements? A car battery

Of course, our R-570 is a bit more sophisticated. It records on 14 channels and is designed for permanent mstallations. But we inanufacture a whole line of data recorders and acquisition systems. We at TEAC are interested in all types and applications of magnetic recording technology. It's our primary business. And, being specialists, we think we do a better job. If you d tike some data, just call your TEAC representative.

TEAC

TEAC CORPORATION ShiquukuBidg . 1 -1, Nish Shiojuku Shinfuku. Toivo. Japar.
Thith TRAC Talk with one of these repregentatives:

 Flurstraise 93,8047 Zurich Tel 051-649830 AUSTRALIA JACO日Y, MITCHELL LTD, 215 North Recks, North Rocks N S W Tell 6307400

Why you can afford the very finest in function generators.

Because Interstate's new F77 truly is a universal signal source. With F77's 0.00002 Hz to 20 MHz range, you can test with frequencies from infrasonics through video, and beyond. There are 6 output waveforms, 7 operating modes, and precision interface controls (waveform inversion and a $5 / 95 \%$ waveform variable symmetry vernier, for example) that can be actuated with remarkable variations. And output amplitude is specified at 15 volts $\mathrm{p}-\mathrm{p}$ into 50 ohms - that's 50% more voltage swing than most 20 MHz function generators provide.

Because the F77 also incorporates a very capable. independent sweep generator offering linear and logarithmic performance, with a selection of auxiliary outputs. Sweep up or down, sweep reset control. and continuous, triggered, burst, sweep-and-hold modes, too. Interstate's special frequency dial has a directreading sweep limit cursor, plus two calibration scales (X 1 and X 2) to improve resolution and permit continuous tuning across the $20 \mathrm{~Hz}-\mathrm{to}-20 \mathrm{KHz}$ audio band.

Because this function generator is the first of its kind to deliver real pulse generator capability. The F77 produces a 15 ns rise time pulse to 20 MHz with

constant width setability from 30 ns to 10 milliseconds, and full offset and mode flexibility. The generator's fully-calibrated attenuator gives you 15 -volt unipolar pulses into high impedance loads. particularly useful for testing MOS, or millivolt pulses down to 1.5 mv .

Because there's also a constant duty cycle pulse (in addition to F77's standard pulse) for a variety of digital signal response applications. Circuit sensitivity to duty cycle on/off times can be tested using varying pulse rates without adjusting the width control.
Because the F77 can be used as an analog power amplifier to amplify externally applied signals as much as 600%. Even TTL pulses can be amplified to drive 50 -ohm loads, and the resulting output has controlled dc offset and attenuation.

Because the F77 gives you many other high performance and human engineering features, like VCF capability for sweeping frequency-sensitive devices, and "oscilloscope-style" triggering with a variable start-stop phase control to generate haversines and havertriangles. There's even a "brown-out" switch to allow the instrument to operate at low line voltages.

Because the F77 only costs $\$ 1.095$.*

[^5]
Where you can find out more about the finest.

UNITED STATES

General Radio Company: N.C. Fia.. Ala.. Ga.
919, 722-4819. 205/883-7538
Scientific Sales Co.: Tex. (except El Paso). Ark.. La.
Okla.: 214/231-6541. $713 / 666-5318$
Measurement Consultants: N.M., Ariz., Colo.. Ida.,
Wyo., Utah. EI Paso. Tex., Mt., and Clark County.
Nev.: 505/265-6471. 602/994-9519. 505/526-2491
303/449-5294. 801/268-3181
Loren F. Green \& Assoc.: No. Ill. Ind. Minn.
lowa. Ky.N.D..S.D. Wisc.: 312/593-0282.
317/243-9827. 612/781-1611
General Radio Company: No. Calif.. Nev.. Wash. Ore.: 415/948-8233. 206/747-9190
Sel-Tronics, Inc.: D.C.. Md.. Va.: 301/589-3391
KLS Associates, Inc.: L. I... Metro. N.Y.. No. N.J. 201/227-2900. 212/233-4849
Group Ten: Ohio. Mich. W. Penn. W. Va.
513/2 77 -65.31. 216/486-2800. 313/549-39i0
I\& I Associates: New England States; 617/272-2606. 203/624-7800
Lahtronics Incorporated: Upstate New York
315/454-9314. 716/685-4111. 607/748-0509.
518/372-6649. 914/471-2806
Technical Representatives, Inc.: Mo.. Kan.. So. III. Nech: $314 / 731-5200$. $913 / 782-1177$.
$319 / 363$.

319/363-2489

Rohert Meyers Associates: E. Penn.. So. N.J.. Del. 215/224-1663
Measurement Associates: So. Calif.: 714/540-7160. 213/671-7651. 714/284-2511

CANADA

Radionics Limited: Montreal. Que.: 514/735-4565. Telex: 05-827558: Downsview. Ont. $416 / 638-0218$ Telex: 06-22144: Ottawa, Ont.: $613 / 521-8252$. 613/728-4624: Vancouver. B.C.: 604/732-7317
EUROPE AND THE MIDDLE EAST
Ing. Otto Foler: Vienna. Austria: 57/3387
Regulation-Mesure S.P.R.L.: Brussels. Belgium 771-20-20. Telex: 21520
Havulinna Oy: Helsinki. Finland: (90) 661-451. Telex: 12426 Havul Sf.. Cable: Havula Helsinki
Tekelec Airtronic: Sevres. France: 626-02-35.
Tekelec Airtronic: Sevres. Franc
$626-24 \cdot 38$. Telex: Protec 25.997 F
Radat International Co., Lid.: Tel-Aviv. Israel:
474412.478216-7. Cable: RADATCO Tel-Aviv. Telex: 032-143 (radat il)
Tekelec Airtronic Spa: Milan. Italy: (02) 7380641. Telex: 33402 Tekelec
Tekelec Airtronic N.V.: Amsterdam. Netherlands: (020-928766/67. Telex: 844-16009
Unitronics, S.A.: Madrid. Spain: 266.34.09
Telex: 22596 UTRON
M. Stenhardt AB: Vallinghy. Sweden: 08/87 0240. Telex: 10596. Cable Address: Stenhardtab
Traco Trading Co. Ltd.: Zurich. Switzerland, 01/36071. Telex: 54318. Cable: Traco Trading Zurich Euro Electronic Instruments, Led.: London. England: 01-267-2748'9. Telex: 23920 (Livingshire). Cable:
Euroinst
Tekelec Airtronic GMBH: Munich. West Germany: 08 11/594621. Telex: 5/22241

AFRICA, ASIA, AUSTRALIA
Parameters Pty. Ltd.: Victoria. Australia: 4.39-3288
Bons International: Taipei. Taiwan. Republic of
China: 529/068. 571/034
David J. Reid (N.Z.) Lid.: Auckland. New Zealand: 492-189. Telex: Davredak N.Z. No. NZ2612
S'Electronics (Pty) Limited: Johanneshurg. South Africa: 8.38-2169. Cable: Seletric. Johanneshurg

EASTERN EUROPE

General Radio Co.: Zurich. Switzerland: Poland.
Czechoslovakia. German Democratic Republic.
Rumania. Hungary. Yugoslavia. Bulgaria. Alhania:
01/552420. Telex: 53638

New products

programed, fixed functions include rise-time, integral, differential, peak-to-peak, and rms calculations.
Other capabilities include expansion of the display about a selected data point and optional output of an analog signal (through a d-a converter) or digital control pulses.

Price of the NI2001 is about $\$ 13,000$ to $\$ 15,000$, depending on options chosen. Deliveries of the "calculating oscilloscope" are expected to begin in May. Norland Instruments, P. O. Box 47, Fort Atkinson. Wis. 53538 [373]

Digital voltmeter offers versatility

Combining the stability of a laboratory standard with the convenience of a system-oriented instrument, a precision voltmeter from Dana Laboratories offers multifunction capabilities.
The series 6900 digital voltmeter has $61 / 2$-digit (1.6 million-count) resolution, five dc voltage ranges from 1 v to $1,000 \mathrm{~V}$ full scale, and a 3wire ratio capability. Base price is \$4,995.
Accuracy, including the uncertainties of Dana-specified calibration sources, over a 90 -day period and measured at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, is within ± 47 parts per million of reading ± 50 parts per million of full scale on the $0.1-\mathrm{V}$ range; 12 ppm of reading, 6 ppm of full scale on the $10-\mathrm{v}$ range; and 25 ppm of reading, 8 ppm of full scale on the $1,000-\mathrm{v}$ range. Relative accuracy, assuming perfect calibration sources, over a 24 -hour period and measured at 23° $\pm 1^{\circ} \mathrm{C}$ ambient, is $\pm 3 \mathrm{ppm}$ of reading $\pm 3 \mathrm{ppm}$ of full scale on the $10-\mathrm{v}$ range.
To achieve these accuracies, Dana uses a standard dual-slope conversion technique "with a few tricks," says John Brady, engineering vice president. One trick is designed to eliminate misreadings caused by transients that may occur when the integrator switches from the input to the reference. At that point in the measurement cycle, a fixed number of pulses is ignored before the
counter circuits start to operate. Instead, a dc offset corresponding to that number of counts is fed into the unit's comparator. Another way to do the same job would be to filter the integrator signal, but this would slow the instrument's response to a changing input, says Brady.

Analog and BCD outputs are standard features of the 6900. An optional remote-programing capability, priced at $\$ 300$, can be added.

Other options for the 6900 include 4 -wire ohms-measurement capability, priced at $\$ 350 ; 4$-wire ratio circuitry, $\$ 200$; and two ac voltage measurement options: true-rms or average-responding calibrated in rms sine wave. Either ac option provides full-scale readings from 1 V to $1,000 \mathrm{v}$ in four ranges and operation from 20 hertz to 1 mHz .

Also at the Ieee show, Dana will introduce its first portable counters. Unlike earlier Dana units, which were for benchtop and system use, the $525-\mathrm{MHz} 7570$, priced at $\$ 799$, and the l-GHz 7580, priced at

$\$ 1,099$, are for field service. They have die-cast aluminum cases and operate from $115-\mathrm{V}$ and $230-\mathrm{V}$
($\pm 10 \%$) lines at 50 to 440 hertz.
Dana Laboratories Inc., 2401 Campus Dr., Irvine, Calif. 92664 [374]

Precision resistor arrays from stock

Because of their specialized nature, high-quality thin-film resistor networks are regarded as custom devices having lengthy delivery times. However, Hybrid Systems Corp. of Burlington, Mass. will be offering six new standard networks that are available from stock or within four weeks. The company is also promising delivery times of six to eight weeks for custom networks.

All the standard circuits are made

up of high-stability nichrome resistors. The model HSD 4200 is an eight-resistor network in which each resistor can be accessed individually; the value of each resistor is 10 kilohms.

The HSD 4300 is an $R / 2 R$ current divider consisting of 200-and $500-\mathrm{ohm}$ resistors. The HSD 4400 summing network contains thirteen 5 -kilohm resistors. The HSD 4700 is a five-decade divider made up of six resistors ranging in value from 100 ohms to 9 megohms. The model HSD 4800 is an $R / 2 R$ ladder network of 25 - and 50 -kilohm resistors. And the HSD4900 is a 12-bit binary ladder.

These standard models can be supplied either in hermetically sealed ceramic dual in-line packages or in chip form. They are also available in versions that are fully processed to MIL-STD-883.

The absolute value of an individual resistor can be laser-trimmed to an accuracy of within $\pm 0.1 \%$ or better, and resistor ratios can be trimmed to within $\pm 0.01 \%$. Typically, untrimmed resistors exhibit an absolute tolerance of $\pm 1 \%$. The temperature coefficient of absolute resistor values ranges from 0 to +50 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and noise is held to less than 0.1 microvolt/volt.

The long-term stability of nichrome resistors is excellent-after a year at room ambient, absolute values drift less than $\pm 0.1 \%$ and ratios less than $\pm 0.01 \%$. Tracking accuracy between resistors in the same network is also very good-it's better than $\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

In quantities of 100 to 499 , the HSD 4200 is priced at $\$ 2.90$ each; the HSD 4300 at $\$ 16.55$; the HSD 4400 at $\$ 4.10$; the HSD 4700 at \$7.30; the HSD 4800 at \$35.50; and the HSD 4900 at $\$ 37.50$. In the same quantities, prices for the fully processed military units range from $\$ 3.90$ to $\$ 69$ for individual networks. There's a flat fee of $\$ 500$ (including tooling costs) for prototype quantities of custom networks, the company says.
Hybrid Systems Corp., 87 Second Ave., Burlington, Mass. 01803 [375]

4½-digit meter measures true rms

With the introduction of its model 7224, Systron-Donner Corp. of Concord, Calif., claims to be one of the first to offer a true-rms converter in an inexpensive $41 / 2$-digit multimeter.

A true-rms converter, according to Chuck Bishop, multimeter product manager, is the only device for measuring ac signals accurately when the signal is either a sine wave with

it's so easy to take

You can replace your thermopile with a SBN PYROELECTRIC DETECTOR.

- BROADBAND RESPONSEUV to microwaves
- HIGH SENSITIVITY$>$ to $125 \mathrm{~V} / \mathrm{W}$
- FAST RESPONSEbetter than 5 ns
- NO CRYOGENICS operates from $-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
- RUGGED AND NONHYGROSCOPIC
This package includes a sensing element plus a integral FET and fits a standard 9 pin miniature tube socket. Available from stock for only $\$ 125.00$.
Call us at $216 / 248-7400$ with your IR detection and measurement problems.

In large OEM qty See coupon offer

Features Include:

- Full four digits; 1 vdc full scale with 0.02% accuracy
- Large $0.31^{\prime \prime}$ LED display
- Automatic zeroing
- Automatic polarity
- Low power consumption; 5V @ 0.8 W
- MOS/LSI construction
- Small Size: $1^{\prime \prime} H \times 2-1 / 2^{\prime \prime}$ Wx3-1/4"D
- Programmable decimal point

Options Include:

- Ranges of 10,100 or 1000 vdc
- Operation as voltmeter/counter
- BCD output; MUX or parallel
- Current measurement
- Ratio operation
- Display dimming/inhibit

Call our distributor, the G.S. Marshall Co. , for more information.
For immediate delivery, fill in below and mall direct to NLS.
NON-LINEAR SYSTEMS, INC. Box N, Del Mar CA 92014
PH (714) 755-1139 - TWX 910-322-1132
Special offer of $\$ 153$ with your check and coupon. \square Single unit price of $\$ 170$ C. O. D. or valid purchase order. One year guarantee.

Name	
Company	
Address	
City \quad State \quad Zip	
Callfornia Residents Add 6% Sales Tax	
Offer expires in 90 days	
12	456789101112

New products

more than 1% to 2% distortion or has another shape, perhaps triangular or rectangular.
The 7224 is a 20,000 -count autoranging instrument that is suitable for both bench use and, with an optically isolated binary-coded-decimal output, for use in small systems, the company says.
The specially designed "AccuOhm" resistance-measuring circuit allows the convenience of two-wire resistance measurements with accuracies usually equivalent to those of four-wire systems. A front-panel control allows lead resistance to be nulled to zero. In addition, the model 7224 has a 10 -ohm range with 0.001 -ohm resolution-performance usually associated with more expensive five-digit instruments, Bishop says.
The $41 / 2$-digit multimeter features a seven-segment planar display with 0.55 -inch characters. The readout includes automatic polarity, decimal point, and units annunciator.
The instrument measures dc and ac voltages, and resistance. Maximum dc voltage is 1 kilovolt, and resolution varies from 10 microvolts to 100 millivolts in decade steps.

Full-scale step response is less than 1 second to rated accuracy. Normalmode noise rejection is about 60 dB at 50 hertz and 60 Hz . Commonmode noise rejection is about 120 dB on dc and about 100 dB at 50 Hz and 60 Hz with a 1 -kilohm source unbalance. Offset current is ± 20 picoamperes.

In either the ac voltage averaging converter mode (option 07) or the true rms mode (option 08), the model 7224 can take 500 volts maximum with a 10 -microvolt to $0.1-$ volt resolution in decade steps. Input impedance is 1 megohm shunted by 100 picofarads.

Input configuration is fully floating and guarded on all functions. In the fast-sample-rate mode the model 7224 is capable of 2.5 readings per second at 10,000 counts and 1.6 readings per second at 20,000 counts. The slow-mode sample rates are an eighth of the fast rates.
The $41 / 2$-digit multimeter is about 3.5 by 8.5 by 13 inches and weighs about 10 pounds. Warmup time to rated accuracy is about half an hour. The unit needs a maximum of 15 watts at $100,115,200$ or 230 v over a 48 -to- 440 -hertz range.

As a standard unit, the model 7224 costs $\$ 699$. With option 07 (ac averaging) the price is $\$ 725$. With true ac rms (option 08) the price is $\$ 850$. If added later, the ac averaging option is priced at $\$ 50$ and the true ac rms at $\$ 200$.
Concord Instruments Division, Systron-Donner Corp., 10 Systron Drive, Concord, Calif. 94518 [376]

Synthesizer switches in $2 \mu \mathrm{~s}$

Intended primarily for frequency-agile applications, including radar, electronic warfare, and automatic test systems, a direct frequency synthesizer operates from 10 kilohertz to 180 megahertz and switches in 2 microseconds.
First of a family of synthesizers that will eventually reach 1.4 gigahertz, the model 360 consists of a main frame, an rf plug-in section,
and a modulation module. A frequency extender with a fully synthesized signal and a 10 MHz range is available if the rf section is to be operated above 180 MHz .

The main frame provides 11 front-panel decade switches for manual setting of frequencies and can also be remotely programed through the rf plug-in rear connector. Frequency resolution depends

a sq-inch of future

for better communication easier transportation wider knowledge

We have the know-how in the design of electronic components and in the development of advanced technologies.

We have achieved high reliability and low costs through our industrial experience in automotive electronics.

We can make available these benefits for mass markets such as telephone systems, television sets, automotive circuits...

the future is available now

TACNET MARELL

NEW FM DISCRIMINATORS . . .
One hang-up in designing a singleconversion NBFM receiver is demodulation. Until now you've had the option of making a second conversion, using phase-locked loop techniques, or designing your own discriminator. Now PTI has made demodulation simple with two new monolithic crystal discriminators offering low distortion - typically 1% - and high recovered audio - typically 800 mV - when used with the CA3089E IC quadrature detector or equivalent.
Detailed spec sheets are available. Ask for Models 2283F (10.7 MHz) and 2378 F (21.4 MHz).

SOME THINGS NEVER CHANGE

Five years ago, when this ad series began, we offered some 20 low-priced standard monolithic crystal filters at 10.7 MHz . Since then the number has grown to 60 at 10.7 and 21.4 MHz (not to mention standards at other frequencies). Even though it's five years later, we still offer those original models - and at prices no higher now than in 1970. Times may be changing, but our quality and price aren't.

SOMETHING OLD, SOMETHING NEW Our new discriminators and our orig. inal standard models are two good examples of PTl's leadership in monolithic crystal filters. If you have a problem calling for monolithics we may have the answer already on the shelf.

Piezo Technology Inc.
2400 Diversified Way Orlando, Fla. 32804 (305) 425-1574

The standard in monolithic crystal filters.

New products

on the rf section installed but typically it is 1 Hz .

The rf section has an output level of 0 to +13 dBm , continuously variable. Modulation is external a-m, 50 Hz to 2 kHz for 95% modulation (uncalibrated). The modulation module, which provides the circuitry necessary for amplitude, frequency, or phase modulation of the output signal, is physically a replaceable part of the plug-in section. If modulation is not a requirement, a simpler module providing only external $\mathrm{a}-\mathrm{m}$ is available.

For slow-switching applications at vhf, Ailtech says the frequency extender can be removed and an rf plug-in containing a phase-locked loop can be driven directly from the output of the main frame. Two operational frequency standards are offered with aging rates of 3 parts in 10^{8} and 1 part in 10^{9} per 24 hours. Alternately, the unit can be driven from an external 5 or 10 MHz source at 0 dBm .

The control format is binary-coded-decimal (BCD) parallel logic

with no need for code conversion. The inputs are TTL-compatible. Ailtech says that reduction of the number of comb line frequencies from 10 to two, through the company's $B C D$ synthesis technique, eliminates about 80% of the comb frequency generating circuitry. Another advantage of $B C D$, says Ailtech, is the necessity for no more than 40 dB of isolation between the comb lines to achieve a spurious-response level of -100 dB . Ailtech is quoting 60 days delivery time at $\$ 8,995$.
Ailtech, Cutler-Hammer Co., Farmingdale, N. Y. 11735 [377]

$350-\mathrm{MHz}$ analyzer resolves 1 kHz

Spectrum analyzers can make a wide variety of measurements, but their high cost and complicated operation often make them unsuitable where many of them are required, or where unskilled operators must

use them-as in production-line testing. Generally, one high-performance spectrum analyzer is purchased for the lab, and that instrument has to be time-shared among a group of engineers.

The model 8557 A spectrum analyzer from Hewlett-Packard Co. is designed to be simple enough to use and low enough in price to be practical for production use, but it performs well enough for most lab applications.

As a plug-in for H-P 180 -series oscilloscope mainframes, the 8557A is priced at $\$ 3,450$. Complete with a 182T mainframe, which provides a 7 -inch cathode-ray-tube display, the unit is priced at $\$ 4,650$.

The 8557 A is comparable in many ways to H-P's 8558 B , which is about $\$ 500$ higher. At least part of the price differential is attributable to the more limited bandwidth of the less expensive unit. The 8558B

At Rank Xerox's Welwyn Garden City Plant, the reaction to Teradyne's L100 Circuit Board Test System is unequivocal. Says Alan Wainwright, Manager of Manufacturing Engineering, Electronics: "Our first L100 arrived one month ahead of schedule, and it enabled us to support a product that was very important to us. It was delivered on a Friday afternoon and was testing boards for us by noon Saturday.
"I don't recall ever having received this kind of service before, and it sets a new standard for us to judge others by."

Rank Xerox now has six L100's at Welwyn Garden City, with more on the way. Each system is at the
center of a test-diagnose-repair-retest loop, staffed by technically unskilled personnel. Total test and handling time for a typical defective board is a minute or two, and 75% of the failing boards pass after one trip around the loop. The L100's at Rank Xerox work 24 hours a day, $51 / 2$ days a week.

Rank Xerox is far from an isolated case. Well over 100 Teradyne board test systems are now at work throughout the world, and the experience of Rank Xerox is typical of most.

Interested? For full details, write Teradyne, Inc., 183 Essex Street, Boston, Massachusetts 02111. In Europe: Teradyne, Ltd., Clive House, 12 Queens Road, Weybridge, Surrey, England.

When the man from Honeywell Test Instruments comes calling, you may have more and better reasons to see him than you ever realized.
He sells solutions, and if your problem can be solved best by a simple plug-in module, that'll be his recommendation.
But if your needs require sophisticated oscillographs, magnetic tape recorder/ reproducers or custom analog measuring and recording systoms, he has the breadth of line and combinations of instrumentation to
make an exactly-right recommendation. With complete confidence, because in addition to his own expertise, he's backed by the best design, production, application and metrology experts in the instrumentation business.

Honeywell Test Instruments Division the top trouble-shooters. Call on them when you have any test instrumentation problem. For a quick look at our complete line of test instruments, write for FREE 20-page condensed catalog. Dept. 218, P.O. Box 5227, Denver, Colorado 80217.

CRITICAL APPLICATIONS DEMAND GRITICAL SERVIGE

Downtime can be a disaster in simulation, data base management, and scientific applications. You know then, how good the company behind the computer really is. That's why, at Harris, service is critical. Our computer systems are working in critical environments around the world. And Harris service supports them; With quick response field engineering. With people whose total responsibility is to keep your investment working for you.

After all, building reliable machines is only half the job. Write: Harris Computer Systems, 1200 Gateway Drive, Ft. Lauderdale, Fl. 33309. Europe: Techmation N.V.,Gebouw 105/106. Schiphol-Oost, Netherlands.

New products

operates from 100 kHz to $1,500 \mathrm{MHz}$, while the 8557 A operates from 100 kHz to only 350 MHz . But the 8557A can still handle many of the same jobs as the more expensive unit, and is as simple to operate, the company says.

For most measurements, only three controls are used. Either the center frequency or the start frequency of the display, indicated on a digital readout, is set with the TUNING control. The FREQUENCY SPAN control is then used to set the width of the frequency window to be viewed. Optimum resolution, from 1 kilohertz to 3 MHz , is then determined either automatically by the analyzer or by manual override. A REFERENCE LEVEL setting then calibrates the display in absolute power units.

The reference-level setting is the absolute power level of a signal that reaches the top of the display. The range is -110 dBm to +20 dBm . The analyzer indicates optimum and maximum power input level for the chosen amplitude setting, minimizing the possibility of overdriving.

Frequency response of the 8557 A is $\pm 0.75 \mathrm{~dB}$, over-all absolute ampli-tude-measuring accuracy is ± 2.25 dB , and frequency readings are correct to $\pm 3 \mathrm{MHz}$. Dynamic display range exceeds 70 dB .

Standard input impedance is 50 ohms. An optional 75 -ohm impedance is available at $\$ 100$. H-P's current delivery estimate is 30 days. Inquiries Manager, Hewlett-Packard Co, 1501 Page Mill Rd., Palo Alto, Calif. 94304 [378]

Analog voltmeter spans 12 MHz

Although digital instruments are handling more and more voltage measurements, analog voltmeters are still more suitable and economical in some applications. Analog meters are better for making peaking and nulling adjustments, for example, and lend themselves more readily to special, nonlinear scales.

Sometimes a unit of measure such as the decibel is more convenient than the volt, in communications and acoustical measurements, to name two important areas. The model 3056A ac voltmeter, to be introduced at IEEE Intercon by Ballantine Laboratories Inc., is designed for just such applications.

The $3056 \AA$ is an average-responding, rms-calibrated voltmeter that operates from 5 hertz to 12 MHz. Its mirrored scale reads decibels linearly and volts on a logarithmic scale. The dB range is 150 dB , from -90 to +60 dB , in $20-\mathrm{dB}$ steps. The wide range of each step minimizes switching

when making measurements that cover wide dynamic ranges-such as amplifier frequency-response studies.

Corresponding full-scale voltage ranges are 100 microvolts to 1 kilovolt. An accessory probe to extend the instrument's capability to 2 kV is available as an option.

Priced at $\$ 410$, the 3056A features a front-panel control that makes it possible to set the meter at a convenient cardinal scale mark at the start of a procedure. This relative reference control allows continuous reduction of the meter's gain by a maximum of 3 dB below its calibrated value. When the relative reference control is set to its detented position, 0 dB is referred to 1 millivolt across 1,000 ohms.

The instrument also has a frontpanel switch that allows the input signal to float as much as 500 v above or below chassis ground. A builtin $100-\mathrm{kHz}$ lowpass filter allows meaningful

Features Include:
See coupon offer

- Full three digits; 1 vdc full scale with 0.1% accuracy
- Large 0.31" LED display
- Automatic zeroing
- Lowpower consumption; 5V @ 0.8W
- MOS/LSI construction
- Unipolar
- Small size: $1^{\prime \prime} \mathrm{H} \times 2-1 / 2^{\prime \prime} \mathrm{W} \times 3-1 / 4^{\prime \prime} \mathrm{D}$
- Programmable decimal point

Options Include:

- Ranges of 10,100 or 1000 vdc
- Operation as voltmeter/counter
- BCD output; MUX or parallel
- Current measurement
- Ratio operation
- Display dimming/inhibit
- Overload and negative indication

Call our distributor, the G.S. Marshall Co. , for more information.
For immediate delivery, fill in below and mall direct to NLS.
NON-LINEAR SYSTEMS, INC. Box N, Del Mar CA 92014 PH (714) 755-1199 - TWX 910-322-1192

Special offer of $\$ 78.50$ with your check and coupon. \square Single unit price of $\$ 85.00$ C. O. D. or valid purchase order.

One year guarantee.

Immediate Shipment Low Prices
ANY voltage from 2.0 to 16.0 Quantity Price each
$1-99$
100-499
500-999
1000-4999
5000 up

Write for completc rating data and other tolerance prices.

Kit contains a 51-piece assortment of SCHAUER 1% tolerance 1 -watt zeners covering the voltage range of 2.7 to 16.0. Three diodes of each voltage packaged in reusable poly bags. Stored in a handy file box. Contact your distributor or order direct.

A $\$ 54.57$ value for Owr $\mathrm{s}^{24} 5 \mathrm{50}$ Semiconductor Division SCHAUER Manufacturing Corp. 4514 Alpine Ave. Cincinnati, Ohio 45242 Telephone: 513/791-3030

New products

measurements to be made when reading low-frequency signals in the presence of high-frequency noise.

Accuracy of the model 3056A across the 40 Hz to 2 MHz range is $\pm 0.2 \mathrm{~dB}$ of reading or $\pm 1 \%$ of full scale, whichever is better. As an ac amplifier, the 3056A provides a maximum voltage gain of 10,000 over the frequency range from 10 Hz to 10 MHz . Two ac amplifier outputs are provided: 1 v at 600 ohms and 150 mv at 50 ohms. A dc output
proportional to meter deflection is also provided. This signal, measuring at least 1 v at full scale, is suitable for driving chart recorders, digital panel meters, and control devices.

The instrument can operate from either 115 or 230 v ac lines or from one external 28 to 38 v battery or other dc source. Delivery is two to four weeks.
Ballantine Laboratories, Inc., P.O. Box 97, Boonton, N.J. 07005 [379]

Unit sweeps from 0.01 to 18.5 GHz

One of the difficulties of broadband testing is that it is often necessary to employ massive sweeper systems with a rack full of plug-ins in order to cover the full frequency range. Now, users of Wiltron's model 610B or 610C mainframe sweep generators will not be burdened with this handicap. The model 6247 sweeper plug in makes it possible to cover the entire 10 -megahertz to 18.5 -gigahertz frequency range with a single plug-in module.

The rf plug-in, says Walter Baxter, Wiltron sales manager, weighs only 14 pounds and is designed to operate in the seven-inch Wiltron sweep-generator mainframes.

The $10-\mathrm{MHz}$-to-$18.5-\mathrm{GHz}$ coverage is produced by sequentially sweeping through four rf bands -0.01 to 2,2 to 8,8 to 12.4 , and 12.4 to 18.5 GHz . The four oscillators are multiplexed to a single precision type-N output connector by means of a p-i-n diode switch. They can all be swept in less than 30 milliseconds to produce a flickerfree display.

Coverage above 2 GHz is attained through the use of YIG-tuned oscillators. The $10-\mathrm{MHz}-\mathrm{to}-2 \mathrm{GHz}$ range uses a heterodyne converter consisting of a $4.1-\mathrm{GHz}$ cavity-tuned oscillator, a balanced mixer, and a $10-$
$\mathrm{MHz}-\mathrm{to}-2-\mathrm{GHz}$ amplifier. The 2-8GHz oscillator is used as the vari-able-frequency input into the mixer and is swept from 4.1 to 2.1 GHz during the $10-\mathrm{MHz}$-to- $2-\mathrm{GHz}$ sweep. Both the harmonics and spurious signals from the heterodyne module are 30 dB down.

Key factors in allowing the miniaturized component design of the 6247 plug are in wideband (10 MHz to 18.5 GHz) p-i-n diode switches,

Profit from sameness.

Precise uniformity. That's what makes Kodak micro resist 747 a bargain.

With less variables to worry about, you'll no doubt find you'll waste less time, get fewer rejects, and improve your yield.

747 resist is negativeworking, and it's available at a very positive price.

For details, write Eastman Kodak Company, Dept. 412L (48-B), Rochester, N.Y. 14650

New products

1 dB . It also has a front-panel slope compensation adjustment which allows the user to compensate for fre-quency-dependent losses of the test setup. Residual fm is a maximum of 32 kHz peak in the cw mode.

Price of the model 6247 is \$19,000.
Wiltron Co., 930 East Meadow Dr., Palo Alto, Calif. 94303 [379]

D-a converters

Power consumption is as low as 525 milliwatts for a pair of 12 -bit dig-ital-to-analog converters developed by Micro Networks. The models MN3850 and MN3860 are pin-compatible with the Burr-Brown model DAC-85-CBI-V.

Micro Networks uses its own ladder switching networks and resistor networks made from thin-film nickel-chromium which, with a tight temperature-coefficient tracking of 1 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, allows a linearity of $\pm 1 / 2$ LSB over a range of 0 to $70^{\circ} \mathrm{C}$.

The d-a converters are housed in miniature 24 -pin hermetic DIPs that measure only 0.79 by 0.60 by 0.14 in. They provide user-selectable bipolar output ranges of ± 2.5 volts, $\pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$, and unipolar output ranges of 0 to +5 V and 0 to +10 V. Absolute accuracy, including offset and gain, is within $\pm 0.05 \%$ maximum.

The MN3860 contains input storage registers, increasing its power consumption to 675 mW . An output operational amplifier with a settling time of 3 microseconds is provided with both models. A precision internal reference is also included, but the user has the option of operating from an external reference. The converters are laser-trimmed for zero and offset, eliminating the need for tweaking.

The MN3850 is priced at $\$ 90$ each in quantities of 1 to 24, and the military version, the MN 3850 H , at $\$ 195$ each. The MN3860 sells for $\$ 140$ each; and the military version, the MN3860H, for $\$ 225$ each.
Micro Networks Corp., 324 Clark Street, Worcester, Mass. 01606 [339]

3,500,000 boards prove one thing.

A logic tester you install today and use tomorrow.

Programming delay is no delay for Trendar. Software is all but eliminated. Operator training is a matter of hours. The track record of the TRENDAR 2000A shows test stations are typically testing boards within 48 hours of delivery. And boards tested and passed by the TRENDAR 2000A work in the end product. Millions of boards of thousands of types have been accurately diagnosed and passed. The competition doesn't mention that other testers pass a significant number of still defective boards.

Don't take our word for it.

Ask companies like Tektronix, Hazeltine, Honeywell, or Datapoint about Trendar. They and companies like them have tested over $3,500,000$ boards on our testers. Ask them why they're willing to put their reputation for quality on the line through reliance on the 2000A. They'll gladly tell you why they chose Trendar over systems costing three times more.

You get more than you pay for!

Youdon't need a computer to test logic boards. to test logic boards.

-U.S. price
We've said the TRENDAR 2000A will test your most difficult boards, with no software hassle, faster and for thousands of dollars less per month than computerized testers. If you're like most, it sounds too good to be true. Make us prove it right in your own factory. Call us. Collect.
Fluke-Trendar. (415) 965-0350

Circle 157 on reader service card

Components

Stable ac source is all-passive

Transformer-capacitor combination handles

$\pm 15 \%$ inputs, has $\pm 3 \%$ output

The need for regulated ac sources has been increasing lately because of the greater frequency and severity of power-utility brownouts. If acline variations exceed the input range for which a system is de-

signed, the system can be overdriven and damaged, underdriven and unstable, or so underdriven that it simply never, turns on. Regulatedac sources can even mean a power and cost savings for dc regulated supplies. With a regulated ac input, the dc circuit can be built for a narrower range of regulation, making possible a less expensive design that generates less heat.
In response to this increasing need, Frequency Technology's TDC division in Littleton, Mass., is introducing its series OCI ac sources, which operate over an input range of $120 \mathrm{v} \pm 15 \%$ and produce an output of $120 \mathrm{v} \pm 3 \%$. The sources are entirely passive ferroresonant induc-tive-capacitive circuits, each consisting of a magnetic component and an external capacitor. The magnetic part is made by Frequency Technology, but the company also supplies the complementary capacitor.

Although constant-voltage transformers do offer similar performance specifications, they are generally bigger, heavier, and more costly than the new series of OCI sources. These new units are intended for a broad range of applications, including computers, motor control systems, copying equipment, printingpress controls, automatic drafting systems, textile-machine controls, air-traffic-control systems, and lighting circuits.
Two standard models are avail-able-one is rated at 2 kilovolt-amperes, while the other is rated at 3 kVA. (Other kVA ratings and voltage outputs other than 120 v can be supplied.) The operating efficiency of either model is excellent-ranging between 75% and 85% for all combinations of line and load variations.

Output regulation is typically $\pm 3 \%$ about the nominal level of 120 v ac. If only the output changes from half load to full load, regulation can become $\pm 5 \%$. When the line fluctuates by $\pm 15 \%$ and the load also varies from half load to full load, the output will still be regulated to within $\pm 6 \%$.
The units hold maximum harmonic output content to only 7\% and provide electrical isolation between input and output circuits. They can drive low-impedance loads, such as incandescent lamps and motors that have just been turned on.

Both open-construction and metal-enclosed versions are available. Prices for the open-construction 2 - and $3-\mathrm{kVA}$ models are $\$ 309$ and $\$ 438$, respectively. The enclosed versions sell for $\$ 376$ and $\$ 479$. Delivery time is three weeks after receipt of order.
Frequency Technology Inc., TDC Division, Box 365, Whitcomb Ave., Littleton, Mass. 01460 [341]

Corona shield cuts erosion

in high-voltage resistors

The use of a built-in corona shield in the model MH 711 high-voltage resistor eliminates the erosion which
severely limits the lifetimes and stabilities of other high-voltage precision film resistors. The shield, which is grounded to one of the resistor leads, bleeds off corona energy which would otherwise erode the resistance element and possibly cause electromagnetic interference at the same time. Available in voltage ratings up to 2,000 volts (with the ability to take 50% overloads for five seconds), the MH 711 measures 1.25 inches long by 0.22 inch in diameter. The resistor is available in values from 800 ohms to 50 meg ohms and has a power dissipation rating of 1 watt. Its extremely high stability, as demonstrated in tests that have been ongoing for over five years, makes the MH 711 particularly well suited for critical applications in scientific instrumentation, airborne equipment, precision highvoltage power supplies, and the like. The unit price of the device varies from $\$ 2.67$ to $\$ 2.94$ depending upon resistance value. Delivery time is four to six weeks.
Caddock Electronics Inc., 3127 Chicago Ave., Riverside, Calif. 92507 [343]

Optically controlled stepper motor has no resonances

Stepper model SS1 is a hollow-rotor dc servo motor with an optical feedback system built in. As a result it is a true servomechanism that can be

The first interactive graphic calculator.

Just $\$ 8500$.

It's the 31/10 system.

A powerful calculator graphic terminal and software combination. The first ever to place math-power, graphics and alphanumeric display at your fingertips!
The 31/10 is personal. Fast. And highly interactive. It lets you explore ideas and concepts on the spot. Plot single variable functions, specify $X-Y$ coordinates and a lot more. Corrections and plot changes are immediate. From data entry to display your ideas are quickly brought to light. That's responsive!
Plug in our software packages. They put the $31 / 10$ to work. No heavy prograinming experience
needed. So you can deal in your concepts and not the mechanics of programming. And get graphic and alphanumeric output from natural math input.
There's more to our $31 / 10$. Such as add-on memories for long programs. Thie optional silent thermal printer for listing and keeping track

Peripherals like our hard copy unit to put in hand what's on the screen.

The costs are low. the results are priceless.

Get the facts about the $31 ; 10$ and the Tektronix reliability and worldwide service behind it. See your Tektronix sales engineer for a demonstration or write:
IDD Calculators, Tektronix, Inc P.O. Box 500.

Beaverton, Oregon 97077
Our programmable calculators. Natural. Powerful. Significantly less expensive.

Ci:cle 159 on reade! service card

The new chip inductor. A miniature specifically desioned for reflow soldering and fiybrid circuits.

Delevan proudly announces another

first in hybrid circuit component design. Only . 1 " square by $.075^{\prime \prime}$ high. the newest member of the Delevan Micro-i, inductor series was engineered to withstand the hi-temperature exposure of reflow soldering used for thick film processing.

High temperature insulated magnet wire is thermal compression bonded to gold plated metallí solder railis. The solder rails wrap around the sides of an alumina substrate to provide a visual indication of the solder bond.

Thermal exposure during assembly or rework is a sewere test of component capability . . . and can be a controlling factor in reliability and performance.

When

dependability is first priority, check out the new series 103 miniature leadless chip inductor . . . built to stand the heat. Ask for bulletin 103.

Delevan
Division

AMERICAN
PRECISION
inc:ISthies :NE
コTC QUAKLH RC /EASTAUACRA.N Y 1.7C52
 OTHER DIVISIONS OF AMEAI:AN PDEE:S:TN INUISTRIES INL

New products

fine-tuned to optimize start/stop speed, damping, or accuracy at the expense of the other two parameters. Further, unlike conventional steppers, the SS1 has no low-speed resonances at which it can lose step. The unit's damping ratio is adjustable from 0.1 to 1.0 . With full damping it can run as fast as 1,400 steps per second in the start/stop mode, and 5,000 steps per second while slewing. Under no load it can take one step and settle within 5 milliseconds. Settling time, when stopping from multiple steps at high speeds, is the same as the single-step settling time. The Synstep SS1 moves in increments of 1.8° and only draws current when it moves. Dahmen Burnett Electronics Inc., Grenier Industrial Village, Londonderry, N. H. 03053 [344]

Coating makes variable inductors more reliable

Called Cor-Guard, a proprietary coating baked onto the iron or ferrite core in a variable inductor or transformer is said to eliminate the problems of low torque and core breakage long associated with vari-able-inductance devices. Cor-Guard has no effect on the components' electrical properties and is essentially unaffected by such industrial solvents as trichlorethylene, methyl ethyl ketone, and alcohol. The coating, which operates over the temperature range from -55 to $+125^{\circ} \mathrm{C}$ will be used on all of Vanguard's variable coils and transformers.
Vanguard Electronics, 930 West Hyde Park Boulevard, Inǵlewood, Calif. 90302 [346]

Delay module for ECL
can drive 70 loads
Capable of driving 70 emittercoupled logic loads, the ECLDM is a 250 -nanosecond delay device tapped at increments of 25 ns . Housed in a standard dual in-line package, the device has a maximum error of 3 ns or 5% (whichever is

After your 360/370 massages the information, a Gould Plotmaster"can draw you a picture within 3 seconds.

If alphanumeric information is what you want, a Gould Plotmaster can print it for you. At speeds up to 3000 lines per minute. But there are times when alphanumeric listings are just too much. Too much paper to handle, too tough to read, too difficult to digest.

And it's at times like these that a Gould Plotmaster can draw you a picture. A line chart, a bar chart, a pie chart, a graph. A picture that tells your story at a glance.

Employing high-speed electrostatic printer/plotters, Gould Plotmaster Systems give you power and versatility for both on-line and off-line operation. And they're designed to run on any IBM System/360 or 370 operating under DOS or OS, real or virtual.

Easy-to-use software packages help our Plotmaster Systems do the whole job. There's our DISPLAY ${ }^{\text {m" }}$ package that provides even non-programmers with the capability of easily generating line, bar and pie
charts. And there's our PLOT package which, due to the speed and flexibility of our printer/plotters, lets you do background grids, variable line weights, automatic stripping, text annotation, and allows you to erase previously programmed line segments.

In addition to business graphics, a Gould Plotmaster can add engineering/scientific graphics and computer-aided-design capabilities to your operation. These optional software packages include DADS (Data Acquisition Display), PAL (Precision Artwork Language) and FAST-DRAW. ${ }^{\text {™ }}$ As for the hardware itself, our Plotmaster Systems can provide on-line/off-line operation, paper widths up to 22 inches, resolution up to 200 dots per inch, output speeds up to 7 inches per second. And, of course, a printing capability, as well.

Get all the facts on Plotmaster Systems from Gould Inc., Instrument Systems Division, 3631 Perkins Avenue, Cleveland, Ohio 44114 U.S.A. or Kouterveldstraat 13, B 1920 Diegem, Belgium.

GEORGIA MOVES THE SOUTH.

As the transportation and distribution center of the Southeast, Georgia provides industry with extensive rail. trucking, air and deepwater facilities.

As a state seriously cultivating new industry, Georgla will also provide you with a customized site selection program.

Based on your requirements, we'll work closely with all the
other state-wide developers. 'Io accumulate and analyze all pertinent data, provide appraisals on suitable locations. arrange for your personal inspection and further assist in any way possible.

No cost No obligation. Complete confidentiality.

Mail in the coupon. See how quickly we nove to expedite your site selection process.

For engineering, production or field service

New PROM Programer uses microprocessor for simplified, automatic programing of any MOS or bipolar

PROM.

Pro-Log's new Series 90 micro-processor-based PROM Programer is a small, flexible, simple-to-operate system ideal for use in engineering, manufacturing, quality assurance, or general in-thefield type applications.

Gives engineers design flexibility.

The Series 90's microprocessor controller gives design engineers a wide range of operational flexibility. Using the Series 90 an operator can program any MOS or bipolar PROM directly from the unit's hexadecimal keyboard. The Series 90 uses a conversational language. It has four operating modes; program, list, duplicate and verify. A duplicate-withsubstitution capability allows an operator to make corrections in a copy PROM. The unit has a six digit hexadecimal display. Display and formating adjust automatically to accommodate any PROM type or size.

Ideal for production.

Automatically programs more than a hundred 2048-bit PROMs per hour.

The Series 90 automatically duplicates or programs PROMs directly from tapes or pre-programed master PROMs. Under production-line conditions, it can duplicate a 1702A in 30 seconds. Verifying the accuracy of a programed PROM by comparing it with a master takes about two seconds.

The system has a light indicator to tell at once whether or not a PROM is completely blank.

Fully portable, weighs less than 15 pounds.

The complete Series 90 system comes in an attache case making it as easy to use in field service as it is on the production line or engineer's bench.

Series 90 reduces MOS PROM programing time, guards against data loss.

The Series 90 uses adaptive programing techniques developed and perfected by Pro-Log and proven in two years of field use in the Pro-Log Series 81 MOS PROM Programer. Instead of charging each bit with a fixed number of voltage pulses the way other programers do, the Series 90 tries to charge with a single pulse. If it doesn't reach the bit's threshold, it tries again. When the bit
reads programed, the Series 90 automatically overcharges the bit by at least 40% with additional programing pulses to guard against data dropout caused by short term charging loss, long term leakage current, and losses resulting from variations in operating temperatures and power supplies.

Most bits reach this 40% overcharge after fewer than the fixed number of pulses other programers deliver. In those cases, the Series 90 reduces programing time. The few slow bits other programers leave to drop data through insufficient charging, the Series 90 programs longer so data is retained.

And if the Series 90 can't reach a bit's threshold in a pre-determined number of tries, it rejects the PROM.

Low-priced.

Price for a Series 90 control unit is $\$ 1,800$. Personality modules range from
$\$ 350$ to $\$ 500$. Quantity and OEM discounts are available. Paper tape reader, teletype interface, computer interface, RS-232 communications interface, and MOS PROM erase light are standard options.

For more information, including a copy of our latest publication, "How to use MOS PROMs reliably", contact Edwin Lee at Pro-Log, or circle Reader Service number 230.

PRO-LOG CORPORATION

852 Airport Road
Monterey, C.A 93940
Telephone (408) 372-4593

The Precision metal film resistor with 90\% greater stability. Whatisi VAMACTOD
 Available to S failure rate level

Wagner metal film resistors exceed MIL-R-55182 specs by 90% or more. When subjected to thermal shock (-65° to $+150^{\circ} \mathrm{C}$), humidity or overload (2.25 to 5 times rated wattage), average changes in resistance are in hundredths of a percent, not tenths.

Their exceptional long-term stability is due to unique construction: nickel-chromium film, vacuum deposited over an inner glazed surface of Steatite ceramic tube.
Two types: Hermetically-sealed (seal without an outer sleeve) and Non-hermetic. Both types are contamination-free, conformally coated with non-flammable epoxy, exceed MIL specs, give high heat dissipation and ensure highest reliability.

Mil types available from $1 / 10$ watt to 1 watt and from 24.9 ohms to 2 megohms. Commercial equivalents to MIL types available to 2 watts and 6 megohms. Tolerances: $1 \%, 0.5 \%, 0.25 \%$ and 0.1%.

Write for Wagner Metal Film Resistor Catalog: WAGNER ELECTRIC CORPORATION, 630 West Mount Pleasant Avenue, Livingston, New Jersey 07039.

MAENER

 We've got a lot more riding for you.
Check your Wagner distributor:

ARROW ELECTRONICS
4801 Benson Ave.
Baltimore, Md. 21227 301-247-5200
COMMAND ELECTRONICS
114 Allen Blvd.
Farmingdale, NY 11735
516-293-1212

L\&S ELECTRONICS	TEX-TRONICS
139 N. Central Ave.	1108 E. Lancaster
Valley Stream, NY 11380	Fort Worth, Texas 76102
$516-561-2474$	$817-335-8111$
NRC	MIL-COMM
4151 State Rd. 84	1616 Cotner
Fort Lauderdale, Fla. 33314	Los Angeles, Ca 90025
$305-792-3610$	$213-478-0525$

New products

at $\$ 8.80$ in quantities of 1,000 , and the $3-\mathrm{v}$ version, $\$ 8$. Many custom variations are available, including units for test instruments and calculators, special front styles, different sizes, and variations in threshold voltage, materials, terminal arrangements, and background polarizers. Beckman Instruments Inc., Helipot Division, 2500 Harbor Blvd., Fullerton, Calif. 92634 [347]

Constant-impedance filters work from 300 Hz to 20 kHz

A line of constant-impedance filters for use in telephone systems, alarm lines, data-transmission facilities, and similar audio-band applications spans the frequency range from 300 hertz to 20 kilohertz. The high- and low-pass filters come with standard input and output impedances of 600 ohms, although other values can be had on request. The MLH-1100 series comes in a standard package that measures 1.69 inches by 1.625 in. by 6.5 in .
Electro Networks Division of Chloride Conrex Corp., Maple St., Caledonia, N. Y. 14423 [348]

Hall-effect switches
come in V3 packages
Housed in the traditional Micro Switch V3 package, a line of Halleffect switches can work off unregulated dc supplies in the range from 6 to 16 v dc. Using no mechanical contacts. it has an inherently bounce-free output. The switches in the line are available with either current-sinking or current-sourcing outputs. Having the same mounting dimensions as the traditional V3, they can utilize all of the latter's actuators. Intended for vending machines, automotive applications, timers, measuring instruments, business machines, home appliances, etc., the XL units sell for $\$ 1.50$ each in large quantities.
Micro Switch, a division of Honeywell, 11 West Spring St., Freeport, III. 61032 [349]

If your counter looks this good...

and gives you these options...

IN
 DIG
 TTALTESTING, COVERS THE

- NM MACRODATA

Over 450 people dedicated to digital test systems. Only Macrodata has the experience- 5 years of success in digital testing with over 500 systems in the field enables us to successfully bridge the gap between the device manafacturer and the device user. We offer the right system for your job at the right price to optimize cost effectiveness of the solution. Only Macrodata has available seven different, reliable, field proven, mature systems keyed to specific applications and budgets. No compromises are necessary with our solutions. You have a cost-effective choice available only at Macrodata.

We provide in-depth application support, program libraries, experienced
local service, local spares and repair depots all over the world. By design, executed over the past five years, we've set ourselves up to be truly responsive. No empty claims. No irrational promises. We stand on our record of proven performance to provide you the backup

you need - in depth.

For more information, write on your company letterhead for your copy of the new Macrodata brochure on "Costeffective MPU and Memory Testing:"

Meet our new 2-18 GHz sweeper plug-ins

Broadlband coverage with narrowband precision is here!

There's never been a more compact, convenient, and accurate way to go from 2 to 18 GHz . In fact, HP's 8620A sweeper with the new HP 86290A RF plug-in is the best buy on the market, whether your need is for broadband sweeping or narrowband precision over a wide range.
Never before has one broadband sweeper combined so many desirable features:

- Frequency accuracy is $\pm 20 \mathrm{MHz}$ at 18 GHz - more precise than a wavemeter.
- Linearity is 0.1% - more than five times better than most octave band sweepers.
- CW stability typically is $50 \mathrm{ppm} / 10$ minutes - comparable to cavity-tuned sources.
- 5 dBm output, with internally leveled flatness of $\pm 0.9 \mathrm{~dB}$ over the entire band - the best flatness available.
- Excellent signal purity - harmonics typically 35 dB down, low residual FM.
- Small and light - $5^{1 / 4^{\prime \prime}}$ high; 33 lbs. ($133 \mathrm{~mm} ., 15 \mathrm{~kg}$.); convenient for field use.
- Start/Stop and $\triangle F$ sweeps plus CW. Calibrated $\triangle F$'s as wide as 1.6 GHz , as narrow as 1 MHz . Calibrated CW vernier can set 1 MHz increments.
- Phase locking is simple and inexpensive. Full range sweeping with fixed offset tracking now possible.
- Remote digital programming option can program up to 3000 frequencies simply - gives you versatility for ATE applications.
You can get all these features and performance at a value price - $\$ 13,250^{*}$ for the plug-in; $\$ 1750^{*}$ for the mainframe. Write for complete details or contact your nearby HP field engineer.
-us Domestic Prices.

New Capabilities in Network Measurements

Reflection plot of broadband circulator, 2-18 GHz. (Full scale, $\rho=1.0$)

When you use the HP 86290A with the new HP 8410B Network Analyzer, it is now possible to measure and display from 2 to 18 GHz in one continuous sweep! Network Analyzer/ Sweeper tracking assures spurious free 60 dB dynamic measurement range.
When you use the 86290A with the HP 8755 Frequency Response Test Set, direct modulation of sweeper makes full power available at test device for greater measurement range. The HP 86290A/8755 swept measurement system is an economical, versatile, and accurate way to make wideband measurements in production, lab, and field.

Sales and service from 172 offices in 65 countries.
1501 Page Mill Road, Palo Alto. California 94304

Communications

Laser system runs at $1.5 \mathrm{Mb} / \mathrm{s}$

Voice and data

communications system can
be set up in 15 minutes

Laser communications is often thought of as an exotic, high-priced activity that's useful mainly in secure military systems and other special situations. Actually lasers can often provide the cheapest way to solve a communications problem. The latest communicator from American Laser Systems, for example, is being marketed as a lowpriced, easy-to-install alternative to conventional transmission links. As company president Duncan Campbell points out, if a company has two plants located across the street from each other, it will usually be cheaper to link them with laser beams than to dig up the road to bury a cable. And aligning the transmitter and receiver takes approximately 15 minutes, Campbell reports.

The new unit, called the model 741 laser voice and data communicator, uses a gallium-arsenide laser diode to transmit digital data at speeds up to 1.5 megabits per second. Operating at the infrared wavelength of 9,000 angstroms, its range, of course, depends upon local climatic conditions. For most of the United States, Campbell says, 10 miles is a reasonable maximum. For 99.99% reliability, three miles is perhaps a better number. It depends upon the amount of fog and smog in the area; rain and snow are less important at $9,000 \mathrm{~A}^{\circ}$.

In addition to accepting digital data, the laser communicator has an input connector for an analog voice signal which it can digitize and transmit instead of the digital data at any time.

The system, which can be operated without any FCC licensing, puts
out 1.5 -watt pulses approximately 10 nanoseconds long. This results in a 1.5% maximum duty cycle which keeps the average power below the level at which it might cause eye damage.

The units, which operate on C-MOS logic levels, can work with virtually all types of digital data streams: the transmitter triggers on the leading rising edge of the input pulses. With a minor modification, TTL and balanced TTL can also be accommodated.

The communicator consists of two parts-a transmitter and a receiverone of each being required for a single one-way, one-hop transmission link. For duplex operation, two transmitters and two receivers are required. Both come complete with optics and alignment and mounting bases, and both sell for $\$ 2,500$. Delivery is currently running about 90 days, although the company's older model 736 10-kilobit system is available from stock.
American Laser Systems Inc., 106 James Fowler Rd., Santa Barbara Airport, Goleta, Calif. 93017 [401]

201-type modem recognizes

accidental disconnects

Designed to solve a frequent problem with dial-up 201-type modems, the GDC 201-5 modem can save money by eliminating the dedication of business machines and phone lines to dead channels. Most modems cannot recognize when a circuit has been inadvertently dis-connected-whether because of line failure, failure to transmit EOT (end

of transmission), or because the modem answered a wrong number. That is because most modems are designed to terminate connections on command from a business machine; no EOT, no disconnect. The result, many times, is that both phone lines and computers can be tied up, sometimes for considerable periods until an operator notices what's happening, running up bills and accomplishing nothing.

In addition to overcoming this problem, the 201-5, available in both stand-alone and rack-mount versions, permits the circuit to be switched repeatedly between voice and data modes. It is designed to operate on the dial network via automatic-originate-and-answer data couplers at rates of 2,000 and 2,400 bits per second. The price of the 201-5 is $\$ 1,331$; delivery time is 30 days.
General DataComm Industries Inc., 131 Danbury Rd., Wilton, Conn. 06897 [403]

Front-end-processor switch

 requires no powerUsing rotary switches instead of relays for increased reliability and decreased cost, the model $8506-12$ is a 12-channel front-end-processor

switch that requires no operating power and is therefore immune to power failures. The unit allows an operator to switch a maximum of 12 modems from their on-line processors to back-up processors at a cost of $\$ 87$ per channel. The unit switches all 25 lines in each EIA RS232 channel interface. The switch may be expanded, one channel at a time, as requirements grow. It measures $51 / 2$ inches high by 19 in . wide by $7 \frac{1}{2}$ in. deep. Priced at $\$ 1,040$, the model 8506-12 has a 30-day deliv-

HI PERFORMANGE/LO COST

- Frequency Range: 0.01 Hz to 111 KHz
- Frequency Selection: Digital, with 3 Digit Resolution
- Cutoff Frequency Accuracy: $\pm 2 \%$
- Responses: Butterworth and Linear Phase
- Functions: Low Pass, High Pass, Band Pass, Band Reject
- Dynamic Range: 90 dB
- Passband Gains: O, and 20 dB
- Low Noise

RCCIKIMRIND
Rockland Systems Corporation 23i, in Fiyack Fooad West Ny:ck, iN Y :0994 (Э14) 623-6866 - TWY 710-575-2631

Circle 170 on reader service card

Own your own holder to hold your own!

Hold your own copies of Electronics in specially designed slipcase holders. They'll keep your Electronics library neat and handy-a permanent information file, issue by issue.
Just complete the coupon and mail to Jesse Jones. He'll process your order upon receipt, postpaid.

ELECTRONICS BOXER

Jesse Jones Box Corporation
2250 E. Butler St., Philadelphia, Pa. 19137

Please send me: \square boxes @ $\$ 4.25$ each; $\square 3$ boxes @ $\$ 12.00$; $\square 6$ boxes @ $\$ 22.00$. My check or money order is enclosed.

Name:
Address:
City:___ State

New products

every time from receipt of order. International Data Sciences Inc., 100 Nashua St., Providence, R. I. 02904 [405]

Multimeter is designed for digital-transmission testing

Combining the functions of a frequency counter, noise- and level-test set, capacitance bridge, decade box, and voltmeter, the model 430 dig-ital-transmission multimeter is a diagnostic tool for detecting and isolating problems on voice-grade and

program telephone channels. The digital instrument has built-in filters for measuring noise and signal levels on both voice and program lines. Battery-powered for portability, the 430 sells for $\$ 1,395$. Delivery time is 30 days.
Wavetek, Telecommunications Products, P. O. Box 651, San Diego, Calif. 92112 [404]

C-MOS FSK transmitters and receivers need little power

The series 5600 line of frequency-shift-keying transmitters and receivers uses complementary-MOS logic so that a bank of 12 modules can be operated from a single 10 -volt, 1-ampere power supply. Designed for use on wire-line and carrier, links, the 5600 FSK units are capable of two- and three-frequency oper-

Think Large. Think Small. Think our three jolly green giants for desk-top electronics. Our two pint-size pigmies for carry-in-the pocket display designs. But don't stop there. Think low operating voltages, low power consumption, wafer-thin thickness and dip clip pins for fast glass encapsulation all around, and efficient mounting.
 Think Ise

Something else to think ahout

Think ise for digital readouts for instruments,
clocks and other products, too.

The Brighter Side of Electronics

ISE ELECTRONICS CORP.

Main Office:
P.O. Box 46, Ise City. Mie Pref., Japan

Tel: (05963) 5-2121 to 4. Telex: "4969523

2-7-7 Shigashi Shinbashi, Minato-ku, Tokyo. Japan Tel: (03) 433-6616 to 9. Telex: "J26546"

Noritake Electronics Office:
22410 Hawthorne Blvd. Torrance California 90505. U.S.A Tel: (213)373-6704. Telex: " 230674910 "

This may look like a multimeter... but it's really an autoranging multi-function counter

We've had a lot of comments that our new 1900A multi-function counter looks like our 8000A multimeter. We agree. In fact we planned it that way. Both are attractively styled and designed for user convenience. But inside they're vastly different instruments.
The 1900A is an advanced LSI/MOS multi-function counter with . . . autoranging in both frequency and period mode $\ldots 5 \mathrm{~Hz}$ to 80 MHz range with 25 mV sensitivity . . . event counting to 10^{6} automatic overflow . . . six digit LED display with automatic annunciation . . . all for the unbelievably low price of \$349.*
Plus you can order a rechargeable battery option, or a data output option that lets you use the 1900A in systems applications.
And just in case you're wondering - here is what the 26 range, 5 function 8000 A multimeter looks like.
Phone your local Fluke distributor to-day for a demonstration,
 or contact us direct.
*U.S. price F.O.B. Buffalo, N.Y.

FLபKE

COUNTER DIVISION

John Fluke Mfg. Co. Ltd.
Counter Division
P.O. Box 1094 Station D

Buffalo, N.Y. 14210
Phone (716) 842-0311
TWX 610-492-3214
For a demonstration circle 217 on reader service card.

ation. Transmitter input is compatible with unipolar, HTL, relay drive, and C-MOS logic levels. Receiver outputs can work into DTL, TTL, HTL, and C-MOS devices. The MT603 transmitter is priced at $\$ 154$, and the MR603 receiver sells for $\$ 235$. Delivery time is eight weeks.
Bramco Controls Division, Ledex Inc., College and South Streets, Piqua, Ohio 45356 [406]

Simulator replaces datasets for short-hop links

A dial-up dataset simulator replaces both datasets and telephone lines for data communications over distances as long as 1,250 feet. Intended to provide inexpensive service between local terminals and computers, the device emulates all dataset originating and answering functions and can handle data rates as high as 9,600 bits per second. The unit is completely self-contained and sells for less than $\$ 300$. Delivery time is 30 to 45 days.
Computer Transmission Corp. (TRAN), 2352 Utah Ave., El Segundo, Calif. [407]

Design for $300^{\circ} \mathrm{C}$ with Carborundum Ekkcel" thermoplastic

And mold with standard injection equipment

Few thermoplastics can retain longterm performance at temperatures of $300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)$. Ekkcel can. Ekkcel is the only thermoplastic that can be easily molded on standard injection molding equipment and also resist these temperatures. That's important to you - because you're interested in both the performance of a material and the costs of molding. Ekkcel performs...
A wide variety of high-performance electrical and mechanical components are being designed and molded in Ekkcel. Ekkcel has extremely low moisture absorption, good friction and wear, outstanding electricals, very high radiation and chemical resistance, and superior flammability resistance - Ekkcel satisfies Underwriters Laboratory specification VE-O.

Combine these properties with excellent dimensional stability and strength up to $300^{\circ} \mathrm{C}$, and you have

Ekkcel, an exciting thermoplastic for most any electrical and mechanical design.
The other half: moldability ...
Ekkcel molds on standard injection molding equipment. So you don't have to worry about expensive special molding equipment. Ekkcel resin runs easily, so you get high production rates - even with difficult-to-mold designs. You can also regrind Ekkcel-and that means lower costs.

What's your application?

If you have an application requiring performance at high temperatures, tell us about it.
Carborundum Plastics, Inc., Ekkcel Division,
5785 Peachtree Industrial Blvd. Atlanta, Georgia 30341.

Effect of Heat Aging on

Tensile Properties of Ekkcel I2000

Rate of Weight Loss vs. Time Ekkcel 12000

CAREDRUNDUM
Circle 173 on reader service card

OnlyTRW/LRC offersyoucomplete resistorchoice.
\qquad

You get exactly the resistor you need for your application.
 No compromises. No "favorites." Just quality.

Carbon comp.

Billions used in consumer, industrial, military applications. TRW/IRC carbon comp. capability ranges from standard commercial types through established reliability RCR's, to ultra-high range ($10^{\prime \prime}$ ohms). Where you're using carbon comp.'s in automated assembly, TRW/IRC packaging options can help cut the cost of interfacing with your machines. Card packs, lead tape reels, cut and formed leads... we'll be glad to explore the potential economies with you.

Metal Film

TRW/IRC has brought the state of the art in thin-film to a performance level equaling high-stability wirewounds. Capabilities include resistors with tolerances to $\pm 0.01 \%$ and ± 3 PPM T.C. ... high-rel units... precision subminiatures... and, of course
the popular RN's. You can also look at alloy films offering high-temperature and high-voltage capability at low cost.

Resistive Networks

Advanced resistor technology here. These IC compatible, precision tantalum-film circuits provide inherent low noise, excellent stability, and hermetic performance without hermetic cost. Tolerances from 5% to 0.05% available in custom designs.
TRW/IRC also offers the industry's most complete line of discrete fixed resistors.

Wirewound

The line starts with molded wirewound resistors-"space-savers" that bridge the cost-performance gap between composition resistors and precision wirewounds. It proceeds to standard, non-insulated types
for appliance/automotive use...to precision subminiatures offering high power density... to low cost fusible, flameproof units for consumer and industrial applications... to tubular and flat power wirewounds with ratings to 250 W .

Metal Glaze ${ }^{\text {TM }}$

This is TRW/IRC's thick-film technology-for all types of low power resistor applications. Metal Glaze is widely accepted for its builtin power handling reliability, resistance range, and cost effectiveness. Numerous standard and special designs-precision, semi-precision, flameproof, high-rel, highvoltage.

All types...all fechnologies... one source

To wrap it up, TRW/IRC offers you the most complete line of fixed resistors in the business, with many of the popular types available from one source-your local TRW/IRC distributor. Having a direct pipeline to each of our plants, he can give you fast delivery.
Contact your local TRW sales office for application assistance, custom designs, and special engineering help when you need it. TRW/IRC Resistors, an Electronic
Components Division of TRW, Inc. Plants at Boone, N.C., Burlington, lowa, and Philadelphia, Pa. Write TRW/IRC Resistors, 401 N. Broad St., Philadelphia, Pa. 19108. Or call (215) 923-8230.

The new Keithley Model 168 autoranging DMM... ...vive la différence!

There really is a difference in Digital Multimeters, and once you've experienced Keithley's 168 you'll know why we say vive! If you're tired of "generalpurpose" promises that turn into run-of-the-mill
performances; if you want that bit extra that'll make your job easier, then vive la différence... here's the DMM for you! Send for our DMM Selector Guide or call us for demo now. Phone (216) 248-0400.

KEITEIIEY
INSTRUMENTS U.S. A. : 28775 AURORAROAD, CLEVELAND, OHIO44139 EUROPE: 14. AVENUE VILLARDIN. 1009 PULIY. SUISSE

Semiconductors

User programs logic arrays

Intersil, Signetics bipolar
devices involve entirely different approaches

The general-purpose configuration of programable logic arrays (PLAs) gives them broad flexibility of application: they can be used to manage combinatorial logic; as controllers for sequential-state networks; as large high-speed read-only memories; as high-speed character generators for large or unusual fonts; or for several of these at the same time. What's missing from conventional pLAs is field programability-a feature that adds greatly to the usefulness of read-only memories and similar devices.

Recognizing this deficiency, two semiconductor companies-Signetics Corp. and Intersil Inc.-are introducing field-programable logic arrays. Though both companies use bipolar arrays, each approaches the problem of field-programability differently.
The Signetics device contains 16 inputs, 8 outputs, and 48 minterms, with standard nickel-chromium fused links programed by blowing the proper links to establish minterms or their inverted complements. The Intersil 14-by-8-by-48 product-term device, on the other hand, is built with conventional gold-doped transistor-transistor logic, and links are fused by the company's avalanche-induced migration, or AIM, technique.

In Intersil's IM5200 PLA, the basic operating circuit consists of 56 input inverters, which generate the true and complement of the 14 inputs; 4828 -input AND gates, eight 48 -input NOR gates, and three arrays of AIM programable elements. Additional circuitry is dedicated to programing and testing before programing. All outputs have 4 -kilohm
resistor pull-ups that permit wireANDing.
In the Signetics 82S101 PLA, each output function can be programed either true active high or true active low. The true state of the output functions is controlled via an output sum (OR) matrix by a logical combination of 16 input variables, or their complements, up to 48 terms. In addition to being fully TTL-compatible, both the 82 S 100 and a tri-state version called the 82 S 101 include a chip-enable clocking input for output deskewing and inhibit.
Housed in 28 -pin ceramic dual inline packages, the Signetics devices are priced at about $\$ 40$ each in 100lots and will be available in June. The Intersil IM5200, a vailable now, is priced at $\$ 25$ each for 100-999 plus a nominal programing charge. intersil Inc., 10900 North Tantau Ave., Cupertino, Calif. 94014 [411]
Signetics Corp., 811 East Arques Ave., Sunnyvale, Calif. 94086.

Chip with phase-locked loop
 cuts communications costs

Builders of communications equipment who are on the lookout for cost-saving monolithic components will welcome Exar's FSK demodulator and tone decoder chip for data modems, remote control and telemetry systems. The 14 -pin integrated circuit makes available inexpensive monolithic phase-
locked-loop technology in narrowband, high-performance communications systems.
The XR-2211 is optimized for fre-quency-shift-keyed modem demodulation and carrier detection but also has advantages in tone and fm communications in remote control and telemetry systems. In FSK modem applications, the company says, it offers higher performance, circuit simplification, and therefore lower cost, than other monolithic demodulators.

With its frequency stability and response speed, the XR-2211 can operate at bandwidths as narrow as $\pm 1 \%$ without sacrificing transmission rates or reliability. In addition, the XR-2211 is the first PLL demodulator with simultaneous carrier-detection capability. Also, it operates with a simplified RC network, eliminating many external components that adds costs to system design.
As shown in the diagram below, the chip includes a phase-locked loop with an extremely stable volt-age-controlled oscillator, a lock-detect subsystem, internal voltage reference, and comparators to generate demodulated FSK data and carrier detection or decoded tone data outputs. In modems, the carrier detection output can be used to enable or disable the FSK data output. Also, the PLL has an analog signal output for applications such as fm telemetry and control systems.
Simple calculation of five or six resistor and capacitor values, which

Eatenalive by the high cost of inventory?
 (for survival information.)

If you're manufacturing computers, peripherals, instruments or systems, you may have a problem today. You need an inventory of power supplies to meet your shipping schedules, but they represent a significant investment and tie up a lot of cash.

What can you do about it?

You can orderthe power supplies at the last minute and hope that they arrive on time...or...you can juggle your funds and put a few in stock...or... you can call ACDC.

We have 3,000 modular OEM Series power supplies ready for immediate
delivery. Over 100 U.L. recognized models from 4 to 36 volts, up to 36 amps. High current power supplies up to 500 watts. Flea powered units down to 250 milliwatts. Dual and triple output models. They feature the outstanding value and performance youexpect fromACDC.
 115 VAC input or 115/220/230. 0.1\% regulation, overload protection and $71^{\circ} \mathrm{C}$ rating. So, call tomorrow for five... or ten or a hundred. They're on the shelf. Incidentally, theyre pricedandspec'd out in our new short form catalog. Circle the bingo card or write for it.

acde electronics inc
 401 Jones Road, Oceanside, California 92054 (714) 757-1880

Circle 178 on reader service card

Cost Cutter
 NEW Electronics Buyers' Guide .. Easy-to-use, single volume source for:

- Data on over 4,000 products
- Over 6,000 company listings and phone numbers.
- EBG EXCLUSIVE: quick access to over 1000 catalogs through a Direct Inquiry Service. The international world of electronics at your fingertips. Find suppliers ... fast ... accurately and locally! For your copy send $\$ 20.00$ (USA and Canada only; elsewhere send $\$ 30.00$) to address shown below.

> Electronics
> Buyers' Guide
> A McGraw-Hill Publication 1221 Ave. of the Americas, New York, N.Y. 10020

New products

can be rounded off to standard component values, allows center frequency, bandwidth and output delay to be established independently. Only a few values need to be adjusted to change communications bands or tone frequencies, facilitating the use of a basic design for many different applications.

The XR-2211's typical frequency stability is $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the operating temperature range, compared with $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for previous designs. Supply stability is $0.05 \% /$ volt and $0.2 \% /$ volt at 5 V . Input dynamic range is 2 mV to 3 V rms; frequency range, 0.01 Hz to 300 kHz ; adjustable tracking range, $\pm 1 \%$ to $\pm 80 \%$; and power supply range, 4.5 V to 20 V . The unit is compatible with DTL, TTL and ECL logic.

Housed in a 14-pin plastic or ceramic dual in-line package, the XR2211 is available in three temperature ranges. Prices start at $\$ 6.02$ each in quanties of 100 to 499. Exar Integrated Systems Inc., 750 Palomar Ave., Sunnyvale, Calif. 94086 [412]

High-power Darlingtons

are rated up to 300 volts
Two series of monolothic Darlington power transistors are available with breakdown voltages ($\mathrm{BV}_{\mathrm{CEO}}$) as high as 300 volts. The 2 -ampere U2T700 series and the 5-A U2T800 series have provision for external biasing of both input and output transistors for greater flexibility. With typical gains of 2,000 , the units can switch high-power dc loads directly from low-level logic signals. Applications range from drivers for stepper motors and print hammers to switching power supplies and de-

SIEMENS

The world of Siemens capacitors spotlight on
 D Series and Mil-C-39003 tantalums

Enter "The World of Siemens Capacitors" and discover our D Series and Mil-C-39003 tantalums. Siemens offers you CSR-13, CSR-91 and CSR-09, available in all voltages - all cap values - all case sizes, with full qualification to the M-P-R\&S levels of Mil-C-39003 1E, 2B, and 4B. This rugged line of capacitors comes to you directly from our manufacturing facility in Arizona - at competitive prices and with excellent availability.
But, if your capacitor requirements go beyond D Series and Mil Spec tantalums, you can still think Siemens. Join the growing number of capacitor buyers who are discovering "The World of Siemens Capacitors." Call us for film and metallized film with dielectrics of paper, lacquer, polyester, polycarbonate, polypropylene, polystyrene; tantalum and aluminum electrolytes and ceramics.
For the phone number of your nearest Siemens Component Group sales office, PHONE TOLL FREE (800) 645-9200 (call collect in New York (516) 294-0990).

And remember . . .
Siemens: Where Quality And Resources Make The Difference.

Circle 180 on reader service card

WORLD'S LIGHTWEIGHT CHAMP!

A $91 / 2$ pound, dual-trace 20 MHz scope that fits in a briefcase . . .

- Mini-portable Oscilloscope Battery, AC or DC powered - DC. 20 MHz bandwidth Computerized triggoring Delay line - 10 mV /div sensitivity 21 sweep ranges to 100 nsec/div 4 you're tired of working with the "Heavy"weigh:s." but stlll need a high performance portable sepre trat can handle your trouble-shooting needs, then consider Model PS940A. This dual-erace "mini-scope" provides all the basic fealures and quality of a sophisticated lab scope, yet its weight and size make it easy to carty to fvery job-at the plant or in the field And it is simpie tu operite Computerized triggering guarantees a stable CRT dispiay at all times. Aiso. both traces can be vertically pustitoned in the DC coupled irigge: mude without the need for trigger icvel readjustinent.
avallable now for only $\$ 1145$
INTERESTED? (all Hal Wa:csta at (i14) $271-3512$ or wite 1 , 18 at 7170 Convoy Ceart, San Diego, Collforma imal, For FREE 800-645-920\%. in N. X. State call Follect 1316) 294 -0990

From a Leader in Mint-Portable Oacilloseapes
$V \overline{\overline{\text { COPDOPATION }} \overline{\text {-DATA }}}$

New products

flection circuits. Prices, in hundreds, range from $\$ 3.40$ to $\$ 6.00$ depending upon packaging and rating. Delivery time is two to three weeks.
Unitrode Corp., 580 Pleasant St., Watertown, Mass. 02172 [414]

ECL sense amplifier has

10-ns propagation delay

Made using emitter-coupled-logic fabrication techniques, the MC3461 sense amplifier is designed to interface n-channel MOS memories with ECL 10,000 logic elements. The amplifier has a maximum propagation delay of 10 nanoseconds (5 ns typical) and contains on-chip latches with typical response times of 1.0 ns . The pullup resistors required for the current-sinking outputs of such memories as the MCM7001 are contained on the MC3461 chip. The device has an operating temperature range of 0 to $75^{\circ} \mathrm{C}$. It is housed in a 16-pin ceramic dual in-line package and sells for $\$ 8.95$ in hundreds. Delivery is from stock.
Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20924, Phoenix, Ariz. 85036 [413]

Serial CCD memory stores

1,024 nine-bit words

Intended for use as a display refresh memory, in data communications networks, in smart terminals and the like, the CCD 450-a 1-kilobyte serial storage element-is the first charge-coupled-device (CCD) memory to be produced in large quantities. The memory uses Fairchild's Isoplanar buried-channel, ion-implanted barrier structure in its storage registers, with n-channel MOS structures used for the timing, charge-detection, and level-conversion circuitry. The result is a 9,216 bit (1,024 words by nine bits) memory with an average access time of 200 microseconds and a maximum power dissipation, in the read and write modes, of 250 milliwatts. In the standby recirculate mode, the

Get on board with Teledyne I/O converter modules

Now Teledyne Relays offers its proven I/O converter modules in low profile packages for direct PC board mounting. The versatile Teledyne 675 series allows you to design programmable controllers, process and machine tool controls with flexible and economical I/O interface circuitry. The full line includes both ac and de, input and output modules. All versions are optically isolated, with 1500 VRMS isolation, to protect logic lines from ac or dc power circuits. The AC output modules feature zero voltage turn-on to reduce switching noise and high dv/dt ratings

Typical Functional Diagrams to prevent false triggering in tough industrial environments.
Get on board with Teledyne Relays. We've got thousands of I/O modules at work in the field. Call your nearest Teledyne Relays office for location of your local representative or distributor.

- TELEDYNE RELAYS

3155 West El Segundo Boulevard, Hawthorne, California 90250
Telephone (213) 973-4545

Photo courtesy of Datametrics
a subsidiary of ITE Imperial Corporation

Donit be fooled by "low-cost" claims and low value equipment!

Compare before you buy.

Model 9300 Time Code Generator/Reader
The Datum Model 9300 Time Code Generator/Reader provides:

- Forward and reverse reading
- Large, solid-state LED display
- Tape-Search compatibility
- Day-Of-'ıear at no additional cost
- Wide dynamic range
- Plug-in components

Plus!
An almost infinite variety of custom options

Consult the Datum Timing staff for help with any problem. Theyve been in the "tick of things since the beginning of time. Digital time, that is.

New products

power consumption drops to 30 mw . Housed in a standard 18 -pin ceramic dual in-line package, the CCD 450 can handle data rates from 50 kilohertz to 3 megahertz. Its price, for small evaluation quantities, is $\$ 90$ each. Production quantity prices are expected to be about a tenth by the end of the year.
Fairchild Camera and Instrument, Integrated Circuits Group, 464 Ellis St., Mountain View, Calif. 94042 [415]

Single IC contains

complete TV sound channel
The TDA1190 is an integrated circuit that contains all the active circuitry needed for a complete TV sound channel. Functions performed by the unit include i-f amplifier/limiter, active low-pass filter,

Now! A 5V, 120-amp switcher with forced-air cooling, up to 3 outputs, 75% efficiency, measures only $8^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{L} \times 5^{\prime \prime} \mathrm{H}$, and weighs less than 12 lbs.

The newest addition to the LH line of switching regulated power supplies is the super-compact forced-air cooled 120 -amp series. With dimensions ideal for computer memory system installations, these switchers are available in single or multiple output models with extremely high efficiencies: 80% on primary output, an average of 75% on all others.

Up to three outputs

Primary vutput is 5 VDC. 120 amps; second and third outputs are ± 12, or ± 15 at 8 amps Combined load on all outputs is limited to 600 watts. All outputs are fully regulated as a standard feature, and all are adjustable from the front panel.

Outstanding features

Over-temperature protection and RFI line filtering are stundard features; over-voltage protection is standard on primary output, optional on secondaries. Other options include remote on-off, master-slave paralleling, and paralleling of up to

cable, interconnections have been reduced 90%, greatly enhancing reliability.

Ask for full-line folder

Our new 6-page folder fully describes the new 120 amp units and other standard I.H switchers, and discusses oplions for specific

AC inputs can be externally selected $115 / 231) \mathrm{V}, 47$ to 63 Hz , simply by changing a jumper on the front terminal strip. Easy maintenance,
high reliability Easy maintenance,
high reliability
In single-output models all components are mounted on just two circuit hoards, multiple-output models use three, so the entire switcher can
be disassembled in less than five use three, so the entire switcher can
be disassembled in less than five minutes. Through the use of ribbon
10 units. Mounting is by side or boltom in any direction. They operate in ambient temperatures of up to $50^{\circ} \mathrm{C}$ without de-rating.

Selectable AC inputs

Most comprehensive

 switcher line madeLH Research makes several hundred standard switchers, with single and multiple outputs from 250 to 600 watts, and AC or DC inputs. All are extremely compact and lightweight, with six package shapes to suit your assembly. Efficiencies are $75-80 \%$, and costs are as low as 75 cents a watt. Among the newest is the double dual model, which has two isolated 250 -watt outputs plus two low power outputs, and weighs only 16 pounds.

We can deliver the world's smallest 180° air variable capacitors. On time.

And since we re nice people, we don't even charge much for them So if you have an application that calls for a sub-miniature capacitor that you can "tweak" to a specific frequency, these Johnson trimmers are ideal

You can choose from either PC or stripline mount either vertical or horizontal tuning. These Type "T" capacitors are about one-third the size of the familiar type " U " capacitors, so you can save space, cut costs and insure improved performance in the most compact electronic equipment
Rotors and stators are precision-machined from solid brass extrusions, resulting in exceptional stability and uniformity High Q-typically 2000 at 150 MHz Temperature coefficient is a low plus $30 \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. High torque ($11 / 2$ to 8 oz /) inches) holds rotor securely under vibration. They re designed to meet or exceed EIA-RS 204 and MIL Standard 202C Methods 204A and 201A
In short these capacitors may be just what you ve been looking for It'll only cost you a stamp to get more information And if you give us your phone number, we ll call you and send free samples after we have clarified your application.

E. F. JOHNSON COMPANY

3005 Tenth Ave S.W. Waseca MN 56093

Please send me technical information on the type T.Also, include information on your entire line of variable capacitors\square I want test samples. Please call me at \qquad
NAME
TITLE
FIRM

ADDRESS
CITY \qquad STATE \qquad ZIP
E.F.JDHNSDNCDMPANY

New products

fm detector, dc volume control, and power output amplifier. Requiring only a small number of external passive components, the TDA1190 is noteworthy for its very wide dc volume-control range (typically 90 dB), its high output-power capability (typically 4.2 watts into 16 ohms), and the fact that it radiates no electromagnetic interfi "ence and therefore requires no external shielding. Price of the T, All90 is $\$ 2.80$ in lots of 100 to 999 pieces.
SGS-ATES Semiconductor Corp., 435 Newtonville Ave., Newtonville, Mass. [416]

C-MOS watch circuit drives liquid-crystal displays

A monolithic C-mOS timekeeping circuit, the model 5022, is designed for use in watches with $5^{1 / 2}$-digit liq-uid-crystal displays. The circuit, which drives the displays directly without external components, provides outputs for displaying hours and minutes continuously. Either seconds or the date may be displayed on the other two digits. All timesetting is achieved without rollover, and advancing the date or hours does not affect circuit accuracy. Price of the 5022 is $\$ 20$ in lots of 100 pieces. Delivery is from stock.
Nortec Electronics, 3697 Tahoe Way, Santa Clara, Calif. 95051 [417]

Voltage-compensated RAM has $15-n s$ access delay

Intended for add-on memory applications where only limited supply voltages are available, the SN10144 is a 256 -bit random-access memory made of emitter-coupled logic and sporting a typical address access delay of 15 nanoseconds. The memory, which dissipates 500 milliwatts, is priced at $\$ 22.50$ in hundreds. Small-quantity delivery is from stock; large orders will take eight weeks.
Texas Instruments Inc., P. O. Box 5012, MS308, Dallas, Texas 75222 [418]

SERIES 32 0.3 inch (7.62 mm) dual

SERIES 30 0.3 inch (7.62 mm) single

SERIES 50 0.5 inch (12.7 mm) single

STATUS INDICATORS

MEMORY - inherent remanent magnetism maintains the display state.
LOW POWER - one milli-watt second set/reset energy. Zero power to retain state. Drive voltages from 3-48 volts.
VISIBILITY - rotating fluorescent discs and flags provide excellent visibility over a wide range of ambient light conditions and wide viewing angles.
RELIA BILITY - only one moving part rated for over 20 million operations. No lights or mechanical linkages to wear out. Virtually maintenance free.

FERRANTI-PACKARD STATUS INDICATORS

Ideal for

- Transient Recorders
- Industrial Process Displays
- Contact Status Indicators
- High Density Matrix Displays
- Portable Field Equipment.

Fluorescent discs and flags available in a range of colors.
The electromagnetic operation requires zero energy to maintain status.
Unique memory retention eliminates the need for memory circuits and
 reduces power supply and
circuitry costs. Indicators are fully operational over a wide range of environmental conditions.

Ferranti-Packard's status indicators are light weight (Series 30, 0.17 oz (5 grams)) and are ideal for mounting on printed circuit boards and high density matrices.
For full information and specifications, contact the Display Components Department,

FERRANTI-PACKARD LIMITED

ELECTRONICS DIVISION
121 Industry Street,
Toronto. Ontario, M6M 4M3, Canada
Telephone: (416) 762-3661
Telex: 06-22007.

The MN5210 Series of 12 bit A/D converters guarantees total conversion time of $13 \mu \mathrm{sec}$ maximum...a clock rate of 1 MHz .
Micro Networks 12 bit A'D's are:
Totally adjustment free and factory trimmed. The need for range and zero adjustments is totally eliminated, thereby effecting savings ill space. component count. assembly. and test labor.
Hermetically sealed 24 .pin dip package guarantees high reliability and space savings.
Low power (700 mw) - reduces system power drain.

- Guaranteed $-1 / 2$ LSB linearity over the full temperature range - assuring no missing codes.
- Available to the full MIL temperature operation of -55 to -125 C
Optionally available processed to MIL-Std-883. Class B
Prices: MN5210 (1-24) $\ldots \$ 275$ MN5210H (1-24) .. $\$ 425$

Avelable from srock Tecn'? c. 7^{\prime} date availabla an request Write or call rodar Tol $1017.856-5400$

MICRO NETWORKS

 CORPORATION324 Ciark Sireet • Worcester, Mass. 01606

It's MMI's 6701 bipolar microcontroller. Replaces up to 25 packages of 7400 logic. At standard TTL cost per gate-but without the interface problems and costly PC real estate required by smaller devices. Whether they want it to emulate a CPU or replace a lot of MSI TTL, your designers can design with our 6701, not around it. At $\$ 125$ each in small quantities, it's a real bargain. Now available from stock at:

ALMAC/STROUM: Oregon, Portland (503) 2923534; Washington, Seattle (206) 763-2300.

ARROW: Connecticut, Hamden (203) 248-3801; Maryland, Baltimore Area (202) 737-1700; Massachusetts, Boston Area (617) 273-0100; Minnesota, Minneapolis Area (612) 888-5522; New Jersey, Saddlebrook (201) 797-5800; New York, New York City Area (516) 694-6800; Ohio, Cleveland (216) 464-2000, Dayton (513) 253-9176; Pennsylvania, Philadelphia Area (609) 235-1900.
COMPONENT SPECIALTIES: Texas, Dallas (214) 357-4576, Houston (713) 771-7237.

FUTURE: Canada, Montreal (514) 735-5775, Ottawa (613) 232-7757, Toronto (416) 677-7820, Vancouver (604) 261-1335.
HALL-MARK: Alabama, Huntsville (205) 539-0691;
Florida, Orlando (305) 855-4020; Illinois, Chicago (312) 437-8800; Kansas, Kansas City Area (913) 888-4747; Minnesota, Minneapolis (612) 884-9056; Missouri, Kansas City Area (913) 888-4747, St. Louis (314) 521-3800; North Carolina, Raleigh (919) 832-4465; Oklahoma, Tulsa (918) 835-8458; Texas, Dallas Area (214) 231-6111, Houston (713) 781-6100; Wisconsin, Milwaukee (414) 476-1270.
INTERMARK: California, San Francisco Bay Area (408)
738-1111, Los Angeles Área (213) 436-5275, San Diego (714) 279-5200; Colorado, Denver (303) 936-8284; Washington, Seattle (206) 767-3160.
KIERULFF: Arizona, Phoenix (602) 273-7331; California,
San Francisco Bay Area (415) 968-6292, Los Angeles
Area (213) 685-5511, San Diego (714) 278-2112;
Colorado, Denver (303) 343-7090; District of Columbia (301) 948-0250; Maryland, Baltimore Area (301)

948-0250; Massachusetts, Boston Area (617) 935-5134; New Jersey, Rutherford (201) 935-2120.
PIONEER: Indiana, Indianapolis (317) 849-7300;
Michigan, Livonia (313) 525-1800; Ohio, Cleveland
(216) 587-3600, Dayton (513) 236-9900;

Pennsylvania, Pittsburgh (412) 782-2300.
SUMMIT: New York, Buffalo (716) 884-3450, Rochester (716) 334-8110.

TECHNICO: Maryland, Baltimore Area (301) 828-6416.

Instruments

Cable testers are portable

Rugged time-domain reflectometers weigh only

18 pounds, occupy $0.6 \mathrm{ft}^{3}$

In an effort to give field-service personnel a portable instrument that can make meaningful checks on power- and information-carrying cables, Tektronix has developed a pair of rugged time-domain reflec-

tometers, each weighing about 18 pounds and occupying about 0.6 cubic fơot.

Unlike resistive and swept-frequency testers, which can identify cable faults but not locate them, a TDR test set can pinpoint problems to within a few feet or inches. And according to John Trudel, marketing manager for the 1500 Series TDR portable cable testers, the instruments can test just about any cable assembly as well as verify the proper operation of broadband components. It can test all types of avionics cables (radar, radio, iff, DME, audio, fuel-sensor, etc.); shipboard cabling; all types of phone cables; antennas and matching networks; equalizers; petroleum-industry cabling for well-logging and communications; and many types of power-distribution cables.

The series consists of two instru-ments-the 1502 and 1503. The 1502, says Trudel, gives the user the performance of a high-resolution
lab instrument. It is calibrated directly in reflection coefficient and distance, and is therefore simple to operate. It uses 110 -picosecond-step excitation signals which provide distance resolution to within 0.6 inch at distances up to 2,000 feet, depending on the rise time and degradation characteristics of the cable.

The limited bandwidth and losses common to long cables (particularly twisted pairs) require special highenergy controlled-bandwidth test signals, says Trudel, so the 1503 was developed for these applications. It provides 10 -volt sinusoidal pulses and is calibrated in decibels for direct reading of return loss. The 1503 works out to 50,000 feet and resolves faults down to 3 feet. Provision is made for selecting impedance levels of $50,75,93$, and 125 ohms by the press of a button.

Whereas earlier TDR testers have been bulky, fragile, sensitive to environmental changes, and difficult to operate out in the open, the new machines are not only compact and portable, but rugged as well. Designed to military standard MIL-T28800, type II, class 2, style A, the 1502/1503 is resistant to water, salt spray, snow, sand, dust, heat and cold, bumps, and vibration.

Both versions are equipped for recording "signatures" of equipment characteristics by means of an external X-Y recorder. Signatures can be checked on a routine basis, says Trudel, allowing problems to be identified and corrected before catastrophic failures can occur. An optional plug-in chart recorder is available.

The 1502, to be available in May, and the 1503 , in June, are priced at $\$ 2,750$ each. The optional plug-in recorder sells for $\$ 475$.
Tektronix Inc., P.O. Box 500, Beaverton, Ore. 97005 [351]

Small $4 ½$-digit meter
 is accurate within 0.01%

Since "tradeoff" is the name of the engineering game, it is reasonable to expect that a $4 \frac{1}{2}$-digit panel meter

that fits into a package 3 by 1.75 by 2.25 inch must be either expensive or rather inaccurate, or possibly both. This conclusion is not necessarily true, however. The model DM-4000 from Datel Systems Inc., which sells for $\$ 219$ in single quantities, has a maximum error of $\pm(0.01 \%$ of reading +1 count $)$ at $25^{\circ} \mathrm{C}$, and the temperature coefficient doesn't exceed $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from 0 to $50^{\circ} \mathrm{C}$.

Despite its small size-it mounts in a 1.75-by-3-in. front-panel cut-out-the meter uses seven-segment light-emitting-diode readouts with characters that are 0.43 in . high. The 5 -volt meter has an input resistance in excess of 100 megohms and an input range of ± 1.9999 volts.

A stable crystal oscillator, adjusted to a multiple of either 50 or 60 hertz, gives 60 decibels of nor-mal-mode rejection. The unit's autozero correction eliminates residual offset errors, and its internal reference of 6.4 V is brought out to a three-wire ratiometric output for temperature-coefficient tracking. As an option, Datel offers full parallel binary-coded-decimal outputs and automatic polarity and overflow display. Decimal points may be individually selected by means of the rear 18-pin dual printed-circuitboard connector. Full TTL-compatible BCD outputs, controls, and flags are also included.

Analog specifications include 120dB common-mode rejection over a ± 300 - V common-mode range. The input settling time for rejection of $60-\mathrm{Hz}$ hum is 50 milliseconds; the

PROGRAMMABLE TACAN Simulators... off the shelf!

Only Republic can solve your TACAN test equipment problems virtually overnight. Because we stock for immediate delivery three TACAN Beacon Simulators that meet MIL, FAA and airline requirements for testing airborne TACAN interrogators and DME. No one else does. For one very good reason: test and simulation equipment isn't a sideline with Republic; it's our principal business. And Republic is the world's leading manufacturer of navigation equipment simulators.

Write for details on

Republic off- the-
shelf DTS Series
TACAN Beacon
Simulators.

republic electronic

industries corp.

Circle 188 on reader service card

New products

$60-\mathrm{ms}$ integration for $50-\mathrm{Hz}$ noise is optional. The DM-4000 has an internal two-samples-per-second start clock, but an external clock of $0-5$ hertz may be used.

A sister model, the DM-4300 is available with a $43 / 4$-digit 0.3 -in. LED display and $\pm 3.999-\mathrm{v}$ input.

The DM-4000 is priced at $\$ 219$ each in quantities of one to nine; adding optional $B C D$ boosts the price to $\$ 239$ in unit quantities. Delivery is from stock.
Datel Systems Inc., 1020 Turnpike Rd., Canton, Mass. 02021 [352]

Voltage calibrator is

accurate within 0.003\%
A dc voltage calibrator with a range of 100 nanovolts to 311 v has a maximum error, calculated by the limit-of-errors method, of 0.003% of setting. The seven-digit instrument has four ranges with full-scale voltages of 300 millivolts, $3 \mathrm{~V}, 30 \mathrm{v}$, and 300 V. Broadband noise and ripple on the model 330D do not exceed 50 microvolts rms on the $300-\mathrm{v}$ range

or $5 \mu \mathrm{v}$ on the $300-\mathrm{mv}$ range. There are no random spikes. When used as a voltage source, the 330D can deliver up to 100 milliamperes at 100 v and up to 25 mA above 100 v . Its output impedance is less than 20 milliohms. The unit's no-load to full-load regulation is within 0.0015%, and short-term stability is better than 0.001%.
Electronic Development Corp., 11 Hamlin St., Boston, Mass. 02127 [353]

1.5-kVA polyphase power

source spans 47 to 500 Hz
Suitable for both laboratory testing and OEM applications, a three-phase

To find over 1000 ratings on the shelf at Old Fashioned prices!

First we'd like to put a "Plug-In" for our Printed Circuit Power Transformers since they are the most complete and diversified selection available. There are 5 basic sizes, each available with 115 V or $115 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ primaries and secondary voltages from 5 V to 120 V . Our smallest is rated 1 VA and is 0.83 inches high. This allows 1 inch board spacing. The largest is rated 24 VA (e.g., $24 \mathrm{~V} @ 1 \mathrm{~A}$) which is virtually impossible to find as a standard item (except at Signal) and, it is only $13 / 8$ high.

A special "plug" is warranted for our "LP" series of Flat Plug-Ins which is designed for 6VA with a height of only 0.85 inches. Special features are humbucking construction, non-concentric winding, dual 115/230V primaries and outputs from 5 to 230 V . This is a Signal exclusive!

You will also find on Signal's shelves the most extensive line of Rectifier Power Transformers and Chokes (5 to $300 \mathrm{~V}, 0.1$ to 200 A). They are ideal for use in single or dual output DC power supplies.
 The real heavy stuff is on the floor nearby with ratings such as 12 V at 1000 Amps and 3 phase transformers with DC output ratings like 24 V at 200 Amps.
Something really new is our " 2 -for-1" series of small power transformers with ratings from 2.4 to 60 VA . A fresh design approach has cut weight, size and cost almost in half with improved performance. Special features include non-concentric winding, solder or quick-connect terminals, and 2500 V hipot.

Sighal transiormer co., inc.

1 Junius Street, Brooklyn, N.Y. 11212 Tel: (212) 498-5111 • Telex 12-5709

and Signal has it in Stock!

AUTOTRACK ANTENNA

SCR-584 RADAR SYSTEM

360 deg AZ 210 deg EL. 1 mil. accuracy. Missile vel. accel. and slew. rates. Amplidyne conrol. Handle up to 20 ft dish Compl control chassis. ALSO in stock 10 cm . van mounted rad. system. Conical scan. PPI. 6 ft. dish. 300 pg . instr. bk. on radar $\$ 25$

RF SOURCES

CW: $300-535 \mathrm{KHz} 500 \mathrm{~W}$; $2-30 \mathrm{MHz} 3 \mathrm{KW} ; 4-21 \mathrm{MHz} 40 \mathrm{KW}$; $24-350 \mathrm{MHz}, 100 \mathrm{~W}_{\mathrm{i}} 385-585 \mathrm{MHz} 1 \mathrm{KW} ; 750-985 \mathrm{MHz}$ 10 KW ; $.95-8.8 \mathrm{GHz} 150 \mathrm{~W}_{\text {; }} 1-1.5 \mathrm{GHz} 110 \mathrm{~W}$; $1.7-2.4 \mathrm{GHz}$ $10 \mathrm{KW} ; 4.4-5 \mathrm{GHz} 1 \mathrm{KW} ; 8.8-11 \mathrm{GHz} 200 \mathrm{~W}$. Many more.
UHF: 1 Megawatt $210-225 \mathrm{MHz} 5 \mu \mathrm{sec} 180$ PPS: 14 KW $400-420 \mathrm{MHz} 0002 \mathrm{DC}: 1 \mathrm{KW} 400-700 \mathrm{MHz} .002 \mathrm{DC}$
BAND: 1 KW 1-1.5GHz-.1DC: $500 \mathrm{KW} 1.2-1.35 \mathrm{GHz}$
2μ sec 400 PPS
EAND: $1 \mathrm{KWW} 2.4-2.6 \mathrm{GHz} .75 \mu \mathrm{sec}$ 1200PPS: 250KW $2.7-3.3 \mathrm{GHz} \quad 8 \mu \mathrm{sec} \quad 1600 \mathrm{PPS} ; 500 \mathrm{KW} \quad 2.7-3.1 \mathrm{GHz}$ $8 \mu \mathrm{sec} 1600 \mathrm{PPS} ; 1$ Megawatt $2.7 \cdot 2.9 \mathrm{GHz} 1 \mathrm{Hsec}$ 1200PPS: 5 Megawatts $2.75 \cdot 2.85 \mathrm{GHz} 2.5 \mu \mathrm{sec} 400 \mathrm{PPS}$. BAND: 225KW $6275-6575 \mathrm{MHz}$. $4 \mu \mathrm{sec}$ 680PPS: 250KW $5.4-5.8 \mathrm{GHz} .5 \mu \mathrm{sec} 680 \mathrm{PPS}: 1$ Megawatt $6 \mathrm{GHz} \mid \mu \mathrm{sec}$ 1000PPS.
X BAND: $100 \mathrm{~W} \quad 9.2-9.5 \mathrm{GHz} .5 \mu \mathrm{sec} 1000 \mathrm{PPS} ; 1 \mathrm{KW}$ $8.9-9.4 \mathrm{GHz} .001 \mathrm{DC}: 65 \mathrm{KW} \quad 8.5-96 \mathrm{GHz} \quad 001 \mathrm{DC}:$ $250 \mathrm{KW} 8.5-9.6 \mathrm{GHz} .0013 \mathrm{DC}: 400 \mathrm{KW} 9.1 \mathrm{GHz} 1.8 \mu \mathrm{sec}$ 450 PPS.
Ku K BAND: $50 \mathrm{KW} \quad 16.4-16.6 \mathrm{GHz}$. $001 \mathrm{DC}: 135 \mathrm{KW}$ $15.5-17.5 \mathrm{GHz} .0006 \mathrm{DC}: 40 \mathrm{KW} 24 \mathrm{GHz} .0007 \mathrm{DC}: 40 \mathrm{KW}$ 35 GHz .0004 DC .

PULSE MODULATORS + H.V.P.S.
245 KW LINE Output 16 KV 16 A. $25 \mu \mathrm{~s} 4000$ PPS
405 K W FLOATING DECK Output $20 \mathrm{KV} 20 \mathrm{~A} 1 \mu \mathrm{~s}$ to 10 millesec pulse.
500 KW LINE Output $22 \mathrm{KV} 28 \mathrm{~A} .4 / 1.75 / 2.25 \mu \mathrm{~s}$ 2500/550/300 PPS.
MW HARDTUBE MIT MODEL 9 Output 25 KV at 40 20 MW LINE 30 KV
2.0 MW LNF 10 MW LINE $76 \mathrm{KV} 135 \mathrm{~A} .2 .5 \mu \mathrm{~s} 350$ PPS . 17 MW LINE $17 \mathrm{KV} 1000 \mathrm{~A} .2-5 \mu \mathrm{~S} 150-2000$ PPS SEND FOR FREE 24 PG. CATALOG

MOD IV HI-RES MONOPULSE TRACKER
Instrumentation radar: freq. $8.5-9.6 \mathrm{GHz}$, Pwr: 250 KW .
.1 mil accu. Trk. Rng. 50 or 200 mi
RADAR SYSTEMS
K BAND MONOPULSE 4OKW E-34
K BAND MONOPCH BAND SEARCH 135 KW B-58
KU BAND SEARCH 135K B-58
X BAND FIRE CONTROL 250KW M-33
\times XAND WEATHER/SEARCH 250 KW AN/CPS-9
X
X
X
X
BAND AIRBORNE TRACKER 50 KW
B-47
\times XAND MOBILE TRACKER $40 K W$ AN/MPO- 29
X BAND WEATHER/SEARCH 4OKW AN/SPN-5
X BAND TRANSPONDER 10OW AN/DPN-62
C BAND HGT. FDR. 5MW FPS-26; 1 MW TPS-37
C BAND SEARCH 285 KW AN/SPS. $58 / D$
S BAND HEIGHT FINDER 5 MW AN/FPS- 6
S BAND SEARCH COHERENT 1 MW AN/FPS-18
S BAND ACQUISITION IMW NIKE AJAX/HERC
S BAND TRACKER 10' DISH 500 KW AN/MPQ-18
S BAND MORTAR LOCATOR 25OKW AN/MPQ-10A
S BAND TRACKER 250 KW AN/MPS. 9
1 BAND SEARCH 40° ANTENNA 500 KW AN/FPS- 75
L BAND SEARCH 500KW AN/TPS-1D/GSS-1
UHF SEARCH 1MW TPS 28
DRONE CONTROL SYSTEMS
UHF COMMAND SYSTEM AN/URW-14
\times XAND DATA LINK AN/UPW-1
X BAND TRACKER AN/MPQ 29
X BAND TRACKER AN/MSQ-51
SHORAN TYpe CPN-2A Freq 290-330 MHz Pwr 30KW consists of trans., recv., monitor, etc.

SPARE PARTS IN STOCK

Nike Ajax. Nike Hercules. M-33. MPS-19. TPS-ID. TPSNike Ajax. Nike Hercules.

Radio

Research Instrument Co., Inc. 3 QUINCY ST., NORWALK, CONN. 06850 (203) 853-2600

Circle 190 on reader service card

COLOR TELEVISION AND RADIO FM ANTENNA
Patented rollable slotted array design with PERFECT COLOR BAND-WIDTH. Uses no masts, no dangerous Rabbit Ears or plugging to AC lines; and NO SIGNAL SPLITTERS, since the UHF-VHF-FM terminals are available (AND USABLE) at the same time. CAN BE USED OUT SIDE IF YOU GUNK TO SURFACE FACING BROADCASTING STATION'S ANTENNA. Made of heavy decorative plastic burlap (metal slots not seen) rugged enough for YACHT or RV. OPTIONAL plain plastic or with acrylic painting of a GALAXY by artist. Antenna size is $18^{\prime \prime}$ by $48^{\prime \prime}$ (long side hangs vertically). Standard TV twin-line (300 ohm) furnished. NOTHING ELSE TO BUY OR NEEDED TO INSTALL, just hang on wall and you have a 40 mi. range (6 db . above dipole) antenna. ORDER POSTPAID BY CO., insured, airmail, GUARANTEED, for $\$ 15$ for plain model or $\$ 20$ for antenna with hand-made GALAXY design from: (COD is OK).

ANTENNA DESIGN CO.
11621 Hughes Ave., NE
Albuquerque, NM 87112

New products

ac power source can put out up to 1.5 kilovolt-amperes over the adjustable frequency range from 47 to 500 Hz . In addition to its continuously variable frequency-control, the unit has three push buttons for 50,60 , and 400 Hz . Each output phase can be adjusted in amplitude from 0 to 125 V rms. The 55 -pound model 315 , which is claimed to be nearly a fifth the weight of comparable power sources, is priced at $\$ 3,995$ in unit quantities. Standard units are available from stock. Specials can take up to four weeks for delivery. Pacific Electronics, 2643 N. San Gabriel Blvd., Rosemead, Calif. 91770 [354]
$300-\mathrm{MHz}$ spectrum analyzer
has $72-\mathrm{dB}$ dynamic range
Sporting a 72-decibel dynamic range and covering the frequency band from 1 to 300 megahertz, the model 9040 spectrum analyzer is made in two versions-as a plug-in

module for 9000-series Kay-Scopes, and as a self-contained unit with vertical and horizontal outputs that allow it to use any oscilloscope as a display. The analyzer's display flatness is within 1.0 dB across the full frequency range. Spurious responses

Inferelectronics all-silicon thyratron-like gating elements and cubic-grain toroidal magnetic components convert DC to any desired number of AC or DC outputs from 1 to 10,000 watts.
Ultra-reliable in operation (over 260,000 logged hours), no moving parts, unharmed by shorting output or reversing input polarity. High conversion efficiency (to 92%, including voltage regulation by Interelectronics patented reflex high-efficiency magnetic amplifier circuitry.)
light weight (to 6 watts/oz.), compact (to 8 watts/cu. in.), low ripple (to 0.01 mv . p-p), excellent voltage regulation (to 0.1%), precise frequency control (to 0.2% with Interelectronics extreme environment magnetostrictive standards or to 0.0001% with fork or piezoelectric standards.)

Complies with MIL specs. for shock (1006
 $11 \mathrm{~m} / \mathrm{sc}$.), acceleration (100 G 15 min.), vibrafion (100G 5 to $5,000 \mathrm{cps}$.), temperature (to 150 degrees C), RF noise (1-26600).
AC single and polyphase units supply sine waveform output (to 2% harmonics), will deliver up to ten times rated line current into a short circuit or actuate MIL type magnetic circuit breakers or fuses, will start gyros and motors with starting current surges up to ten times normal operating line current.
Now in use in major missiles, powering telemeter transmitters, radar beacons, electronic equipment. Single and polyphase units now power airborne and marine missile gyros, synchros, servos, magnetic amplifiers.
Interelectronics-first and most experienced in the solid-state power supply field produces its own all-silicon solid-state gating elements, all high flux density magnetic components, high temperature ultra-reliable film capacitors and components, has complete facilities and know how-has designed and delivered more working KVA than any other firm!

For complete engineering data, write Interelectronics today, or call 914 Elmwood 8-8000.

JITSELSMTBONDN COMP.

700 U. S. Route 303 Congers, New York 10920

Dialight sees a need:

(Need: The widest choice for your every application.)

Dialight, the company with the widest choice in switches, LEDs, indicator lights and readouts, looks for needs . . . your needs . . . and then they develop solutions for your every application. No other company offers you one-stop shopping in all these product areas. And no other company has more experience in the visual display field. Dialight helps you do more with these products than any other company in the business, because we are specialists that have done more with them. Talk to the specialists at Dialight first. You won't have to talk to anyone else. Send for your

DIALIGHT

 current catalog. See Dialight.

A Good Rental Program Has 25 Sales/ Service Centers

Instrument rental...besides the obvious economy and capital dollar savings, service is a big, big factor. GE has over 100 major city sales/service centers...with the world's largest inventory of test instruments...over 5,000 from many different manufacturers. So, when you need an instrument, call the GREAT Rental Program (518-372-9900 collect) for your nearest sales/service center and a FREE Rental Catalog. We could be the only source you'll ever need.

GENERAL ELECTRIC

New products

and intermodulation products are more than 72 dB down.
Kay Elemetrics Corp., 12 Maple Ave., Pine Brook, N. J. 07058 [356]

Liquid-crystal DPMs offer

$1 \mu \mathrm{~V} /$ digit sensitivity
Tekelec's series TA 300 liquid-crys-tal-display digital panel meters are now offered with maximum sensitivities of 1 microvolt per least significant digit, making them suitable for use with low-level transducers

that typically put out only 20 millivolts full scale. With the $1 \mu \mathrm{~V} /$ digit option, a $41 / 2$-digit meter sells for $\$ 152$ in 100 -piece lots. The highsensitivity option results in 10 $\mu \mathrm{V} /$ digit sensitivity when it is applied to the company's $31 / 2$-digit meters.
Tekelec Inc., 2623 Saddle Ave., Oxnard, Calif. 93030 [355]

Five-speed chart recorder is priced at $\$ 335$

A line of low-cost chart recorders has a five-speed chart drive and fullscale sensitivity ranges of 10 millivolts and 100 mv with a continuously adjustable vernier between ranges. The recorders are designed around the features most frequently requested by users, the company says. The single-channel 5 -inch model 160 sells for $\$ 335$, while the 10-inch single-channel model 260 and dual-channel model 290 are priced at $\$ 395$ and $\$ 595$, respectively. Delivery is from stock.
Linear Instruments Corp., 17282 Eastman Ave., Irvine, Calif. 92705 [358]

Now, how would you like an instrumentation system that does them all,

That's right, the Elite Breadboarding systems from E\&L Instruments can make your job go a whole lot faster and easier, without breaking your budget.
In combination with E\&L's analog and/or digital software packages, the Elites make great teaching systems, too!
Write today for full details.

61 First Street, Derby, Conn. 06418 (203) 735-8774

Whether you buy one's, two's...

or multitudes-

North delivers power reliability!

Listed here are the more popular modelsmany other voltages are available.

Many O.E.M's agree that it just doesn't make sense to risk the reputation of a major piece of equipment over a minor compo-nent-especially. when the cost differense is so little.
If you're one of them, we'd like to quote your next power supply order. Whether you need one unit-or one hundred. Nurth has the product selection and the production capacoty io deliver mure standard power reliathilioy for your dultar To back it up, we uffer the industry's finest technical specialists and uver th yeurs experience as the leader in custum power supplies.
Send for as catalog today, or call $410 / 4 \circ 8-8874$.

The Gould 6000 Data Acquisition System: 128 fully floating and integrating inputs, scans to 200 points/sec.

The portable and rugged Gould 6000 analog to digital data logger-reader is the best way to monitor and precisely record low frequency data. It accepts both analog and digital input signals, converts the data to digital form, displays the data for real-time monitoring and stores up to 500,000 readings on a $3 \mathrm{M} 1 / 4^{\prime \prime}$ computer grade mag-tape. It offers high noise rejection, high input impedance, programmable gain and much more.

Write Gould Inc., Instrument Systems Division, 3631 Perkins Ave., Cleveland, Ohio 44114. Or Kouterveldstraat Z/N, B. 1920 Diegem, Belgium.

FLFTROUT WRTUE ON FLRT BHD RECORDERS

MFE's 2100 Series or Medicated and lab potentiometric strip chart recorders offer these advantages.
$\square 1$ or 2 pen models \square Feed Z fold or roll paper without adjustment \square Tear bar adjacent to pen tips for immediate data access \square Up to 10 chart speeds independent of line frequency \square Optional TTL proportional drive \square Rugged die cast construction \square Electronic overrange protection \square 3200' of trace from snap-in fibre tip pens \square Optional event markers $\square .25 \%$ accuracy $\square .5 \mathrm{sec}$ response \square Prices from $\$ 595.00$ with OEM discounts

Call or write Ron Gosk for complete details:

Keewaydin Drive Salem, N.H. 03079 Tel. 603-893-1921 TWX 710-366-1887

Look what $\$ 595$ huys!

New 11 WHz sweep/function generator

Only Systron-Donner offers a 11 MHz sweep function generator at such an inflation-defying price. Inaxpensive, yes, but loak at inese Model 415 teatures: Frequency in 7 decade ranges from 0.01 Hz to 11 MHz . Dlal accuracy 1% of full scale typical Waveform outputs: sine, square. triangle, ramp and a T'L compat-
ible sync pulse square wave Plus: The same instrument without internal sweep (Model 405) cosis jusi \$495. Of course, if can still be swept externally. For details, contact your nearest Solentific Devices oflice or Systron-Donner at 1 Systron Drive. Concord. CA 94518. Phone (415) 676-5000.

Circle 194 on reader service card

Expanded capability for burnin/screening of devices. Our new system, coupled with our environmental capabilities, affords you a complete facility to meet the most stringent production schedules.

Associated Testing Laboratories, Inc.

Northwest Industrial Park Burlington,
Massachusetts O18O3
(617) 272-9050

BUY • \$ELL

 MODULE CARD\$ BOARD\$ MICRO PAC\$ IBM-UNIIVAC DEC-CDC•HISI
617-261-1100 AmERICAN USED COMPUTER CORP.

P.O. Box 68, Kenmore Sta., Boston. MA 02215 member COMPUTERDEALERS ASSOCIATION

New products/materials

Sapphire and ruby substrates for microwave integrated circuits, sili-con-on-sapphire circuits, and other hybrid applications are available in squares up to 6 by 6 inches, and in rectangular, round, or domed configurations. Finishes as fine as 250 angstroms can be supplied when required. The material is available in all popular crystal orientations: 60°, $30^{\circ}, 90^{\circ}$, and 0°, or 1102,1120 , and 0001.

Marketing Department, Bird Precision Jewels, One Spruce St., Waltham, Mass. [476]

A silver-cleaning solution designed to remove tarnish and oxidation from silver and silver-plated parts is nontoxic and nonflammable. Called TC-100 Silver-Kleen, the product leaves no residue and hence has no effect on subsequent operations such as soldering.
Techform Laboratories, 215 West 131 St., Los Angeles, Calif. 90061 [477]

A multilayer dielectric material, which can be used with thick-film resistors without affecting their resistivity or temperature coefficients, promises greater packaging density for hybrid circuits. The new composition, number 4901 , fires at 930° to $1,000^{\circ} \mathrm{C}$. Resistors printed on it show virtually no change in their properties compared with resistors printed on bare alumina substrates. Electro-Science Laboratories inc., 1601 Sherman Ave., Pennsauken, N. J. 08110 [478]

An ultraviolet window for use in erasable PROMs (programable readonly memories) can be hermetically sealed to metal window frames. Made of a specially developed glass which has high transmissivity in the ultraviolet region of the spectrum, the windows should help overcome the reliability problems of early E-PROMS which did not have hermetically sealed windows.
Isotronics Inc., New Bedford, Mass. [479]
A conductive adhesive for bonding conductive gaskets in place, Eccoshield VCA is recommended for use with Eccoshield SV gaskets which are widely used for connect-

Ppdimired Performance

The ALMA 760 is the only moderately

 priced, full capability RAM tester.It completely tests MOS, TTL and ECL RAM's The only thing you change are low cost limit and adaptor boards. Features: A powerful pattern generator, device clock timing generators, device bias supplies high performance drivers, comparators, programmable reference level suoplies ... and, because of its versatile test deck. the ALMA 760 readily interfaces with automatic nandlers and probers Plug-in options include a DC parametric test unit, a variable program panel, and a classification unit for device sorting Production testing. Easy to use, low-cost. plug-in piogram boards contain all set up values for production testing. The 760 can be operated by non-technical personnel with a minimum of training. A ciassification unit option provides convenient multi-limit testing and RAM device sorting. And rapid changeover from one type of device to anothe: is made possible by a plug-in device fixture board

Engineering evaluation. The 760 's bu:lt-in flexibility includes programmable MOS. TTL or ECL peaking, to achieve maximum pulse fidelity for all types of RAM's. The variable program panel option permits adjustabie controt of all timing and voltage parameters . . a convenient and powerful diagnostic tool.
Optimized cost and performance. The ALMA 760 has been carefully designed to solve your memory test problems with the optimum trade-off between low cost and hign performance. Circle the numbet below and let us send you our Mode! 760 brochure.
-Under \$25,000! (U.S. prike only)
If it tests IC's. we probably make it. The ALMA 550 tests both standard and complex linear IC's. The ALMA $480 B$ tests most digital IC's. with 700 free test prograrns. The ALMA 380C is our low-cost. dedicated digital IC tester

Divis on of Cevelco the 530 Logue A.e Mountain Viem CA 94343 415 968-3103

PTS 1

Wire Cutting - Stripping Tool

Suitable for. cutting and stripping conductors from 0.2 to 1.5 sq . mm (PTS 1-A) 0.2 to $6 \cdot \mathrm{sq} \mathrm{mm}$. (PTS 1-B) in a single operation

Components Bending Tool

Bending lenght : min. mm. 12 $\max \mathrm{mm} .50$

METAL

PRINTED CIRCUIT HOLDER

EIMEC
SASSO MARCONI - (Italy) P.O. BOX N. 1750 40100 BOLOGNA

New products/materials

ing waveguide flanges. The pres-sure-sensitive adhesive has a volume resistivity of less than 1 milliohm-centimeter. It allows the flange connection to be broken and remade many times with the same gasket without impairing the rf seal.
Emerson \& Cuming Inc., Microwave Products Div., Canton, Mass. 02021 [480]

A flexible epoxy system designed to replace silicone rubber does not harden with age, extreme heat, or extreme cold. Called Epoxsilrub, the two-component materials system cures at room temperature, and is especially recommended for potting applications where shrinkage and curing stresses could crush delicate components. The resin sells for $\$ 2.32$ per pound in 55 -gallon drums, while the hardener is priced at $\$ 2.12 / \mathrm{lb}$ in similar quantities.
Isochem Resins Co., Cook St., Lincoln, R. I. 02865 [361]

Sealing and cushioning washers, produced by a special process of bonding rubber to metal, ensure uniform concentricity, material thickness, and over-all thickness. The washers' sealing material is EPDM (ethylene, propylene-dieneterpolymer) which the manufacturer says is superior to neoprene in stability and ozone resistance and in resistance to extreme weather conditions. The Barseal washers can be made with galvanized steel, aluminum, or 18-8 stainless steel as the metal member.
Barwood Manufacturing Corp., 18-32 Williams St., Everett, Mass. 02149 [362]

A thermally conductive epoxy adhesive system is intended for staking transistors, diodes, ICs and other heat-generating components to radiators and heat sinks. Tra-Bond 2151 is supplied in premeasured Bipax packages for convenience and mixing accuracy. The thixotropic material cures overnight at room temperature yielding a rigid plastic that is electrically insulating and thermally conducting. The cured product is very impact-resistant.
Tra-Con Inc., Resin Systems Division, 55 North St., Medford, Mass. 02155 [363]

about

 $5 ¢ / \mathbf{y r} r^{*}$ of reliability with Angstrohm's new SAR, 20 year end-of-life precision metal film
angstrohm precision, inc.
one precision place hagerstown, maryland 21740 telephone: 301-739-8722 twx: 710-853-6834

Heard the rumor around IEEE Intercon that Biomation will introduce major new trouble-shooting tools for designing and testing high speed logic and serial data systems?

If's true.

High-Q Tunable Filter

New books

Photometry and Radiometry for Engineers, Allen Stimson, Wiley-Interscience, 446 pp., \$19.95.

Decimal Computation, Hermann Schmid, Wiley-Interscience, 266 pp., \$16.95.

Guidebook of Electronic Circuits, John Markus, McGraw-Hill, 1,067 pp., \$24.50.

Laser Interaction and Related Plasma Phenomena, Vol. 3A and 3B, ed. Helmut J. Schwarz and Heinrich Hora, Plenum, 932 pp., $\$ 32.50$ each.

Applications of Linear Integrated Circuits, Eugene R. Hnatek, WileyInterscience, 518 pp., $\$ 26.95$.

Automated Design of Control Systems, C.W. Merriam III, Gordon \& Breach, 339 pp., \$32.50.

Linear Integrated Networks: Fundamentals, George S. Moschytz, Van Nostrand Reinhold, 583 pp., \$29.95.

Industrial Lasers and Their Applications, John E. Harry, McGrawHill, 189 pp., \$15.00.

Semiconductor Devices: Testing and Evaluation, C.E. Jowett, Cahners Books, 134 pp., \$18.50.

Radar Precision and Resolution, G.J.A. Bird, Halsted Press, 151 pp., \$18.50.

Fundamentals of Television, 2nd ed., Walter H. Buchsbaum, Hayden, 280 pp., $\$ 9.95$ cloth, $\$ 6.95$ paper.

Introduction to Electronic Technology, Richard J. Romanek, Pren-tice-Hall, 355 pp., $\$ 14.50$.

High Energy Lasers and Their Applications, ed. Stephen Jacobs, Murray Sargent III, and Marlan O. Scully, Addison-Wesley, 411 pp., \$17.50.

Approximation Methods for Electronic Filter Design, Richard W. Daniels, McGraw-Hill, 388 pp., \$19.50.

NEW SERIES OF LIQUID CRYSTAL WORKSHOPS

2-DAY CHOLESTERIC—MAY 6 \& 7 , 1975
2-DAY NEMATIC TECHNOLOGYMAY $13 \& 14,1975$
1-DAY LIQUID CRYSTAL DISPLAYSMAY 15, 1975

For Further Information or Brochure:
The Pennsylvania State University Continuing Education
3550 Seventh Street Road
New Kensington, Pa. 15068
412-362-1012

Circle 271 on reader service card

ultra high sensitivity magnetic head for paper money exchanger, etc.

SANG SAN-E DENKI CO.,LTD.
110-1, Minami Kawahori, Tennoji-ku, OSAKA, JAPAN
PHONES: OSAKA (O6) 779-1591 CABLE: SANMAGNETICS OSAKA

The AO siereostar Zoom stereoscopic micruscrope was specifically designed for convenience, working ease and optical performance. Zorm controls are located on both sides for convenience. It eliminates awkward reaching when changing magnification. The high resolution optical power pack may be rotated 360° io accommodate most any assembly or inspection situation. Full optical equipment offers a magnification range of 3.5 x thrcugh 211 x . Working distance of 4.0 inches is maintained at all magnifications in basic models, and if that's not enough, add a 0.5 x
auxiliary lens to make it. 5.7 inches. stereostar Zoom micruscope assures a wide field of view, up to 2.25 inches, with the 10x high eyepoint eyepieces. It also features an extremely efficient illuminator that stays cool even after long hours of continuous use.
See for yourself. Contact your AO dealer or sales representative for a convincing demonstration.

NEW
 ELECTRONICS BUYERS' GUIDE . . . EASY-TO-USE, SINGLE VOLUME SOURCE FOR:

- Information on over 4,000 products.
- Over 6,000 company listings and phone numbers - both home and field offices.
- EBG EXCLUSIVE: quick access to over 1000 helpful catalogs through a timesaving Direct Inquiry service.
- More than 1,400 pages of data.

Here is the international world of electronics at your fingertips. Find suppliers ... fast . . . accurately... and locally! Don't have a copy? Use coupon below, today.

Electronics Buyers' Guide

A McGraw-Hill Publication 1221 Ave. of the Americas, New York, N. Y. 10020

Yes, send me \qquad copies (copy) of the energy saving Electronics Buyers' Guide. I've enclosed $\$ 20.00$ (USA and Canada only; elsewhere send $\$ 30.00$). Full money back guarantee if not satisfied.

NAME
COMPANY
STREET
CITY
STATE
ZIP

New literature

Sampling oscilloscopes. A 72-page book put out by Philips Test \& Measuring Instruments Inc., 400 Crossways Park Dr., Woodbury, N. Y. 11797, explains and gives practical examples of how to derive

maximum benefit from use of a sampling oscilloscope. Circle 421 on reader service card.

Thick films. "The Fundamentals of Thick-Film Hybrid Technology," a 600-page loose-leaf textbook is being sold for $\$ 100$ a copy. Published by State of the Art Inc., 1315 South Allen St., State College, Penn. 16801, the text is based on a series of five-day seminars. [422]

Terminating flat-ribbon cable. Generously illustrated with line drawings and photographs, a four-page booklet tells how to terminate bonded and laminated round-conductor flat-ribbon cable. The booklet can be obtained from SpectraStrip Corp., 7100 Lampson Ave., Garden Grove, Calif. 92641 [423]

Measuring microscopes. A detailed four-page application bulletin entitled "The Microscope as a Shop Tool" describes several types of measuring microscopes and many of their applications. Available from Gaertner Scientific Corp., 1201 W. Wrightwood Ave., Chicago, Ill. 60614, the bulletin includes simple formulas for calculating the magnification of various microscopes. [424]

Marketing manuals. A 16-page cata-

Now, system and instrument manufacturers and laboratories can enjoy the same kind of IC maskmaking capability previously feasible only for large volume semiconductor manufacturers. Electromask has introduced a new combination pattern generator/image repeater which sells for almost $\$ 100,000$ less than two independent units. No longer must you risk the exposure of your proprietary designs and be dependent upon

Circuit pattern 10X final size generated by Electromask Pattern Generator
 outside services for your maskmaking. Now you can do it all in-house at low cost and with fast turnaround time. The new Electromask Combo 2500 makes it possible.

The 2500 gives you the complete capability of the independent Series 2000 Pattern Generator for making 10X reticles directly from digital data. Then in a matter of minutes, the 2500 switches over to duplicate the operation of the independent Electromask Series 1000 Image Repeater, reducing the 10X reticle image to final size and producing, by step-and-repeat process, a photomaster.

The new Combo 2500 incorporates the same Lasometric ${ }^{\text {TM }}$ control and frictionless vacuum air bearings found on Electromask's field-proven independent P.G. and I.R. systems. For both P.G. and I.R. operations, stage positioning is by laser beam, eliminating mechanical wear and providing non-degradable accuracy and precision. As an image repeater, resolution of 0.1 mic ion and absolute accuracy of 0.385 micron are achieved. And as a pattern generator, the P.G.'s independent scale factor for $X-Y$ position and for aperture size, along with its minimum programmable increment of 0.10 micron, dramatically increases circuit flexibility.

So if you've been avoiding the purchase of equipment because it was too expensive, and if you want to eliminate your dependency on outside services - here's an economically feasible alternative. If you would like to know more - or if you need help in convincing your boss just give us a call.
tm Trademark of ELECTROMASK, INC.

ELECTROMASK, INC.

A subsidiary of TRE Corporation, 6109 De Soto Ave., Woodland Hills, Calif. 91364, Phone: (213) 884-5050, Telex 67-7143

NEW

DICITAL
 VOLKSMETER

World's lowest priced digital multimeter. Designed to be a more accurate replacement of delicate pointer-type meters.

Features Include:

$\$ 99.95$

- Rugged - ideal for field service use
- Auto polarity - no more lead reversing or switching
- Three digits with 1% accuracy on all functions
- 13 ranges: $4 \mathrm{vac}, 4 \mathrm{vdc} \& 5$ resistance
- 1 millivolt resolution with 500 volts and 20 megohms full scale
- Small Size: 1.9"H x 2.7"W x 3.9"D

Options Include:

- Rechargeable batteries with charger unit - $\$ 15$
- Leather case - $\$ 16$
- High voltage probe - $\$ 30$
- Current shunts - $\$ 6$ each

Call our distributor, the G.S. Marshall Co. , for more information.
For immediate delivery, fill in below and mall direct to NLS.
NON-LINEAR SYSTEMS, INC. Box N, Del Mar CA 92014
PH (714) 755-1139 - TWX 910-322-1132
\square Special offer of $\$ 99.95$ with your check and coupon. \square Single unit price of $\$ 110$ C.O.D. or valid purchase order.

One year guarantee.

New literature

\log gives detailed descriptions of 10 marketing handbooks such as "A Handbook of Corporate Performance Criteria" and "A Statistical Handbook for Electronic Marketing. The catalog is put out by Mainly Marketing, Drawer M, Coram, N. Y. 11727 [425]

Spectral analysis. A 32-page workbook provides an introduction to the more widely used types of modulation and their time- and fre-quency-domain characteristics. The booklet, "An Introduction to Time and Frequency Domain Modulation and Waveform Analysis with Lab Experiments," can be obtained from

Tektronix Inc., c/o Art Andersen, P. O. Box 500A, Beaverton, Ore. 97077 [426]

Relay interchangeability. A relay cross-reference list, which covers industrial and general-purpose relays made by Potter \& Brumfield, Magnecraft, Midtex, Sigma, Deltrol, Clare, Line, Guardian, Milwaukee, and Struthers-Dunn, has been released by Struthers-Dunn Inc., Lambs Rd., Pitman, N. J. 08071 [427]

Soldering tips. An explanation of how a soldering tip is constructed, how to re-tin one, and other pointers on the use and care of ironplated soldering tips are included in a folder offered by Plato Products Inc., 4357 N. Rowland Ave., El

LEGAL NOTICE

U.S. POSTAL SER VICE

STATEMENT OF OWNERSHIP, MANAGEMENT
AND CIRCULATION
(Act of August 12, 1970: Section 3685, Title 39, United States Code)

1. Title of Publication: Electronics
2. Date of filing: $9 / 6 / 74$
3. Frequency of issue: Bi-weekly
4. Location of known office of publication: 1221 Avenue of the Americas, New York, New York 10020
5. Location of the headquarters or general business offices of the publishers: 1221 Avenue of the Americas, New York, New York 10020
6. Names and addresses of publisher, editor and managing editor: Daniel A. McMillan, III-1221 Avenue of the Americas, New York, New York 10020/Kemp Anderson/Sam Weber
7. The owner is McGraw-Hill, Inc. 1221 Avenue of the Americas, New York, New York 10020. Stockholders holding 1\% or more of stock are: Donald C. McGraw; Donald C. McGraw, Jr., Harold W. McGraw, Jr.; John L. McGraw; William H. McGraw; June McGraw McBroom; Elizabeth McGraw Webster; all of 1221 Avenue of the Americas, New York, New York 10020; Way \& Co. c/o The Bank of New York, P.O. Box 11203, New York, NY 10049; Perc \& Co. c/o Northwestern National Bank of Minneapolis, 7th \& MarNortte, Minneapolis, MN 55480 - Sabat Co.c/o Savings Banks quette, Minneapolis, MN 55480 ; Sabat Co. c/o Savings Banks Trust Co. 200 Park Avenue, New York NY 10017; Ronis \& Co. c/o Bankers Trust Company, P.O. Box 704, Church St. Station, New York, NY 10008 ; Sior \& Co. c/o Bankers Trust Company, P.O. Box 704, Church St. Station, New York, NY 10008; Stanford E. Taylor, Lloyd Harbor, Huntington, NY 11743; American National Insurance Company, P.O. Box 2664, Church St. Station, New York, NY 10008.
8. Known bondholders, mortgages, and other security holders owning or holding 1 percent or more of total amount of bonds, mortgages or other securities: None.
9. Permission requested.
10. Not applicable
11. Extent and nature of circulation

	Average No. Copies Each Issue During Preceding 12 Months	Actual No. Copies Of Single Issue Published Nearest To Filing Date
A. Total No. Copies Printed	93,872	95,989
1. Sales through dealers and carriers, street vendors and counter sales.		
2. Mail subscriptions	88,631	89,937
Total Paid Circulation	88,631	89,937
D. Free distribution by mail, carrier or other means: 1. Samples, complimentary, and other free copies	3,281	3,149
E. Total Distribution	91,912	93,086
F. Office use, left-over, unaccounted, spoiled after printing	1,960	2,903
G. Total	93,872	95,989

I certify that the statements made by me above are correct and complete.

McGRAW-HILL, INC.
Robert N. Landes

Help your Heart... Help your Heart Fund
American Heart Association

Save time and money by joining the
 Electronics and Control Engineers' Book Club

TERE is a professional club designed specifically to meet your day-to-day engineering needs by providing practical books in your field on a regular basis at below publisher prices.

How the Club operates: Basic to the Club's service is its publication, the Electronics and Control Engineers' Book Club Bulletin, which brings you news of books in your field. Sent to members without cost, it announces and describes in detail the Club's featured book of the month as well as alternate selections which are available at special members' prices.

When you want to examine the Club's feature of the month, you do nothing. The book will be mailed to you as a regular part of your Club service. If you prefer one of the alternate selec-tions-or if you want no book at all for that month-you notify the Club by returning the convenient card enclosed with each Bulletin.

As a Club member, you agree only to the purchase of four books over a two-year period. Considering the many books published annually in your field, there will surely be at least four that you would want to own anyway. By joining the Club, you save both money and the trouble of searching for the best books.

MAIL ATTACHED POSTPAID CARD

ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB

 P.O. Box 582, Hightstown, New Jersey 08520Please enroll me as a member and send me the two books indicated below. I am to receive the bonus book at the special introductory $\$ 1.00$ price and my first selection at the discounted member price, both to be shipped on approval. I may return them in 10 days and request to have my membership cancelled without obligation. If I keep the books, I agree to take three other club books of my own choosing during the next two years, at the low club prices, guaranteed to be a minimum of 15% (often more) under publishers' prices. (Postage and 25ϕ handling charge is added.)

Name

Circle 206 on reader service card

SOLDER CLAD

PMC is currently producing both soft and hard solder clads on ferrous and non ferrous alloys. Alloys of tinlead as well as silver-copper alloys are routinely bonded to a variety of base metals. If you have a joining problem, why not call Mr. Harry Friedman at (617) 695-9312. Or write, Polymetallurgical Corp., 262 Broadway, North Attleboro, MA 02761. 玉프

New literature

Monte, Calif. 91731 [428]

Etching thin films. Procedures for etching thin-film-coated substrates are outlined in a four-page application note published by Analog Devices Inc., Route 1 Industrial Park, P. O. Box 280, Norwood, Mass. 02062. The procedures apply to three-film (nichrome-nickel-gold) and two-film (nichrome-gold) systems. [429]

Interface bus. The Hewlett-Packard interface bus, the model for the proposed international interface standard now being considered by the International Electrotechnical Commission, is discussed in a recent issue of the Hewlett-Packard Journal. The entire January 1975 issue of the journal is devoted to the bus and to the solution of problems that may arise in connection with its use. Copies are available from Inquiries Manager, Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif. 94304 [430]

Solenoids. A 72-page catalog gives information on the line of Guardian solenids and also includes a guide to solenoid selection, tips on increasing life expectancy, and an ordering checklist. The catalog is put out by Guardian Electric Manufacturing Co., 1550 West Carroll Ave., Chicago, Ill. 60607 [431]

If youre so rich, why aren't you smart?

So you're making a good salary. But you're not saving any of it. Instead, you want to go after the "big deal" that's going to make you a cool million. Maybe.
What happens if your big scheme goes sour? You've still got to get through the future. And, let's face it. Nobody can afford to take tomorrow for granted.
So maybe you'd better join the Payroll Savings Plan now. Just sign up at work. An amount you specify will be set aside from your paycheck and used to buy U.S. Savings Bonds.

That way, you can still afford to take a few financial risks, if that's your bag. But you'll always have a solid cash reserve to fall back on. And that's being smart.

Now E Bonds pay 6\% interest when held to maturity of 5 years ($41 / 2 \%$ the first year). Bonds are replaced if lost, stolen or destroyed. When needed, they can be cashed at your bank Interest is not subject to state or local incom taxes, and federal tax may be deferred until redemption

Join the Payroll Savings Plan.

Electronics advertisers

Abbott Tranalator Laba, Inc. Technical Advertising Agency	6
- ACDC Elecironics, Inc. Rose Associates Advertising \& Public Relations	178
- Adelay C.E.T.I.	21
Advanced Mlcro Devicea Keye Donna Pearlstein	11
- AEG Telefunken Werbeagentur Dr. Kuhl Gmbh	15
Aartech Induatries Kenneth R. Miller Advertising	87
\ddagger Allen Bradlay Company Hoffman, York, Baker \& Johnson, Inc.	24
Alled Chemical Corporation Perspectus, Inc.	144
Alma/Divialon of Devalco Moorhead Marketing	195
Amarlcan Microsyatema, Inc. Wilton Coombs \& Colnett Inc Advertising	84-85
American Optical, Sclentific Inatrumant Division Wilson, Haight \& Welch, Inc.	199
American Used Compuiar Corporation McDavitt Advertising	194
Analoglc Corporatlon Sommer Agency, Inc.	79
Angftrohm Preclalon Kenmart Advertising	196
Anrilau Electric Co., Ltd. Diamond Advertising Agency Co., Lid.	$21 E$
Antenna Dealgn	190
Arrow-M Corporation Halloff \& Caine Associates	212
Aseoclated Teating Laboratories, Inc. A.D Adams Advertising Incorporated	194
Ballaniline Laboratorles, Inc. MLF Graphics	9
${ }^{*}$ ar Beckman Instruments Lid.	24
\#\# Beckman Inatrumenta Inc., Information Dlaplaya Oparationa N.A. Winter Advertising Agency	141
Blomallon Paul Pease Advertising	197
Carborundum Company, The Stahlika.'Faller, Inc.	173
CELCO (Conatantina Enginearing Laboralory Co.) Stano Adverlising	132
- Clalrax Corporatlon Marquardt \& Roche, Inc.	4th Cover
ContInental Specialtlea Corporation Robert A. Paul	80,188
- Corning Glass Worka, Flulale Producta Dapartment Pierce, Brown Associates, Inc/	2nd Cover
- C.P. Clara Intarnatlonal N.V. Markcom	25E,26E,27E
\ddagger Cutiar-Hammer, Inc. Campbell-Mithun, Inc.	60-61
- Dana Laboratorlaa Dailey \& Associates	62-63
Data Tranalation, Inc. Mark L. Nigberg, Inc	20
Datum, Inc. Data Advertising	182
- Dalevan Divielon, American Preclalon Induatrias, Inc. Comstock Advertising Inc	160

Digltal Equipmant Corp.Componenta Group Schneider Parker, Inc	22-23
- Dlallght Corporation Michel-Cather, Inc	191
\ddagger Eastman Kodak Co. Bualneas Syatams Markata DivisionEngInearing Data Syatom Micrographica J. Walter Thompson Company	15
Eastman Kodak Co. GMC GD Photolabrication-Microalectronic Rumrill-Hoyt, inc.	c 156
EDMAC Aasoclates J L Newman \& Associates. Inc.	198
EECO The Greer Agency	51
E.I.P. Inc. Tycer-Fultz	138
EL Inatruments, Inc. Langeler-Stevens, Incorporated	192
Eleciro Sclentific Induatrlea Commark Group, Inc.	74
Electromask, Inc. JMR Advertising	201
Electronica \& Control Engineara Book Club 20	03-205
Electronlc Memorles and Magnatica Corporatlon S Michelson Advertising	116
Elmac SNC Casadio	196
Ferrantl-Packard Huxley-Irwin-Price, Limited	185
Fluke Trendar Moorehead Marketing Agency	157
- John Fluke Mig. Ca., Lid. Lennox Marketing Limited	65,172
FMC Corporation-Semicanductor Producta Operation DeSales Advertising, Inc.	155
Fort Electronlque Publicite Rapy	212
General Electric-Inatrument Rental Divialon R.T. Blass, Inc.	192
- Genaral Electric Company, Tube Producte Department RobertS. Cragin, Inc	20
General Eleciric Company, Uillity \& Procese Automation Products Robert S. Cragin, Inc	44-45
Genaral Magnetica McCarthy, Scelba, DeBiasi AdvertisIng Agenc	d Cover cy, Inc.
General Radlo Company Grad Associates	113
Georgla Department of Community Devalopm Gerald Rafshoon Advertising, Inc.	nent162
Gould Inalrument Syatema Marsteller, Inc.	161
Gould Inc./Inatrument Syatema Divialon Carr Liggett Advertising. Inc.	193
\ddagger Guardlan Electric Mig. Co. Kolb/Tookey and Âssociates, Inc.	58-59
Harrls Corporation Resource Marketing, Inc.	152
Harshaw Chemlcal Company Industry Advertising Company	145
Hermes Electronlce, LImited Public \& Industrial Relations Limited	77
Hewlett Packard Tallant/Yates Advertising, Inc.	2
- Hewlett Packard Tallant/Yates Advertising, Inc.	1

Hawlett Packard Richardson, Seigle, Rolfs \& McCoy, Inc.	17
- Hewlett Packard	
Bozell \& Jacobs/Pacific	168

- Honaywall Tast Instrumant Division 150-151
Campbell-Mithun, Inc.
Houaton Inetrumenta 180
Ray Cooley and Associates, Inc 21
Kolb/Tookey \& Associales Inc.
35
35
IBM-DPD 57Intel Corporation12-13Regis McKenna, Inc.143
Samuel H. Meyer Advertising

International Electronic Research Corporation 86 McCarron, Kane, Inc

- Intaralate Electronica Corp. 142-143 Chris At Stucio Inc
Ise Electronice Corporation 171Shinwa International Inc.
- Johnaon Company, E.F. 184
Kalihley Insirumenia 176
Chagrin Valley Marketing Associates$-$
- Kapco, Inc. 5
LH Reaearch, Inc. 183
Litton Industrles-ACD 100
Litronlx Inc. 46-47
Macrodata Company 166-167
Magnecraft Electric Company 89-98Magnetl Marelli147
- MCL, Inc. 78MFE Corporation193
Brightman Company, Inc.
MIcro Networka Corporation 185
Briant Advertising
75
MIcro Powar Syatema 75
Micro Swlich Dlvialon of Honaywall 81N.W. Ayer \& Son, Inc.Mirco Syatama, Inc.207
McAward Associates186Paul Pease Advertising, Inc.
41
- Narda Mlcrowave McCarthy, Scelba, DeBiasiAdvertising Agency, Inc.
- Natlonal Semiconductor Corporation 82-83Chial/Day, Inc. Advertising- J.M. Nay Company, The
Cooper Advertising, Inc212
Non-Unear Syatame146,153,202- North Electric Co.-Electronatica Dlvialon193Marc Associates
- OK Machine \& Tool Corporation
- Oscilloquariz SA, Nauchatol

Turn to page 7. Important? Sure...

By the time the office copy of ELECTRONICS gets to you, there's nothing left of page 7. It happens. Too often.

How often has ELECTRONICS wound up on your desk dog-eared and abused, with articles clipped out and ripped out? Or days, even weeks late?

How often has ELECTRONICS
never even made it to your desk?
You should be getting your copy of ELECTRONICS right off the press You need it. Because it's important to stay on top of what's happening in your field. And ELECTRONICS is on top. ELECTRONICS is the Source. It's packed with up-to-date info, the breaking news of the electronic industries in the U.S. and worldwide.

You can get ELECTRONICS where you can find the time to read it-at home. Go to the Source, today. Fill out the subscription card enclosed in this issue, and send it off.

Electronics F_{2}^{2} IS THE SOURCE. Hill

\ddagger Oxy-Metal Induatrles Corporation Poppe Tyson, Inc. Division of deGarmo, Inc	136	Republlc Elactronica Indualriea Corporatlon Admark Communications, Inc.	188
Pandulf Corporation Donald L. Arends, Inc.	206	Roblnaon Nugent, Inc. Kolb/Tookey \& Associates Inc. Advertising	18-19
Pennaylvania Stata Unlv.	198	- Rockland Syatama Rolf Johnsen, Inc.	170
- Philipa Elcoma Brockies Communications Systems	54	- Rohde \& Schwarz	1E
- Phillpa Elcoma Intermarco Nederland	9 E	San-e Dankl Company LImitad	198
- Phillpa Indualrlas Vaz Dias	16E-17E	Schauer Manulacturing Corporatlon Nolan, Keelor \& Stites	154
- Philipa N.V. Pis/T\&M Divialon Brockies Communications Systems SA	2E-3E	- S. E. Labs. (EMI) Lid. Graphic Publicity Ltd.	60-61
Philipa Tast 8 Measuring Inatrumanta, Inc. G.A.D.	42	- Selmart CPM Studio	12E
Photocirculta Ries Cappiello Colwell, Inc.	64-65	- Seacosem Bazaine Publicite	11E,18E
Polymetallurglcal Corp. Horton, Church \& Goff, Inc.	206	- Technabexport USSR Office Publicitarie De France	10E
\ddagger Powar/Mata Corporallon Spectrum Marketing Associates	54		,29E,31E
Plazo Technology, Inc. Shattuck/Roether Advertising. Inc.	148	Taktronlx, Inc. Tektronix Advertising	33
\ddagger Plher Intarnatlonal LImited Scott MacTaggart Advertising	149	Takiranlx-IDD Young \& Roehr, Inc	159
Pracialon Monollthica, Inc. Marlborough Associates, Inc.	39	Taledyne Philbrick Ingalls Associates	27
- Premiar Matal Producta Corporation Commercial Press, Inc.	211	Taledyne Relaya S. Michelson Advertising	181
Prli. a Co. Lid. General Advertising Agency, Inc.	190	- Teradyne, Inc. Quinn \& Johnson, Inc.	149
- Procond S.p.A. Quadragono Comunicazione	32E	Texaa Inatrumenia IncorporatedScientiflc Calculatora Tracy-Locke	209
Prolog	163	\$- Taxas Instrumania, Incorporated	52
- Starnica Jean Haechler Publicite	14 E	Kenyon \& Eckhardt Advertising, Inc. Thamaon CSF	43
- SGS Alaa McCann-Erickson	23E	Bazaine Publicite - TRW, Elacironic Componania Divialon	7
Shiplay Company Ingalls Associates Inc. Advertising	37	- TRW/IRC Realatora	174-175
- Slamena A.G. Munich Linder Presse Union GMBH	52	Gray \& Rogers, Inc. ${ }^{*}$ U.S.C.C.	136
Slamena Componenta Divialon N.A. Winter Advertising Agency	179	S. Michelson Advertising Vu-Data	180
\ddagger Slamana Corp.-Elecironle Syaiama Divialon, Computaat Producta JL Associates	73	Manning-Bowen and Associates Wagner Electric Corporatlon Coordinated Communications, Inc.	164
Signal Tranaformer Russell Technical Services, Inc.	189	- Wandel und Goltarmann Werbeagentur	58-59
- Sllec Mexim	4E	${ }^{*}$ © Wavatak Indlana Inc. Chapman Michetti Advertising	73
Solitron Davicea, Inc., Tranalator Divialon William E. Haselmire Advertising, Inc.	131	Wavalak San Dlago Chapman Michetti Advertising	48
Sound Technology Frank Burkhard Company	28	\ddagger John Wllay \& Sons, Inc. 605 Advertising Group	147
Sprague Electric Company Harry P. Bridge Company	8	WIma, Weatermann Oliver-Beckmann Gmbh	16
Syatron Donner Concord Inatrument Fred Schott \& Associates	194	- Yokogawa Electric Worka Lid. General Advertising Agency, Inc.	28E
- teAC Corp. Dentsu Advertising Ltd.	141		
- Radio Research	190		
RCA-Solld State Dlvision Marsteller, Inc.	69.71		
RCL Electronice, Inc. Morvay Advertising Agency	14	- For more information on complete product lin vertisement in the latest Electronics Buyers' G - Advertisers in Electronics International	ne see aduide
Renco Corporatlon Norworth Associates	122	\ddagger Advertisers in Electronics domestic edition	

Advertising Sales Staff

Pierre J. Braudé New York [212] 997-3468
London 01-493-1451
Director of Marketing
Atlanta, Ga. 30309: Warren H Gardner
100 Colony Square, 1175 Peachtree St., N.E. [212] 997-3617
Boston, Mass. 02116: James R. Pierce 607 Boylston St. [617] 262-1160

Chicago, III. 60611:

645 North Michigan Avenue
Rober W. Bartlett (312) 751-3739
Paul L. Reiss (312) 751-3738
Cleveland, Ohlo 44113: William J. Boyle [716] 586-5040
Dallas, Texas 75201: Charles G. Hubbard
2001 Bryant Tower, Suite 1070
[214] 742-1747
Denver, Colo. 80202: Hary B. Doyle, Jr.
Tower Bidg., 1700 Broadway
[303] 266-3863
Detrolt, MIchigan 48202: Robert W. Bartlett
1400 Fisher Blag.
313] 873-7410
Houston, Texas 77002: Charles G. Hubbard
375 Dresser Tower, 601 Jefferson St. [713] CA 4-8381
Los Angeles, Calit. 90010: Robent J. Rielly
Bradley K. Jones, 3200 Wilshire Blvd . South Tower
[213] 487-1160
New York, N.Y. 10020
1221 Avenue of the Americas
Warren H Gardner [212] 997-3617
Warren H . Garoner [212] 997-3616
Philadelphia, Pa. 19102: Warren H. Gardner
Three Parkway
[212] 997-3617
Pltisburgh, Pa. 15222: Warren H. Gardner
4 Gateway Center. [212] 997-3617
Rochester, N.Y. 14534: William J. Boyle
9 Greylock Ridge, Pittsford, N.Y
[716] 586-5040
San Francisco, Callf. 94111: Don Farris
Robert J. Rielly. 425 Battery Street,
[415] 362-4600
Paris: Alain Offergeld
17 Rue-Georges Bizet, 75 Paris 16, France Tel: 720-73-01
Geneva: Alain Offergeld
1 rue du Temple, Geneva, Switzerland
Tel: 32-35-63
United Kingdom \& Scandinavia: Keith Mantle Tel: 01-493-1451, 34 Dover Street, London W1

Milan: Luigi Rancati
Robert Saidel (Middle East)
1 via Baracchini, Italy Phone 86-90-656
Brussels: Alain Offergeld
23 Chaussee de Wavre
Brussels 1040. Belgium
Tel: 13-73-95
Frankfurt/Maln: Fritz Krusebecker
Dieter Rothenbach (East European Countries)
Liebigstrasse 27c, Germany
Phone 720181
Tokyo: Tatsumi Katagiri, McGraw-Hill
Publications Overseas Corporation,
Kasumigaseki Building 2-5, 3-chome
Kasumigaseki, Chiyoda-Ku, Tokyo, Japan
[581] 9811
Ausiralasia: Warren E. Ball, IPO Box 5106,
Tokyo, Japan

Business Department

Stephen R. Weiss, Manager
[212] 997-2044
Thomas M. Egan,
Assistant Business Manager [212] 997-3140
Carol Gallagher
Production Manager International [212] 997-2045
Dorothy Carter, Production Manager Domestic
[212] 997-2908
Frances Vallone, Reader Service Manager
[212] 997-6057
Lisa Hoenig, Secretary
212] 997-648
Electronics Buyers' Guide
George F. Werner, Associate Publisher
[212] 997-3139
Regina Hera, Directory Manager
[212] 997-2544

IN WIRE-WRAPPING
 HAS THE LINE

©K MACHINE AND TDOL CORPORATIDN

3455 CONNER STREET, BRONX. NEW YORK, N.Y. 10475 U.S.A.
TELEX NO. 12.5091 PHONE (212) 994-6600 TELEX NO. 232395
Circle 211 on reader service card

. . . LOW ENERGY ELECTRICAL PRECISION CONTACT COMPONENTS.

Like switch assemblies, welded and staked assemblies, wire forms, flat spring contacts, plastic molded brush and contact assemblies, rivet head contacts and complete assembled components. Our series of PALINEY® and NEYORO® alloys have become synonymous with quality in the field of precious metals. Our Design Engineers are always available to assist in the design of parts and/or complete assemblies to your specifications. For our catalog, write The J. M. Ney Co., Bloomfield, Conn. 06002

OPTICAL TRANSIMISSION OF INFORMATION

"TIS" OPTICAL FIBRE
For industrial applications. Maximum length: 30 m ; absorption: $0,70 \mathrm{~dB} / \mathrm{m}$, fitted with either with a TTL/DTL ompatible transmit-receive unit operating.
"LD" OPTICAL FIBRE
Low-absorption fibre less than $30 \mathrm{~dB} / \mathrm{km}$ for a diameter of. $180 / 120$ microns; plastic sheathing on BNC connector. SOLE AGENCIES IN: FOURTEEN COUNTRIES

Circle 275 on reader service card

This new encapsulated circuit converts a 3 -wire synchro input to a pair of d-c outputs proportional to the sine and cosine of the synchro angle.

- Complete solid state construction.
- Operates over a wide temperature range.

UNIT	$\begin{gathered} \text { DMD } \\ 1436-1 \end{gathered}$	$\begin{gathered} \text { DMD } \\ 1430-1 \end{gathered}$	$\underset{1403-2}{\underset{14}{\text { DMD }}}$	$\underset{1361 \cdot 6}{\text { DMD }}$	$\begin{gathered} \text { DMD } \\ 1361-4 \end{gathered}$	$\begin{gathered} \text { DMD } \\ 1193-4 \end{gathered}$	$\underset{1361.8}{\text { DMD }}$	$\begin{gathered} \text { DMD } \\ 1446-1 \end{gathered}$	$\begin{gathered} \text { DMD } \\ 1193-5 \end{gathered}$	$\begin{gathered} \text { DMD } \\ 1193-6 \end{gathered}$	$\begin{gathered} \text { DMD } \\ 1361-10 \end{gathered}$	$\begin{gathered} \text { DMD } \\ 1472 \cdot 2 \end{gathered}$
L-L SYNCHRO INPUT (VRMS)	11.8	90	95	90	11.8	11.8	11.8	11.8	11.8	11.8	11.8	90
Frequency (Hz)	400	400	60	400	400	400	400	400	400	400	400	60
FULL SCALE OUTPUT (VDC)	± 10	± 10	± 3	± 3	± 3	± 10						
OUTPUTIMPEDANCE	$<1 \Omega$	$<10 \Omega$	$<1 \Omega$	$<1 \Omega$	$<1 \Omega$	$<1 \Omega$						
L-L INPUT IMPEDANCE	$>10 \mathrm{~K}$	$>30 \mathrm{~K}$	$>5 \mathrm{~K}$	$>30 \mathrm{~K}$	$>5 \mathrm{~K}$							
REFERENCE VOLTAGE (VRMS)	26	115	175	115	26	115	26	115	115	115	26	115
ACCURACY SIN/COS ($+25^{\circ} \mathrm{C}$)	$\pm 6 \mathrm{MIN}$	$\pm 6 \mathrm{MJN}$	$\pm 6 \mathrm{MIN}$	$\pm 6 \mathrm{MIN}$	$\pm 6 \mathrm{MIN}$	\pm GMIN	$\pm 6 \mathrm{MIN}$	$\pm 0.5 \%$	$\pm 6 \mathrm{MIN}$	$\pm 6 \mathrm{MIN}$	$\pm 6 \mathrm{MIN}$	$\pm 6 \mathrm{MIN}$
FULL TEMPERATURE RANGE ACCURACY COS	$\pm 15 \mathrm{MIN}$	$\pm 15 \mathrm{MIN}$	$\pm 15 \mathrm{M}$ IN	$\pm 15 \mathrm{MIN}$	$\pm 15 \mathrm{MIN}$	$\pm 15 \mathrm{MIN}$	$\pm 15 \mathrm{MIN}$	$\pm 0.5 \%$	$\pm 15 \mathrm{MIN}$	$\pm 15 \mathrm{MIN}$	$\pm 15 \mathrm{MIN}$	$\pm 15 \mathrm{MIN}$
D.C. SUPPLY (VDC)	± 15											
D.C. SUPPLY CURRENT	$<30 \mathrm{MA}$	$<30 \mathrm{MA}$	$\bigcirc 30 \mathrm{MA}$	<30MA	$\triangle 30 \mathrm{MA}$	$<30 \mathrm{MA}$	$<30 \mathrm{MA}$	$<30 \mathrm{MA}$	$\bigcirc 30 \mathrm{MA}$	$<30 \mathrm{MA}$	$<30 \mathrm{MA}$	$\bigcirc 30 \mathrm{MA}$
BANDWIDTH	$>10 \mathrm{~Hz}$	$>10 \mathrm{~Hz}$	external set	$>20 \mathrm{~Hz}$	$>5 \mathrm{~Hz}$	$>10 \mathrm{~Hz}$	$>10 \mathrm{~Hz}$	$>10 \mathrm{~Hz}$	$>2 \mathrm{~Hz}$	$>40 \mathrm{~Hz}$	$>5 \mathrm{~Hz}$	external
SIZE	$\begin{gathered} 1.1 \times 3.0 \\ \times 1.1 \end{gathered}$	$\begin{gathered} 2.0 \times 2.25 \\ \times 1.4 \\ \text { dual } \end{gathered}$	$\begin{aligned} & 1.1 \times 3.0 \\ & \times 1.0 \end{aligned}$	$\begin{gathered} 1.5 \times 1.5 \\ \times 0.6 \end{gathered}$	$\begin{gathered} 1.85 \times 0.85 \\ \times 0.5 \end{gathered}$	$\left\|\begin{array}{c} 2.01 \times 2.25 \\ \times 1.4 \\ \text { dual } \end{array}\right\|$	$\begin{gathered} 0.85 \times 1.85 \\ \times 0.5 \end{gathered}$	$\begin{gathered} 2 \times 2.25 \\ \times 1.4 \end{gathered}$ dual	$\begin{gathered} 2 \times 2.25 \\ \times 1.4 \\ \text { dual } \end{gathered}$	$\begin{gathered} 2 \times 2.25 \\ \times 1.4 \end{gathered}$ dual	$\begin{gathered} 2.15 \times 1.25 \\ \times 0.5 \end{gathered}$	$\begin{gathered} 1.1 \times 3.0 \\ \times 1.1 \end{gathered}$
NOTES	-	channel unit	-	-	-	channel unit	-	$\begin{aligned} & \text { dual } \\ & \text { sine } \end{aligned}$ output	channel unit	channel unit	-	-
TEMPERATURE RANGE	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ \text { to } \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ 10 \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ \text { to } \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ \text { to } \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ \text { to } \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ 10 \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ \text { to } \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} \text { output } \\ -40^{\circ} \mathrm{C} \\ \text { to } \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ \text { to } \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ 10 \mathrm{C} \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ \text { to } \\ +100^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ 10 \\ +100^{\circ} \mathrm{C} \end{array}$

4 QUADRANT ANALOG MULTIPLIER DC x DC = DC OUTPUT

Product Accuracy is $\pm 1 / 2 \%$ of all theoretical product output readings over Full Temperature Range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Maximum Output Error for Either
$X=0, Y=10 V$
$Y=0, X=10 \mathrm{~V}$
$X=0, Y=0$
would be ± 2 MV over Entire Temperature Range.

Specifications: Model MCM 1478-1
Transfer Equation: $\mathrm{E}=\mathrm{XY} / 10$
$X \& Y$ Input Signal Ranges: 0 to $\pm 10 \mathrm{~V}$ peak
Maximum Static and Dynamic Product Error: $1 / 2 \%$ of point or $2 M V$, whichever is greater, over entire temperature range
Input Impedance: $X=\mathbf{1 0 K}, Y=10 \mathrm{~K}$
Full Scale Output: $\pm 10 \mathrm{~V}$ peak
Minimum Load for Full Scale Output: 2000 ohms
Output Impedance: Less than $\mathbf{1 0}$ ohms
Bandwidth: $\mathbf{1 0 0 0 H z}$
DC Power: $\pm 15 \mathrm{~V}$, unless otherwise required, at $\mathbf{2 0 m a}$
Size: $1.3^{\prime \prime} \times 1.8^{\prime \prime} \times 0.5^{\prime \prime}$
Output is short circuit protected

SINE-COSINE

SFG 1491 SERIES
FUNCTION GENERATOR
FEATURES:

- Provides a two quadrant sine function with better than 1% accuracy
- Excellent temperature stability
- Scaled for $\pm \mathbf{1 0 V}$ input and output
- Operates from conventional $\pm \mathbf{1 5 V}$ power supplies
- No external offset adjustments required
- Terminal provided to allow four quadrant operation
- Hermetically sealed package.

Specifications: (at $+25^{\circ} \mathrm{C}$ unless otherwise noted.)
DC accuracy: $\pm 30 \mathrm{~min}$. of arc or 0.5% whichever is greater
DC accuracy over the complete temperature range: $\pm \mathbf{3 0} \mathbf{m i n}$. of arc or 0.75% whichever is greater
Input impedance 100K
Input voltage range (pin 1): $\pm 10 \mathrm{~V}$ DC
Rated output-voltage: $\pm 10 \mathrm{~V}$ DC
Rated output-current: $\pm 5 \mathrm{ma}$
Output impedance: 1Ω
Frequency response 400 Hz
Power requirements: $\pm 15 \mathrm{~V}$ @ 40 ma max.
Accuracy drift vs. power supply: $\pm 10 \mathrm{MV} / \mathrm{V}$
Size: $2.200 \times 2.100 \times 0.500$

Two New Opto-Isolators Featuring LDDs with CaS Cells...

Offering high reliability at low cost, PHOTOMOD ${ }^{\text {T }}$ opto-isolators, series CLM- 6000 and CLM-8000, are now available for immediate delivery from Clairex. Using solid-state lamps and Clairex photoconductive cells, reliability and ruggedness are inherent in the design.
CLM-6000 is a miniature, low power, low resistance, isolator offering noiseless switching and
complete isolation for TTL to TTL interfaces.
CLM-8000 provides a hermetically sealed CdS cell and an LED. Operates on line voltage to drive SCRs and Triacs from TTL outputs.
For complete data or special assistance with your isolation problems. call (914) 664-6602 or write Clairex ${ }^{(9)}$, 560 South Third Avenue. Mount Vernon, New York 10550.

[^0]: Sprague Word Trade Corporation, Chemin FrançoisLehmann 19, 1218 Geneive. Grand Saconnex, Swlt zeriand, Tel. 9840 21/44, Telex 27494 . Sprague Bene 055-215302. Sprague France Sà ar.l., 2, av. AristideBriand, 92220 Bagneux, France, Tel. 655.19.19. Spra gue G'mbH. Friedberger Anlage 24, 6 Frankfurt am Main, W. Germany, Tel. 0611-439407. Sprague Italiana S.p.A. Via G.G. Winckelmann 1, 20146 Milano, Italy,
 Tel. $02-479121$. Sprague Electric (UK) Lid., 159 High Tel. 02-479121. Sprague Electric (UK) Lid., 159 High W. Drayton 44627 .

[^1]: Corporate offices are at 901 Thompson Place, Sunnyvale, California 94086. Telephone (408) 732-2400 or toll free from outside California (800) 538-7904/Southern California: Beverly Hills (213) 278-9700/Mid-America: Oak Brook, Illinois (312) 323-9600/Edina, Minnesota (612) 835-4445/Dallas, Texas (214) 423-1502/Eastern United States: Roslyn Heights, New York (516) 484-4990/E. Syracuse, New York (315) 437-7546/Baltimore, Maryland (301) $744-8233 /$ Wellesley, Massachusetts (617) 237-2774/Britain: Advanced Micro Devices, Telephone 01-730-0855/West Germany; Advanced Micro Devices, Munich, Telephone (089) 5395 88/Southern Europe: Advanced Micro Devices, S.A. Neuilly, France, Telephone 747-4194/Japan: Advanced Micro Devices, K.K., Telephone (03) 346-0363. Distributed nationally by Hamilton/Avnet, Cramer and Schweber Electronics.

[^2]: SEMICONDUCTOR DIVISION
 50, rue Jean-Pierre-Timbaud / B.P. 120 ! 92403 Courbevole Téléphone 7885001 Télex Sescom 61560 F
 SALES REPRESENTATIVES IN EUROPE
 ESPAÑA San Juan Despi (Barcelona) - Componentes Elagctronicos S.A. Tal. $319.46 .50 \mathrm{Twx}: 53.077$ - FINLANO - Halsinki - OY Sufra AB Tel. 49.01 .37 Tlg : Pierrejoly Helsinki - GREAT BRITAIN - London Thomson CSF UK LId Tel. (01) 579.55 .11 Twx: 25.659 - ITALIA - Milano - Sescosem Italiana Te. 68.84 .141 Twx: 31.042 \& ROMA Tal. 31.27.22/35.30.05 Twx : 61.173 Telonde - NEDERLAND - La Haye Compa-

 82.02.80 Twx : 19.389

[^3]: 1. The basic device. The 4013 -type C-MOS integrated circuit is a dual data-type flip-flop offering set/reset capability. Each of its two flipflops has independent data (D), clock (CLK), set (S) and reset (R) lines, plus independent complementary outputs (Q and \bar{Q}). As the truth table shows, a logic signal is transferred from the D input to the Q output during a positive-going clock transition.
[^4]: Engineer's Notebook is a regular feature in Electronics. We invite readers to submit original design shortcuts, calculation aids, measurement and test techniques, and other ideas for saving engineering time or cost. We'll pay $\$ 50$ for each item published.

[^5]: *U.S. price; other 20 MHz Series 70 models available from 5695 .

