65 Operating in an uncertain economy
102 Computer and Smith chart aid r-f circuit design
111 A 12-bit microprocessor from Japan

Pea
 Wonderful World of V/Fs.

Voltage to frequency converters are

not new. You could always buy a good V/F converter in a big, rack-sized module. In fact, H-P and others made huge, monstrous things that cost a thousand dollars each. And they featured pretty good performance, considering.

Nowadays, we're talking about modern, small, reliable hybrid modules that don't cost you an arm and a leg. And don't need half-a-house worth of power to run. Say ± 15 volts at a dozen or so mA . With the kind of linearity, 0.01%, and ultra-low TC you used to have to buy racks-worth for.

Why build it if you can't fly it?

Sure you could construct your own V / F converter. But the garden variety are usually pretty crummy. It's hard to get better than 1% linearity. And you just can't make a good V/F easily using the circuits you find in magazines today.

On the other hand, by putting together non-state-of-the-art components in a tricky circuit, we regularly succeed in producing a state-of-the-art V/F converte

So I guess the big reason for buying and not dong it yourself is that you get more experience, more development, more of everything that makes it work. And less of the guesswork.

The one and only.

Our competitors in the V/F and F / V area are few and far between. A couple of guys offer one, maybe two versions of V / F converters. But linearity is not one of their strongest features. And that's being charitable.

We have a standard line and we've been making a lot of specials, too. And some of the specials we're trying to trade up to standards. Like micropower ones and ultra-low TC ones and all the way up to 10 MHz and weird stuff like that.

We've got the 4701-a 0 to $10 \mathrm{kHz} \mathrm{V} / \mathrm{F}$, the 4703 -a 100 kHz V/F, and the big gun - the 4705-a $1 \mathrm{MHz} V / \mathrm{F}$. Once we mastered the V / F, the other side of the coin-the F/V - was easy. So we've got the 4702 10 kHz and the 4704100 kHz F/V.

We use a precision charge dispensing technique. Which means if you dump a certain value of charge from a capacitor, $Q=C V$, the frequency at which you do this determines the current and the amplifier sort of integrates this value and circles around the loop until you get the correct frequency. It's easy in theory, tricky in execution. Another standard approach is $Q=I T$ which is a little more difficult and not nearly as good.

After you've got it

what are you going to do with it?

We've got loads of standard applications literature on V / F and F / V use. In such areas as telemetry, tachometry, A / D converters, common-mode isolation, integration and how you can offset them or shift the full scale value or filter things. And how to work with different frequencies.

We discovered that several of our customers are using them in pollution
nitoring where essentially you have to egrate for a long time without drift. ere are some people in photospectromwho integrate the area under a curve.
Voltage to frequency conversion d vice versa has been in use a long time. Our Teledyne Philbrick V/F Converters make it easier and less tricky to use V / F conversion in a lot of new ways.

Don't be afraid, askus.

If V / F or F / V sounds like it may answer your problem. Or if you don't know you have a problem, you really ought to get our Application Notes and spec sheets anyway. Telephone, toll-free (800) 225-7883, in Massachusetts (617) 329-1600, or write, Dedham, Mass. 02026. In Europe, Tel. 73.99.88, Telex: 25881 , or write, 1170 Brussels, Belgium.

NTELEDYNE PHILBRICK

"See us at IEEE/INTERCON Booth \#2122"

Circle 900 on reader service card

Debug Your System Design Before You Build It.

Stable? Oscillatory? Unstable? With an HP 9830 Calculator, you'll know exactly how your control system will perform-long before you've committed to an expensive prototype.

The secret to this cost-saving performance is our new State-Variable Dynamic Analysis Software. It's a carefully developed set of programs that can ensure you a stable system often in less time than it takes to evaluate one or two computations by other methods.

Consider the benefits! No more struggling with Laplace transforms. No hassling with computer programming and interfacing. You just key in system component values directly from your block diagram, and the 9830 does the rest, automatically.

In ten minutes or less, you get a high resolution plot of transient response and printed documentation of system parameters. And if your

Sales and service from 172 offices in 65 countries. PO Bor 301 Loveland Cororsco 80537
design needs adjustment, the handy post-modification routine lets you change components or parameters with a few keystrokes. Electronic, hydraulic, mechanical, optical or hybrid controls: The HP 9830 Dynamic Analysis System can quickly save you enough on design costs to repay its $\$ 435 *$ per month lease price. And through our extensive software library, you can compound its profitability with savings on the whole spectrum of engineering tasks.

But why not see for yourself. For complete details, or a hands-on demonstration, call your local HP Sales Office. Or send us the coupon below:
*Domestic U. S. A. price only. Lease. where available. includes service contract.

HP's New Fast FORTRAN Processor: This Tiger Is No Pig.

It's a firmware package that runs FORTRAN IV programs up to 28.8 times faster. And it's available only on Hewlett-Packard's microprogrammable 2100 minicomputer.
To buy one,
contact your local HP field engineer.
Ask him to run your FORTRAN IV benchmark.

HEWLETT MP PACKARD
Sales and service from 172 offices in 65 countries. 1501 Page Mill Road. Palo Allo. Calliornia 94304

The International Magazine of Electronics Technology

29 Electronics review

SOLID STATE: CCD imager resolution improves again, 29
CONSUMER ELECTRONICS: Interactive TV can teach and play, 30
Ohio to get big, cheap, two-way CATV system, 30
Clothes dryer uses MOS control chip, 31
NAVIGATION: Two-system plan charts new markets, 31
COMPONENTS: Analog switch makes telephone connection, 32
FIBER OPTICS: Corning develops low-loss light coupler, 34
GOVERNMENT ELECTRONICS: Automated weather stations planned, 36 NEWS BRIEFS: 36
TRADE: U. S. forecasts decline in ' 74 imports, 36
COMMERCIAL ELECTRONICS: Matsushita to buy Motorola TV line, 38 COMMUNICATIONS: AT\&T and MCI lock horns, 41

52 Electronics International
JAPAN: Camera goes heavy on electronic controls, 52
THE NETHERLANDS: Magnetism drives Philips recorder, 52 AROUND THE WORLD: 53

65 Probing the News

THE ECONOMY: Business is good despite uncertainties, 65 ELECTRONICS ABROAD: In Europe, things are good-for now, 68
MEMORIES: Customers wary about 4,096-bit RAMs
MANUFACTURING: Electronics firms like Puerto Rico, 76
89 Technical Articies
COMMUNICATIONS: Optical waveguides look brighter than ever, 89 DESIGNER'S CASEBOOK: Cassette recorder can monitor phone, 98 Winking LED notes null for IC-timer resistance bridge, 100
CIRCUIT DESIGN: Generalized Smith charts aid rf-circuit analysis, 102 COMPUTERS: 12-bit microprocessor nears minicomputer capability, 111 ENGINEER'S NOTEBOOK: Reducing power drain of static RAM ICs, 119 Operating a logic gate as a flip-flop, 120
Isolator circuit permits scope to check ungrounded voltages, 121
127 New Products
IN THE SPOTLIGHT: LEDs go up in size, down in price, 127 COMPONENTS: Clock oscillator in DIP is 0.2 inch high, 129 INSTRUMENTS: Pulser rate covers 0.01 Hz to $10 \mathrm{MHz}, 137$ SEMICONDUCTORS: Infrared LEDs are matched to fiber optics, 147
PACKAGING \& PRODUCTION: Thermoplastic is easy to mold, 157
COMMUNICATIONS: Tone encoder offers low distortion, 167
MATERIALS: 170

Departments

Publisher's letter, 4
Readers comment, 6
40 years ago, 8
Editorial, 12
People, 14
Meetings, 20
Electronics newsletter, 25
Washington newsletter, 49
Washington commentary, 50
International newsletter, 55
Engineer's newsletter, 122
New literature, 172

Highilights

The cover: Optical cable is nearly here, 89

Practical optical data links could be built today, now that optical waveguides are catching up both technologically and economically on the more advanced-and more available-light sources and light detectors. This kind of cable promises large bandwidths and immunity to crosstalk at eventually low prices.

Electronics is booming, 65

Counter to many predictions, bookings and billings as well as sales are running higher than last year at electronics companies across the country. Capital spending, too, is on the increase.

Computer generailzes Smith charts easily, 102

Though an extremely powerful tool for rf circuit analysis, the generalized Smith charts are rarely used because they require some complex mathematics. This difficulty, however, is easily overcome with the aid of any microwave-analysis program capable of handling scattering parameters.

Microprocessor handles 12 bits in parallei, 111

Capable of direct memory access and responsive to eight levels of interrupt, this MOS LSI chip is organized around an asynchronous bus and even contains a microprogramed read-only memory.

And in the next lssue . . .

Special report on photovoltaic cells. . .a low-cost video disk recording system. . .when to prefer tin-plated to goldplated contacts.

Joman．Hawaral 18．， 2300 Wabanmia Ive． Chllago，111，（tiee page 13I．） 6650 Kellogg switchboard \＆supply（ㅇ．． 6650 Mallory \＆（in，I．Re， $30 \pm 9 \mathrm{los}$ ．Washington st，Indianapolis，Ind，
Nathonal（＂o．，fil Nherman St．，Malden， beve Miss．
Fo－Natimal Con， $1: 384 \mathrm{~N}$ ．Kostner Ave。 －niversal gide．
niveral Midrophone Co．Centimela at L＇tah FRadio l＇roducts Co．，820 Orleans St．， Waterbury＇ibutton（ 0.0 .83 .7 S ．Main St． Waterbiny，Conn．

Pointers

DIAL POINTERS

atere alno Knots
alen Dialm

 land，（Dhio
 Ratrenswood AYe．，Chieago，Ill ifilmmes \＆sons，Inc．，L．F 3 ，$i f$ linion st．Allentown．1＇a
Insiline Corp．of America， $30-30$ North－
 Cene＂entral Ave．，Jas Angeles．Cat．
Dow bingland Radiocrafters 1156 Com－ monwealth Ave．．Brookline．Mass． Radio City Iroducts Co．， 127 W． 26 th St．，

Points

CONTACT POINTS

Anerican Jiolectro Metal Corp．， 165 Ibroad－ Amerib：at j＇latinum Works，New Jerscy 12．IR．Ive．at oljuer st．，Newark， Diker \＆Car， 118 Astor St．N゙ewark，N：J
 srainin Co．（．S．©o Van lam st．New （Valurk．N．Y．（See page 16\％．）
union（ity，sorp．tsist sith st． lnion City，N．J．（See pare 46．） leveland＂Tungsten，Inc．， 10000 Meerl Are．，Ceveland，Ohio
－ansteel Metallurgical Corph， 2200 Sheri－ datt Rd．，North Chicago， 111.
 ernern Plate Dil．．Metals \＆Controls Gemural Tungsten Mfk．Co．，502 23 S St． fibson EJleatric Co．， 8350 Frankstown Ave．，littsburgh，Pit．
Independent Contitet Mfg．Co．， $5 \not 40$ 39th st．．Inion Clity，N．J．
Mallory d Co．，P．R．，30：9 F．Washington Ni．，Indianapolif，Imal．（See bage 50．） Metroloy Cons F ．Mlpine st．，Newark． Daraloy（Co．600 \＆Mehigan
urrey（iif 600 S．Mehigan Ive．Chi－ Tungsten（ontact Mfge lide．） Westinghouse Electric \＆Mfg．Co．，Fast
 ark，N．J．（Nee page 112．）

Porcelain

Posts

BINDING POSTS and TERMINALS

Alden Products Co．， 117 Minn St．，Ibrock－ ton，Miss
Imericin Automatic Electric Sales Co． 103. II．Van Buren St．Chicato， 11

American ladio Mardware（ 0 tif Broad Sirnhach Radio Co 145
imhach Ranio CO 1 Iludson St．New sud Radio，inc．， 2118 E．Esth St．，Cleve annon Folectric levelopment Co 3209 Humboldt St．， 1 as Angeles．（＇ili．

（Vinemai Chingage，lll．（Ser page gl．）Ver－ dago Ave．，Burbank．Cal
Clawe \＆Co．，P．，Lawrence \＆Lamon Aves．，＇hicago．Ill

Doran $\&$ sons，James（．． 150 Chestnu boles：inc．，Hugh II．， 4700 Stenton Ave． l＇hilitdelphiat，I＇a．
F＇ilhnestock İlecotric Co．， $46-4 t$ 11th St．，
poderal sorew problucts ion．， 26 S．Jeffer－ eral A．rew Prorlicts（＂o．， 26 S ．Jeffer
son st．Chicago，lll． son st．Chioggo，ll．
 Homsick Falis ladio \＆lilectrioal l＇arts
 ㅊ．
Industrial Screw \＆Supply（＇o．，$\overline{1} 11 \mathrm{~W}$ ． Lake sit．，Chivago， 111 ．iVabansiat Ave （＇hicawo Ill
Aallory \＆Co．，I．IR．．3u』9 F．Washing
 Hublurers Screw lroduct
Hubbard Sit．（＂hicago，［1l．
leter Jevices io．， 1001 Prospect die．
leter Jevices（co， 1001 Prospect Ave．
wiber Co．．d．Wif．，j！it s．Main St．，Las
Morse（＇o．，Frank W．， 301 （＂ongress st． Boston，diass
folk．J．1．．j：39 Ilaple dve．，Troy．No．Y

 Citrlson lid．，liochester，N．

Potentiometers

see also（＇ontrolm

Allen－1radley Co．． 136 W ．（iremfield Ave． merjean lnstrament（on．Solo Georgia
 lurbank，＂al
 land．Whio
liristol（＇o．，Waterbury，（onn
Irown Inst rument（ \circ o．，ttes Wasne Ave． Trick lustrmen
 Terminal，New York，X：V．
Datun（o， 158 summit sit．．Newark，N．，J eJur Amseo Corp．，Shelton，fonn．（sipe
 cago．lil．
pilectronic Products Co，St．Charles，Ill Foxboro Co．，Nejonset Ave．Foxhom， Mass
General lolectric Co．，Shenementarly，N． P° ． $\mathrm{J}-\mathrm{B}-\mathrm{T}$ Instruments，Inc．， 441 Chapel St． leedls \＆Northrup
eers © Ave． is pingineering a．
 Mason－N゙・ilan Regulator Co．， 1140 Adams st．，luston，Niass．
attomal＂I＇echnicral laiburatories， 820 Mis－ sion st．，South lasadlena，＂al． ohmite sifg．ro， 4835 W＂，I＇lournoy st．， tubseon（＇o， 3751 Ridge Ave．，I＇hiladel phla，l＇a．
surnce jongineeringe Co．， 53 Grant St． Walden，\times ソ．． Tigliabue Mif．Co．，C．J．，Park \＆Nos－ tran！Aves．，l3rooklyn，N．Y．Ames Jistrument Companies， 100 Ames Taylor Jnstrument Companies， 100 Ames wing－whert instrument Co．，Penn St． dinulaki dre．，lhiladelphia，Pa， Tech Laboratories， 7 Lincoln St．，Jersey Viah liadio Products Co．． 820 N ．Orleans ．St．．I＇hicago，111．
W．eston lifectrical Instrument Corp．， 614 Frelinghusisen Avo．．N＂ewatk，N．J． oria nnstruments Co．，Harison \＆Pe oria sits．，Chicago，Ill．

Rectifiers

see alsu Tuben

DRY DISC RECTIFIERS

Anerican Television \＆liadio Conp． 300 Fs．fth st．．st．Paul．$\$ 1 \mathrm{inn}$ ．

Fibectrical Jrouncts Co．，bi．35 laussell St． Detront，Mich．
ransteel Metallurgical（＇orp．，2000 Sheri Ian IRd．，North Chicago，Ill．
Intermathonal Telephone est kudio if （＇urp．， 1000 l＇anmaic．Ive．，Newark．N d．（Sipe mage 42. ）
Mallory \＆Co．，J．R．，3029 10．Washing－ ton St．．Indianabolis，Ind． Standard Transformer Corl．， 1500 N．Hal sted sit．．（＂hiorgo，III．

Regulators

are albo Transformerater

alsu Tubes

VOLTAGE REGULATORS

 and STABILIZERSAome blectric \＆Mfg．Co．， 31 Wंater St． Alhis－chalmers Jifg．（＇o．，Milwatuker，W＇is． Ameritan Transformen ©o．． 17 S Fommet st． Newark，刃．J．
Fhurlingtan Instrument Corp．，linrlington low：a

 beclipsooklyn，N．Ne bendix Aviation Corl．．IBendix，N゙．．I．
polectionic Products（Co．，st，charles， 111.
loerris Instrument（＇orp．，lbmonton，…
Freed＂ransformer Co．，$\because:$ spring st． New York，バ．y
（ieneral liblectric Co．，schencetady，\times ． lladey Co．，leobert M．．Tll b¿．blst st．
 （＂hleago， 111.
Ideal Commintator l）resser（＇o．，163l l＇ark International lesistance Co．， $101 \times ゚$. Ifroad St．．Philadelphia，I＇a．
Jones－Orme（‘o．， 164% IIennepin die．，st Paul，Minn．
Niller（o．，Bertramsl l＊＇，Trenton，N．J． walk Trantsformer Corp．，South Nor－ witk，Conn．
Kaytheon Nfe．Co．， 190 Willow sit．，Wal tham，MaNm．（See page 150．）
RCA Mrg．Co．Cambern．

Los Angeles，Cal．Clybourn ive

Standard Trinnsformer Corp．， 1500 N ．Hal sted st．．（hicago． 111.
Saperior Filectric（io．， 32 liarrison Nt．
 ordarson blectric Mfg．Co．， 500 W． Huron St．，Chicago．Ill
Enited Trankformer（io．．liso Varick Nt． Ward IWeonard E．Electric Co．， 31 South St．， Mount Vernon，N．Y．Yi， 1 south St． lift I＇o．， 5221 Greene St．．I＇hiladelphia．

Relays

HEAVY DUTY RELAYS

Allen－13radley Co．． 136 W ．（ireenfeld Ave． Alleal Control Co．，ge：Fulton st．，New lork，N．Y．（Nipe pase 164. ）
American Nutomatic Electria Salen Co． 1033 w．Van Ifuren st．，（Mhifago，Dili，

American Instrument Co．，
rgia Autorall＇Co．， 114 ？Tucker Ave．，Shelly， Automatio switeh（o． 11 1\％． 11 th St． ＇utler－Hammur．Jnco， $1 \not+01$ W゚．St．I＇aul I Junn，Inc．，Silwuthers． 1315 Cherry St． Bhiladeljhia，Pa
ieneral（ontrols Co．， 801 Allen Ave．，Clen－ late，（al）．
ieneral İlectric Co．，Schenectady，N．Y． lagan（orp．，George J．，－ 400 L．Carson I－B At．Pittsburgh，l＇a． I＇hiladelphia，P＇a．
 liller（＂u．Bertrand io Trentonge Monitor Controller Co．．Jl S．Gay St． Baltimore．Md．
penn blectric switch co．．Goshen，Ind．
hiladelphia Thermometer Co．，：17 loblbert St．P＇hiladelphia，l＇a．
＇otter \＆Brumfield Mfg．Co．，Princeton， Md．
Signal bingrg，\＆Mfg．Co．， 1 it W．14th St． Ward 1，eonard lilectric Co．， 31 South St．， Westinghouse blectric \＆Mfg．Co．，bast Weston bislectrical Instrument Corp．． $61+$ F＇relinghuysen Are．Newark．N．J． Zenith Rlectric Co．，ソ4 ふ．Wabash St．， （＇hicago， 111

EDITOR-IN-CHIEF: Kemp Anderson

EXECUTIVE EDITOR: Samuel Weber
MANAGING EDITORS: Lawrence Curran, News; Arthur Erikson, international

SENIOR EDITORS: John Johnsrud. H. Thomas Maguire, Laurence Altman Ray Connolly. Stephen E 3crupski

ART DIRECTOR: Fred Sklenar

ASSOCIATE EDITORS: John N. Kessler, Howard Wolff, Gerald M. Walker

DEPARTMENT EDITORS

Aerospace: William F. Arnold
Circuit Design: Lucinda Mattera
Communications \& Microwave:
Stephen E. Scrupski
Components: Joel DuBow Computers: Wallace B. Riley
Consumer: Gerald M. Walker
Industrial: Alfred Rosenblatt
instrumentation: Michael J. Riezenman
Military: Ray Connolly
New Products: H. Thomas Maguire
Packaging \& Production: Stephen E. Grossman
Solid State: Laurence Altman
Special Issues: Harry R. Karp
COPY EDITORS: Margaret Eastman, Everett C. Terry
ASSISTANT EDITOR: Marilyn Offenheiser
ART: Charles D. Ciatto, Associate Director Patricia Cybulski, Assistant Director
PRODUCTION EDITOR: Arthur C. Miller
EDITORIAL SECRETARIES: Janet Annunziata, Julie Gorgoglione, Penny Roberts
FIELD EDITORS
Boston: Gail Farrell
Los Angeles: Paul Franson (Mgr.)
Midwest: Larry Armstrong (Mgr.)
New York: Alfred Rosenblatt (Mgr.)
San Francisco: Judith Curtis
Washington: Ray Connolly (Mgr.), William F. Arnold
Frankfurt: John Gosch
London: Michael Payne
Paris: Arthur Erikson
Tokyo: Charles Cohen
McGRAW-HILL WORLD NEWS
Director: Ralph R. Schulz
Bonn: Robert Ingersoll:
Brussels: James Smith
London: Marvin Petal;
Milan: Peter Hoffmann, Andrew Heath; Moscow: Axel Krause;
Paris: Michael Johnson, Richard Shepherd; Stockholm: Robert Skole;
Tokyo: Mike Mealey
PUBLISHER: Dan McMillan
ADVERTISING SALES MANAGER: Pierre J. Braude
ADVERTISING SALES SERVICE MANAGER: Wallis Clarke
BUSINESS MANAGER: Stephen R. Weiss CIRCULATION MANAGER: George F. Werner MARKETING SERVICES MANAGER:

Tomlinson Howland
RESEARCH MANAGER: Margery D. Sholes

With the first quarter of 1974 almost behind us, it looks like some of the uncertainties that accompanied the start of the new year are definitely behind us.
On page 65 , you'll find a report on how healthy the electronics industries are-despite fuel and material shortages, talk of recession, and all the other worries the general economy faces. Right after that, on page 68, is a report on the remarkable optimism among Europe's electronics leaders as they prepare for next month's bellwether Paris Components Show. And, in an editorial on page 12, we point out that the long-term strengths of electronics technology far and away outbalance the short-term uncertainties-and that this is certainly not the time to cut back on expansion plans.

Significantly, more and more evidence is piling up that electronics is contracyclical-it does not plummet when the general economy does. Indeed, some experts think that electronics technology is now so basic, pervasive, and essential that it is immune from the extreme recessionary swings that may hit other industries. When you read our economic reports, you'll see some of that evidence for yourself.

Despite the enormous economic uncertainties facing Western Europe because of the energy crisis and near-runaway inflation, our field editors there found a nearunanimous feeling that 1974 will be a good year. Even in Great Britain, the country where things could go most wrong, components companies are surprisingly optimistic. After
checking out the technology leaders in France, West Germany, Great Britain, and Italy, our reporters stationed in Europe concluded that evolution in technology, rather than revolutionary new products, would set the tenor at the Paris Salon International des Composants Electroniques.

As part of his contribution to our story on the market outlook just before salon time, our Paris-based Managing Editor-International, Art Erikson, talked with the heads of France's two largest components companies.
"It would be hard to imagine two more different locales for interviews," says Erikson. "Thomson-CsF is in the midst of converting an old factory in a western Paris suburb to modern headquarters for its components operations. It was there that I saw Philippe Giscard d'Estaing, who heads them. A few days later, I went with a trainload of French business journalists to the Chateau d'Artigny near Tours, where RTC-La Radiotechnique-Compelec's direc-tor-general Jacques Bouyer reported on the outlook for his company in the domed ballroom of the chateau.
"Whether the surroundings were functional or gilded, the message was the same. Based on last year's surge and what they've seen so far this year, both men figure to log strong growth this year."

[^0]Oticers of the McGraw-hal Publications Company John R. Emery Presideni, J. Etron Tuohig. Execulve Vice President-Adminustration Gene W. Simpson, Group Publisher-Wice Presudent: Senior Vice Presi-dents-Ralph Blackbum, Curculation; Wahter A. Slanbury. Ediocral; John D. Hoglund. Controller: David G. Jensen, Manulacturing; Gordon L Jones. Marketing; Jerome D. Luntz. Plenning \& Development. Oncers a McGraw-hill Inlormations Systems Company; Robert N. Landes. Senio vice Presiden and Secrelary: Ralph J. Wobb. Treasurer.
Tille regislered in U.S. Patont Ottice; Copynght Q1 974 by McGrawthin. Inc All rights reserved. The contenis of inis publication may not be reproduced evther in whote or in pan without the consent of copyright owner
Subscribers. The pubhisher, upon wrtten request to our New York orCrom any subecriber, sgrees to retund that part of the subscripion porce applying to coples not yel maled. Piease send change of adoress notices or compiants to Fulliliment Manager, subscription Ordars to Circulation Manager. Electroncs, at address betow. Change of addres nofices should provide odd as well as new adiress, inciuding Dowa Allow code number. in possicie, entach adir
one month for change to become etecive. Postmaster: Please send form 3579 lo Fu ics, P.O. Box 430, Hightsiown, N.J 00520.

your key to low cost reliability

The ferroresonant voltage stabilizing principal depends on the saturation of a portion of the transformer's iron by the use of a resonating capacitor. The squarish waveform in the tank winding is amplitude isolated
from the primary winding (and, therefore, the line's noise) and will collapse if overloaded to protect itself and your load.

Why do things the hard way? There's a nice, easy way to provide stable, transient-free, d-c voltages in your system . . . the Kepco PRM modules. Low cost power supplies which, by their elegant simplicity, yield rich dividends in reliability and longevity.
There's no clamped-down high voltage to break out of its regulator and mess up your circuits; no noise-generating switches or oscillators to confuse your logic; no delicate transistors requiring elaborate protection. Kepco's PRM power supplies use a self-stabilizing resonant transformer, oil-filled a-c capacitor, some silicon rectifiers and husky aluminum electrolytic filters. That, plus some copper wire is it!
Voltage is controlled by the saturation flux of the transformer's iron lamination. You can't get more rugged than that. There's no need for auxiliary overvoltage crowbars, trigger circuits, current limiters or even fuses! PRM's are inherently protected for every sort of abuse.

ALL KEPCO PRM MODELS HAVE WON UL RECOGNITION UNDER THEIR COMPONENT RECOGNITION PROGRAM; UL SPECS. 114 and 478.

- $\pm 1 \%$ source effect (the "line regulation" for a $100-130 \mathrm{~V}$ a-c unstable source).
- $100-300 \mathrm{mV}$ rms ripple, spike free! Rejects line noise by more than 120 dB .
- Outputs from 4.5 V d-c to 240 V d-c.
- Built to exceed 200,000-hour service life.

For complete specifications and applications notes-write Dept. O-14

seal of improval

Improved reliability through the use of a glass-to-tantalum true hermetic anode seal is the prime feature of new Type 138D gelledelectrolyte sintered-anode Tantalex ${ }^{*}$ Capacitors. This new construction eliminates all internal lead welds while retaining the strength of conventional internal lead-welded parts. In addition, the new construction offers outstanding resistance to extensive temperature cycling.

Type 138D Tantalex Capacitors are designed to meet or exceed
the environmental and life test requirements of MIL-C-39006. The gelled-electrolyte employed in these new capacitors gives premium performance for all capacitor parameters with respect to frequency and temperature variations.

Originally developed for use in aerospace applications, this capacitor design is now available for general industrial and aviation use where the utmost in component performance and reliability are primary necessities.

40 years ago

From the pages of Electronics, March, 1934

Science makes jobs

Every reader of Electronics has been asked: "But don't these new electronic inventions put men out of work, and so aggravate the world's troubles of unemployment?"

The answer, definitely to the effect that science and electronic inventions build new industries and so create jobs, rather than destroy employment, was made by a group of outstanding American scientists whose names are also synonymous with electronic discovery and application, during a joint meeting of the New York Electrical Society and the American Institute of Physics in the Engineering Auditorium, New York City, Feb. 22, at which the editor of Electronics presided, as head of the Electrical Society.

Following are pointed paragraphs from the discussions:
Dr. Karl T. Compton, Chairman, U.S. Science Advisory Board, President, MIT

- The idea that science takes away jobs, or in general is at the root of our economic and social ills, is contrary to fact, is based on ignorance or misconception, is vicious in its possible social consequences, and yet has taken insidious hold on many minds.
The spread of this idea is threatening to reduce public support of scientific work, and in particular, through certain codes of the NRA, to stifle further technical improvements in our manufacturing processes. Either of these results would be nothing short of a national ca-lamity,-barring us from an advanced state of knowledge and standard of living.
Dr. Robert A. Millikan, Director California Institute of Technology
- Every labor-saving device creates in general as many,-oftentimes more,--jobs than it destroys. And the new jobs are in general better for the individual affected, and much better for society as a whole, than the old ones. The world's drudgery that used to be done by human slaves, is now done by soulless, feelingless iron slaves.

For complete technical data, write for Engineering Bulletin 3704A to: Technical Literature Service, Sprague Electric Co., 35 Marshall St., North Adams, Mass. 01247.

SPRMGUE

the mark of reliability

Get the drop on redrawing drudgery.

Shortcuts with Kodagraph materials can turn drafting hours into minutes.

Nobody likes to retrace a whole drawing just because a few revisions are necessary. You don't have to if you make a second original on Kodagraph wash-off film. Simply wet-erase what you don't wantusing plain water and a soft eraser-draw in the new details and the job is done.
If on the other hand, you're faced with repetitive details, draw them once. And then order as many Kodagraph film or paper reproductions as you need. Cut them out,
tape down on drawing form, rephotograph and you have a new original.

When you need to restore α battered, old drawing, have a reproduction made on
Kodagraph film. Stains virtually disappear. Weak lines come back strong. And you end up with a crisp, legible black-on-white print.

Get the details.

Write for information on how you can reduce drafting time with photoreproduction techniques. Eastman Kodak Company, Business Systems Markets Division, Dept.DP742, Rochester, N.Y. 14650

Monroepresents500 for 30 minutes of

Introducing the totally new 1920.

In order to introduce a scientific and engineering electronic calculator so new and different that it defies description, we've comeup with a unique kind of offer. One of the most fascinating printed works of the century. A 500 page volume of the long lost notes of Leonardo da Vinci.

Long available only to serious scholars and meticulously penned in a mysterious mirror writing, this newly translated volume contains a wealth of information. Leonardo's voluminous notes on sculpture, architecture, astronomy, anatomy, physical geography, engineering, and mechanics showing him to be centuries ahead of his time. Sold in fine bookstores for five dollars. And it's yours absolutely free.

In return for this gift, we want to show you a new electronic computing device so unique that it must be tried to be believed

A device that allows you to work in algebraic form. And that's only the beginning. With the 1920 you work with the simplest keyboard, so comfortable that it can become second-nature.

Simpler than any you've ever tried, but with all the power you'll ever need. Plus a display you can read even from across a room.
And in 30 minutes we can show you what we mean.
And for your time, with no further obligation, we will present you with a card you return to us. As soon as we receive it, we'll send your Leonardo Volume by return mail.

pages of
yourtime.
Monroe, The Calculator Company
550 Central Avenue. Orange, New Jersey 07051
-Yes, I'd like to see the 1920. Please call for an appointment. YYes, I'm interested, but send further information on your offer by return mail.

Name \qquad
Title \qquad
Company \qquad
Address \qquad
Phone \qquad
City State \qquad Zip \qquad
Our supply of the Notebooks is limited. So to be sure to get yours early, act now.
To reserve your copy, and schedule a demonstration please return the coupon or call your local Monroe office. We're sure that both our product and the Leonardo Notebook will amaze you. And provide for time well spent.

MONROE TheCalculator Company.

Circle 11 on reader service card

The challenge of expansion

It's a puzzling year for electronics firms. On the one side, there's bad news, with some economists persisting in their forecast of recession. But a hard look at the electronics industries shows that in most segments-especially in semiconductors - business isn't just good, it's terrific.

Many companies echo the comments of Morris Chang, group vice president of Texas Instruments Semiconductor Group: "Demand shows no sign of slackening. We are still very much production limited and expect to be for quite a while." And Patrick D. Lynch, Motorola vice president, sees semiconductors growing 20-25\% this year, with his company due to match that growth.

Other cheery predictions come from spokesmen in the communications, computer, and components industries. Neal W. Welch, board chairman at Sprague, points to an open order backlog in excess of $\$ 100$ million at the start of the year. He sees "a continued healthy demand for our products in virtually all of the markets we serve." And the word from minicomputer makers is even more upbeat, with many companies talking of the strong contracyclical nature of their product. "The minis have always come through the swings okay," says one company official.

Further, a recent report on capital spending by the economics department of McGraw-Hill Publications shows that corporate expansion plans have been expanded themselves. Overall, companies plan an 18% increase in capital expenditures. Manufacturing companies plan a whopping 31% increase. In fact, since a preliminary survey in October, manufacturing companies have added about $\$ 3$ billion to their expansion plans.

Yet in spite of this outlook, many executives are scanning all reports looking for the trouble
they've been told is coming. 'I mss isn't bad in itself-if they remain prepared to act. However, if they turn cautious and hold off-or cut backon expansion plans, it could hurt.

There's no denying that the country and electronics industries face a set of problems that have left executives edgy, to say the least. Prices continue to climb, especially for energy-not only gasoline but for natural gas and electricity. Unemployment, swelled by the drop in auto sales, may have levelled off at 5.2% of the labor force. And shortages still plague the industry. All of these, plus the crisis in confidence in Government summed up by the word Watergate as well as the uncertain state of the stock market, have created an atmosphere in which it's tough to make aggressive decisions.

But there's still plenty of unfulfilled demand, which strengthens the prospects for growth. Companies see no chance of cutting down leadtimes that, in some cases, are too long to be healthy. For instance, TI's Chang sees the delivery situtation in TTL logic improving some, but doesn't think it will reach eight weeks this year. It's now at 24 weeks.

Capacity, therefore, still is the problem, and many instrument and semiconductor firms have aggressive programs for increasing capacity. Indeed, executives in rapidly expanding areas such as semiconductors and instruments have tough decisions to make. Do they pay attention to those financial analysts and economists who see rougher times ahead and either scale down or slow down efforts to bring new capacity on line? Or do they believe their own order books?

Our vote is on the side of the order books. Those that don't expand are likely to find themselves well back in the race. The worst fear is that they will let the uncertainties outweigh the strengths-and talk themselves into limiting their own growth.

Nylon. Everything you want forelectrical applications.

Connectors, switches, terminal blocks-just about everything electrical or elec-tronic-gets a head start on performance and economics when you mold in Celanese Nylon.

For good reasons. Like the fact that Celanese Nylon has U/L rating on electrical properties of $105^{\circ} \mathrm{C}$. Great me-
chanical strength and toughness. Plus high dielectric properties, so you can design more compact units with thinner walls. Good thermal properties. And fine processability.

There are many formulations of Celanese Nylon, including fast-cycling, highflow grades, super mold re-
lease grades, glass-reinforced and heat-stabilized. We'll be glad to help select the best one for your electrical or electronic application.
Write for a copy of our brochure on Celanese Nylon. And U/L Yellow Card. Celanese Plastics Company, Dept. N-507, 550 Broad Street, N-507, 550 Broad
Newark, N.J. 07102.

CELANESE ENGINEERING RESINS

FREE Engineering Handbook from RCL Electromagnetic Delay Lines

Including Dual-In-Line (OIIP)

NEW

'74

EDITION

Terms...engineering definitions... test methods ... how to specify delay lines ...characteristics of various types...specifications ...they're all included in this concise, easy-to-read handbook...yours for the asking.
LUMPED CONSTANT ... DISTRIBUTED CONSTANT ...VARIABLE all three types are covered in this reference handbook.

RCL ELECTRONICS, Inc., General Sales Office:

Seven Hundred

South Twenty First Street Irvington, New Jersey 07111

People

Ben Grossman steers

into capacitor sales

International Electronics Corp., a \$3 million company in Melville, N.Y., has a sophisticated technology-oriented sales and marketing organization, but it lacked its own factories and technology know-how. So it bought the much larger Electro Motive Corp. Electro Motive, which had experience and production capability but lacked a dynamic marketing effort, produces the El Menco line of capacitors, with plants in Willimantic, Mass., Florence, S. C., and Kingston, Jamaica. It was a merger of capabilities.

The man negotiating the deal was Ben Grossman, then president of IEC and now president and chairman of the board of both companies. Last August, after the sale was completed, there were some serious problems, says Grossman: "Electro Motive was booking orders like mad, but lead time was 20 to 30 weeks. Customers were screaming and beginning to blame us for what wasn't delivered. We had to clear up the clogged pipelines." On top of this, IEC had to negotiate a union contract at Electro Motive's, Florence, S.C. plant about the same time. But the result appears to have been worth the trouble.
"When we took over Electro Motive," says Grossman, "it had \$18 million in sales as of their year-end, May 1973. Since the changeover, it is operating at a $\$ 30$ million annual rate. Production has increased to the point where we have shortened lead times to 14 weeks with the same backlog as before."

Why should a successful capacitor company sell out to a smaller firm, especially when the long-range prospects look so good? "People make the most money," says Grossman, "by selling in a rising market." And he adds, "The original founders of the company were getting older and were not ready to start rejuvenating an industry."

For Ben Grossman, the climb to his present position began when he was 12 years old: "I used El Menco capacitors in making my own ra-

Buyer. Ben Grossman heads IEC which recently bought Electro Motive" Corp.
dios." In the 1930s, he tested tubes at his father's distributing operation, and "at age 16 , I was a components supplier to the back-room radio manufacturers."

Grossman got much of his technical training in the Signal Corps during World War 2 and afterwards decided to make his own radio set. "But we couldn't get components. Rather than go bankrupt, we decided to sell the components we had, basically for export."

From England's Mullard Co., Grossman imported a better quality of tube, one with less hum than then U.S-made tubes, and this was the start of IEC-a company that has grown to more than three times its size in less than nine months.

Ottobrini sees

ceramic boom

Harold Ottobrini, the founder of Metalized Ceramics Corp. (MetCeram), is pleased: sales of ceramic packages in 1973 soared nearly

For buitt-in reliabilits, design with scothifex" Flat Cable/Connector Systems.

"Scotchflex" Flat Cable and Connectors can offer you trouble-free packaging for your next generation equipment.

There's built-in reliability for your circuit inter-connects. Our flat, flexible PVC Cable has up to 50 precisely spaced conductors. The gold plated U-contacts are set into a plastic body to provide positive alignment. They strip through the insulation, capture the conductor, and provide a gas-tight pressure connection.

Assembly cost reductions are built-in, too. "Scotchflex" Connectors make up to 50 simultaneous connections without stripping or soldering. No special training or
costly assembly equipment is needed
Off-the-shelf stock offers you flat cable in a choice of lengths and number of conductors from 14 to 50 . Connector models interface with standard DIP sockets, wrap posts on $.100 \times .100 \mathrm{in}$. grid, or printed circuit boards. Headers are available to provide a de-pluggable inter-connection between cable jumpers and printed circuit boards (as shown). Custom assemblies are also available on request.

For full information on the "Scotchflex" systems approach to circuitry, write to Dept. EAH-1, 3M
Center, St. Paul, Minn. 55101.

MERCURY RELAYS

American Antomatic Electric Saleb Co., 1033 W. Van Buren St., Chicago, III. merican Instrume
Ave., Silver Sprin Co., 8010 Georgia Ave., Silver Spring, Md.
Ohio Co., $11+2$ Tucker Ave., Shelby. Ohio
Barber-Colman Co., Loomis \& River Sts., Rockford, 111.
Pilshen Co., 4428 Wayne Ave.,
Clare \& Celphia, $P a$.
Aves., COBicago, Ill.
Dann. Inc., Struthers, 1315 Cherry st., Philadelphia, Pa. (See pate 10.)
Durakool, Inc., 1010 N. Main St., Elkhart, Ind.
Gunrilan Electric MPg. Co, 1621 W . Wal-H-1: Electric Chicaso, III. (See page 13.) adelphia, Pa. Mercoid Corp., 4201 Belmont Ave., Chi-Almneanilis-Honeywell Regulator Co., "Tly Fourth Ave., S., Minneapolis, Міпи.
Philadelphia Thermometer Co., 917 Filbert st., Philadeluhia. lit.
l'recision Thermometer \& Instiument Co. 143. Brandywine st., ihiladelphia,
weri-
Wardileonard wlectric Co., 31 South st. Ưeston Flectrical instrument corte 34.) l'relinghuysen Ave., Newark, N., J.

POLARIZED RELAYS

American Automatic Electric Salem Co. 1033 w. Van Buren St., Chlcago, Iil (sere pare 17\%.)
Autocall Co., 1142 Tucker Ave., Shelby, Ohio
Dunn, inc., struthers, 1315 Cherry St. son, Inc., Thoma (Nef page iv. Div 51 Lakeslde Ave., West Orange, N゙, J. A B Corp., Summit. N. J.
Miller Co., Bertrand \mathbf{F}., Trenton, N. J.
Precision Thermometer \& Instrument Co. 1434 Brandywine St., Philadelphit Pa.
Westinghouse Electric \& Mfg. Co., East littsburgh, Pa
Weston plectrical Instrument Corp., 614 Frelinghuysen Ave., ふ̌ewark, N. J.

SENSITIVE CONTROL RELAYS

Advance Electric Co., 1260 W. Second St. Los Angeles: Cal.
Alled Control Co., 22 Fulton st., New Fork, N. Y (see page 164.) She
Autocall Co., 1142 Tucker Ave., Shelby. Ohios
Dunn, Inc., Struthers, 1315 Cherry St. Thhadelphia, IPa. (see page 10.) Glendale, Cal. Schen General Electric Co., Schenectady, N. Y.
 Walnut st., Chicago, Ill. (See p. 13.) Kurman Electric Co., $2 \nmid 1$ Lafayette 8 .
 Ind.
1'recision Thermometer \& Instrument Co. 1434 Brandywine St., Philadelphia

Sigma Instruments, Inc., $\mathbf{j B}$ Freeport 8t. Boston, Masm. (See page 151.)
Signal Engrg. \& Mfg. Co., 154 W .14 th St ., Westinghouse Electric \& Mig. Co., East
Pittsburgh, Pa. Instrument Corp., 61 t Frelinghuysen A ve., Newark. N. J.

STEPPING RELAYS

Advance Electric Co., 1260 W. Second St., Los Angeles, Cal. American Automatic Electric Sales Co. Autocall Co., $11+2$ Tucker Ave., Shelby: Dunn, Inc., Struthers, 1315 Cherry St. Philadelphia, Pa.
Guardian Electric Mig. Co., 1621 W. Wal Roller-Smith Clicaro, 111 . (see paze 13.) Roller-Smith Co., Bethlehem, Pa.

TELEPHONE RELAYS

Advance Electric Co. 1260 W. Second St., Los Angeles, Cal. $\underset{1033}{ }$ merican. Automatic Electric San Buren St., Chicaro, Co.

Autocall Co., 1142 Tucker Ave., Shelby,
Clare \& Co., C. P., Lawrence \& Lamion unn, Inc., Struthers. 1315 Cherry St. Dunn, Minc, Sthiathers, 1315 Cherry St. Kurman pilectric Co., zil lafayette Leach Relay Co., 3915 (Nee pare 10n H104., Lo Western Anges, Cal. Mechanimal Co., 300 Broadway, Oakland, Cal.

TIME DELAY RELAYS

Advance Electric Co., 1260 W. Second St.
Los Angeles, Cal. W . Greenfieh Ave.. Milwaukee, Wis.
American Automatic Electric Sales Co. 1033 W. Van Buren St., Chicago, 111. merican Gas Accumulator Co., 1029 Newark Ave., Elizabeth, N. J.
American Instrument Co., 8010 (ieorgia Ave., Silver Spring. IId.
Autocall Co.. 1142 Tucker Ave., Shelby
Iutomatic Temperature Control Co., 33 E . Logan St., Chladelphia, Fa, St.. New Controls, N. Y. Yowaco, N. J.
Cramer co., H. W., Centerhrook, Conn. Cutler-1timaner, linc., 1401 W . St. Paul yunn. Inc., Struthers, 1315 Cherry St . Philadelphia, Pa.
IJurakool, Inc., 1010 N . Main St., Elkhart, Ind
Wagle sishal Corp., Moline, 111 .
son, he., Thomas A.B Instrument Div: 51 Lakeside Ave, West Grange, 79 th St., Cleveland, Ohio ectronic Products Co., St. Charles, Ill. Friez \& Son, Julien P., \dot{A} N. Central Ave., Baltimore, Md.
General Electric Co., Schenectady, N. Y. nut St., Chicago, 111 .
Industrial Engineering Equipment Co., 323 E. Fourth St., Davenport, lowa Ionitor Controller Co., 51 S . Gay St., Baltimore, Md.
Photobell Corp., 116 Nassau St., New I'recision' Therniometer \& Instrument Co., 1434 I'randywine St., I'hiladelphia. ${ }^{1}$
rerred Utilities Mfg. Corp.. 31 West Rehtron Corp., 2159 Magnolia Ave., ChiSignal Engrg. \& Mfg. Co., 154 W. 14th St., New York, N. Y.
Spencer Thermostat
Co.,
1404
Forest St., Attleboro, Mass. (See page 111.) Ward Leonard Electric Co., 31 South St. Mount Vernon, N . $\%$ Mfg. Co., East Westinghouse Eltshurgh Paric \& Mfg. Co., East
Veston Electrical Instrument Corp., 614 Frelinghuysen Ave, Newark, N. J. Ave., St. Louls, Mo. S. Wabash St. Lenith Electric Co., 845 S. Wabash St..

VACUUM CONTACT RELAYS

Imerican Automatic Electric Sales Co.. American Instrument Co., 8010 Georgia Bendix.isilver Spring, Md. Nollion, Ltil., North Howod, bedison.
idison, Inc., Thomas A.. Instrument Div. 51 Iakeside Ave., West Orange. N. J. General Dilectric Co., Schenectady, N. Y.

Resistors

DECADE RESISTORS

Amplifier Co. of America, 17 W . 20th St. Cinema Engineering Co., 1508 S. Verdugo Ave., Burbank, Cal.
Daven Co., 158 Summit St., Newark, N. J.
bridge, Mass. S , Michlgan Ave., Chi-
Muter Co, ${ }^{125 \bar{s}} \mathrm{~S}$. Michlgan Ave., Chi-
cago, Iht. Co., 4835 W . Hlournos St.,
Ohmite Mifg. Co., 4835 W. Flournoy St.,
Clicugo, Clichro, III. (Spe page 39.)
Sensitive Research Instrument Corl., 4545
Bronx Blval., New York N. Bronx Blyd., New York, N. Y. Ave. Colllizalale, fra. (Nee pare B.)

Supreme Instruments Corp., 414 Howard Televiso IProducts, Inc., ${ }_{2400} \mathrm{~N}$. Sheffield tve., Chicago, Ill.

DUMMY ANTENNA RESISTORS
Ohmite MPg. Co., 4835 W. Flournoy St., Chicago, ill.

FIXED RESISTORS

Acme Electric Heating Co., 1217 Washington St., Boston, Mass.
erovox Corp.i 740 Milwaukee, 1
Atlas Resistor Co., 423 Broome St., New
Centralab, 900 E. Keefe Ave., Millwaukeo,
 arostat Mfg. Co., 28j N. Sixth
Bronklym.
(Nee paze 136.)
 Ave., Cleveland, ohio
Cutirr-1 ianmer, Inc., $1: 101 \mathrm{~W}$. St. Paul Are, Mllwakee wis
Daven Co., 158 Summit St., Newark, N. J. Dixon Crucible Co., Joseph, Monmouth St.,

Jersey City, N. J. Mf. Co., 2701 E. 79th St., Cleveland, Ohio willimantic ectro-Motive Mfg. Co., Willimantic, Conn.
Erie Renintor Corp., 644 W. 12th St. Erie, Pha. (See page 45.)
lid Slectric \& Mfg. Co., Chardon Rd. Fuclid, Ohio
General lilectric Co., Schenectady, N. Y Globar Div. Carborundum Co., Butalo Huriwick, Hilndle, Inc., 40 Hermon St. Sewark, N. J. (See page q0.)
insrument kesintors Co., Dittle Falls International Resistance Co., 401 N. Broad St., Phllatelphia, Pa. (See page 93) Monitor Controller Co., 51 S. Gay St., Baltimore, Md
Muter (o, 125% S. Michigan Ave.. Chiohmite cago.
mite Mfr. Co., 4835 w . Flourney 8t., Chicago, 1ll. (See page 39.)
Frecision Resistor Co., 334 Badger Ave. Rheostat Co. J. 3 Foxhurst led Inald win, N. Y. cago, 111.
sitive Research Instrument Corp., 4545 Bronx Blvd., New York, N. Y.
cross $M f{ }_{F}$, Co., 10 Jackson Ave., Col lingdale, Pa.
Speer Resistor Corp., 8t. Marys, Pa. (See page 113.)
Sprague speclaities Co., North Adams, Masa. (See page 135.)
Square D Co., 6060 Rivard St., Detrolt, ckpole Carhon Co., Tannery St., St Marys, Pa. (Seepase 48.)
New Park Ave., Hartford States Co., 3 New Park Ave., Hartford Tuttle \& Co., H. W., 261 W. Maumee St., Adrian, Mich.
Ward Leonard Flectrle Co., 31 South St. Mount Vernon, N. V. (Nee pare 34.) tinghouse Electric \& Mfg. Co., Eas Pittsburgh, Pa.
White Dental Mfg. Co., S. S. (Industrial Div.), 10 E. 40 th si., New York, N. Y. (see page 1 Philadelphia. Pa.

HIGH FREQUENCY RESISTORS

Beck Bros., 421 Sedgley Ave., Philadelphia, Pa
Daven Co., 158 Summit St., Newark, N. J Eastern Specialty Co., 3619 N. Eighth St. Philadelphia, Pa .
General Radio Co., 30 State St., Cam-
ardwick, Hindie, Inc., 40 Hermon 8 t. Newark, N. J. (8eo pase 20)
Instrument Resisiors, Inc., 25 Amity, St., Little Falla, N. J. (See page 14.) St. Phlladelphla, Pa. (Sce pare 93.) Leeds \& Northrup Co., 4970 Stenton Ave. Ohmite Mfg. Co., 4835 w. Flournoy st., Chicara, III. (See pare 39.)
Precision Resistor Co., 334 Badger Ave. Newark, N. J.
Shallcross Mifg. Co., 10 Jacknon Ave., Col-
Ward Ifoonard Electric Co., 31 south 8t.
Mount Vernon, N. v.: (see page 34.)

People

100% over 1972's sales and reached $\$ 10.8$ million at the Providence, R.I., firm. Also, Ottobrini was just elected president and chief operating officer of MetCeram, although he downplays the promotion as more of a change of title. As senior vice president, he and former president John A. Long, now chairman of the board and chief executive officer, have functioned interchangeably for the last five years.

For Ottobrini, the future is also pleasing. He expects the boom in ceramic packaging to continue for the next few years because its end users are in the fast-growing markets for semiconductor memory and MOS digital logic devices. "The onslaught of semiconductor memory devices," he says, "has made a tremendous difference in the company's success and is the main reason we predict such a large growth for the next few years." Ottobrini says that MetCeram is the first company to ship ceramic IC packages in volume to semiconductor manufacturers.
Room for growth. He rejects the idea that plastics may be hurting the ceramics market. "The requirements of all technologies have grown, and there is plenty of room for plastics and ceramics," says Ottobrini. He points out that certain products lend themselves to the encapsulation in plastic, while others require ceramic packaging. "But we're not in competition with plastics in the sense that we talk to a guy and try to convince him to use ceramic packaging rather than plastic."
Also, the introduction last July of a selective gold-plating process has brought a lot of business to the company. The process slices as much as 35% from the prices of some packages and provides ceramics with another plus over plastics.

Taking his cue from the semiconductor industry, Ottobrini says that MetCeram plans to set up manufacturing plants in areas like the Orient and Mexico to utilize low-cost labor. In another effort to reduce costs, MetCeram finds itself in the middle of a program to upgrade labor standards and manufacturing methods with, among other things, a workerincentive program.

Dialight sees a need:

(Need: Single source supply for all indicator lights.)

See Dialight.

INDICATORS

Designed to accommodate either incandescent (2-250V) or neon (105 250 V) lamps for panel mounting in $11 / 16^{4}$ or $1^{\prime \prime}$ clearance holes. Units meet or exceed MIL-L-3661 requirements; all are listed in Underwriter's Recognized Components Index. Wide selection of lens shapes, colors,
finishes and terminations. Many lenses may be hot stamped, engraved or offered with film legend discs. Oil-tight units with unique "O" ring construction make them oil, water and dust tight on the face of the panel. Available off the shelf for prompt delivery.

LED, INCANDESCENT OR NEON ULTRA-MINIATURE DATALITES ${ }^{\circledR}$ Meet or exceed MIL-L-3661. Replaceable plug-in cartridges for $1.35-125 \mathrm{~V}$ operation. Indicators mount as close as $1 / 2^{\prime \prime}$ centers; available with red, green, amber, blue, white translucent, light yellow or colorless tenses in wide range of lens shapes, legends and finishes. Off-the-shelf.

INCANDESCENT OR NEON SUB-MINIATURE INDICATORS Meet or exceed MIL-L-3661. Mounts in 15/32", $1 / 2^{\prime \prime}$ or $17 / 32^{\prime \prime}$ clearance holes. Incandescent for $1.35-28 \mathrm{~V}$; neon has patented built-in current limiting resistor. Choice of cylindrical, faceted, convex, flat, square and round lens shapes, colors, finishes, legends. Off-the-shelf.

Circle 17 on reader service card

From ele analy

 to blood

Smart system designers use Intel Microcomputers for almost everything.

Right now, Intel Microcomputers are being used to replace hardwired control logic, cut component and
 assembly costs, raise reliability and make systems easier to maintain. With control programs stored in read-only memories, Intel Microcomputers are replacing hundreds, in some instances even a thousand TTL packages.

Intel Microcomputers are making systems smarter, opening new markets and preventing product obsolescence. Our customers are adapting the Microcomputer to new applications and markets by programming ROMs instead of hardwiring logic. Products get to market faster since software takes months, perhaps man-years less time to develop than hardwired logic.

General purpose Microcomputers, invented two years ago by Intel, have already outmoded hardwired logic and expensive custom MOS/LSI in hundreds of applications:
 computer terminals, traffic light controllers, medical instruments, business machines, mass-transit equipment, reservation systems, cash registers, inventory computers for fast-food restaurants, process controllers, electronic test instruments and even pinball and slot machines.

You'll soon be seeing a new Toledo digital computing scale at the corner food store. Accurate to the penny, it converts weights to prices and operates a

etronic games

 zers.
display, label printer, or both with an Intel Microcomputer. With equal ease, a similar Microcomputer handles graphics composition and editing in Automix Keyboard's Ultra Comp intelligent terminal for typesetting.

In a Helena Laboratory blood analyzer, an Intel Microcomputer translates the raw data from a sensing instrument into medically meaningful numbers and prints out separate quantitative readings of several different proteins.
The Microcomputer reduced the electronics cost of the system about 30\%. Another Microcomputer automated instrument is Coherent Radiation's Dioptron." ${ }^{\text {m }}$

While a patient reads an eye chart, the central processor. analyzes the eyes' focus and prints out the results. Even kids too young to read the chart are tested rapidly and accurately.

Finally, take a look at the new video games, pinball machines and slot machines. A microcomputer makes them more fun and imaginative. In these machines, the Intel Microcomputer acts just dumb enough to let people win once in a while.

We started the Microcomputer revolution and we continue to lead the industry in the development, production, applications support and delivery.

To find out how you can enhance your product's capability, take advantage of our know-how, software library and programming aids, subscribe now to Microcomputer News. Just for asking, we'll also send you our new Microcomputer catalog.

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 246-7501.

intل
 Microcomputers. First from the beginning.

Faster digital
 Meetings

 systems checkout with Kurz-KaschLogic Probes

Kurz-Kasch's patented logic probes identify
(1) logic low (TTL .OV to 0.8 VDC) white light
(2) logic high (2.4 to Vc) red light.
(3) deadbands (0.8 V to 2.4 V) no light
(4) pulses (any excursion) blue light
(5) open circuits - no light

Logic probes are also available for MOS, HTL, RTL and discrete logic. Prices from $\$ 6995$ to $\$ 9995$. Send for free literature. For a 30 day free trial probe or special information, telephone Tom Barth, General Manager, Kurz-Kasch Electronics, 2876 Culver Ave., Dayton, Ohio 45429, Telephone: (513) 296-0330

International Convention (Intercon): ieee, Coliseum and Statler Hilton Hotel, New York, N. Y. March 26-29.

Salon des Composants Electroniques: sDSA, Porte de Versailles, Paris, France, April 1-6.

International Reliability Physics Symposium: Ieee, mgm Grand Hotel, Las Vegas, Nev., April 2-4.

International Optical Computing Conference. IEEE Computer Society, Zurich, Switzerland, April 9-11.

Optical and Acoustical Micro-Electronics: IEEE, Commodore Hotel, New York, N.Y., April 16-18.

Carnahan Conference on Electronic Crime Countermeasures: IEEE, University of Kentucky, Lexington, April 17-19.

International Circuits and Systems Symposium: IEEE, Sir Francis Drake Hotel, San Francisco, April 21-24.

Communications Satellite Systems Conference: IEEE, International Hotel, Los Angeles, Calif., April 22-24.

Pittsburgh Conference on Modeling and Simulation: ISA, University of Pittsburgh, Pa., April 24-26.

National Computer Conference, afips/IEEE Computer Society, McCormick Place, Chicago, Ill., May 6-10.

International Instruments, Electronics, and Automation Exhibition, Olympia, London, U.K., May 13-17.

International Magnetics Conference (Intermag) '74, IEEE, Four Seasons Sheraton Hotel, Toronto, Canada, May 14-17.

Society for Information Display International Symposium, Town and Country Hotel, San Diego, Calif., May 21-23.

Semicon/West '74, sEMI, San Mateo Fairgrounds, San Mateo, Calif., May 21-23.

Your closest SIGNETICS distributor is...
ARTZDNA
Phoenix: Mamilton/Anot Electronics (602) 275-7851 Phoenix: Kierulff Electronics (602) 273-7331
CALIFORNIA
Cuhter City: Hamilten Electro Sales (213) 870-717
El Segundo: LLiberty Electronics (213) 322-8100
Los Angoles: Kierull Electronics (213) 605-9525
Palo Alto: Klenuilf Eloctronles (415) Ses-8292
San Diego: Cramer Electronics (714) 565-1881
San Diepo: Hamiton/Avnot Electronics (714) 279-2421
San Digo: Kierully Eloctronitec (714) 273-2112
Sunmyale: Cramer Electronics (408) 739-3011
CANADA
Downsview: Cesco Eloctronics (416) 661-0220
Downsview: Cramer Electronies (418) 661-9222
Montreal: Cesca Elactronics (514) 755-5511
 Ottawa: Hamillon//Avnet Electronits ((13) 725-307 Duabec: Csesco Eloctrontes (418) 524-3518 mocouver: Bowtet Electric Co. Ltod. (601) 736-7677 COLORADO
Dowver: Cramer Eictronles (303) 758-2100
Denver: Hamilton/Avol Evctronics (303) 534-1212
CONE ECTICUT
Hamden: Arrow Electronics (203) 240-3801
Georgetown: Hamilton'Avnet Eloctronics (203) 782-0361 Horth Haven: Cramer Electronics (203) 239-5641 FLORIDA
Hellywood: Hamithon/Avnet Electronics (305) 925-5401 tolywood: Sch ober Elactronics (305) 1927 -0511 Oriando: Hammond Electronies (305) 241-660
Attanta: Schwober Electronics (404) 449-9170 Norcross: Hamilton/Annot Electronics (404) 446-0800 Cllivols
Elk Grove: Schweber Electronics (312) 593 -2740 Schillter Park: Hamithon/Avnot Electronics (312) 878.6310 IMDIAAM
Indinapolis: Semiconducter Speclalists (317) 243-2271 KANSAS
Lenexa: Hamihon/Avnet Electronics (213) 888-8900 MARYLAMD
Hanover: Hamilton/Avnet Elvctronics (301) 796-5000 Rockvilia: Ploneer Wastington Electronics (301) 424-3300 Rocivilie: Schweber Electronics (301) 881-2970
Burfington: Hamilton/Avnat Electronics (617) 273-2120 Newton; Cramer Electronics (617) 969-7700 Watham: Schweber Electronics (617) 890-8484 MICHIGAN
Detroit: Somiconductor Speclailsts, Inc. (313) 255-0300 Ltronit: Hamitton/Avnot Electronics (313) 522-4700 Troy: Schweb
MINESOTA
Edina: Hamition/Avnot Eluctronites (612) 941-3601 Wiminepplits: Serwiconductor Specialister (612) 854-8844 MISSOURI
Hazolwood: Hamilton/Avnel Electronics (314) 731-1144 NEW MEXICO
Abuquerque: Hamilton/Avnet Electronics (505) 785-1500
Bufflo: Sum
Farmingdale, L.I.: Arow Electronics (516) 694-6800 Rochester: Schweber Electronics (716) $322-41.80$ Syracusa: Mamition/Avnet Electronics (315) 137-2642 Westury: Hamitton/Aviet Electronics (518) 333-5800 WOABUTHERN SCTwew JERSEY
Codar Grove: Handiton/Avned Eloctronics (201) 239.0800 Sadtabroot: Arrow Elactroncs (201) 797-5800 SOUTHERN NEW JERSEY AMD PENNSYLVANIA Cherry Hill, N.J.: Milpray-Delmamere Valley (609) 424-1300 Mocrestown: Arrow/Angus Elactronics (809) $235-1900$ Mt. Laurel. N.J.: Hamitton/Avnet Electronics (609) 234-2133 Somersed, N.J.: Schweber. Eloctronics (201) 469-60 NORTH CAROLINA HORTH CAROLINA
OHIO
Beechwood: Schwober Electronks (218) 484-2970 Dayton: Hamilton/Avnet Electronics (513) 433-0610 Cloveland: Arrow Electronacs (218) 464-2000 Cloveland: Pioneer Standard Electronics (218) 587-3600 Kettering: Arrow Electronics (513) 253-9176
TEXAS
Dalas: Cramer Electronics (214) 350-1355 Oallas: Hamition/Avnot Electronics (214) 661-0861 Houston: Component Spociaties (713) 771-7237 Houston: Hamitton/Avnot Electronics (713) 526-4861 UTAH Saft Lake City: Ata Electronics (801) 486-7227
 Bellevue: Hamilhon/Avnet Electronics (208) 746-8750 Seattle: Cramer Electronics (206) 762-5722

Now, a576-bit RAM for men of few words.

Target-designed 64×9 for 45 ns buffers and scratch pads.

Making small talk just got easier. With still another world's first from Signetics. Our 82S09 RAM of 576 bits: the largest bit count ever put into a bipolar RAM with more than one bit per word. This 64×9 is available now in volume, and multiple-sourced.

What's in it for you? Say you've got a scratch pad or buffer that only calls for 16 to 128 words. Till now your choices were all bad news. Either you wasted memory capacity with oversized organization and gadgety multiplexing schemes, or you strung together a lot of little RAMs. Either way, you lost. In terms of high tabs for extra circuitry, bigger boards, and the power to keep them going. Not to mention penalties in memory speed.

For small, dense memory applications, the unique 82 S09 RAM - with new cell design and enhanced 64×9 organization-shrinks board space requirements, lowers component count and power cost, but slams out all the speed you can handle. (Schottky technology delivers 45 ns , worst case.) With all the traditional bipolar RAM features in the bargain. Full decoding. Chip enable. Open collector. And a vital bonus, the ninth bit for parity.

If the picture still needs a little focussing, take a minute to scan our Comparison Chart, based on production of 200 systems.

AFTER

		"Before"	"After"
Parts Cost*	$\begin{aligned} & 8225 / 7489 \\ & \text { Decoder } \end{aligned}$	$\begin{array}{r} \$ 96.00 \\ \quad 2.80 \\ \hline \$ 98.80 \end{array}$	$\begin{gathered} \$ 85.20 \\ \frac{0}{\$ 85.20} \end{gathered}$
Board Space		1.5	1.0
Access Time ${ }^{(1)}$	$\begin{aligned} & \text { Decoder } \\ & 8225 / 7489 \end{aligned}$	$\begin{aligned} & 20 \mathrm{~ns} \\ & \frac{50 \mathrm{~ns}}{70 \mathrm{~ns}} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{45 \mathrm{~ns}}{45 \mathrm{~ns}} \end{aligned}$
Power Dissipation	$\begin{aligned} & \text { Decoder } \\ & 8225 / 7489 \end{aligned}$	0.1 Watt 6.4 Watts 6.5 Watts	0 1.7 Watts 1.7 Watts
Solder Connections	$\begin{aligned} & \text { Decoder } \\ & 8225 / 7489 \end{aligned}$	$\begin{array}{r} 16 \\ 256 \\ \hline 272 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 56 \\ 56 \\ \hline \end{array}$
(1) Even with $3101 \mathrm{~A}(35 \mathrm{~ns})$, the total 16×4 access time is 55 ns . -Signatics 100-up published price.			

Okay, talk may be cheap. So make us lay it on the line. Today, from your local distributor.

NOW THERE'S A CHOICE WITH THREE BIG DIFFERENCES $120 \mathrm{MHz}, 20 \mathrm{lb}$ and a logical layout

This oscilloscope does the job.
The job being servicing, testing and developing communications and computing systems.

For this you need a bandwidth of at least 100 MHz , therefore Philips supply 120 MHz in order to keep ahead of component developments like Schottky TTL.

A sensitivity of 5 mV is more than adequate, while a weight of only 20 lb comes as a pleasant surprise, (parking being what it is, every pound counts on a service call).

And a logical front panel layout is equally important since it lets you take measurement easier, quicker and with less possibility of error. (One example of our logic is the separation of main
and delayed time base controls in order to avoid any ambiguity).

Even more

As well as these obvious benefits, the new PM 3260 has even more significant features like : the clean display, even at the highest writing speeds;
the wide use of thin film circuits that help the space and weight reduction and that increase overall reliability;
the specially-developed power supply that accepts any line voltage / frequency and DC and that dissipates only 45 W , thereby eliminating the need for a fan (and associated filters) and finally, the modular
construction that gives fast access to all boards, controls and components.

First in a family

The new PM 3260 is alṣo the first in a new series of oscilloscopes that will soon include higher and lower bandwidth instruments all with the same important benefits of high performance, light weight and excellent ergonomic design.

To find out more about the first in the family write to :

Test and Measuring Instruments Inc., 224 Duffy Avenue, Hicksville, L.I., N.Y. 11802

PHILIPS

Introducing the new standard of quality in cermet film fixed resistors.

Electronics newsletter

Mitre installs pilot solar-cell electricity system

Drawing a bead on the energy crisis and hoping to stimulate the hunt for means to alleviate it, Mitre Corp., McLean, Va., is ordering its own rooftop solar-cell power system for generating electricity directly from sunlight. The Mitre installation will generate 1 kilowatt of electric power, making it the world's largest terrestrial photovoltaic installation put into place to date.

Also included in the demonstration system, for which Mitre is spending $\$ 130,000$ of its own money, is an electrolysis unit that uses the electricity to convert water into hydrogen and oxygen. Held in storage, the hydrogen will then be recombined with oxygen in a fuel cell so that the system will be able to generate electricity 24 hours a day. An inverter will change the dc output voltage to 110 volts ac for driving a demonstration load.

Mitre is buying all of the components off the shelf, and most of the solar panels-each generates 50 watts-come from Solarex Corp., Rockville, Md. The complete system could begin operating during the summer.

> Brows raised by production of Intel bipolar RAM

In an industry where premature announcements are the rule, eyebrows have been raised by Intel's disclosure that its 1,048-bit bipolar RAM, unveiled last month at the International Solid State Circuits Conference, has been in production for five months. The new 60 -nanosecond part, a simplified Schottky-TTL design that saves chip area with conventional processing [Electronics, Feb. 21, p. 114], is going exclusively to Intel's Memory Systems division for use in IBM 370/145 add-on memories. Although circuits are not yet for sale to outsiders and data sheets are unavailable, the RAM may be put on the market as early as April or May.

National schedules high-voltage interface-drivers

National Semiconductor will soon introduce high-voltage versions of the popular 75451 interface-driver circuit family. The 3611 through 3614 break down at 80 volts, compared to 30 or 40 V for the 7451 and 40 V for the 75461 . Although the parts are pin-for-pin replacements and sink the same 300 milliamperes per side, they switch in 120 nanoseconds, rather than the $\mathbf{2 0} \mathbf{n s}$ of the devices they replace. This is considered an advantage in many of the relay, solenoid, and hammer applications, where high speed of the devices complicates design.

Motorola's Texas facility plans

 shaping upThe emerging commitment to complementary and n-channel MOS at Motorola's Semiconductor Products division is underscored by initial plans for the division's new 300,000 -square-foot facility in Austin, Texas. The first plant section, which will go on-stream about midyear, will be devoted to the line of 78 C-MOS products Motorola is now producing, and about 15 additional C-MOS parts will be introduced before year-end. The second step in Austin, planned for late this year or early 1975, will be to open a section devoted entirely to n-channel production.
No new p-channel mOS parts are being planned by Motorola. Offi-

high voltage resistors

Beck Hros., 421 Sedgley Ave., Philadelphia,
Clarostat Meg. Co., 285
N. Sixth St., rostat Mfg
Brooklyn,
Hardwlek, Hindie, inc, 40 Hermon st. Newark, N, J, (See page 20.)
Instrument Resistors, Inc., $2 \overline{\mathrm{u}}$ Amity St., Litte Falls, N. J
International Reslstance Co., 401 N . Isroad st., Philadelphia, Pa. (See page 93.) Chicazo. Co.. 4833 w. Flournoy st. Chlratgo 111 . (See page 39.)
linkiale, Pa. (See pake 6.)
Mount Werl Electric Co.. 31 South st.

PRECISION RESISTORS

Cambridge lnstrument Co., Grand Central Terminal, New York, N.. Y. No Cinema Engineering Co., 1508 S. Verdugo Ave., Burbank, Cal.
Continental Carbon, Inc., 13900 Lorain ler-Hammer, Inc., 1401 W. St. Paul Cutler-Hammer, Inc., 1401
General Electric Co., Schenectadv, N. Y. General Radio Co., 30 State St., Cambridge, Mass.
Gray Instrument Co., 64 W . Johnson St. (Germantown) Philadelphia, Pa.
Instrument Resistors Co., Little Falls, N. J.

Internatlonal Resintance Co., 401 N . Broad St. Philatelphia, Pa. (See page 93. Leeds \& Northrup Co., 4970 Stenton Ave.
r
Meter Devices Co., 1001 Prospect Ave. Rubicon Co., 3751 Ridge Ave., Philadelphia, Pa
lingungrg. Co.. 10 Jacknon Ave., ColWestinghouse Electric \& Mfg. Co., East 'ilttsburgh, Pa.

WIRE WOUND RESISTORS

Aerovns, Corp, 740 Belleville Ave., New Bediford, Mass
Beck Bros., 421 Sedgley Ave., I"hiladelphia, Pa. delphia, Pa
Cinema Engineering Co., 1 nos S. Verdugo Ave., Burbank, Cal.
arontat Mfg. Co.. 285 N. Sixth st.
 Continental Carbon, Inc.. 13900 Lorain Cutler-IIammer, Inc., $1 \neq 1{ }^{\prime \prime} 1 \mathrm{~W}$. St. Paul Ave, Milwauker, Wis.
Daven Co., 158 Summit St., Newark, N. J. General Radio Co., 30 state St., Cam bridge. Mass
Gray Instrmment Co., 64 W. Johnson Bt. Ifardwidk, Ilindle, Inc.o fil itern
ardwidk, Itindle. Inc.. 40 Itermon st. Newark N. d. (Sem bage 30.)
Instrument Keniniurn. Info. 2\% Anity st. rnatlount kewintanc.e coo., to1 N, Isrond St., Plilladelphia, Pa. (See page 93.) Lectrolim, Inc., $5133 \mathrm{w} .25 t \mathrm{~h}$ Pl., (Cicero) Chicago, Ill. (see puge 181.)
Leeds \& Northrup Co., 4970 Stenton Ave. Philadelphia, Pa .
Micamold Radio Corp., 1087 Flushing Ave. Brooklyn, N. Y. Michigan Ave., Chi. Muter Co., 112
National Electric Controller Co., 5303 Itavenswood Ave. Chicago, IIT.
Ohio Carbon Co., 12508 Berea Rd, Cleve Ohmitend, Ohio
mite Ilfa. ('o., 4835 W . Flournoy st Chieago, lil. (See pare 39.)
Philco Radio \& Television, Corp., Tloga \& Rex Rheostat Co., ? Foxhurst Rd., BaldRheostat N Y.
Win, hallcross Mfg. Co., 10 Jackson Ave., Colriplett Flectrical Instrument Co., 286 Utah Radio Products Con, Ohio
Utah Radio Products Co., 820 Orleans St. ward Leonard
Mount Vernon No co.. 31 South St. White Dental Mfk. Co.. s. S., 10 E. 40 ih Wirt ${ }^{\text {St, New }}$ York, N. Y. (See pare 170.)

Rheostats

SLIDE WIRE RHEOSTATS

Beck Bros., 421 Sedgley Ave., Ihiladelwhil Pa

ELECTRONICS - June 1942

Hiddle Co., James G., $1 \geqslant 13$ Arch St., Central Scientific Co., 1700 Irving Park Blvd. Chicago, Ill, 1735 V Ashland Chicago Ápparatus Co., 1735 N. Ashland General Radio Co., 30 State St., Cambridge, Mass
G-M Laboratories, Inc., 4313 N. Kinox Hardwlek, Hindle, Inc., 40 Hermon st., Newark, N. J.
Leeds \& Northrup Co., 4970 Stenton Ave., Philadelphia, Pa,
National Electric Controller Co., 5307 Ra venswood Ave., Chicago, Il
Kex Rheostat Co., 3 Foxhurst Rd., BaldShallcross Mifg. Co., 10 Jackson Ave., Col4 lingatie, Pa
Ward I,empard Electrlc Co., 81 South St.,

VARIABLE RESISTORS

terovox Corp., 740 Belleville Ave., New Bedford, Mass. 136 Wellice Ave., Nell Hen-Bradley Co.i 136 W . Greenfield Ave. American Instrument Co., 8010 Georgia Ave., Silver Spring, Mid.
Atlas Irsistor Co., 423 Broome St.. New lieck Mros, N., ${ }_{4} \underset{2}{ } 1$ Sedgley Ave., Philadel. phia, Pa.
:iddle Co., James G., 1213 Arch St., Philadelphia, 1'at.
Centralab, 900 J. Keefe Ave., Milwatukee, Wis.
Blral Scientific Co., 1700 Irving Park Blvd. Chirago. II. $1735 \times$ Ashland Ave., Chicago, Ill., 1735 ... Ashtand Chicayo Telephone Supply Co., 1142 W . Beardsley Ave., Elkhart. Ind.
Cinema Entineering Co., $1508 \mathbf{S}$. Verdugo Ave., Burbank, Cal.
Clarostat Mfg. Co., 285 N. 6th St., Brooklyn, N. Y
Consolidated Wire \& Associated Corps., Peoria \& Harrison Sts., Chicago, Ill., Continental Carbon, Inc., 13900 Lorain
Cutler-1 İanmer, Inc., 1401 W. St. Paul Ave., Milwaukee. Wis.
Coln (See Eastern Specialty Co., 3619 N. Eighth St. Electro Motive MPg. Co., Willimantic. Conn
General Filectric Co., Schenectady, N. Y.
General Radio Co., 30 State St., Cambridge, Mass.
:-M Lahoratories, Inc., 4313 N. Knox Ave., Chicago, Ill. $641 / 2 \mathrm{~W}$. Johnson lwick Hindle. Inc. 10 Wermon
Lardwick, Hindle, Inc., 40 Hermon St.. Newark, N. J.
Little Falls
nternational Registanc
St., Dhiladelphia, Pa. (See Nage 93) Le Carbone, Inc., Myrtle Ave., Boonton. N. J.

Lectrohni, Inc. 5133 W, 25th Pl. (Cicero) Chicasn, ill.
Leeds \& Northrup Co., 4970 Stenton Ave., Mallory \& Co., P. R., 3029 E. Washington
National Carbon Co., 30 E. 42 St. New
York, N. Y Co., 30 E. 42 St. New
National Electric Controller Co., 5305
National Technical., Laboratorles. 820
Mission St., South Pasadena. Cal.
Ohio Carbon Co., 12508 Berea Rd., Cleveland, Ohio
Ohmite Mifr. Co, 4835 W . Flournoy St., Chirago, 111. (8ee page 39.)
Philco Radio \& Television Corp., Tioga \& C Sts., Philadelphia, Pa.
recision Resistor Co., 334 Badger Ave., Newark, N. J
Rex Rheostat Co., 3 Foxhurst Rd., Baldwin, NiY. Co 10 Jackson Ave Col linglale, Pa. St Marys, Pa
Stackpole Carbon Co., Tannery St., St. Utah Radio Products Co., 820 Orleans St., Chicago, III.
Ward L.eonard Electric Co., 31 South St., Mount Vernon. N. Y. 15 Sedgwick St., ("hicago, Ill
Westinghouse Electric \& Mfg. Co., East Pittsburgh. Pa.

Wirt Co., 521 Greene St., Philadelphia,

Rivets

American Brass Co., Waterbury, Conn. Atlas Tack Corp., Pleasant St., Fairhaven Blake \&
Blake \& Johnson Co., 1495 Thomaston Ave.,

Ave (Cicero) Machine Co., 1830 S . 5 th lark Bros. Bolt Co., Milldale, Conn.
Clendenin Bros., 108 South St.. Baltimore,
Cobb \& Drew, Kingston St., Plymouth, Harper Co., H. M., 2630 Fletcher St.. Chica\&o, Ill.
Hassall, Inc., John, 402 Oakland St. Brooklyn, N. Y
Industrial Screw \& Supply Co., 711 W Lake St., Chicago, Ill.
Lamson \& Sessions Co., 1971 W. 85th St. Cleveland, Ohio
Manufacturer's Belt Hook Co., 1321 W
Congress St., Chicago, Ill. Manufacturers Screw Produc
Milton Mig. Co. Milton $\mathbf{P a}$
New England Screw Co., 109 Fmevald Pheoll Mfg. Co., 5700 Ronsevelt Ral.. Chi cago, Ill.
Pittsburgh Screw \& Bolt Corn. 2719 Preble Ave., N. S., Pittsburgh, Pa. Plume \& Atwood Mfg. Co., 470 Bank St. Progressive Mffe. Co., $5:$ Norwond St., Torrington, Conn. Reed N Trince Mfg. Co., Duncan Ave., luckford Bolt \& Steel Co.. 126 Mill St. Scovill Mockford. III. 99 Mill St Weterbury Covill Mfg. Co., 99 Mill St.. Waterbury Sterling Bolt Co., 707 W . Van Buren St. Chicago, Ill.
Stimpson Co.. Wrlwin B.. it boranklin Ave.
Tubular Rivet \& Stud Co., Wollaston,

Scales

DIAL SCALES

wer also Dlals
alno Facutcheonm
American Emblem Co., Utica, N. Y.
Austin Co., O., 42 Greene St.. New York, Bud Radio, Inc., 2118 E. 55th St., CleveCrowe Name Plate \& Mfg. Co., 3701 The Emenswood Ave., Chicago, IIl. Arlington, N. J. hurst, \mathbf{N}. Y .
Gramnies \& Sons, Inc., L. F., 366 Union St., Allentown, Pa.
Insuline Corp. of America, 30-30 North Mallory \& Co., P. R. 3029 E. Washington Mallory \& Co., P. R. 302
New England Radiócrafters, 1156 Com monwealth Ave., Brookline. Mass. Parisian Novelty Co., Western Ave. at 35th St. Chicago, IIl.

Screws

MACHINE SCREWS

American Screw Co., 21 Stevens St., ProviAtlas Bolt \& Screw Co., 1144 Ivanhoe Rd. Cleveland, Ohio
Blake \& Johnson Co. 1495 Thomaston Central Screw
entral Screw Co., 3511 Shields Ave., Chicago, Ill.
Chandler Products Corp., 1475 Chardon Rd., Cleveland Ohio
Clark Bros. Bolt Co., Milldale, Conn.
Continental Screw Co., New Bedford Mass. Corp., High, Myrtle \& Grove Sts., New Britain, Conn.
Economy Screw Corp., 2717 Greenview Flco Tool \& Serew Corp., 1800 Broadway Rockford, 111.
Ferry Screw Products, Inc., E. W., 8219 Almira Ave., Cleveland, Ohio
Federal Screw Products Co., 26 S. Jef ferson St., Chicago, Ill.

Electronics newsletter

cials there believe the division is well positioned to cash in on C-MOS and n -channel MOS. They estimate that the two technologies will account for industry-wide sales of about $\$ 600$ million and $\$ 800$ million, respectively, by 1979.

Radiant's commercial electron-beam

 system soldA dedicated commercial electron-beam micro-fabrication system reportedly has been sold by Radiant Energy Systems to Honeywell's corporate research group, but neither firm will confirm the sale. Radiant has been developing such systems under military contract, and has been shopping for customers in the commercial semiconductor business. Early versions of the machine incorporated a scanning electron microscope, whose beam was directed by a minicomputer to "write" images on a wafer.

The system sold to Honeywell, say industry sources, is apparently the model 600, an electron-beam pattern-generator with computer-aided design system for exposing sensitized substrates. It permits pattern editing as well as initial assembling. The system permits line width resolution as high as 0.2 micrometer. This is the major selling point for the electron-beam systems due to the extreme tolerance requirements of microwave and picosecond logic ICs, and surface-wave and integrated optical devices.

Russia to buy calculator chips

Electronic Arrays Inc. will market calculator chips to Russia and Eastern European countries through the California International Trade Corp., a specialist in trade with the Communist nations. Russian-born Rafael Gregorian, president of California Trade, says Soviet trade and technology officials have shown more interest in calculator components than in complete machines.

Mini controls
Bay Bridge
traffic lights

Traffic experts in metropolitan areas across the country are watching closely the new minicomputer-controlled traffic patterns on the Oak-land-San Francisco Bay Bridge. The system went into operation this month. A Data General Nova 1210 minicomputer has been installed at the Bay Bridge toll plaza to meter the rate of traffic on the midsection of the bridge, and to switch the traffic signals at the toll plaza at 4 to 10 seconds. The computer, which has an 8,192 -word memory, uses magnetometers in the middle of the bridge to record traffic volume, and employs wire loops at the stop signs that determine the rate at which cars should be released from the stop bars to allow optimum traffic flow.

The project, says Scott MacCalden, senior engineer of highway operations for the local district of the state Department of Transportation, will "allow a more efficient flow of traffic, and means safer merging" from the 15 lanes in front of the bridge entrance into the five lanes on the bridge. In addition, he says, emergency vehicles can be sped on their way by being routed through traffic if necessary. Total installation costs were $\$ 350,000$.

POWER SWITCHING TRANSISTORS

100 ways to get more switching performance for your money

Unitrode's UPT Power Switching Transistor series offers the optimum combinations of price and performance from 0.5 A to 20A, and up to 400 V in 3 package types. Choose from 100 different transistor types for more efficient and simplified circuit design in power supplies, switching regulators, inverters, converters, solenoids, stepper motors and other inductive load driving applications. They're available off-the-shelf from your local Unitrode distributor or representative.

For the name of your nearest Unitrode representative dial (800) 645-9200 toll free, or in New York State (516) 294-0990 collect. For specific data sheets, containing full characteristics of devices, check the appropriate reader service numbers listed in this ad. Unitrode Corporation, Dept. 26Y, 580 Pleasant Street, Watertown, Mass. 02172. (617) 926-0404.

Reader Service N_{0}.	I_{C}	$V_{\text {CEA }}$	SERIES/ package	$t_{\text {on }}$	t_{OH}	100 0ty. prices each
102	0.5ADC	up to 400V	UPT011 -T05 UPT021 T066	50ns	400ns	$\begin{aligned} & \$ 1.0710 \\ & 2.42 \end{aligned}$
	1ADC	up to 150 V	$\begin{array}{ll} \text { UPT111 } & \text {-T05 } \\ \text { UPT121 } & \text {-T066 } \\ \hline \end{array}$	100ns	250ns	$\begin{aligned} & 0.8710 \\ & 1.95 \end{aligned}$
103	2ADC	up to 150 V	$\begin{array}{ll} \hline \text { UPT211 } & \text {-T05 } \\ \text { UPT221 } & - \text { T066 } \\ \hline \end{array}$	130 ns	300ns	$\begin{aligned} & 1.1310 \\ & 2.54 \end{aligned}$
		up 10400 V	$\begin{array}{ll} \text { UPT311 } & \text {-T05 } \\ \text { UPT321 } & \text {-T066 } \end{array}$	200ns	800 ns	$\begin{aligned} & 1.31 \text { to } \\ & 2.87 \end{aligned}$
	3ADC	Up 10400 V	UPT521 -T066 UPT531 -T03	200ns	900 ns	$\begin{aligned} & 2.42 \text { to } \\ & 3.99 \end{aligned}$
104	5ADC	up to 150 V	$\begin{array}{ll} \text { UPT611 } & \text {-T05 } \\ \text { UPT621 } & \text {-T066 } \\ \hline \end{array}$	250ns	550ns	$\begin{aligned} & 1.31 \text { to } \\ & 2.86 \end{aligned}$
		Up to 400V	$\begin{array}{ll} \text { UPT721 } & \text {-T066 } \\ \text { UPT731 } & \text { T03 } \\ \hline \end{array}$	250ns	800 ns	$\begin{aligned} & 3.73 \text { to } \\ & 5.70 \\ & \hline \end{aligned}$
	10ADC	up to 150 V	UPT821-T066 UPT831 -T03	250ns	550ns	$\begin{aligned} & 3.3010 \\ & 5.30 \\ & \hline \end{aligned}$
		Up to 400V	UPT931-T03	500ns	1200ns	$\begin{aligned} & 8.0510 \\ & 14.62 \end{aligned}$
105	15ADC	up to 150 V	UPT1021-T066 UPT1031-T03	450ns	350 ns	$\begin{aligned} & 3.8710 \\ & 6.23 \end{aligned}$
	20ADC	up 10150 V	UPT1131-T03	300ns	600 ns	4.7510 7.26

See EEM Section 4800 and EBG Semiconductors Section for more complete product listing.

When you've made static card readers for as long as we have, you've learned how to tailor them to your customer's specific needs.

For 16 years we've been a static card reader specialist. Since we're an electronics company, we understand the electrical and mechanical aspects of card readers.
Our 22 tab and 80 column card readers are known for their rugged reliability and accuracy. We owe that to the multistrand continuous brush design. This design eliminates reading errors caused by contaminants on the card or misalignment. Cards are locked into place and released only when the scan is completed. You can select from a variety of electronic packages to interface the reader to your system. There are packages like TTL-compatible scanners with two operating modes, sequential scanning and addressable by column number.

Many of our competitors do not want to be bothered with the reader modifications customers ask for. Not us. This is one of the major advantages of specifying a Hickok static card reader. In the sixty years we ve been in the electronics business, we've learned how to work closely with our customers. We have years of experience in tailoring our card readers to meet our customer's specific needs.
Put our 16 years of card reader experience to work on your data input and collection problems. Find out how we can solve your card reader problems. Call our application engineers today.

HICKOK

the value innovator
Instrumentation \& Controls Division
The Hickok Electrical Instrument Co.
10514 Dupont Avenue-Cleveland, Ohio 44108 (216) 541-8060-TWX: 810-421-8286

Circle 28 on reader service card

CCD imager achieves full TV resolution for the first time

Once developmental work
is done, RCA's CCD will
be ready to take on
new imaging roles

Another benchmark in solid-state imaging technology has been notched by the development of a charge-coupled-device imager capable of full 525-line TV resolutionthe level considered critical if such devices are to penetrate into many commercial applications.

The achievement belongs to RCA's Electro-Products division in Lancaster, Pa. The CCD has four times the resolution of any previously disclosed CCD imager, including the 250 -line device that Bell Laboratories, Holmdel, N.J., designed primarily for its Picturephone [Electronics, Feb. 21, p. 29].

The RCA division has built the new device into a black-and-white camera the size of a cigarette pack. So far, only the developmental stage has been reached, and no production plans have been formulated. The camera, which has a C-mount for lens interchangeability, has a bandwidth of 3 megahertz and a video data rate of 6 MHz . The video picture the camera produces on a standard TV monitor, says Robert L. Rodgers III, manager of the vidicon products group, is "for all practical purposes indistinguishable from one produced by a commercial vidicon tube."

He adds that the camera can also generate the full resolution of broadcast color receivers and tape recorders. It is not suitable for stu-dio-quality broadcasting, though,
because even greater resolution is demanded there than can be displayed by commercial television sets.

However, its small size and lowpower requirements make it an attractive alternative for many other types of 525-line TV applicationsRodgers suggests closed-circuit TV, some types of CATV programing, news and sports field cameras, industrial vidicons, medical and educational cameras, and military and surveillance systems.
The 512-by- 320 element area array, built with RCA's three-phase silicon-gate-type CCD imaging technology, is contained on a 500-by750 -mil superchip. It is laid out in the standard three-section format: a 256-by-320-element image area, a 256-by-320-element storage area, and a 320-stage output register, which shifts the video signals out at the $6-\mathrm{MHz}$ rate. This register contains the clock inputs and pream-plifier-output devices.
The image section is interlaced on alternate fields to generate the required 512-by- 320 picture element per frame. In actual use, however, only 486 lines (243 per field) are displayed, leaving the extra elements for varying the system's blanking and timing to avoid nonuniformities at the picture edges.

Charge transfer. A unique feature of the RCA imager is its on-chip video-processing and detection scheme. As in all charge-coupled imaging devices, the charge signal is passed along without touching a diffusion on the chip until it is extracted at the output. In this setup, the charge detector is a diffusion with a floating potential, which is reset to a fixed potential once during

Vidicon replacement? Maybe. The image on the screen comes from a 525 -line CCD camera. The diagram shows the detection scheme for RCA's CCD, featuring a floating diffusion detector, which senses voltage changes at corresponding nodes.

each clock period by a reset transistor.
Each charge packet, on reaching the floating diffusion, changes the voltage on the node's capacity. This voltage is then sampled by a transistor operating as a source follower. The very low node capacity of the floating diffusion results in a big improvement in signal-to-noise ratio over conventional silicon vidicons operating at the same light level-at normal signal levels, no noise at all is visible in a picture generated by the imager.

Consumer electronics

Interactive TV can teach and play

As the price of gasoline rises, many a motorist may soon prefer to do his Sunday driving on his television screen, using an interactive terminal and programs from Telattach Corp. It's one of two interactive terminals coming from the two-year-old firm in Chevy Chase, Md.

But it looks as though the racing toy will be the first product off the starting line. The TelaRacing terminal consists of a wheel and dashboard connected by cable to a toy racing car mounted on a frame that is attached by suction cups to a TV screen. The programs, now being promoted among cable-TV operators, consist of 20 half-hour shows on race-driving, complete with sound effects.
The viewer attempts to steer around the course appearing on the
screen, but if the toy car passes over an obstacle, a sensor under the car sets off a buzzer, and a skill recorder reduces the driver's score kept on a tally wheel to the right of the "dashboard." This racer set will sell for $\$ 24.95$ when in full production.

Blinking. The firm's other interactive terminal will cost $\$ 375$ and can be used by one student or a group. Each terminal has a $64-$ square board with a light under each square. A photocell, stuck by a suction cup to a corner of the TV screen, reads coded blinks coming from a video program, which may be either taped or live. Inside the terminal a simple digital hybrid assembly decodes the on-off time of the blinks.

The teacher viewed on the screen may turn on any of the squares of light under the student's panel, and the student responds to a question by pressing a square. If the square lights up, the answer is correct. Templates of different shapes may be laid over the light panel of the terminal to aid in teaching various courses, ranging from pre-school recognition of shapes to electronics technology.

According to John Robinson, president of Telattach, the design objectives of the system were ease of programing and compatibility with any television receiver. He chose the 64-square light panel to make it possible to teach chess, but less expensive terminals using fewer lights and switches will be available.

To program the video portion, the firm had to develop a code generator to insert the light spot on the TV screen. Essentially, the generator supplies the on-off intervals used by

Take a drive. The TelaRacing terminal is readily adapted to any television monitor.

the digital decoder to turn the panel lights on and off. In an audio version of the terminal, the code generator is used to program one channel of stereo tape with 400 -hertz tones that trigger the lights. The Air Force is presently evaluating the audio training system, and other military agencies are trying out the video terminals.
Schools, hospitals, and industrial manufacturers are also looking over the Telattach terminals.

Ohio gets big, cheap 2-way CATV system

Although experimental installations have proven that two-way TV is technically feasible, perhaps the stumbling block to its development has been the high cost of workable home terminals. But now Coaxial Communications Inc., Sarasota, Fla., which has the franchise to install CATV lines to some 60,000 homes in Columbus, Ohio, is planning to wire the first 10,000 to 15,000 subscriber sets on a completely bidirectional hookup using only slightly modified standard CATV converters.
The modified converters turn TV receivers into two-way terminals, sensing if the set is on, what channel is tuned, if a pay TV security key is activated, and if the converter is operating properly. It also communicates this information to a minicomputer used to poll the status of home TV sets.
These units will be a quarter the price of home terminals presently designed for two-way cable. The cost savings result from Coaxial Communications' system, which groups 100 to 200 homes on a timeand frequency-division-multiplexed network. In previous bidirectional layouts, each home terminal required a signal-processing module and transmitter. Coaxial Communications will use the system for payTV, but other uses include teaching, meter reading, polling, security alarms, and supplying special information on demand.

A minicomputer at the operator's central station (head end) polls terminal amplifiers controlling the groups of homes, rather than individual TV receivers. This arrangement also makes it possible to "open" only a small percentage of the return lines at any one time, limiting the amount of interference and noise that can penetrate the net.

The company has been conducting experimental pay-TV services with over 900 subscribers to test the hardware and get customers' reactions. In the present setup, a modified General Automation minicomputer polls the group terminal amplifiers every three to five minutes. It records what channel is being watched and, if it is the payTV channel, bills the subscriber $\$ 1.50$ to $\$ 2.50$ per movie.

Polling and paying. The set-top converters-Oak Industries Inc.'s Gamut-26 units-are ordered with modest additions: a digital encoder chip, which encodes the channel position of the tuner shaft, and an extra power supply. To this, Coaxial Communications adds an assembly of four ICs and about 20 discrete components. The total cost of the home unit is about $\$ 60$.

Before being given the pay-TV service, subscribers sign agreements allowing the operator to monitor their viewing habits for billing purposes. The cable operator agrees not to reveal to any outside party the viewing records of the subscribers by name. Since the pay-TV plan only uses about half of the bit capacity of the $\$ 60$ modified terminal, the Catv firm intends to offer other two-way services in partnership with other software companies.

Clothes dryer uses MOS control chip

An mos control chip has been designed into a second major household appliance. Sears' new Lady Kenmore model, which is made by Whirlpool, is the first automatic clothes dryer to use an MOS chip for timing and logic control. That chip
and a solid-state moisture sensor for controlling the drying cycle are made by American Microsystems Inc., Santa Clara, Calif.--the company that had earlier developed the mos chip for Frigidaire's sophisticated touch-control range [Electronics, Feb. 1, 1973 p. 44].

Ami's solid-state controls not only offer additional features, but are also expected to be more reliable and will be comparable in cost to the complex electromechanical controls needed for expensive appliances. The latter point is a pivotal one for consumer-product manufacturers, most of whom are reluctant to pay much more for an electronic part than for the electro mechanical unit it replaces.

Wet feet. While Sears is a pioneer in incorporating microelectronic controls into appliances, according to Jim Meyer, manager of custom product marketing at AMI, there is a lot of interest at other companies, as well. "They all want to get their feet wet, but they don't want to drown," says Meyer.

The Sears/Whirlpool dryer uses a relatively conventional high-threshold metal-gate p-mOs part that measures less than 120 mils on a side. The drying cycle is relatively complex. It includes a drying period, the length of which depends on the moisture sensor. There is also a panel control for different types of clothes-to allow for drying the thick seams in jeans, for example, which otherwise might remain wet even when the surface is dry.

The electronically controlled dryer also has a cool-down cycle, and the popular anti-wrinkle feature. For this, a buzzer sounds and the drum tumbles occasionally if the clothes aren't removed. This alarm will continue for up to $21 / 2$ hours.

The circuit operates from a zenerregulated 27 -volt, 30 -milliampere supply. The 60 -hertz clock is derived directly from the power line through a very large resistor, and is protected against transient peaks to 1,000 v. Extensive signal conditioning is required because of the electrically noisy environment.
The mOS chip operates relays that drive the heating coils and the mo-

MOS pervades appllances. Beneath that dryer lies it MOS controls from AMI.
tors for the drum and fan. Transistor buffers actually drive the relays. The chip is housed in 16-pin ceramic packages, but AMI expects plastic to be used eventually and is testing plastic-encapsulated units.
ami credits Whirlpool for an excellent job of defining the logic required. Says Meyer: "In a custom job like this one, the better prepared the customer is, the smoother the development."

Navigation

Two-system plan

charts new market

The Coast Guard and the White House Office of Telecommunications policy have at last agreed on two navigation systems to cover U.S. coastal waters. These will be loran C for coastal and river coverage and Omega for ocean navigation [Electronics, April 26, 1973, p. 49]. The systems would supplant loran A for coastal regions, and prevent further proliferation of competing systems.

The Government has, in effect, pledged support for operation of loran C and Omega for at least 10 years until commercial satellitebased systems come into being. The result is that the plan:

- Solidifies new navigation-equipment markets as maritime users install necessary gear to use the services.
- Becomes the first phase of an impending national navigation plan
for land, sea, and air users, for which the White House Office of Telecommunications Policy is expected to issue the first Govern-ment-coordinated outline this fall. - Signals the start of a $\$ 115$ million effort by the Coast Guard to build new loran-C chains of transmitting stations and upgrade existing ones, if Congress approves.
- Sets up possible future confrontations among competing interests over whether the airlines' system and foreign-flagship owners might be required to add loran-C equipment before they may enter U.S. ports. Both now use loran A.
- Augurs eventual establishment of a civil maritime communications service, like the Federal Aviation Administration, and most likely operated by the Coast Guard.

The last point is a touchy issue because it raises the specter of user charges to support such an agency. But Government officials point out that existing maritime systems were set up for Government use and question whether or not the Government should be operating commercial systems.

DOT, mainly the Coast Guard, wanted loran-C for coastal coverage [Electronics, Dec. 18, 1972, p. 36], and the Office of Telecommunication Policy, working through the White House office of Management and Budget, had shown preference
for Omega, while pushing for only two systems to cut down proliferation. The Department of Transportation apparently asserted itself, however. In the agreement, the Coast Guard got loran C, but it had to give up-a third system to cover navigable rivers and harbors. Thus, the development contracts for the Rivers and Harbors Navigation System will be terminated with RCA and Tracor, a Coast Guard official says. Loran C serves this need.
Phase in and out. Once Congress approves the budget, loran-A users would be given five years to phase out, in addition to a two-year overlap before having to use loran C . This mostly would affect about 54,000 commercial vessels of more than five tons, of which 19,350 are fishing craft. Typical prices for lo-ran-C and Omega receivers run about $\$ 3,000$ each, although dual receivers are being developed. The Coast Guard plans to spend $\$ 17$ million in fiscal 1975 to start building a new loran-C chain of five stations on the West Coast, followed by new chains in the Gulf Coast and the Gulf of Alaska in fiscal 1976.

The national plan identifies those systems that the U.S. is prepared to support, says Charles Joyce, assistant director of the Office of Telecommunication Policy. Users buy other systems at their own risk, he says.

Components

Analog switch makes

a telephone connection

A new analog switch from Siliconix Inc. could be an ideal solid-state switch for telephone systems. The monolithic array of four doublepole, single-throw switches, consisting of logic, four C-MOS drivers, and eight n -channel junction field-effect transistors, is expected by the company to replace the silicon-controlled rectifier even before the SCR has replaced the mechanical crossbar switch in phone matrixes.

The SCR has a number of draw-
backs as a solid-state switch: it needs several milliamperes of holding current to stay on; being band-width-limited, it can't be used for multiplexing voice transmissions or sending digital data at high rates; and its high capacitance makes it susceptible to "feedthrough"-those other voices, 60 decibels down, that filter through "off" switches and onto the phone line.

The JFET, however, being a bulk, rather than a surface device, has
high carrier mobility and low capacitance, low feedthrough, and low on-resistance per unit area.

The Santa Clara, Calif., firm has made JFET switches, with a variety of drivers, since its beginnings in the early 1960s. Later it began adding logic and drivers to the FETS and selling hybrid analog switches driven by bipolar and p-channel MOS transistors. In this array, the CmOS driver, according to Lorimer Hill, who headed the Siliconix design team, eliminates the power drainage that characterized earlier drive circuits.

Connects. The FET needs a connection between gate and source to stay on, and a connection between gate and negative supply to stay off. Resistors, though the simplest way to connect gate and source, will pull current in either state and, in addition, load the analog voltage. Bipolar transistors require base current, unlike mOS devices. In the Siliconix array, therefore, a p-channel MOS transistor connects gate and source, and an n-channel transistor connects gate and negative supply.

With these C-MOS drivers, the switch has high off impedance (isolation, which depends on the size of the switch, is typically 60 to 80 dB at a video-signal frequency). There is no need for standby power and no loading of the analog signal. With leakage of 1 microampere, power loss is 15 microwatts, and typically, according to Siliconix, the drainage is two orders of magnitude less, on the order of nanowatts.
With 5 volts peak-to-peak signalhandling capability, the new switch will draw a few microamperes for the most negative analog voltage, and 10 to $20 \mu \mathrm{~A}$ for the most positive voltage. The actual power dissipation depends on how fast the device is switched between the most positive and negative voltages. Thus, dissipation depends on the rise and fall times of the system logic.

On same chip. Building the JFETs and mOS transistors on the same chip was chiefly a matter of working out the right temperatures, times, and procedures to control diffusion depths. The p-diffusion depth is critical in the JFET, while gate surface

$1000 \mathrm{~cm} / \mu \mathrm{sec}$ stored writing speed, four storage modes, and more.

100 MHz oscilloscope

Tektronix 7633 oscilloscope gives you 100 MHz bandwidth and $1000 \mathrm{~cm} / \mu \mathrm{sec}$ stored writing speed. So you can retain and view fast rise, low repetition rate, single shot or slow moving waveforms. All with one instrument. This allows you to solve problems in computer sciences, aerospace, ballistics, communications and various other applications.

Multi-mode slorage

The 7633 offers four operating modes: Nonstore, normal and fast Variable Persistence and Bistable modes are available at the touch of a button. And, an 8×10 div. ($.45 \mathrm{~cm} /$ div.) mode gives the instrument's top writing speed.

Bright, burn-resistant CRT

No special operating safeguards are necessary with the 7633's rugged, burn resistant CRT. This makes it a dependable unit for design bench, hospital laboratory, service facility or classroom. The large 8×10 div. CRT is easy to read in both cabinet and rackmount configurations. An alphanumeric readout, exclusive on Tektronix instruments, makes quick on-screen reference and easy interpretation of photographic records. Or, the instrument may be ordered without the readout for $\$ 400$ less.

Part of the $\mathbf{7 0 0 0}$ Series

Select from thirty different 7000 Series plug-ins. You can custom tailor your instrument to meet your immediate need. And expand its capabilities later as the need arises. A 7633 mainframe costs $\$ 3650$. A typical configuration with dual trace vertical amplifier and delaying sweep timebase sells for $\$ 5.550$. For rackmount add $\$ 100$.

Specifications

Vertical System—Accepts all 7000 Series vertical amplifiers. Bandwidth determined by mainframe plug-in unit up to 100 MHz . Left, Alternate, Add, Chop, Right display
modes. Chopped rate approximately 1 MHz . Horizontal System-Compatible with all 7000 Series plug-ins. Fastest calibrated sweep rate is $5 \mathrm{~ns} /$ div. Phase shift between vertical and horizontal is 2°, DC to 35 kHz for X -Y operation.
CRT and Display-Internal $8 \times 10 \mathrm{div}$. ($.9 \mathrm{~cm} / \mathrm{div}$) graticule with superimposed $8 \times 10 \mathrm{div}$. ($45 \mathrm{~cm} / \mathrm{div}$) reduced scan area. Nonstore, variable persistence, and bistable in normal or fast and full or reduced scan storage modes push-button selected. Writing Speed and View Times-From . 03 $\mathrm{div} / \mu \mathrm{sec}$ until erased up to $2222 \mathrm{div} / \mu \mathrm{sec}$ at 30 sec view time. View time may be increased more than 30 times by using reduced intensity in the SAVE display mode.

See for yourself
For a "hands-on" demonstration, contact your nearby Tektronix Field Engineer. Or write: Tektronix, Inc., P. O. Box 500, Beaverton, Oregon 97005. In Europe write: Tektronix Ltd., P.O. Box 36, St. Peter Port, Guernsey, C.I., U.K.
concentrations are critical to fabricating the C-MOS devices. "It's not perfectly obvious how to do it right the first time," Lorimer observes.

Siliconix spent a year developing the process, and now feels it has got it down pat. The company is now in a "preproduction" phase for a military customer and plans to have samples available for civilian users by summer. Jerry Parker, analogswitch product manager, expects the array to find favor first with makers of PBX equipment, but hopes to sell to many of the telephone companies as well.

Fiber optics

Low-loss coupler feeds 20 terminals

Before multi-terminal optical-daṭa systems can become practical (see pp. 89-96), a standardized method of efficiently distributing a single light signal among many terminals is essential. Such a device has recently been developed by Corning Research Labs., Corning, N.Y.

The device, called a Star Coupler, consists of an aligned group of reflectively coupled fiber bundles that are inserted into a cavity with a mirrored end face. When light from a single fiber strikes the mirror, the light is distributed evenly to each of as many as 20 optical fibers, which, in turn, may be connected to various types of terminals.

With the device, the mixing and interconnection signal losses increase only logarithmically with the number of terminals, rather than linearly, as is the case with a tapped data trunk. Moreover, because 20 ports can be tapped, only one Star Coupler is likely to be needed for a given system.

The prototypes that have been constructed so far link seven ports although they contain enough optical fibers to link 20. Insertion losses are expected to be as low as 4 decibels, according to Frank Theil, supervisor of applied electrophysics at Corning. By contrast, a T-coupler for data trunks, recently developed by the Naval Electronics Laboratory Center [Electronics, Dec. 20, 1973, p. 30] has 3-dB mixing/interconnection loss for a single terminal coupling. Critical to the coupler's suc-
cessful operation are rigidity in its packaging, to prevent misalignment under shock and vibration, and a very flat mirror-to a fraction of a wavelength.

The Star Coupler uses the optical nature of the signals in a waveguide to perform all the mixing and signal division at a single point in the optical system. Central to its functioning is the spreading of light from a given multimode fiber at an angle that is a characteristic of the fiber. A fiber bundle from each terminal is brought into the coupler, and either a central processor or a single terminal acts as a signal source. The light strikes the mirror and is instantly coupled to the terminals of the system. The light simply spreads out, covers the mirror, and irradiates all the fibers uniformly. Moreover, all terminals receive an equal fraction of the input signal.

In contrast, in the tapped trunk, if each terminal received the same fraction of the main trunk signal, then terminals further down the trunk would be receiving less optical energy than those nearer the signal source. The problem is that the trunk is configured analogously to an electronic data bus, but lacks an

Contrast in technlques. Data trunk (a) requires a mixer for each tap off the main bus. The Star Coupler (b) simultaneously couples all terminals to the source. And adding more terminals extracts only minimum source power.

RCACOS/MOS to MIL-M-38510

Now, you can order COS/MOS parts processed to MIL-M-38510 from the first supplier to achieve QPL approval for C/MOS, and the first IC supplier to achieve approval for any Class A parts.

Orders are now being taken for eleven High-Rel IC's fully-processed to MIL-M-38510 - Class A, B, or C.

MIL-M-38510 Nomenclature	RCA Type	Description					
MIL-M-38510/05001	CD4011A	Quad 2-Input NAND Gate MIL-M-38510/05002					
CD4012A	Dual 4-Input NAND Gate MIL-M-38510/05003	CD4023A					
Triple 3-Input NAND Gate			$	$	MIL-M-38510/05101	CD4013A	Dual "D" Flip-Flop
:---	:---	:---					
MIL-M-38510/05102	CD4027A	Dual J-K Flip-Flop					
MIL-M-38510/05301	CD4007A	Dual Complementary Pair Plus Inverter Quad AND-OR Select Gate					
MIL-M-38510/05302	CD4019A	HEX Buffer/Converter (Inverting) MIL-M-38510/05501					
CD4009A	HEX Buffer/Converter MIL-M-38510/05502	CD4010A					
MIL-M-38510/05503	CD4049A	HEX Buffer/Converter (Inverting) HEX Buffer/Converter					
MIL-M-38510/05504	CD4050A						
		(Non-Inverting)					

These 11 parts are the initial complement of 26 C/MOS IC's covered by MIL-M-38510 detailed electrical specifications. Orders will be taken for the other devices as soon as they appear on the MIL-M-38510 QPL list.

Send for our free brochure which tells the complete story of RCA's COS/MOS and linear high-reliability IC's.

Also available . . . RCA's new, 1974 576-page Solid State "HighReliability Devices" DATABOOK

(SSD-207B). This handy reference provides complete Technical Data Sheets and other useful information on the broad range of RCA High-Rel integrated circuits and transistors. Send for your copy today. Price $\$ 2.00$.

```
RCA Solid State
Section70C21 Box 3200
Somerville, New Jersey 08876
    \squarePlease rush my order for___copies of the 1974
        "High-Reliability Devices" DATABOOK (SSD-
        207B). My cost, $2.00 each.
    \square \mp@code { P l e a s e ~ s e n d ~ a ~ f r e e ~ c o p y ~ o f ~ R C A ' s ~ H i g h - R e l ~ I C }
        Brochure (RIC-200).
Name/Tille
Company
Address
City___ State__Meney Orde Zip
I enclose payment by:\squareCheck\squareMoney Order
Offer good only in U.S. and Canada. Direct other inquiries to RCA Sales
Office or Distributors.
```


RE/ ${ }^{\text {Soliald }}$

[^1]General Mfg．Co．Waterbury，Comm．
Ilassall，Inc．，John．tue Oakland St． Hubbell，linc．，Jiarvey．State Sit．\＆Bost－ wick Ale．，Inidgeport，Cunn．
Industrial Screw \＆Supply（＇o． 711 W＊ Lake st．，（hicago．Ill．
Internationai screw ion 9444 Raselawh Ave．，betroit．Nifh．
 Ave．．Blejelanct．Ohin
lanmson \＆Sessions Co．， 1971 W．85th sit．revelathd，Ohin
Ianufacturers screw Jroducts， 216 W Hubbard St．Chicago，Ill．
 Sation clevelant，Ohio New lingland Screw（o．， 109 bimerald st． Kpune，N．II
I aurker－k゚alon（＂or｜z． 200 Variok St．，New onwtucket Sorew Co．， $1+1$ Hughes Ave． jawtucket，k．I．
Theoll iffe．＂（o．，isgo lionsevelt lid．．Chi－ （：1go． 111.
l＇rogressive Afg．Co．．52 Norwood St．， Torringtow．（vom．
Reading screw（＂O．．Norristown，1＇a

lemington Sirew \＆Bolt Mfg．Co．，Mald Spring－on－Hudson，$\%$ ． Buckford Screw 1＇ront
st．，Inockford，111．
Russerli，lhurdsall \＆Ward Bolt \＆Nut co．，

it．Louis Screst \＆l3olt Co．，by00 N． lurnalway，St．Louls，No．
s．ovill IIfg．＇＇o．， 99 Nill＇St．，Waterbury， （Bunn．
sterling bolt co．， $70 \mathrm{w}^{\circ} \mathrm{w}$ ．Van lisuren St ． （＇hicago，111．
United Sorew \＆EBolt Corlo， 2513 WV．Cul－
Fasmer Bolt is Screve
asmer Bolt \＆screw forb， 13000 Athens Gestern Automatic Mach

922 Foster Are．，Flyria，Ohio

RECESSED HEAD SCREWS

meriouli kerew Co．21 Stevene St．．Irovi－

 गияк＂16．）
＂handler Products Co．．（＂leveland Ohio
continental Sireve fo．．New isedford，
－urbin serew（orp iligh
 （sitain，cann．（suga
Federal Screw l＇roluct：Co．， 26 S．Jeffer－
ndustrit．Chicago，ItI．
Lake serew d sujply Co．， 711 w． Lake St．＂＂hicago．III
internationim arem（o．， 944 kogelawn I we．，Ifetroit．Mich．（See page 16. ） （spe page ifi）（＇o．，（＇levelamd，Ohfo． （sice page 16．）
Vational Sremw \＆Mfy．（＇o．，2440 F．75th St．，Clevalami，Ohio．（Sue lage 16．） K Koula（ －urker（Co．（＇has．Nerialen（ionit （B．）（hats．，Imeriliph，fonll．（Spe）
－arker－Kulon Corp．，200 Varkek St．，Naw lork，N．V．（Neq page 16．）
Inwtucket Nerew Co．，lawturket，R．I．
Hheoll sifge fo．， 5700 Romenevelt IKd．，（hi－ cako．III．（şe page 16．）
tugnall，Iburdmall \＆Waral bolt di Nut Co． Milland ine．．jourt Clienter，N．$\underset{\sim}{ }$
covill Mfg．（＇o．，Whtorlours，Conn．（See pık 16．）
 （＇hirago．III．（Nea page 16. ）
The surthington Hidwe．Nifg．（＇o．，South－ ington，（onn．（Spe page ifi．）
Whitnes Nerew ro．，Ninnhua，X．II．（See рад＂16．）

SELF TAPPING SCREWS

American Serew Co， 21 stevens st．，Provi－ dence． R ．I．
Central Screw＇o．． 8511 Shields Are．
Chicago．Jll．
Continental Screw（\％，New Bedford， Mass．
＂orbin Screw Corp．，High，Myrtle \＆Grove Sts．New I3ritain，Comi．
－ico Toni \＆Screw Corp．， 1800 Jiroadway， Federal screw I＇roducts © © ．， 26 S．Jeffer－ son St．（＂hieago．Ill．
Industrial Serew \＆Supply Co．，$\overline{1} 11 \mathrm{~W}$ ． Jake St．，Chirago． 111 ．

Isimson \＆Nessions（＇o．， 1971 W．85th St．， Mambfacturer＇s Serew Products，„1tio Hubhard st．，（hicago，Ill．

 cago，Ill．
Rhode Islami Tool（＇o．， 148 W．IRiver St． brovidence， 12.1.
Jussell．IBurdsall is ivard Bolt \＆※ut Co．

SET and CAP SCREWS

dome Machine Products（ ${ }^{\circ} \mathrm{O}$. Muncie，Ind． Nlen Mfg．Co．， 1 ± 9 sheldon＇st．，Jlartford Alliad Pr
Allied Products（rory．， 4646 ，awton Ave， Detroit，Mich．
 Cleveland，Ohio
（bandler iproducts（iorb． 1475 Chardon lid．．（＇levelannl．Ohio
（＂hicatyo sortw（＂o．． 1026 s ．Homan Ave． Chicakn，Ill．
clark lbros．Halt（＂o．，Milldale，Conn．
 St．，（＂le velatha，Ohio
continental sicrew Co．，N゙ゃw liedford Mass．
（＂orbin Screw Corp．，High，Myrtle \＆Grove TS．，N゙ew Britain，Comn．
Linco Toon \＆Nerew（omp．，lsio broadway Wembockford， 111 ．
Fertral screw Prontucts Co， 26 S ．Jeffer son st．，（＇hicago，Ill．
Federal Screw Works， 3401 Martin St． Detroit，Dich．
Ferrs Cap \＆set screw Co．Scranton \＆ Vorth IEds：．＂leveland，Whio
Ferry Sorew prolucts．Inc．．F．W．，suls Almira dre．．Cleveland，Ohin Haiper（＂o．，II．II．， 2630 Fletcher St．，Chi－ cago， 111.
llartford Ninhime Screw（＂o．，tig（inpitol lve．，llartforl，（vonn
Haskell Mfy．（ ${ }^{\circ}$ ．，William 11.22 （＂om Jolo－Nrome Screw（rorb，if Brooks St Wartford，＇otm，Supply Co．，-11 W Lake st．，Chicago．11l．
Keystone loblt \＆Nut（\％．， 0.0^{-}Meech Ave．，plovelami，Ohio
Iatmson \＆\＆stesions Co．， $1: 171 \mathrm{~W}$ ．8ith St． Cleverand．Ohja，
Lewis Bolt \＆Nut Co．，504 Malleolm Ive． S．Jio，Minneapolis，Minn．
 Ilubbird st．：＂hicago，！11．Min Mid－W゚est serew Irroducts（O．．Main \＆ Monareh vill Sorew \＆DIf，Co．， 5906 Jark Ale．．Cloveland．Whio
Monre，Genrge 11 ．．It jvarnsworth st． Boston．Mass．
Nitional icme io．， 170 l .131 st st， Sleveland，Ohio
National Iack Co．．Pockford， 111
National Screw de Mfg．Co．， 2440 l\％ 75 th St．（＂levelann，Ohio
’arker－Kilon Corb， 200 OH：Pa， Pheoll Mig．Co．，$\quad 700$ Roosevelt Rd．Chi Iecago，illince Iffg．Co．，Duncan Are． Worvester，Mass，
IRomington serew \＆ $1301 t$ Mfg．Co．，Cold Spring－un－Hudson，N．Y．
Upson Nut Div． Republic siteel Corlo．Upson Sut Div．． thode Island Tool＇o．， 148 W．River St．， Providence，IS，I．Co．， 126 Jill St ackford Bhit d Steel Co．， 126 Mill St．,$~$
IRockford，Jll． Rockford，Ti．
koral Screw
iockion Screw Products Co．， 2541 Ninti stii lkackford． 111
Nidland lio \＆Ward Polt \＆※ut Co．
St．Louis screw \＆Bolt Co，69u0 N Broadwas．St．T，ouis，dlo．
Samdusky Nut Co．．Sandusky，Ohio
scovill ilfg．（ॅo．，0，Mill Si．，Waterbury Contr．
Shimer \＆Sons，Samuel J．，Milton，Pa，
Stanalurd l＇renned Stepi Co．，Jenkintown lia．（New loage 178. ）．Van Buren St． （thicazo．गll．＂Buren st． Triplex Screw Co． 5317 Grant Ave．．（＇leve land，Ohio
Union Serew \＆Mrg．Co．， 207 S ，Main St． Inited Sclew \＆Bolt Corp．， 2513 w．Cul lerton St．，Chicago，Ill．

Wasmer Bolt \＆Screw Corp．， 13000 Athens ．Ave．，Cleveland，Ohio
IEstern Automatic Machine Sorew Co Vestinghouse flectric \＆Mfy．（\％，East 1＇ittsburgh，Pa．

WOOD SCREWS

\merican Serew Co．， 21 Stevens St．，Provi－ dence，li．I．Works，Inc．Hartford． （Bonn．
Continental Screw Cu．New liedforl， Mass．
Corbin Screw（orp，High，Nyrtle \＆Grove Sts．New lbritain，Conn． bagle lack（o．，Terroville coml
lico Tool \＆s•rew Corp．， 1 sun liroalwas， lenckford．Ill．
Federal serew lroducts Co．ob s．Jeffor－ son St．，（＂hicago，Ill．
 ndustrial Acre．Cleveland．Whio．－11 w．
 Keeler Brass（on．，Wehb dipk sts．，Grand deajids，Mich．
ドesstone Joit \＆Nut roo．asor Meech Ave．，Cleveland．Ohio
fanmfarturers Screw I＇roducts， 216 W ． Hublard Si．，Chieago．Ill．
Eational Lock io．，Rockford． 111.
Sational Screw \＆Mfg．（v．．$\dot{-}+10$ lo．isth st．，Cleveland，Ohio
Parker Co．，（＂harles， $4 N$ Fin）Sit．，Meriden．
eoll Mfg Co 5 ano leonseverlt Rd（＇li cago． 111.
Seating Screw（＇o．Norristow＇n，l＇a Reed \＆Prince lifg．＂o．．Duncall Ive． Remington Screw \＆Holt Mf\＆．（\％．，（old spring－on－I ludson，$\underset{\sim}{r}$ ．
zockform Screw Products Co．．2．： 41 Ninth st．．Rock ford， 111.
southington llardwara Co．．Sunthington， ＇ionns．
Sterling lfolt co．，in－W：Van liuren sit． Weber－K゚hapl Co．，1：43！Charlakoin St．， Whitney＊Serew Corp．．Niashua，ふ．II

Shafts

FLEXIBLE SHAFTS

Albertson \＆ 1 ＇o．， 3100 Floyid ．IVe．，Sioux City．lowat
hreeze Jorps．， 24 S．Sixth sit．Niewark．
Whodgo Fexible Shaft ro．．5tion Romse－ velt Rd，（＂hicago．Ilf． $2=$ Chandley

 Haskins Co，R．C．，fis 心．Califurnia st．， ＂hicigo．III．
Jarvis Cow Charles I．．Middletown，Comn． linick，（ireen \＆Reedi，J5 E．Washington Mall＇rum Cothor 111 ．

lall＇roul Co，tito S．Chiurago Ive．，（＂hi－ | Caĺn， |
| :---: |
| Il |

artindale lolectric Co．，1：3／s llird Ave．．．
bratt \＆Whithey biv．．Siles－lement－ fond Co．，Charter Öak liveil．，Hant－ forld，Coin． stewart Mfg．Corp，I＇．W＂， 4311 Ravens－ stow Mff：Co， 44 state st．．IBingham－
 （＇hicoago，ill
Swartz \＆White Mfg．「＇o．．\＃15 Washington St．Singhambor，States pilectrial Tunt fo． 24 Riverside Irive Cincinnati，Ohjo
White IDental Mfg．Co．，s．S．（Induatrial DIv．）， $10 \mathrm{E},+0 \mathrm{th} \mathrm{St}$ ．，New lork， N, Y ， （Sees puge ito．） 83 W ．Hubbard st． （＇hiatgo．Ill．

Shields

TUBE SHIELDS

Imerioxan liadio latrdware ro． 476 rond l＇roducts ío．， $1: 31: 9 \mathrm{Hamiltum}$ Ave．， ［）+ roit．Jich
Bual Jation．Ince， 5205 Cemar Ivo．．Cleve． billis land，Shin the fonorge in a09 Third St．，Ihiladelphia．l＇it，chicaso Firie fill Co， 816 W．Dirle st．，Chicago，
optical analog of a high-impedance amplifier, which removes only negligible amounts of energy from the signal.

Government electronics

Automated weather stations planned

A national network of automated weather-monitoring stations is being planned by the Federal Aviation Administration and the National Weather Service. About June 1, requests for proposals will be issued for the development of a prototype station to tabulate and track a host of weather parameters. Eventually, as many as 155 automated stations may be installed.

The three-year development plan for what the FAA calls an aviation automated weather-observation system (AV-AWOS) includes phases for completing the prototype and the developmental model, and the installation, evaluation and testing of the final product. Development of
the prototype is expected to cost over \$1 million, even though contractors will be asked to keep the design as simple as possible.

Under the joint program, the FAA is funding the project, but the Weather Service is issuing the RFPs. Who pays for the proposed operational network has yet to be decided. The funding in subsequent years will determine the number of stations ultimately installed. Nor have the over-all costs yet been estimated, since some of the sensing technology needs further development.
The stations will multiplex, process, and store data collected by a variety of sensors, automatically maintaining a weather record plotted over 24 hours. This will include such parameters as temperature of land and water, wind velocity and direction, and a count of pollutants. This information will be available from each station's minicomputers, which will be linked to central computers. Each input/output and communications terminal will include a Teletype interface, independent processing system interface, local and remote dis-
plays, a manual input/output device and a local data recorder.

Options. In selecting sensors, contractors will have the option of using either those already developed by the Weather Service or commercial versions with the same performance specifications. Where the Weather Service doesn't have adequate sensors, designs will be selected and evaluated for the developmental model and later for the prototype.
The FAA says that the automated network will fit into its program for automating flight-service stations and will augment its string of Limited Aviation-Weather Reporting Stations.

Trade

U.S. forecasts 1974 decline in imports

A net decrease in 1974 U.S. imports of home-entertainment electronics, as well as a shift in the relative markets shares of Japan, Taiwan, and Korea, has been forecast by the U.S.

News briefs

Natlonal sets up Memory Systems group

National Semiconductor Corp., Santa Clara, Calif., has formed a Memory Systems group charged with designing, building and testing custom semiconductor-memory systems. The new group, says National president Charles Sporck, will provide customers with a cost-effective method to implement semiconductor memories in enduser data-processing systems, while at the same time attempting to minimize the financial and scheduling risks often encountered by companies using semiconductormemory technology for the first time. David Martin, a former vice president of marketing for Advanced Memory Systems, who recently joined National, will be general manager.

Copyright rulling cheers CATV Industry

A 10-year legal dispute between broadcasters and the cable-television industry ended when the U.S. Supreme Court ruled 6-3 that cable operators may import distant signals and rebroadcast them locally without paying copyright fees. The decision, in a case between the Columbia Broadcasting System and TelePrompTer Corp., was hailed as a victory by the National Cable Television Association.

General Automation acquires typesetting firm

General Automation Inc., the Anaheim, Calif., maker of minicomputers and minicomputer-based automation systems, has acquired Tal-Star Computer Systems Inc. for an undisclosed amount of cash and stock. Tal-Star sells computer-automated typesetting, printing and other systems to newspapers. General Automation has been supplying Tal-Star with computers, while the latter provides the operating systems required to automate the typesetting, printing, and distribution of a large number of U.S. dailies.

Opel named president of IBM

John R. Opel has moved into the presidency of International Business Machines Corp., replacing Frank T. Cary. Cary continues to wear his other two hats, those of chairman and chief executive officer. The change makes Opel the third man in the corporate office, which runs the company day-to-day, along with Cary and Gilbert E. Jones, chairman of the IBM World Trade Corp. Until the end of January, Cary and Jones had shared the corporate office with Thomas J. Watson Jr., who retired upon reaching the age of 60 . Opel was promoted from senior vice president.

Anytime you need High-Rel Linear IC's for military aerospace or industrial applications, come to RCA. Your RFQ's will receive first class "team" attention.

RCA has come on strong to meet your needs for High-Rel Linear IC's. With a team dedicated exclusively to High-Rel IC's and a MIL-M-38510 approved facility, we are keeping pace with the industry's increasing demand for high-reliability linears.

Our team can bring you a variety of High-Rel circuits, such as Operational Amplifiers, Differential Amplifiers, Transistor Arrays, RF Amplifiers, and Voltage Regulators, all processed to MIL-STD-883. Here are just some of the more popular amplifier circuits offered.

Industry Designation	RCA Number	100-999 Price
Class B* Type 741	CA741T/3	$\$ 4.50$
Class B* Type 747	CA747T/3	5.50
Class B* Type 748	CA748T/3	4.50
Class B* Type 1558	CA1558T/3	5.50

-Parts processed to MIL-STD-883 Method 5004 Class B

Send for our free 20-page brochure which tells the complete story of RCA's COS/MOS and linear high-reliability IC's.

Also available
RCA's new, 1974, 576-page Solid State "HighReliability Devices" DATABOOK (SSD-207B). This handy reference provides complete Technical Data Sheets and other useful information on the broad range of RCA High-Rel integrated circuits and transistors.

Send for your copy today. Only $\$ 2.00$.

RCA Solid State
Section 70C21 Box 3200
Somerville, New Jersey 08876
\square Please rush my order for
\square Please send a free copy of RCA's High-Rel IC Brochure (RIC-200)

Name/Title
Company
Address
City/State/Zip
I enclose payment by: \square Check \square Money Order
Offer good only in U.S. and Canada. Direct other inquiries to RCA Sales Offices or Distributors. State

Department of Commerce. The estimate came with the Government's disclosure in mid-March that 1973 imports of home-entertainment products that totaled $\$ 1.9$ billion reflect a slowdown in the rate of growth.

Total imports of audio and video consumer products last year rose 12% from the 1972 level of $\$ 1.7$ billion, according to the Census Bureau. This increase compares with a 31% increase between 1971 and 1972.

Decline? In its look ahead at imports for this year, the department said a net decrease in imports from the 1973 level could result from "slackening U.S. demand, as well as production adjustments in Japan." Japan continued to supply the lion's share of U.S. audio and video imports last year-nearly $\$ 1.2$ billion for 61.7% of the total-but its share of the import market continued to slip.

Coupled to the "strong possibility of a substantial decline in U.S. imports from Japan," the Government forecasts continuing strong gains in Taiwan's second-place share of the U.S. imports market, as well as a growing surge from Korea to make it "the fastest-growing supplier" to the U.S. consumer market.

How much this expected redistribution of U.S. import-market shares will really affect Japanese interests is uncertain, however. Indeed, much of it may come as a result of direct

Japanese action, suggests the Commerce Department study. For example, the 1974 growth of Korea's role as a supplier to the U.S. will be a product "almost exclusively of joint Korean-Japanese ventures" generating "the highest-value percentage gains of any other foreign supplier." Korea is now in various stages of joint ventures with such major Japanese manufacturers of home-entertainment electronics as Matsushita, Toshiba, Sanyo, and Crown. As a nation that had less than 0.5% of the U.S. import market in 1971, Korea supplied 3.1% of the imports last year, rising to fifth place.
Declining share. Japan's share of U.S. imports has been declining for multiple reasons: the change in international monetary relationships; the beginning of color-TV assembly by Sony in San Diego; opening of a Matsushita plant in Puerto Rico; and increased shipments to the U.S. from American and Japanese subsidiaries and other producers in Asian countries.
Faced in 1974 with continuing rises in wage and material prices at home, costly pollution-control directives, and quantitative voluntary export controls on TV receivers, plus a check-price system on tape recorders shipped to Europe, in the U.S. view, Japan will "concentrate on production of market-tested, pre-mium-type, high-profit items."
Japan's Ministry of International

Trade and Industry (MITI) says the U.S. report has already predicted 1974 production declines of 29% in monochrome-TV sets, 15% in radios, and 5% in color-TV receivers. However, the same MITI forecast notes that Japan's exports of resistors, tubes, and diodes should rise by $39 \%, 25 \%$, and 15%, respectively. These gains, the U.S. study says, "reflects the expansion in production capacity of overseas Japanese subsidiaries assembling audio and video products."

In breaking out 1973 consumer product imports, the Commerce Department analyzed the changes this way:

- Color TV: Imports of 1.46 million units rose by only 140,000 sets from 1972, while domestic production of 8.7 million units reflected a sharp increase of 1.7 million sets in the year. As a result, the import share of color-TV sets slipped to 13% from the 18.6% peak of 1971 .
- Monochrome TV: The nearly 5 million units imported ran about 60,000 below the 1972 total. However, the drop in domestic output "exceeded by far the import decrease," plummeting 34\% from 1972 to last year's estimated output of 2.1 million sets. In the comparable period, unit imports rose from 62% to 70% of domestic consumption.
- Tape recorders/players: This leading consumer-import category reflected only a nominal unit import gain of 2.6% to 22 million sets from 1972. However, price increases by all foreign suppliers produced the largest dollar gain for any category. Of the $\$ 657$ million import total, up $\$ 76$ million from 1972, Japan captured 87% of the market.
- Home radios: Hong Kong remained the leading unit supplier with 48.2% of total imports, numbering nearly 41 million sets. The import market increased a nominal 1.9% in quantity and 11% in value from 1972.
- Radio/phonograph combinations: Unit imports dropped 8% to 2 million from the 2.2 million posted in 1972. Japan's share declined in both units and dollars as Taiwan's share increased.
- Auto radios: Imports of 4.5 mil-

Look at That!

Four Opto-Isolators in One

The Bright Guys do it again. By packaging four independent opto-isolator channels into one 16-pin DIP-the new ILQ-74 quad isolatorwe've created the first family of perfectly compatible single, dual and quad opto-isolators.

And because the ILQ-74 has the same specs as the ILD-74 dual and IL-74 single opto-isolator, they mix and match ideally. You can absolutely minimize parts counts regardless of the number of channels per board.

The new ILQ-74 quad pares down the cost per
channel to $83 ¢$ in 1 K quantities and even more in higher volumes. In multi-channel designs, the quad replaces single and dual isolators, to save still more on parts handling, assembly labor and board area.

All three are compatible with TTL and lots of linear circuits. All three have a breakdown voltage of 1500 V , typical transfer ratio of 35% and coupling capacitance of only 0.5 pF . All three have passed UL safety tests.

Now's the time to replace outmoded transformers and relays with economical, efficient Litronix opto-isolators. Isolate high-voltage transients and eliminate both ground loop feed-through and common mode noise in long lines the solid-state way.

Only Litronix makes a compatible family of quad, dual and single opto-isolators. Call or write for complete data and application notes.

[^2]We're the

Nationwide P.R.O.M.

 programming centers with Local P.R.O.M. service from Hamillon!
FAIRCHILD
 HARRIS*
 INTEL
 MOTOROLA*
 NATIONAL
 SIGNETICS

Call us for immediate delivery:
WEST
hamitom/Los ameeles
(213) 870-7171
(714) 522-8200
aNNET/LOS ANEELES (213) 836-7200 (714) 522-8220

HAMILTON/AVWET - MT. VIEW (415) 961-7000

HAMILTON/AYNET - SAN DIEGO (714) 279-2421

HAMILTON/AVWET - PHOEMIX
(602) 275 -7851 (602) 275-7851

HARILTON/AVNET - SEATTLE (206) 746-8750

HAMILTON/AVNET - SALT LAKE CIT
HAMILTON/ENHET - SALT LAN MAMILTON/AVNET HAMILTON/AYNET -
(505ILTON/ANMET $765-1500$ - ALBUQUERQUE
(505) 765-1500

NORTH CENTRAL
HAMILTON/AYNET - CHICACO
(312) 678-6310

MAMILTON/AVMET - MINNEAPOLIS (612) 941 -3801 MANILTON/AYNET - OETROIT (313) 522-4700 MAMILTON/AYNET - OAYTON (513)
(216)
$233-0610$ MAMILTON/AVNET - ST. LOUIS (314) 731-1144 HAMLTON/AYNET - KANSAS CITI (813) 888-8900

SOUTHERN
HAMILTON/AVNET - DALLAS (214) 661-8661 (817) 275-6561

HAMILTON/AVNET - HOUSTOM (713) 526-4661

HAMILTON/ANNET - MIAMI (305) 925-5401 HAMLLTON/AVNET - ATLANTA (404) 448-0800
mo.ntuntic
HAMILTON/AVMET - BALTIMORE (301) 796-5000

HAMILTON/ANNET - PHILADELPHLA (609) 234-2133 215) 831 -1300 hamition/anko HAWILTON/ANHET - LONG ISLAND (516) 333-5800 HAMILTOW/AVNET - CONNECTICUT (203) 762-0361

NORTH ERST
MAMMLTON/ANHET - BOSTON (617) 273-2120 MAMILTON/AVNET - SYRACUSE (315) 437-2642 MAMILTON/AVHET - MONTREAL (514) 735-6393 HAMILTON/AVHET - TORONTO (416) 677-7432 HAMLLTON/AVNET - OTTAWA (613) 725-3071

Hamilton/Avnet is the
largest
nationwide
distributor
for the world's finest
lines of quality electronic components!
lion units, valued at $\$ 91$ million, registered the largest gains of any import category in 1973, jumping 53% and 71% in quantity and value, respectively. Japan and Canada remain the two major suppliers with 44% and 37% shares of the total units imported.

Commercial electronics

Matsushita-Motorola

deal presages more

Last week's announcement that Matsushita Electric Industrial Co. of Japan had agreed to buy the home TV-receiver product line of Motorola Inc. may just represent the tip of the iceberg as Matsushita steers itself more squarely into the U.S. market.
"This is the first step in the me-dium-term objective of vertical integration in mainland U.S.," says Nat Gilbert, vice president and treasurer of Matsushita Electric Co. of America, headquartered in New York City. Matsushita's long-range goal, says Gilbert is full vertical integration in the U.S. And this could mean start-ups as well as acquisitions. "Up to now, we were simply a distributor" of the Panasonic product line made by Matsushita, Gilbert notes. "Now we're going to be a manufacturer as well."

He says that the company is looking at a number of other acquisition possibilities, even though Matsushita "has not actively sought any company. Motorola came to us." Other companies have, too-although Gilbert refuses to name them or what market areas they're in. He does stress, however, that it's not Matsushita's intention to gobble up U.S. businesses.

The Motorola transaction is expected to be consummated next month, assuming that the boards of both firms and the Japanese government approve it. Matsushita plans to retain the Motorola Quasar tradename on its TV sets. In fact, a new company, Quasar Electronics Corp., will result from the transac-
tion. Gilbert says that the Quasar and Panasonic TV-set lines will be fully competitive with each other, and that "very little will change except the name on the sets," in the Quasar line. Nor does Matsushita plan any management changes in Motorola operation.

Rumors that Motorola wanted out of the home TV-set business preceded the announcement. Motorola officials declined to say whether the business was profitable last year, but did admit that its TV business "hasn't achieved appropriate profit objectives in recent years." Industry sources peg Motorola's share of the TV-set market at between 6% and 7%, and suggest that level would account for some $\$ 244$ million in the firm's 1973 sales of $\$ 1.43$ billion

The sale will encompass present Motorola production facilities in three Illinois cities: Franklin Park, Quincy, and Pontiac. The Matsushita subsidiary also will assume the lease for an assembly plant in Markham, Ontario. The deal also includes appropriate U.S. and Ca nadian inventories for the sets.

AT\&T and MCl

lock horns

The counteroffensive launched by AT\&T to quell competition fostered by the Federal Communications Commission and pursued by the specialized common carriers has run into more legal and regulatory crossfire [Electronics, Oct. 25, 1973, p. 40]. MCI Communications Corp. has filed suit in U.S. District Court in Chicago, charging AT\&T with violating the Sherman Antitrust Act.

MCI seeks treble damages in a four-count complaint charging AT\&T with attempting to monopolize the $\$ 1.1$ billion business and data-communications market. The main charge is that AT\&T has delayed in providing local telephone lines that would permit MCI customers to reach MCI's long-haul relay equipment.

An AT\&T spokesman responded unusually sharply to MCI's suit, ex-

Super protection with the unique adjustable Crowbar Overvoltage Protector. Makes the Sorensen SRL a great supply for lab/system uses. Fast front panel adjustment of overvoltage level without removing the load ... instant front panel meter monitoring of set point, plus these additional SRL features: resistance and signal programmability; fast response time - 70 to $150 \mu \mathrm{sec}$. - through full load range; low- $31 / 2^{\prime \prime}$ to 7 "- rack panel height; high power-density ... in 14 models with outputs from 250 to 2000 watts. SRL - the super choice for maximum reliability. stability and value in medium power, low voltage applications. For complete data, contact the Marketing Manager at Sorensen Company, a unit of Raytheon Company, Manchester, N.H. (603) 668-4500.

Representative Specifications-SRL

- Voltage Mode

Regulation (combined line \& load) 01\%

- Current Mode

Ripple (PARD) ms: $350 \mu \mathrm{v}$. p-p: 20 mv
Temperature Coefficient $د /{ }^{\circ} \mathrm{C}$ $.01 \%+200 \mu v$

- Voltage Ranges
$0-10$ volts to $0-60$ volis (14 models)

Regulation (combined line \& load)
$.02 \%+4 \mathrm{ma}$
Ripple (PARD) rms: 0.5 to 30 ma .
Temperature Coefficient $J /{ }^{\circ} \mathrm{C}$ $.01 \%+1 \mathrm{ma}$

- PriceRange
\$500-1025
pressing amazement that ' MCI thinks there are any antitrust violations. We have cooperated with MCI, enabling them to provide end-toend private-line service to their customers." Frankly, he says, "the complaint is ridiculous."

Trouble. MCI's suit promises some trouble for AT\&T, but how much remains to be seen. For one thing, the Justice Department reportedly is investigating AT\&T's conduct in the private-line communications market and has asked the company for pertinent documents.

And, MCI's new suit seeks to open the wedge it won in a Philadelphia Federal Court in February. There, it got an injunction, now on appeal, ordering AT\&T to provide MCI the same kinds of circuits the same way it provides them to AT\&T subsidiaries.

Earlier before the FCC, the two sides argued during a full day's hearing whether or not AT\&T was required to provide the specialized common carriers with foreign and common control switching arrangements.

AT\&T's Richard R. Hough, Long Lines department president, contended that AT\&T is not required to provide such service under the FCC order establishing the specialized common carriers. To do so, he said, would fragment the network, degrade service, and increase cost to the public. MCI and other specialized common carriers argued otherwise, saying that denial undermined them competitively with AT\&T.

And, Kelly E. Griffith, deputy chief of the FCC's Common Carrier Bureau, stated that the specialized common carriers are permitted to provide those services, and that they can do it without harm to the network. This left the decision to the FCC, which gave no indication when it might decide the thorny issue.

In previous arguments before the FCC, MCI and other specialized common carriers, aided by the FCC's Common Carrier Bureau, tried to gun down AT\&T's policies on interconnecting its facilities with the carrier's services, alleging that AT\&T intentionally moved slowly to try muzzle the new companies.
 our standard lines of 7400 TTL's and 930 DTL's.

Out-of-State Call toll free. Dial: 800-538-7906 and ask about price and delivery.

We can optimize your design and save you money, too!

You don't have to have a big hairy system full of complex devices to get economies out of custom C/MOS.

Even if your module has as few as a half dozen standard C/MOS devices in it - we may be able to provide you with a single custom C/MOS circuit that will do it all...cost you less than you think... and could save your com-
pany thousands of dollars in production costs.

Many designers have switched to C/MOS because of its inherent lowbattery drain and high noise immunity. And now many users of standard C/ MOS devices are looking to custom C/MOS circuits to optimize their designs and save money, too. They see no reason to go on using 5 or 6 stand-
ard devices where 1 custom circuit will do.

For less than you think, we may be able to provide you with a prototype custom C/MOS circuit that could give your company a competitive edge. It costs nothing to send in the coupon and be brought up to date on the custom C/MOS scene. Do it now!

Name		
Company		
Phone		
Address	State	Zip
City		

Briefly, my application is:
\qquad
\square
\square
\qquad
\qquad

Like A Puppet OnA

 diverse roles required of analog-to-digital converter subsystems. Instrumentation, data acquisition, industrial controls, or remote sending. Wherever you call for an analog signal to be displayed or controlled digitally, the MC1505L A/D Converter Subsystem can be your marionette.
Behind The Scenes

The tried and true "dual ramp" technique. Your assurance of system immunity from all but the most rapid changes in external component values, temperature drifts, etc.

In The Spotlight

Accuracy. Outstanding accuracy. With the digital system of your choosing; counters, a clock, and some gates, you can show off an A/D converter of either $31 / 2$ or $41 / 2$ BCD bits or up to 13 bits in the binary code.

Simplicity. Since the MC1505L provides its own voltage reference, two calibration potentiometers (full scale and zero adjust) and one integrating capacitor are all you need for normal operation in the A/D subsystem itself.

Compatibility. The digital logic system is yours for the choosing. Digital inputs and outputs are equally at home with either TTL or CMOS.

Conservation. Keep Watts under your thumb with the MC1505L's low power consumption of 42 $\mathrm{mW} @+5.0 \mathrm{~V}$. Tailor-made for battery operated instrumentation systems. Like those using CMOS. And, single power supply operation (+5.0 to +15.0 V) lets you eliminate extra circuitry.

Budget Production

An A/D converter doesn't need to cost the typical hundred dollar plus figure associated with many twelve bit modular units. Comparable accuracies can be yours simply by building onto the MC1505L with a few dollars worth of counters and gates. For a thrifty $\$ 5.95$ ($100-\mathrm{up}$) you can get started with our limited temperature range version MC1405L subsystem.

Put It All Together, It Spells Success

Try it in a $31 / 2$ or $41 / 2$ digit A/D converter - combined with either CMOS or bipolar logic for the complete A/D converter function. Particulars can be found in the detailed 14-page data sheet. The data sheet can be found at P. O. Box 20912, Phoenix, Arizona 85036 , or circle the reader service number below.

Try the MC1505L wherever you want to digitally display, process, measure, control or store an analog function.

Try it in quantity, off-the-shelf today. The MC1505L analog-to-digital converter subsystem.
Your wish is its command.

Gosat Mrial stampings，luce，：311 Inatl （iuthman do con，bidwin l．， 400 s ．leoriat stat．：＂hicagy，III．
llagelei Kinc coo，lianville，In
J．Fi， 11 Mf．\because o．， 4111 jort llamihon
 Miller Cob，J．Wh．， $5!17$ N゙．Mation St．，lans National Coo，bil Shermith st．，Maldern， Mass．
l＇ath \＆lieeknan，425U Wissahickon Ave． l＇hiladelphia，l＇it．

Sockets

DIAL LIGHT SOCKETS

 （ ${ }^{\text {hicatyo，}} 111$ ．

TUBE SOCKETS

Alichlinn Radiu Industries，Inc．．5川l W 3isth sitionicago， 111. 11 Irrducts Coo． 7
Americath Phemolice Corp． 1830 s．ifth Ave．＂hintapo，Ill． nerican liadio Hardware（Co．， 476 hbach Hadio Co．， 145 Hindson St．N゙ャッ

Cineh Mff．Cou． 2335 W．Van linren st．
Continentali－i ）iationd Fibre Co．， 13 Chatpe Fagkt．，Nuwark，Inel．Co．， 59 Ifall st．．

 anklin Miv Cord
Franklin Mig．Corp．，A．W．， 175 Variek Ni，New York，N．Y；（Sre pare 日月．） Plastics Ave，lיittsiteld．Hass． lammarlund Mfg．Co．， 424 W． 33 d St．
Johnson Co．，F．\dot{F} ．，Waseca，Minn．
dumas，Lloward B．，2300 Wibanmia Ave．， Chtrago，111．（（sゃe page 15t．）
Difearta Frabribators．Inc， 4615 Ravens－ Woond Ave．．Chication Ill
Millen Mfg．©o．，James． $1: 0$ lixchatnge
Niller Co．，J．W．， 5917 s．Main St．，Los
－ational anders．
ational Co．．til Sherman Si．，Nathlen， Mass．
lhinco kadio x Television Corpe Tiogat \＆ Rember Co．． $21(11$ Hryant st．，San voran－ Smith Cob，Maxwell， 1027 N．Highland Ave．，Hollywood，Call．

Solder

Allen Co．，L．13．，bỉ30 Hryn Mawr Ive．， Npha N\＆ta！\＆Rolling Mills，Inco， 363

lelmont Smelting \＆Refining Wrorks．Inc．．

 Uivision Lata Co．， 836 W ．Kinzie St．． Chicago，${ }^{111 .}$ ． $6 ., 670$ liddy sont．，l＇movi－ dence，Ir． 1. atrdiner Aretal Con 1820 S．Campon
Ave．，Chicagn．lil． haser Lead c＇ro， 31 Wycoff Ive．，Brook－ k Metal Co．． 318 N．Holliday st．． Kiester Sollter Co．， 4212 Wrightwood Avo．． Chicago． 111.
 Mass．
Nitionstl Iaeatl Co．， 111 Broarlway゙，Nゼい Now York Nolder Co．， 15 Crosby st．，New athy Mhemical（oo， 68 Mcl）owell St．， columbas．Ohio

Soundproofing

Celotex（＂orlo． 19 N．Michigan Ave． Insulite Co．．Builders lixchange Bldg．， Minneapolis，Minn．
 bitio s．D，avergne Ave．，（＇hicako，Ill．
－niterl stites（ivopsum Co．， 300 W．Adams St．，（＇hicagn， 111.

Speakers

nee lonudmpenkern

Springs

Accurat．Spring Mfg．Co．， 3 S 17 W．Latke St．，（\％hicato，lll． nrican Coll spring do．
Ait．．，Muskegon，Jich
American Spiral spring \＆ 31 fg （ ${ }^{\circ} \mathrm{O}, 5 \mathrm{~b}$ 28 llarrison sit．，l＇ittsburgh．I＇a．
American spring d Wint specialty Co．
8it ．．．Spatulang St．，Chleayn，Ill．
mirican Ster
Blda．，Clevoland，Ohio
hes（o）．Wallacte，Div，of Issociated spring Corps，bistol，comb．
Barnes－dilnson－R：aymond biv．of Asso－
 letroit，Alich．
（ary spring Works，Inc．，24＂W．geth
 Helah fits，（leveland，ohio
＂uyahoga spring（0．，1027：lherea lid． Cleveland，Ohio
）umbar Bros．（O．．1hir．of Associated Spring Corlp，if sonth sit．，liristol，

 Gibson（ Bo，Wm，N，Dis，of Associated

Chbeago，Mill Co．M．D．，bio Central Alve，Fontiate，Nlich
Iunter I＇resmed Sterl Co．Lanntiale，I＇a． rumfont speclalt
notrumant Nppelaltips（oo．，its Bragen $131 v(1)$
152.$)$
lones spring Co．．W．B．， 104 No，seventh st．．（＇imeinnati，（Hhio
 N．Y．
Manross \＆Sons， $\mathrm{F}^{\text {N．N．N ，Div，of Associated }}$ Spring corb．，Forestiville，ionn．
Itid－W＇est Sming Mfg．Co．， 4634 S ．West ern Ave．（＇hirago，111．
New Hritain Spring Co．，New Britain， Nue hlhatus
Wuthlhatusen spring Corb Ave．，Lassansuort．Ind．
lhoenix harrewart Mfg．Co．， 19 Illinois St．．IVuffalo
procision Jronlicts Co．．Walthatm，Mass
Ifasmond Mfg．Co．，Div：of Associated Spring Corp．，2e6 S．C＇enter st．，Corry Pa．
Hellanio Spring \＆Mfg．Co．， $2 \% 840$ th St． Browklyn，N．V．
nolds Spring Co．， 95 loevnolds Spring Co．， 955 Water St．，Jack－ son，Mich．
Steel Co．，Hurman D．，Lafayette IBldg． －k Mif Co Brock
Tuck Mfg．Co．，Brockton，Mass．Kensing
Vhion Spring \＆MfF．Co．，New Kensing faon spring
Wickwire Sa，Soncer steel Co．， 500 wifth
yost Superior Co．，Springfiek，Ohio

Stabilizers

VOBTAGE：ST．MBILI\％ERS—See Regulatorn

Stampings

METAL STAMPINGS and LAMINATIONS Accuratt Spring Mifg．Co．， 3817 W．Lake St．，（＂hicago， 111.
Acklin Stamping Co．， 1925 Nebraska Ave． Tollado，Ohio
deme Stamping \＆Mfg．Co．， 200 Corliss st．．J＇jttshurgh，1＂a．
Ainsworth Nfg．（O．，$\underset{\sim 2}{2} 00$ Franklin St． Detroit，Mích．
Akron－sille 1×0. Chestnut St．，Akron， eghwny－Tadlum Steral Corp．，Oliver heghrny－taudum Steral Corp．，Onver N Numinum Goods Nifg．（ $0 ., 15$ th \＆Frank lin sits．，Manitowo．

American l＇ulley（o．，tき60 Wissahickon Ave．，Philadelphia，1＇a．
merican Stamping Co．， 1000 P．64th St． Anervereland，Ohio
Ansonia Mfg．Co．，Ansonia，Conn．

Auburn Mfg．Co．， 5 Stack St．，Mildletown， Barmes ionn Dis．of Associated Spring （orp），Wallace，bristol，Fonn．
barmes－hibson－lhaymond Div．of Asso Ciater
Jetroit，Jing
Bay state，stannping Co．， 380 Chanaller st．，Worcester，Mass．
Brerger Mfg．（＇o．，Canton，（Hhio
Bertcher Mfy．Co．， 3106 W．61st St． Bond＂leveland，Ohiso Jetroit．Dich．
linwen lroducts（orp．，Auburn，N．$\%$ ． 1：rewer－Tichner corp．，（＂orthand．N．Y． Bridgeport Brass Co．，E．Main St．，Bridge bolt，Conll． 11631 Matck Ave．，Detroit Budd Nlit．Co．，Fow：ard G．，oith k Hunt Butd Nr．
 st．，Waterburs．Conn．
Continental－1）iamomid F＂ibi＂．（＂o．， 13 （＂hat］eel st．，Newark，llel
ontinental Machines，lnce， 1 ：308 South W゙ashington AVe，Mintreatolis，Minn
 Ibhlstrom Metallice toor（＇u．，lBuffalo st． Dufiance Pressed siteel Co．，Defiance， Ohin
Detroit summing Co．， 3461 W．Fort St． Detroit，dich．Dadison Ave bickey－dirabler C＂u
Inmbar Ibros．（Co．，if south St．，Bristol Conne Mfg．Co，ix 29 Eggleston Ave． Cincinnati，Ohio
Erie Art Altitl（＇o．， 161% E． 18 th St． bive Cill Co．， 816 W ．Frie St．，Chicago， Fiaries Mfg．Co．， 1036 Li．Grand Ave．， Decillelerrioh Co．， 200 Ilt．Pleasan Ave．Newark，N．J．Iurorit，Ill． Fonstoria l＇ressed steel Co．，Fostoria， Friblilin Fibre－Lamitex Corll．，Wilming－ toll，itel．
Franklin Mf⿸．Corbo．，A．W．， 17 各 Varlek st．，New york，N．I．（s＋e pates 98．） F＂ulton sybyhon（o．， 3300 （umberland Ave．，Knoxville，Tenn
dameral Indastries Co．．
Taneral Industrias Co．．Cleveland and neral Metail Products（｀o．， 3 sig Delor St．，sit．IAuls，No．
Geometric＊stampling Co．， 1111 F．200th St．，C＂levennd，Ohio （ibson Co．Div：of Associater］Spring Corp．，Wis．I．， 1800 （＂lvinurn Ave．， Chicago，Ill．
Glenvale Prolucts（＇orp．，$\$ 316$ French Rd．， l）etroit，Jlich
Goat Metal Stampings，Inc． 314 Nean St．Brooklyn，N．Y．Co．，New Jruns－ oetze（iatskot d Jiteking（o．，New Thruns－
wick．N．J． Grabler Mfg．（＇o．． 6565 Broadway，S．E． Cleveland，Ohio
Fratmmes \＆sons，I．IF．， 344 ITnion St． （iregory Mfg．Co．，（Nt．Carmel）New （ireist Mff．© $0 ., 501$ IHake St．，New Haven，（＂onn．
lionsiov latmp \＆stamping Corpe，Fvans ville，Ind．
Jubbard Spring Co．．M．D．，672 Central Hunter j’ressed Steel Co．，Jansdale，Pa， Inmiltap（orp，of Amprich，30－34 liong International Insulating Div．，General In－ dustries Co．，（leveland and Olive Sts．， Elyria．Ohio
King Iaboratories，Inc．， 205 Oneida St．， Jansling Stamping Co．， 1159 Pennsylvania Are．．İinsing．Mich．
Manganese Steel Forge Co．，Allen St and Castor Ave．Philadelphia，Pa．
Master Products Co．，6414 Park Ave．， Cleveland，Ohio
McCord Radiator \＆Mfg．Co．， 2587 F． Grand Ave．，Wetroit，Mich．
Melrath Supply \＆Gasket Co，Tioga \＆ AJemphis Sts．，Philadelphia，Pa
Mico Instrumpent（on．， 10 ．Irrow st．，（iami－ bridge，Jinas．（spe page 162．）
Dllwaukee Stamping Co．， 802 S．TOd St． Nilwaukee，wis．
National IRrass（oo． 1 1599 Madison Ave．， Grand lRaplds，Meh．

Burroughs

 Announces...

SELF-SCAN BAR GRAPH display offers design engineers exciting new opportunities for instruments and systems where ANALOG information is needed, but the accuracy of DIGITAL information is desired.

Data is presented as highly visible, illuminated bars that can be used horizontally or vertically. SELF-SCAN BAR GRAPH displays can be read instantaneously anywhere in the data range. The resolution is more precise than any mechanical equivalent available (a 200-element bar has 0.5\% resolution).

SELF-SCAN BAR GRAPH panels combine the thick-film technology of Burroughs PANAPLEX ${ }^{\text {TM }}$ displays and the internal scanning techniques of the Burroughs SELF-SCAN alphanumeric display. There are no moving parts; the problems of life, shock, vibration, and calibration have been virtually eliminated.

Compact, attractive and adaptable to the display of most any parameter which can be displayed in analog or digital form, the SELF-SCAN BAR GRAPH display is an ideal solution for the measurement and display of speed, torque, pressure, temperature, stress, force, or acceleration . . . wherever you need to monitor and control parameters . . . wherever your engineering ingenuity leads you.

These panels are extremely thin (only $0.25^{\prime \prime}$,excluding tubulation). That means you gain extra rear panel space.

OUTLINE DRAWING OF PANEL

Only 8 connections to the display enable you to accurately control two independently variable 200 -element displays. Control is achieved by scanning the $\mathbf{2 0 0}$ cathode elements sequentially using Burroughs' internal scanning technique, with the bar lengths controlled by the time the anode is on. This
simple technique permits you to use linear, non-linear, binary, or digital inputs to control the output of the comparators as shown on the block diagram.

These panels are available now for engineering evaluation, and production quantities will be available soon.
The best part is the price.
Dual 200-element display panels (0.5% resolution) are $\$ 29.00$ each in 1000 quantities.
For complete information write: Burroughs Corporation, Electronic Components Division, P.O. Box 1226, Plainfield, N.J. Ó061, or call (201) 757-3400 in New Jersey, or (714) 835-7335 in California.

THE FHRST OF THE BIG COUNT THMERS

Exar's new XR-2240 counter/programmable timer solves so many tough problems that designers will unanimously agree that it's really the universal timer.

With its unique combination of analog and digital timing methods, you can now replace inadequate and complex assemblages of monolithic and electromechanical timers with the much simpler XR-2240. As a bonus, you get greater flexibility, precision operation, and a reduction in components and costs for most applications.

Because of built-in programmability, you can also use the XR-2240 for frequency synthesis, electronic music synthesis, digital sample and hold, A to D conversion, binary counting and pattern generation, and more.
cision time delays programmable from 1RC to 255RC, a range of microseconds to 5 days. By cascading only two XR-2240 timers, you can extend the maximum delay by a factor of 2^{N}, where $N=16$ bits, resulting in a total delay of 3 years!

The XR-2240 operates over a 4 V to 15 V supply range with an accuracy of 0.5% and a $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature stability. It's available in either a 16 -pin ceramic or plastic dual-in-line package for military or commercial applications. Prices start at $\$ 3.00$ in 100 piece quantities.

For the more conventional timing applications, look to our other timers: the XR-220/230 timing circuit and the XR-2556 dual timers. Call or write Exar, the timer leader, for complete information.

With a single XR-2240 you can now generate pre-

Washington newsletter

FCC vacancles may not deter Wiley from $900-\mathrm{MHz}$ action

Federal Communications Commission chairman Richard E. Wiley is sufficiently anxious to get a decision on Docket 18262 which will open and apportion spectrum space in the 900 -megahertz region [Electronics, May 10, 1973, p. 29] that he may push for a decision despite the three vacancies on the seven-member commission. Wiley, who calls the proceeding "one of the most significant decisions which the FCC will make during my tenure, and perhaps during the commission's lifetime," indicated at the Electronic Industries Association's spring conference that he may go "with the four horsemen, as we are now being called." Such a decision would require a unanimous $\mathbf{4 - 0}$ vote to preclude petitions for reconsideration later after any White House nominees are approved by the Senate. But "all the evidence is in and the staff work is essentially completed" on the docket, Wiley noted, saying, "it is my profound intention to bring it home just as soon as humanly possible."

Coast Guard seeks systems to monitor
 ocean dumping

The U.S. Coast Guard is asking for industry responses by March 31 to its question whether ocean-dumping surveillance systems can be made from off-the-shelf equipment. Charged by the Environmental Protection Agency with enforcing the ocean-dumping laws, the service wants the systems for policing when and where barges discharge their loads. "It's amazing what and how much is dumped" in the way of sewage, chemicals and dredge soil, declares one officer. A typical system would combine a Loran C receiver with an events recorder and a draft sensor and could cost from $\$ 10,000$ to $\$ 60,000$, depending on the shore-based equipment. Japan's Furuno Electric Co. makes the only known complete system, and Environmental Quality Systems Inc., Rockville, Md., is reportedly talking about its U.S. licensing. If no off-the-shelf unit emerges, the Coast Guard will consider issuing a request for proposal for a developmental model. Who will pay for the units-the service or the dumpers-is as yet undecided.

NASA seeks Looking to standardize solar-cell arrays for future spacecraft, the Na-
high-efficiency solar cells tional Aeronautics and Space Administration is issuing requests for proposals for $\mathbf{1 , 0 0 0}$ cells of greater than 13% efficiency and 2 to 8 mils thick for a year's testing. Most cells are about 10% efficient and 12 to 14 mils thick. Heliotek, which is developing a new cell, and Centralab, which has had the license for Comsat's "violet cell", seem favored, but a NASA source says the agency wants several firms capable of making a standard array. The first big buy of the arrays might be in late 1975 for the international sun-earth explorer.

Bureau of Mines

 aims to automate miningIn the push to double coal production by 1980, the Bureau of Mines wants to develop automated mining machines that will use sensing and guidance systems to find and extract rich veins. The agency is asking companies to submit ideas for advanced systems by May and could fund development of several promising concepts. Also, the bureau's R\&D budget, which in fiscal 1975 has jumped to $\$ 50$ million from $\$ 7$ million, includes congressionally approved funding for automated continuous and long-haul mining machines with onboard minicomputers, and requests for proposals for these should go out in fiscal 1975.

Washington commentary

The EE and the new social perspective

Ignorance of the law has long been held no excuse for its violation. Yet many electronics engineers and manufacturers remain ignorant of how their products can be held in violation of the regulations of such agencies as the Occupational Safety and Health Administration and the Environmental Protection Administration. And that ignorance is not confined to industry. Within Federal agencies that the electronics industries number among their biggest customers, there are project offices proceeding unaware that they may have failed to comply with some safety or environmental regulation already written into Federal or state law.

The Electronic Industries Association now says it is time to change all that. It wants to pull together representatives of all levels of govern-ment-Federal through municipal-to meet with the industries' engineering leadership for the first of what the association hopes will be a continuing series of information exchanges. Thus far, EIA's reach appears to have exceeded its grasp, for its three-day design-effectiveness workshop is still something less than sold out, little more than a month before it opens on April 30 at San Diego.

Sponsored by EIA's Government Products division, the conference no doubt has suffered somewhat from its nondescript title: "New Per-spectives-Product Effectiveness." But, led by representatives from military and nonmilitary government users, industry, and the academic and consulting communities, the seven scheduled sessions could mark the beginning of an end to ignorance about new Federal requirements concerning product and worker safety, electromagnetic compatibility with other spectrum users, reliability, maintainability, and so on.

Philco's dilemma

Philco-Ford Co.'s Curtis Cunningham, vice chairman of the workshop, is convinced that the sessions will be unique. Among other things, he sees them as one way of obviating the kinds of costs that Philco-Ford and the Government will be required to incur to make a new, multimillion-dollar military antenna comply with OSHA regulations. Both contractor and customer were unaware of these at the time the installation was designed and built.

Teledyne Ryan Aeronautical's Keith Sargent, another conference planner, sees the sessions as providing more than just another opportunity for the personal contact and experience exchange with Government agency specialists that most meetings offer. As leader
of the session on product warranty and contractor liability, Sargent is anxious to examine the impact of standards set by agencies other than the customer on the future engineering environment in industry.

EIA's contention is that "this is the first time the producers have invited the users from all levels of government to a mutual working conference." Though that is not in dispute, one official of an EIA member company on the eastern seaboard remains unconvinced of the need to send his engineers off to San Diego. "Why did they pick San Diego?" he asks. For IBM's D. R. Fox, another of the workshop planners, the answer seems obvious: "More and more Federal money is being spent by the states and cities, and California is spending more of it than anyone else."

The combination of money, along with California's legislative leadership in promulgating local environmental and safety controls, makes the Golden State a microcosm of what contractors may expect to encounter elsewhere in the nation, in the view of Fox and his colleagues.

Who stands to lose

Ironically, it may be the smaller electronics manufacturers-those who stand to benefit most from such a workshop series-that choose not to go. Yet the companies that cannot afford heavy staffs of Washington representatives, much less large in-house legal departments equipped to do battle in court with agencies such as OSHA, are among the most vulnerable to the changes now going on in government contracting at the Federal, state and county levels.

For example, says Teledyne's Sargent, "if OSHA says 'stop,' that is exactly what they mean. They can stop work, and they can stop payments" if a contract is believed to be in violation of the Occupational Safety and Health Act. "How many companies," Sargent asks, "can afford to lose their cash flow for a month or more" on a major contract? The unspoken response is obvious.
Such OSHA rulings and the economic chaos they can generate have been the exception rather than the rule thus far. But OSHA and other agencies not directly tied to the contracting process are getting larger and more powerful. Now engineering managers in the electronics industries have an opportunity to learn of contract requirements that, though outside their own disciplines, are certain to have an increasing impact on their jobs and how they must do them. -Ray Connolly

S-D puts the accuracy back into high speed DVMs

Make 30 accurate readings a second... even with noisy inputs

Most DVM's offer no noise rejection without using input filters and that limits them to 2 or 3 readings/second. But Systron-Donner's Model 7110A makes 30 readings/second with 60 dBofnormal mode noise rejection without using filters. DC accunacy in the presence of noise? Typically $\pm 0.005 \%$. That's, bec\% slope integration which provides $\mathrm{b} u \mathrm{i}$-in noise rejection without filters. Fully-guarded cons ruction ard isolated inputshon puts also help to kill noise on the presencelof extremely nois nals requires afiltef its strere hy need it.

> Other Mode etrue rams or avea features \bullet DC voltage protection on all fung AG system in basic unitefield or factory expandable At $\$ 1995$ for the basic unit or $\$ 3,400$ fully-loaded, Model 7110 A outperforms DVMs costing much more. For immediate details, call collect on our Quick Reaction Line: (415) $682-6471$, or contact your Scientific Devices office or Systron-Donner at 10 Systron Drive, Concord, CA 94518 . Europe: Munich, W. Germany; Leamington Spa, U.K.; Paris (Le Port Marly) France. Australia: Melbourne. OONNER

[^3]
Electronics international

Japanese camera goes heavy
 on electronic controls

An electronic shutter with continuously variable speeds and an LED digital readout to display those speeds are among the features of one of Japan's smallest professional $35-\mathrm{mm}$ single-lens-reflex cameras, the 901, just announced by Fuji Photo Film Co. These functions are implemented by some of the most sophisticated electronics ever squeezed into a camera, including a multidigit monolithic light-emitting diode, a silicon solar-cell photosensor, and three integrated circuits, one a 1,000 -transistor C -MOS chip.

Display. Fuji replaces the venerable d'Arsonval meter by an apparent four-digit monolithic LED display, cleverly designed to get by with only 11 bonded leads. The first digit, a standard seven-segment design that is 0.8 mm high but magnified about five times by the viewfinder lens, has seven leads. The other three digits are small zeroes half the size of the first digit, and the 11th lead goes to a bar over the second zero.

The display shows the shutter speeds, measured in fractions of a second, $1,000,500,200,100,50,30$, $10,5,2$, and 1 . Slower shutter speeds of $2,5,10$, and 20 seconds are distinguished from the fractions by the fact that the bar over the second zero turns on. Actual variation of shutter speed is continuous.

The bar over the second zero has another function as well. The combination of the first zero and the bar indicates overexposure. It is used where exposures shorter than 0.001 second would be required.

The driver for this LED display is the C-MOS LSI chip with the 1,000 or so transistors. Both the LSI and the display chip are made by Oki Electric Industry Co. Ltd. Input to the LSI unit is a $1-4$-volt analog signal from the calculator IC. Sixteen comparators convert it to a 16 -level sig-• nal corresponding to overexposure, the 14 speed indications, and under-exposure-indicated merely by the 20 -second display.

In addition to decoding and driv-

Innards. Integrated circuits control the continuously variable shutter and drive a monolithic LED display in $\$ 300$ camera.

ing the proper digits, the driver LSI also varies the intensity of the display, over a range of about 16 to 1 , as it changes indicated shutter speed. The third function of the driver LSI is to call attention to need to change the $6-\mathrm{V}$ silver oxide battery. It does this by causing the display to blink.
The same advanced engineering that goes into the display is incorporated in the measurement and shutter control circuits. The sensor device is a fast-response blue-cell silicon solar battery type of device, operated with reverse bias. It features a dark current in the order of 10^{-13} amperes and an operating current that varies linearly with brightness over more than a seven orders of magnitude range. These characteristics eliminate the need to compensate for nonlinearity in subsequent circuits and cannot be matched by the commonly used cadmium sulfide photoresistor.

Shutter. The shutter IC includes an operational amplifier whose MOSFET input stage has the low input current needed to match the silicon sensor and whose comparatoroutput stage can handle the approximately 5 milliamperes at 6 v , for up to 20 seconds, needed to actuate the shutter solenoid. Fuji will not reveal the manufacturer of this IC, but does add that the op amp has a sintered tantalum capacitor load, with a capacitance of several tens of microfarads, which acts as shutter memory while the exposure is being made. A memory is necessary because during exposure the camera's mirror is raised and no light reaches the sensor.

When the shutter button is depressed, the ground side of the capacitor is connected by switch D to a bias voltage dependent on lens aperture (see figure). This voltage is added algebraically to the voltage stored in the capacitor. Before blackout of the image in the viewfinder causes the shutter IC amp
output to change, though, switch C connects the other terminal of the capacitor to the amp input as memory input. At the same time, switch B converts the op amp to an integrator by connecting the ceramic feedback capacitor between input and output terminals. This feedback capacitor cannot charge, though, because it is shorted by switch A.
Another switch, E, closes the circuit to the solenoid that latches the second of two curtains in the focalplane shutter. The exposure period is the difference between the time the trailing edge of the first curtain passes and opens the shutter, and the time the leading edge on the second curtain passes and closes it.

Switch A , shorting the integrating capacitor, is opened just as leading edge of first curtain starts to move. The voltage of the integrator starts to rise at a rate proportional to the algebraic sum of the voltage initially stored on the integrating capacitor and the two bias voltages. When the integrator output voltages reaches a preset level, the comparator operates and the current through the solenoid is interrupted. The second curtain is released and closes.

The calculator IC, made by Toshiba, incorporates two op amps. It monitors shutter IC output voltage before the shutter is actuated. It combines this voltage with biases representing film sensitivity and lens aperture to give analog voltage proportional to shutter speed.

The Netherlands

Magnetism drives

Philips recorders

A problem that has plagued makers of cassette recorders has finally been solved: how to design a simple mechanism for driving the take-up reel at constant torque. The solution comes from Philips Gloeilampenfabrieken's Electro-Acoustics division in Eindhoven, the Netherlands. It is simply application of magnetism to replace the mechanical slip-friction

Around the world

Nuernberg Installs two-way cable TV

In medieval Nuernberg, town criers spread the news, but now the city is turning to a more sophisticated method-two-way cable Tv. Not only does the CATV system transmit television and radio programs into homes, it can also be used for return transmissions from certain terminals back to the broadcast center for distribution to network subscribers. With two-way communications capability, the system's designers say, the Nuernberg cable network goes a step beyond those now proliferating all over Europe.

A project of the communications firm Felten and Guilleaume Fernmeldeanlagen GmbH and supported by $\$ 400,000$ from the German Post Office, the network constitutes what the company terms "the first step toward a truly broad-band communications system." In addition to handling a maximum of 12 television programs and the same number of radio programs, the system could eventually be used to monitor children's playgrounds, to send data from bank branches to a main office, and to transmit readings from gas, electricity, and water meters to an accounting center. What's more, the system also allows within-city video-telephone communications.

Milltary LED arrays use TV, mirrors

British military authorities are experimenting with various ways of using light-emitting diodes to create displays in infrared night viewing systems. For one such system Plessey Co. has supplied strips of 30 yellow LEDs to Hawker Siddeley Dynamics Ltd., which is building a battlefield imager around them. [Electronics, p. 55, March 15, 1973]. Sequential mechanical scanning by multiple prisms turns a single diode strip into a rectangular display and the image is formed in a binocular lens.

Another system, being developed by the Ministry of Defence, uses a strip of 192 red gallium-arsenide-phosphide LEDS made by Standard Telecommunication Laboratories Ltd., 1TT's British research laboratory. The STL array will have television presentation. The scene is scanned by a strip of cadmium-mercury-telluride infrared detectors, each one of which feeds a LED through an amplifier. As the detectors scan across the scene, the LED brightness varies according to the highlights and shadows in the scene. Then, a scanning mirror will transfer the 192 simultaneously varying light levels to the face of a vidicon tube as 192 parallel lines.
That means the image of the LEDS in the mirror must be reflected back past the LEDS to the face of the vidicon, which is mounted behind the array. The array strip is half an inch long-each diode is 50 micrometers square, and the spacing between diodes is $12.5 \mu \mathrm{~m}$. The strip is mounted on a copper heat sink attached to the "hub" point of a three-spoke "wheel" 5 inches or so in diameter.
coupling. The new magnetic-friction system makes possible close tolerances in recorder manufacture and retention of excellent friction properties during the lifetime of the recorder. As in any recorder, the prime requirement for proper playback and recording is uniform winding of the tape. To achieve this, the speed at which the reel rotates must be constantly adapted to the changing diameter of the tape on the reel. However, unevenly acting slip friction can cause more or less tight windings, and this sometimes leads to tape blocking-a problem even in special and carefully constructed cassettes. The magnetic approach virtually eliminates this problem.

The drive system for new Philips tape recorders consists of a flywheel that is a rotating permanent magnet with its circumference surrounded by an independently mounted concentric steel strip, called a hysteresis strip, bonded to a plastic cover. A belt from the recorder motor turns the external plastic-and-steel concentric, and the resulting rotation of the magnet turns a shaft and pulley that presses against the recorder's take-up disk to drive it smoothly. When the motor is stopped, force of the magnetic coupling stops the tape smoothly. The plastic shell, which covers the entire drive mechanism, prevents loss of magnetism and protects the system from moisture.

Dramatio new product opportunities... yours with new 3 C8 ferrites

The market is ripe for product breakthroughs. Just look, for example, at the growth of such items as the handheld calculator, small camera flashguns, ultra-mini portable radios and recorders. The key to these tremendous sales successes is high frequency power conversion circuits.
And the key to still more efficient, high-frequency power conversion is Ferroxcube's new 3C8!
This important new ferrite material gives significantly higher flux densities at higher temperatures, and lower losses at high excitation levels than any other magnetic core material. It is available in practical size cores for use up to kilowatt power levels.
3C8 is already being used with great success in: inverters, battery chargers, fluorescent lamp ballasts,
strobe light devices for highway markers and harbor buoys, power oscillators, power amplifiers, ultrasonic generators.
In all of these circuits Ferroxcube's 3C8 material has led to greater efficiency, lower cost, less weight, and smaller sized units. In one power supply, for example, the size of the core was reduced from 13 lbs . at 60 Hz to 4 lbs . at $20,000 \mathrm{~Hz}$ and the volume from 35 to 9 cu . inches -savings of 70 to 75% !
Can 3C8 improve your present products or suggest new products and markets for your company? If you've got the imagination, we've got the core! Call $914{ }^{\circ}$ 246-2811, TWX 510-247-5410 or write today.
Ferroxcube linear ferrites-made in Saugerties, N.Y. and stocked in seven U. S. locations.

FERROXCUBE corporation. saugerties, N.y. 12477
A NORTH AMERICAN PHILIPS COMPANY
Distributed through North American Philips Electronic Components Corporation with warehouses in Boston. 617-449-1406; New York. 516-538-2300; Saugerties. $914 \cdot 246-5861$: Philadelphia, 215-927-6262. Chicago. 312•593-8220. Santa Clara. 408-249-1134. San Diego. 714•453-9250

International newsletter

French TV sets will have new picture tubes

Color-TV sets with a new generation of picture tubes will hit the French market next year. Both RTC-La Radiotechnique-Compelec and Videocolor SA plan to be in production by then with tubes that have in-line electron guns, vertical-line screens, and slit-aperture shadow masks. RTC, a Philips subsidiary, will use a thick-neck 110° tube and offer screen sizes of 18,22 , and 26 inches. Videocolor, a joint venture of Thomson-Brandt and RCA, will use a 90° thin-neck tube and initially offer only a 21 -inch size. Both tubes will come with factory-aligned deflection systems, since there is no need for dynamic convergence circuits with either one.

Plessey lands Japanese order for core memories

Plessey Co. has contracted to supply core-memory modules worth more than $\$ 2.5$ million during the next 12 months to the Japanese minicomputer maker Oki Electric Industry Co. for use in the company's Okitat 4300 machine. This contract marks Plessey's first big

CIT-Alcatel, Plessey to develop

PCM phone system memory sale in Japan. The module will have 8,192 18-bit words and 650 -nanoseconds cycle time. It's a single board, measuring 17 by 12 inches. Plessey says that this is smaller than similar modules offered by Japanese memory makers-and was an important reason why Plessey got the order.

CIT-Alcatel of France and Plessey Telecommunications Ltd. of Britain plan to develop a large-scale, fully digital PCM telephone-switching system using CIT's digital switching know-how and Plessey's expertise in computer control of communications systems. The starting points are CIT's type E-10 PCM switching module designed to handle up to $\mathbf{1 0 , 0 0 0}$ or 15,000 lines and Plessey's System 250 multiprocessor communications controller, introduced nearly two years ago [Electronics, Electronics International, July 3 1972]: So far, Plessey has one large order from the British Army for System 250 and several small orders. Combining the technologies and developing out of them larger local and trunk exchange systems will probably take two or three years and cost up to $\$ 20$ million.
The E-10 is an all-electronic time-division system controlled by small computers that can be linked in series to form larger capacity transittype exchanges. For large exchanges, the French government telecommunications development agency, CNET, is currently working on a similar system, code-named E-12, controlled by a single large computer and capable of handling up to 50,000 lines. In fact, CIT's rival, ITT subsidiary Compagnie Générale de Constructions Téléphoniques, already has a working prototype in operation and is hoping to beat CIT-Alcatel for French orders.

Right now the E-10 unit uses hard-wired-logic control, but new software for the System 250 will replace this and timed storage may replace the present bipolar gates as the time-switching method. And, to make the overall system acceptable for many export markets, a new analog-switching, small local exchange capable of PCM input and output to the large unit has to be developed. Plessey, however, is going into the project aware that its not likely to make any money out of sales

National Stamping Co．， 630 St．Jean St．， （）．Detroit，Mich

Mirinin MIf．Co．， 316 8th Ave．，S， Minneapolis，Minn．（See paze 170．） Parish Pressed Steel Co．，Robinson \＆
Marisian Novelty Co
Parisian Novelty Co．，Western Ave．at
on－Mac Guyer Co
Patton－Mac Guyer Co．Baker St．\＆Vir－
ginia Ave．，Providence，R．I．
Permoflux Corp．， 4916 W．Grand Ave
Chicago，Ill． 5700 Roosevelt Rd，Chi cago，Ill
Plume \＆Atwood Mfg．Co．， 470 Bank St．，
Powell Pressed Steel Co．；Hubbard，Ohio Prentice Mfg．Co．，G．E．，New Britain Ave．，New Britain，Conn
Pressed Steel Co．Wílkes－Barre，Pa
Raymond Mfg．Co．，Div．of Associated Spring Corp．， 226 S．Center St．，Corry， Reliable

Eliable Spring Co．， 3167 Fulton Rd．， Revere Copper \＆Brass，Inc．， 230 Park Ave．，New York，N．Y．${ }^{\text {A }}$ Harlow．St Worcester Sprinkler
Saginaw Stamping \＆Tool Co．，Saginaw，
Scovill Mfg．Co．， 99 Mill Sit．，Waterbury， Conn．
Sessions \＆Sons，J．H．，Bristol，Conn
herron Motalic Corp．， 1201 Flushing Standard Pressed Steel Co．，Jenkintown， Pa．
Stanley Works，New Britain，Conn．
Steel \＆Tubes，Inc．， 250 E．131st St．， Stimpson Co．，Edwin B．， 74 Franklin Ave． Brooklyn，N．Y．
Swanson Machine Co．，Jamestown，N．Y． Thomas \＆Skinner Steel Products Co．， 1120 E .23 d St．，Indiana Titchener \＆Co．，E．H．，Walnut St．，\＆Erie R．R．，Binghamton，N．Y．
Transue $\underset{562}{\mathbb{\&}} \underset{\sim}{W}$ Williams Steel Forging Corp．， Truscon Steel Co．，Alliance，Shio Div 6100 Truscon Ave．，Cleveland，Ohio Union Spring \＆Mfg．Co．，New Kensing－ United Carr Fastener Corp．，Cambridge， Mass．
United Screw \＆Bolt Corp．， 2513 W．
Cullerton St Chicago，Ill．
U．S．Indestructible Gasket Co．， 829 E．
eeder－Root Brooklyn．N．Y．
eeder－Root，Inc．， 63 Sargeant St．，Hart－ ford，Conn．
Victor Mfg．\＆Gasket Co．， 5750 W．Roose－ aterbury Button Co． 835

Waterbury，Conn Webster－Chicago Corp．， 5622 Bloomingdale Western Cartridge Co．，East Alton，Ill．
Whiteherd Stamping Co．， 1661 W．La－ Payette Blvd．，Detroit，Mich
Conn．Crittenden \＆Co．，Middletown， Conn．
Worcester Pressed Steel Co．， 100 Barker Ave．，Worcester，Mass
rought Washer Mfg．Co．， 2223 S．Bay stown Pressed St Ohin

Stands

MICROPHONE STANDS

Allied Radio Corp．， 833 W．Jackson Blvd．， Chicago，Inl．
American Microphone Co．， 1915 S．West－ ern Ave．，Los Angeles．Cal．
Amperite Co．， 561 Broadway，New York．
Art Specialty Co．， 3245 Lake St．：Chi－ cago，Ill．
Astatic Corp．， 830 Market St．，Youngs－ tourn．Ohio
Atlas Sound Corp．， 1442 39th St．，Brook－ Braun，Inc．，$\dot{\text { W．C．，}} 601$ W．Randolph St．， Chicago，Ill．
Bud Radio，Inc．， 2118 E．5̄th St．，Cleve－ land，Ohio
Eastern Mike－Stand Co．， 56 Christopher
Electrical Bound Engineering Co．， 5303 Kenilworth Ave．，Baltimore．Mal．
Electro－Voice Mfg．Co．， 1239 South Bend Ave．．South Bend．Ind．
Halldorson Co．i 4500 Ravenswood Ave．， Chicago． 111.

Lifetme Corp．， 1101 Adans：st．，Toledo Meck Industries，John， 1313 W ．Randolph National－Dhicago， 111 ．
tional－Dobro Cory．， 400 Chicago， 111.
Newcomb Audio Products Co．， 9815 ～ Hill St．Los Angeles，Cal．－ Operadio Mrg．Co． 13 th and Indiana sits． iRCA Mfg．Co．Cim．
RCA Mfg．Co．，Camden，N．J
Simpson Mfg．Co．，Mark， 188 W．Fourtl
urner Cow Cedar Raplds，Iowa
Universal Microphone Co．，Centinela a Warren Lane，Inglewood，Cal．

SPEAKER STANDS

Art specialty Co．， 3245 Lake St．Chi－ cago， 111.
Itlas Sound Corp．， 1442 39th St．，Brook lyn，N．Y．
lorwood Sound Equipment Co．． 2.23 W Erie St．，Chícago，Ill．
Lifetime Corp．， 1101 Adams st．，Toledo． Meck Industries，John， 1313 W．IRan－ dolph St．，Chicago， 111. 161\％Radio \＆Television Labora

Steel

HLEXTKICAL NTEEL—wee Metaln
Strips

TERMINAL STMIPS－Ree IONA

Switches

LIMIT SWITCHES

Electronic Control Corp．， 626 Harper Ave． Detroit，Mich．
Photoswitch，Inc．， 21 Chestnut St．，Cam United Cinephone Corp．，Torrington，Conn．

ROTARY and BAND CHANGE SWITCHES
American Automatic Electric Sales Co． 1033 W．Van Buren St．，Chicago．Ili． Arrow－Hart \＆Hegeman Electric Co．， 103 Hawthorne St．，Hartford，Conn
Autocall Co．， 1142 Tucker Ave．，Shelby Centralab， 900 E．Keefe Ave．Milwaukee， Chicago Telephone Supply Co．， 1142 W＊ Daven Co． 158 Summit $S t$ Ert．Ind． （ieneral Electric Co．，Appliance and Mer chindise Dept．，Bridgeport．Conn． （iuardian Electric Mfg．Co．， 1621 W．Wial nut St．，Chicago，Jll．
Hart Mfg．Co．， 110 Bartholomew Ave． 31．Instrument Conn．
JBL．Instrument Co．，Darby．Pa
Wis lingineering Co．．59 Rubber Ave． saugatuck，Conn
 St．，Indianapolis，Ind．（See page 50．） Vew Mer Mig．Co，Mt．Carmel Ill
mongland Radiocrafters， 1150 Com mite wealth Ave．，Brookline，Mass．
Chleago Co．， 4835 W．Flournoy 4 t． sitive liesearch（See page 39．） Bronx Bearch instrument Corp．， 4545 hallcross Mfg．Co．， 10 Jackison Ave．， llabue Mfg．Pa
Tagllabue Mif．Co．，C．J．，Park \＆ Triplett Electrical Instrument Co．， 135 E College Ave．，Bluffton，Ohio

TOGGLE，PUSHBUTTON and MICRO

 SWITCHESAcro Electric Co．， 3167 Fulton Rd． Cleveland，O． Hawthorne St．，Hartford．Conn． Cutler－Hammer，Inc．， 1401 W，St．Pau Ave．，Milwaukee，Wis．
General Flectric Co．，Appliance and Mer chandise Dept．，Bridgeport，Conn． Hart Mfg．Co．， 110 Bartholomew Ave．
Mallory \＆Co F， 3029 Washlngto St．，Indlanapolis，Ind．（See pase 50. ） McDonnell \＆Miller，Wrigley Bidg．，Chi Micro Sago，Ill．
Micro Switch Corp．，Freeport，Ill．
Ninneapolis－Honeywell IRegulator 2712 Fourth Ave．，S．，Minneapolis

Mu－iwitch Corp．， 38 Pequit St．，Canton， Mass tackpole Carbon Co．，Tannery St．，St． Marys，Pa．
ech Laboratories， 7 Lincoln St．，Jersey Wirt Co．， $5 \geqslant 21$ Greene St．，Philadelphia．

TIME SWITCHES

Imerican Pimer Corp．，Geneva， 111.
Anderson Mfg．Co．，Albert \＆J．M．．302 A St．，Boston，Mass．
Automatic Electric Mifg．Co．， 729 S．Front Bacon Electric Timer Corp．． 4513 Brook－ lyn Ave．，Cleveland，Ohio
eveland Time Clock \＆Service Co．，Su－ perior Ave．at E． 27 th St．，Cleveland， Ohio
ramer Co．，K．W．，Centerbrook．Conn．
agle Signal Corp．，Moline，Ill．
vlectric Controls Corp．， 68 Murray st． New York，N． 1.
Fernwall，Inc．，Ashland，Mass
rober－Faybor Co．，Chagrin Falls，Ohio ieneral Filectric Co．，Schenectady，N．V Industrial lingineering Corp．，Evinsville． Ind．
S．W．Akron Ont Co．， 2249 14th St．，
Mercoid＂Corp．， 4201 Belmont Ave．，Chir
Minneapolis－Honeywell Regulator Co． 2712 Fourth Ave．，S．，Minneapolis． Minn．
Northwestern Clock Co．，Brown Bldg．． Omalha，Neh．
Paragon lijectric Co．， 37 W．Van Buren St．，Chicago，Ill
Penn Electric Switch Co．，Goshen，Ind．
Reliance Automatic Lighting Co．． 1931
Mea st．Racine．Wis．
Rhodes，Inc．，M．H．， 30 Bartholomew Ave．， haltford，Conn．
angamo Electric Co．，Springfield， 111
outh Bend Current Controller Co．． 2038 liver Pk．，South Bend，Ind．
tater Co．， 19 New Irink ive．，Hartford． Swartzbaugh Mfg．Co．， 1336 W．Bancroft St．Toledo Ohio
Thomas Clock Co．，Seth，Main \＆Trott Sts． Thomaston，Conn．
Thompson Clock Co．，H．C．， 38 Federar Tork Clock Co．； 31 South St．，Mount Wadsworth Electric Mfg．Co．， 80 W． 11 th St．，Covington，$K y$
Walser Automatic Timer Co．， 420 Lex－ Ward Leonard Electric Co．， 31 South St．， Westinghouse Electric \＆Mfg．Co．，East Pittsburgh，Pa．
Zenith Electric Co．， 845 S．Wabash St． Chicaro，IIl

Tape

CELLULOSE TAPE

Insulation Mamufacturers Corpo，名65 W． Washington 13］vd．，Chicago， 111. Dinmesota Mining \＆Mfg．Co．． 900 Fauquier Ave．，St．Paul，Minn．

COTTON or SILK TAPE

Anchor Webbing Co．， 1005 Main St．，Paw－ tucket，R． 1.
Narrow Fabric Co．， 1036 N． Elizabeth Webbing Mills，Pawtucket R． General Flectric Co．，Schenectady．N．I． Hope Webbing Co．，Providence，\dot{R} ．I． Insulation Manufacturers Corp．， 565^{1} W． Washington Blvd．．Chicago，Ill．
Krout \＆Fite Mfg．Co．，Allegheny Ave．\＆ Emerald St．，Philadelphia，Pa． ，ambeth Pope Corp．，New Bedford，Mass． inton \＆13ro．：Horace， 3081 Ruth St．， Philadelphia，Pa．
Insulator Co．， 200 Jarick St．，New l＇riscilla Braid Co．， 1309 Broad St．，Cen－ tral Falls，R．I．
Sidebotham，Inc．，John， 4317 Griscom St． Westinghouse Electric \＆Mfg．Co．，Fast Pittsburgh，Pa．

[^4]
International newsletter

in its domestic market. That's because Plessey's chance of profit depends on use of System 250, and the British Post Office has selected a rival GEC processor for future stored-program exchange control. So far, the most BPO has offered is to consider the switch module-when it's ready for possible use with the GEC processor.

Paris' new airport is site of air-traffic squabble

Milan anti-tank missile heads toward mass production

The first electronic weapons system in a series of joint German-French missile development projects is now entering the mass production stage. The system, called Milan, is an anti-tank missile for infantry use, 10,000 of which will be made by France's Aerospatiale and West Germany's Messerschmitt-Boelkow-Blohm, the two Milan developers. Also part of the government contract are 200 launchers and associated training equipment. The $\mathbf{2 5}$-pound Milan system is a second-generation anti-tank missile with manual aiming but with fully automatic guidance to the target. Its maximum range is about 2,000 yards. Other joint MBBAerospatiale missile systems, which are now being troop-tested, are the Hot anti-tank missile for firing from vehicles and helicopters, and Roland, a missile against low-flying aircraft.

Another U.S. company bought by Siemens

Taking advantage of what the firm calls "an interesting dollar-mark exchange parity", West Germany's Siemens AG is strengthening its toehold in the U.S. electronics market by acquiring companies. Following last year's purchase of the New Jersey-based test equipment maker Computest Corp. is this month's acquisition of the Dickson Electronics Corp., a 1,300-man components company in Scottsdale, Ariz., for which Siemans paid $\$ 8.7$ million.

Philips tests video telephone net

Culminating several years of development work at Philips Gloeilampenfabrieken is a video telephone network linking some 65 subscribers in the Netherlands. The trial network, which extends over more than 200 miles, is to be used for studying methods of transmission, design of exchanges and the potential of the video telephone as a new means of communications. In the $\mathbf{3 2 5}$-line, $\mathbf{1 - m e g a h e r t z ~ s y s t e m ~ a l l ~ s i g n a l s ~ e x c e p t ~}$ the video pulses are transmitted in digital form within the blanking periods. In contrast to the six- and eight-wire Picturephone system in the U.S., the Dutch network uses only four wires. Other advantages, a Philips researcher says, are the system's high audio quality and the greater flexibility that digital transmission affords.

ACDC ANNOUNCES THE GRAND OPENING OF OUR NEW HIGH EFFICIENCY POWER SUPPLY.

MOS breakthrough... from MOSTEK

the 4K RAM in a I6-pin package!

MOSTEK's

4K RAM is No.I
in ease of use, performance, and volume availability

MOSTEK's top design and process engineers worked nearly three years to produce a 4096-bit RAM with the optimum combination of ease of use, performance, and volume availability. The MK4096P is the result.

Easy to use. Most important, the MK4096P was designed to a 16 -pin dual in-line configuration, enabling memory engineers to achieve the greatest possible memory storage in the smallest area. For example, using conservative PCB layout rules, the 16-pin package can provide 56\% more memory storage per unit area than the alternate 22-pin package; 83\% more using more dense PCB layouts.

Other design advantages include:

- readily available automatic insertion equipment can be used in board assembly
- voltage pins are located on the corners to simplify
PCB layout
- all inputs including clocks are directly TTL compatible with low capacitance of 8 picofarads
- outputs are TTL compatible, three state
- the circuit is extremely tolerant of noisy system environments

Performance.

MOSTEK's MK4096P features an access time of 350 nsecs and read or write cycle times of 500 nsecs. Active power is under 100μ W/bit. Refresh time for each of the 64 row addresses is 2 milliseconds. All specifications are guaranteed over a temperature range of 0° to $+70^{\circ} \mathrm{C}$.

Volume availability. A major MOSTEK design goal was to make the MK4096P a high-yield, mass-producible MOS circuit. To accomplish this, a special N-channel selfaligned gate, polysilicon-interconnect process was developed to eliminate all contacts

from the storage matrix. Also, the single transistor cell design markedly reduces chip size. Design layout rules were intentionally conservative to allow for further manufacturing efficiencies.

MOSTEK's capability in volume RAM production is proven by past production experience. MOSTEK is now one of the largest producers of MOS RAMs, having delivered a total of over 2 billion bits. The present RAM production level is over 250 million bits per month.

Want to know more? Then call your local MOSTEK distributor or representative or contact MOSTEK, 1215 West Crosby Road, Carrollton, Texas 75006, (214) 242-0444.
IDOSTER

MOSTEK moves forward... in memories.

HYBRID MICROCIRCUITS

URUVERSAL
ACTIVEFILTERS
TELEPMONE TONE FILTERE

PRECISION
LADDER NETWOFKS
DACIADC
PAOOUCTS
POWEA
AMPLIFIEAS
VOLTAGE
PEGULATOAS
INDUSTAIAL
CONTROL
CIACUITS
CUSTOM
OISPLAY
SUBSTAATES
HVBAID MEOICAL
FUNCTIONS
MODEM FILTEAS
MIL-PERFORMANCE
MICAOCIRCUITS

Beckman Electronic Component Distributors

EASTERN
 REGION

Arrow/Angus
 Moorestown N
 (609) 235-1900
 609) 235-1900

Arrow Electronics

 5207 East DrBaltimore. Md
(202) 737-1700
301) 247-5200

Arrow Electronics, Inc. 900 Route 110
Farmingdale. NY (516) 694-6800

Arrow Electronics, Inc. 295 Treadwell St Mamden, Conn (203) 248-3801

Arrow Electronics. Inc. No 15 A Street Burlington. Mas (617) 273-0100

Arrow Electronics, Inc. 285 Midland Ave Saddle Brook N (201) 797-5800

Harvey A \& D Electronics 44 Hariwell Ave Lexington, Mass (617) 861-9200

Kierulff Electronics. in

 49 Bectpage RdHicksville NY (516) 433-5530 Kierultt Electronics, Inc 5 Industrial Dr
Autherford N.
201, 935-2120
Lynch-Gentry
As sociates. inc.
1932 Drew Streel
813) 443-2697

Lynch-Gentry
Associates, Inc.
34 OU Bownt in Dr
Wintir P ik FIa
(305) 671 :649

Marshall Industries G. S. Marshall Products Group
88 Needham St
Newion Higtilands Mass (617) 965-5115

Marshall Industries G. S. Marshall Products Group
230 Sherwood AVe Farmingdale: LI NY (516) 293-4)41

M \& C Sales Winston-Salem NC 19191 723-1001 M\&C Sales 904 Bob Warace Ave Hunteville All Munt 539 Al

Ossmann Component Sales Corp.
395 Cleveland Dr
Buttalo. N Y
716) 832-427

Ossmann Component Sales Corp
41 Washington Ave Kingston, N Y
(914) 338-5505

Ossmann Componen
Sales Corp
280 Metro Park
Rochestir NY
(716) 442-3290

Ossmann Component Sales Corp.
132 Pickard Building Syracuse N Y
(315) 4544477

Ossmann Component Sales Corp.
911 Vestal Parkway East Vestal NY
(607) 785-9949

CENTRAL
REGION
Magnuson Electronics 2420 Oakton St PO Bax 130 Mount Prospect III (312) 956-0700 Magnuson Electronics 1246 West 7 th St St Paul Minn (612) 227-8495

10210 Monroe Dr Dallas T~
(214) 350-6771

Narvell Electronics 6440 Hillcroft Ave Houston. Tex (713) 774-2568 Norvell Electronics 3340 S Memorial D Tulsa, Okla
(918) 663-1247

Sheridan Sales Co
Bos 37826
Cincinnali Ohio
(513. 761-5432

Sheridan Sales Co
Box 4457
Cleveland Ohio
(216) 524-8120

Sheridan Sales Co.
Box 423
Diyton Ohio
(513) 277-8911

Sheridan Sales Co. 33708 Grand River Ave Farmington Mich Farmington
(313) 477-3800
Sheridan Sales Co
PO Box 677
Florissant Mo
(314) 837-5200

Sheridan Sales Co
Surte 5009
1717 Pponn Ave
Wilkinsburg Penn
(412) 244-1640

WESTERN REGION

Almac/Stroum Electronics 8888 S W Canyon Ro Portand Ore (503) 292-353

Almac/Stroum Electronics 5811 Sixith Ave South
Seattie Wasn
(206) 763-2300

Marshall Industries G. S. Marshall Products Group
5633 Kendall Court Arvada Colo
(303) 423.9670

Marshall Industries
G. S. Marshall Products
G. S. Marshall Produ

Group
35 W 22nd Sireet
Tenipe, Ariz
(602) 968-6181

Marshall Industries
G. S. Marshall Products

Group
9674 Telstar Ave
El Monte Ca
(213) 686-014

Marshall Industries G. S. Marshall Products Group
8057 Raytheon Rd
San Diego Ca
(714) 278-6350

Marshall industries G. S. Marshall Products

Group
788 Palomar Ave
Sunnyvale, Ca
(408) 732-1100

Wyle Distribution Group:

Elmar Electronics 6777 East 50 th Avenue Commerce City. Colo (303) 287-9611

Elmar Electronics 2288 Charleston Road 2288 Charieston Roa (415) 961 -3611

Liberty Electronics 124 M-ryland Stree El Segundo Ca (213) 322-8100

Liberty Electronics 3130 North 27 th Avenue Phoenix. Ariz
(602) 257-1272

Liberty Electronics
8248 Mercury Court
San Diego. Ca
(714) 565-9171

Liberty Electronics
5305 Second Avenue South
Seattle, Wash
(206) 763-8200

When you deal with Piher you know you are dealing with one of Europe's foremost component manufacturers - and that's important to you, the customer. Because we only manufacture for you. No question of giving you long delivery dates because we divert components for our own product lines. We haven't any. Our component manufacture is for you - totally
We have a wide range of high quality components - at really competitive prices. Demand for our carbon film resistors, for instance, is so high that our current production is committed months ahead. Our new manu facturing plant in the U.S.A. - operational early in 1974 will help speed resistor deliveries. But we have other, shorter-term delivery components available. Trimmer,
spindle and rotary potentiometers, semi-conductors, ferrites, capacitors - all high quality items.

Send for our data sheets if you want to be kept in touch with the Piher range. Find out more about us, it pays.

PIHER

Head Office-Spain - Riera Cañadó, s/n. Apartado de Correos 53, Badalona (Barcelona) Spain. Tel: 38903 00. Telex: 59521

Souped up recorders at low octane prices

For all kinds of sensitive chart recording at sensible prices, Esterline Angus servo recorders give you more of what you need to win the data grand prix or Saturday night dirt track enduro. Solid reliability is the heritage of 70 years of top performance power instrumentation. Great sensitivity and response speed is the modern edge. Check us out!

Behind each winner a family
You're looking at the iceberg's tip. The newest low-cost Miniservo line of 10 cm servo recorders comes in bench, rack, panel, and original equipment models. One beauty gives 8 speeds, 5 spans and sells at a price competitive to any recorder on the market today. Speed Servo II inkless or ink $10^{\prime \prime}(25.4 \mathrm{~cm})$ recorders offer hundreds of variations and options, basic sensitivity of $500 \mu \mathrm{~V}$ and response speed better than 0.3 sec . Multi-channel champion is the Multipoint, ink or inkless, 24 channels-very simply the most reliable unit of its type.
Ask for Servo recorder catalog package S-1 from Esterline Angus, Box 24000, Indianapolis, Indiana 46224. Tel. 317/244-7611.

- VASTLY IMPROVED ADJUSTABILITY
- TWELVE TERMINAL STYLES
- SEALED FOR WAVE SOLDERING

Meet Bourns new Model 3386, a product that both buyer and engineer can love . . . with super adjustability that makes for easy, accurate trimming, AND at a budget balancing price. Most importantly, it's a BOURNS product . . . and that means QUALITY and PERFORMANCE you can believe-in, and SERVICE you can depend-on.

QUALITY

SERNICE value

POURRNS

TRIMPOT PRODUCTS DIVISION • 1200 COLUMBIA AVE.. RIVERSIDE. CALIF. 92507

Recession? Not for U.S. electronics firms

Looking up. Sprague's Welch, top, and Al-len-Bradley's Kukawaka both expect business to increase during 1974.

Edson DeCastro, president, who says that there are so many economists saying so many different things that you can always find someone to say something that you want to hear. So neither they nor their counterparts at Digital Equipment Corp. nor Sprague Electric Co. profess to pay much attention to dire warnings.

The figures back them up. Sales and bookings for each have increased from those of last year. A Data General spokesman says bookings are up significantly, with increases spread across all applications and geographic areas. The minicomputer market, says the spokesman, will counter cyclical swings in the general economy. "It has always come through the swings oK," he says.
Neal W. Welch, chairman and chief executive officer at Sprague, says that the outlook for both domestic and overseas operations in 1974 continues to be strong. "We have an open-order backlog at yearend in excess of $\$ 100$ million. Evidence is toward a continued healthy demand for our product in virtually

13 \& C Insulation Products, Inc., 22 W . Hrand \& Co., William, 276 Fourth Are., Continental-Diamond Fibre Co., 13 Chapel St., Newark, Del.
General Electric Co., Appliance and Merchandise Dept., Bridgeport, Conn. Insulation Manufacturers Corp., 565 W. Washington Blvd., Chicago, Ill.
Irvington Varnish \& Insulator Co., 10 Argyle Terrace, lrvington, N. J.
Mica Insulator Co., 200 Varick St., New Mica Insulator Co., 200 Varick St., New W. Jersey Wood Finishing Co., Electrical Insulation Dept., Woodbridge, Owens-Corning Fiberglas Corp., Nicholas,
Pearce Co., R. T., 235 Scott Blvd., CovRespro, Inc., Wellington Ave., Cranston, R. I.
standard Insulation Co., 74 Paterson Ave., East Rutherford, N. J.
Sullivan \& Sons Mfg. Co., J.. 2224 N. Vestinghouse Electric \& Mfg. Co., Hast Plttsburgh, Pa

Terminals

ser Postm

Transformers

CURRENT TRANSFORMERS

Acme Electric \& Mfg. Co., 31 Water St., Cuba, N. Y.
Amerlcan Transformer Co., 178 Emmet St., Newark, N. J. (See page 36.)
Amplifier Co. of America, 17 W. 20th St. New York. N. Y.
vox Mfg. Co., Green St., ChiArla vox Mfg.
caso, 111.
Chicago Transformer Corp., 3501 W. Ad dinon St., Chleago, Ill. (See puge 139.) Davis \& So., Dean W., 549 W. Fulton St., (hicako, 111
be Vry Corp., 1111 Armitage Ave., ChiDinion Coil Co., North St., Caledonia, Dongan Electric Mfg. Co., 2987 Franklin St. Detroit, Mich.
Doyle, Inc., James W., 311 N. Desplaines St., Chicago, Ill.
Eastern Specialty Co. 3619 N. Eighth Electrical Facillties, Inc., 4224 IJolden St. Oakland, Cal. Electric, Inc., RCA Building, Ferranti Electric, Inc., RCA Building,
New York, N. Y
Freed Transformer
Co.,
72 General Controls Co., 801 Allen Ave., Gilendale, Cal.
General Transformer Corp., 1250 W. Van Buren St. Chleago, Ill. (Ser p. 23.)
Hadley Co., Robert M., 711 E. 61st St. Los Angeles, Cal.
Halldorson Coij 4500 Ravenswood Ave. Chicago, Ill.
Jefferson Electric Co., Bellwood, Ill,
Kenyon Transformer Co., 840 Barry St Nagnetic Windings Co., 16 th \& Butler New York Transformer Co., 51 W. 3rd St., New York, N. Y. Norwalk Transformer Corp., South Nor Oxford Tartak Radio Corp., 915 W. Van Buren St., Chicago, Ill.
Philco Radio \& Television Corp. Tioga \& C Sts., Philadelphia, Pa.
Radlo Receptor Co., 251 W. 19th St., New York, N. Y.
RCA Mfg. Co., Camden, N. J. I,os Angeles, Cal.
Sola Electrle Co., 2525 Clybourn Ive. Chlcaso, Ill. (See page 7.)
Standard Transformer Corp., 1500 N. Hal sted St., Chicazo, 111. (See pige 145.) Superior Electric Co., 32 IIarrison St. IBristol, Conn.
 IInron st., Chlearo, III. (Spe p. 130.
Cinlted Tranaformier Co., 150 Virlek Nt. New Vork, N. Y. (See prafe 2.)
I'tah Ratlio l'roducts Co., 820 Orleans Sit.
Westericago, Ill.
Western Flectro-Mechanical Co., 300 Broadway, Oakland, Cal.
Weston lilectrical Instrument Corp., 614 Frelinghuysen Avie., Newark, N. J.

INSTRUMENT TRANSFORMERS

Allis-Chalmers Mfg. Co., Mllwaukee, Wis Amerlcan Transformer Co., 178 Emmet St., Newark, N. J. (See page 36.)

Hyde Park Station Boston Mfg. Co.
Hyde Park Station, Boston, Mass. Duncan Flectric Co., 244 S. Third St. Lafayette, Ind.
Electrical Facilities, Inc., 4224 Holden St. rie lilectric Co., 124 Church St., Buffalo Esterline-Angus Co.. (Speedway City) Indianajolls, Inil. Schenectady, N. Y General Flectric Co., Schenectady, N. Y
Hollywood Transformer Co., fit5 Hollywood Transformer Co., ${ }^{\text {Gt }}$ Martel Ave., Los Angeles, Cal.
Newark Transformer Co., 17 Frelinghuysen Ave., Newark, N. J.
Now York Trangformer Co., 51 W. 3rd Nt.
Now lork, N. Y, (See pare 123.)
Niagara Electric Improvement Corp., 122 Roller-Smith Co., Bethlehem, Pa.
Roller-Smith Co., Bethlehem, Pa.
Sangamo Electric Co., Springfield, Ill.
Sparkes Mfg. Co., 318 Jefferson St., Newark, N. J.
Standard Transformer Co., 140 Dana St. N.F., Warren, Ohlo. (See page 148.) States Co., 3 New Park Ave., Hartford Conn.
Surges Flectric Co., 101 F. Seeboth St. Milwaukee, Wis.
Uptegraft Mfg. Co., R. E., Scottdale, Pa Wagner Flectric Corp., 6400 Plymouth Westinghouse Electric \& Mfg. Co., East We Pittsburgh, I'a.
ston Elertrical Instrument Corp., 614 Frelinghuysen Ave., Newark, N. J.

I. F. TRANSFORMERS

Aladdin Radio Industries, Inc., 501 W. 35th St., Chicago, Ill.
American Trannformer Co., 178 Limmet St., Newark, N. J. (Neé pare 36.) Anaconda Wire \& Cable Co., 25 Broad-
 Automatic Wlndings Co.. 900 Passalc Ave.iFnst l'assale, N. J. (See p. ©.)
Carron Mfg. Co., 415 S. Aberdeen St., Chicago, Ill. Radio Products Co., 1575 Milwaukee
Ave., Chicago, Ill. Ave., Whinding Co. 234 W. 31 st St., New York, No., $1 ., 400$ S. Peoria St. Chicago, Ill.
Hammarlund Mifg. Co., 424 W. 33ı St., Meissner Mork. N. Co., Mount Carmel, Ill. Millen Mfg. Co., James, 150 Exchange Miller Co., J. Wen., 5917 S. Main St., Los Angeles, Cal.
National Co., 61 Sherman St., Malden, Mass.
Philco Radio \& Television Corp., Tloga \& Sickles Co., F. W., Springfield
Teleradio Engineering Corp., 484 Broome riumph Mfg. Co., 4017 W. I ake St. Chicago, ill.

RECEIVER AUDIO \& POWER

 TRANSFORMERSAcme Flectric \& Mfg. Co., 31 Water St., Cuba. N. Y.
merlent Transformer Co., 1 \% F Fimmet St., Newark, N. J. (Bé page 36.) Amplifier Co. of America, 17 W. 20th St., Arlavox Mrg. Co., 430 S . Green St.. ChiAudio Development Co.. 123 Bryant Ave. N., Minneapolis, Minn.

Cinaudarraph Speakers, Inc., 3929 S . Michigan Ave., Chicago, Ill. collins Radlo Co., 2920 First Ave., Cedar
Rapids, Iowa. Rapids, Iowa.
De Vry Corp., 1111 Armitage Ave., Chi-
Dinion Coil Co., 1 North St., Calerlonia,
Dovile, Inc., James W., 311 N . Desplaines St., Chicago, Ill.
Electronic Transformer Co., 515 W. 29th Ferrantl Nipetrlc, Ine., 30 Korkefeller
 Feneral Itadio Co., 30 State St., Camneral Itadio Co.
bridge. Mass.
ceneral Trinnsformer Corp., 1250 W. Van Buren St.. Chlcago, 111. (Spe page 23.) Los Angeles, Cal.

Halldorson Co.
Chicago 500 Ravenswood Ave., Hollywood Transformer Co., 645 N. Martel Ave., Los Angeles, Cal.
Jefferson Eiectric Co., Bellwood, Ill.
Kenyon Transformer Co., 840 Bnrry St. Magnetic Windings Co., 16 th \& Butler Sts., Easton, Pa
New lork Trangformer Co., 51 W. Third
St. New iork, N. Y. (See pare 123.) Norwalk Transformer Corp., South Norwalk, Conn.
Phelps Iodge Copper Products Corp., 40 Philco Radio \& Television Corp., Tioga \&

C Sts., Philadelphia, Pa. Willow 8t. Kitheon Mfg. Co.,
Waltham, Masm. (See page 150.) Skaggs Transformer Co., 5894 Broadway, Los Angeles, Cal.
Gtandard Tranaformer Corp., 1500 N Halsted st., Chicaro, H. (See paze 145.) superior Fiectric Co., 32 Harrison St., Bristol, Conn.
Thordarson Electric Mfg. Co., 500 W. Ifuron of Chicaro, 111. (Bee p. 180.) St.. Chicago. IIl.

TRANSMITTER TRANSFORMERS

Amerlcan Trangformer Co., 178 Emmet ("ollins Radio Co., 2920 First Ave., Cedar

Rapids, Iowa, w ooyle, Inc., James W., 311 N. Desplaines ranti Electric, Inc., RCA Building, Ferranti Electric, Inc., RCA Building, Freed Transformer Co., 72 Spring St. Hadley Co., Robert M., 711 E. 61 st St., Los Angeles, Cal. Halldorson Co., 4500 Ravenswood Ave. Chicago, Ill.
Jefferson Electric Co., Belllwood, Ill.
Kenyon Transformer Co., 840 Barry St. New York, N. l. (Nee page 164.)
New York Transformer Co., 51 W. 3rd st. St New York, N. So. (See page 123.) Norwalk Transformer Corp., South Norwalk, Conn.
Raytheon Mfg. Co., 190 Willow St. RCA Mfg. Co., Camden, N. J.
Skaggs Transformer Co., 5894 Broadway. Los Angeles, Cal.
Standard Traniformer Corp., 1500 N IIalnted St., Chicago. Ill. (See p. 145.$)$
Thordarson Eiectrlc Mif. Co. S00 W. hordarmon Electrle Mig. Co., 500 W.
IIuron st., Chleago, III. (Sef D. 130.) United Traneformer Co., 1 हo Varlek St. Utah Radio Products Co., 820 Orleans St., Chicaro, IIl.

VOLTAGE REGULATING TRANSFORMERS

Acme Electric \& Mfg. Co., 31 Water St. Cuba, N. 1 .
American Trannformer Co., 178 Eimmet St., Newurk. N. J. (See page 36.)
Implifier Co. of America, 17 W. 20 th St. New York, N. Y.
Audio Development Co.j 123 Bryant Ave. Nón Mineapolis, Minn.
Boonton Radio Corp., Boonton, N. J. St Clark Controller Co., 1146 E. 152d St. Freed Transformer Co., 72 Spring St. Freed Nransiormer
General Transformer Corp, 1250 W. Van
Buren St.. Chlcago, I11., (See page 23.) Hadley Co., Robert M., 711 E. 61 st St. Halldorson Angeles, Cal.
Halldorson Co.; 4500 Ravenswood Ive. Chicago, Ill.
International Transformer Co., 17 W 20th St., New York, N. Y. . W. ew York Tranaformer Co., 51 W. 3rd Norwalk Transformer Corp., South Norwalk, Conn.
Raytheon Mfz, Co., 190 Willow, St Kaytheon Mig. Co., (Squ paxe 160.) RCA Mfg. Co., Camden, N. J. Skaggs Transformer
Los Angeles, Cal.
Sola plectrle Co., 2525 Clybourn Ave.
Chlcago, 111. (See page 7.)
Standard Transformer Corp.; 1500 N
Ilalsted St., Chirago, 111, (See p. 145.)
Superior Filectric Co., 32 Harrison St. Brior Electric
Bristol, Conn.
Thordarson Electrle MfE. Co.. 500 W Huron St., Chleapo, Ill. (Siep ll, 130.) Conlted Trangformer Co.. 150 Varlck Nt.
New York, N. V . (Spe page 2.)

Probing the news

all of the markets we serve," he says. But West Coast distributor Liberty Electronics, a division of Wyle Laboratories, warns that bookings in the components business can be "a bit of a confusion factor to people." Sid Spiegel, Liberty's president, says, "I think that last year, with all the publicity concerning the energy shortage, people did even more extra buying."
Lending added strength to the general feeling of prosperity are the plans of many electronics firms to carry out expansion plans. Some, in fact, have decided to broaden or accelerate those plans. One of these is Bunker-Ramo.

Vice president Buchholz says that the Amphenol divisions have increased capital-expansion plans, both for acquisition and growth.

More growth. Hewlett-Packard Co., where Ed van Bronkhorst, vice president and treasurer, expects the growth trend to continue, will spend $\$ 100$ million in fiscal 1974 on capital investment. Last year's figure was $\$ 81$ million. The main expenditure will be for six new plants both in the U.S. and overseas. And at Digital Equipment Corp., the emphasis on expansion of the past few years will continue. The company is thinking about building a plant in Korea for the fabrication of core memories. Minicomputer rival Data General, too, is thinking of a new plant.

National Semiconductor is also gearing up for increased semiconductor demand by increasing its capital spending from the $\$ 13$ million of last year, to more than $\$ 16$ million for fiscal 1974. A portion of that budget will be spent on a new wafer-fabrication plant. Financial vice president Hughes believes this increased capital spending on the part of National and other companies illustrates the industry's immunity to recession. "We don't believe a recession will affect National or the industry," he says. And while semiconductor content of TV sets is climbing "see panel", Zenith expects to have at least as good a year as 1973, which set records for dollars and units. So far, first-quarter sales are ahead of last year's quarter.

'Everybody's popping circuits’

Texas instruments has earned a reputation in the semiconductor industry for its on-target economic forecasts. In the following interview with Larry Armstrong, Midwest bureau manager of Electronics, Charles Clough, vice president for semiconductor marketing, tells why $T 1$ is optimistic.
"Demand is still exceptionally high for semiconductor products," says Charles Clough, Texas Instruments' vice president for semiconductor marketing. The domestic market for semiconductors should grow about 18\%, he says, to $\$ 2.18$ billion in 1974.
"The semiconductor market's strong for simple, basic reasons," he points out, "reasons apart from the governmental and Watergate climate we read about in the newspapers. And the overriding reason for the continued demand is a tremendous proliferation of customers using semiconductors," he says.
"Semiconductors are like vitamin pills today-everybody's popping 74 N circuits.' Last year, 1,450 customers comprised 85% of TI's business, he says. In 1969, 80\% of its business came from 19 customers. "The standard logic block, the 7400, makes it very easy for small companies to get into electronics assembly," he says, and estimates that the average home now has 3,000 transistor functions.
"Backlogs are excellent; we've never been in a position with backlogs such as we are today," he says. But Clough sees a little double ordering today where he saw none six months ago. "Conservatively, l'd guess that this is about 3\% or 4\% of our backlog. And it's something very secretive," he says. "When this happened three or four years ago, the approach that the buyer used was 'Be careful-if you don't ship the stuff, Fairchild will.' The guy doesn't tell you that today," Clough explains. "Our response would be: 'That's good news; let me apply the capacity somewhere else.' " Lead times, he says, won't get back to normal until simetime in 1975, however. "We define normal as the basic ability to ship 70\% of a customer's requirements over a three-month period. And the industry won't get there in 1974."

Pacing the growth of the industry will be the consumer segment, led by color TV despite the general nervousness about the economy. "In color television, I think you'll see about a 20\% increase, 1974 over 1973," he forecasts. "If you talk to color TV manufacturers, every one will tell you the end-equipment market will drop from 3% to 5%, but if you add up the individual production plans of each, it will tell you that the end-equipment market will increase by 5% to 8%," he says. His 20% prediction assumes the slight decrease, however. The offset is in the increasing semiconductor content, pegged by Tl at $\$ 12$ per set in 1974, up from $\$ 9$ in 1973.

Even the embryonic automotive market for semiconductors will show an increase, despite the gloomy outlook for Detroit. Clough expects a growth to $\$ 76$ million to $\$ 80$ million, up from about $\$ 62$ million in 1973 , principally because 1974 will be the first full production year for seat-belt interlocks.

Price controls, or lack of controls, do not affect the learning curve pricing structure that TI diligently adheres to for large volume products. "As volumes increase, prices drop, and it's our intention to price aggressively to gain volume," Clough says. The most dramatic drops will be seen for the increasingly accepted complex functions: "We brought them down in 1973 and we'll do it again in 1974," he adds.

- eliminates silver scavenging
- prevents base metal bleed-thru
- eliminates silver migration
- allows either soldering or bonding

AVX's development of a new, exclusive technique for applying silver, nickel and gold terminations on ceramic chip capacitors is another example of AVX technical leadership.

AVX ceramic chip capacitors with NiGuard can speed your assembly and improve dramatically your production yields.

Nobody makes more . . . or better multilayer capacitors than AVX. This combined with AVX technical leadership means you can depend on AVX to deliver consistent quality chip after chip after chip. Available in a wide range of sizes. Meets all standards including EIA, and high reliability MIL C-55681A specifications. Whether you need chips in $1 / 2$ pf to 50 mfd ranges or higher, AVX can supply them. Need applications assistance, it's yours for the asking.
For complete information,
request a copy of the AVX Short Form Catalog.
Write AVX Ceramics,
P.O. Box 867, Myrtle Beach, S.C. 29577.

Telephone: (803) 448-3191.TWX: (810) 661-2252.
Or D.I.A.L. EEM toll-free (800) 645-9200
(In N.Y. State, call (516) 294-0990).

Electronics abroad

In Europe, things are good-for now

Component and instrument makers head for Paris show in optimistic mood, but economic and political problems could mean trouble on horizon
by the European editors of Electronics

Throughout Western Europe, national economies are seething with troubles that nobody seems able to do much about. Inflation threatens to hit runaway levels, yet there's no obvious way to hold down prices while energy and raw-materials costs zoom. And while foreign trade long has been a mainstay for European business, doing business abroad has become harrowing because of the erratic world monetary system. What's worse, at a time when strong governments are needed to keep economics growing rationally, many governments are shakier than any these countries have had for a long time.

All told, it looks as if 1974 could mark the start of a painful transition from an economy of affluence toward an economy of scarcity. But for the 1,000 -odd producers of components and instruments who will have their wares on display at the big annual Salon International des Composants Electroniques in Paris in early April, affluence still persists. Most companies went into 1974 with bulging order backlogs and plenty of momentum.

Reflecting the tone of cautious optimism that prevails among European electronics executives now, Thomson-CSF's Philippe Giscard d'Estaing says, "There are uncertainties, but there's no inquietude."

A look at the giant French company's components divisions, which Giscard d'Estaing heads, shows why there's no inordinate uneasiness yet about his operation. Thomson-CSF's components sales shot up by more than one third last year to edge past $\$ 200$ million. This year, ThomsonCSF has budgeted the same kind of growth. "Last November and De-
cember," says Giscard, "we were afraid our budget was too high. Now we see our year-end pessimism wasn't right. So far this year, we've not dropped below budget, either for orders or production."

Optimism shared. And ThomsonCSF is not the only French heavyweight with strong 1974 expansion in sight. RTC-La Radiotechnique Compelec-the components company of the Philips group in France, saw its sales shoot up 22% last year to top the $\$ 200$ million mark. Jacques Bouyer, RTC's director-general, is thinking of something like 15% for this year's growth. But he warns that the figure could go as high as 30% or as low as 5%. Uncertainties or no, RTC will invest heavily in new capacity for the second year in a row. Smaller companies, too, are doing well. "We had an explosion in orders for hybrid circuits last year," enthuses Alain Gayet, commercial director of the Microcircuits division
of Sintra. "Our backlog is up to 10 million francs (roughly $\$ 2$ million), and we'll have another 30% to 35% jump in sales this year."

It's not hard to see why French component makers feel sure their domestic market will ring solidly this year. Set makers gobble up some 40% of the components used in France, and they now are projecting a strong, but not booming, 1974. Color-TV sales, the kingpin item here, ran about 600,000 units last year. Paul-Roger Sallebert, general director of the Fédération Nationale des Industries Electroniques (FNIE), reports that his trade group expects this year's sales to run about 790,000 sets. "Before the crisis," he adds, "we were predicting something like 825,000 ." Other market watchers, despite a setback in sales last month, see a chance of a rise to above 850,000 units.

No matter who is right, it will be a good year for entertainment elec-

tronics. Even better, the instrument and communications markets look particularly solid. The French Posts and Telecommunications Ministry has vowed to double the number of telephone lines in service during the next five years, and this year alone, it will commit some $\$ 1.5$ billion for improvements to its telecommunications network. The computer makers, after a slow 1974 start, now "expect a normal level of activity," reports Maxime Bonnet, marketing director for Honeywell-Bull. As a result, mainframe and peripherals makers should be good customers.

Energy market. Noting that the domestic outlook isn't at all bad, FNIE's Sallebert points out that producers of telecommunications, military, and industrial equipment should pick up some extra business because of the deals the French government has been working on with oil-producing countries. For the long term, there'll be other added energy business.

The government, for example, has launched a massive project to get nuclear-power plants on line and plans to commit some $\$ 1.2$ billion yearly for them over the next seven years. And, although higher gasoline prices and possible shortages may one day impact consumer electronics as the woes of auto makers work back through the economy, this may be more than offset by nonconsumer gains.
"The more expensive transportation becomes, the more people will be forced to depend on tele-

communications," says Louis Brousse, commercial director for Schlumberger instruments and systems.

German optimism. West German component makers who turn up at the Paris show will add a further note of optimism. Their 1974 sales prospects range from "not bad" to "as good as last year," despite a turndown in growth that's predicted for the West German economy as a whole. For the electrical-electronics sector, the rise is pegged at between 5% and 10%.
Semiconductor makers will do much better than this. They are looking forward to gains of 15% to 20%. Much of the increase will come from continuing high demand from German set makers, who account for more than half the country's semiconductor consumption. "We are not disquieted by the shorter work weeks at some radio and TV producers," says Erich Gelder, marketing manager for ICs at Siemens AG. "That's only a temporary thing," he adds.
There's growth also from "new" semiconductor markets. Gerhard Liebscher, director of marketing services for ITT affiliate Intermetall GmbH , says semiconductor sales to watch and clock companies will be on the rise, even if their growth slows. Components sales to the auto industry, too, should stay at about 1973 levels, even though a lot fewer cars will come off the lines this year.
As for ICs, Gelder foresees a rise in industry-wide sales of some 17% in Germany. For discretes, he predicts that the increase will be 12%. Siemens, largely because of its strength in circuits for touch tuners, foresees a spurt of 70% this year for its IC sales.
Italian effervescence. The transalpine contingent from Italy will also come to Paris in an effervescent mood. There's no doubt that order books are bulging for equipment makers and components makers. But some market watchers say the components orders are mostly attempts to counter inflation.
Not so, says Ernesto Bartolozzi,
Looking optimistic. Manufacturers are heading for Paris components show with smiles on their faces, despite economic uncertainty. Scenes are of last year's show.
marketing director for SGS-Ates, Italy's largest semiconductor maker. He says that his customers are not stockpiling components, but are using them now to meet their own orders for consumer electronics, communications equipment, and calculators. "We see an expanding market," he says, "and see no need to modify expansion plans."
British worry. The cross-channel contingent from Great Britain will come to the Paris salon with nagging worries. No one yet can guess how effective the new government will be at unsnarling the economy. And, until something like normal times return, no one can guess what will happen to color TV, the top income producer.

Set makers are the biggest buyers of components in Britain, and last year their output soared to 2.5 million sets. This year, sales at the retail level have slumped between 20% and 25%, largely because of government curbs on consumer credit. Set output now outstrips demand, but, so far, that's not been too troubling; set inventories were abnormally low before the government slapped on its curbs. By midsummer, though, set makers may have to cut way back on production, and that will hurt components suppliers badly.

For the moment, though, component makers can sell almost everything they can make. Power rationing has kept them working short-time, but their equipmentmaking customers have had to do the same, and so the shortfalls roughly cancel each other. Delivery delays for new customers, thus, still run as long as 12 months for items made from scarce raw materialspolyester capacitors, for instance.
In most cases, components companies are rushing ahead with expansion plans made last year before crisis was in the wind. Semiconductor makers are working on the assumption that demand will expand continuously across the board for ICs. In particular, MOS LSI deliveries are expected to increase fast as several development projects turn into production orders. Joe Hurley, general manager of ITT Semiconductors Ltd., estimates that UK MOS sales will be up 40% this year, compared with a general UK semiconductor growth rate of about 17%.

Memories

Customers sweat out 4,096-bit RAMs

Computer and peripherals makers are eager to use the big memories

 as soon as they reach acceptable yield and performance levels
by Howard Wolff, Associate Editor

Potential users of the new 4,096-bit MOS random-access memories are waiting warily and anxiously as manufacturers of the devices work to iron out production problems. At stake for the users are design decisions involving planned and projected product lines, ranging from peripherals to computer mainframes. Dangling before the eyes of the makers are chunks of a market that could reach $\$ 60$ million to $\$ 75$ million next year.

But the 4 -k memory is an elusive, as well as tantalizing, target-elusive because it involves manufacturing a
high-density device with the advanced and sophisticated n-channel silicon-gate technique; tantalizing because it is the first semiconductor to outdo core-memory systems in both performance and price. That's why manufacturers consider 4-k worth working for, and users generally think it's worth waiting for.

Hewlett-Packard Co. seems to think so. The Palo Alto, Calif., instrument and computer maker designed the Texas Instruments TMS4030 into its new minicomputer line, only to be stymied by yield problems at TI's Houston mOS-
production line [Electronics, March 7, p. 25]. H-P has had to go to Mostek Corp. to fill its demands, a solution that creates a design problem in itself because the TI and Mostek parts are not pin-compatible (see chart). Datapoint of San Antonio, Texas, another TI customer, also was caught short.

That hole in the $4-\mathrm{k}$ picture needs patching, most users agree. As Brian Croxon of Honeywell Information Systems puts it: "There's a lack of maturity. By that, I mean that a high-volume user likes to see sec-ond-sourcing pretty early." Croxon,

PARAMETER	$\begin{gathered} \text { MOTOROLA } \\ 6605 \end{gathered}$	$\begin{aligned} & \text { AMI } \\ & 6605 \end{aligned}$	$\begin{gathered} \text { MIL } \\ \text { MF } 7112 \end{gathered}$	$\begin{aligned} & \text { INTEL } \\ & \text { 2107A } \end{aligned}$	$\begin{aligned} & \text { AMS } \\ & 6004 \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { TMS } 4030 \end{gathered}$	MOSTEK MK4096P
Cell chip size	$\begin{aligned} & 3 T C \\ & 179 / 197 \end{aligned}$	$\begin{aligned} & \text { 3TC } \\ & 168 / 195 \end{aligned}$	$\begin{aligned} & 3 T C \\ & 149 / 166 \end{aligned}$	$\begin{aligned} & 3 T C \\ & 137 / 167 \end{aligned}$	$\begin{aligned} & 3 \text { 3TC } \\ & 190 / 220 \end{aligned}$	$\begin{aligned} & \text { 1TC } \\ & 159 / 181 \end{aligned}$	$\begin{aligned} & \text { 1TC } \\ & 157 / 185 \end{aligned}$
Type	N-MOS	N-MOS	N-MOS	N-MOS	P-MOS	N-MOS	N-MOS
Access (ns)	<300	$\leqslant 300$	400	300	460	300	350
Read cycle (ns)	450	450	445	500	695	470	500
Power active/stand by	350/5	<100/0.5	287/49	350/39	130/55	400/2	$<400 /<12$
Power supplies	$\begin{aligned} & +5+12 \\ & -5 \end{aligned}$	$\begin{aligned} & \pm 5+12 \\ & -3 \end{aligned}$	$\begin{aligned} & +12 \\ & -2 \end{aligned}$	$\begin{aligned} & +12+5 \\ & -5 \end{aligned}$	$\begin{aligned} & +5+3 \\ & -15 \end{aligned}$	$\begin{aligned} & +5+12 \end{aligned}$	$\begin{aligned} & +12+5 \\ & -9 \end{aligned}$
Inputs	$T^{2} L$	$\mathrm{T}^{2} \mathrm{~L}$	$\mathrm{T}^{2} \mathrm{~L}$	$T^{2} L$	$\mathrm{D}^{2} \mathrm{~L}$	$\mathrm{T}^{2} \mathrm{~L}$	$\mathrm{T}^{2} \mathrm{~L}$
Output	T^{2} L/ECL	$\mathrm{T}^{2} \mathrm{~L} / \mathrm{ECL}$	Low-power $\mathrm{T}^{2} \mathrm{~L}$	$\mathrm{T}^{2} \mathrm{~L}$	N/A	$T^{2} \mathrm{~L}$	$\mathrm{T}^{2} \mathrm{~L}$
Refresh rate (ms) cycles	$\begin{aligned} & 2 \\ & 32 \end{aligned}$	$\stackrel{2}{32}$	$\begin{aligned} & 2 \\ & 16 \end{aligned}$	$\stackrel{1}{<100}$	$\stackrel{2}{32}$	$\frac{2}{64}$	$\begin{aligned} & 2 \\ & 60 \end{aligned}$
Samples	Now	Now	Now	Now	Now	Now	Now
Production	$\begin{aligned} & \text { Now } \\ & 74 \end{aligned}$	$\frac{2 n d}{74}$	$\begin{aligned} & 3 \mathrm{rdq} \mathrm{qtr} . \\ & 74 \end{aligned}$	Now			Now
Pin compatible to	AMI	Motorola	None	TI, MIL	None	$\begin{aligned} & \text { INTEL } \\ & \text { 2107A } \end{aligned}$	None
No. of pins	22	22	22	22	22	22	16
No clocks	1	1	3	1	3	1	2
Voltage swings	All $T^{2} L$ except clock	All $T^{2} L$ except clock		All $T^{2} \mathrm{~L}$		All T^{2} L except 12 V clock	All $\mathrm{T}^{2} \mathrm{~L}$

On July 20, 1969, at 10:56 p.m., E.D.T., Nell Armstrong made the first personal contact with the surface of the moon. His famous words, | $\begin{array}{r}\text { "That's one small step for a man, one glant leap for mankind", will live in historyl } \\ \text { Edwin Aldrin followed him onto the moon, while Michael Collins } \\ \text { controlled the Apollo } 11 \text { spacecraft in orblt. The two men } \\ \text { spent a total of } 2 \text { hours, } 31 \text { minutes exploring } \\ \text { the moon's surface. }\end{array}$ |
| :---: |

SPECTRA-STRIP made another great connection

SPECTRA-STRIP connected with Polaroid on August 3, 1972, and was awarded the design and manufacture of a miniaturized Ribbon Cable Harness for the new Polaroid SX-70 Land camera. The problem was minimum available space; and design requirements called for multi-conductor, highly-flexible, fine gauge wire. The part was flex-tested to 300,000 cycles, and has many critical tolerance points necessary for the automated attachment in the camera. The intricate interconnecting assembly assisted in making possible this innovative camera.
 Interconnection Systems Design"

AWARD OF DISTINCTION...

SPECTRA-STRIP CORPORATION has established an Award of Excellence to be presented to those companies who have achieved an innovative application for the use of Ribbon Cable in the design of interconnecting systems. Savings in cost, space, increased efficiency, and reliability in circuit connections are all criteria which are evaluated for award recognition. For details on qualitying for this unique award, use your company letterhead to tell us your current or proposed application for Ribbon Cable.

SPECTRA-STRIP

CORPORATION
7100 Lampson Ave., Garden Grove California 92642 385 Putnam Ave., Hamden, Connecticut 06517

A NEW SEMICONDUCTOR!

CURRENT CONTROLLED

 SWITCH - CCS

- Low R ${ }_{\text {on }}$ - High Impedance Above Rated Current - No
Offset Voltage - High Speed
CCS has broad applications: Overcurrent and Surge Protection; Threshold Detection; Relay Replacement. Available in 0.1 milli-ampere to 0.1 ampere, ± 32 to ± 250 volts.

Try the CCS Experimental Kit No. K4 containing four low and high voltage CCS and application notes. $\$ 25$ per Kit includes shipping costs.

See Electronics/February 21, 1974
See the NEW Current Controlled Switch - CCS in action at IEEE Intercon 74 March 26-29 in

BOOTH 1702

Licensing available in U.S. and foreign countries. Request complete information. Telephone collect Marketing Department.

Probing the news

a section head in the his Billerica, Mass., memory department, says that 4-k yield problems follow the classic pattern of semiconductor memories. "We went through about the same thing with the early $1-\mathrm{k}$ ones," he points out.

Croxon says that Honeywell is getting samples from "everyone who makes one" for use in designing prototype memory systems. "But we can't even get enough parts for that prototype work," he adds. Croxon characterizes the parts he has been getting as of generally good quality. "Overall, they've been clean, with reasonably wide operating margins. However, a lot were initially 50 to 100 nanoseconds slower than specified." Croxon is one of those users who advocates patience. "I don't think 4-k parts are here yet for the big systems makers," he says.

DEC shops. Another computer maker, Digital Equipment Corp., says that, since TI is having production problems, it will probably order from such other makers as Mostek and its second source, Fairchild Semiconductor, American Microsystems Inc., Motorola Semicon-
ductor, and Western Digital Corp. If that fails, says a spokesman, DEC will return to core. The Maynard, Mass., manufacturer has 4-k memories ticketed for its PDP-8 and PDP11 lines for now, and later for its DECSystem- 10 line. The spokesman says that performance of 4-k RAMS received thus far-from TI -is "not sparkling." He adds that large memories usually need logic-correction modules to guard against socalled soft errors.

Other computer makers agree with Honeywell and DEC. For example, Control Data Corp. reports ordering 100 units from each of three or four vendors; so far, it has received less than 50 . One user's spokesman says he won't schedule production of any machine until he knows that $4-\mathrm{k}$ RAMs are available in quantity from multiple sources.

TI was first out of the gate with a large-volume order (from HewlettPackard) and is paying the price: its yield problems are visible to everyone. But TI says it has no intention of changing its one-transistor-cell design and that "an intensive effort is being applied to the buildup of a production line and to increase yields while at the same time increasing the volume." A spokesman insists, "We are convinced that the

Mostek's entry. This is the Mostek 4,096-bit MOS RAM, a 16-pin model offering 350 nanosecond access time. White marks around periphery were left by test probes.

It's nice to know that there's a super source for large quantities of 12 and 50 Volt ceramic capacitors. Nichicon can meet your immediate needs, or help you plan for long range requirements. When 30 weeks lead time seems to be a stock answer from almost every capacitor manufacturer, it's nice to know you can count on Nichicon for fast delivery. And when we make a delivery promise, we deliver as promised.

We've got millions more where these came from.

12V.DC Disc Capacitors-Y5S

50V.DC Disc Capacitors-Z5P, Z5U and Z5V

 DB-201 DB-203 DB-205 DB-207 DB-209

SPECIFICATIONS

Capacitance Range
Z5P $\quad 180 \mathrm{pF}$ thru $10,000 \mathrm{pF}$
Z5U 1,000 pF thru 22,000 pF
Z5V $1,000 \mathrm{pF}$ thru $100,000 \mathrm{pF}$

Thickness: 400 mad below. 125 mai .500 end sheve 150 mis

Capacitance Tolerance $\pm 10 \%$ or $\pm 20 \%$ $\pm 20 \%$ $+80 \%-20 \%$

TYPICAL CAPACITANCE vs TEMPERATURE

Complete warehousing in the U.S. providing capacitors for the home entertainment, computer and industrial electronic industries.

PRODUCTION ITEMS

Electrolytic Capacitors - Ceramic Capacitors Film Capacitors - Oil Filled Capacitors-without P.C.B. - Metallized Paper Capacitors - Waxed Paper Capacitors - Mica Capacitors - Hybrid IC's • P.T.C. Thermister - Trim Pot

We help keep your world turned on.
NICHICON (AMERICA) CORP.
6428 N. Ridgeway Avenue - Chicago, Illinois 60645
Phone: (312) 679-6530
Division of NICHICON CAPACITOR LTD., Kyoto, Japan

Probing the news

4-k RAM will be producible in large volume during 1974." While Tl is "very cautious at this time in committing to definite schedules," industry sources predict that TI will be in production during the fourth quarter of the year.

Mostek benefits. Mostek Corp., which has benefited from TI's prob-
lems, now has another advantage: a second source. Fairchild Semiconductor, initially using dice from Mostek, will start next month to ship its pin-for-pin replacement in a 16-pin dual in-line package, called the 4096 DC. At the same time, Fairchild will develop a wafer-fabrication capability, based on its own Isoplanar- \mathbf{N} (for n -channel) process, and officials plan to be in full production by 1975's first quarter.

THINKING ABOUT LSI?

Our new 'LSI Feasibility File' will help answer your questions about development procedures, costs, and how to evaluate the technology on your own terms.

It also explains how we can help.

The decision to employ the advanced technologies of Large-Scale Integration is seldom an easy one. And the facts on which to base your decision aren't always easy to come by. That's why we've just published our LSI Feasibility File. In it you'll find a lot of factual information about the technology and how you might be able to use individually developed LSI subsystems to improve your product Use the coupon below to order your copy today. We're sure it will help

MICRO POWER SYSTEMS

3100 Alfred Street, Santa Clara, CA 95050, Phone: (408) 247-5350, TWX: 910.338-0154
Japan: Yas Kanazashi, 21 Mori Bldg., 2.2-5 Roppongi, Minato-ku, Tokyo, Phone: 586-047

As for Mostek itself, Berry Cash, executive vice president, says the company is turning out its MK 4096 "in the range of thousands per week." Cash adds, "The yields are still low, compared to where we'd like them to go, but they're high enough to make a lot of them without losing any money."

Mostek is building its part under the supervision of engineers who train the production people, Cash says. Now that the company has snagged the H-P order, as well as others, Mostek is "trying to figure out how we can crank out a lot of them this year" after initial plans called for production of fewer than 100,000 parts in 1974.

Second phase. The first semiconductor house to announce a 4-k RAM, Microsystems International Ltd. of Ottawa, Canada, says its early troubles with yield are over, and the second planned phase of the MF 7112 has begun. This, says Peter Loconto, mOS marketing manager, involves reducing the die size to 149 by 166 mils (from 168 by 204) and increasing production from the present 250 parts a week, to 500 in May, 1,000 in June, and doubling monthly until volume production is finally reached in the last quarter. Loconto says mil will sell 40,000 pieces this year, and the biggest order in the house calls for 10,000 .
Motorola's Semiconductor Products division is in "initial production" of the $66054-\mathrm{k}$ RAM, says Durrell Hillis, mOS microprocessor and memory-products marketing manager. He says the device is working in one customer's system, and that the division has been shipping early production quantities to meet orders from 20 major customers. Motorola is banking heavily on the 6605 as a pivotal part that can bring significant mOS business to the division after a couple of false starts with earlier memory products.

Because of the joint development program with AMI for the 6605, Motorola and its California "partner" are assured of at least one second source initially-an important consideration for users. And Hillis says Motorola is negotiating with two other second-source possibilities that could have the product in production six to nine months after being selected.

Frame them any old way

Or any new way.

Then sit back and watch your Ise display electronics get your ideas across. Beautifully.
In an eye-easy fluorescent green glow.
At the same time, they're low on voltage and current drain.
High on stability.
Pick the readouts that offer more of everything, including variety, for a whole host of digital display ideas.
They're a difference you can see.

International Div

The Brighter Side of Electronics
ISE ELECTRONICS CORP.
P.O. Box 46 Ise-city, Mie Pref., Japan

Tubes

CATHODE RAY TUBES

American Television Corp．， 130 W ． 5 bth oumont New York，N．Yoratories，Inc．，Allen is．，e lain Ive，Passule，N．J．（See page 118.1

Farnsworth Television de Radio forp．， 3 T00 pontiac sto，Fit．Wayno．Ind．
General Electric Co．，schenectady，X．Y．
（sice page ：9．）
 ributor for Westem bilectric cou． New York，Ň．Y．）
Hygrade syduania corp．， 60 bogton st． Salemp Masm．（sice page 1\％．）
National linion laidio Corp．，is Wash－ mkon st．，Newark．N．
Western iobectric（vo－seto iravibar bion－ tric．（\％）
CURRENT REGULATING TUBES（Ballast） Amperite（＂o．，atil l3roadway，New York，
Art Radios Corp．， 110 Liberty st．，Naw Champion Radio Works，biv，of Com－ solistaterl Filectric Iathe Mass．
Hyton（orbl \＆Hytronir laboratorice： $120{ }^{\text {it }}$ lafayelle St．Nalem，Mass．

HEARING AID TUBES

1istroll Corpo，a 11 vironic Laboratories． 76 Lafayelle st．，Salem，Mans．（Ne世 bage 9as．
Kerr－Ran Thite \＆Lampl（omp．，Owensboro
Ratheron l＇roduction Corp．．t？0 1，exington mesury cull camden．

INDUSTRIAL TUBES

Anberex Electronic Producte，in Wanh－ inglon si．．brooklyil．N．Y．（see Inside pront rover．）
（ontinomat bisectrie（oo．Gemban all
Fiferoms，inc．， 127 sussex Ave．，Newark
Federal Telegraph go．上00 Mt．Ileasant Nre．，Newark．．．．
Gentaral Electrle（in．，Nehenedady，N．Y． Heint\％\＆Katufman，Ltd．，south Sian Franciseo，Cal．
Hatron corpe Ax Matonice Laboratories．is Lafayefte st．．salem．Nann．（sere गBER
 Rayheori production Comb tor Lexing－ KCA 11 g．fo．，Cumdien，N．J．isee pake
 Inited＂hak＂，illi． Westinghouse Lamp Dir．，Westinghoust． Eflectric di Mfg．EO．，Bloomtield．

PHOTOTUBES

Bradleg Labortorien，Xis Neadow st．0 Continewtul Electric（\％o，（Seneva，Dill．（sere
 page 148．）
De dur－Anseo Corp， 6 bridge sit．，Shel－ tum，Conn．
De Vry，Herman A．， 1111 W．Center St．， rety，Ine．，Hush H．，titeo Stenton Ave，

Filectronic Laturatory， 306 s ．Eilinburgh Fmby irorlucts Co．ison w．lico Blvd． i，os Angeles，Cal．
 （annelal pare ：9．）
（bonelal Scilentific Corp．， 4829 S ．Kerlzie

brashar Glectric co．lexington Ave at wilutow for weulum Flectic 0° Prbutors Western Electric Co
Leeds \＆Northrup
Leeds © orthrup Co．i， 4970 Stenton Nattonai Coning Radlo Corls， 15 Washing－ I＇hotohel！Coip．， 123 jiberty St．，New RCA Mfg．Coo．，Canden，N．J．（Nee back Rehtron Cr
hiron Corpo 2159 Magnolia Are．，（＂hi－ rago， 111.

IRhamstinc，J．Thos．，301 Beaubiton St． Western bileetric Co－－see（iraybar Vilec－
tric 1% ．
ostinghouse Lamp Dir．，Westinghouse bilectric \＆Mfg．Co．，Bloomfleld，N．J． Weston bilectrical Instrument＇orpo． 61 Frelinghuysen Ave．，Newark，N．J．

RECEIVING TUBES

erson Radio \＆Phonograph Corp．， 111 lighth Ale，犬ew work， Girneral Election．）
imabar Electric Co．I Aexington．Ave at 43 d ．，New Yoik，ス．Y．（Sule Dis－ tributors for Westem Electric eo． New York，※゙，Y．
Hygrade sylvania corp．，60 Bowion st． salem，Mass．（sice pake 12．）
 page 9．9． Ken－Rad Tube din Lamp，Kinth St．Owshoro，Ky．
National t＇nion ladio Cor＇p．， 15 Wash－ ington St．Niゃwark．N．，J． laythern production Corp．， 420 Jexing
 87．）
Tunke－sol \＆imbllow Ine．，tō lighth Ave．，Newark，N．．J．
Western Electric Co．－se Graybar Blec－ th Radio Zenith Radio Corp．，60n1 Dickens Ave． TRANSMITTING TUBES
Imberes Electronic l＇rodurtn．is Wanla bington Si．．Brooklyn，N．I．（see Collims ladion Co．，elyol foirst Ave．，Cenlal hapicls．lowa
 ＊ederall plelegraph（o），？00 Mt．IPleasant Ape N゙ゃNark，N．，S．
（Sue pake is．）
arabibl polectric Co．Lexington dre at
 tributor for Western bidectric co． Now Mok．N．．Y．
Briniz \＆Kanfman，Lidl．，somth Ninn Fran－ cinco，（al．（See paike 30．）
Hytron corp．\＆IIstronic Labinratorien．it Larayett｜St，Nulem，Mask．（Si．e buge 9it）
Cathonal l＂nion ladian Corp． 15 Watsh－
 San lrancisco，（at．
Raytheon l＇rombetion（corp：，fen lexing－
 cover．）
Paylor Tubes，Inc．， 2 ？ 41 Wabansia Ave．， g－sol tamp Works，1ne．，95 Eighth
 I｀nited pilectronicy Co．， 42 Spring St．， Western Wlectric Co－see Graybar Elec－ Westinghouse Lamp liv．，Westinghouse Fiectric \＆Mifg．Car．Bloomfield，N．J． VOLTAGE－REGULATING TUBES
Amperite Co．， 361 Broadway，New York， pileron \＆son，Inc．．M．M．， 113 N．Broad St．．Trenion，ぶ，d． Horade Sylvanial Corp．，fo boston Hyturn Comp．\＆Hytronic laboratories，

X－RAY TUBES

 Wischer \＆Ork．H．G．， $23 \geq 3$ Wrabansia Ave．， Chicaro， 111 ． son lild．．Chicago， 111.
Machlett iabhimatories，springolale，comn， ＇hilips Mttalix Corp．，$i 19$ Fourth Ave．， standard N－Ray Co．， 1930 N．Burling St．， Chicago， 11
Westinghouse 犬－Ray．Co．，シ1－16 43d Ave．

Tubing

BRASS and COPPER TUBES and TUBING
American lurass Co．，Waterbury，Conn． Bridgeport Brass Co．，F．Main St．，Bridge－ port，Conn．

Clase hrass \＆Copper Co．， 236 （irand sit． Mueller frass ©o．， 1925 Lapeer Ave． l＇ort lluron，Mich． 3828 Terrace st ision Tube＂o．， 3828 Terrace st． Ihiladelphia，Pa．
ere Copler is isass，1nc．， 230 Park
Hevere Coppler A Brass，lnc．， 230 Park
sovill ilfig．Co．， 99 ＇itil st．，Waterbury， Conn．
Universal Rrass Works，Howard \＆Lehigh Wolverine Tulve Co， $1+11$ Central Ave， lretroit，Nich．
（CERAMIC TUBEN（i－ner Insulation FIBKE：TUBIN（i－nee Insulation

FABRIC TUBES and TUBING

Anchor Wembing Coo， 1005 Main st．，Baw theket，R． 1
 gnt Si．．New York，N．Y．（Sec Hentley，Narris Mig．Co．，Hector \＆Lime str．：Consholiocken，l＇a．（Nee bag 15t．）（oo．Willam， 276 Fourth Ave New York，N．Y．（See page 15．）
Goneval filectrie ©o．，Appliance and Mer－
Insulation Mathufacturers（oorpo，＂onns． W ． hation manufacturers corpo， $\mathbf{3} 6 \mathrm{~F}$ W Washington 131w，．Chicago，Ill． Insulation Prolucts，Inc．，를 W．2lst St． Irvington Varnish \＆Insulator Co．， 10 Areyle Terrace，Irvington， Mica Insulator，（o．，enol Varick st．，Nev Mitchell－Rand insulation（Mo．， 51 Murray

Surprenant Fifertrical lusulation Co．． $8 t$ l＇urchase St．，Buston．Mass
Varflex Corp．，Cor Ford Neral stn． kont．※．：（sre bage 172．）
GLASS TUBES and TUBING

Hentien．Harrin Mig．（io．，Hector \＆Lime | SiN．． |
| :--- |
| 1.54 .1 |
| 102 |

＂ornint（Blass Works，（onming，N．Y．
Duro－Test corp．，Norih Berken，j．
Hygrade Sylvania Corp． 60 Boston St．， Salem，Nass．
Insulation Manufacturers Corp．， 565 W． Washington bive．，＇hicaru，Ill． Laminous latboratories，Inc．，fi le，lake St．，（＇hicaro， 111.
owens－（orning fiberglas Corp．，Nícholas Riandel Giass Works，Ine．，Jos．， 261 Fifth sit．Aherles Technical taburaturies，Ine Th state are．．s．（harles， 11.

KNITTED WIRE TUBES and TUBING

 Alden Products Co， 117 Main St．，Brock ton，Massire \＆Cable Co．， 25 Broad－ Lelden Mfg．Co．， $464 i$ iv．Van Buren St． Camden Wo， 111 ．Camden Wire Co．，Camden，N．Y． Essex Wire Cork．， 14310 Windward Ave Hetroit．Mich．
General cable Corp． $4 \cong 0$ Lexington Ave． General lilectric Co．，Schenectady，N．Y． Hope Webbing Co．Providence，R．Lisurn Roebling＇s sons Co．，John A．Trenton， Roebling＇s

NICKEL and NICREL ALLOY TUBING

Whinak Mfg．Co，Irvington，N．J．
General I＇late Div．，Metals do Controls Corp．， 34 Forest St．，Attleboro Mass Interibational Nickel Co．，6a Nall st． summerif Tubing Con，Fridgeport， Pa Numeriur Tubu（＇o．．Norristown，lin．（See page 11．）

PAPER TUBES and TUBING

Imerican l＇aper Tube Co．，Hazel St． Wroonsorket．K．1． Cleveland Container Co．， 10630 Berea Rd． Ceveland，ohio
Cross l＇aper Products Corp．， 2595 Third Franklin Fibre－Lamitex Corp． 12 th \＆ French sts i u we Co man，Delo Areneral Philadelphia，ipa． 1＇airpoinit Corp．，Prospect St

St．，New Bed－
l＇aramaunt latimer Tube co．， 801 Glasgow Are．，Fort Wayne，Ind．

Manufacturing

Firms like Puerto Rico

Advantages in taxes, duties, and labor make up for wages

that are a bit higher than other offshore sites

by Ray Connolly, Washington bureau manager

In the scramble to remain cost-competitive in expanding global electronics markets, U.S. manufacturers have added Puerto Rico to the emigration to offshore locations that began years ago with Hong Kong and Taiwan.

In the 3,400 -square-mile rectangle that lies at the northeastern end of the Caribbean Sea, there are now more than 165 plants manufacturing electronics and electrical products. That represents a growth of more than a hundred-fold since 1960. Even after taking away from that list the makers of electrical power machinery and comparable products, the remaining electronics producers in Puerto Rico number more than 75.
General Electric Co. tops the list of electrical/electronics producers with 19 separate operations, although these are largely turning out straightforward switchgear, circuit breakers, meters, and measuring in-
struments. Nevertheless, GE is recorded by the Economic Development Administration of Puerto Rico as having two strictly electronics operations. Both started in 1966, one turning out leak detectors at GE Instrument Corp. at Caguas, and the other, devices at Ge Pilot Devices Inc., Vega Alta.
Biggest. But among purely electronics manufacturers, computermaker Digital Equipment Corp. of Maynard, Mass., tops Puerto Rico's list. Since it started making digital circuit modules in July 1968 at San German, DEC has expanded its operation there to 165,000 square feet, and it is bringing another 135,000 square-foot facility on line in July at a 55 -acre site on the island's northwest corner in Aguadilla. All told, DEC says it now employs some 1,600 persons in Puerto Rico to work on its PDP-8 and PDP-11 mini-computers.
The Puerto Rican commonwealth

flaunts the impressive growth numbers regularly in its effort to lure other manufacturers to its shores. Shipments of electronic and electrical products to the mainland alone totaled nearly $\$ 200$ million in 1973 , reflecting a growth of nearly 15% from the year before. In addition, Puerto Rico exports roughly 10% more of its manufactures in these technologies to other markets.

Much of the island's growth as a haven for electronics manufacturers has come in the past five to six years, even though Puerto Rico's determination to expand and improve its economy has its roots in Operation Bootstrap, which began in the early 1950s.

Japan. But Puerto Rico's appeal to electronics manufacturers has not been limited to the U.S. variety, as Matsushita Electric Corp. has demonstrated. Beginning in June 1965 at Caguas with the assembly of radios and stereo equipment, the Os-aka-based manufacturer has undergone six expansions on the Caribbean island. One of these included a move up to production of television receivers in August 1971 in a step that industry competitors interpret as offering the producer of Panasonic receivers the double advantage of a low-cost labor market and duty-free shipments to the mainland at a time when U.S. criticism of imports of Japanese homeentertainment products was rising.

Overall, 80% of the island's electronics and electrical equipment plants are affiliated with mainland

Dellcate work. Bell \& Howell employee pre-cision-balances galvanometer at the firm's plant in Carolina, Puerto Rico. Also produced there are oscillograph sensors.

Digesting the extraordinary
capabilities of Ramtek's new
color graphic display
systems is a litlellike turning
a nine-year-old loose
in a candy factory.
There's almost too much to swallow.

So let's take it one morsel at a time.

To begin with, Ramtek series Color Graphic Display Systems totally obsolete conventional process control display methods. Youve seen. or are now working with, the archaic bank of meters, the slow tedious strip charts and the space taking plot boards.
All those techniques are now "out of it" with the introduction of Ramtek's solid state Color Graphics System. Our basic system begins with black and white alphanumeric display. Flicker-free color graphics and animated displays are created by using a non interlaced repeat field at 60 frames/sec, thus making a real time reporting system a reality.
Perhaps the most important features of our new systems are their flexibility and expandability. Our graphic systems feature multiple channel input and varying mixtures of resolution. The system is totally adaptable to the specific and changing needs of the user.
There's lots more to be said about our systems. Contact us for a demonstration of the potential savings in cost and time between a Ramtek Color Graphic Display and any combination of conventional display techniques.
Or, for some rather startling information about our new systems, contact: Ramtek Corporation, 292 Commercial Street, Sunnyvale, California 94086. Telephone: (408) 735-8400

EUROPE

Austria-AMP Austria. Branch of AMP Deutschland G.m.b.H.. Markgraf-Ruediger Str. 6-8. IIS0) Vienna. Phone: 924191/42
Belgium - AMP Belgium. Branch of AMPHolland N.V.. Rue de Brabant 62-66, Brussels. Phone: 19.36.07
France-AMP de France. 29. Chaussee JulesCesar, Boite Pestale No. 39, 45301-Pontorise (Val d' Oise). France. Phone: $46+-92-20$. (4x4-92-3)
Germany-AMP Deutschland G.m.b.H.. Amperestrasse $7-11$. (x) 7 Langen. B. FFM.. West Germany. Phone: 10610317091
Greas Britain-AMP of Greal Britain Limited. Terminal House. Stanmore. Middlesex. England. Phone: $01-95+2356$
Holland-AMP Holland N.V.. Papierstraat 2. is-Hertogenhosch. Holland. Phone: ((1) (1))) 2522!
Italy-AMP Italia S.p.A.. Via Fratelli Cervi 15. lox 93 Callegno (Torino). Italy. Phone: 785-6.56 Spain-AMP Española. S.A.. Apartado 5244 Pedro IV. 491. 455. Barcelona 5. Spain Phone: 3017-75-50
Sweden-AMP Scandinatia AB. Datavagen 5. 17500 Jah ohsherg. Sweden. Mailing Address: Fack S-175 20) JARFALLA I, Sweden. Phone: 0758/104(0)
Switzerland-AMP A.G.. Haldenstrasse 11. (a)) Luzern. Switzerland. Phone: (1411 235.421. $235+22.235+23$

NORTH AMERICA

Canada-AMP OF CANADA LTD.. 20 Esna Park Drive. Markham. Ontario. Phone $41(6-14)-1251$
Mexico-AMPde Mexico. S.A.. Apartado Postal 179. Naucalpan de Juarez. Edo. de Mexico. Phone: Mexico City $576-41-55$ Puerto Rieo-AMP (OF CANADA LTD. 677 Calô de Diego. Rio Piedras. Puerto Rico 00924 . Phone: ((8 (4) 7) 766-2346
United States-AMP Incorporated. Harrishurg. Pa. 17105. Phone: 717-564-01(K)

SOUTH AMERICA

Argentina-AMP S. A. Argentina 4 de Febrers 76 Villa Zagla-SAN MARTIN. Buenes Aires. Argentina. Phone: 752-th12
Brasil-AMP do Brasil Lida.. Rua 7 de Abril 355. Sao Paulo. Brasil. Phone:..332(4)

PACIFIC

Australia-Australian AMP Pty. Limited. 155 Briens Road. Northmead. N.S.W. 2152 Australia. Mailing Address: P.O. Box 194. Baulk ham Hills. N.S.W. 2153 Australia. Phone: 603-7.377
Japan-AMP (Japan). Lid.. No. 15-14. 7-Chome Roppongi MinatorKu. Tokyo. Japan. Phone: 4()4-7171

For AMP products and services in most other countries. there's a network of official distributors. To get more information about them. please write: AMP International Division. Harrisburg. Pa. 17105 USA.

Probing the news
U.S. companies, 15 of which have more than one operation there. Three others, including Matsushita, are subsidiaries of non-U.S. companies, while the remainder are locally owned.

Incentives. What appeal does Puerto Rico hold for manufacturers? Generally, there are threelow taxes, an abundant supply of low-cost labor, and U.S.-supported training assistance. For just about everyone that has started manufacturing there, these incentives offset what some companies regard as a limited literacy rate and problems with worker reliability and training.

Topping the list of advantages, of course, is Puerto Rico's long-standing freedom from U.S. Federal income taxes-corporate, as well as personal-which manufacturers can apply to their island operations. Moreover, the commonwealth's Industrial Incentive Act of 1963 grants companies beginning or expanding operations there a 100% exemption on Puerto Rican taxes of all typesincluding income, property, and municipal, as well as license feesfor a period of 10 to 25 years, depending on plant location. The area around the capital of San Juan, for example, qualifies only for the 10 year exemption, while less developed areas, such as San German near the southwestern end of the island where DEC and three other companies operate, qualify for a 17 year exemption.

Labor. Of Puerto Rico's labor force of 926,000 , about 2%, or 20,000, have jobs in electronics and electrical-equipment plants. And most of these-some 87%-are production workers. "All our engineering and design work is done in the United States," says DEC's general manager, Richard Esten. That situation is typical of the electronics industries throughout the island.

The minimum wage on the island is $\$ 1.60$ an hour-well above that of many other offshore manufacturing locations, but still less than the $\$ 2.25$

Easy does it. Worker performs soldering operation on a Beckman Instruments pH meter. Company has had plant in Carolina, Puerto Rico, since 1967.
an hour prevailing in the continental U.S. Similarly, average hourly earnings crept up to $\$ 2.28$ last year from $\$ 2.15$ the year before, yet these are still only 58% of the floor in the U.S., and, in the opinion of one Government economist in Washington, "These relatively higher costs compared, say, to Taiwan or Korea, are offset by the breaks in taxes, transportation, and no duties."
The need for jobs on Puerto Rico, where unemployment hovers between 12% and 13%, and the fact that half the labor force is younger than 35 , also is promoted by the island government in its industrialdevelopment drive. Some manufacturers are concerned that bilingualism is not more widespread and that the average training period for workers is longer than it is on the mainland. But others say workers, once trained, are productive.
Boosters note that there is Federal support for pre-employment and on-the-job training under the 1962 Manpower Development and Training Act. DEC's Esten says that his operation is beginning to receive manpower-training assistance. Federal training support, designed for areas with high chronic unemployment, provides, for example, a program for training apprentices in skilled trades at wages lower than prevailing industry minimums. In Esten's view, the Puerto Rican labor force "is excellent." At the Chicago headquarters of Motorola Inc., which makes mobile and marine radios at Motorola Telcarro de Puerto Rico and components at Motorola Semimetales de Puerto Rico, both located at Vega Baja, the company says only, "Generally, we are

Some products are so good you don't have to
 brag about them.o.

The Spectrol Model 43 Cermet Trimmar.
This 3h-inch cermatitimmer is available lrom the foctory or any of our 75 distributor outhete 100 -piece prics $-\$ 1.10$, Weint to know mpre? Send for a data zheot or call for a quote.

SPECTROL ELECTBONICS GRCUP

Clicle 80 on reader servicei card

Different hopes for

 different folks.

People want different things from a college education.

But they all agree on one thing. It takes more than brains to get a diploma.
Why not make the burden a little easier? Start buying U.S. Savings Bonds now.

Bonds are a dependable way to build a college fund for your children. And an easy way to start saving them is by joining the Payroll Savings Plan. Start a college fund now with U.S. Savings Bonds. They just might let your kids spend more time studying and less time working to stay in school-whatever they hope to be.

Take

 stock inAmerica.Buy U.S. Savings Bonds Now E Bonds. pay Sh\%, innereat when hetd to maturity of 5 years, 10 monthe (14\% the
firsal years). Bonds are repliced if loet, stolen, or destroyed. When needed they con be beten, cashed st your bank. Intersas is not mubject
so state or local income taxe, and federal tax may be deferzed until redemption.

happy," and adds, "we are experiencing no difficulties" with Puerto Rican operations.

Signals? Does this mean that Motorola or any of the 15 multiplant electronics operations on Puerto Rico is less than happy with its decision? "I doubt it very much," argues one Labor Department official tracking the island's economic development. "Anyone who responds coolly to inquiries about their Puerto Rican operations," he muses, "is more likely just sending out signals that they know they have a good thing going and are not enthusiastic about sharing that knowledge."
Unlike Taiwan and other betterknown offshore assembly sites, Puerto Rico has no one area of high concentration in electronic products. The commonwealth government's product index embraces 28 categories of electronics, ranging from DEC's computer parts to Matsushita's TV receivers. And between these fall the potentiometers and other components made by Bourns Inc. of Riverside, Calif., at six Puerto Rican operations; the measuring instruments and parts made at three sites by Weston Instruments Inc. of Newark, N.J.; the heads fo drum, disk, and magnetic-tape drives, printed-circuit boards, and core memories made by Applied Magnetics Corp., Goleta, Calif., at four operations, as well as the magnetic sensors and passenger-seat controls made at Vega Baja by Instrument Systems Corp., Jericho, N.Y.

Are there no serious problems, then, for electronics manufacturers on Puerto Rico? Apparently not. Few specify anything, other than the generally longer period for training new employees and occasional complaints about "getting things on and off the island," even by air freight, which most electronics shippers use. Beyond that, however, perhaps typical is the view of DEC's Richard Esten, expressed when asked if he had to decide on a Puerto Rico plant investment, would he do it again? "No question about it," Esten responds. "Absolutely."

mew values HICH ENERGY

TYPE	$I_{c}($ max. $)$	$V_{\text {ceo }}$	$V_{\text {cev }}$	$V_{\text {ceo (sus.) }}$	$V_{C E(s a t)}$ @ I_{C}, I_{B}	Power Dissipation (max.)	$\mathrm{h}_{\mathrm{fE}} \min . / \max$. (a) $I_{C}, V_{C E}$
DTS-701	1.0 Amp	800 V	-	600 V		50W	(a) $150 \mathrm{~mA}, 5 \mathrm{~V}$
DTS-708	3.0 Amp	900 V	900 V	600 V	2.0 max. @ 1 amp, 250mA	$50 \mathrm{~W}$ -	-
DTS-709	3.0 Amp	900 V	900 V	600 V	$\begin{aligned} & 1.0 \text { max. @ } \\ & 2 \mathrm{~A}, 800 \mathrm{~mA} \\ & \hline \end{aligned}$	50W	-
DTS-710	3.0 Amp	900 V	-	600 V	-	50W	$\begin{gathered} 10 / 50 \\ \text { (a) } 150 \mathrm{~mA}, 5 \mathrm{~V} \end{gathered}$
DTS-712	3.0 Amp	900 V	1200 V	700 V	-	50W	$\begin{aligned} & 2.5 /- \\ & \text { (a) } \\ & 2.0 \mathrm{~A}, 5 \mathrm{~V} \end{aligned}$
DTS-714	3.0 Amp	900 V	1400V	700V	-	50W	$\begin{aligned} & 2.5 /- \\ & \text { (a) } 2.0 \mathrm{~A}, 5 \mathrm{~V} \end{aligned}$
DTS-723	3.0 Amp	1000V	1200V	750 V	$\begin{gathered} 0.8 \mathrm{max} . \\ 1.0 \mathrm{amp}, 250 \mathrm{~mA} \end{gathered}$	50W	$\begin{gathered} 10 /- \\ \text { (a) } 500 \mathrm{~mA}, 5 \mathrm{~V} \end{gathered}$
DTS-801	2.0 Amp	800 V	-	700 V	-	100W	(a) $200 \mathrm{~mA}, 5 \mathrm{~V}$
DTS-812	5.0 Amp	900 V	1200V	700V	-	100W	$\begin{gathered} 2.21 \\ \text { (a, } 3.5 \mathrm{~A}, 5 \mathrm{~V} \\ \hline \end{gathered}$
DTS-814	5.0 Amp	900 V	1400V	700V	-	100W	$\begin{gathered} 2.2 \mathrm{~J} \\ \text { (a) } 3.5 \mathrm{~A}, 5 \mathrm{~V} \end{gathered}$

APPLICATION NOTE 45

ONE KILOWATT DC SWITCHING REGULATOR.

Delco Electronics has made it possible for your Delco distributor to offer you better values than ever on these ten silicon highpower transistors. What's more, he has them in stock now and there's a healthy factory inventory to back him up.

These high quality, high voltage devices are all NPN, triple diffused, and packaged in Delco's solid-copper TO-204MA (TO-3) case.

Some are specifically designed for use in high voltage switching circuits where inductive loads or fault conditions pose problems. Some are ideal for linear regulators and power amplifiers.

In fact, all the devices share Delco's reputation for being ideal where circuit conditions and high energy requirements are a concern. And because they're 100 percent pulse energy tested, you know they're rugged.

The circuit diagrams in this ad will give you a quick reading of how these ten transistors can meet your needs.

Applications literature and complete device data are available from your Delco distributor.

Give him a call for the information you need and the delivery promises and prices you'll like.

NOW AVAILABLE FROM THESE DISTRIBUTORS IN PRODUCTION QUANTITIES.

ALABAMA, Birmingham Forbes Distributing Co., Inc. (205) 251-4104
alabama, Huntsville
Powell Electronics (205) 539-2731

-M DEL-CNS ■RAMSKI•RS。

ARIZONA, Phoenix
Sterling Electronics, Inc. (602) 258-4531

CALIFORNIA, Goleta
R.P.S. Electronics, Inc. (805) $964-6823$

CALIFORNIA, Los Angeles Kierulff Electronics, Inc. (213) 685.5511

CALIFORNIA, LOS Angeles
R.P.S. Electronics, Inc. (213) 748-1271

CALIFORNIA, Palo Alto Kierulff Electronics, Inc. (415) 968.6292

CALIFORNIA, San Diego Kierulff Electronics, Inc (714) 278.2112

CALIFORNIA, San Diego
R.P.S. Electronics, Inc. (714) 292.5611

COLORADO, Denver
Kierulff Electronics, Inc.
(303) 371.6500

CONNECTICUT, Norwalk
Harvey/Connecticut (203) 853.1515

FLORIDA, Miami Springs Powell Electronics/Florida (305) 592.3260

FLORIDA, Orlando
Powell Electronics/Florida
(305) 859.1450

ILLINOIS, Rosemont Kierulff Electronics, Inc. (312) 678-8560

ILLINOIS, Skokie
Bell Industries
Electronics Distributors Div (312) 282.5400

INDIANA, Indianapolis
Graham Electronics Supply, Inc. (317) 634-8202

INDIANA, Indianapolis
Harvey/Indiana
(317) 297-4910

MARYLAND, Baltimore
Radio Electric Service Co.
(301) 823.0070

MASSACHUSETTS,
Needham Heights
Kierulff Electronics, Inc.
(617) 449.3600

MASSACHUSETTS, Newton
The Greene-Shaw Co., Inc.
(617) 969.8900

MICHIGAN, Farmington
Harvey/Michigan
(313) 477-1650

MINNESOTA, Minneapolis Stark Electronics Supply Co. (612) 332-1325

MISSOURI, Kansas City Walters Radio Supply, Inc. (816) $531-7015$

MISSOURI, North Kansas City
LCOMP-Kansas City
(816) 221-2400

MISSOURI, St. Louis
LCOMP.St. Louis
(314) 647-5505

NEW JERSEY, Clifton

Wilshire Electronics/New Jersey (201) 365-2600 (212) 244-8930

NEW YORK, Binghamton
Harvey/Federal
(607) 748.8211

NEW YORK, Farmingdale Wilshire Electronics/Long Island (516) 293.5775

APPLICATION NOTE 54

NEW YORK, Woodbury
Harvey/ New York
(516) 921.8700 (212) 895-9260

OHIO, Cincinnati
United Radio, Inc.
(513) 761-4030

OHIO, Cleveland
Pattison Supply Co.
Industrial Electronics Division (216) 441.3000

PENNSYLVANIA, Philadelphia
Almo Electronics
(215) 676-6000

PENNSYLVANIA, Pittsburgh
RPC Electronics
(412) 782-3770

SOUTH CAROLINA, Columbia
Dixie Radio Supply Co., Inc.
(803) 253-5333

TEXAS, Dallas

Adleta Electronics Company
(214) 741.3151

TEXAS, Fort Worth
Adleta Electronics Company (817) 336.7446

TEXAS, Garland
Kierulff Electronics, Inc.
(214) 271 -2471

TEXAS, Houston
Harrison Equipment Co., Inc.
(713) 224-9131

VIRGINIA, Richmond
Meridian Electronics, Inc.
(804) 353.6648

WASHINGTON, Seattle
Kierulff Electronics, Inc.
(206) 763 -1550

IN CANADA

ONTARIO, Scarborough
Lake Engineering Co., Ltd.
(416) 751.5980

ALL OVERSEAS INQUIRIES:
General Motors Overseas Operations
Power and Industrial Products Dept.,
767 Fith Avenue, New York, N.Y.
10022. Phone: (212)-486-3723.

Delco Electronics

Regional Sales Offices
Union, New Jersey 07083
Box 1018 Chestnut Station
(201) 687.3770

Van Nuys, California 91404
Box 2968
(213) 988.7550

General Sales Office
700 E. Firmin, Kokomo, Ind. 46901
(317) $459-2175$

Operator (317) $457-8461$

Delco Electronics, Division of General Motors.

> Now you can design linears your way. Our new single and dual programmable op amps
> offer greater economy and design flexibility, let you set your own parameter specifications, and minimize power consumption at the same time.

All it takes to tailor the characteristics of our new HA-2720/2730 is one external resistor. This provides a master bias setting which will establish the desired current-flow through the devices.
As a result, critical parameters such as bias currents, supply currents, bandwidth, slew rate, input noise, and others can be optimized to meet your particular needs. And because the devices have such a wide power supply range ($\pm 1.2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$) they can be used in an almost unlimited variety of linear designs.

A single programmable op amp, the HA-2720 is a direct replacement for many currently available op amps, yet it offers superior performance features over all of them. Among these are a wider range of programming, higher slew rate and bandwidth at low power levels, superior output current, and lower noise current. The HA-2730 is a dual monolithic version of the HA-2720 with identical performance features.

For the user these devices offer substantial benefits. First, they are highly reliable because
they are short-circuit protected and have internal compensation with classical frequency response. They also provide you with considerable economy because the wide range of programming possible allows you to standardize your op amp inventory and change parameters as needed. Finally, by modulating the set current terminal you can minimize systems components and obtain such applications as VCO's, Wien bridge oscillators, and waveform generators.

Among other applications are

Typical Biasing Circuits

low power instrumentation, portable battery operated instruments, active filters, and hearing aids. For details see your Harris distributor or representative.

Features

Wide range A.C. programming Slew rate
0.06 to $6 \mathrm{~V} / \mu \mathrm{s}$

Gain x
Bandwidth $\quad 5 \mathrm{KHz}$ to 10 MHz
Wide range D.C. programming
Power supply range

$$
\pm 1.2 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}
$$

Supply current
$1 \mu \mathrm{~A}$ to 1.5 mA
Input bias current
0.4 to 50 nA

Output current up to 15 mA
Suitable for direct replacement of:
Fairchild μ A776
Solitron UC 4250
National LM 4250$\}$ HA-2720
Intersil ICL-8021
100-999 units
HA-2725 $\mathrm{O}^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ \$ 3.30
HA-2720 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \$ 8.80$ Supplied TO-99
HA-2735 $\mathrm{O}^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C} \$ 7.15$
HA-2730 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ \$16.50
Supplied TO-116

HA-2720/30 Programming

mable OpAmps for
 HA-2720 Single Programmable

 Operational AmplifierSlew Rate
vs. Supply Current

Output Current vs. Supply Current

HA-2720

T0-99

HA-2730 Dual Programmable Operational Amplifier

Gain Bandwidth Product vs. Supply Current

Input Noise Current
vs. Supply Current

HA-2730
 10-116

Above comparative data curves were experimentally derived or extrapolated from published data sheets where available.

Precision Paper Tube Co., 2033 W. Charieston St.. Chicago, Ill.
noco l'roducts Co., Hartsville, S.. Stone I'aper Tube Co., 900 Franklin St., N. IE. Washington, $D . C$.
PIIFOLIC TCBING-se

Turntables
 PHONOGRAPH and TRANSCRIPTION TURNTABLES

Alliance Mig. Co., Lake Park Blvd., Alliance. Ohio
Bateman Sound Systems, 680 Johnston cirical Akron, Ohio
-lectrical Industries Mig. Co., Red Bank, Filectro Acoustic ro., 2131 lueter Rd., Fort Wavne. Ind.
Fairchild Aviation Corp. 8 , 8-06 Van Wyck Blvd.. Jamaica, N. Y. Yook Hampshire St., Quincy, ill.
General Communication Products Co., Lexington Ave. at Vine, Hollywood, Cal. General industries Co., 3537 Taylor St., Elyria, Ohio
Harris Mrg. Co., 2422 W. Seventh St., Mellaphone Corp., 65 Atlantic Ave., Rochester. N. Y.
Pacent Engineering Corp., 79 Madison Presto Recording Corp., 242 W . 55th St., New lork. N. Y. $\underset{\text { P }}{ }$ W. 45 th St., New Radio Engineering Laboratories, Inc., 35Radio Engineering Laboratories, Inc., $55-$ Ray Lal., Inc., 211 Railroad Ave., Eimira, RCA Mfg. Co., Camden, N. J.
Rek-O-Kut Corp., 173 Laiayette St., New Robinson Recording Jaboratories, 35 S . Sminth St., Philadelphia, Pa.
Smith Co. Maxwell, 1027 N. Hiphland Sound Apparatus Co., 150 W. 46 th St., Talking pork, \mathbf{N}.
Talking Devices in.. 4451 W . Irving Park Transformer forin, of America, 69 WoosWarner Co., J. J., 1244 Larkin St., San Francisco. Cal. Rochester, Minn.

Varnish

see Flnishes

Vibrators

HOME and AUTO RADIO VIBRATORS

American Television \& Radio Corp., 300 Electrical Priducts Co., 6535 Russell St
Mallory \& ("o. 1'. K. 3029 F. WamhingIon st., Indiamapulis, Ind. (See puge Oak Mifg. Co., 1260 Clybourn Ave., Chicago. Ill. Radiart Corp.. $35: 1$ W. 62 St., Cleveland Ohin
Turner Co.. $60^{4} 417$ th St., N. l\%., Cedar Rapids. lowit.
United Notors sforvice, 3044 W. Grand Utall Radin Pruducts Co., 820 Orleans Se., Chicago, Ill.
Vihrapower Co.. Janies, 1551 Thomas St., Chicago, Jll.

Washers

LOCK WASHERS

American Nut \& Bolt Fastener Co., 2045 Dnerr St.. Pittsburgh, Pa,
Clark Bros. Itolt To., Milldale, Conn.
Eaton Mfg. Co., Reliance Spring Washer Harper Co H M , 6
Harleer Co., H. M., $\quad=630$ Fletcher St. Hobbs Mfg. Cu., 26 Salisbury St., WorcesIndustrial Sorew \& Supply Co., 711 W Lake St., Chicago, Ill.
Lewis Bolt \& Nut Co., $50 t$ Malcolm Ave. S. E., Minneapolis, Minn.

Line Material Co. $\quad \mathrm{N} .10 \mathrm{Second} \mathrm{St}$. Milwaukre, Wis.
Vational Lock Washer Co., 40 Hermon St., Newark, N. J.

Palnut Co., 61 Cordier St., Irvington, Philadeljhia Steml \& Wire corp., Pen! st. d Belfield Ive., Philadelphia, Pa Positive Lock Wiasher Co., 181 Miller St. Newirk, I. .J. 256 N. Keeler Ave., Chicago, 111.
Thompson-Bremer \& Co., 1640 W. Llubbard St., Chicago, Ill. 1629 . Wrought Washer Mfg. Co., 2223 S. Bay

Waxes

WAXES and COMPOUNDS

Allied Asphalt \& Mineral Corp., 217 Anaconda Wiy, New York, N. Cable Co., 25 BroadAustin Co., M. B., 108-116 S. Desplaines Sakelite Chicago, Ill.
Bakelite Corl., 30 E. 42d St., New York, Benolite'
Benolite corp., Manor. Pa. 13 Arch St. Biddle Co., Janies G., 1213 Arch St. Biwax Corp., 101\% S. Kiolmar Ave., Chi Candy \& Co., 2515 W. 35th St., Chicago Ill. Chemical Co. 432 Danforth Cochrane Chemical Co.s 432 Danforth Continental-1.iamond 'Fibre Co., 13 Chapel St., Newark, Jel.
Dolph Co., John C., 168 A Emmett St. Newark, N. J.
duPont I'lastic Dejt., Arlington, N. J.
clectrical fingineers bifuipment Co. 26 th General Cable Corp., 420 Lexington Ave. Genew Jork. N.
General iectric ${ }^{\circ}$ o., Appliance and Mer
chatnase left., liridgeport, Conn.
Georgia Rosin 1'roducts Co., Savinnah,
Glidden Co.. 11100 Glidden Ave., Cleveland, Ohio
G \& W Electric Specialty Co., 7780 Dante Ave., Chicago. Ill.
Halowax Cory., 247 Park Ave., New York, impervionis
Impervious Varnis: : U., liochester, P'a
Insil-N Co., 198 Lafayette I'l., lingle wood,
Insulatine Co., 1 Broadway, New York, Insulation Manufacturers Corbo., 565 W. Washington lilvd., Chicago, Ill. 10 Irvingrton Varnish \& Insulator Co., 10 Argyle Terrace, Irvington, N. J. New
Line Mraterial Co., 740 N. Second St., Milwaukee, W"is
Mans and waldstein Co., 43 S Riverside Mcoill Migg. Co., Box $6 \%{ }_{6}$, Valparaiso, Ind. Mçill Nig. Co., Box 670, Valparaiso, Ind.
Minerallac l:lectric Co., 25 . Peoria St., Minerallac \quad Chectric Co., $25 \times$. Peoria St.,
Chicago, 111 . Mitchell-Rand Insulation Co., 51 Murray St., New York, N. Y. 70 Niagara St., Buffalo, N. Y.
Okonite Co., Canal St., Passaic, N. J.
Pioneer Nsphait Co. 435 N. Michigan Robertson Chicaro, Ill. 9 Comical Meech Ave., Cleveland, Olio
Rockbestos Products Corp., 308 Nicoll St., New Haven, Conn
Roebling's Sons Co., John A., Trenton,
Rusgreen Mig. Co., 11962 Birwood Ave., Jetroit, Mich. ion Pittshurgh o., Sharןsburg Station, Pittshurgh, I'a.
Sterling Varnish Co., Haysville, Pa
Trotter \& Co., 14.
Vestinghouse Einctric \& Mrg. Co., East I'ittshurgh, Pa.
Cophar MIIT. Inc.. $112-26 t h$ st., BrookJ.nn, N. Y. (see page 1\%3.)

WINIINGS—-see coils

Wire

POWER CORDS

Alden I'roducts Co., 117 Main St., BrockAlpha Wire Corp., 50 Howard St., New Jork, N. Y.
American Automatic Electric Sales Co. rican Automatic Electric Sales Co.,
10.33 v. Van Buren St., Chicago, Ill.

American Electric Cable Co., Holyoke, Anerican Metal Moulding Co., 146 Coit American Steel \& Wire Co., Lockefeller 13lig., Cleveland, Ohio
Anaconda Wire d C'able ('o., ≥ 5 Itrount way, New lork, N. li. (See page 31.) Ansonia Lelectrical Wire Co., Ansonia, Conn.
Audio Ievelopment Co., 1033 W. Van Buren St., Chicago, Ill.
Austin Co.; Mi. B., 10 S S. Desplaines St., Chicago, Ill.
den Mfg. Co., 4647 W . Van Buren St., Chicago, Ill., 464 W. Birnbach Radio Co., 145 Iludson St., New
Boston Insulated Wire \& ('able Co., B5 ISay St., (Dorehester), Hoston, Mans. Isay St., (Dore
(See page 166.)
Camden Wire Co., Camdun, N. V
Circle Wire \& Cable Corno, 告io Maspeth rostai Mfg. Co., 285 . Sixth St., Brooklyn, N. V.
Collyer Insulated Wire Co., 249 N. Main Columbia Cable Ret jolectric Co., Manly St., Long Island City, $\underset{\text { I. }}{ }$ I.
Consolinated Wire \& Associated Corps., p'eoria \& Harrison Sts.. C'hicago, Ill. Copperweld sttel Co., Glassport, Pa. New Cornish Wire Co., 15 Park LRow, New
Crescent Cable Co., Front \& Central Ave., Crescent Insulated Vire \& Cable Co., N. Olden Ave. \& Taylor St., Trenton,
Diamond Wire \& Cable Co., Lowe Ave., Chicago lleimhts. Ill. Wire Div., Port
Lissex Virire Corp., 37 Manchester St., Detroit, Mich.
itt Mifg. Co., Frookfield, Mass.
Gavitt Mifg. ©o., Trookfleld, Mass. General Cable Corp., $\$ 20$ Lexington, Ave.,
New York, N. General lolectric (Mo., Schenectady, N. Y. General insulated V'ire Works, 105 Gordon Ave., Providence, R. I.
Graybar bilectric Co.. Lexington, Ave, at $43 \mathrm{St} . \mathrm{N}$ New York, N. Y. (Sole Distributors for Whitney Blake Co., New Havern, Conn. Chicatgo., 111.
Habirshaw Cable \& Wire Corp., 40 Wall Hatfield Wire \& Cable Co., Hillside, N. J. Hazard Insulated Wire Works, Div. of Insuline Corp. of America, $30-30$ Northern Blid., Long Island City, N. Y. Kellogg switchboard \& Supply Co., 6650 Kennecott Wire \& Cable Co., Phillipsdale, R. 1.

Ferite Insulated wire \& Cable Co., SeyKnickerbocker Annunciator Co., 116 West Lenz Fi., New York, ©. Yic Mfg. Co., $1 / 51 \mathrm{~N}$. Western Ave., Chicago, Ill
Midland Wire Corb., 70 Hunter St., Tiffin, Ohio
ational Electric Prolucts Corp., Fulton Bldg. Pittsburgh. Pa.
New Fngland Cable Co., Concord, N. H New York Insulated Wire Co., 295 Madi son Ave., Dew York, N. Y.
Pkonite Co, Passaic, N., J. General Motor Packard Corp., Warren. Ohio Jenera Motor: Paranite Wire \& Cable Corp., Jonesboro Ind.
Phelps Dodge Copper Products Corp. Anerican Copper Products Div., 40 Philadelphia Insulated Wire Co., 220 N . Third St., Philadelphia, Pa. Rockbestos Products Corp., 308 Nicoll St. Roebling's Sons Co., John A., Trenton, N. J.

Rome Cable Corp., Rome, N. Y.
Runzel Cord \& Wire Co.. 4731 iv. Montrose Ave., Chicago, Ill.
Simplex Wire \& Cable Corp., 79 Sidney St., Cambridge, Mass.
Stromberg-Cirlson Telephone Mfg. Co. 100 Carlson Tid., Rochester, N. Y, Triangle Conluit \& Cable Co., New BrunsCnited States Rubber Co., 1230 Sixth 'pson ivalton Yo., 1286° W. 11th st.

Beiore we wrote the only

Computer User Plan,we Duift toieij's beat plannei computer. The Prime 300.

The Prime Computer User Plan brings common sense to buying a computer. It recognizes the simple fact that your needs might change someday. The Plan introduces the first two-year guaranteed trade-in policy. It details the upward and downward compatibility features only Prime offers. In short, it gives every assurance you can always put a Prime system to use.

We consider The Plan a new way to buy, use and upgrade computer systems. We also give you the systems to consider. The Prime 100, 200 or 300 . The chart below is a preview of what to expect in each.

Standard Processor Features	
Prime 300 Central Processor (1 board)	- Virtual Memory - automatic paging, mapped address translation to 256 K words, restricted execution mode, and memory protect.
	- Stack Procedure Instructions - Micro Verification Routines** - Hardware Multiply/Divide and Double Precision Arith.* - DMC/DMT Capability*
Prime 200 Central Processor (1 board)	- Automatic Program Load From Input Devices (PTR, TTY, CR, MT, Disk)*
	Memory Byte Parity
	Processor Byte Parity
	- Full Addressing Modes - direct, indirect, and indexed in both sectored and relative modes
Prime 100 Central Processor (1 board)	Virtual Instruction Package (VIP)- automatic trapping of unimplemented instructions and substitution of functionally equivalent software subroutines.
	- 8-Channel Programmable DMA - 4 Channel Full Duplex Asynchronous Serial Interface - Multi-level Vectored Priority Interrupt System
	* Optionally available on Prime 100 and 200 **Optionally available on Prime 200

The chart suggests there's a little 300 in every Prime computer. Naturally, we planned it that way. Our 300 is just the reverse of the big box with a little computer inside.

Other 300 features will tell you just how big it is. For instance, there's high-speed MOS memory with 32 K words per board. Up to 256 K words per system. There's floating point arithmetic and writable control store, too. In short, there's everything you'll need in the computer you can plan with. Work out a multifunction system or plan a multi-user arrangement. The diagram that follows is just one way to go.

The Prime 300 supports a multi-user, virtual memory Disk Operating System (DOS VM) and a foreground/background Real Time Operating System (RTOS VM).

A Prime 300 with virtual memory easily accommodates over a dozen users. What's more, each is guaranteed 64 K words of virtual memory available to program in FORTRAN, BASIC, Macro Assembler and Micro Assembler.

The system files and paging space are all provided by cartridge disk. Our new diskettes offer low cost storage for personal user files.

A Prime 300 is good. How good can best be seen in The Plan It shows how to upgrade from the 100 right on to the 300 . In the process, you don't change software. The time and expense of reprogramming are gone. You can also use the 300 as a software development system. The software will run on 100° s or 200° s without modification. The Plan guarantees this kind of system compatibility.

The Plan also goes into system integrity features. Memory Byte Parity and Processor Byte Parity are standard in the Prime 300. Micro-verification routines (also standard) and controller loop-back allow you to isolate faults to a single board.

The Plan then spells out our total service options. They run from comprehensive on-call service contracts to Prime's unique Air Spare System. With Air Spare, we'll air express, for a minimal charge, any backup boards you may need from our nearest service center. We'll make repairs on faulty boards and have them back in no time. Meanwhile, you'll be operating full-time thanks to Prime.

There's more to The Plan. The best way to discover how much is to have your own Send for it. The coupon below, like the Prime 300 , will make it all possible.

HERMES LOOP ANTENNA

THREE SAMPLE SITES

 ON THE NORTH AMERICAN CONTINENT -DIFFERENT LATITUDES DIFFERENT CLIMATE

FROBISHER BAY, CANADA

MARSHFIELD, MASS.

NEAR SAN DIEGO, CALIF.

Even in the solitude of the forest depths, from rooftops, arctic tundra, swamps to sweltering tropics, 'neath snow, sand or ice,
the Hermes Loop antenna keeps an ear to the sky. The amazing aperiodic antenna does away with vast log periodic and rhombic arrays - those towering antenna farms.
Excellent directional characteristics in rosette configuration, the Hermes loop antenna provides an omnidirectional broadband receiving array in space merely $1 / 100$ th that of the traditional antenna farm. More than 53 government agencies around the world have pressed the loop antenna into service.
A new, even more compact version is available. Only Hermes Electronics makes it.

ASK US Send for our Brochure

Hermes Electronics Limited
Suite 315
2020 F Street NW
Washington, DC 20006 USA
202-296 2978
TWX 7108221106

Optical waveguides look brighter than ever

> Optical telecommunications systems could be practical today now that low-loss optical waveguides can be produced; eventual cost-competitiveness with wire and cable is promised

by F.L. Thiel and W.B. Bielawski, Corning Glass Works, Corning, N.Y.

Optical waveguides are important transmission media of the future. Their promise of large bandwidths and freedom from crosstalk and interference has encouraged years of research, and this investment is now on the verge of paying off in wideband cable with low enough losses and low enough costs to allow cost-effective data links (Fig. 1) to be built.

Optical frequencies can carry far more information than the much lower microwave frequencies. Hundreds of optic fibers, each carrying up to 1,000 telephone conversations, may be run in one cable with minimal crosstalk, complete electrical isolation, and immunity to external electrical noise and interference with significant frequency response advantages over coaxial cable (Fig. 2). Moreover, the medium should become directly costcompetitive with coaxial cable and later even with twisted-wire pairs, since technical advances are decreasing the cost of fibers while the cost of the raw materials of wire and cable are rising.

Already the main thrust of fiber-optic engineering has shifted away from investigative research and toward system development and production. For instance, Corning Glass Works of Corning, N.Y., has recently signed agreements with several companies to develop waveguides for an optical telecommunications system. A pivotal event in the growth of R\&D in optical communications was the production of several hundred meters of low-loss (decibels per kilometer) waveguide by Corning Glass Works in 1970.

Concepts for long-range use of optical waveguides high in telephone system hierarchies, where bandwidths in excess of those obtainable with millimeter waveguides will be required, have progressed to the point where optical waveguides should be applicable throughout the telephone system. The same advantages, outlined in Table l, hold promise of applications in the cable television, computer, military, process control, and instrumentation fields.

Designing an optical link

An optical link's performance can be predicted from the parameters of its component devices-a signal-modulated light source, coupled to a cable, coupled to a photodetector. For instance, bandwidth is determined
by the input light source or its pre-amplifier or driver, by the dispersion in the optical waveguide, or by the detector or its post-amplifier. Length of a link may be limited by input source power, input coupling efficiency, attenuation in the waveguide bundle, detector responsivity, or detector noise.

In the design of a link, the potential performance limitations of all its components must be viewed together, so the performance achievable by the link can be rapidly assessed. It is helpful to plot bandwidth versus link

1. Tv link. Television signal intensity-modulates the LED. After transmission down the cable, the detector converts this light intensity variation back into electrical modulation. Addition of the drive and receiver electronics is all that is necessary to convert a standard coaxial system into an optical cabling system.

2. Fibers versus coaxlal cable. Optical waveguide exhibits a flat response and temperature stability over a wide temperature range, unlike coaxial cable. Coaxial links often require compensation of the roughly square-root dependence of their attenuation on frequency.
length as in Fig. 3, in which three types of curves form boundaries on the region of acceptable link performance. (The specific values chosen in plotting these curves were measured in the laboratory or derived from manufacturers' data sheèts.)
The first curve in Fig. 3, labelled source, shows a 35megahertz limit on bandwidth, independent of link length. This is typical of the modulation limit of the fastest commercial infrared-light-emitting diodes-other circuitry in the link can generally be made with a larger bandwidth and therefore does not set a limit to modulation bandwidth.

The second curve, labelled cable, shows the 3-decibel bandwidth limitation imposed by optical-waveguide dispersion (see "Attenuation and dispersion," p. 91) and was calculated from a pulse broadening of 1.5 nanoseconds per kilometer, such as might be measured with an injection laser as source. Since this data would include both an intermodal (multimode group relay) dispersion component and a material dispersion component, the latter was scaled appropriately to account for an assumed LED line width of 400 angstroms. (Multimode group delay dispersion refers to the varied times of arrival of the different wavelengths emitted at one time by a light source; with each wavelength or mode is associated a group of photions, which travels at a different speed from groups associated with other wavelengths.) Dependence of link length on pulse broadening was assumed to be linear for lengths up to 0.5 km and to vary as the square root of length beyond that distance. The assumptions on which this calculation was based are representative of certain multimode waveguides with graded index profiles.

The third type of constraint, shown in Fig. 3 as a pair of curves labelled 60 dB and 20 dB , includes all the factors which limit signal-to-noise ratio at the detector. The signal-to-noise curves assume a relatively conservative $25-\mathrm{dB}$ coupling loss into the hexagonally close-packed fiber bundle termination. Waveguide bundle attenuation is taken as $10 \mathrm{~dB} / \mathrm{km}$ and the source is a Lambertian LED with an output power of 10 milliwatts and a 0.46 -millimeter diameter. The minimum discernible sig-

3. Optical Iinks' Ilmitations. Performance limits for optical links are set by device parameters-the source, waveguide, and detector characteristics. Modulation (source) affects signal transmission bandwidth. Dispersion (waveguide) limits bundle length due to pulse broadening. The signal-to-noise ratio of the detector sets the lower limit on signal strength.
nal or noise equivalent power at the detector in Fig. 3 is derived from manufacturers' data for a silicon avalanche photodiode with a gain of 100 and a following transimpedance amplifier.
The curve derived in this way represents a small-signal analysis in which detector shot noise, excess multiplication noise, the thermal noise of bias resistors, parasitic detector series resistance, and amplifier noise terms have all been included.

Amplifier open-circuit gain is assumed to be very large throughout the frequency range of interest. Quantum efficiency of the detector is assumed to be 50% throughout the frequency range of interest. All other parameters are extracted or calculated from manufacturers' data.

To calculate the $60-\mathrm{dB}$ curve in Fig. 3, it is first necessary to find the power required at the detector. This power is the value from Fig. 4 (e.g., 1.5×10^{-9} watts at 10 mHz), increased by a factor of 1,000 to give a $60-\mathrm{dB}$ signal-to-noise ratio (e.g., $1.5 \times 10^{-6} \mathrm{w}$ at 10 MHz). This power is compared to the available power coupled into the waveguide bundle at the input $\left(30 \times 10^{-6} \mathrm{~W}\right.$ in this case). The attenuation that can be accepted in the op-tical-waveguide bundle itself (e.g., $10 \log _{10} 30 / 1.5=13$ dB) is converted to link length from the assumed attenuation of $10 \mathrm{~dB} / \mathrm{km}$ (i.e., $13 \mathrm{~dB} / \mathrm{km}=1.3 \mathrm{~km}$). It is this computed length, monotonically decreasing with increasing frequency, that is plotted in Fig. 3.

The $20-\mathrm{dB}$ curve is obtained in the same manner except that the desired signal-to-noise ratio at the detector is taken as 20 dB .

As the analysis of Fig. 3 shows, the region of accept-
able link performance and its boundaries are defined by the system components. For short link lengths, the maximum LED modulation rate limits performance. As link length increases, dispersion in the optical waveguide

Attenuation and dispersion in optical waveguides

There are two types of attenuation in optical waveguides: absorption and scattering. Absorption attenuation is principally attributable to impurities present in the waveguide glass, including transition metal and OH ions. Existing waveguide processes have reduced impurities to a level of a few parts per billion.

Scattering attenuation is caused primarily by thermal and concentration fluctuations, but it may also include inhomogeneities and artifacts introduced in the waveguide manufacturing process. Scattering is dependent on the operating wavelength and generally decreases with increasing wavelength. In a waveguide having a total attenuation of several decibels per kilometer, absorption and scattering account for comparable fractions of the total attenuation in the 800-nanometer region. The lowest attenuation achieved thus far has been $2 \mathrm{~dB} / \mathrm{km}$ at 1.06micrometer wavelength. At this level, most of the attenuation is scattering attenuation.
An important consideration in using optical waveguides is the choice of operating wavelength. Two regions of low attenuation compatible with available optical sources are between 800 and 900 nm (GaA1As diodes) and at 1.06 $\mu \mathrm{m}$ (neodymium YAG Lasers). Operation at wavelengths approaching the ultraviolet (below $0.5 \mu \mathrm{~m}$) will result in significantly higher attenuation due to the intrinsic Rayleigh scattering and ultraviolet absorption present in all glasses. Operating at far infrared wavelengths (above 1.1 $\mu \mathrm{m}$) will result in increased attenuation due to absorption bands of OH including the fundamental peak at $2.7 \mu \mathrm{~m}$ and its tail and overtones at shorter wavelengths. Between 0.7 and 1.1 micrometers, the bulk of any absorption above $2 \mathrm{~dB} / \mathrm{km}$ is due to OH absorption. Elimination of residual fiber water content leaves scattering as the major loss mechanism.
Waveguide material properties and the spectral width

A. Losses over long transmission distances can be minimized if a fiber's index of refraction is tapered properly from core to cladding. The loss is proportional to cable length over short distances to the square root of the length beyond 5 kilometers.
of the light source are the fundamental determinants of bandwidth capability of optical waveguides. Bandwidth is further modified by the waveguide structure and factors related to the excitation and detection conditions and modal characteristics of the waveguide.

For silica, material dispersion alone results in pulse spreading on the order of picoseconds in 1 km . Pulse spreading is markedly affected by the spectral width of the source. For LEDs, depending upon a particular design's characteristics, spectral width results in pulse spreading from just below 1 nanosecond to nearly 5 ns on 1 km of optical waveguide. A spectrally narrower, solid-state injection laser decreases the pulse spreading by approximately one order of magnitude.

The most important factor related to the waveguide structure is the shape of the index profile. Some multimode fibers are characterized by a "step" index profile. Difference in path length for a straight-through ray and a critical ray causes pulse spreading proportional to aperture and length of fiber. Depending on waveguide parameters, this effect sets the waveguide bandwidth capability at some level below 10^{8} bits per second over 1 km .

Path length can be equalized by properly shaping the index profile. Experimental multimode waveguides with an approximately parabolic index profile have shown pulse spreading as low as 1 ns in a $1-\mathrm{km}$ length. In some waveguide fibers, mode-mixing effects account for the very beneficial change in shape from a linear dependence on distance of pulse spreading over short distances to a square-root-of-the-length dependence for distances greater than about 500 meters.

B. Both geometric and material dispersion spread an optical pulse as it propagates down a fiber. Dispersion is a function of center operating wavelength and the source optical bandwidth.

4. Good viewing. The minimum signal that can be detected with a typical avalanche photodiode and preamplifier combination is about 10 nanowatts at 30 megahertz.
forms the limit on 3-dx bandwidth. At some length, performance is held back by the combined effects of limited input power, attenuation, and detector sensitivity and noise.
Note that a $100 \times$ increase in source power, or a $100 \times$ increase in source coupling efficiency, or a $100 \times$ decrease in detector noise would move the $60-\mathrm{dB}$ curve to the position now occupied by the $20-\mathrm{db}$ curve and move the $20-\mathrm{db}$ curve correspondingly to the right. However, a change in waveguide attenuation from 10 $\mathrm{dB} / \mathrm{km}$ to $2 \mathrm{~dB} / \mathrm{km}$ would move these curves to the right by a distance factor of 5 . Thus, extremely low values of attenuation ($2 \mathrm{~dB} / \mathrm{km}$) have been achieved in optical waveguides, and such values pay handsome dividends where longer distances are required, especially if these can be achieved at reasonable cost.
It is interesting to speculate on what would happen if a suitable injection-laser source capable of continuouswave operation at room temperature were available. Assuming such a source could couple 10 milliwatts of power at 900 nanometers into a single multimode fiber and could be modulated at rates up to 1 GHz , with line width of 25 angstroms, and if all other assumptions in Fig. 3 remain unchanged, the performance shown in Fig. 5 would result. Because the laser line width is much narrower, dispersion is much less marked than when a relatively wideband LED is used as a source. The most striking change is that dispersion, rather than source modulation, becomes the performance limit throughout much of the useful operating range.

Source coupling

The maximum amount of power that can be coupled from a source into an optical waveguide bundle can be calculated from measurable properties of the source and bundle. In addition to geometrical parameters, a knowledge of the radiance of the source as a function of

5. Laser alleviation. An injection-laser source would, by reason of its narrow emission line width, greatly reduce dispersion and increase allowable link length and data rate. These sources are not yet commercially available in room-temperature cw versions.
position and angle is another essential requirement.
For example, consider a surface-emitting LED as the source and an hexagonally terminated close-packed 19fiber bundle as the receiver. The source, as viewed from the exterior, might typically have an emitting area 0.46 mm in diameter. Its emission will be Lambertian-the radiance is constant when viewed from any direction in the forward hemisphere. The total power, R_{s}, emitted from the LED can be given by:

$$
P_{\mathrm{s}}=N_{\mathrm{s}} A_{\mathrm{s}}
$$

where N_{s} is the source radiance and A_{s} its emitting area.
The power accepted by the waveguide bundle, P_{b}, can be given as:

$$
P_{\mathrm{b}}=N_{\mathrm{b}} A_{\mathrm{b}} \pi \gamma^{2}
$$

where N_{b} and A_{b} are the radiance and area of the bundle, respectively, and γ is the acceptance angle.

Now by the principle of conservation of radiance, N_{b} is at best equal to N_{s}. Therefore:

$$
\left(P_{\mathrm{b}} / A_{\mathrm{b}}\right) \pi \gamma^{2} \text { is equal to or less than } P_{\mathrm{s}} /\left(A_{\mathrm{s}} \pi\right)
$$

and the maximum coupling efficiency is:

$$
P_{\mathrm{b}} / P_{\mathrm{s}}=\gamma^{2}\left(A_{\mathrm{b}} / A_{\mathrm{s}}\right)
$$

The light-accepting area of the bundle, A_{b}, is just the cross-sectional areas of all of the cores within the bundle. However, the best one can do with a simple optical system is to place the LED emission within a circle

6. CIrcle Into hexagon. The bundle consists of 19 fibers, ending in a hexagonal metal connector. Along its length, however, the bundle has a circular PVC jacket. The minimum coupling loss is 19 dB .
circumscribed about the light-accepting area. Thus A_{b} $=\mathrm{fA}_{c}$, where A_{c} is the area of the circumscribed circle and f is termed the packing fraction.
Figure 6 shows the end of an hexagonally terminated close-packed 19-fiber bundle. Each fiber has an acceptance angle $\gamma=0.14 \mathrm{rad}$ and is $125 \mu \mathrm{~m}$ in diameter, with a light-accepting core that is $85 \mu \mathrm{~m}$ in diameter. The minimum-diameter circumscribed circle is also shown.
The coupling efficiency calculated from the above parameters is $\mathrm{P}_{\mathrm{b}} / \mathrm{P}_{\mathrm{s}}=1.3 \%$. Equivalently, the coupling loss is 19 db . Of this loss, 4.0 dB is attributable to the packing fraction of 40%.

Since 19 dB is the minimum coupling loss achievable for the assumed source and bundle with a simple optical system, the assumption used in the text is assessing link performance was a more conservative 25 dB .

A brilliant future

Future developments should have much more dramatic results. Potentially, opto-cabling is capable of providing not just a high-performance, cost-effective alternative to wire and coax but radically new system capabilities for designers.

A 300 -meter $10-\mathrm{mHz}$ link is well within the limits of existing technology and should be producible and serviceable. Over-all link performance is the result of degradation introduced at every component of the system, while the fiber bundles themselves allow data transmission bandwidth of one gigabit or more.

An experimental data link, shown in Fig. 7, was built and evaluated. Adjustable gain of the input amplifier was provided to compensate for variations in performance caused by changed bundle lengths or unit-to-unit variations in sources, bundles, or detectors.

The LED used in the system was biased in the middle of its operating range, although this can be easily modi-

TABLE 1 CHARACTERISTICS OF OPTICAL WAVEGUIDES

| | Low-loss, broadband transmission
 Extended amplifier spacing over coax |
| :--- | :--- | :--- | :--- |
| | Upgradable capacity with source detector improvements |
| Small diameter, low weight, flexibility
 Low installation costs | |
| Limited duct space requirements | |
| and radiations adverse temperatures, chemicals, | |
| Provides circuit isolation | |
| Non-shorting | |
| Immune to electromagnetic interference or | |
| impulse induced errors | |
| Difficult to tap | |

fied for an application involving only unipolar inputs. It was protected from being overdriven by saturation of the input amplifier. Table 2 lists the fixed parameters of the link. Data was taken with a 50 -ohm load. Figure 8, which shows typical insertion gain (output divided by input) characteristics versus frequency of the system, demonstrates prototype performance, although at the present time optical fiber links can only compete with coaxial cable over very long distances.

However, optical waveguides are potentially applicable throughout the telecommunication system hierarchy. The higher the channel density, the more favorable the figure of merit for the installed cost per channel mile. In fact, system designers may well choose to design fewer layers of system hierarchy because waveguides, when carrying a large number of channels, will not represent a significant system cost.

The upper boundary of optical waveguide penetration into telecommunication systems will probably be determined by a complex tradeoff among the output power and modulation rate of feasible sources. such waveguide properties as attenuation, bandwidth, aperture, and the cost of multiplex and input/output electronics. The lower boundary will be determined primarily by waveguide cost in comparison to conductors such as twisted-wire pairs. Although development work continues, and a large investment in production facilities will be required, it is reasonable to expect optical waveguides eventually to become directly cost-competitive with communication wire.

Categories of applications

Five major applications categories for low-loss optical waveguide conductors are listed in Table 3.

Use of optical waveguides in telephone transmission clearly represents their largest potential application. The principal motive here would be the economy deriving from their large bandwidths and low attenuation. Small size and bending radius are also important where the available duct space is limited, as in most major cities and even more acutely in areas like office or data processing complexes. Minimal crosstalk and noninterference are also important.

In telephone systems, waveguide cables will consist of

Low-loss optical waveguides

Crucial to any telecommunications application is the availability of quantities of low-loss waveguides. Corning makes two forms of low-loss optical waveguide. One is Kinar-coated waveguide bundles characterized by total attenuation below 30 dB in standard lengths of 1 kilometer. The other is fiber-optic bundles, consisting of 19 fibers packaged in a PVC jacket, which have a total attenuation of $30 \mathrm{~dB} / \mathrm{km}$ in lengths of 500 me -
ters. ters.

Currently available bundles are intended for laboratory work and demonstrations of system feasibility, and not as practical field cables. Development has, however, begun on waveguide packing techniques to yield conductors with handling properties comparable to those of small-diameter coaxial cable.
Individual multimode fiber parameters are:

- An outer diameter (coated) of 135 micrometers
- A core diameter of 85 micrometers.
- A core refractive index of 105.
- A numerical aperture (size of the half angle of the acceptance core) of 0.14 . (The square of the numerical aperture is a measure of the light-accepting capacity of a fiber.)
- Attenuation at $820-\mathrm{nm}$ wavelength of $30 \mathrm{~dB} / \mathrm{km}$.

Fiber bundles of multimode optical waveguides available in the 500 -meter maximum length have an outside diameter of 3 mm and an attenuation of 30 $\mathrm{dB} / \mathrm{km}$ at an $820-\mathrm{nm}$ wave length.
up to several hundred fibers, each used as a separate physical channel. Present multimode fibers would be suitable, now that their bandwidth capability has reached several hundred megabits per second in $1-\mathrm{km}$ lengths. However, a key component, which is required if optical waveguides are to be fully exploited in high-data-rate telephone transmission, is a high-bandwidth source capable of coupling enough power into a single fiber to achieve long-distance transmission. The preferred source would be a continuous-wave, room-temperature, reliable, solid-state injection laser, though improved light-emitting diodes may prove adequate for some applications.

Suitable cables must be developed, and their long life (20 to 40 years) proven. Splicing ability and provision for carrying dc currents needed for signaling and repeater power supplies are two additional developmental problems receiving attention in several laboratories.

The broad-network category of optical waveguide applications includes CATV and interactive-CATV ranging from the "wired city" concept to a variety of dedicated communications networks for use in education, hospitals, commercial, industrial, and military environments. The larger bandwidth and low attenuation of an optical link could carry several dozen TV channels, and repeaters could be spaced several miles, instead of half a mile, apart. In addition to obvious cost savings, this reduction in repeater requirements also proportionately decreases accumulated distortion, noise, and phase and amplitude nonlinearities. No appreciable change in the transmission characteristics of optical waveguides is found over the ordinary range of operating temperatures, nor
is frequency or delay compensation likely to be needed, further simplifying the amplifier and minimizing its
cost. cost.
The principal barrier to the development of broadband networks is, again, lack of a waveguide-compatible source suitable for analog transmission of many video channels. Solid-state injection lasers that operate continuously at room temperature, although under development, are not commercially available. Existing LEDS, in addition to having marginal modulation rates and inadequate power, are relatively nonlinear and are therefore unsuitable for transmission of multichannel analog TV signals.

Computer applications

Computer systems for general data processing, industrial process control, and military applications, on the other hand, could make immediate use of optical waveguides.
Proposed applications include the interconnection of the principal peripherals to the central processing unit in large computer systems, or the interconnection of CPUs to remote interactive terminals in dispersed systems for data processing, process control, command and control, general communications, or instrumentation. In addition to benefiting from low attenuation, large bandwidth, and low cost, engineers involved in applying optical waveguides to computer systems anticipate reaching an equalized system-transfer-rate, which will give them new systems options for centralized processing and storage, buffering, reformatting, and display refreshing.

But in this context perhaps the dielectric nature of optical waveguides is their most important feature, especially relative to process control and systems for use in electromagnetically adverse environments. It results in immunity to dc- and rf-induced noise, elimination of ground loops and ground plane noise, immunity to electromagnetic pulse (EMP), minimal crosstalk, and a high degree of intrinsic data security. From a systems standpoint, these properties make optical waveguides especially attractive for applications requiring low error rates and appreciable bandwidth or distance-a combination of requirements that conventional conductors find it most difficult to meet in any real-time system where the effective system error rate cannot be improved by "retry/retransmit" techniques.
In addition to providing a moderate-cost cable that is

Input impedance	
	50Ω
Maximum input voltages	$\pm 1 \mathrm{~V}$
Input amplifier gain adjustment range	$>15 \mathrm{~dB}$
Output impedance	$\leqslant 10 \Omega$
Output noise voltage*	1 mV rms
Measured with transmitter and receiver energ voltage applied; quoted value is true rms nois operating bandwidth.	no input for the full

7. Linked with Ilght. A 300-meter link was constructed from readily available components. Aside from cost competitiveness with high-grade coaxial cable, the glass fibers are immune to interference, have negligible crosstalk, and are impervious to chemical and electrical environments that would seriously degrade performance of standard coaxial cables.
easy to install and repair, waveguides in computer applications could also take advantage of improved sources, especially with respect to radiance and bandwidth. Integrated source/detector packages for duplex operation would also be desirable. Fortunately, the required improvements are of the "engineering development" type-they do not hinge on inventions. They will undoubtedly result in increased cost effectiveness and applicability of waveguide links, but are not prerequisite to applications development work, which can be based on immediately available components.

Instrumentation

The broad array of instrumentation applications that has been proposed for optical waveguides can be classified into five groups-laser/optical, electronic, nuclear, electrical, environmental, and medical/dental.

Optical replacements for coaxal cable in large bandwidth applications could provide inexpensive, inter-ference-free, instrument-to-instrument hookups. In optical instrumentation systems, for example, especially those involving lasers and integrated optical components, optical waveguides have already been used as interconnection cables, making beam-shuttling and -coupling more convenient and allowing experimental equipment configurations not possible before.
. In nuclear instrumentation, signals often originate in optical form, and here the bandwidth of optical waveguide may permit acquisition of signals that could not otherwise be captured. This area is being investigated by several nuclear research laboratories.

In electrical power generation and distribution systems, the most pressing requirement is for emi-free electrically isolated links for signalling when to execute process changes and for error-free reporting on the status of the power apparatus. Corning has been studying the power-handling capabilities of fibers for these purposes.

In spectral sensing-the identification of atmospheric contaminants by their characteristic optical spectral wavelengths-for pollution control or other forms of environmental monitoring, waveguides would be used primarily in conjunction with existing optical systems as interconnect cables or to establish bypass or calibration paths.

Medical/dental applications of optical waveguides are of both technical and human interest. Several system concepts, often laser-based and utilizing both the data-transmission properties of fibers and their powerhandling capabilities have been proposed for surgical, therapeutic or preventative procedures. Some are already in use. But the effectiveness of many such procedures could be greatly enhanced if a flexible and compact delivery system were available to separate the patient and the apparatus, i.e, laser. Certain procedures such as body-cavity examination or internal surgery, almost demand a flexible delivery system.

Of specific interest for medical/dental applications, as well as for certain industrial applications, is the fact that solid glass waveguides can support surprisingly high power levels ranging up to tens of megawatts per square centimeter.

A problem common to all five instrumentation areas,

Walker [Bros., Conshohocken, Pa.
Westinghouse Electric \& Mfg. Co., East Whemler Pitsburgh, Pa
Whepler Insulated Wire Co.. 378 WashWhitney blake Co.-see Graybar Electric lork Insulated Wire Works Div. of General Electric Co., York, Ha.

ANTENNA WIRE

Acme Wire Co., New Haven, Conn.
Alphat wire Corp., 50 Howard St., New lork, N.. C.. Co., Waterbury, Conn. American Brass Co., Waterbury, Conn. American Steel \& Wire Co., Rockefeller
bldg., Cleveland. Onio
Bay St., (Iorchenter), Boaton, Mas (See page 166.)
Chase Brass \& Copper Co., 236 Grand St.. Waterbury, Conn.
Crescent Insulated Wire \& Cable Co. Olden \& Taylor Aves. Trenton, N. J.
Flectric Auto-Lite Co., Wlre Div., Port tric Auto-Lite
Huron, Mich.
Gavitt Mfk. Co., Brookfleld. Mass.
fieneral Cable Corp.. 420 Lexington Ave. New York, N.
General blectric Co.. Schenectady, N. Y. Keystone Sterl \& Wire Co.. Peoria, Ill New Fingland Electrical Works, 365 Main Roebling's Sons Co., John A., Trenton, Sparco Vive Co. 255 E. Railroad Ave. Spargo Wire Co., 255 E . Railroad Ave.,

HIGH VOLTAGE WIRE

Alpha Wire Corp., 50 Howard St., New American Steel \& Wire Co., Rockefeller 13ldg., Cleveland, Ohio
Anaconda Wire \& Cable Co., 25 BroadWay, New york, N. (See page 31.) Boston insulated Wire \& Cabie Co., 65 (See par (Dorchester), Bonton, Masm
Crescent Insulated Wire \& Cable CO. Olden \& Taylor Aves., Trenton, N. J. Itiamond Wire \& Cable Co., 128 E. 16 th St., Chlcago Heights, IIl.
Driver-Harris Co., Harrison,
Driver Co., Wllbur B., Riverside Ave. Newark, N. J
General Cable Corp, 420 Lexington Ave., New York. N. Y.
General Electric Co., Schenectady, N. Y. (iraybar Fiectrlc Co., Lexington Ave, at ributors for Whitney Blake Co Nis Haven, Conn Habirshaw Cable \& Wire Corp., 40 Wall Industrial Pyrometer \& Supply Co., 142 llack St., Alton, Ill.
Jeliff Mfk. Corp., C. O., 200 Pequut Ave. Southport, Conn.
National Electric Products Corp., Fulton IBldg., Pittsburgh. Pa.
Okonite Co., Canal St. Passaic. N. J.
Phelps Dodge Copper Prorlucts Corp., 40 Welps Dodge Copper Prorlucts
Wall St. New York, N. Y.

Whode Island Insulated Wire Co.. 50 l3urnham Ave., Jrovilence, R. I. Rockliestos Products Corp 309 Nicoll St. Roehling's Sons Co.,

Coen
Rome Cable Corp., 330 IRidge St., Rorne Whitney Blake Co.-see Graybar Elec tric Co.
York Insulated Wire Works Div.. (ieneral Filectric Co., York, Pa.

HOOKUP WIRE

Acorn Insulated Wire Co., 225 King St., 1) Frooklyn, N. Y. 715 Center St., Brock Iden Products Co., 715 Center St., Brock ton. Mass.
Apha Wire Corp., 50 Howard St., New York, N. Y
Anaconda Wire \& Cable Co.. 25 BroadWay, New lork, N. Y. (See page 31.) den Mtg. Co., 4647 W. Van Buren St.
mach Radio Co., 145 Hudson St., New York, N. Y.
Boston Insulated Wire \& Cable Co., 65 Bay St., (Dorchester) Boston, Mass. Consolidated Wire \& Associated Corps Peoria \& Harrison Sts., Chicago, Ill Comish Wire Co., 15 Park Row, New York, N. Y.
cent Insulated Wire \& Cable Co. Trenton, J. J. Co., Wire Div., Port Huron Mich
ssex Wire Corp., 14310 Woodward Ave. Detroit, Mich.
l'leron \& Son, Inc., M. M., 113 N. Broad St. Trenton, N. J
General Cable Corp., 420 Lexington Ave.,
ieneral Insulated Wire Corp., 53 Park
Pl., New York, N. Yich
N. Western
,enz Electric Mfg. Co., 1751 N. Western
Ave. Chicago, Ill.
owell Insulated Wire Co., 171 Lincoln St., Lowell Wire
'helps Dodge Copper Products Corp., 40 wall St., New York, Y. St New Plastoid Corly; 17 Vandewater St., New Precision Tube Co., 3828 Terrace St., Philadelphia, Pa. Corp 308 Nicoll St Rockbestos Products C cew Haven, Conn.

MAGNET WIRE

Acme Wire Co., 1255 Dixwell Ave., New llavion, tornn, Wire Co., Rockefeller 13klg., Cleveland. Ohio
Inaconda wire © ('able Co., 25 Broadwis., New York, N. (Sre pake 31.) Ansonia Mectrical Ansonia. Conn. Belden Mfg. Co., 4647 W. Van Buren St. Chicafo, 111
Chain Brass \& \& Co., Plymouth, Mass Waterbury, Conn.

Cornish Wire Co., 15 Park Row, New York, N. Y. Wire \& Cable Co. Crescent Insulated Wire \& Cable Co.
Olden \& Taylor Aves., Trenton, N. J. Electric Auto-Lite Co., Wire Divo. Port Huron, Mich.
Ussex Wire Corp., 14310 Woodward Ave. Detroit. Mich.
Gencral Cable Corp., 420 Lexington Ave. Cw York, N. Y
Gencral Vlectric Co Schenectady Y Holyoke Wire \& Cable Corp., 720 Maín St., Holyoke, Mass.
Kennecott Wire \& Cable Co. (Phillipsdale), Providence, R. I. . Lenz Electric Mfg. Co.. 1751 N. Western Ave. Chicaro. Ill
Massachusetts Electric Mfg. Co., 11 MarNew England Electrlcal Works, Lisbon, Phelps. Dodge Copper Products Corp., 40 Wall St., New York N. Y. Thielphia Insulated Wire C
Rea Magnet Wire Co., E. Pontiac St., Fort wayne, Ind.
Rockbestos Products Corp., 308 Nicoll St. New Haven, Conn
Roebling's Sons Co., John A., Trenton
Rome. Cable Corp., 330 Ridge St., Rome,
Wheeler Insulated Wire Co., 378 Washington Ave., Bridgeport. Conn.
Winsted Ibiv. of IIudson Wire Co.. Winsted, Conn. (Spe paze 97.)

RESISTANCE and FILAMENT WIRE

Alloy Metal Wire Co., 13th St, \& Pennsylvania Ave., Moore, Pa
American Brass Co.. Waterburv, Conn.
American Steel \& Wire Co., Rockefeller Blde. Cleveland, Ohio
Callite Tungsten Corp., 54439 th St., Union City, N. J.
Cohn, Sigmund, 44 Gold St., New York Iniver Co., Wilbur B., 150 Riverside Ave. l river-lirk N. J. 201 Middlesex St, Har ver-Marris Co., 201 Middlesex St., Har rison, N. J
1 loskins Mifg. Co., 4447 Lawton Ave., De troit, Mich.
Jelliff Mffg. Corp., C. O., 200 Pequot Ave. Southport Conn
Prentiss \& Co., George W., 439 Dwight kbestos products Corp, 30 S Nicoll st., New Haven, Conn.

SHIELDED WIRE

Belden Mfg. ("o., 4673 W. Van Luren St., Chieidu. 411. New York (orpi, ${ }^{420}$ Lexington Ave. cinion Tube Co., 3828 Terrace gt. I'hiludelphia, Pa. (See page 147.) formi Tubes, Shure lane d Laturiston St., Roxborourh, Phindelphia, Pa (See puge 176.)

ELECTRICAL INSTRUMENTS

Adapters

Analyzers

CIRCUIT ANALYZERS

Aerovox Corp. 740 Belleville Ave., New Bedford, Mass.
Audio-Tone Oscillator Co., 60 Walter St.
13ridgeport, Conn.
Carron Mifg. Co., 415
S. Aberdeen
St., Chicago, III., 1 Clough-Brengle Co., 5501 Broadway, Chicago, Ill. Research Products Inc., 76 Flectrical Research Products Inc., 76 Ferris Instrument Corp., Boonton, N. J. General Electric Co., Schenectady, N. Y General Radio Co., 30 State St., Camdriddge, Mass.
Hewlett-Packard Co, 481 Page Mill Rd.,
Palo Alto, Cal. Instrument Co., 10514 H-W Mupont Ave., Cleveland, Ohio Mfg. Co., 3124 Larga Ave., Los
Angeles, Cal. Industrial Instruments, Inc., 156 Culver Ave., Jersey City, N. J.
Jones-Orme Co., 1645 Hennepin Ave., St Paul Minn.
Mallory \& Co., P. R., 3029 E. Washing ton St., Indianapolis, Ind.

Meissner Mfs. Co., Mt. Carmell. Ill. Million Radio \& Television Laboratories 1617 N. Damen Ave., Chicago, Ill Morrison Co., J. L. D., Silver Spring, Md. Philco Radio \& Television Corp., Tioga \& C Sts., Philadelphia, Pa. Precision Apparatus Co., 647 Kent Ave Radio City Yroducts Co., 127 W. 26th St., New York, N. Y.
RCA Mfg. Co., Camden, N. J Readrite Meter Works, College Ave., Bluff Shalleross Mfg. Co., 10 Jackson Ave., Col lingdale, Pa. Co., 5218 W. Kinzie St. pson Flectric
Supreme Instruments Corp., Greenwood Miss.
Televiso Products, Inc., 2400 N. Sheffield Ave., Chicago, Ill.
Triplett Electrical Instrument Co., 286 Harmon Rd., Bluffton, Ohio
Triumph Mfg. Co., 4017 W. Lake St. Webber Co., Earl, 4358 W. Roosevelt Rd. Weshicago, F . Plttsbureh Pa
Weston Fiectrical Instrument Corp., 614 Frelinghuysen Ave., Newark, N. J.

however, is that the transducers developed for communications purposes are often ineffective in instruments. Many conventional instrumentation transducers, which generally convert some nonelectric phenomenon into an electrical signal, also may prove inappropriate.

Milltary uses

The military and Government agencies in general are major users of all types of communications. The principal military applications lie in the internal wiring of

8. Visible performance. The system shown schematically in Fig. 1 showed no input-to-signal reduction at maximum amplifier gain, up to 30 MHz . Increasing the input amplifier gain allowed smaller input signals (e_{1}). For a fixed input the output varies by about $+50 \%$ to -50% to $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ temperature range.
weapons systems, whether in aircraft, helicopter, ship, or submarine, and in the external wiring for instrument packages attached to, suspended from, or towed by the weapon system. Both categories include data-link and data-bus configurations. Also of interest to the military are various tethers, like those for missiles, torpedoes, and for surveillance systems operated from shore, aircraft, ship or submarine.

Probably more than anyone else, the military is interested in the optical waveguide's immunity to electromagnetic interference (emi) and electromagnetic pulse (emp). Almost as important to the military are the small size and light weight, plus probably the noncatastrophic failure mode of optical-waveguide connectors, the optical waveguide conductors' gradual loss of capability under emergency conditions like on-board fire, and their safety and intercept security. Several development programs involving essentially all of the key properties of optical waveguides are currently under way [Electronics, Dec. 20, 1973, p. 30].

To satisfy military requirements, however, some special packaging techniques will have to be developed. Often, the proposed cable structures are different from those being developed for civilian purposes. As in other areas of application, complete interconnection hardware must be made available, meeting military environmental requirements and having repair and service capabilities.

[^5]
The colossal

problem solver!

Zeltex high performance DAC's.

If you are finding it hard to solve D/A converter problems, here's how our ZD 300 series can help you five ways:

E

1. 14 bits for high resolution.
2. A multiplying DAC for servo and display applications.

厄
3. A fast-settling DAC - $1 \mu \mathrm{sec}$.
to 0.005\%.
4. A highly linear DAC $\pm 0.005 \%$ FS.
5. And the price is right (from \$75. 100's).

The ZD 300 series DACs are a result of ZELTEX's unique product design and manufacturing technologles, the same technologies which have produced a comprehensive line of D / A and A/D converter problem solvers. Phone (415) 686-6660 to find out fast how you can put ZELTEX Micro Giants to work, solving your systems design problems. ZELTEX, INC. 940 Detroit, Concord, California 94518 (415) 686-6660

TWX 910-481-9477

Ordinary cassette recorder can be full-time phone monitor

by G. Breindel
University of Washington, Seattle, Washington

A simple circuit can convert an inexpensive conventional cassette-type recorder into a telephone recorder that automatically tapes all incoming and outgoing calls. Parts cost is less than $\$ 5$, and there's no need to modify the recorder's internal circuitry. The circuit will work, provided that the recorder has a microphone (audio in) jack and a remote power jack (a jack for the remote control of power to the recorder's internal circuitry).

Besides automatically taping all calls, the circuit makes a recording (in pulse or tone format) of all the numbers dialed from the line to which it is connected. It
acts as only a negligible load on the phone line, and it draws very little current when the phone is not in use. Even so, such a phone-line attachment should be approved by your local telephone company.

When the phone receiver is on the hook, transistor Q_{1} is on while transistor Q_{2} is off. When the receiver is off the hook, the phone-line voltage drops to less than 10 volts. Transistor Q_{1} now turns off and transistor Q_{2} turns on, energizing the reed relay, which shorts the recorder's remote jack and starts the recording process.

The diode bridge permits the circuit to be connected to the phone line without regard to polarity. The two capacitors provide the necessary audio coupling while isolating the recorder from the phone line. Power for the circuit can be obtained from the recorder's own battery supply (four type-D cells) or from a separate 6-v battery.

To comply with phone company regulations, a tone should be heard on the line every 15 seconds. This can be easily accomplished by adding a couple of unijunction transistors to the circuit.

On the line. Economical circuit automatically activates a standard cassette recorder so that the recorder tapes all calls, as well as the numbers dialed. A pair of Darlington transistors is used to switch the reed relay that controls the recorder's remote power jack. The diode bridge allows the circuit to be hooked up to the phone line without concern for polarity. A tone beep signal can be added easily.

State-variable filter uses only two op amps

by Charles Croskey
Pennsylvania State University, University Park, Pa.

One of the more useful circuits for an active filter de-sign-the state-variable active filter-can be somewhat expensive to build because it normally requires three operational amplifiers. Two of these op amps function as integrators, while the third is used as an inverter, since a difference integrator has been rather difficult to make with a normal op amp.

The state-variable filter in the diagram, however, re-
quires only two op amps. The circuit takes advantage of the recently introduced integrated quad amplifiers, such as Motorola's MC3401 and National's LM3900, which respond to a current difference instead of a voltage difference. Such amplifiers permit a difference integrator to be built simply.

The center frequency of the filter's bandpass function is still determined by the usual relationship of:

$$
\omega_{0}=1 / R C
$$

For the circuit values shown here, the center frequency is approximatley 940 hertz. The filter's damping factor, and therefore its Q value, can be adjusted by resistors R_{D} and R_{P}. To increase the Q value, some positive feedback can be added through resistor R_{P}; to decrease the Q value, resistive damping can be added by means of resistor \mathbf{R}_{D}. As can be seen from the gain curves drawn in the figure, the Q value rises to 260 from a nominal (undamped) value of 248 when a 10 -megohm resistor is used for R_{P}. Or if a l-megohm resistor is used for R_{D}, the filter's Q value drops to 9.3 .

Since the circuit requires only half of a quad amplifier package, the remaining two op amps can be employed as another filter or for additional gain. The filter also provides a low-pass output.

Eliminating an op amp. This state-variable active filter employs only two op amps, instead of the three normally required. The usual inverter amplifier can be eliminated because the two op amps are connected as difference integrators. To adjust the filter's $Q_{\text {, resistor }} R_{D}$ or resistor R_{P} can be added to the circuit. The gain curves show both damped and undamped responses for the filter.

Winking LED notes null for IC-timer resistance bridge

by James A. Blackburn
Wilfrid Laurier University, Waterloo, Ont., Canada

A resistance bridge that makes use of the popular 555type IC timer operates without requiring the usual combination of a meter and an amplifier. Moreover, the circuit's sensitivity does not depend on the unknown resistance. And since a light-emitting diode is used for visual indication, there's no need to worry about shock-isolation for a meter movement. Two possible applications for the bridge are as a thermometer (where the unknown could be a thermistor) or as a photometer (where the unknown could be a photoresistor).

The color block in the diagram shows where unknown resistor R_{x} is inserted in the bridge. When the resistance of the dual potentiometer is increased, the brightness of the LED also steadily increases. Then, at a particular setting of the potentiometer ($\mathrm{R}_{\text {POT }}$), the LED's brightness is suddenly halved. The ratio of $R_{\text {pот }}: R_{x}$ at which this winking occurs is determined solely by the properties of the two IC timers.

The first timer (TIMER ${ }_{1}$) operates in its astable mode and, therefore, is free-running. Its output (signal A) is low for a period of $T_{1}=0.693 \mathrm{R}_{\mathrm{X}} \mathrm{C}$ seconds and high for a period of $T_{2}=0.693\left(R_{X}+R_{\text {POT }}\right) C$ seconds. The output from TIMER 1 is differentiated and then used to trigger the second timer (TIMER 2), which is operating in its monostable mode.
(To simplify the analysis, both timing capacitors are assumed to be equal, and the dual pot is assumed to

Getting a null in a wink. Resistance bridge indicates a null when the LED's brightness is halved, so that the LED appears to wink. TIMER ${ }_{1}$ operates as an astable multivibrator, while TIMER $_{2}$ is a monostable. As the resistance of the dual pot increases, the output duty cycle of TIMER $_{2}$ also increases, making the LED grow brighter. When

FET CHIPS For Hybrids

from the industry leader in high-quality FET products

When your hybrid design calls for FET chips to a JEDEC specification, your first choice should be Siliconix JEDECequivalent dice. You can select from more than 500 different JEDEC-type FET chips, all manufactured with the same meticulous attention to product quality which has made Siliconix a byword in the industry.

All standard Siliconix FET chips are equivalent to their JEDEC or housenumbered parents on all testable parameters. We have hundreds of JEDEC and house-numbered parts in our product line. To specify a JEDEC-equivalent chip simply add the suffix "CHP," as in 2N4416 (JEDEC registration)
$=2 \mathrm{~N} 4416 \mathrm{CHP}$ (chip form). When
your design calls for a special device, remember that we've produced over 4000 different FETs sorted to custom electrical specifications-We'll be happy to select to your individual requirements.

For additional information on chips recommended for new equipment design or replacement service, plus a list of tested parameters and test conditions.

write for data

FET Applications Engineering (408) 246-8000, Ext. 120

Silicanix incorparated
2201 Laurelwood Road, Santa Clara, California 95054

Computer analyzes rf circuits with generalized Smith charts

Designers now have a powerful tool to perform the complex calculations needed to investigate circuit sensitivities and stability margins; scattering-parameter values are plotted relative to circuit impedances

by George D. Vendelin, Will Alexander, and Daniel Mock, Fairchild Semiconductor, Trensistor division, Pallo Alto, Calif.

\square Since they were first described in January 1939 by Phillip H. Smith in Electronics, conventional Smith charts have been universally applied to analyzing the behavior of radio-frequency circuits. More recently, an extension of the Smith-chart concept, the generalized chart, has been developed to give the designer even more capability in building and analyzing of circuits. ${ }^{1}$

Conventional Smith charts are composed of plots on the impedance plane, Z , that measure the impedance in terms of real and imaginary components (See "Graphic design review," p. 104). Generalized Smith charts, however, contain plots of the Z plane on the scattering-parameter (S-parameter) plane. This conversion from one plane to another can be described mathematically by a bilinear transformation between any network S-parameter and a network impedance parameter.

The generalized Smith chart is an extremely powerful tool for investigating circuit sensitivities and stability margins. But, until now, the charts have been rarely used because of the mathematical complexity involved in the conversion. However, computer-programing methods, coupled with plotter routines such as the one described here, make the generalized Smith chart readily available to designers.

The generalized Smith chart can be adapted to any problem that can be solved by mapping on the S parameter plane. What's more, the relatively low cost, simplicity, and versatility of this approach is a welcome addition to the designer's tool kit.

Not only does this technique permit fast, easy analysis of narrowband amplifiers, oscillators, and package

1. Input sensitivity. One-stage amplifier is analyzed for sensitivity to changes in shunt input impedance. For the analysis, variations in scattering parameters for the over-all circuit are computed and plotted on generalized Smith charts as a function of variations in shunt reactance at the input.
parasitics-the examples illustrated in this article-but the charts can also be used to analyze noise parameters, broadband amplifiers, and stability factors.
Following a basic approach similar to the one presented here, the designer can plot generalized Smith charts by modifying any computer program capable of analyzing rf circuits that are characterized by two-port scattering parameters. To illustrate the procedure and demonstrate its usefulness with examples, Fairchild's Speedy computer program, ${ }^{2}$ which can be rented on the General Electric Mark III Information network, ${ }^{3}$ has been used.

The general approach

Using any microwave-analysis program that handles S-parameters, the designer feeds necessary circuit values into the computer. Usually, each passive circuit component is described by its nominal specified value, and the transistors are described by their S-parameters.

For a conventional circuit analysis, the computer usually calculates the over-all S-parameters as a function of frequency, although many other computed output options are usually available.
However a routine can readily be added to these programs to plot any S-parameter on a 7 -inch-diameter po-lar-coordinate system. The program is now also capable of plotting the generalized Smith chart at a single specified operating frequency by employing a simple programing technique.

To do this, consider that the outer rim of the Smith chart is a plot of all pure reactances between minus and

	12:22EDT
AMP	$07 / 03 / 73$
5	SST,CC,50,2950
10	SCE,CC
97	PRNT,SP
99	$250,2000,250,1,4$
100	$.65,-123.5,5.0,179.5,066,-175.3,28,-74.1$

2. Speedy Input. Input instructions are for the circuit of Fig. 1 when using the Speedy program. Line 10, according to the format of line 100, inputs scattering parameters for a transistor equivalent to all components in Fig. 1, except the shunt input coil. The input coil is replaced by a short-circuited stub and entered into the computer via line 5 of the program

3. Generalized Smith charts. Computed S-parameters for the over-all circuit of Fig. 1 are listed as a function of changes in shunt input impedance (a). Generalized Smith charts for S_{11} and S_{21} are plotted in (b) and (c), respectively.

4. Package parasitics. Generalized Smith charts are used effectively in studying the sensitivities to parasitics of a microwave field-effect transistor at its (a) shunt input impedance, (b) shunt output impedance, (c) common-lead feedback, and (d) gate-drain feedback.
plus infinity. Since the locus of points for impedance values of a lossless short-circuited transmission-line stub will traverse the outer rim of the Smith chart as the frequency at the terminal of the stub is varied, such a transmission-line element can be used to simulate any reactance for the circuit component of interest. S-parameters for the over-all circuit can then be computed for each of, say, eight impedance increments simulated by the short-circuit stub, and these parameters can then be plotted on a polar-coordinate system.

A convenient transmission-line element is a 50 -ohm stub that is one-quarter wavelength long at some chosen frequency, say, 1 gigahertz. The choice of this frequency

(a)	$\begin{array}{r} 10 \\ 20 \\ 97 \\ 99 \\ 100 \end{array}$	```SST, CC, 50, 2950 SCE,CC PRNT, SP 250,2000, 250, 1, 4 .83, -50, 1.16, 126,.025,54, .86, -16```
(b)	$\begin{array}{r} 10 \\ 20 \\ 97 \\ 99 \\ 100 \end{array}$	```SCE, CC SST, CC, 50, 2950 PRNT, SP 250, 2000, 250, 1,4 .83, -50, 1.16, 126, .025, 54, .86, -16```
(c)	$\begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 97 \\ 99 \\ 100 \end{array}$	THRU, SI SCE, EA SST, EB, 50, 2950 SSAB, C1 PRNT, SP 250, 2000, 250, 1, 4 $.83,-50,1.16,126, .025,54, .86,-16$
(d)	$\begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 97 \\ 99 \\ 100 \end{array}$	THRU, S1 SCE, EA THRU.S2 SST, CC, 50, 2950 RP, CC, -50 BRAS, C2 THRU, EB PPAB, C1 PRNT, SP 250, 2000, 250, 1, 4 $.83,-50,1.16,126, .025,54, .86,-16$

5. Computer talk. Data for the four circuit configurations of Fig. 4 is entered into the computer via the Speedy program, as shown in the above circuit files. Generalized Smith charts for each configuration are plotted in Figs. 6 through 9, respectively.

Graphic design review

The skill with which an ri-circuit designer uses the generalized Smith chart depends largely on his ability to read and interpret data plotted on the conventional Smith chart, as well as his ability to interpret plots of S-parameter data on a polar-coordinate system. It is therefore worthwhile to briefly review a few of the more important properties of each of these graphic-design techniques.

The conventional Smith chart is a graphic representation of all possible impedances, both real and imaginary, that might be encountered at a port of an ri circuit. Generally, impedance values that are calibrated on the chart are normalized to the characteristic impedance of the

PLOTTING NORMALIZED IMPEDANCES ON A SMITH CHART
transmission line that is being used-often 50 ohms.
Points within the top half of the circle represent impedances with an inductive, or positive, reactance component. Similarly, points within the lower semicircle represent impedances with a capacitive, or negative, reactance component. Points along the outside edge of the circle represent pure reactances, while the horizontal line through the center of the chart is a locus of points of pure resistance. The center of the circle corresponds to a resistance equal to the characteristic impedance of the transmission lines used in the circuit.
The right-hand extreme of the chart is the point of infinite impedance, or an open circuit, while the left-hand extreme is the point of zero impedance, or a short circuit. Finally, circles about the center point are curves of con-stant-voltage-reflection coefficient, while radial lines are lines of constant-reflection-coefficient angle.
The plotting of S-parameters on polar coordinates is best illustrated by considering separately graphs for terminal parameters S_{11} and S_{22}, and for transfer parameters S_{21} and S_{12}.
Actually, points on the polar-coordinate plot of S_{11} and S_{22} correspond exactly to the points on a Smith-chart plot of the same diameter (i.e., one plot can be superimposed on the other). The only difference is that axes on the Smith chart are constructed in terms of real and imaginary components of impedances, whereas on the S_{11} and S_{22} plots, the axes are constructed in terms of reflectioncoefficient magnitude and angle.

Polar-coordinate plots for transfer parameters S_{21} and S_{12}, however, are somewhat different. For the forwardtransfer parameter, S_{21}, circles around the origin are contours of constant gain. For the reverse-transfer parameter, S_{12}, circles around the origin are contours of constant attenuation, since this parameter is usually less than unity.-Ed.

PLOTTING S-PARAMETERS ON POLAR COORDINATES

2	FREO	S_{21}	S_{11}	S_{21}	S_{12}	S22	k
	(MHz)	(dB)	mag angle	mag angle	MAG ANGLE	MAG ANGLE	FACTR
j0.42	250.0	- 4.13	0.95/ 125.9	0.62/-151.1	$0.013 / 136.9$	0.88/-15.8	1.70
$j 1$	500.0	1.06	$0.84 / 57.2$	$1.13 / 174.4$	$0.024 / 102.4$	0.87/-16.	1.70
j2.4	750.0	1.97	0.80/ -5.4	$1.25 / 146.1$	$0.027 / 74.1$	0.86/-iu. 3	1.70
∞	1000.0	1.29	0.83/-49.9	1.16/ 126.0	0.025/ 54.0	0.86/-16.0	1.70
-j2.4	1250.0	- 0.11	0.88/-82.7	$0.99 / 110.4$	0.021/ 38.4	0.86/-15.7	1.70
-j1	1500.0	- 2.36	0.93/-111.3	$0.76 / 95.9$	$0.016 / 23.9$	0.86/-15.4	1.70
-j0.42	1750.0	- 6.84	0.98/-141.5	$0.45 / 79.8$	0.010/ 7.8	0.87/-15.2	1.70
0	2000.0	-50.53	1.00/-179.8	$0.00 / 58.7$	0.000/-13.3	0.87/-15.3	1.80

(a) POLAR PLOT OF S 21 SCALE: 0 . TO 1.300

POLAR PLOT OF S_{12} SCALE: 0 . TO 0.030

6. Shunt input load. A listing of over-all circuit S-parameters for the circuit of Fig. 4(a) is used, along with generalized Smith charts for S_{21} (b) and S_{12} (c), to aid in the analysis of the circuit's sensitivity to changes in shunt input impedance. Charts for terminal parameters S_{11} and S_{22} are omitted, since these parameters are essentially unchanged because of low feedback (note the data in the listing).
is completely arbitrary and should not be confused with the operating frequency of the circuit that is being analyzed.

By stepping the frequency (for this element only) from 250 to $2,000 \mathrm{MHz}$ in $250-\mathrm{MHz}$ steps, the outer rim of the Smith chart will be traversed in eight equal steps. A generalized Smith chart can be made by listing and then plotting the S-parameters of the over-all circuit for each of the eight impedances that are simulated by the circuit element.

The tabular listing is necessary to aid in identifying the location of the point on the S-parameter plane corresponding to the point where the impedance of the circuit element of interest is infinite, which is 1 GHz . Consistent with the conventional Smith chart shown on page 104, all of the contours of constant reactance terminate at this point. The center of the generalized Smith chart, corresponding to a normalized resistance
of unity, must be computed by a separate computer calculation with $R=Z_{0}$ substituted for the element of interest.

Charting a $\mathbf{4 0 0 - M H z}$ amplifier

Details of the plotting technique can be clarified by working out specific application examples. Consider first the transistor amplifier in Fig. 1, which has already been designed and optimized for a maximum gain at an operating frequency of 400 MHz .
Since, in practice, the shunt input inductance of 14.7 nanohenries is difficult to realize precisely, it is desirable to determine the effect of changes in the coil's impedance on the circuit's S-parameters-especially S_{21}, which defines the circuit's gain, and S_{11}, the circuit's input impedance. The generalized Smith chart shows these interrelationships graphically.

To simulate the amplifier on the computer, a circuit

HARMONIC ANALYZERS

Gaertner Scientific Corp．， 1201 Wright－ General kidio ©o．， 30 stite st．，Cam－ bridge，Mass．
Hewlett－packard Co．， 181 I＇ige Nill lid． Palo Alto，CH
Mico Instrument Co．， 10 Arrow St．，C＇am－ bridge，Mass．
Scientific Apparatus Co．， 4 Landscape Ave．，Yonkers，N．Y． United Transformer Co．， 150 Varick St．，
New York，N．

NOISE ANALYZERS

Aerovox Corp．， 740 Belleville Ave．，New Bedford，Mass．
Brush Development Co．， 3311 Perkins Ave．，Cleveland，Ohio
Meutschmann Corp．，Tobe，Canton，Mass． Plectrical Research Iroducts，Inc．， 195 Ferris Instrument Corp．Boonton
Gerris Instrument Corp．，Boonton，N．J． General Electric Co．，Schenectady，N．I． bridge，Mass． 1645 Hennepin Ave．，St Jones－Orme Co．， 1645 Hennepin Ave．，St． Miller Co．，J．W．， 5917 S．Main St．，Los RCA Anreles，Cal．
RCA Mfg．Co．，Camden，N．J．
Sound Ajparatus Co．， 150 W． 46 th St．，
Sprague Specialties Co．， 189 Isenver St．， Televiso Products，Inc．， 2400 Sheftield Webber Co．，Farl， 4358 W ．Roosevelt Rd．， （＂hicago，Ill．

TRANSMISSION ANALYZERS

Daven Co．， 158 Summit St．，Newark，N．J．

Bridges

ELECTRICAL MEASUREMENT BRIDGES gee alno Analyzers alno Tpsters
Aerovox Corp．， 740 Belleville Ave．New lheafford，Mass．
Bindt．Co．，James G．， 1213 Areh St．
C＇ambriage lnstrument Co．，（irand Cen－
tral Trominal，New Jork，N．F．Cen－
Central scientilic Co．j 1700 Irving l’ark
「唯保－I3rengle Co．， 5501 Lroadway，Chi－ －e．tgo， 1 II．
－ommunication Measurensents Labora－ tory， 136 ILiberty St．，New York，N．Y． ©onell－I）ubilier Flectric Corp．， 1000 Ham－ ilton Blvd．，South Plainfield．N．J． Deutschmann Corp，Tobe，Canton，Mass． General Vilectric Co．，Schenectady，N．Y． General Hadio Co．，so State St．，©am－ bridge，Mass．
ickok Electrical Instrument Co．， 10514 Dupont Ave．，Cleveland，Ohio
Ave．，Jersey City： \mathbf{N} ．J．
156 （＇ulver Ave．，Jersey City：N．J．
l＇hiladelphiap Co．， 4970 Stenton Ave．．
Muter Co．， 1255 S．Michigan Ave．，Chi－ IRCA Mfg．Co．，Camden．N．J．
Iroller－Smith Co．，Bethlehem，Pa．
Rubicon Co．，${ }^{3751}$ Ridge Ave．，Phila－ delphia， Pa
Shallcrose Mis．Co．， 10 Jackson Ave．，Col－ lingdale，Pa．（See page 6．）
Solar Mfg．Corp．，Bayonne，N．J．
Standard Apparatus Co．，S．Wentworth
Supreme Instruments Corp．，Greenwood，
Tagliabue Mfg．Co．，C．J．Firk \＆Nos－ trand Aves．，Brookiyn，N．Z．
Thwing－Albert Instrument Co．，Penn St．
Triplett Pulaski Ave．，Philadelphia，Pa． 286
Triplett Electrical Instrument Co．， 286
Triumph Mfg．Co．， 4017 W．Lake St．，
Welch Mff．Co．，W．M．， 1515 Sedgwick St．，Chicago，Ill．

Forks

ELECTRICALLY DRIVEN TUNING FORXS
American Instrument Co．， 8010 Georgia Ave．，Silver Spring，Id．

Cambridge Instrument Co．，Grand Central ＇I＇erminal，New York，N．Y． Blvd．，Chicaso，iil
Chicago Apparatus Co．， 1735 N．Ashland Ave．，Chicago，Ill．
Llectric Tachometer Corp， 1354 Spring Garden St．，Philadelphia，Pa．
Engineering Laboratories，Inc．， 624 E．
Gaertner Scientific Corp．， 1201 Wright－ General Radio Co．， 30 State St．，Cam－ bridge，Mass．
Welch Mfg．Co．，W．M．， 1515 Sedgwick St．，Chicago，Ill．

Galvanometers

spe Meters

Generators

SIGNAL GENERATORS

Andrew，Victor J．， 6429 S．Lavergne Ave． Rendix Alarine Products Div．，Rendix Aviation Corp．， 754 Lexington Ave．， Isoonton Kadio Corj．，Boonton，N．J． （see page 126．）
arron Mfg．Co．， 415 S ．Aberdeen St．， Chicago，Ill．
©lough－Brengle Co．， 5501 Broadway，Chi－ cago， 111.
Ferrin Instrument Corp．，Boonton，N．J． Cieneral Radio Co．， 30 State St．．Cam－ bridge，Mass． Co． 481 Page Mill Ra．
Palo Alto，Cal．
Measurementa Corli，Boonton，N．J．（Spe Mintage 159．）
Million Radio \＆Television， 1617 N ．Damen Are．，Chicago， 111.
Monarch Mifg．Co．， 2014 N．Major Ave．， Chicago，Ill．
Philco Radio \＆Television Corp．Tioga \＆ C Sts．Philadelphia，Pa．
Precision Apparatus Co．，647 Kent Ave．， Radex Corn 1328
Ranlex Corp．， 1328 biston Ave．，Chicago， Radio City Products Co．， 127 W． 26 th St．， RCA Mfg．Co．，Camden，N．J
Simpson Electric Co．， 5218 W．Kinzie St． Chicaro， 111.
Superior Instruments Co．， 227 Fulton St． Televiso Products，linc．， 2400 N ．Sheffield Ave．，Chicago， 111.
Triplett Flectrical Instru．Co．， 286 IIar Triumph Mfg．Co．， 4017 W．Lake St． Webber Co．，Farl， 4358 W．Roosevelt IRl．，Chicago，Ill．

SQUARE WAVE GENERATORS
General I：lectric Co．，Schenectady，N．I rieneral Radio Co．， 30 State St．，Cam－ bridge，Mass．
vlett－Packard Co．， 481 Page Mill Rd． Palo Alto，Cal
Measurements Corp．，Boonton，N．I．

Indicators

CAPACITOR LEAKAGE INDICATORS

Clough－Brengle Co．， 5501 Broadway，Chi－ $\underset{\text { cago illier Filectric Corp．，} 1000}{ }$ Hamilton Blvd．，South Plainfield， N．J．
Deutschmann Corp．，Tobe，Canton，Mass Hickok Electrical Instrument Co．， 10514 Dupont Ave．，Cleveland，Ohio Industrial Instruments，Inc．， 156 Culver Leeds \＆Northup Co．， 4970 Stenton Ave．， Potter Co．， 1950 Sheridan Rd．，North Chicago，Ill．
awson Electrical Instrument Co．， 102 Potter St．，Cambridge，Mass．
Triumph Mfg．Co．，4017＇W．Lake St． Chicago，Ill．
Weston Flectrical Instrument Corp． 614 Frelinghuysen Ave．，Newark，N．J

NEON INDICATORS

l＊eron \＆－Son，Inc．，M．M．， 113 N．Broad Littelfuse，Inc．i 4755 Ravenswood Ave． 1：CA IIfg．Co．，Camden，N．J．

POWER LEVEL INDICATORS

mee Meters

Clough－Brangle Co．， 501 Broadway，Chi－ aven Co．， 1 î s Summit St．，Newark，N．J General bilectric（0．Schenectady，N．J General Hadio Co．， 30 State St．，Cam－ Hickok Eridectrical Instrument Co．， 10514 Dupont Ave．，Cleveland，Ohio Monarch MPg．Co．， 2014 N．Major ave． RCA Mfg．Co．，Camden，N．J．
Shallcross Mfg．Co．， 10 Jackson Ave． Collingdale，Pa． Sound Apparatus Co．， 150 W． 46 th St．， Westinghouse Electric \＆Mig．Co．，East Pittsburgh，Pa．
Weston Electrical Instrument Corp．， 614 relinghuysen Ave．，Newark，N．J．

VOl．INL：INDICATORS—mee Moters

Meters

AMMETERS

Bristol Co．Waterbury，Conn
Burton－Rogers Co．， 857 IBoylston St．，Bos－ ton．Mass．（Sole Distributors for Hoyt Electrical Instrument Works Boston，Mass．）
Cambridge Instrument Co．，Grand Central Terminal，New York，N．Y．
Clough－Hrengle Co．， 5501 Broadway，Chi cago， 111.
Columbia Electric Mfg．Co．， 4519 Hamil－ De Jur－Ave．，Cleveland，Ohio

Jur－Amsco Corp．， 6 Bridge St．，Shel ton，Conn．
engelhard，Inc．，Charles， 90 Chestnut St． مisterline－Angus Co．，（Speedway City） Indianapolis，Ind
Ferranti Ejectric，Inc． 30 Herokefeller Plaza，New York，N．Y．
General blectric Co．，Schenectady，N．Y． G－M Laboratories，Inc．， 4313 N．＇Knox Hickok e，Chicago，Ill．
Hokok Electrical Instrument Co．， 10514 Dupont Ave．，Cleveland，Ohio
Hoyt Electrical Instrument Works－see Burton－Rogers Co．
B L Instrument Co．，Darby，Pa．
King－Seeley Corp．，Ann Arbor，Mich．
Leeds \＆Northup Co．， 4970 Stenton Ave．，
Norton Filectrical Instrument Corp．， 79 Hilliard St．，Manchester，Conn．
Precision Apparatus Co．， 647 Kent Ave． I3rooklyn，N．Y．
Rawson Vlectrical Instrument Co．， 102 I＇otter St．，Cambrídge，Mass．
Mfg．Co．，Camden，
RCA Mifg．Co．，Camden，N．J． Bluffton，Ohio
Reliance Instrument Co．， 1135 W．Van Reliance Instrument Co．， 1135
Buren St．，Chicago，Ill．
Roller－Smith Co．，Bethlehem，Pa．
Sensitive Research Instrument Corp．， 4545 Bronx Blvd．，New York，N．Y．， Chluago，111．（N＇ee page 44．）
Superior，Instruments Co．， 227 Fulton St．，
New York，N．Y．Corp．，Greenwood， Miss．
Tagllabue Irfg．Co．，C．J．，Park \＆Nostrand Triplett iplectrical Instrument Co．， 286 Harmon IRd．，I3luffton，Ohio
umph Mfg．Co．， 4017 W．Lake St．， Triumph Nicago，ill． 4017 ．Lake St．， Welch Mfg．Co．，W．M．， 1515 Sedgwlck
St．，Chicago，Ill．
 Pittuburgh，Pa．（See page 4．）
Weaton Wiectrical Instrument Corp．， 614 Frelinghuysen Ave．，Newark，N．J． （See page 125．）
Wheelco Instruments Co．，Harrison \＆ Winslow Co．．？Liberty St．，Newark，N．J．

FREQUENCY METERS

Bendix Radio，Div．of Bendix Aviation Corp．，Baitinmore，Md．

7. Shunt output load. Generalized Smith charts for shunt loading at the transistor output show that output loading has virtually the same effect on S_{21} and S_{12} as shunt loading at the input, as indicated in Fig. 6(b). Notice, however, that gain $\left(\mathrm{S}_{21}\right)$ cannot be increased by inductive loading at the output as it is by inductive loading at the input (the gain approximates its maximum value at $Z-\infty$).
file is constructed by replacing the input coil by a shortcircuit stub. The S-parameters of an equivalent circuit, excluding the input coil, must be computed at the $400-$ MHz operating frequency and the results entered into the circuit file.
Input instructions for such a circuit when using the Speedy program are shown in Fig. 2. Instruction line 5 is entered to substitute the value of the 50 -ohm shortcircuited stub for the 14.7 nH of the shunt coil $(2,950$ mils is one-quarter wavelength for the stub at 1 GHz). Line 10 gives the value for the dummy transistor, which defines the remainder of the circuit, and S-parameters are stored in line 100 . Line 97 is the print and plot command. Line 99 , in the Speedy format, gives the start frequency, stop frequency, step frequency, number of transistors, and data option 4, which keeps the transistor Sparameter data fixed for all frequencies that will be used in the analysis.

The computed S-parameters for the over-all circuit are listed in Fig. 3(a). The frequencies correspond to reactance values from minus infinity to plus infinity for the input-shunt element. All four S-parameters may be plotted as generalized Smith charts. For this example, however, S_{11} and S_{21}, which are of primary interest, are plotted in the generalized Smith charts of Fig. 3.
The generalized Smith chart is always a Smith-chart circle plotted on the complex S-parameter plane. As in the conventional Smith chart, lines of constant reactance meet at the point of infinite impedance, which occurs at a frequency of 1 GHz . For the original coil design of $14.7 \mathrm{nH}, \mathrm{Z} / \mathrm{Z}_{0}=\mathrm{j} \omega \mathrm{L} / 50=\mathrm{j} 0.74$.
Notice that the geometry of the generalized Smith chart is a distortion of the conventional chart. To be sure, the boundary points of pure reactance form a perfect circle for the circumference of both charts. But, although the contours of constant reactance are sym-

8. Common-lead feedback. Charts for the common-lead-feedback circuit of Fig. 4(c) show that parasitic inductive loading in the commonlead circuit can seriously degrade maximum stable voltage gain, $\mathrm{S}_{21} / 12$. For example, by replacing a short circuit $(Z=0)$ in Fig. 4 (c) with an inductance of only $0.8 \mathrm{nH}(Z=j 0.42)$, the maximum stable gain is reduced from 46.5 to 36.2 or from 16.7 dB to 15.6 dB .

9. Gate-draln teedback. By computing and listing stability factor k, generalized Smith charts can be used to aid in designing oscillators. From the listing (a), it appears that oscillatory conditions could be produced for a feedback inductance of about $5 \mathrm{mH}(\mathrm{j} 2.4)$, where the stability factor has been reduced to its lowest value of 0.21 . The designer could then perform finer calculations for the exact oscillatory conditions.
metrical in the conventional chart, they are usually not in the generalized Smith-chart plot. Consequently, the straight line of pure resistance that bisects the outer circle of the conventional Smith chart usually comes out as a curved line when plotted on the generalized chart (as in Fig. 3b).

Two key characteristics of the Smith chart, however, are presented in the generalized plots. First, all circles of constant resistance are maintained as circles. Also, all intersecting lines on both charts intersect at right angles.

Several interesting conclusions follow from the generalized Smith charts of Fig. 3. As seen in Fig. 3(a), the magnitude of S_{11}, which is the same thing as the inputreflection coefficient at the input of the over-all circuit, is below 0.2 for a normalized inductance between j 0.5 and j0.85.

Operating in a circuit with a characteristic impedance of 50 ohms , this corresponds to an impedance between j 25 and j 42.5 ohms. At the $400-\mathrm{mHz}$ operating frequency, this further translates to an inductance of 10 to 17 nH . Since a reflection coefficient of 0.2 represents an amplifier with a good impedance match, the amplifier would be relatively insensitive to a change of 10 to 17 nH in the inductance of the input shunt coil.

Also, from Fig. 3(c), the circuit's voltage gain, or S_{21}, is greater than 4.47 (13 dB) for any inductance greater than $6 \mathrm{nH}(\mathrm{j} 0.3)$. If the inductor is omitted-that is, impedance is infinite-a gain of 14 dB can be achieved, but as shown in Fig. 3(b), the input match is poor. Other network sensitivities can be found by printing plots for S_{12} or S_{22}, and the effects of changes in other circuit elements can be similarly analyzed.

FET-chip parasitics

A second application example demonstrates the capability of the generalized Smith chart to describe the influence of package parasitics on the performance of a $4-\mathrm{GHz}$ field-effect-transistor chip. From this analysis, methods for optimizing gain, unilateralizing the device, optimizing stability, and designing oscillators can be visualized. The four circuit configurations in this example (Fig. 4) can be entered into the computer via the Speedy program as shown in Fig. 5.

The influences on the over-all circuit's S-parameters by changes in the transistor's input impedance (see Fig. 4 a) and output impedance (see Fig. 4b) are shown in Figs. 6 and 7, respectively. Only charts for the transfer parameters (S_{21} and S_{12}) are shown, since the terminal parameters (S_{11} and S_{22}) are essentially unchanged because of the low feedback. Much information can be obtained from these charts. Although the maximum stable gain, defined as $\left|S_{21} / S_{12}\right|$, cannot be improved, both S_{21} and S_{12} can be adjusted by using either input or output shunt loading.

From Fig. 6(b) and the listing of Fig. 6(a), for example, it is seen that $\left|S_{21}\right|$ for the circuit in Fig. 4(a) can be increased by replacing the open circuit at the input ($\mathrm{j} \infty$) by a shunt inductance of about $5 \mathrm{nH}(\mathrm{j} 2.4$). And Fig. 7(b) illustrates that a corresponding increase in gain (S_{21}) cannot be achieved by shunt inductive loading at the output.

Similarly, the influence of input and output parasitic shunt capacitances can be estimated from these charts
and the S-parameter listings. Notice from Fig. 6(b) that, to maintain a change of less than 10% in transfer parameter S_{21} (i.e., $\left|S_{21}\right|=1.16 \pm 0.12$), the stray input capacitance must be limited to less than about 0.25 picofarads (-j 3). Likewise, Fig. 7(b) indicates that the stray output capacitance must be kept below 0.33 pF (-j2.4) for a tolerance of less than 10% in the S_{21} parameter.

The charts for the common-lead feedback case (defined in Fig. 4c) are plotted in Fig. 8. Notice that both S_{11} and S_{22} can be made greater than unity by capacitive loading in the common lead of about 0.33 pF $(-j 2.4)$. When the S_{11} or S_{22} reflection coefficient has a value greater than unity, the transistor is oscillating and presents a negative resistance at that circuit port. ${ }^{4}$

Usually, inductive loading seriously degrades S_{21} and S_{12}, and it also degrades gain (Fig. 8d and 8e). For example, by replacing a short circuit ($Z=0$) in Fig. 4(c) with an inductance of 0.8 nH (j 0.42), the maximum stable gain, $\mathrm{S}_{21} / \mathrm{S}_{12}$, is degraded from 46.5 to 36.2 , or from 16.7 dB to 15.6 dB . A more detailed study of these charts will show design conditions for such objectives as unilateralizing the device (minimizing S_{12}) or maximizing the gain ($\mathrm{S}_{2_{1}}$).

Charts for the gate-drain feedback case (defined in Fig. 4d) are presented in Fig. 9. Notice from Fig. 9(d) that, for a minimal effect on gain S_{21}, the feedback capacitance must be maintained below $0.08 \mathrm{pF}(-\mathrm{j} 10)$, or the inductance must be kept greater than 10 nH (j5).

Such a circuit is often analyzed in oscillator designs. The stability factor, k, in Fig. 9(a) is computed for all eight feedback-impedance conditions. Generally, the lower the value for k, the greater the chance for circuit oscillation, and any configuration that produces a value for k of that is equal to unity or greater will not produce oscillations.

From Fig. 9(e) and the listing of Fig. 9(a), it appears that oscillatory conditions could be produced for a feedback inductance of about 5 nH (j2.4), where the stability factor k has been reduced to its lowest value of 0.21 . This relatively crude guide is only a first step in oscillator design. More refined data could be gained by computing more detailed S-parameter points in the region around $Z=\mathrm{j} 2.4$ and by applying other tests for optimum oscillating conditions. With the aid of the generalized Smith chart, however, the designer would not have accomplished even this first step in a reasoned approach to oscillator design.

The few applications for generalized Smith charts presented here only begin to illustrate the extent that this new design tool may be applied. With the increased use of scattering-parameters to specify circuit components and the availability of instruments to measure such quantities, the rf engineer is sure to enlist the aid of the computer more and more to plot generalized Smith charts in his circuit designs.

[^6]```
 cultasm-s:0+5
```






## 










``` Viserigin גoni sma comurueuse woms
cusu misd ie Wictso wrfik eusilme.s
```





``` pmi Visq 入on cis. prin if thow Gu入 of
```




That's a four-inch-square chrome photomask of the highest quality you can buy. And you can buy it from any of several photomask manufacturers. all of whom are price-competitive. Therefore. you may rightfully ask: "if that's true then why is MICRO MASK smiling?"

Actually, your own comments, more than anything. have led us to consider ourselves your best bet in chrome photomasks. From input we've received, apparently we have proven ourselves over the years as a strong, service-oriented company - a company you've long looked to for emulsion; and now for chrome. We're pleased you think of us that way.


> MICRO MASK, INCORPORATED 716 North Pastoria Avenue Sunnyvale, CA 94086 408/245-7342

# Twelve-bit microprocessor nears minicomputer's performance level 

# Microprogramed central processing unit on a single chip can handle 12 bits in parallel, respond to eight levels of interrupt, and use an asynchronous bus for both internal and external communications 

by Tadaaki Tarui, Keiji Namimoto, and Yukiharu Takahashi, Tokyo Shibaura Electric Co., Tokyo. Japan

$\square$ A recently developed microprocessor offers a level of performance generally considered beyond the capabilities of even these versatile devices. Among its many powerful functions are a maskable eight-level interrupt and direct memory-access capability.

Like other microprocessors introduced during the past two years, the Toshiba TLCS-12 is fabricated in the form of an MOS large-scale integrated circuit. One of its unusual features is its 12 -bit word length, whereas words in other common microprocessors are limited to 4 or 8 bits. I urthermore, the TLCS-12 is organized around a common asynchronous bus, through which the functional units on the chip communicate with each other and also with external memory, input/output registers, and other system elements.

Other significant features include a microprogram in a read-only memory within the microprocessor chip itself, an internal clock generator, and bit-handling instructions capable of modification for indexing and indirect addressing, an automatic start capability, and eight general registers.

The TLCS-12 can not only handle interrupts, but after an interrupt has been processed, the microprocessor can restore to a general register the previous programstatus word from temporary storage in the main memory to resume the interrupted program. Although this concept was first used in large computers about 10 years ago, this is the first time it has been used in a microprocessor.

The 12 -bit bidirectional bus contained in the microprocessor itself is also the backbone of the system built around the microprocessor. Data and addresses are both transferred along this bus, but not at the same time. The microprocessor, all memory chips, and input/output registers are connected to the common bus and communicate with one another along it asynchronously, so that devices of any speed can be used.

As shown in Fig. 1, a useful microcomputer system requires several ICs in addition to the TLCS- 12 microprocessor. A minimum system configuration consists of one microprocessor, three memories, and one memory control unit. The memories may be either read-write, read-only, or a combination. For efficiency and convenience, input/output controllers, an interrupt register, and a control console can be added. The system operates through a range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

All these devices are mounted in dual in-line pack-
ages, and all except the interrupt latches are made with p-channel silicon-gate enhancement/depletion technology. On each chip, those circuits that drive the bus have three-level outputs so that they can be disconnected when not in use.

## Central processor has ROM control

The microprocessor itself is a fully parallel 12 -bit processor on a chip. It contains a 12 -bit parallel arithmetic and logic unit with fast-carry logic and five working reg-


[^7]
2. Microprocessor detalls. This block diagram is also a key to the photo (Fig. 3). Arithmetic and logic unit (bottom center) performs most major functions of device, under control of microprogram in read-only memory (top left).

3. Microprocessor chip. The 12 -bit bus, which interconnects the section of the chip and external devices as well, is visible as a set of more or less vertical zigzag lines, just right of center.
isters, a 4,000-bit microprogram in a read-only memory, eight 12 -bit general-purpose registers, a timing generator, and an external bus controller. The functional blocks shown in the block diagram (Fig. 2) and also visible in the photograph (Fig. 3) are interconnected via the 12 -bit bus, which zigzags up and down slightly to the right of the center of the photograph.
Fast-carry logic divides the bits of a computer word into groups and generates the carry from group to group. In the TLCS-12, the groups contain 1 bit, 3 bits, 4 bits, 3 bits, and 1 bit, respectively (Fig. 4), generating a carry substantially more quickly than would a simple bit-to-bit carry, which, however, is used within the groups. The bit-to-bit carry out of any bit position depends, in part, on the carry into that position; thus, under certain circumstances, a single carry can ripple from the least-significant-bit position along the full length of the word. Enough time must be allowed for an add operation to permit this ripple carry. But with carry lookahead, the ripple occurs in parallel in separate groups, which speeds up the add operation accordingly.

Had the groups all been the same length in the TLCS-12, as they have been in many other processors over the past 15 years or so, circuit fan-in and fan-out would have been so large that circuit propagation delays, which depend on fan-in and fan-out, would have canceled the reduction in carry-propagation time.

The five working registers are designated $\mathrm{A}, \mathrm{T}, \mathrm{B}, \mathrm{M}$,
and F . The F register usually contains the instruction to be executed; the A and T registers drive one input of the arithmetic unit, and the $B$ and $M$ registers drive the other input. All five of these registers are loaded from the internal bus, and the arithmetic unit's output is returned to the bus.

Of the eight general-purpose registers, seven are available to the user, and the eighth is reserved for the program-status word, which stores information about the current state of the microprocessor and the program being executed-for example, the address of the next instruction, the status of various indicators in the microprocessor, and so on.

As a rule, whenever an interrupt occurs, the programstatus word is replaced by another word that defines the state of the microprocessor for the servicing of that interrupt. When the interrupt is out of the way and the microprocessor can return to its main program, the original status word is brought back from the main memory, where it had been temporarily stored, and replaced in the register.

A special-function unit generates address components, shifts data to the left or right, or identifies bit positions to be processed by subsequent microinstructions. An external bus-control unit links the microprocessor to other ICs in the system by transmitting and receiving timing signals that coordinate unrelated clock frequencies and phases in separate chips.

The microprogram, which defines the microprocessor's basic characteristics, is stored in a read-only
memory from which it controls the data paths everywhere in the microprocessor during every machine cycle-as in most microprogram-controlled computers. Each microinstruction is 29 bits wide and is divided into several fields or micro-orders. Up to 128 microinstructions can be installed.
The entire microprocessor contains approximately $11,000 \mathrm{p}$-channel MOS transistors on a chip measuring 5.5 by 5.9 millimeters, in a 42 -pin DIP. Logic transistors operate in enhancement mode, and load transistors in depletion mode; a single 5 -volt power supply drives both. For the output-driver circuits, which have threestate outputs for connection to the bus, both +5 and -5 v are necessary. All circuits are made with silicongate transistors with a channel length of 6 microme-ters-compared to 8 or $10 \mu \mathrm{~m}$ in most p -MOS transistors.

This small size is made possible, in part, by the use of silicon instead of metal for the gate and in part by the use of a new process for growing the doped polysilicon layer. In fabrication, boron-doped polysilicon is used for low sheet resistance and high growth rate. The necessary impurities are added to both the enhancementmode and depletion-mode transistors by an ion-implantation process.

## External clrcults are conventional

None of the other circuits that go with the TLCS-12 microprocessor are particularly unusual. The read-write memory, for example, is a static 512 -bit device, organized as 128 words of 4 bits each; its access time is 300


FAST CARRY

4. Fast-carry logic. By generating a carry signal from groups of bit positions instead of singly, the carry can be propagated along the full word length more quickly, sharply decreasing the time required for arithmetic operations.
nanoseconds, and it dissipates 400 milliwatts.
The external read-only memory, while unusual, is not original with this system. It is a reprogramable stackedgate mOS device, based on the floating-gate avalancheinjection principle, but provided with an overlying control gate. In this technology, the gates of the MOS transistors are buried in a layer of oxide and remain unconnected to any external signal, but a control gate is further provided on the top. When a large negative signal is applied to the source and drain of the transistor, and a large positive signal is applied to the control gate, negative carriers are injected into the buried gate by an avalanche effect.

When the signal is removed, an excess of negative carriers remains in the gate, opening a conducting channel in the n-type substrate. The excess remains until the gate is irradiated with ultraviolet light, which discharges the gate and permits the memory to be reprogramed. The chip used in the Toshiba system can be programed in 5 seconds; after programing, its access time is 600 ns and its dissipation 400 mw .

Data is transferred between the microprocessor and either a read-write or a read-only external memory by the memory-control unit, which responds to the control signals on the bus that originate in the microprocessor's bus-control unit. The memory-control unit generates address, read/write, and chip-select signals for the memories themselves. A similar unit performs similar functions with respect to input/output units. The two controls differ primarily in their address range and the timing, since many units- particularly those used with microprocessors-transmit data quite slowly.

Because the processor, in general, can't respond instantly to an interrupt, and since interrupts are usually transient signals from input/output units, some means
is required to catch and hold interrupts until the microprocessor can respond to them. This function is performed by the interrupt-latch unit, which is simply an array of eight latches that can be set by the external interrupt and reset by the microprocessor. Masking, if and when appropriate, is performed inside the microprocessor, and is therefore not part of the latch unit's function.
Input and output buffering is handled in the input/output register, which is actually a pair of regis-ters-one for 4 bits and one for 8 bits. These have independent control signals and can therefore be used separately for different devices, or they can be connected to parallel for use with a single unit that transmits 12 -bit words.

## Instruction set is microprogramed

As in all microprogramed computers, the instruction set can be changed by altering the microprogram. However, as with all microprograms stored in ROMs, such alterations are uneconomical because of the cost of changing masks, except when large quantities of microprocessors are built with the new instruction set. (The ROM in the microprocessor is not to be confused with the PROM in a separate IC.)

The standard instructions used in the TLCS-12 are of four types: two-operand instructions, one-operand instructions, branch instructions, and complex types. Two-operand instructions include address modification through either indirect addressing or indexing. Address modification applies only to the second operand; both operands refer to general registers, which are assumed to have been previously loaded.

Examples of two-operand instructions are LOAD, ADD, SUBTRACT, and SWAP. Single-operand instructions work

5. Handshaking. Every event involving the bus must await an overt response from a device connected to the bus, in a sequence sometimes called "handshaking." Thus, its operation is kept independent of all internal device timings.

6. Intornal timing. Microprocessor generates its own clock signals, skewed into four phases. During $T_{1}$, the results of the preceding cycle are placed into internal registers. Microprogram branch control is set up during $\mathrm{T}_{2}$, and following that, the proper microinstruction is placed in the ROM output register during $\mathrm{T}_{3}$. The microinstruction is executed during $T_{4}$; if the instruction calls for the use of the external bus, the clock is stopped in this phase.
with either the contents of a general register or a single bit in that register. They include such operations as SHIFT, INCREMENT or DECREMENT, and, among bitoriented instructions, SET, CLEAR, INVERT, and TEST.

Branch instructions include, of course, the unconditional branch and conditional branches that rely on the results of prior instructions, such as BRANCH ON PLUS, BRANCH ON ZERO, and so on. Finally, most of the complex instructions include two or more simple steps in one instruction. Examples are CLEAR AND INCREMENT, CLEAR AND COMPLEMENT, and COMPLEMENT AND INCREMENT.
'The total instruction set of the TLCS- 12 contains about 108 instructions, some of which are very powerful. As in many other processors, the exact number of instructions depends on whether certain variations are counted separately. Thus the performance of the microprocessor approaches that of standard minicomputers, and the unit can do many kinds of jobs with fewer steps than can most other microprocessors.

## Implementing the elght-level Interrupt

Because the eight interrupt lines into the microprocessor have independent priorities, an interrupt on any one of them is accepted when the corresponding mask bit is 1 and no higher-priority interrupt is being requested. The mask bits are part of the program-status word previously mentioned.

An extra mask bit can mask all the interrupt lines at once, as when the microprocessor is itself busy with a critical and perhaps time-dependent task. Recognizing the interrupt (when not masked), choosing the highestpriority request, and linking the interrupt service routine to and from the main program are controlled by the hardware, not by the microprogram.

Interrupt capability in the microprocessor places certain restrictions on the use of external memory to guarantee that a place is always available to store a pro-gram-status word without wiping out something else that might still be needed. In the TLCS-12, the highest priority interrupt always causes the current programstatus word to be exchanged with a new program-status word that is kept in location 8.

Adjacent locations are reserved for lower interrupt levels; in an application requiring all eight interrupts, locations 8 through 15 must be reserved. Where fewer interrupt levels are used, less space in memory is needed, but the reserved space always begins at memory location 8.

The asynchronous bus, both inside and outside the microprocessor, is completely under microprocessor control. A request for bus operation, issued by the microprogram, starts the bus controller on the chip. First, the controller stops the microprocessor's internal clock, and then runs the bus asynchronously with two output signals and one input signal. The two output signals, called $C_{1}$ and $C_{2}$, rise at the same time, indicating that an address to an external device (memory or input/output) is on the bus. As shown in Fig. 5, the receipt of this address by the appropriate device is acknowledged by the rise of the incoming ACK line to the bus controller. At this time, the microprocessor can remove the address from the bus; if $\mathrm{C}_{2}$ falls while $\mathrm{C}_{1}$ stays up, the device is requested to place data on the bus for the microprocessor to read. When the device responds to the request, it drops ACK. Then, when the microprocessor has the data, the controller drops $C_{1}$, and the device is free to release the bus.
On the other hand, when the microprocessor removes the address from the bus and leaves both $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ up, it is preparing to send data to the device in a write operation. After the address has been replaced by the data, $\mathrm{C}_{1}$ falls while $\mathrm{C}_{2}$ stays up, requesting the previously addressed device to pick up the data. The device acknowledges receipt by dropping ACK, after which the bus controller can release the bus, drop $C_{2}$, and generate a restart pulse for the microprocessor clock. Normal operation is resumed.

## External control

Although the microprocessor ordinarily runs under internal control, it can also be controlled from a manual console for diagnostic purposes, program debugging, and the like. Seven control schemes cause, respectively, a single instruction to be executed, the program counter (part of the program-status word) to be set to a number previously placed on the bus, the contents of the pro-

## Defining the terms

In this article, the word "microprocessor" refers to a complete processing unit on one large-scale integrated circuit. In some circles, the word refers to that particular collection of logic, in IC form or otherwise, that is controlled by a microprogram.
At one point, a reference is made to a condition code, a particular bit in a program status word, as the basis for a conditional branch. Unfortunately, these two similar terms can be easily confused, although they have only a tenuous relationship to one another.

Conditional branch instructions can be defined for any of a large number of conditions, such as positive, zero, or negative results of a preceding operation, the zero or nonzero state of a register, and many more. The condition code is only one such condition.

Biddle Co．，James G．， 1213 Arch St．， Py blectric Co．，İrie，ly．
Binley lislectric Co．，İrie，I＇a．


Cardwell Még．Corp．，Allen D．， 81 Prospect St．，Brooklyn，N．Y．
 Chiman，Ili．（Seq pare 142．）
erline－Angus Co．（Speedway City） sterline－Angus Co．．
Indianapolis，Ind．
Ferris Instrument Corp．，Boonton，N．J．
General Filectric Co，Schenectady，N．Y．
General Radio Co．， 30 State St．，Cam－ bridge，Mass
Harvey IRadio Lahoratories，Inc．， 447 Con－ Hickok vilectrical Instrument Co．， 10514 Dupont Ave．，Cleveland，Ohio
Iatmpkin Laboritiorles，IBradenton，Fla．
Leeds \＆Northrup ©＇o．， 4970 Stenton Ive． Philadelphia，Pa．
Lavole Laboratoriom，（6n6 Ibroadway，Iomak Brameh，N．J．（sed page 166．）
Millen Mifg．＂o．， 150 lixchange St．，Nal den．Mass．
FRCJ Mfg．Cro，Camden．N．J．
 lork，N．N＇，（sere page i53．） IPittinargh，1Pa．（Nep take 4．） Weston Fileotrieal Instrumant（＇orp．．． 614 Frelinglimsisn
（See puge 38．）

## GALVANOMETERS

Inown Jnstrunment Co．， 428 Wrasne Ave． 1＇hiladelphia．J＇it．
Brush Development（o．， $3: 11$ Perkins Bume，Cleveland．Ohio
Cambridize Inst rument＂o．，firand Central Terminat，N゙ゃW Cork，N．Y． tral Scientific Co．．
Blvd．Chicago， 11.
Chicago ipmuratus Co．， 1735 N ．Ashland Ave．Chicago．Ill
 Engineering Laboratories．Inc．， 624 F Foulth St．．Tulsa，Okla．
General iolectrlc Co．，Schenectads： $\mathrm{N}_{\mathrm{i}}$ Y． Ave．，Chicago．Iil．
Heiland Research Corp．，Club Bldg．，Den－ Hickok，Col．
Hickok Electrical Instrument Co．， 10514 J－B－T Instrume．．Cleveland，Ohio
J － $\mathrm{B}-\mathrm{T}$ Instruments，Inc．， 441 Chinpel St． New Haven，Conn．
Leeds \＆Northrup Co．， 4970 Stenton ．Ive．
Pfaltz \＆Bauer，Inc．， 350 Fifth Ave．，New
son Electr
Yical Insilumont Co．， 102
rea Mer St．，Cambridge，Mass．
Roller－Smith Co．，Bethlehem，Pa
Rubicon Co．，： 751 Ridge A＇ve．，Philatel－ Sensitive Pa．
ensitive Resiarch Instrument Corp．， $4: 45$ Bronx Blvd．．New 广ork，N．广．
Shallcross Mfg．Co．， 10 Jackson Ave．，Col－ lingdale．Pa
Tagliabue Mff．Co．，C．J．，Park \＆Nostrand
Thwing－Albert Instrument Co．，Penn St．
\＆Pulaski Ave．，Philadelphia，Pa． 286
Triplett wlectrical Instrument Co．， 286
Welch Mfg．Co．，W．M．， 1515 Sedgwick St．，Chicago，Ill．
Weston Filectrical Instrument Corp， 614 Wheelco Instruments Co．，Harrison \＆Je－ oria Sts．，Chicago，Ill．

## MODULATION METERS

Andrew，Victor J．， 6429 S．Lavergne Ave． Chicago，Ill．
General Radio Co．， 30 State St．，Cimm－ bridge，Mass．
RCA Mig．Co．．Camden，N，J
Frelinghuysen Instrument Corp．． 614

## OHMMETERS

Associated Pesearch，Inc．， 431 S．Dearborn
Biddle，Chicaro，Ill．G．， 1213 Arch St．， Philadelphia．I＇a
Borden Flectric Co．，Summit．N．J
Burton－Rogers Co．．85：IBoviston St．，IBos－ ton，Mass．（Sole Distributors for Hoyt Electrical Instrument Works，
Cambrilge Instrument Co．．Grand Cen－ tral Terminal，New York．N．Y．

Clough－Brengle Co．， 5501 Broaldway，Chi－ cago， 111.
Isterline－Angus Co．，（Speedway City） nerial IAlectric Co．，Schenectady，ㅅ．Y． General Jtadio Co．， 30 State Si．．Cant－ bridge，Mass．
Gray Instrument Co．， 64 W．Johnson St．， Hickok Filectrical Instrument Co．， 10514 Dupont Ave．，Cleveland．Ohio
Hoyt lilectrical＂Instrument Works－see Isurton－Rogers Co．
Industrial Instrument Co．，2049 1th St． Industrial＂Instruments，Inc．， 156 C＂ulver llinois Testing Laboratories， 420 N ．Ia Salle St．，Chicaso．Ill． Leeds \＆Northrup Co．， 49
Philadelphia，Pa．
Martindale Electric Co．， 1371 Hird Ave．， Cleveland，Ohio
Norton Flectric Instrument Co．， 79 ＇recision Apparatus Co．，647 Kent Ave． Brooklyn．N．Y．
Radio Cits Products Co， 197 WV．26th St． New York，ㄷ．
Rawson Electrical instrument Co．， 102 Potter St．，Cambridge．Jitss．
RCA Nfg．Co．．Camden．N．J．
Roller－Smith Co．．Canden．N．J．
Roller－Smith Co．，Rethlehem．Pa．
Rubicon Co．， 3751 Ridge Ave．，Phila－ delphia，Pa．
Sensitive Research Instrument Corp．， 4545 Brons Blvd．，New York．N．V．
alleross Mff．Co．， 10 Jackson Ave．， Collingdale，$P a$ ．
Simpson Electric Cor．， 5218 W．Kinzle St．， Criplett Fifectrical Instrument Co．， 286 Harmon Rd．．Blufforn，Ohio
Triumph Mig．Co．， 4017 W．Lake st．． Chicaro，Ill．
Welch Mfg．Co．，W，M．， 1515 Sedgwick st．．Chicago．Jll．
Westinghoume IVlectric \＆Mig．Cob，Fant Weston Filectrical Instrument Corn．， 614 Frelinghuysen Ave，，Newark，N．J．\＆ Peoria Sts．，Chicago，Ill．

## PHASE ANGLE METERS

Andrew，Victor J．， 6429 S ．Lavergne Ave．， Chicago，Ill．
General felectric Co．，Schenectady，N．Y． Leeds \＆Northrup Co．， 4970 Stenton Ave．， Philadelphia，Pa．
RCA Mfy．Co．，Camden．N．J．
Weston Electrical Instrument Corp．， 614
Frelinghuysen Ave．，Newark，N．J． IDOWER ILEVEI METERS—gee In－ dlcators

## ＂Q＂．METERS

Boonton Radio Corp．，Boonton，N．J．（See pake 126．）

## THERMOCOUPLE METERS

Cambridge Instrument Co．，Grand Cen－ tral Terminal．New Fork，N．Y General Felectric Co．，Schenectady，N．Y． Hickok Electrical Instrument Co．， 10514 Rawson lilectrical Instrument Co．， 102 Potter St．，Cambridge，Mass
Roller－Smith Co．，Bethlehen．Fi．Co 4545 ensitive Research Instrument Co．， 4545 Brond Blvd．，New Cork．N．Y．Y．Y Triplett Filectrical Instrument Co．， 2 S 6 Westinghouse Eiectric \＆Mifg．Co．，East Pittshurgh．Pa．
Weston Electrical Instrument Corp．， 614 Frelinghuysen Ave．，Newark，N．J． VACUUM TUBE VOLTMETERS Andrew，Victor J．，6429 S．Lavergne Ave． Ballantine Laboratories，Inc．，Boonton，
Cambridge Instrument Co．，Grand Cen－ tral Terminal，New York．N．Y．
Clough－Brengle Co．， 5501 Broadway，Chi－ cago．III．
Ferris Instrument Corp．，Boonton．N．J． burgh．Pa．
General Elfertic Co．，Schenectady，N．Y． General Radio Co．， 30 State St．，Cam－ bringe．Mass．
Hewlett－Inakaril Co．， 481 I＇ake Nill Ral． Jacksan joctrical Instrument Co．， 131 Wayne Ave．，Dayton，Ohio
Jones－Ormc Co．， 1645 Hennepin Ave．，St Paul．Minn．

Luxtrol Co．， 54 W． 21 st St．．New York， Measurements Corp．，IBonnton，N．J．（See
Million İadio \＆Television， 1617 N．Damen AYe．，Chicago．Ill．
recision Apparatus Co．， 647 Kent Ave． Radio City 1＇roducts Co．， $127 \mathrm{~W} .26 t h \mathrm{St}$ ． Reliance Instrument Co．， 1135 W ．Va Shalleross St．Chicago， 111 ． Jacks ， 10 Jack Ave． Collinglale，Pa． 10 Jackson Ave
Co． eleviso I＇roducts，Inc．， 2400 N ．Shef eld Ave．．Chicago，Ill．
Triplett Electrical Instrument Co， 286
Triumph Mfg．Co．，401i＇W．Lake St．
Weston Electrical Instrument Corp．， 614 Frelinglussen Ave．．Newark，…J． VOLTMETERS
American Flectrical Salles Co． 67 E rew，Victor J．， 6429 S．Lavergne Ave． Chicitgo，Ill．
Associated Hesearch，Inc．，$\$ 31$ S．Dear Ballantine Inaboratorles，Ine．，fiomonton Burton－Nogers Co．${ }^{\text {Ne }}$（ 72. ）
ton，Mass Sole Diston St．，Bos ton，Mass．（Sole Distributors for Hoyt Electrical Instrument Works Boston，Mass．）
Cambridge Instrument Co．．Grand Cen－ ugh－Brengle Co．， 5501 Broadway，Chi－
cago．Ill． ton，Conn．（See puge 128．） lectric Tachometer Corp．， 1354 Suring Yarden St．，Philadelphia，Pa，
ngimeering Laboratories，Inc．， 624 E． pourth St．，Tulsa．Okla． Englohard，Inc．，Charles， 90 Chestnut St．，Newark，N．J．
Esterline－Angus，Co．（Speedway City）， Indianapolis，1nd． Etna Fiertric Works， $410 \mathrm{E}, 15 \mathrm{th}{ }^{\circ}$ St．， Ferrinti Electric，Inc．： 30 Rockefeller Ferrin Instrument Corp．，Iboonton，N．J． （See pare 1\％4．）
Fisher scientific
Co，
St． I＇ittslurgh，Pa．Schenectady，N．V． General Kadio Co．， 30 State St．，Cam brldge，Masa，（Seo page 101．）
Hickok lilectricai Instrument Co．， 10514 Dupont ive．，Cleveland．Ohio
Hoyt Pilectrical instrument Works－see Rurton－Rogers Co．
Jones－Orme Co．， 1645 Hennepin Ave．，St
Jones－Orme Co．， 1645 Hennepin Ave．，St．
Luxtrol Co．， 54 W． $21 s t$ St．，New Jork，
Million Radio \＆Television， 1617 N
Damen Are．，Chicago，Ill．
Norton Filectrical Instrument Co．，$\quad 79$
Hilliard Sinchester．Conn．Minchen
Hillard st．，Manchester，Conn．Noth Chicago， 111
Radio City Products Co．， 127 W． 26 th St．， RCA Mrg．Co．，Camden，N．J．
RCA Mrf．Co．Camden，N．I．
Rawson iblectrical Instrument Co．， 102 lotter St．，Cambridge，Mass． Buren St．．Chicatgo，ill．
Roller－smith Co．，Bethlelvem，Pa．
Sensitive IResearch Instrument Corp．， 4.545 Shallcross Blyg．，Cow York， 10 Jackson Ave．， Simpann Eollinedale．Pa．
Sinupson Electric Co．， 5218 W．Kinzie Nt．， Childago，III．（See page 4f．）
Supreme Insiruments Corp．，Greenword，
Televiso Products，Inc．， 2400 N ．Sheflield Triplett Electrical
Triplett Electrical Instrument co．，$\geq 86$
Harmon Rd．．Bluffton，Ohio W ． 4017 ． St
Clumpli Mig．Co．， 4017 W．Jatke St．
Welch Mfg．Co．，W．M．， 1515 sedgwick
Westinghouse Electrlc \＆Mfa．（u．，Last Plttshnrgh，Pa．（See page f．）
Weston Lectrical instrument corb．，614 Frelinghnysen Ave．，Newark，N．J． （See page 38．）
Wheelco Instruments Co．Harrison \＆ VOLUME INDICATOR METERS
Amplifier Co．of America， 17 W．20th St．，

7. Input/output control. For a teleprinter, controller includes two registers for inbound and outbound data. Portions of the same physical registers, which nevertheless have different addresses, hold control and status information. Timing and control section responds to bus-control signals, guides data to and from the teleprinter itself. and generates interrupts for the microprocessor.
gram counter to be placed on the bus (thus permitting the operator to designate what instruction is to be executed next in the program), the contents of a specified memory location to be read or written, or a single microinstruction to be executed during a test. Last but not least, of course, is the NORMAL RUN signal.

This nORMAL RUN command assumes that the microprocessor has been previously initialized-that the various control flip-flops specify a normal state for the processor, that the address of an executable instruction is in the program counter, and that all necessary data and instructions are available for the microprocessor's use. This initialization process, necessary every time the microprocessor is started, is executed by an automaticstart sequence that is built into the microprocessor. The automatic-start sequence is designed for use in a system that does not include a manual console-that is, in fixed-program applications.

## Initializing the system

A short-duration pulse applied to the microprocessor's initialization terminal resets all the flipflops, loads the program counter with the contents of memory location 4095, and clears the remainder of the program-status word. To utilize this sequence, the address of the first instruction in the program must previously have been stored in location 4095, a step easily taken by any program-preparing software. The address 4095 , in binary, is a string of 12 ls , or every bit in a word turned on; this location, like those reserved for interrupt processing, is not available to the user.

An internal clock generator in the microprocessor produces a two-phase timing signal skewed in such a
way as to provide four phases, as shown in Fig. 6. If an operation calls for the use of the bus, the microprocessor stops during interval $\mathrm{T}_{4}$, the length of which is therefore variable.

Without bus operation, the complete cycle lasts about $1 \mu \mathrm{~s}$; with the bus, an extra 3 to $5 \mu \mathrm{~s}$ is added for reading and 2 to 3 ns for writing. The exact time depends on many factors, such as memory speed, bus capacitance, bus-driver capability, and so on-all absorbed by the asynchronous control of the bus. The extra time is added during interval $\mathrm{T}_{4}$, which is where the clock always stops for a bus operation.

For most ordinary operations, seven to 10 machine cycles are necessary when only the general registers are used; one extra cycle is needed for a read operation (plus the delay of the asynchronous bus). If the addresses are indexed, two or three extra cycles within the microprocessor are needed, and the read operation takes three extra cycles instead of one. For more complex tasks, such as MULTIPLY, as many as 40 machine cycles are required, or 43 with indexing.

An additional advantage of the internal clock generator in the TLCS-12 is its automatic frequency compensation with temperature. As the ambient temperature increases, the logic circuits in the microprocessor slow down, and delays within the circuits are increased. But the clock slows down to the same degree, tracking the changes in circuit delay. However, this advantage has a tradeoff. It is impossible to measure time precisely by counting machine cycles, instruction executions, or the like, because the execution time varies with the temperature.

## Interfacing input/output

All input/output devices communicate with the microprocessor through the common bus. Between the actual device and the bus, however, a device-control unit is necessary. In general, the control unit consists of one or more buffer registers that can be the same kind for all controllers-the kind shown in Fig. 7, for exampleplus timing and control circuits that are tailored to the particular kind of device. These control circuits could, for instance, respond to the $C_{1}$ and $C_{2}$ bus-control signals and generate the ACK signal to the bus controller; they would also select, time, and otherwise control the device itself.

A typical device-control unit (Fig. 7) would control a teleprinter-a Teletype model ASR-33 is commonly used. This controller uses two 12 -bit buffers- one for input and one for output. Since the data to and from teleprinter requires only 8 bits, the buffers have 4 bits in each direction to spare, which in this design are utilized for command and status information.

The 8 -bit part and the 4-bit part have different addresses to distinguish them for the bus controller in the microprocessor. One or the other 12 -bit register is specified by an additional IN/OUT signal generated by the control circuitry in response to the fall of $C_{1}$ and $C_{2}$, whichever is first. The control circuitry could also generate an interrupt signal when data arrives from the teleprinter in the data-input register. The interrupt routine, in this case, would include a READ instruction to transfer the data from the register to the microprocessor.

## REI has one question for people who buy electronic test equipment.

## Why?

When you need it fast . . . rent it. Purchasing equipment usually involves long delivery lead times. When you rent your electronic equipment from REI it's a safe bet that you can get what you need within 36 hours of the time you call in your order, sometimes sooner. This fast service is possible because we maintain 9 Instant Inventory Centers throughout the U.S. and Canada, stocking millions of dollars worth of equipment.

When you need it for only a short time . . . rent it. Need equipment for à short-term project? Rent it from REI. When you don't need it any more, return it to us. It's the easy, low-cost way to use the equipment you need for just the time that you need it.

When you care about what it costs . . . rent it. Renting from REI can be less expensive than purchasing. There's no capital investment to adversely affect your company's cash flow. This means you'll get more mileage from your equipment budget. And, since you can treat your monthly payments as an expense in most situations, you'll also achieve tax advantages from renting.

All REI rental equipment is guaranteed to meet manufacturers' specifications and is operationally checked out prior to shipment. Routine maintenance is provided free of charge. Certification and calibration are available upon request. Our flexible arrangements include rental, rental-purchase and leasing packages to give you the use of equipment from one week to three years or more.

Get your free copy of our 1974 catalog that lists virtually every item in our rental inventory. Use reader service card, or write Rental Electronics, Inc., 99 Hartwell Ave., Lexington, MA 02173. For immediate information, call your local REI Instant Inventory Center listed below. Once you rent from REI, you may never buy electronic test equipment again.

## Rental Electronics,Inc.

Lexington, MA (617) 861-0667 • Gaithersburg, MD (301) 948-0620 • Oakland, NJ (201) 337-3757 • FPt. Lauderdale, FL (305) 771-3500 Des Plaines, IL (312) 827-6670 • Dallas, TX (214) 661-8082 • Mountain View, CA (415) 968-8845 • Anaheim, CA (714) 879-0561 Rexdale, Ontario (PLC Leasing Ltd.) (416) 677-7513
(祭) Think about renting. Ithe smart way to go.

Visit us at the IEEE Show, Booth No. 2631.

## Your files are not up-to-date until you get this Solid State Lamp (LED) data from General Electric.

## FREE

Each item includes data new or revised since October, 1973.
Solid State Lamp catalog with complete GE family of infrared and visible SSL's. \#3-3358. (Oct. 73)
Industry cross reference of solid state lamps. \#3-3493. (Oct. 73)

GaP vs. GaAsP informative bulletin. \#3-489. (Feb. 74)
Photoelectric Systems Guide. \#3-3471.


Set of Infrared SSL Product Bulletins.
$\square$ Set of Visible SSL Product Bulletins.

## ONLY \$1.00/SET

Complete Two-Part SSL Manual. Covers theory, characteristics and applications with 108 pages of diagrams, graphs and circuit applications. \#3-488.

EXCLUSIVE OFFER - ONLY $\$ 1.75$.
Tell-Tale Infrared Detector. \#3-3361. GE's unique Tell-Tale
 installing or aligning opto coupled devices or systems. It is a one square-inch phosphor screen mounted on a $4^{\prime \prime}$ $\times 6^{\prime \prime}$ card that converts the invisible infrared energy into a visible image. Get yours now for only $\$ 1.75$.

All this worthwhile information is available from your GE electronic distributor listed below. Or from GE's Miniature Lamp Products Department listed in your Yellow Pages. Or write General Electric, Nela Park, \#4454-M, Cleveland, Ohio 44112. Or call GE collect
at (216) 266-6651 and ask for Bill Lenkner. And remember, GE makes a full line of competitively priced visible and infrared SSL's. Most popular lamps are available for immediate delivery. Let us quote you on your requirements.

## GE electronic distributors (listed alphabetically by company name)

Almac/Stroum Electronics Seattle, WA 97108
Almo Electronics
Philadelphia, PA 19114
Barnhill Five, Inc.
Denver, CO 80226
Brill Electronics
Oakland, CA 94600
Carlton-Bates Company
Little Rock, AR 72209
Cramer Electronics
East Syracuse, NY 13057
Invine, CA 92705
Mi. Prospect, IL 60056

Newton Center, MA 02159
Sunnyvale, CA' 94086
Cramer New Mexico, Inc.
Albuquerque, NM 87108
Electra Distributing Company Nashville, TN 37203
Electronics Marketing Corp. Columbus, OH 43212
Elactronics Parts Company Denver, CO 80226
Denver, CO
Electronic Supply
Riverside, CA 92507
Elmar Elactronics
Mt. View, CA 94043
General Electric Supply Company Rochester, NY 14623

General Radio Supply Co.
Camden, NJ 08102
Gerber Electronics
Dedham, MA 02026
Graham Electronics Supply Co. Indianapolis, IN 46204
G. S. Marshall Company El Monte, CA 91731
Hamilton/Avnet Electronics Burlington, MA 01803 Culver City, CA 90230 Dallas, TX 75207 Hazelwood MO 63042 Houston, TX 77019 Houston, TX 77019 Mi. View, CA 94040 Salt Lake City, UT 84119 Schiller Park, il 60176 Syracuse, NY 13211
Hamilton Elactro Sales Hanover, MD 21076 Hammond Electronics Orlando, FL 32802
Harpe Electronics, Inc. Chatranooga, TN 37408

Hughes/Peters, inc. Cincinnati, OH 45227 Columbus, OH 43211
Kierulff Electronics, Inc. Los Angeles, CA 90040 LComp
North Kansas City, MO 84116
Lykes Electronics Corp.
Atlante, GA 30325
Milgray Electronics
Freeport, NY 11520
Newark Electronica
Chicago, IL 60624
Nowark Electronics, Inc.
Salt Lake City, UT 84115
Oil Capitol Electronics Corp.
Tulsa, OK 74115
Olive Industrial Electronics, Inc.
St. Louis, MO 63130
Pioneer/Dayton
Dayton, OH 4448
Pioneer/Cleveland
Cleveland, OH 44105
R.S. Electronic:

Detroit, M1 48227

Rem Electronics
Rochester Radio Supply Co., Inc.
Rochestar, NY 14614
Rome Electronics, Inc.
Rome, NY 13440
Schweber Electronics
Atlanta, GA 30340
Beachwood, OH 44122
Elk Grove Village, IL 60007
Hollywood, FL 33020
Rochester, NY 14624
Rockville, MD 20852
Somerset, NJ 08873
Westbury, NY 11591
Samiconductor Specialists, Inc.
Elmhurst, IL 60126
indianapolis, IN 4624
Pittsburgh, PA 15238
Southeastern Radio Supply Co.
Raleigh, NC 27603
Standard Electronics, Inc.
Cheektowaga, NY 14225
Sterling Electronics
Houston, TX 77027
Sterling Electronics Corp.
Dallas, TX 75229
Western Electromotive
Culver City, CA 90230
Zack Electronics
San Francisco, CA 94102

## Reducing the power drain of semiconductor static RAMs

by B.W. Martin and J.A. Roberts
Microsystems international LItd., Ottawa, Canada

A semiconductor memory requires continuous power to preserve the integrity of stored data while the memory is in its standby storage mode. By pulsing the power supply, the memory's power drain can be reduced considerably. This approach is particularly advantageous for static memories because their normally low power drain can be made even smaller. Most of the power supplied to a static memory is consumed in its storage array and not in its decoders or read/write circuitry.
As an example, let's develop a low-drain standbypower circuit for the widely used type-2102 n-channel static random-access memory. This device is a 1,024 -by1 -bit array that typically consumes 150 microwatts per bit. Because most of the power supplied to this RAM is needed by its storage circuitry, techniques that simply switch off the power to its peripheral circuitry are of little use.

As shown in Fig. 1, the ram's basic storage cell is a bistable flip-flop that has a dc path to ground on one side. To reduce standby power, the current consumed in


1. Memory storage cell. Basic storage cell of $n$-channel static RAM is a bistable flip-flop. Node voltage $\mathrm{V}_{\mathrm{N}}$ must be greater than the threshold of transistor $Q_{1}$ to prevent loss of data. When there is no standby power, leakage current causes voltage $V_{N}$ to decrease.
this path must be minimized while still maintaining data integrity.

Because leakage current increases with rising temperature, data integrity is most severely threatened at elevated temperatures. During the off-time of a power pulse, node voltage $\mathrm{V}_{\mathrm{N}}$ decreases due to leakage current, particularly leakage from the node to the substrate. If this node voltage approaches or falls below the

2. Minimizing standby-power drain. Pulsing standby power for memory array maintains data integrity while significantly decreasing power consumption. To reduce noise pickup on the pulsed power line, the switching transistors are mounted on the same board as the memories.
threshold voltage of transistor $\mathrm{Q}_{1}$, the data is lost.
When supply voltage $V_{\text {cc }}$ is 4.75 volts, data integrity can be maintained if the on-time of $\mathrm{V}_{\mathrm{cc}}$ is 5 microseconds and the off-time is $145 \mu \mathrm{~s}$. At room temperature, the RAM will draw a typical current of 1.1 milliamperes, which represents a power consumption of only 5.2 milliwatts and a power reduction of $96 \%$.

If $\mathrm{V}_{\mathbf{C C}}$ is decreased to 3.5 v , with an on-time of $10 \mu \mathrm{~s}$ and an off-time of $70 \mu \mathrm{~s}$, the integrity of the data can still be maintained. Now, the average current drawn at room temperature is 1.5 mA , the power consumed is 5.25 mw , and the power reduction is still $96 \%$. This latter approach is useful in emergency situations because it permits a lower standby battery voltage to be used.

In many systems, decoupling capacitors are connected across the memory power rail to reduce noise. While this is acceptable when the rail voltage is not pulsed, certain factors should be considered when dealing with a pulsed rail supply.

In the standby mode, the magnitude of the supplyvoltage pulse height and pulse width are critical. A typical type-2102 ram has a maximum capacitance of 500 picofarads from the $\mathrm{V}_{\mathrm{cc}}$ supply line to ground. The addition of decoupling capacitors on the order of $0.01 \mathrm{mi}-$ crofarad could increase the power-rail capacitance to such an extent that the pulsed power supply cannot drive the load fast enough to reach the required voltage in the time allowed by the input pulse.

A practical solution is to mount the switching transis-
tors that are used to get the pulsed power on the same board as the memory; this reduces noise pickup on the pulsed line. To reduce noise, decoupling capacitors can be mounted on the unswitched side of the switching transistors, where the $\mathrm{V}_{\mathbf{C c}}$ supply voltage remains constant.

A typical standby power system for a 6,144 -by-4-bit memory array is shown in Fig. 2. The CE1 through CE6 inputs are the higher address lines that select the major array row desired. (A major row is selected when a CE line is logic 0 .) Since all other rows are deselected, the read/write lines to these minor rows are in a read mode (logic 1). The CE lines also control the $\mathrm{V}_{\mathrm{Cc}}$ supply to the over-all array so that only the unselected rows are pulsed at the required duty rate. The lower address lines, A0 through A9, run to all the memories in the array. Therefore, when a particular row is being addressed, the same address will appear at all unselected rows. (A changing address has little effect on the power consumption of a type-2 102 RAM.)
The duty cycles suggested here for the pulsed standby power are the minimum allowable if the memory is to operate over a temperature range of $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Even shorter duty cycles can be used if the memory is not expected to encounter high ambient operating temperatures. And if complementary-mos devices are employed for the logic gates, additional power savings can be realized. Naturally, the duty cycles selected should be appropriate for the specific devices being used.

## Operating a logic gate as a flip-flop

by William Wilke
University of Wisconsin, Madison, Wis.

Did you ever need just a single flip-flop, and find that all you have left on your circuit board is one unused gate? Or, perhaps space is your problem-you have room for one more gate, but can't fit a flip-flop.

Here's a way to make that unused gate behave as
though it were a flip-flop. The technique relies on the wired-AND capability of a TTL gate, and the wired-OR capability of an ECL gate.
If the outputs of two or more TTL gates are tied together, then the resulting wired-AND connection will go high only when the outputs of all the gates are high. Similarly, if the outputs of two or more ECL gates are joined together, the resulting wired-OR junction will become high when any one of the gate outputs go high.
An ECL AND gate (a), then, that has its output tied back to one of its inputs will act like a flip-flop. The gate's RESET input is normally high, and a negative-going pulse on this RESET input causes the gate's output to go low. On the other hand, a positive-going pulse at the


Getting a blstable from a gate. Wired-OR connection (a) from the output of an ECL AND gate to one of its inputs permits the gate to function as a flip-flop. For a positive SET pulse, the output is high; for a negative $\overline{R E S E T}$ pulse, the output is low. Similarly, a TTL OR gate (b) with a wired-AND connection to one of its inputs also acts as a flip-flop. A simple RC network (c) can be added to produce a one-shot.

SET input will make the output go high. The wired-OR connection at the output will keep the SET line high, thus latching the gate until the next RESET pulse comes along. (Note that the SET input is forced high, a condition that may be unacceptable for some circuits.)

A TTL OR gate (b) that has an open-collector output can be made to operate similarly. In this case, the gate's output is tied to its RESET input line. For the single-gate TTL flip-flop, a negative-going RESET input pulse causes the output to go low, and a positive-going SET input pulse produces a high output.

With a slight modification, the flip-flops can be operated as one-shots. Thecircuit of (c) shows what this easy-to-
add modification looks like for the ECL AND gate.
The one-shot is triggered by a positive-going edge at its SET input. This keeps both inputs high until the capacitor has discharged through resistor $R_{1}$. The two resistors, $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$, form a voltage divider that is connected between ground and -5 volts to bias the gate's input lines to a logic low. (For the TTL one-shot, resistor $\mathrm{R}_{2}$ can be eliminated.)
Both flip-flops and the one-shot have an interesting and rather unusual feature-there is no gate delay between one of the inputs and the output. Either flip-flop does have one important limitation, however-one of its input lines is forced to follow the output.

# Isolator circuit permits scope to check ungrounded voltages 

by Richard K. Dickey<br>California Polytechnic State University, San Luis Obispo, Calif.

Measuring low-level voltages in circuits that are not referenced to ground can be rather difficult. But a special oscilloscope isolator circuit allows a grounded scope to be used for observing small voltages-including their dc levels-in ungrounded circuits.

With this isolator, even common-mode potentials as high as 500 volts will have no effect on the measurement of differential potentials as low as 0.1 v . The circuit is particularly suitable for measuring SCR gate-tocathode voltages and thyratron grid-to-cathode voltages in motor-control circuits, where the cathodes are typically removed from ground by 120 v ac.

The isolator circuit is divided into two sections, which are separated by the insulating barrier of an optical coupler. The input section consists of a precision decade step attenuator, limiting diodes, and an operational amplifier. The op amp employs current feedback so that the current supplied to the LED of the optical coupler is linearly proportional to the input voltage but offset by one-half of the full signal range. The circuit's output section contains the phototransistor of the optical coupler and a balancing network, which assures that the circuit's output voltage will be zero when the signal voltage is zero.

For maximum safety, the two sections should be assembled in a plastic box, with a plastic barrier separating the two, except for the connections to the optical coupler. The isolator's operating bandwidth is limited to the audio range by the 741-type op amp. A wider-bandwidth op amp will improve the frequency response.

Engineer's Notebook is a regular feature in Electronics. We invite readers to submit original design shortcuts, calculation aids, measurement and test techniques, and other ideas for saving engineering time or cost. We'll pay $\$ 50$ tor each item published.


Floating input. Oscilloscope isolator circuit is ideal for measuring small voltages in ungrounded circuits. Differential potentials as low as 0.1 volt can be discerned out of common-mode potentials as large as 500 V . An optical coupler separates signal and scope inputs.

## Engineer's newsletter

How to take Often it's nice to measure analog quantities digitally. Well, measura temperature digitally ing temperature digitally is duck soup-a digital thermometer is as close as your nearest digital multimeter and a conventional rectifier diode. The constant current generated when the meter measures the diode's forward resistance provides a linear resistance function of temperature.

According to James B. Ricks of Bell and Howell Schools in Chicago, a Fluke model 8000A multimeter and a type 1 N4004 diode produce the linear function: ${ }^{\circ} \mathrm{C}=290-0.473 \mathrm{R}$, where R is the diode's forward resistance with the meter set to its $\mathbf{2}$-kilohm range. Several other meters and diodes can be calibrated similarly.

It's simple. First, solder small flexible leads at the diode body and cut off the excess diode leads. Then calibrate the meter-and-diode combination with cold water, hot water, and a laboratory thermometer. If necessary, the lead wires can even be coiled at the diode to reduce their resistance temperature coefficient.

Have readers any other bright ideas for converting analog into digital measurements? They should be sent to Electronics, to the attention of Laurence Altman.

## More on matching scopes to pulses

Using the rule of thumb that relates an oscilloscope's rise time (t) to its bandwidth ( f ) by the formula $\mathrm{ft}=0.35$, a Jan. 10 newsletter on this page showed that an everyday 35-megahertz scope is good enough for a quick look at pulses with rise times as fast as 10 nanoseconds. But for making accurate rise-time measurements, Bill Klade of Tektronix Inc. reminds us that you'll need a much faster scope-with a rise time that's at least a fifth of that of the pulse being measured. For a 10 -ns pulse, that means a scope with a bandwidth of 175 MHz , yielding a measurement with an error of approximately $2 \%$.

Aid with You may have a first-rate process or manufacturing facility, but is it first aid safe? A recent Occupational Safety and Health Act survey indicates that more than $50 \%$ of companies it surveyed lack even an adequate first-aid program, let alone speedy access to professional medical personnel. Fate Associates will survey your plant, determine your first-aid needs, prepare courses, and supervise monthly meetings. For a free survey, contact Fate Associates Inc., 985 Patton St., North Brunswick, N.J.

## Hi rel comes to more C-MOS

Designers of military systems who've been trying to exploit the low power and easy-to-use aspects of complementary mOS have had trouble getting a large enough variety of standard parts that satisfied their high-reliability requirements. But they can now take heart: RCA has qualified virtually its entire family of 4,000 COS/MOS circuits, processing them in accordance with Mil Std 883 and Mil M 38510.

Less power In line with the nation's concern with saving energy, this section is on to the system
the lookout for design ideas that conserve power in circuits and/or systems. Got any you'd like to send us?


How to save silver when buying gold: Spec Cherry Gold "Crosspoint" Contact keyboard switches. With a momentary Form A (SPST/NO) price tag of just 29c in 250,000 quantity . . . lower prices in higher quantities.

What do you get besides low price? Unique, proven Cherry Gold "Crosspoint" contact configuration that enhances reliability. Tested beyond $50,000,000$ operations. (Test Report No. TK 10071 available on request.) You get Cherry's low profile Keyboard switch featuring rugged construction, $21 / 2$ ounce operating force and stable contact resistance (typically 25 milliohms over life). Made by the people who pioneered the Gold "Crosspoint" Contact in snap-action switches.

The result? Cherry keyboard switches are your ideal choice for computer terminals, electronic calculators and credit card validators.

TEST A FREE SAMPLE. Choose the 29c Form A switch . . . or any of Cherry's complete line of keyboard switch modules. Just TWX 910-235-1572
. or PHONE 312/689-7700 and ask Frank to give you facts on Keyboard Switches . . . or circle appropriate reader service number.


FORM A, MOMENTARY (SPST/NO)
Circle No. 123 for Free Sample
ALTERNATE ACTION (SPST) Circle No. 89 for Free Sample DUAL FORM A, MOMENTARY (DPST/NO)
Circle No. 90 for Free Sample


And just as important as price is quality. In the Caribbean nation of Trinidad $\mathcal{E}$ Tobago trained, willing hands have been producing for U.S. companies some of the most sophisticated electronic components anywhere. Examples: two-way mobile radio harnesses, memory core assemblies, advanced micro-electronic relays, and printed circuit boards. Meet us at our booth at the IEEE Show


Trinidad \& Tobago
Industrial Development Corporation 400 Madison Avenue, New York, N.Y. 10017 Clyde S. Namsoo, North American Director I'd like you to give me 15 reasons why electrical and electronics manufacturers are making or contracting their products in Trinidad \& Tobago.
Name \& Title
Company
Address
City, State, Zip
Telephone No.
Product Line $\qquad$

Ask such companies as Westinghouse, Sylvania, Bunker-Ramo, General Electric or Fifth Dimension Inc. about Trinidad \& Tobago. Or ask us...by filling in and returning to us the coupon below.

# CTS put the squeeze on 3 more cerrmet resistor networks. 

## Now 23 standard CTS designs-3 lead styles Series 750 Edge Mount Packages.



## Choose from 23 CTS Space Saver Cermet Resistor Networks to Increase Circuit Density . . . At Economical Prices

You'll like how much they can save you, and your circuit. Less space . . . fewer components . . greater system reliability quicker, easier installation . . . reduced handling costs . . . and faster inspection. Consolidate up to 13 discrete resistors into one compact in-line Saver Pac resistor module.
CTS can do it easily with an expanded line of 23 modules . . . available in . $100^{\prime \prime}$, $.125^{\prime \prime}$, or $.150^{\prime \prime}$ lead centers . . . including NEW 10 and 12-pin . 125" and low profile 8 -pin $.100^{\prime \prime}$ designs. High power capabilities to 4.3 watts @ $70^{\circ} \mathrm{C}$ per module.
CTS 750 series cermet thick-film resistors assure proven performance-ultra high stability and reliability-backed by over $700,000,000$ hours of test data. Hand install or use automatic assembly equipment . . . they're designed for either. Pick a CTS SAVER PAC resistor network today. Large or small orders welcome. CTS of Berne, Inc., Berne, Indiana 46711. Phone: (219) 589-3111.


Cinema lingineering Co．， 1508 S ．Ver－ Daven Co．Ayis Burbank．Cal． 15 Sumit St．，Newark，N．J． General Electric Co．．Schenectady，N．I General liadio Co．， 30 State St．．Cam－ Weston Filectrical Instrument Corp．， 61 Frelinghussen Ave．，Newark．N．J．

## WATTMETERS

Bristol Co．，WVaterbury，Conn
Cambridge lnstrument Co．，Grand Central Terminal，Aew rork．N．！
Fisterline－Angus Co．（Speedway City），In dianapolis．Ind．
General Flectric Co．，Schenectady，N．I： J BL Instrument Co．，Darby，Pa
Leeds \＆Northrup Co．， 4918 Stenton Ave． I＇hiladelphia．Pa．
Corton IElectrical Instrument Co．，Man－
Philco Riadio \＆Television Corp．，Tiogit Rawson Eilectrical lustrument
Rawson iectrical Instrument Co．， 102
Rellance Instrument Co．． 1135 w：Van
Roller－smith Co．，Chicago，lil．
Sangamo Electric Co．，Springlield，Ill Sensitive JResearch Instrument Corb．， 4545
 Westinghouse filoretio \＆Mrg．（\％o．，least

Weeston lilectrical Instrument corp．． 61 Frelinghussth Avo，Newirk，J．

## Microammeters

see Ammeters

## Microfaradmeters

Milliammeters

## see Ammeter

## Multipliers

## VOLTMETER MULTIPLIERS

Farnsworth Television \＆Radio Corp． Fort Wayne，Ind．
General inlectric Co．，Schenectady，N゙．I． Instrument IResistors，Inc．， $2:$ Amity st． Precision Resistor Co．

Badper Ave． Shallcross Jtfg．Co．． 10 Jackson Ave． Collingelale，Pa．

## Ohmmeters

mee Meters

## Oscillators

## AUDIO－FREQUENCY OSCILLATORS

Amplifier Co，of America， 17 W ．goth St． Audio－Tone Oscillator Co．， 60 Wilter St． Bridgelort Con
rooltion Radio Corp．，Boontun，N．J． Cambridge Instrument Co．，Grand Central ron Mfg．Co．， 415 S．Aberdeen St． Clough－lisengle Co．， 5501 Broadway，Chi （ango．IIl．
Flectronic Products Co．，St．Charles，III
Ferris Instrument Co．，bloonton，N．J． General Rarlio Co．， 30 State St．，Cam－ bridge，Mass
Mewlettiparkard Co．， 481 Page Mlli Ral． Hickok lilectrical Instrmment Co．， 10514 Dupont Ave．．Cleveland，Olifo
Jackson Flectrical Inntrument Co．， 123 Wavie Ive．，Davton，Ohio．（See page Northrup Co．，4970 Stenton Ave． Cleveland，Dhio

Lepel lligh Frompency Laboratory，Inc．， RCA ${ }^{39}$ IIfg．Co．，Cainden，N．J．
RCA Alfg．Co．，Cainden．N．J．Greme Instruments Corp．，
supreme Instruments Corp．，Greenwood
Televiso Products，Inc．， 2400 N ．Sheffield Triplett Electrictind instrument Co．， 286 Harmon lid．，Bluffton，Ohio Lake St． Triumph Mfg．Co．，to17 W．Lake St．． Turner Co．， 909 1ith St．，N．E．，Cedar Kapids，lowa

## RADIO－FREQUENCY OSCILLATORS

Audio－Tone Oscillator Co．， 60 Walter St．， Bridgenort，Conn．S．j Boylston St．， Boston，Ilass．（Sole Distributors for Host iolectrical lnstrument Works， Hoyt Mectrica
Clough－Ifrongle Co．，5501 Broarlway，Chi－

Ferris hnsirument（＊orf．，Boonton，N．J． General Litilu Co．， 30 state St．，Cam－ bridge，Jass．
Hickok Electrical unstrument Co．， 10514 lhupont Ave．，Cleveland，Ohlo
Hoyt Flectrical］Instrument IV orks－see
Burton－l angots（＂o），
 page 161.
MeFarlin Co．， 9 UV．Malion Avo，Youngs－ Philharmonic Rarlio Corp．， 21 f William Premir crystal Laboratories，Inc．， 63 Premir crivetal Laluoratories，Jne．， 63 RCR MIfg．＂o．，Camulen．N．，IT
Simpson jolnetric（o，5ivis W゙．Ningie st．， Chicago， 111.
Supremle，Instruments Corp．，Greenwoorl． Televiso limoluets，Inc．， $2 \nmid 00 \mathrm{~N}$ ．Shefliohl Triplett y：lectrical In
Tripleft l：bectrical Instrument Co．，ext Tıiuninh गfg．CO．， 4017 W ．Lake St．， Turner C‘， 909 17tl St．，バ．E．，Cidar Rapids．，Jowa．In St．，．．．E．，C．dar Wr．ston pojectrical Instrument Corp．，ilt Frelinghuysen Ive．，Ni•wark，N．．J．

## Oscilloscopes

## CATHODE－RAY INSTRUMENTS

Cambridge Instrument Co．，Grand Central Clough－brengle Co．，5．pol Broadway，Chi－ cago， 111.
Du Mont Laboratories，Inc．，Allen 1k．． 2 Main Ave．．1＇assair，N．J．（See p．Ilis．） Electro－Nmilical Laborators．Inc．Hollis－ ton，Mass．
Engineering Jaboratories，Inc．，624 J． Fourth st．，Tulsa．Okla
Fredericks Co．，George F．，Bethavres，Pa， General Vilectije Coo，Schenectady （ipaeral Kadio Co．， 30 sinte si．，Cam－ Iridge，Mans．（＇see page 101 ．）
Heiland lifsearel Corpo，Club Bldg．，Jen－ －Ver，＇＂ol．
Hickok IElectrical Instrument Co．， 10514 Dupont Ave．，Cleveland，Ohio
Jackson Flectrical Instrument Jackson Electrical Instrument Co．， 131 Jones－Oime Ave．，Dayton，Ohin
Jones－Orme（＇0．， 1645 Hennepin Ave．，St．
Millen Mfg．Co．，James， 150 Exchange St．， Maldell Mas
Philes Radio \＆Television Corp．，Tioga \＆ rac A ifg．Co．Camplen，Pa
Sound Apparatus Co．， 150 W． 46 th St．， Supreme Instrunient Corp．，Grienwoorl， supres．
Thordarson lelectric Mfo．Co．，500 W． Huron St．，Chicago，Jil．
Triplett bilectrical Instrument Co．， 286 Ilarmon Rd．，Bluffon，Ohio
Triunibh Mfg．Co．， 4017 W．Lake St． nitedl Transform
Unitell Transformer Co．， 150 Varick St．， Wैestinghouse Electric \＆Mfg．Co．，Fast Ijtishurgh，Pa．

MOVING－CONDUCTOR OSCILLOGRAPHS
Camliridge Instrunient Co．，Grand Central Terminal，New York，$N$.

Westinghouse Electric \＆Mrg．Co．，East l＇ittshurgh，l＇a．

## MULTI－ELEMENT OSCILLOGRAPHS

Cambridge lnstıument Co．，Grand Central Terminal．New lork．N．I．． ton，Mass．
Ingineering Laboratories．Tnc．， 624 F

Ventinghouse dilnetric \＆Mifg．Co．，East 1＇ittslourgh，Pa．

## PIEZOELECTRIC OSCILLOGRAPHS

Irrush lovelomment Co．， $3: 11$ Perkins Ave．Clureland．Ohin， Terminal．New lork，※．Y． blectro－Nellical Laboratory，Inc．，Hollis－ Fngineering Laboratories，Inc．， 694 Fe Weilind liesuarch Corp．，Club Bldg．，Den
MeFarlin Col．， 29 W．Marion Ive．，Youngs－ town，Ohi
Westinghouse liflectric \＆Mig．Co．，East
I＇ittshumern，pa．

## ＂Q＂Meters

see Meters

## Recorders

## nee Indibators

## CAPACITOR LEAKAGE RECORDERS

Cornell－1）ubilier Filectric Corlo， 1000 Ham－ flton Ilvd．，South Plainfield，N．J． Psterlinn－Angus Co．（speedway City） Indanabolis． $11 \%$
Leeds \＆N゙opthrup ${ }^{\circ} \mathrm{o}$ ．， 19 i 0 Stenton Avo． lhiladelphia，Pa．

## FREQUENCY RECORDERS

Sound Apparatus Co．， 150 W． 46 th St．，

## Shunts

AMMETER SHUNTS
Cambridg Instrument Co．，Grand Cen－ tral Terminal，New lork，N．Y． Esterline－Angus Co．
General Electric Cu．，Schenectady， $\mathcal{A}$ ．Y Gray Instrument（＇o，if VV．Johnson St Hickok（Germantown），Philadelphír，Pa． 1051 Mekok Electrical Dupont ive．，Cleveland．Ohio 10.01 Instrument IResistrots．Inc．， 25 Amity St．． International Resistance Co．， 401 N Groad St．，J＇hilitlelphia，Pa．
Leeds \＆Corthrup（ $0 ., 4970$ Stenton Ave． l＇hiladelphia， 1
Roller－Smith Co．，licihlehem，Pa，
Rubicon Co．，：isi lidge Ive．，Phila－ delphia，I＇i．
Sensitive Research Instrument Corp．， 4545 Bronx Birn．，New York．N．Y゙ Triplett Electrical Inctrument Co．， $2 S 6$ Weston Electrical Instrument Cor

Frelinghuysen Ave．，Newark，N．．．J．

## Standards

## CAPACITANCE STANDARDS

Cambridge Instrument Co．．Grand Cen－ tral Terminal，New Jork．．．． 1000 Hamilton Blod．．South Plainfield General Radio Co．，30 State St．，Cam－ bridge，Mass．
Industrial Instruments．The．， $1: 56$（＇ulver Ave．Jersey City，N．J． beens philadelphia Pa
Solar Mfg．Corp．，13：ivonne，N．J．

## FREQUENCY STANDARDS

Andrew，Victor J．，6499 S．Lavergne Ave． Fervis lnstrument Corp．，Dionton，ふ．J．


Wavetek has a sweeper for just about every use imaginable -with frequency coverage from 0.5 to 1400 MHz . All are all-solid-state with excellent linearity characteristics. Crystalcontrolled markers and pin-diode leveling are standard. So is the remote programming capability. And to complement our line of sweepers, we've introduced a new X-Y display scope that sells for just $\$ 475$. It has a $12^{\prime \prime}$ diagonal CRT and four ranges of sensitivity to $1 \mathrm{mV} /$ division. Attenuators and detectors to complete your test set-up are also available. To get more information, be sure to use our complete name: Wavetek Indiana, Inc., P.O. Box 190, Beech Grove, Indiana 46107.
Tel: (317) 783-3221 TWX 810-341-3226

SWEEPER	MODELS	
1001 A	0.5 MHz to 300 MHz	$\$ 995$
1002	1 MHz to 500 MHz	1095
1004	500 MHz to 1 GHz	995
1005	700 MHz to 1.4 GHz	995
1801 A	1 MHz to 950 MHz	1445
2000	1 MHz to 1.4 GHz	1375
2001	1 MHz to 1.4 GHz	1695
SCOPE	MODEL	$\$ 475$
1901A	$12^{\prime \prime}$ X.Y Display	
ATTENUATOR MODELS	$\$ 80$	
5001	$0-1 \mathrm{~dB}$ in 0.1 dB steps	80
5010	$0-10 \mathrm{~dB}$ in 1 dB steps	80
5070	$0-70 \mathrm{~dB}$ in 10 dB steps	185




INDIANA INCORPORATED

## LEDs go up in size, down in price

## Optical stretching technique in one-chip-per-segment readouts makes gallium-arsenide-phosphide diodes more competitive for half-inch displays

by Michael J. Riezenman, Instrumentation Editor

The big obstacle keeping light-emit-ting-diode displays from penetrating the large-digit market in a big way has been the high cost of large LEDs. Gallium arsenide phosphide is an expensive material, and a display that needs a lot of it necessarily costs a lot of money.

Now, two companies-HewlettPackard and Fairchild-are using a material-saving technique to build LED displays in the half-inch-high range at costs of about $\$ 2.50$ per digit in quantities of 1,000 .

About a year ago, makers of GaAsP LED displays began to use the lightspreading packaging techniques long used to cut costs of galliumphosphide displays by reducing the amount of semiconductor material needed to form each digit. Instead of using a piece of material, say 0.1 in. long, to make a segment of that length, the optically stretched digit uses a tiny chip of material and spreads its light output along the length of a glowing plastic bar [Electronics, March 15, 1973, p. 65].

Until now, optical stretching has been limited to digits about 0.3 in . high because of difficulties in getting sufficient brightness and uniform lighting of larger segments. Actually, at least one manufacturer


Blg difference. Increase in height from 0.3 to 0.43 inch may not sound big, but the larger of these H-P readouts-shown unenergized-has twice the area of the smaller.
simply diffuses the light coming out of the chip by means of what is called a "pseudo-light-pipe" design. One result of these different approaches is the difference in viewing angle and brightness between the two units.

The Fairchild FND-500 has a minimum axial luminous intensity of 240 microcandela, typical, 600 $\mu \mathrm{cd}$, and a viewing angle to half intensity of $\pm 25^{\circ}$. The H-P 5082-7750 has a minimum axial luminous intensity of $150 \mu \mathrm{~cd}$, typical, $250 \mu \mathrm{~cd}$, and a viewing angle to half intensity of $\pm 55^{\circ}$. For both units, the intensity specification is for a single segment at a current of 20 milliamperes.

Of course, the big news is price. For quantities of 100 to 999 units, the Fairchild display is $\$ 2.95$ each, and the H-P device goes for $\$ 3.50$. For 1,000 and up, the FND-
while H-P chose the oddball-sounding size of 0.43 in ., which results in a digit with exactly twice the viewing area of the company's earlier 0.3-in. digit (see photo).

The FND-500 uses a light-pipe packaging technique in which the light from a $20-\mathrm{mil}$ GaAsP chip is led down a gold-plated pipe to a plastic rectangle which has a fly'seye lens molded on its back. The 5082-7750 doesn't need a lens; it

500 drops to $\$ 2.65$ each, and the 5082-7750 comes dow'n to $\$ 2.50$ each. And, while larger-quantity prices are negotiated individually, company spokesmen have indicated that prices would drop below $\$ 2$ for quantities in excess of 10,000 .
Fairchild Microwave and Optoelectronics Division, 4001 Miranda Ave., Palo Alto, Calif. 94303 [338]
Inquiries Manager, Hewlett-Packard Co., 195 Page Mill Road, Palo Alto, Calif. [339]

# The force it tales to bink your eye could achate our new V/3 switch. 



The V3 miniature snap-action basic is now available with operating forces as low as 15 grams in the pin-plunger variety. As low as 2 grams with a lever actuator.

Special contacts are available for low energy or higher energy applications up to 3 amps . Temperature range up to $+185^{\circ} \mathrm{F}$. Also, the low force V3 incorporates the same spring which on other V3 basics results in 95\% survival through 10,000,000 mechanical operations.

If you need a low force subminiature, our SX is only $1 / 2$ inch long. With an operating force as low as 20 grams with a lever. Our slightly larger subminiature, the SM, has an operating force of only 6 grams with a lever.

The V3, SX and SM come with a variety of integral and auxiliary actuators. Choose from a selection of solder, screw and quick-connect terminal designs. UL listed, CSA certified.

For the name and telephone number of your nearest MICRO SWITCH Branch Office or Authorized Distributor, call toll-free 800/645-9200 (in New York, 516/294-0990, collect).


MICRO SWITCH
FREEPORT. ILLINOIS 6IO3?

## Components

# Clock oscillator is 0.2 inch high 

Hybrid device in DIP<br>offered at any frequency<br>from 250 kHz to 20 MHz

By combining quartz-crystal-oscillator technology with thick-film hybrid techniques, Motorola's Component Products department has developed a crystal oscillator in a dual in-line package with a seated

height of only 0.200 inch, allowing its use on printed-circuit cards with no loss of board spacing. The all-solid-state oscillator also is more reliable and can be produced in volume at lower costs than earlier DIP clocks, points out Calvin G. Chopp, marketing manager for the department.
"We can get to 4 megahertz using integrated circuits and the fundamental mode of the crystal," Chopp says. But the thick-film technique has also allowed the firm to add divider circuits to the package, extending the frequency down as low as 250 kilohertz. The new hybrid clock oscillator, called the K1100A, available in any discrete frequency from 250 kilohertz to 20 megahertz, requires a supply of +5 volts and drives standard transistor-transistor logic with a fan-out of as many as 10 gates. Frequency stability is within $\pm 0.01 \%$ over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, ac-
ceptable for most data-communications logic-timing applications. This tolerance includes calibration at $25^{\circ} \mathrm{C}$, stability over operating temperature range, stability versus input-voltage change, and stability versus load change and aging.

So enthusiastic is Motorola about the high-volume requirements for timing sources in the fast-growing data-communications market that it has gradually phased out or sold off all its other oscillator products, including ovenized oscillators, nonDIP clock oscillators, and its line of temperature-compensated crystal oscillators.

In the new oscillators, all crystals are plated with gold to ensure longterm stability, and Motorola has added rigid temperature-cycle, shock, vibration, and humidity tests to the specifications. All units are leak-tested.

Price in quantities of 10,000 for frequencies from 4 to 20 MHz will be around $\$ 8.50$; single-piece price for any frequency is $\$ 75$. In volume production now, Motorola stocks units for frequencies of $4,4.0152,5$, 10 , and 20 MHz ; delivery time for production quantities of devices operating at any other frequency is six to eight weeks.
Motorola Communications division. Component Products department, 2553 N. Edgington St., Franklin Park, III, 50131 [341]

## Push-button switches built

## for snap-in installation

Designed for use in low-power circuits, a new line of push-button switches from $\mathbf{C} \& \mathrm{~K}$ Components Inc., Watertown, Mass., allows easy snap-in installation. The bezelmounted switches come in two ver-sions-single-pole, double-throw and double-pole, double-throwthat snap into panels ranging from 0.0682 - to 0.125 -inch thick. The push-button cap itself is 0.470 in . square, while the bezel mount is 0.615 by 0.765 in . and extends 0.090 in. above the panel face.

The switches, which come in nine colors, have a contact rating of 1 ampere resistive load at 128 volts ac

and 28 V dc. Insulation resistance is a minimum of 1,000 megohms, and dielectric strength is $1,000 \mathrm{v}$ rms at sea level. Electrical life is 60,000 cycles minimum at full load; mechanical life is at least 100,000 cycles.

The caps and bezels are made of nylon; the movable contact is beryllium copper with 18 -karat goldplated contact. The other contacts are brass with 18-karat gold inlay, also plated with gold.
The price ranges downward to $\$ 1.87$ each in large quantities.
C\&K Components Inc., 103 Morse St., Watertown, Mass. 02172 [342]

## Surge absorber withstands

from 500 to 20,000 amperes
Designed to protect solid-state components from damage, a ceramic surge absorber, designated ZNR for zinc-oxide nonlinear resistor, can withstand currents from 500 to 20,000 amperes at 8 to 20 microseconds in surge waveform. Aimed at replacing gap-type arrestors and silicon-carbide varistors, the surge


## New products

absorber is said to have a quick discharge response and no dual current. Applications include protection of transistors, SCRs, and communications equipment.
Panasonic (Matsushita), 200 Park Ave., New York, N.Y. 10017 [343]

## Pressure transducers range

## from 0 to 2 to 5,000 psi

A line of integrated pressure transducers is designed for a wide variety of applications, including automotive and aircraft supervisory systems. Designated the TQ and ITQ series, the devices offer ranges from 0-2 to 500 psi gage, differential and absolute. Typical full-scale unamplified output is 100 to 250 millivolts. An amplified version is offered with a 0 - to 5 volt output. Price is $\$ 44.50$ each, dropping to as low as $\$ 10$ in volume.
Kulite Semiconductor Products Inc., 1039 Hoyt Ave., Ridgefield, N.J. 07657 [344]

## Electrolytic capacitors come

in lug, wire-wrap versions
A line of general-purpose can-type aluminum electrolytic capacitors is available with either lug terminals, designated type L , or with wire-wrap terminals, designated type LW. Both come in single and multisection versions. The capacitors offer explosion-proof venting and a minus-terminal for insulation of the ground connection from the chassis. Capacitances in singlesection devices include 33, 47, 100, 150, 220, 330,470 , and $1,000 \mu \mathrm{~F}$.
Double-section types offer values of $10 / 10$, 22/22, 33/33, 47/47, 100/100, and $220 / 220 \mu \mathrm{~F}$, while the multi-



# In Rectifier reliability, Nobody trumps our lead 



TECHNOLOGY

OTHER PRODUCTS
DIODE ARRAYS
TRANSISTORS
VARACTORS
DIODES SILICON \& GERMANIUM

When you need reliable rectifiers, take your lead from ITT. The latest technology makes our products both reliable and cost-competitive. For example, consider the leads on our 1-amp glass-passivated device. They're weldable, bendable, and they pass tough pull tests with ease. You can specify our 1-amp rectifiers with confidence for the cut-and-bend operations of automated insertion equipment. Our technology results in high reliability for 400 mA and 1A glass as well as 1A and 3A plastic. For a good deal, go with the reliable people who hold all the cards-including zeners, diode arrays, silicon transistors and silicon, germanium and tuner diodes. Write today for our handy cross-reference guide.

## ITT...Logically



## Bonds are for making retirement easier.


U.S. Savings Bonds can help you keep a firm grip on your future. Join the Payroll Savings Plan where you work, right now. Get a start on your nest egg and make sure there'll be some glitter in your golden years.


Buy U.S.Savings Bonds Now E Bonds pay 5 5\% interat when hold to maturity of 5 years, 10 months ( $4 \%$ the first year). Bonds are replaced if loat, stolen
or destroyed. When needed they can be cashed at your bank. Interest is not subject to state or local income taxes, and federal tax may be deferred until redemption.
a

section types offer 10/10/10, 22/22/22, 33/33/33 and 47/47/47 $\mu \mathrm{F}$, plus combinations of these values.
International Importers Inc., 2242 South Western Ave., Chicago, III. 60608 [345]

Digital output transducer can feed 5 HTL inputs

The model 4-0021 digital-output transducer is an active magnetictype device that provides high-


threshold logic-output signals capable of feeding up to five HTL inputs. The model $4-0021$ is designed specifically for computer-peripheral equipment and speed-sensing applications, where a precise signal-tonoise ratio is required. Price is $\$ 39$.
Controls Division, Airpax Electronics, 6801 W. Sunrise Blva., Fort Lauderdale, Fla. 33313 [346]

## Heat sink provides

'universal' hole-pattern
The series-6500 heat sink is available with a "universal" hole-pattern that will accomodate seven of the most widely used packages for semiconductor devices: TO-3, TO-66 (both with or without sockets), TO$36,10 / 32$-inch and $1 / 4$-inch stud


## Free




One of those "why didn't they do it before" ideas - now available from Schjeldahl, the state of the art people in volume flexible circuits. You'll use it often.

From known parameters of conductor width and copper thickness of one or two ounces per square foot you can quickly calculate:

1. Conductor aspect ratio with noted limit of manufacturability.
2. Conductor resistance in ohms.
3. Conductor cross section in square mils.
4. Equivalent AWG wire size.
5. Current capacity in amperes.
6. Temperature rise versus current.

A simple slide rule is built into the calculator plus inch/centimeter conversion scales and resistivity conversion chart from copper to other conductive materials. Calculator measures $83 / 8^{\prime \prime}$ long by $31 / \mathrm{m}^{\prime \prime}$ wide.

Supplies are limited so request your free calculator on your company letterhead from: Electrical Products Division, G.T. Schjeldahl Company, Highway 3 North, Northfield, Minnesota 55057. Northfield, Minnesota 55057 Phone: (507) 645-5633
The state of the art people in volume flexible circuits


1

# BIGGEST SINGLE CRYSTAL SPINEL FERRITE IN THE WORLD 

The world's biggest spinel ferrite single crystal has been developed by the Bridgeman method and placed on the market. The dimensions of the ingot are 2.5 inches in diameter and 20 inches in length and it weighs 18 pounds.
Segregation of composition has been minimized by a special method of production and a perfect manganese zinc ferrite single crystal having a homogeneous sturcture can be produced.
A great deal of world-wide attention has been given to a magnetic head material which features high permeability, superior frequency response, and no grain boundary and pores.

## "GEMS" HEAD

HUGE FERRITE SINGLE CRYSTAL

High resolution video tape recording, high fidelity audio recording and precise digital heads with easy machinability and high yield have been introduced.
Since single crystal is a mono-crystal, it has no grain boundary, no pores and no inclusion, thus it has wonderful performance, such as superior wear resistance and wide frequency range.
Moreover good machinability brings out a clear air gap of under $1 \mu \mathrm{~m}$.
These heads have a life of more than 100 times that of conventional permalloy heads and 10 times that of polycrystalline ferrite heads. Typical VTR and stereo heads are shown below.

## VIDEO TAPE RECORDER HEAD

High sensitivity, low noise and long life, video recording-playback head.

	Output	Rubbing noise
	$450 \mu \vee(p-p)$	$12 \mu \vee(p-p)$
	MEASURED	CY at 4.5 MHz

## AUDIO CASSETTE STEREO HEAD

High fidelity, low noise, two-channel, four-track stereo head.


	Items	Specifications	Test Conditions
Playback	Senstitivity Channel output differential	$\begin{gathered} -73 \mathrm{dBv} \pm 3 \mathrm{~dB}(333 \mathrm{~Hz}) \\ 3 \mathrm{~dB} \mathrm{Max} \\ \hline \end{gathered}$	Reference Level. $250 \mathrm{nwb} / \mathrm{m}$
	Frequency characteristics Channel output differential	$\begin{gathered} +11 \mathrm{~dB} \pm 3 \mathrm{~dB}(10 \mathrm{kHz} / 333 \mathrm{~Hz}) \\ 3 \mathrm{~dB} \mathrm{Max} \\ \hline \end{gathered}$	-
Recording/ Playback	Sensitivity Channel output diflerential	$\begin{gathered} -72 \mathrm{dBv} \pm 3 \mathrm{~dB}(1 \mathrm{kHz}) \\ 3 \mathrm{~dB} \mathrm{Max} \end{gathered}$	Bias Current: 0.1mA   Bias frequency: 100 kHz   Recording Current. 0.04 mA
	Frequency characteristics Channel output differential	$\begin{gathered} -5 \mathrm{~dB} \pm 5 \mathrm{~dB}(10 \mathrm{kHz} / \mathrm{kHz}) \\ 3 \mathrm{~dB} \text { Max } \end{gathered}$	

## FUJI ELECTROCHEMICAL CO.,LTD.

Head Office: Hamagomu Bldg., 5-36-11, Shinbashi, Minato-ku, Tokyo, Japan TEL: 434-1271 Overseas Office: New York, TEL: (212) 532-5630 / Los Angeles, TEL: (213) 620-1640 Düsseldorf, TEL: (211) 89031
mounts, and two plastic packages. The mounting flanges provide six instead of two mounting notches.
Thermalloy Inc., 2021 W. Valley View Lane,
Dallas, Texas 75234 [348]

## Reed relays stand off

## 250 V at $10^{10}$ ohms

Compatible with dual in-line packages, the series 270 reed relays have coils that can be gated by TTL or dTL levels with 9 milliamperes at 4.5 volts. Contacts are rated at 10 va. Pin 14 can be bused as the supply voltage, and pin 7 as ground, or alternate pin patterns can be specified. The relays, which stand off 250 volts at $10^{10}$ ohms, carry 1 A or switch 120 y ac, plug into DIP sockets or wire-wrap boards, and mount on pc boards.
Cosar Corp., 3121 Benton St., Garland, Texas 75042 [347]

## Tiny dc-block connectors

 eliminate separate unitsA miniature dc-block connector eliminates the need for a separate dc-block component when joining transmission lines or modules. The devices are designed for a wide variety of applications, including diode switches, attenuators, modulators and phase shifters. A disk capacitor

is incorporated into a coaxial connector so that a single unit can be used to block the flow of dc or video current while permitting of and higher frequencies to pass with negligible attenuation or reflection. Price ranges from $\$ 3.50$ to $\$ 7$ in 1,000-lots.
Omni Spectra Inc., 24600 Hallwood Court. Farmington, Mich. 48024 [349]

# Pay a little more for our products. Get more for yours. 

In wound film and solid tantalum capacitors, TRW offers you a capability second to none. For one simple reason.
We figure you can't make quality capacitors and me-too capacitors under the same roof. Because sooner or later, one operation will foul the other one up. So we take the quality route. Count on it.
Count, too, on some shirt-sleeve-minded guys who can understand what you're talking about when you have a capacitance problem. R\&D, design, QC, application engineering, packaging... they've been there. No blue sky.

All this will cost you a little more per capacitor. In return, it can help your'product earn a reputation for "no headaches, no surprises." What better edge in today's marketplace?


TRW Capacitors, an Electronic Components Division of TRW, Inc., Box 1000, Ogallala, Nebraska 69153.

## TRWcapacitors

General IRalio ('o., 3" State St., Cam bridge, Mass.
Hallicrafters Co., 2611 Indiana Ave., Chicago, 111.
Millen Mifg. Co., James, 150 Exchange St., Malden, Mass. (Sue page 165. Izosen \& Co., Kaymond, :Und \& Walnut sts., Philadelphia, l'a.

## INDUCTANCE STANDARDS

Cambridge Instrument Co., Grani! Central Terininal, New York, N. I. bridge, Mass
eeds \& Northrup Co., 4970 Stenton Ave., Thiladelphir, Pa.
New York Transformer Co., 51 W. Third I?ubicon Co., 3751 Hidge Ave., Philadel phia, Ha.

## RESISTANCE STANDARDS

leeck Bros., 421 Sedgley Ave., Philadelphla, Ha.
Cambridge Instrument (Co., Grand Central Terminal, New lork, N. Y.
Cutler-Hanmer, Inc., 1401 W. St. Paul A Ave, Milwaukee, Wis.
General Electric Co., Schenectady, N. Y. (ieneral Radio Co., 30 State St., Cainbridge, Mass.
Instrimment lResistors. Inc., 25 Amity St., Little l'alls, N. J.
International Masistancto fon th1 N . Broind st.
Leeds \& Northrup Co., 4970 Stenton Ave. un (NMH: 1
Rubleun ${ }^{2} \mathrm{O}$., Sensitive Reswarch Instrument Corp, 4545 hallerons Mif. Co., 10 Jickson Ave. Collinglate, Pr., (See page 6.)
Ward Leonard lilectric Co. 31 South St. slount Vernon, $N$.

## Testers

## BATTERY TESTERS

Burton-Rogers Co., 857 Boylston St. Boston, Mass. (Sole Hoyt Electrical Instrument Works, ough-Brengle Co., 5501 Liroadway, Chicago, Ill.
Hickok Electrical Instrument Co., 10514 Dupont Ave., Cleveland. Ohio
Hoyt Electrical Instrument Works-see Lurton-Rogers Co.
Philco Radio \& Television Corp., Tioga \& Kascher \& Betzold, 835 Orleans St., Chicago, Ill.
Rieker Instrument Co., 1919 Fairmount Ruth Ave., Philadelphia, l'a
Ruth Class Div., Kimble Glass Co., Con Testrite Instrument Co., 57 F. 11th St, New York. N. Y
Weston Electrical Instrument Corp., 614 Frelinghuysen Ave., New'ark, X.: J.

## CAPACITOR TESTERS

Aerovox Corp., 740 Belleville Ave., New Bedford, Mass.

Clough-13rengle Co., 5501 1roadway, Chi-
Cornell-Dubilier IElectric Corp., 1000 llamilton Blve., South Plainfield, ㄷ.. J.
Deutschmann Corp., Tobe, Canton, Mass. ndustrial Instruments, Inc., 156 Culver
Philco Radio \& Television Corp., Tinga \&
C Sts., Philadelphia, Pa. North Chi-
l'otter Co., 1950 Sheridan IRd., North Chicago, 111
RCA Nifg. Co., Cammen, N. J. J.
Triplett pilectrical Instrument Co., „86 Veston Electrical Instrunient Corp., 614 Frelinghuysen Ave., Jiewark, J. J.

## HIGH VOLTAGE TESTERS

American Transformer Co., 178 Emmet St., Newark, N. J
ssoclated Research, Inc., 431 S. Dearborn St., Chicago, 111.
General Filectric Co., Schenectady, N. Y. deal Commutator Dresser Co., 1631 Park Ave., Sycamore, 111.
Miner Coll Bertrand Trenton, N. J.
Co, 25 N. Peoria St. Chicago, Ill.
Raytheon Mfg. Co., W"altham, Mass
Slayter Electronic Div., Owens-Corning Fiberglas Corp., 26 W. Market Sit.,
states Co., 19 New Park Ave., Hartford, Weston Fil
Veston Flectrical Instrument Corp., 614 I'relinghuysen Ave., Newark, N.'J.

TUBE TESTERS
Clough-Brengle Co., 5501 Broadway, Chicago, Ill.
Dayco Radio Corp., 915 Valley St., Dayton, Ohio
Merchandise Dept., Bridgeport and Hickok Electrical Instrument Co., 10514 Dupont Ave., Cleveland, Ohio
acknon Electrical Instrument Co., 131 Wayne Ave., IDayton, Ohlo. (See page 161.)
Thilco IRadio \& Television Corp., Tioga. \& C Sts., Philadelphia, Pa. Philharmonic Radio Corp., 216 William St., New York, N. Y.
Precision Apparatus Co., 647 Kent Ave.,
Radio City Products Co., 127 W. 26th St., New Iork, N. Y
1:CA Mfg. Co., Camden, N. J.
teadrite Meter Works, College Ave. Bluffton, Ohio
impoon Electric Co., 5218 W. Kinzle St., Chleago, ill. (See page 44.)
Standard Technical Devices, Inc., 3008
Ave. M., Brooklyn, N. ${ }_{2}{ }_{2}$ Fuperior Instruments Co., ${ }_{2}$ St., New York, N. Y.
Supreme Instruments Corp., Greenwood,
Triplett Fiss. ${ }^{\text {Mistrical }}$ Instrument Co., 286
Harmon Rd., Bluffton, Ohio
Triumph Mfg. Co., 4017 W. Lake St.,
Webber Co., Earl, 4358 W. Roosevelt Rd.
Chicago, Ill. Frelinghuysen Ave., Newark, N. J. INSULATION TESTERS
deme 以lectrice \& Mfg. ©o.. 31 Water sit. Cuba. N. Y.

Amerlcan Transformer Co., 178 Fimmet st., Newark, N. J.
Issociated IResearch, inc., 431 S. Dearborn St., Chicago, Ill. Bhale Co., James G., 1213 Arch St., Ihiladelphia, Pa, 5 , 01 Broadway, Chi-

lisertrie Service Supplies Co., 17 th \& Cam ria sts., Philadelphia, Pa.
General Vlectric Co., Schenectady, N. Y. ral Radio Co., 30 State St., Camioknk Fiectricall Instrument Co., 10514 Dupont Ave., Cleveland, Ohio
Ideall Commutator Dresser Co., 1631 Park Ave., Sy゚camore, IIl
Industrial instruments, Inc., 156 Culver lve., Jerse• (ity, ㄷ. J. Industrial Iransformer Corp., 2540 Belmont Ave., New York, N. Y.
i.eeds \& Northrup Co., 4970 Stenton Ave., Philadelphla, Pa.
Willer Co., Bertrand F., Trenton, N. J. Isadio Design Co., iss3 Sterling Pl., Rawson Ėlectrical Instrument Co., 102 Potter St., Cambridge, Mass.
Rubicon Co., 3751 Ridge Ave., Philadelphia, Pa.
Standard Transformer Co., 140 Dana St. N.F., Warren, Ohio

Westinghouse Filectric \& Mrg. Co., East Pittsburgh. Pa.
weston Electrical Instrument Corp., 614 Frelinghuysen Ave., Newark, N. J.

## Thermocouples

## VACUUM THERMOCOUPLES

American Plectrical Sales Co., 67 E Gighth St., New York,
Cambridge Instrument Co., Grand Centra Terminal, New York,'N. Y.
Field Lilectric Instrument Co., 2258 Mor-
General Electric Co., Schenectady, N. Y.
General Radio Co., 30 State St., Cam bridge, Mass.
Gravbar Electric Co., Lexington Ave, at 43 d St., New York, N. Y. (Sole Dis tributors for Western Electric Co. New rork, N.
Hickok Electrical Instrument Co., 10514 Dupont Ave., Cleveland, Ohio Rawson Electrical Instrument co., 102 Sensitive Research Instrument Corp., 4545 Western Electric Co.-see Graybar Electric Co.
Nervac Instrument Co., 9 New Park Ave. Hartford, Conn.

## Voltmeters

see Metprs

## Wattmeters

see Meters

## ELECTRONIC EQUIPMENT

## Aids

## HEARING AIDS

Aurex Corp., 1115 N. Franklin St., ChiBrush Development Co., 3311 Perkins De Vry Corp., 1111 Armitage Ave., Chicago, Ill.
Graybar Electric Co., Lexington Ave. at 43 d st,, New York, N. Y. (Sole Dis tributors for Western Electric Co. New York, N. Y.)

Laurehk Radio Mfg. Co., 3918 Monroe Maico Co., Wayne. Mich. 2632 Nicollet Ave., Minneapolls, Minnt. 1313 W Randolph Meck Industries, Jo St., Chicago, Ill.
RCA Ifg. Co., Camden, N. J.
Telex Prormets Co., 1645 Hennepin Ave., Minneapolis, Minn.
Trimm Kadio Mfg. Co., 1770 W. Berteau Western Electric Co.-see Graybar Electric Co.
Zenith Radio Corp., 6011 Dickens Ave., Chicago, Ill.

## Alarms

BOILER GAUGE LEVEL ALARMS
Photoswitch, Inc., 21 Chestnut St., Cambridge, Mass
United Cinephone Corp., Torrington, Conn Wheelco Instruments Co., Harrison \& Peoria Sts,, Chicago, Ill

## BURGLAR ALARMS

American District Telegraph Co., 155 6th
Ave., New York, N. Y.

## SOLVE YOUR CliRCUIT DESIGN PROBLEMS WITH versatile Alsimai ceramics



## TO GET RID OF HEAT

Substrates of AlSiMag ${ }^{(12} 794$ ceramic conduct heat about like the metal aluminum. This remarkable thermal conductivity plus its excellent electrical insulation characteristics and ability to accept metallization have solved many problems of how to dissipate heat from electronic circuits. Bulletin 724 on request.

Phone 615/265-3411.
Telex 558432.

Circle 210 on reader service card


## FOR THICK AND THIN FILM CIRCUITS

Extra strong ceramic substrates for thick and thin film processes. Special purpose substrates to get rid of heat, to save space, to match thermal expansion of glass, for light sensitive devices or for a contrasting background. Substrates with high dielectric constants. Bulletin 712 on request.

Phone 803/682-3215.
Telex 570449.


## TO MATCH THERMAL EXPANSION OF GLASS

Where a hermetic seal to glass is needed, AlSiMag ${ }^{\text {B }} 842$ ceramic can solve your problem. Its thermal expansion closely matches that of the most frequently used glass and forms a reliable hermetic seal. Substrates can be made to the dimensional accuracy you require and with holes, slots, or depressions as needed.

Phone 615/265-3411. Telex 558432 .

Circle 211 on reader service card


## FOR CIRCUIT DENSITY

These small hermetic chip carriers allow far greater circuit density. Electrical testing after hermetic sealing allows storage of good devices in a less expensive package before committing to the circuit. The design permits conventional die attach, wire bonding and lid sealing operations and re-flow solder aftachment to a multilayer ceramic substrate, hybrid substrate or phenolic circuit board. Phone 615/265-3411. Telex 558432.

Circle 214 on reader service card
Circle 213 on reader service card
You save time and money with single-source responsibility for substrates, pattern generation, metallization and plating.

# American Lava Corporation 

## Instruments

# Pulser offers $0.01-\mathrm{Hz}$ rate 

Broad-applications generator can produce repetition rates as high as 10 MHz

Many new pulse generators are being designed for higher and higher repetition rates, as might be expected with the growth in use of high-speed logic. However, one new instrument is bucking that trend. It is the model P12, to be introduced by Interstate Electronics Corp. at IEEE Intercon 74.

Although producing repetition rates as high as 10 megahertz, the P12 has a lower limit of 0.01 hertz. Most generators in the range bottom out two decades higher at 1 Hz . The low frequency is especially suited for such biomedical applications as simulating heart beats, and other biological functions. It can also be used in geophysical and general-purpose applications.

The P12 has two separate outputs, one positive-going and one nega-tive-going, each with separately adjustable amplitude. The amplitude is continuously adjustable from 1 to 10 volts into a 50 -ohm load.

The repetition rate is set in nine ranges from 0.01 Hz to 10 MHz , and a continuous vernier covers a 10 -toI range. Pulse width is set from 50 nanoseconds to 1 second in eight ranges, again with continuous vernier. Delay specifications are identical to those of the pulse width-50 ns to 1 s . Rise and fall times are shorter than 5 ns , and overshoot, preshoot, and ringing are less than

$5 \%$ of the pulse amplitude.
Several modes are provided: normal, with the internal clock providing triggering; double pulse to 5 MHz , giving a maximum $10-\mathrm{MHz}$ effective output range: square-wave, with a maximum of 5 MHz , and external triggering to 10 MHz from a $+2-$ to- $+5-\mathrm{v}$, positive- or negativegoing signal. A single pulse can also be generated, by a push button on the front panel. The signal can also be synchronized externally. A normal/complement push button reverses the output simultaneously from the normal output to its complement. Auxiliary outputs are provided for sync-output signals ( 0 to +2 v into 50 ohms, $15-\mathrm{ns}$ width), and clock output, which is similar in characteristics.
The Pl2 operates on 100,115 , 200 , or 230 v , and it draws 30 VA at 50 to $400 \mathrm{~Hz} \mathrm{ac}$. The generator is 222 millimeters wide, 270 mm deep, and 85 mm high. It weighs 4 kilograms. A rack-mountable version is also available. The unit is priced at $\$ 470$.
Interstate Electronics Corp., P.O. Box 3117, Anaheim, Calif. 92803 [351]

## Digital-readout thermometer weighs only 8 ounces

For about 10 years, Britain's KaneMay Ltd. has made electronic thermometers with meter readout, but it is taking advantage of IEEE time to show off its first digital-readout instrument. The thermometer, which will be exhibited next week at Intercon 74 , reads out from $-55^{\circ}$ to $+999^{\circ} \mathrm{C}$ without range switching, using light-emitting diodes to display the temperatures.

The big reason for moving to digits is that a meter-type scale covering an equivalent range would have to be very large to be readable to equal resolution $-1^{\circ}$-or else to have a lot of switched ranges in it. Digital readout also gets the bulk of the unit down to pocket size- 4.5 by 2.5 by 1.5 inches. Weight of the unit is 8 ounces-including dry batteries that power it.

Inside are a thermocouple sensor,

# Plenco versatility. 

 Whatever themolding method.
 Plenco 485.


Nuts, bobbins,
threaded caps.
Plenco 548, 369, 308.


Compression, transfer or screw injection, there's many a Plenco thermoset compound that lends itself to all.
You would do well to make the versatility of such Plenco compounds a factor in your plans. Compounds long established in compression and transfer molding, also available in flow grades for the screw injection process.
A wide range is offered of these and other Plenco general and special-purpose, ready-made and custom-formulated phenolic, melamine and alkyd thermosets. They are specified in virtually every industry, and from this selection you can choose materials that meet a world of demanding requirements: Heat, impact, and corrosion resistance. Flame retardancy. Electrical resistance. Wet/dry conditions. Close tolerances and dimensional stability. Whatever the results desired, chances are Plenco can provide important help. Plenco research. Plenco compounds. Plenco service.


PLASTICS ENGINEERING COMPANY Sheboygan, Wis. 53081 Cookware handles. Plenco 349.

Terminal boards.
Plenco 512.

writing speed, the unit has an integrating or halftone mode of operation. In this mode, it is possible to achieve writing speeds ranging from 0.1 division per microsecond with viewing time of 5 minutes, to five divisions/ $\mu$ s with viewing time of 15 seconds. Erase time is 0.5 second. The unit is priced at $\$ 1,925$ without CRT and $\$ 2,275$ with CRT.
Tektronix Inc., Box 500, Beaverton, Ore. 97005 [353]

## Miniature power meter

covers 10 MHz to 13.7 GHz
The model 8400 miniature power meter is designed for laboratory or field use to make rf measurements from 10 megahertz to 13.7 gigahertz. The unit is available with any of three interchangeable 5 -ohm mounts, each having a 20 -decibel dynamic range, covering a full-scale

power range from 100 microwatts to 100 milliwatts. A $75-\mathrm{ohm}$ mount is also available for CATV applications. Full-scale accuracy is within $\pm 3 \%$. Price of the meter is $\$ 350$; the mounts are $\$ 150$ each.
Narda Microwave Corp., Plainview, N.Y. 11803 [354]

Autoranging multimeter offers 1-microvolt sensitivity

Featuring an autoranging capability, the model DMM-51 multimeter provides 24 ranges with a sensitivity of 1 microvolt and accuracy within $0.004 \%$. Measurement capabilities include five dc ranges from 0.1 v to $1,000 \mathrm{v}$, and five dc-ratio ranges from 0.100000 :10 to $1,000.00: 10$ full

# Problem solving... with Victoreen High Voltage Technology 

1

## UNORTHODOX CRT DRIVE

How did we meet ever-expanding requirements for increased bandwidth and lower power consumption, coupled with the availability of highvoltage zener-type diodes (Victoreen Corotrons)? With an unorthodox drive scheme for CRT's.

Basically, this scheme is a mirror-image of the conventional method. Instead of supplying the CRT anode with very high voltage, we ground the anode and supply a drive signal, riding at approximately - 1800 volts, to the grid. The advantages? Being direct-coupled there are no reactive components to limit high-end frequency response or cause roll-off

at the low end. Second, the face plate of the CRT does not build up static charges which can distort the display.

Even though the Corotron operates in the corona mode of discharge, it has no voltage jumps or jitters. Corotrons are not tied to "natural" operating voltages and are adjustable in manufacture from 350 to 30,000 volts. Corotrons also have a positive regulation curve eliminating possible relaxation oscillation.

## 2 FROG MUSCLES TO BRAN WAVES

Colleges and universities, medical research laboratories and a number of R\&D firms are faced daily with the need for controlled highamplification of a wide variety of extremely low level signals. Such signals are derived from frog-muscle experiments, brain-wave measurements, cardiac research, avalanche-breakdown, currents in ionization chambers as well as from a range of constant-current sources.

The operational amplifier provides the amplification required because of theoretical in-finite-gain characteristics. However, at full gain an op-amp tends to be unstable and go into oscillation; further, amplified signals are difficult to fully analyze if the gain is unknown.


Victoreen MINI-MOX resistors are used widely to modify op-amp characteristics to: l. Stabilize output and eliminate oscillation. 2. Define gain so measurements can be quantified. 3. Restrict bandwidth to the region of specific interest.

Smaller than a conventional resistor and compatible with a TO-3 can, MINI-MOX resistors are ideal for highly-stable, low-level, miniature electronic circuitry.

They typically have a voltage coefficient of -5 ppm/volt, full-load drift of less than $2 \%$ in 1000 hours, temperature coefficient of 100 ppm, and a Quantech noise of less than 1.5 $\mu \mathrm{V} / \mathrm{volt}$ at 20 M ohms. They are available in values from 100 K to $10,000 \mathrm{M}$ ohms in $1,2,5$ and $10 \%$ tolerances.

## 3 a probe for high potental

Two Victoreen MAXI-MOX resistors used in series can serve as a probe in radar circuitry capable of measuring voltages up to 60,000 volts. The probe, compatible with a number of voltmeters of different manufacture, has both short- and long-term stability. Short-term stability assures negligible drift and fluctuation

during measurement, while long-term stability maintains the original calibration accuracy of the probe.

Each MOX-5 resistor used in the probe has a maximum operating voltage of 37,500 volts with a power rating of $121 / 2$ watts. The voltage coefficient is $1 \mathrm{ppm} / \mathrm{volt}$ over the complete voltage range of the MOX-5, while the temperature coefficient is better than 300 ppm from
$-55^{\circ}$ to $125^{\circ} \mathrm{C}$.
MAXI-MOX resistors have full-load drift less than $1 \%$ in 2000 hours of operation, and are available in tolerances of 1,2 , and $5 \%$ in values from 10 K to $2,500 \mathrm{M}$ ohms. A silicone varnish conformal coating provides environmental protection while allowing a maximum hot-spot temperature of $220^{\circ} \mathrm{C}$. In addition, it is compatible with commonly-used potting compounds.

## 4 SPARK GAPS SPARK INTEREST

Victoreen SGSP spark gaps normally protect electrical circuits from damage from transient voltage spikes; however, Optical Radiation Corporation, Azusa, Ca. uses them to ignite a Xenon lamp in a theatrical lamphouse to project motion pictures. Xenon lamps provide two

advantages; one, being very small and brilliant, light radiation is easier controlled; second, efficiency is higher, so smaller lamphouses with greater output result. The design won the company an Academy Award in technical achievement.
In operation, the capacitor is charged until the SGSP-5000 breaks down. The stored energy is released through the transformer primary, producing a very high voltage pulse in the secondary which ignites the Xenon lamp. This provides an extremely reliable method of starting the lamp. Once ignited, operation is sustained by a lower-voltage line operated power supply.

Victoreen Instrument Division of VLN Corp. 10101 Woodland Avenue Cleveland, Ohio 44104


# 2 kV to 100 kV 

 up to 5 PPS

# IN ANY CASE <br> MAXWELL'S HIGH VOLTAGE PULSE DISCHARGE CAPACITORS ARE DESIGNED FOR: 

Laser Systems - Plasma Propulsion - Utility Power Metalforming • Photoflash • Photocopy • Airport Lighting Defibrillators - Oceanographic Studies

Maxwell's reliable, low-cost capacitors are meeting critical demands for a wide range of military and industrial applications. Years of design experience and laboratory research have resulted in totally new product lines such as the Series S... a lightweight, compact, plastic case capacitor manufactured exclusively by Maxwell. Half the size of conventional metal case capacitors, the Series $S$ is ideal for compact systems.
Call the specialists for your high-voltage capacitor needs.
SERIES S - lightweight plastic case - high voltage gradient

- high reliability

SERIES M - high energy density - high repetition rate

- wide range of voltage and capacitance ratings

SERIES C - high voltage reversal - low inductance - high peak current - high energy content - wide range of bushing designs.

CAPACITOR RATINGS*:

	SERIES $S$	SERIES $M$	SERIES C
VOLTAGE kV	up to 100 kV	up to 12 kV	up to 125 kV
ENERGY   CONTENT	up to 1 kJ	up to 1 kJ	up to 12 kJ

-Special capacitor configurations to 1 MV .

# WRITE FOR COMPLETE CAPACITOR DATA FILE AND INFORMATION ON ALL MAXWELL'S HIGH ENERGY PRODUCTS AND PULSE POWER SYSTEMS. 




MANUFACTURERS OF JACKS, PINS AND TERMINALS.


## New products

plished by using a trigger level to stop the recording process, which freezes data in the machine's memory. The total record time in the memory is then divided between the pre-transient time and the posttransient time. The unit also records signals in digital form and samples the input analog signal voltage, storing the information and converting the digital signal back to an analog voltage for readout.
Hathaway Industries Inc., Tulsa, Okla. [356]

Function generator offers
waveforms at 0.1 Hz to 1 MHz
A function generator, the model 190, offers a full range of waveforms from 0.1 hertz to 1 megahertz. The instrument produces sine, square,

triangle, pulse, and ramp waveforms. Provision for voltage-controlled frequency, input, dc-offset, and TTL-pulse output are also offered. The portable instrument measures $73 / 8$ by $21 / 8$ by $81 / 2$ inches and weighs about two pounds. Price is $\$ 245$.
Exact Electronics Inc., Box 160, Hillsboro, Ore. 97123 [358]

## Microprobe thermometer

is accurate to $1^{\circ} \mathrm{C}$
Temperatures of beam-lead devices, flip chips, and miniature components can be measured with the model BAT-7R contact thermometer. The unit, which gives almost instant readings, can use thermocouples as small as 0.005 inch. The instrument has a MOSFET chopper stabilizer and a built-in temperature reference. Four ranges on the meter cover from $0^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$, and ac-


Immediate Shipment Low Prices
ANY voltage from 2.0 to 16.0 Quantity Price each 1-99 \$1.07 100-499 .97 500-999 1000-4999 5000 up


Kit contains a 51-piece assortment of SCHAUER $1 \%$ tolerance 1 -watt zeners covering the voltage range of 2.7 to 16.0. Three diodes of each voltage packaged in reusable poly bags. Stored in a handy file box. Contact your distributor or order direct.

A $\$ 54.57$ value for

## ONLY <br> $\$ 2450$

## Semiconductor Division <br> SCHAUER

Manufacturing Corp.
4514 AlpIne Ave. Cincinnati, Ohio 45242
Telephone: 513/791-3030

# You can't get FM tolerance and high sensitivity together 

## But we can.



Several years ago, EIP introduced the first Autohet frequency counter.

HP soon followed with their version of an automatic counter.

We had chosen to automate the heterodyne method of determining precise frequencies. They had taken the transfer oscillator approach.

We ended up FM tolerant. They ended up with more sensitivity.

## What happened?

If you were in the communications industry, you would need our counter to measure typically encountered signals with large amounts of frequency modulation.

If you required a counter to measure unusually low-level signals, HP had it.

And if you needed both FM tolerance and high sensitivity, you either bought both counters (for about $\$ 10,000$ ), or $y o u$ had had it.

## An Impossible Counter.

Last month, we introduced our new 350D. FM tolerance has been improved by $400 \%$ to a worst case of 40 MHz peak-to-peak deviation. Its sensitivity ( -25 to -30 dBm ) permits measurement of extremely low level signals.

Now. If you require both FM tolerance and sensitivity, you can get both in one counter (for about $\$ 5,000$ ).

Impossible? HP would like to think so.
We've even added a new feature you'll like. Our 11 digit display is now LED solid state. Extremely reliable. Easy to interpret. And our unique display blanking facility allows you to eliminate the 6 least significant digits.

Our 350D ( 20 Hz to 12.4 GHz ) costs $\$ 4,700$. Our 351D ( 20 Hz to 18 GHz ) costs $\$ 5,100$.

Call Bob Mangold collect at (408) 244-7975. Or, for Europe, contact Andre Mathot in Brussels at (02) 4145 50. Ask about this "impossible" counter.


Nortronics is ready to till your digital head needs for $1 / 2^{\prime \prime}$ IBM Compatible, $1 / 4^{\prime \prime}$ Cartridge, .150" Cassette and Floppy Disk applications.
Nortronics also manufactures the broadest range of audio heads in the world.
Our engineering department is prepared to work with your engineering group on new product development.
Call us.
Our line is open.

## I NORTRONICS

Company.inc.
 atephone(612)544.0381

## New products


curacy is within $1^{\circ} \mathrm{C}$. Price is $\$ 355$. A second model with a temperature range from $-10^{\circ}$ to $+175^{\circ} \mathrm{C}$ is available for $\$ 295$.
Bailey Instruments Co., 515 Victor St., Saddle Brook, N.J. 07662 [359]

## Illumination meter spans

1.2 to 1,200 foot-candles

Priced at $\$ 345$, the model 615 illumination meter covers from 1.2 to 1,200 foot-candles at 0.02 foot-candle per division. The wide range is made possible by a battery-operated amplifier circuit whose power is pro-

vided by a 9 -volt transistor battery that the company expects will last more than a year. There are seven ranges on the unit, in addition to a battery-check position and an internal lock that prevents the cover from closing unless the switch is in the off position. The portable instrument weighs less than 2 pounds.
Weston Instruments Inc., 614 Freylinghuysen Ave., Newark, N.J. 07114 [360]

## The pollution problem. Maybe your engineers deserve a little help.

The engineers'will be the ones to find the technical solutions to pollution problems. There's no doubt about it.

But pollution is a people problem, too. And the engineers' technological approach to pollution isn't going to solve people problems.

Maybe this booklet can help. It lists some of the things all people can do to fight pollution. And with all the people supporting your engineers we'll have a better chance of winning the fight.

For a free copy or a list of bulk rates write to Keep America Beautiful, Inc., Box 1771, Radio City Station, New York, New York 10020.

## Keep America Beautiful

Advertising contributed for the public good


People start pollution. People can stop it.

## We improved our micro resist.

New KODAK Micro Resist 747 is the purest, most stringently controlled resist we've ever made.

It's filtered to a value of 0.5 micrometer, and there are less than 10 parts per million of metal ions. (Less than three parts per million each of sodium, lithium, potassium, tin, or gold.) Viscosity and solids are also closely controlled.

And there are processing solu-
tions of equally high quality: KODAK Micro Resist Developer, Thinner, and Rinse. All of which help you get more uniform coatings and better process reliability. And that means economy.

There's convenience, as well. This negative-working resist comes in four ready-to-use viscosity grades: $30,45,60$, and 110 centistokes.

# We couldn't improve our offer. Technical assistance. <br> We'd be pleased to share our experience in 

 microelectronics with you. As a start, why not send for the comprehensive six-page data sheet on KODAK Micro Resist 747? Or have a representative demonstrate it for you. Either way, just use the coupon.


Automatic Alarms, Inc., Youngstown Electronic Control Corp., 626 Harper Ave. Detroit. Mich.
Electronic Laboratory, 306 S. Edinburgh Ave., Los Angeles, Cal
Lumenite Electric Co., 37 W. Van Buren St., Chicago, Ill.
O. B. McClintock Co., Minneapolis, Minn Photoswitch, Inc., 21 ' Chestnut St., Cambridge, Mass
Rehtron Corp., 2159 Magnolia Ave., Chicago. 111
Worner prod Corp., Torrington, Conn Chicatro, III.

## Amplitiers

## AUDIO FREQUENCY AMPLIFIERS

Altec Lainsing Corp., 6900 McKinley Ave., Los Angeles. Cal
American Communleations Corp., 306 Bratdway, New York, N. Y. Ampliffer Co. of America, 17 W .20 h St . Irrow Radio Co., 900 W . Jackson Blvd., - Chicaro. 111.

Atlas Sound Corl., 1442 39th St., BrookAyn, N. Y.
Audio Development Co., 2833 13th Ave., ballantine Laboratories, Inc., Boonton, ballantine Laboratories, Inc., Boonton, Hosen Co. No. Havid, 663 Broadway, New York, N. J. C., 601 Ware Randolph St., Chicago, Ili.
Chicago Sounal System Co., 212 \& S. Michiran Blyd., Chicaro, 111.
Collins ILadio Co., 2920 First Ive., Cedar
De liapids, Cow., 1111 Armitage Ave., Chi-
Electrical IResearch Products, Inc., 76 Varick St., New York, N. Y.
Erwood Sound E*quipment Co., 223 W. isie St. Chicago, 11. 88 Van Wyck M1vd., Jamaica, N. ${ }^{\prime}$ Federal Telegraph Co., 200 Mt. Pleasan Gabel Mfg. Co., John, 1200 W. Lake St., Chicago, Ill.
Gates Companies, Quincy, Ill.
Genoral Communication l'roducts Co., Lexington Ave. at Vine, IIollywood, Cal.
General Radio Co., 30 State St., Cam-
Gibbs \& Co., Thomas B., 900 W. Lake St., Chicago, 111.
Graybar Electric Co., Lexington Ave at 3 slo, New Western tributors for Western Electric Co., arvey-Wells Commun
Harvey-Wells Communications, Inc., North St., Southbridge, Mass.
Jack Mig. Co., Charles, 420 Lehigh St.,
Howard Radio Co., 1731 Belmont Ave., Chicago, Ill.
Linerophone Co., 1661 Howard Ave., Utica, N. Y.

Meck Industries, John, 1313 W . Randolph Miles Reproducer 111 .
Miles Reproducer Co., 812 Broadway, New Million Radio \& Television Laboratories, 1617 N. Damen St., Chicago, Ill.
National Union Radio Corp., 15 Washing-
Cational Co., 61 Sherman St., Malden, Mass.
National-Dobro Corp., 400 S . Peoria St.,
Newcomb Audio Products Co., 2815 S. Hill St., Los Angeles, Cal.
Norwalk Transformer Corp., South Nor-
Walk, Con. ${ }^{\text {Operadio Me. St. Charles, }}$ Ill.
Pacent Englneering Corp., 79 Madison Rauland Corp., 4245 N. N. Knox Ave., Chi-
Ray cago, Inl. 211 Railroad Ave., Elmira, RCA Mfg. Co., Camden, N. J.
Regal Amplifier Mrg. Corp., 14 W. 17th Rowe Industries, 3120 Monroe St., Toledo, Setchell
Setchell Carlson, Inc., 2233 University Ave., St. Paul, Minn.

Ave., Brooklyn, N. Y.
Brong
Flushing

Skagys Transformer Co., os89t Broadway; mith Co.. Maxwell, 1027 N. ILighland Sure., Hollywool, Cal. Wint First Ave., kine Radio Co.,
spokane. Wash.
Stromlery-cilson Telephone Mfg. Co., 100 Carlson lid.. Rochester. N. Y. Sundt lingineering Co., 4757 Ravenswood Are. Chicago, Inl.
Talking Devices Co; 4451 W . Trving Park viso irrollucts. Inc., 2400 N . Sheffield
Televiso I'roducts. Inc., 2400 N . Sheffield minai Radio corp., 85 Cortlandt st., New lork, N. ..' (See page ${ }_{500}^{176 .)}$ w. Huron St., Chicago, Ill.
Iransformer Corp. of America, 69 Wooster St., New York, N. Y.
rimmph Mfg. Co., 4017 W. Lake St., Chicago. 111 . Columbus Ave., Boston,

- ega Mass., Webster Electric Co
Western filectric Co.-see Graybar Electric Co.


## Analyzers

## COLOR ANALYZERS

bausch \& Lomb Optical Co., 635 St. Central Scientific Co. 1700 Irving Park Blvd., Chicago, IIl. St. Charles, Ill. iess Instrument Co., $30^{\text {I Irving Pl., New }}$ Fisher Scientific Co., 711 Forbes St., I'ittsburgh, 1 'a.
Gater
Scientific
Wrightwoor Scientific Corp.,
Goon Ave, Chicago, General Filectric Co., Schenectady N. Y. arrell- Msh Co., 165 Newbury N., Boston, Luxtrol Co., 54 W. 21st St., New York, Photobell Corp., 123 Liberty St., New Photorolt Corn., 95 Madison Ave., New York, N. Y. Ave., Cleveland, Ohio son Electrical Instrument $C$
Rubicon Co., 3751 Ridge Ave., Philadelphia, Pa.
Saxl Instrument Co., 42 Weybosset St.,
Sheldon lelectric Corp., 100 Fifth Ave., United Cinephone Corp., Torrington, Comm. Schuchard Inc., 17 W .17 th St., Now York, N. Y.

## SURFACE ANALYZERS

Brush Development Co., 3311 Perking Ave. Cle veland, (See page 22.) ysicists Research' Co., 343 S. Main St., Ann Arbor, Mich.

## Apparatus

GEOPHYSICAL APPARATUS
see also Geophones
American Instrument Co., 8010 Georgia Ave., Silver Spring, Md. 3311 Perkins Brush Development Co., 3311 Perkins Ave., Cleveland, Ohio
Cambridge Instrument Co., Grand Central Terminal, New York, N. Y. $\quad$ L. Engineering Laboratories, Inc., 624 E. Fourth St., Tulsa, Okla.
Geophysical Instrument Co., 1315 Half Heiland Research Corp., Club Bldg., Denver, Colo.
Mico Instrument Co., 10 Arrow St., Cambridge, Mass.
Miller Corp.,
Wm., $362 ~ W . ~ C o l o r a d o ~ S t . ~$ Pasadena, Cal.

## Books

TECHNICAL. ELECTRONICS and RADIO BOOKS
Blakiston Co., 1012 Walnut St., PhiladelMacMillan Po., 60 Fifth Ave., New York, McGraw-Hill Hook Co., 330 W. 42d St. New York, N. Y. (Spe page 180.) Maedel Pnb. House, 593 E. 38th St. Brooklyn, N. Y. (See page 167.)

Radio Technical Pub. Co., 45 Astor PLo Rider. John $\mathrm{l}^{\circ}$. $104^{\circ}$ IPourth Ave., New Ronald Press Co., 15 E. 26 th St. New lork, N.
Van fostrand Co.. D., 250 Fourth Ave., Wiley \& Sons, John, 440 Fourth Ave., New ork ${ }^{\circ}$.

## Chimes

## CHIMES and BELLS

Jack Mrg. Corl... Charles, 420 Lehigh St., Rangertone, Inc., $\mathrm{i}_{3}$ Winthrop St., NewRCA ${ }^{\text {ark. Ni. .J. Co. Camalen, N. J. }}$
Transformer Corp. of America, 69 Woos ter St, Now York, N. Y.

## Colorimeters

## PHOTO-ELECTRIC COLORIMETERS

Imerican Instrument Co.. 8010 Georgia Central sicientific Co., 1700 Irving Park Plvil., Chicago. Ijl. Coleman Wlectric Co., 310 Madison St. Ilaywooll Ill.
Filectronic Products Co., St. Charles, Ill Emby Products Co., 1800 W. Pico Blvd. Fisher Scientific Co., 711 Forbes St.,
Frober-Faybor Co., Chagrin Falls, Ohio
Jarrell-Ash Co., 165 Newbury St., Boston Flett Mass.
lilett MIg. Co., 179 E. 87th St., New York.
Pfiliz RiBauer, Inc., 350 Fifth Ave., New York, N. 95 Madison Ave, New hotovolt Corp., 95 Madison Ave., New
York, N. Y. Pho-Tron Instrument Co., 5713 Euclid Rubicon Co., 3751 Ridge Ave., PhilaRubicon Co., 3751 Ridge Saxl Instrument Co., 42 Weybosset St.. Scientific Glass Apparatus Co., Bloomfleld, United Cin
United Cinephone Corp., Torrington, Conn. oermann-Schuchliardt, Inc., 17 W. 17 th St., New York, N. Y.

## Controls

ACIDITY and ALKALINITY CONTROLS
Electronic Control Corp., 626 Harper Ave., Detroit, Mich.
Tagliabue Mfk. Co., C. J., Park \& NosTeleviso Products, Inc., $2400^{\circ} \mathbf{N}$. Sheffleld Ave., Chicago, Ill.

## BLEACHING PROCESS CONTROLS

Tagliabue Mfg. Co., C. J., Park \& Nostrand Aves., Brooklyn, N. Y.

## DOOR OPENER CONTROLS

Electronic Control Corp., 626 Harper Ave., Detroit Mich.
Electronic Laboratory, 306 S. Edinburgh Ave., Los Angeles, Cal. $S$ otoswitch, Inc., 21 Chestnut St., Cam bridge, Mass.
Televiso Products, Inc., 2400 N . Sheffield United Cinephone Corp., Torrington, Conn.

## DRINKING FOUNTAIN CONTROLS

Electronic Laboratory, 306 S. Edinburgh
G-M Laboratories, Inc., 4313 N. Knox
E゙nited Cínephone Corp., Torrington, Conn. FURNACE CONTROLS
Brooke Jingineering Co., 4517 Wayne Ave., General Electric Co., Schenectady, N. Y. Photoswitch, Inc., 21 Chestnut St., Cambridge, Mass.
Tagliabue Mfg. Co., C. J., Park \& Nostrand Aves., Brooklyn, N. Y.
United Cinephone Corp., Torrington, Conn. Wheelco Instruments Co., Harrison \& Peoria Sts., Chicago, Ill.

## now 50 amps from the leader in 20 kHz switching power supplies



RO introduces its newest high efficiency $20 \mathbf{k H z}$ switching power converters; series 400 . It comes in 5 V at 50 amps or other single or dual voltages up to 300 watts. Efficiencies are $65 \%$ at the 5 V level and reach $80 \%$ at higher voltages. Inputs can be AC or DC. 48 VDC input is standard for the telecommunications industry. Units are parallelable without limit by simply strapping the outputs together.
This series is the latest in a line of 20 kHz converters that RO has produced over 6 years of from 5 to 300 watts. Over 20,000 units delivered in this period make us the leader in "switchers."
Write for complete catalog and specifications.


## New products

Semiconductors

# LEDs seek new markets 

## Fast infrared diodes are aimed at optical coupling,

 TV transmission, other usesIt may seen strange for still another company to enter the light-emittingdiode market, but International Rectifier is doing just that, and its new infrared-emitting units are matched to the characteristics of

fiber optics. IR expects the devices to be used in computer, industrial, and consumer products.
"We are already involved in very-high-speed switching of SCRs," says David Cooper, vice president of sales and engineering, "and it's natural for us to make couplers that trigger the SCRs. To make very-high-speed, very-high-voltage couplers, however, we need fast, highoutput Leds." Also, IR's Crydom division is a major supplier of solidstate relays that use optical couplers. And, Cooper says, his company is working with makers of cable-television equipment on tv-transmission devices.
IR's new LEDS are an order of magnitude faster than comparable devices on the market, and their spectral output more nearly matches the minimum-loss wavelength of fiber-optic cables, says Cooper. The diodes have rise times of 80 nanoseconds at 100 milliamperes ( 50 ns at lower levels), compared to typical speeds of 300 to 400 ns .
This makes them usable for transmitting such high-frequency signals
as television, and the devices' peak spectral output of 882 nanometers closely matches the minimum-trans-mission-loss wavelength of fiber-optic cables, typically 800 to 850 nm . At this wavelength, the transmission loss is as low as 40 dB per kilometer over a widely used cable. Other devices have outputs that peak as high as 950 nm , where the loss is as much as $110 \mathrm{~dB} / \mathrm{km}$. Bandwidth is 10 MHz at 3 dB .

Cooper says that a proprietary production process has produced a gallium-arsenide compound that has new properties that provide these device characteristics. He says the high speed is partly a result of low capacitance ( 150 picofarads), but also because of transmission through the upper layers of the chip.

The devices can be operated from $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Power dissipation at the ambient temperature of $25^{\circ} \mathrm{C}$ is 180 milliwatts. Maximum forward current at ambient temperature of $25^{\circ}$ is 100 mA . Peak pulse current is 10 A at a pulse width of 1 microsecond at 200 pulses per second. Reverse breakdown voltage is a minimum of 2 v , and the maximum forward voltage is 1.8 v . Total radi-ation-power output at 100 mA is typically 1.8 to 5.4 mw for different devices. Cooper also claims that the devices exhibit better stability than other devices, with lower output drop as the temperature rises.
The devices are offered in modified TO-46 and pill packages at prices of $\$ 1.30$ to $\$ 3.68$ in quantities of 100 . Other cases will be offered in the future.
International Rectifier, Semiconductor Division, 233 Kansas St., El Segundo, Calif. 90245 [411]

## 1,024-bit programable ROM offers fast access

As its first serious attempt in the fast-growing market for programable read-only memories, Texas Instruments has chosen to secondsource the industry-standard 1,024 bit PROM, with a couple of extras for high performance at a low price.

The TI part uses a new fusing


We've added new lines that out-perform our older, high quality products. but at a lower cost to you . . . thanks to some nifty packaging and clever circuit design.

We have two new lines of FM telemetry equipment:

- A 51/4" FM Multiplex/Demultiplex line for Aerospace applications at less than $\$ 1,000$ per channel, complete! - An Industrial FM line that provides aerospace specifications in an industrial package, at an even lower cost!

We also have a new PCM Decom that's priced to sell for under $\$ 4.000$ !

And, a Tunable Bit Synchronizer that sells for less than $\$ 4,500$ !

Sound interesting? Call (203) 7439241 today for details. (Ask for Joe Lombardo)


DATA-CONTROL SYSTEMS, INC.
Commerce Drive, P.O. Box 584 Danbury, Ct. $06810-$ (203) 743-9241


There's a lot more than meets the eye in Delevan's lineup of miniature RF inductors and
transformers. Like the unmatched dependability built into each component. Thanks to a lot of things that go on at the factory. Hardnosed quality controls ... complete material analysis . . . advanced in-plant environmental testing ... automated techniques for
winding, soldering and molding . . . and conscientious people who take pride in true "no-fault" production. And of course, the dependable delivery and service you always get from

Delevan.


Remember . . . the proven reliability of these superior made-in-U.S.A. inductive devices means greater reliability for the products and assemblies made from them. Sure, you can save a few pennies by úsing cheaper components. But this could be expensive in terms of premature failure of the finished product. When your company's reputation is on the line, you can't afford not to use Delevan components. Their premium performance more than justifies their use because Delevan dependability pays for itself. Why not prove it to yourself!

## Delevan

## Division

AMERICAN

270 QUAKER RD./EAST AURDRA, N.Y. 14052 TELEPHONE 718/652-3800 TELEX 081-293 OTHER ONISIONB OF AMEAICAN PAECIBION INOUSTAIES INC basco:oustex PRECISION industries inc.
technology "that's small, fuses very quickly, and gives us a very high rate of programability," says Richard L. Horton, market development manager for digital ICs at TI's Houston facility.
The metal fuse link, which is proprietary, is not nichrome or aluminum, Horton emphasizes, but "something that is innate in the Schottky process. We use it in all

our Schottky products."
Programability is factory-tested, says Horton: "We've added an extra bit to every word, and we fuse that internally to verify programability." In fusing, logic "highs" at selected locations in the 256-by-4-bit device are changed to permanent logic "lows." Links typically fuse in 1 millisecond.

The PROM, which comes in two series, designated the 54 S and 74 S , uses fully decoded pnp inputs to reduce input current requirements to less than -0.25 milliampere-about an eighth of a normalized load fac-tor-and is fully TTL-compatible. It features full Schottky clamping for fast typical access times of 15 nanoseconds from enable and 40 ns from address. In addition, the PROM is available in a choice of output configurations: model 74S287 has three-state outputs for more new system designs, and the model 74S387 is an open-collector-output part.

Both 74S proms, in the 16-pin plastic dual in-line packages, are available from stock at $\$ 19.20$ in quantities from 100 to 999 . The military version, the 54S series, will be introduced later this year, and a

# An offshore plant will reduce your electronics manufatcturing costs. 



The competitive challenge of imports hasn't hit any market harder than electronics. An offshore plant with low labor rates seemed to offer a convincing way to regain the profitability edge. Until the plant was built and local realities set in. Restrictive labor regulations, stretched logistics, and unfamiliar conditions all tended to eat up those paper profits. It didn't really take a palace revolution to put you in the red.

Universal Instruments Corporation has quietly pioneered a different approach to help you combat the stacked deck of import price competition in electronics. We reasoned that if we could take the handwork out of electronic assembly, you could avoid the pitfalls of chasing cheap labor around the world to keep your manufacturing costs down.

Now, computer-controlled automated assembly systems developed and refined by Universal over the past 15 years are providing a better answer to importsin markets as diverse as color television and seat belt interlock systems.

For example: a flexible complex of Universal sequencers and component insertion machines controlled by worker and supervisory computers adjusts rapidly to meet changes in production schedules at a
major U.S. electronics manufacturer. To keep their plant competitive by turning out 85,000 circuit modulesenough for more than 10,000 color TV sets-per day.

For the new generation of automotive electronics, the Universal In-Line Assembly System can put together circuit boards for didital clocks, anti-skid controls, fuel injection and other devices faster and more economically than any other system. It can assemble approximately 1,260,000 boards per 10-month seven-hour single-shift production year. A production advance that enables electronics and auto makers to meet this high volume demand-profitably-at home.

Then there's the flexible new "Quadrasert" that handles circuit boards automatically, computer-controlled wire termination systems, and the "Multisert" system that inserts up to ten components at once. Plus emerging production technology developments from Universal to help make your present domestic production at least as cost-effective as past offshore production. Even in 1985, when U.S. manufacturers will need over one billion circuit boards.

Because we know there's no way except better technology to keep all of us in the electronics business.


The most cost-effective system available for high volume circuit board production.


Combining automated board handling with moving table insertion for added flexibility in high volume circuit board production.

EXPANDABLE SEQUENCER


Add-on flexibility from 20 to 95 stations permitting growth without production obsolescence in your component sequencing operation.

Write or call us today for complete technical literature and production specifications on these and other Universal systems-including a wide line of insertion machines, sequencers, and wire wrap systems -as well as information on our extensive contract facilities for electronic assembly.
U.I.C. Salez and Service Offices in California: Santa Ana; Colorado: Danver; Floride: St. Petersburg: IMinors



# A 50W audio amp à la SANKEN 

Represented by:
Argentina: Reidel S.A.C.I.F.I., Buenos Aires Phone: 55-1627, 55-9126

Australia: Tristate Electronics Pty. Lid., Mascot N.S.W. 2020 Phone: 669-2657

Brazil: Industria Eletronica Anritsu Lida. Sao Paulo Phone: 35-6308
Canada: Len Finkler, Ltd., Ontario Phone: 630-9103

Denmark: Elmatok Lid
Ullerslev
Phone: 09351446
Finland: Ky L. I.
Lucander Kb.
Helsinki
Phone: 574-750
France: Tradelec, Paris
Phone: 53300.40
F. R. Germany: Ernst

Roederstein GmbH , Landshut
Phone: 0871-3085
Israel: Bet K. D. M.
Ltd., Tel-Aviv
Phone: 53517, 56952
Italy: Metroelettronica
S.A.S., Milan

Phone: 546.26.41
Mexico: Tecnoceramica S.A., Mexico City Phone: 561-23-67
Netherlands: Metronix
B.V., Harderwijk

Phone: 03410-2486
New Zealand: David
J. Reid (N.Z.) Lid.,

Auckland
Phone: 499-089
Norway: Therma Technical Agencies, Haslum Phone: 533322

Rep. of China: Development Enterprise Co., Ltd., Taipei Phone: 335412, 361001
South Africa: M.T.S
Desselss (1954) (Pty.)
Ltd., Johannesburg
Phone: 21-7671
Spain: Industesa.
Barcelona
Phone: 2451612
Sweden: Aug. Eklow AB Stockholm
Phone: 230620
Switzerland: Dewald AG
Zurich
Phone: 051-451300
U.S.A.: Airpax

Electronics Inc.,
Florida
Phone: 305-587-1100


Sanken self-contained hybrid power amp series streamlines Hi - Fi , stereo, musical instruments and public address equipment. The circuit employs high-reliability flip-chip transistors and passivated-chip power transistors with excellent secondary breakdown strength. Features quasi-complimentary class B output and operates from a single or split power supply. Built-in current limiting is provided for $\mathrm{SI}-1030 \mathrm{G}$ and SI-1050G.

CHARACTERISTICS	SI-1010G	SI-1020G	SI-1030G	SI-1050G
Maximum rms Power	10W	20W	30W	50W
Supply Voltage	34 V or $\pm 17 \mathrm{~V}$	46 V or $\pm 23 \mathrm{~V}$	54 V or $\pm 27 \mathrm{~V}$	66 V or $\pm 33 \mathrm{~V}$
Harmonic Distortion at Full Output	0.5\% max.			
Input Voltage	0.30V typ.	0.42V typ.	0.52V typ.	0.70V typ.
Voltage Gain Full Feedback ( $\mathrm{Po}_{\circ}=1 \mathrm{~W}$ )	30 dB typ .			
Input Impedance	40,000 ohms typ.			
Output Impedance ( $\mathrm{PO}_{\mathrm{O}}=1 \mathrm{~W}$ )	0.2 ohm typ.			
Signal to Noise Ratio (Input Shorted)	90 dB typ.			
Frequency Range ( $\left.\mathrm{Po}_{0}=1 \mathrm{~W}\right)$	20 Hz to 100 kHz			
Power Bandwidth (-3dB)	20 Hz to 20kHz			
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$		
Storage Temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$		
At $25^{\circ} \mathrm{C}$ ambient, $1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8$ ohms				

Contact our representatives for more technical details.

SANKEN ELECTRIC CDMPANY, LTD.
1-22-8 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171 Japan
ELECTRIC co.. LTD. Telex: 0272-2323 (SANKEN J) Cable: SANKELE TOK Phone: 986-6151

## New products

2,048-bit PROM using the same fusing technology will be announced by the company during the second half of the year.
Texas Instruments, Inquiry Answering Service, P.O. Box 5012, M/S 308. Dallas, Texas, 75222 [412]

## Register file reads and

## writes at the same time

A 16-bit multiport register file, organized as 8 words by 2 bits, is able to read 4 bits and write 2 bits at the same time. Designated the model MC10143L, the random-access memory uses MECL-10,000 levels and has a complexity equivalent to 110 gates. Access time to any 4 bits is 10 nanoseconds. The de-
 vice not only has the ability to access any two 2 bit words for read while writing a third word, but can perform two read operations and a write operation simultaneously. Write operations can also be made prior to, at the same time, or after read operations. ECL outputs are capable of driving transmission lines directly. Outputs can be wire-ored together, or several register files can be combined on a bus line. Power dissipation is 610 milliwatts, and the unit is supplied in a 24 -pin dual in-line package. Price is $\$ 29$ in 100 -lots.
Motorola Semiconductor Products Inc., Box 20924, Phoenix, Ariz. 85036 [413]

## Power transistor switches

at less than 100 ns
Suitable for industrial and military applications, the model 2N5 189 power transistor is an npn device for use as a core or line driver in data-processing equipment. The unit is a double-diffused epitaxial device with an improved interdigitated geometry, and the structure provides low saturation voltages and high speed. The transistor can be used in any application requiring a collector current to 1 ampere with total switching speeds of less than 100 nanoseconds. Price for the basic device, rated at 35 volts, is 82 cents for 1 to 99 pieces and 60 cents for 100 -lot quantities. A 100 -volt version, called

By putting its double-break, double reliable Butterflyo switches to work in mass transit systems.
Licon ${ }^{\oplus}$ switches are at work 24 hours a day, in automatic door devices, on thousands of mass transit vehicles throughout the world. Rugged, dependable, and able to withstand countless trouble free operations under most severe conditions.
The same rugged dependability is yours in every basic Licon switch. What are your load requirements? What kind of actuator or mounting will best suit your needs?
Look to Licon: Your Licon representative or distributor has a switch solution for you.


Division Illinois Tool Works Inc. 6615 W. Irving Park Road Chicago, llinois 60634 Phone (312) 282-4040 TWX 910-221-0275

## A new concept:



Smaller cheaper
faster
lighter
and
tougher
than

## the digital counter

Curtis coulometer technology opens new possibilities in timing and counting. Compared to motor driven, gear-limited counters, Curtis Analog Counters are much smaller, considerably cheaper, respond in microseconds, weigh less, never jam or lose count. These characteristics have opened up whole new fields of application where counters were considered impractical before.
May we tell you more?
Write or call us, we'll send you our literature.


CURTIS INSTRUMENTS, INC. 200 Kisco Avenue, Mt. Kisco, N.Y. 10549 Tel. (914) 666-2971 . TWX 710-571-2163
U.K.: Newcastle Upon Tyne, NE1 6AE

## New products

the KP3540, is priced at $\$ 1.25$ each for 1 to 99 pieces and 95 cents in quantities of 100 . Production quantities are available in six weeks.
Kentron Inc., 7516 Central Industrial Dr., Riviera Beach, Fla. 33404 [414]

Power transistors deliver to 100-A peak current

Two series of industrial power transistors offer peak currents of either 70 amperes or 100 amperes. Each of the npn devices is available in a TO-3 or TO-63 can; both are con-

structed with a single planar chip. Typical applications are in power supplies, motor drivers, and as SCR replacements. The devices, rated at 70 amperes, are priced at $\$ 35$ each in lots of 100 .
Solitron Devices Inc., 1177 Blue Heron Blvd., Riviera Beach, Fla. 33404 [416]

Semiconductor memory has
1.28-gigabit/s data rate

Consisting of two independent bipolar memories, each 8,000 words by 16 bits, a semiconductor memory offers a 1.28 -gigabit-per-second data


## Antimony <br> Arsenic <br> Bismuth <br> Cadmium <br> Copper <br> Gold <br> Indium <br> Lead <br> Selenium <br> Silver <br> Sulphur <br> Tellurium <br> Thallium <br> Zinc

Asarco has the broadest selection of high purity elements in the business. All $99.999+\%$ pure. All ready for prompt delivery. For semiconductors, electronics, metallurgy, research, and other applications.

Our high-purity elements are also available in commercial quantities.

For more information on Asarco's array of high purity elements, write our By-Products Department at 120 Broadway, New York, N.Y. 10005.

Cramped for space in your production of computergenerated graphics? Stretch out on the king-size 22 -inch bed of the new Gould 5100. In fact, the Gould 5100 gives you the widest plotting capability at the fastest speed of any electrostatic unit. With a price/performance ratio superior to every other printer/plotter on the market.

The Gould 5100 has been specifically designed for scientific and engineering work where speed is essential, and where the ability to print out such materials as seismographic charts and $A$ to $D$ size drawings is required.

And it's absolutely loaded with features. 22-inch wide roll paper. Up to 3 inches per second in graphics mode. Resolution of 100 dots per inch horizontally and vertically. Superior density of plotter output.

What's more, the optional 96 ASCII character set allows the Gould 5100 to print 264 characters across the page at 1200 lines per
minute. Direct on-line interfaces are available for IBM System / 360 and IBM System / 370 computers as well as for most mini-computers.

And Gould software is the most efficient and flexible available anywhere. In addition to the basic software package that emulates the widely accepted Calcomp graphics package, specialized engineering, drafting, scientific and business graphic software enables your computer to efficiently handle the most sophisticated computergraphics.

Built with traditional Gould quality, and backed by Gould's own reliable service, the Gould 5100 will greatly expand the efficiency and throughput of your production of computergenerated graphics. Let our Pete Highberg or Bill Koepf prove it to your satisfaction. Get in touch with them now at Gould Inc., Dept. E. 3, DataSystems Division, 20 Ossipee Road, Newton, Massachusetts 02164 .

## The new Gould 5100 printerplofter. It lets you work out on the biggest bed in the business.

## "ECI isa goodplace to work, if you're a good engineer." <br> BRUCE MYERS, <br> Senior <br> Principal <br> Engineer

"We get to design state-of-the-art equipment instead of doing the same old thing all the time. We get to do new and exciting things. We deliver hardware, not paperwork. And there's no problem of gaining responsibility and advancing yourself. We have a very positive outlook."

Career opportunities for electronic engineers:

We have openings at all levels for electronic engineers experienced in the design and development of communications systems, RF, digital, and modem equipment. You'll be working with major UHF command and control systems, satellite relay and telemetry systems, and a variety of other challenging long-term projects including advanced mail handling systems.

## If your specialty doesn't

 match exactly:If you're a creative Electronic Design or R \& D engineer, really know the fundamentals of electronics, and are highly flexible, we'd like to hear from you. It may well be that you're the man for us.

ECI is on Florida's West Coast in sunny, cosmopolitan St. Petersburg. If you're interested in a career opportunity on long-term programs in a stimulating environment, write in confidence today to William A. Peterson, Personnel Manager, Electronic Communications, Inc., Box 12248 , St. Petersburg, Fla. 33733.

## New products

rate. One memory can be read while the other is loaded or vice versa. An alternate mode is to operate both memories in parallel, forming a single 16,000 -word-by-1-bit memory system.
Intel Memory Systems division, 345 Middiefield Rd., Mountain View, Calif. 94041 [415]

## Two-wire transmitter is

aimed at signal transmission
Designed for signal-transmission applications in process control, instrumentation, and data-acquisition systems, the LH0045 two-wire transmitter is a linear integrated circuit that accepts a voltage signal from a sensor, converts it into a current, and transmits the current down a twisted pair to a receiver. The same twisted pair provides the device with supply voltage, making the unit desirable for remote sensing applications. The LH0045 is intended for use with various sensors, and so it can link with thermocouples, strain gauges, and thermistors. Price in 100 -lots is either $\$ 18.50$ or $\$ 21.50$, depending on packaging. National Semiconductor Corp., 2900 Semiconductor Dr., Santa Clara, Calif. 95051 [417]

## Circuit links MOS

and TTL data buses
A dual, bidirectional bus-interchange element interfaces MOS and TTL data buses. Called the model 8 T 30 , the unit can exchange data in half-duplex transmission mode from a party-line TTL or DTL bus to an MOS, TTL, or DTL transceiver port. Each half of the 8 T 30 interchange element is conditioned by common receive and transmit-enable controls for six modes of operation. Both sets of transmit-output and receive-input pins act the same way-typically routing data from the party line to transceiver ports. The price of the model 8T30 is $\$ 1.88$ each in quantities of 100 .
Signetics Corp., 811 E. Arques Ave., Sunnyvale, Calif. 94086

## BREAKTHROUGHS. si.50 AND UP.

(1) The universe's very first and only transistor that's an IC.

Old style power transistors join the buggy whip because LM 195/ 295/395 are blow out proof. (just $\$ 4.95$ for the LM 395-all prices in batches of 100 plus.)

And if that doesn't blow your mind, how 'bout...


The first transistors thet are blow out proof and short circuif proof.
(2) A proprietary timer in which the output is short circuit proof.

The output state of LM 322 can be inverted, eliminating the need


The first timers with a short circuit proof output. for external circuits. Another thing that should have an effect on you is that inputs on the trigger terminal after it's triggered have no effect on the timer output. ( $\$ 1.50^{*}$ )
(3) A $3-\mathrm{amp}$ IC regulator.

Another first.
The number is LM 323, and it's a
logical extension of the self-protected 3 terminal regulator field which guess-who has pioneered.(\$6.75*)


The first 3-amp positive
(4) An IC temperature transducer.

Linear sensor, amplifier and a stable voltage reference all on a single monolithic IC chip.


The first
temperature fransducer on achip.

And they read out in real temperature (degrees Kelvin) instead of ohms. So when someone asks you how hot the whatchamacallit is you don't have to tell them 14 ohms. ( $\$ 13.35^{*}$ )

Pens ready?
LX 5600AH/LX5600H and LX5700AH/LH5700H.

Buy 'em quick 'cause we can use the money. Or, for the stubborn among you, details are available from National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara, California 95051.

## HEAT TREATING CONTROLS

Ihown Instrument Co．， 4536 W゚ayne Ave． I＇hiladelphia，I＇a．
Fulectronic Controil Corpl．，6上 6 Harper Ave． lermit．Mich
Electronic Laloniatory， 306 S．İllingburgh General bos shgeles d＇al．
General lelectric t＇o．，Nehenectaly，N．Y Tagliahue Mf\＆．＇o．，（C．J．，！ark \＆Jos W＇hemen Instruments（｀o．．Ilarrison \＆ leorial sts．，（＇hicago．ill．

## LIGHTING CONTROLS

I：lectronic Laboratory， 306 S ．Lidlinburgh Ave．，Los Angeles．Cal．
Gental Control Co．2：Broadway（am－ loridge，Mass．（sur mat 1\％ij）
 Televiso lroducts．Inc．， $2400 \times$ ．Shellield Ave．，Chicitgo．Ill．
Cnited Cinephone Corp．，Torrington，Conn， Weston polectrical Instrument（orp．， 614 Frelinghust $n$ Ave，Newark，※．．J．

MOTOR or GENERATOR CONTROLS
Allis－Chalmers Mifg．Co．，Nilwaukee，Wisc． Andrews \＆Perillo，inc．， 3930 Crescent Burlington Instrument Corn．İurlington， Jowa
lilectronic Control Corlo．， 626 IIarner Ave．， betroit，Mich．
（ieneral Control Co．， 243 Brondway．Cam－ bridge，Nass．（Nom page 1\％I．） reneral Mo （＇hicago．Ill．＇， 4835 W．plotrnoy st．， United Cinephone Corp．，Torrington，Conn．

PACKAGE WRAPPING CONTROLS
I：lectronic Control Corı．， 626 Jarner Ave．， G－ationit．Mirh
G－al laburatories，Inc．， 4313 ぶ．linox
Rehtron Corp．，$\because 159$ Magnolia Ave．，Chi－ cago．Ill．
Televiso I＇roducts，Inc．， 2400 N゙．Sheflield Westinghouse Fifectric \＆Mrg．Co．，Fast Pittsburgh，Pa．

## PAPER TRIMMING and SLITTING CONTROLS

Flectronic Control Corp．， 626 IIarper Ave．
Detroit，Mich． 21 Chestnut St．，Cam－ bridge，Mass，
United Cinephone Corp．，Torrington，Conn． Westinghouse rolectric \＆Mrg．Co．，Last Pittshurgh，Pa

PHOTOGRAPHIC PROCESS CONTROLS
General Control Co．， 243 Broadway，Cam－ bridge，Jass
Industrial Tinier Corp．， 117 Edison Pl．， ercontinental Marketing Corp； 95 Mad－ ison Ave．inc．， 21 Chestmut St．，Cam－ bridge，Mass．
Untted Cinephone Corp．Torrington，Conn Weston lolectrical Instrument Corp．，filt H＇relinghuysen Ave．，Newark，X．J．

## PRINTING REGISTER CONTROLS

Electronic control Corp．， 696 Harler Ave．， Detroit，Mich．
Emby Products Co．， 1800 W．Pico Blvd．， Los Angeles，Cal
General Lectric Co．，Schenectady，N．Y． －M laboratories，Inc．， 4313 N．Knox Photoswitch，Inc．， 21 Chestnut St．，Cam－ bridge，Mass．
United Cinephone Corp．，Torrington，Conn． Westinghonse Gectric \＆Mrg．Co．，East F＇ittsburgh，Pa．

## REMOTE CONTROLS

Allen－1：ndley（＇o．， 136 W ＇．Greenfield Ave．， Milwaukee Wis．
American Automatic Electric Sales Co．， 1033 Wan Buren st．，Chicago，11l． Ocal Co．， $11+2$ Tucker Ave．，Shelby， Bailey Meter Co．， 1050 Ivanhoe Rd．， Bristol Co．．Viaterbury，Conn．
Srown Instrument Co．， 4536 Wayne Ave． Ihiladedphia，Pa．

Clare \＆Co．，C．I＇．Lawrence \＆Lamon Cuthor－Hammer，Jife． $1+01$ IV．St．Paul Electric indicator Corl．， 21 Parker Ave．， staniford Conu． stanford，Conn
Filectrimatic Corlp， 2100 Indiana Ave．， Chicatgo， 111
Filectronic Laboratory， 306 S ．Lidinlourgh Ave．，Ios－ingele＇s．cal． lolsbert Ilfg．Co．， 910 IV．Lake St．，Chi－ cago，Mo．semonset Ave．，foxboro Mass．
Gencral lilectric Co．Sibhenectaty N Guardian Electric Mfg．Co．， 1621 IV：Wal
IIanlon－W゙aters，Inc，Tulsa，Okla．
llart Ilfg．＂o．， 11 Bartholomew Ave．， llase（＇orlp， 925 Honghth dve．，Michigan City，Ind．
H－1；Instrument Co．， 2520 N ．Ibroad St． ＇hindelphia，l＇a． 20th 1＇l．，Chicago，Iil． International loilter Co．， 325 25th Pl． liollsman instrument Miv．，Square D Co． xnos foth Aver．：Elmhurst．N．Y． N゙urman Folectric（ 0 ， 341 lafayette $S t$.
 －：
Masoli－$\dot{\text { Milan }}$ Vegulator Co．， 1190 Adams St．．lioston．Mass．Cismel，Ill．
Meissner Jifg．Co．，Mit．Carmen
Meissner Jfg．Co．，Mt．Carmel，Ill．$\quad$ Minneapolis－lloneyvell liegulator（＇o．． $71 \%$ lonurth dre．．S．．Minneapolis，Minn I＇hotobell Corp．， 116 Nassau St．，New PC．Ork，Co．，Camden．ぶ．T
lepublic Flow Mrters Co．， 2240 Diversey scientific＂Instioment Co．， 1441 Watnut St．，Perkeley，Cal．
Tagliaitue Mfg．©o．．C．J．，Jark \＆Nos－ 1rand Wes．．hrooklyn，N．Y． Taylor Instrument＂ompanies， 100 Ames St．．Jinchrster．N．Y
Fniteal Cinephome Corp．，Torrington．Conn Whecico Instruments Co．，Harrison \＆ Venith Filectric Co．， $835^{\circ}$ S．Waluash St． Chicago，IIl

## TEMPERATURE CONTROLS

Allen－Irradley Co．， 136 W ．Greenfield Ave． Milwallkee，Wis
Rristol Co．Waterhury，Conn
Brown instrument（o．， 4536 wasne Ave． I\＆lectronic Control Corp．，fog IHarper Ave． Detroit，Nich．
lislectronic Laboratory， 306 S ．Fdinburgh Ave．，Los ingeles，Cal． General lolectric Co．，Schenectady，N．Y Illinols Testing Lahoratories， $420^{\circ} \mathrm{N} . \mathrm{La}$ hicago，Ill．
Leeds \＆N゙orthrup Co．， 4970 Stenton Ave． Thilarlelphia，I＇a．
encer Thermostut Co．， 1404 Forest St Attleboro．Mass．（See page 111 ） Tagliahue Mfg．Co．，C．J．Jark \＆Sos－ Wheelco Instriments Co．．Harrison \＆ Peorit Sts．，Chicago，IIl

## THICKNESS CONTROLS

Electronic Control Corp．， 626 Harper Ave． Detroit，Mich
Magnetic Gauge Co．， 60 E．Bartges St． Photoswitch．Inc．， 21 Chestnut St．，Cam－ brilge，Jass

## TRAFFIC CONTROLS

American Gas Accumulator Co．，Eliza－ beth．．．．J
Electronic Control Corp．， 626 Harper Ave
Televiso Prolucts，Inc．， 2400 N．Sheffield Ave．，Chicaso，Jll．

## VIBRATION CONTROLS

Andrews \＆Perillo，Inc．， $39-30$ Crescent St．．Long Island City，N．Y
Electronic（ontrol Corp．， 626 Harper Ave． Netroit，Mich．
Teleriso Products，Inc， 2400 N．Sheffield Ave．，Chicago，Ill．

WEFT STRAIGHTENING CONTROLS
General Filectric Co．，Schenectady，ぶ．Y

## WELDING CONTROLS

## see Timers

Allis－Chalmers Mfg．Co．，Milwaukee，Wisc． electronic Control（＇orp．．6ジ ${ }^{\circ}$ Harper Ave． Detroit，Mich
General bilectric（＇u．．Schanoctady，ふ．Y． ＇hotoswiteh，Ine．，$\because \ddot{l}$（＇hestnut st．，Can－ bridgen，Mass．
Televiso 1 rorlucts，Inc．，$=\downarrow 418 \times$ ．Sheflield Ave．，Chicago， 111.
Nestinghouse Fillectrle \＆Mfs．Co．，Liast I＇ittsburgh，Pa．

## Counters

Andruws \＆Perillo．Inc．．：1！－30（＇rescent dutomatic Filectric Co．．dos3 w．Van Ifuren St．．Chicago． 111
Clare Co．，C．I＊．Lawremeo Lamon Aves．
Chicisn Coctronic Control Corp．，foti Hasper Ive． I Petroit，Jich
 Ave．．Inos Angules，＂al．
Photobell Corp．，Ilf Nassatu sit．，New （t．，New
Ohotoswitch，Inc．． 21 （＇hesthut St．，Cam－ hridge．Nass
entron（orp．，215：Magnolia Ave．，Chi－ eviso，minodurts．Inc．，？tin xi．Sliellield
Wheole，Chicaimo，Ill．
Jeoria Sts．，Chiengo．Jll．

## Detectors

## PINHOLE DETECTORS

General blectric Co．，Schenectary．N．V． Vestinghouse bilectric \＆Ilfg．Co．，DBast Pittslurgh，Pa．

## Devices

## GRADING DEVICES

Anduews \＆Perillo．Inc．39－3！Crescent St．，Jing island rits，V＂．V＇． andronic ＂ontrol
aetroit．Mich
Electronjc Laboratory， 306 S ．Folinburgh Ave，Los Angeles，＇al
bridmentrol $\mathrm{Co}, 43$ Broadway，Cim－ bridge，Mass．

## KEYING DEVICES

Gray Mfg．Co．，16－30 Arbor St．，Hartfort， Conn．

## MACHINE SAFETY DEVICES

Flectronic Control Corp．， 696 Harper Ave．， alectronic Laboratory， $30 f$ s．Edinburgh Ave．，Los Angeles．Cal．
General Control Co．， $2+3$ Broadway，Cam－ bridge，Mass．
Photobell（orjp．， $1: 3$ Liberty St．，New toswitch，lnc．， 21 Chestnut St．，Cam－ bridge，Mass
Televiso I＇roducts．Inc．，-400 ぶ．Shemield Tnited Cinenhone Corp．
Thited Cinephone Corp．，Torrington，Conn． Penria Sts．，Chicago，Iil Inrison \＆

## WEIGHING DEVICES

dectronic Control Corp．，iされ Harpur Ave． Detroit，Mich．
Flectronic Laborators＂．nof S．Filinburgh General Control Co．， $2+3$ Broadway，Cam－ bridge，Mass．
Wheclco Instruments Co．，Harrison \＆
Iroria Sts．，Chicago，Ill．

## Diathermy

## DIATHERMY APPARATUS

American Systocope Makers，Inc．， 1241 Battle Creek Efnipment Co．， 32 N．Wash－ ington Ave．，Battle Creek，Jich． Firtcher Corp．， 508 ：Huntington Drive，N．， Los Angeles，Cal
Burdick Corp．，IIfton，Wis．

## SURPRISE:



# Xhigh-speed isohator hreakthrough. 

Two new optically-coupled isolators take advantage of our advanced photo
IC capability giving speeds four times faster than other opto couplers. The 5082-4360
Series optically-isolated gates operate up to 20 M bits. This device has a photo
detector IC circuit consisting of a photo diode and high-frequency linear amplifier. It is completely TTL compatible at the input and output and it's capable of feeding eight TTL gate loads. The $5082-4350$ Series isolators operate up to 4 MHz bandwidth.
This device consists of a monolithic photo detector with a photo diode and high frequency
transistor on the same substrate, making it ideal for linear and digital applications.
The 5082-4350 Series prices start at $\$ 1.70$ in IK quantity: the $5082-4360$ Series is priced

Sales and service from 172 offices in 65 countrias. 1501 Page Mill Rowd, Palo Alto. Callosme 9304

## Packaging \& production

## Thermoplastic is easy to mold

New compound can be<br>processed with standard injection-molding equipment


#### Abstract

Among major claims for a new thermoplastic molding compound developed by the Carborundum Co. is ease of processing. The copolyester, designated Ekkcel I-2000, is said to mold well in standard injectionmolding equipment, in addition to possessing desirable physical and electrical properties. What's more, the moisture absorption of the molded part is very low.

Ekkcel I-2000 can be processed in



injection-molding equipment that is capable of barrel temperatures of $725^{\circ} \mathrm{F}$ to $750^{\circ} \mathrm{F}$ and of injection pressure ranging from 6,000 to 8,000 pounds per square inch. For best properties, a hot mold-at $350^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}$-is recommended, although, in some instances, an ambient-temperature mold may be used.

The molding compound is said to be well suited for manufacture of such connector components as the molded insert shown above. Because Ekkcel I-2000 has low friction and good wear properties, Carborundum says that it is suitable for
motor bearings and for a wide range of other applications requiring high strength at elevated temperatures.

The molded material retains its physical and electrical properties at temperatures in excess of $500^{\circ} \mathrm{F}$, the company says. Moisture absorption is less than $0.025 \%$ after 24 hours in boiling water. The material is nonburning, having a limiting oxygen of 37 , and it meets Underwriters Laboratories specification VE-O. It is also being tested for use in manufacture of printed-circuit boards.

Sample quantities of Ekkcel I-2000 is priced at $\$ 24$ per pound.
The Carborundum Co., P.O. Box 337, Niagara Falls, N.Y. 14302 [391]

## Automatic wire strippers

## use digital controls

Automatic wire strippers are generally operated by compressed air, but not Standard Logic's new EWS-6K. It uses solid-state digital control and a feed/cut/strip mechanism operated by precision stepping motors. The machine operates at 6,000 wires per hour without the noise generally associated with pneumatic strippers. The electronic controls and simplified electromechanical system should also mean reduced wear and better reliability, predicts Bruce L. Billington, vice president of marketing.

Cut- and strip-length of the wires is determined by panel thumbwheel switches, rather than the usual internal analog adjustments. The wire length can be 2.5 to 99.9 inches, selectable in $0.1-\mathrm{in}$. increments. The strip can be as long as 1.5 in., also in $0.1-\mathrm{in}$. increments, excluding 0.1 and 0.2 in., which aren't generally required. Wires of 24 to 30 AWG sizes can be used; other sizes are optional. The unit operates at a maximum stripping rate of $6,0002.5-\mathrm{in}$. wires per hour, and 4,000 6-in. wires per hour.

Besides the digital selection of wire and strip length, a front-panel selector presets the number of wires to be stripped. The operation stops automatically after the selected number of wires have been stripped,

How to
ship small packages in a big hurry.


On DASH shipments Delta guarantees delivery on the flight or routing you specify between most Delta cities.

Packages accepted up to 50 lbs . with length plus width plus height not to exceed $90^{\prime \prime}$ total, with only one dimension exceeding 30 ."

Deliver to Delta's ticket counter or airport air freight terminal at least 30 minutes prior to scheduled departure time. Shipments may be picked up at either location 30 minutes after flight arrival.

Delta's exclusive "Dashboard" control procedure insures constant tracking of your shipment from delivery to pick-up.

DASH charges are nominal. Check Delta reservations for charges between specific points. Pay in cash, by company check, most generalpurpose credit cards, special credit arrangements or on government shipments by GBL. A. DELTA
Rate examples (Tax included) Atlanta-Washington $\$ 21.00$
Boston-Miami . . . . . . . . . . . $\$ 26.25$
Cincinnati-Louisville . . . . . . $\$ 21.00$
Cleveland-Phoenix . . . . . . . . $\$ 26.25$
Los Angeles-New Orleans . . . $\$ 31.50$
Dallas-Los Angeles . . . . . . . $\$ 26.25$
San Francisco-Atlanta . . . . . . $\$ 31.50$
Philadelphia-Houston . . . . . . $\$ 26.25$
New York-Tampa . . . . . . . . $\$ 26.25$
For details, call Delta reservations.


Delta is ready when you are:


Circle 158 on reader service card


- 5 to 120V DG, Single Output or Dual Complementary Supplies.
- 25 to 500 Watt Rating.
- AC Resonant Capacitor Included.
- Most Economical-No Minimum Order Requirement.
Send for Free Catalog also listing ex-
tensive lines of Rectifier Power Transformers, Printed Circuit Plug-Ins and Flat Plug-Ins.

1 Junius St., Brooklyn, N.Y. 11212 Telephone (212) 498-5111

SIGNAL IS THE ONLY SOURCE FOR CVT'S DESIGNED FOR DC SUPPLIES

## Constant Voltage Transformers

New products

and a digital readout displays the number of wires stripped at any point. Three operating speeds are provided, and fault indicators are included for wire feed and blade cycle. The blades are made of heattreated tool steel.

The EWS-6K, 20 in . wide by 18 in. high by 20 in . deep, weighs 105 pounds, and operates on 90 to 250 volts at 50 or 60 hertz. Price is $\$ 3,995$, and delivery time is six weeks.
Standard Logic Inc., 2215 S. Standard Ave., Santa Ana, Calif. 92707 [401]

## Ceramic scriber handles

## substrates to $41 / 2$ inches

The model KSS4 laser scribing system handles ceramic substrates measuring up to $4 \frac{1}{2}$ inches square. The machine is specially designed for large runs and features oversized chucks and a prealignment station,

which allows the operator to align one substrate while the other is being scribed. Other features include an automatic loading stage with a longer travel distance, closedcircuit TV for verification of scribing


You'll need a lot of time. Because we cover a lot of territory. TRW Electronic Components has 32 plants in 30 cities in six countries.
And the territory keeps growing.
As one of the few companies capable of producing both high-technology components and highvolume components, we make over 300 different products. For all the major OEMs in all major industries using electronics. With a steadily increasing demand.

And we are often called upon to apply our highvolume manufacturing know-how to state-of-the-art
technology. Which means we can be a source for whatever you need in electronic components. Hightechnology, high-volume-or both! Maybe we already make what you need. Certainly we can make it. Even if it means building or buying another new plant.

So, while you would surely find our plant tour fascinating, it would be pretty exhausting. By the time you saw the plants we have, we'd probably have new ones for you to see. No telling when it would end.

Because we are TRW.

## TRW ELECTRONIC COMPONENTS

DESIGNERS: the new cost-effective way to implement logic is Rockwell's 128 -row by 46 -column

## SOS

## PROGRAMMABLE LOGIC ARRAY (PLA)

Bipolar speed: 15 MHz . MOS densities: each row is effectively an AND gate of 45 input terms. Example: one SOS-PLA can compute value of function of 22 variables expressed as sum of up to 128 products. Otherwise, you'd need 4008 -gate TTL ICs. Write on your letterhead for data sheets. Address us at P.O. Box 3669, Anaheim, Calif. 92803.
*SOS: Silicon-on-Sapphire


Microelectronic Device Division
Rockwell International

## Circle 160 on reader service card



## New products

accuracy, a split-field microscope, and optional back-side scribing capability.
Korad Division, Hadron Inc., 2520 Colorado Ave., Santa Monica, Calif. 90404 [393]

Laboratory furnace has

## 0 to $2,000^{\circ} \mathrm{F}$ range

For laboratory heat-treatment applications, the model Mark 16 laboratory furnace offers temperature control within $\pm 1 \%$ over the range from 0 to $2,000^{\circ} \mathrm{F}$. The heating element is made out of a chrome-

nickel-aluminum alloy. There are two heating chambers available, one measuring 4 by 4 by 10 inches, and the other, 8 by 4 by 8 in . The unit is transistorized, and the transistors are grouped into modules for easy repair.
The J.M. Ney Co., Bloomfield, Conn. 06002 [394]

## Stereomicroscope has wafer-

## illumination attachment

The model M7 zoom stereomicroscope is available as a three-dimensional scope with an attachment camera, 35 mm and Polaroid backs. Available as an accessory is a waferillumination device, which provides vertical light for characteristic color effects on semiconductor devices. The unit itself has a depth-of-field adjustment at any given power, and powers range from $3 \times$ to $124 \times$. Price for the stereomicroscope alone

# ARPA Gine II GAD 

## The wire stripper that refutes Kerchunk's Law.

Kerchunk's Law has always maintained that automatic wire strippers must operate on air. And that therefore they shall always be noisy, overly complex and hard to maintain. If you're in the market for an automatic

wire stripper, or if you already have one that goes "kerchunk, kerchunk", meet our new Model EWS-6K.

It's airless, kerchunkless and best of all, totally electric. The EWS-6K is proven, portable, economical, and so much quieter than the other ones. Need we say more? We do, in our brochure describing the world's first airless automatic wire stripper. Standard Logic, 2215 So. Standard Ave., Santa Ana, Calif. 92707. Telephone: (714) 979-4770.


SEND ior iniormation on the EWS.6K today! (If you already have a kerchunker, send anyway. Then, unplug your ears.)
Circle 162 on reader service card

## LONV-CONT ABSVDIJTE OPTICAL ENCDIDEIRS



- BCD outputs are DTL/TTL compatible.
- Available range up to 99,999.
- Ultra-reliable LED light source.
- Low-torque, high-speed operation.
- Rugged heavy duty industrial design.
- Operates at 5 VDC.
- External electronics not required.

Contact Theta application specialists today for further details, and ask for our brochure.


Specialists in Digital Automation
Fairfield, New Jersey 07006 Phone: 201-227-1700

is below $\$ 2,700$, the company says. Wild Heerbrugg Instruments Inc., Farmingdale, N.Y. 11735 [395]

Right-angle contact strip eliminates plastic housing

A TS right-angle contact strip is designed for connecting component or daughter boards to printed-circuitboard backplanes. The contact strip is simply reflow-soldered to the

backplane, and the salvage strip is removed-a molded plastic housing is not required. The TS strips are made of brass and preplated tin and are supplied in varying strip lengths on 0.100 -inch centers. Applications are in computers and peripherals. Burndy Corp.. Norwalk, Conn. 06582 [396]

IC socket is made for
36-lead LSI devices
An integrated-circuit socket designed for use with 36 -lead LSI devices has low insertion force and low

## The first name in sweep generators is also no. 1 in price/performance <br> Telonic Sweep Generators have a lot more built into them than just

 value.components. For example - more experience and application know-how than you'll find in any instrument; operating features we've incorporated from talking to hundreds of users; dependability based on designs that are field-proven in thousands of locations. Today, Telonic sweepers give you a lot more than just specs. They give you maximum instrument for your investment.

	SWEEP GENERATORS				DISPLAY OSCILLOSCOPES	
	$\begin{aligned} & \text { Model } \\ & 1202 \end{aligned}$	$\begin{gathered} \text { Model } \\ 1204 \end{gathered}$	$\begin{gathered} \text { Model } \\ 1205 \end{gathered}$		Model 121	Model 122
$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	.1-100	1-500	1-1500	Modes	Single Trace	Dual Trace
Sweep Width (MHz)	.1-100	.2-500	.2-600	CRT	11" Di	gonal
Output (dBm)	+13	+10	+7	$V$ Bandwidth (kHz)	15	
Flatness (dB)	$\pm .25$	$\pm .25$	$\pm .50$	H Bandwidth (kHz)		
Linearity (\%)	2	1	1	$\checkmark$ Sensitivity/div.	1, 10, 10	$\mathrm{mv}, 1 \mathrm{v}$
Markers	Single and Harmonic			H Sensitivity/div.	100	
Circuits				Input Imped.	10 K	hms
Price	895	1095	1395	Price	495	695

Who was it that said, "investigate before you invest"? We have a new 60 -page catalog on sweepers, oscilloscopes, and detectors. We would like you to investigate it, it's free.


## Remote viewing at a price competitive models can't even approach.

This new, low-cost FS-100 Fiberscope with a $24^{\prime \prime}$ flexible length can reveal hidden flaws, peer into recesses, and trace vibrations to their source. Builit with AO quality throughout, this battery-powered unit features a high resolution fiber bundle with a wide angle fixed focus objective lens and an adjustable eyepiece. For further line, write or call American Opticai Corporation, Fiber Optics Division, Southbridge, Massachusetts 01550. Tel. (617) 765-9711 Extension 2240.

Only \$295
Model FS-100 Fiberscope

American Optical

Circle 164 on reader service card


## S.S. HOPE, м.D.

Doctor . . . teacher . . . friend to millions on four continentsthis floating hospital is a symbol of America's concern for the world's disadvantaged.
Keep HOPE sailing.


Dept. A, Washington, D.C. 20007

## New products

contact resistance. This is achieved by the use of a hinged cover that clamps over the IC after it has been placed in position. The cover, when fitted, applies side pressure to the contacts, forcing them against the legs of the IC, giving a contact resistance of 10 milliohms. Another benefit is that circuits can be inserted and withdrawn from the socket at high speeds without damage to the leads. Price is $\$ 3.40$ in small quantities and $\$ 2.40$ for 500 pieces.
Jermyn, 712 Montgomery St., San Francisco, Calif. 9411 [397]

## Card-edge connectors

provide versatility
Four new card-edge connectors, part of the Scotchflex series, are designed to provide versatility of design to the engineer. The connectors are now available with $20,26,34$, or 40 contacts, in addition to the previously offered 50 contacts. The double-sided devices can be used with circuit boards ranging in thickness from 0.054 to 0.071 inch. Contacts are spaced on 0.100 -inch centers and mate with Scotchflex cables with conductors on 0.050 -inch centers.
3M Co., Box 33600, St. Paul, Minn. 55133 [398]

Strip sockets offer

## 8.3-milliohms resistance

Three strip sockets with four, nine and 12 pins are printed-circuit-type units providing an insulation resistance of $1 \times 10^{6}$ megohms minimum. Contact resistance is initially 8.3 milliohms, rising to 10 milliohms after 100 insertions. Breakdown voltage between adjacent contacts is 1,150 volts rms. Areas of application include 8 -, 18 -, and 24 -pin DIPS, resistor networks, analog-to-digital and digital-to-analog converters, optical couplers, and display systems. Delivery of the strip sockets is from stock.
Jolo Industries Inc., 11861 Cardinal Circle, Garden Grove, Calii. 92643 [399]

is．Forest Jaboratories，Lee， 5106 Wil Shire Blvd．，las Angeles，©al． l－ischer Ne Nork II．G．， 2323 Wabansia Ave，：Chicago， 11.
ischer Corp． 6731 Sy St，Glemblale，Cal， （ientral butctric C－Ray Corp．，2012 Jack

Hanoria hemical \＆Mrg．Co．，N．J．R．R． lleme－Lasker Cory．， 17 ii．©0th St．，New High Tension Corp．， 118 W．22d St．，New York， ．
Lektra Lahoratories．Inc．， 30 E ．Tenth St．Now York，N．Y．
，epel High Firequency Laboratories，Inc． Majestic Surgical．instrument Co．， 2608 Mctntosh bilectricai Corp．（Chisago， 23 ．Cali－ formia ive．ich（＂hicago，Inl．
Mueller ¿ ©o．，نٌ．，＋118 S．Honore St．，Chi－ peerless leaboratories，Inc．， 115 lm 23 d st． Hose Mew．Mork，N．J．， 227 E ．Gage Ave．， Sharp \＆Smith，Hospital Div．，A．S．

## Electrocardiographs

Buck－Lee Corp． $6: 0 \mathrm{~W}$ ．Jackson Blval， lirush levelopment Co．． 3311 Perkins Cambridge instrund．Ohio Terminall，New York，N．Y＇．Hollis tro－Medical Laboratory，Inc．，Hollis－ ton，Mass
General bilectric $\mathfrak{X}$－Ray Corp．， 2012 Jack－ son 31vd．，Chicaばo Ill．
Her\％－Lasker Corp．， 17 w．60th St．，New York，N．Y
Mites Reproducer Co．， 812 Broadway， Mueller \＆Co．，V．， 408 S ．Honore St．，Chi－ cago．
Mass．
Marn
39 Osborn St．，Cambridge，

## Equipment

## DRAFTING ROOM EQUIPMENT

All－Steel－Equip Co．， 641 John St．，Aurora， ril
Alteneder Co．，Theo．， 1217 Spring Garden St．，Philadelphia，Pal． Arkwifght Finishing Co．，Turks Head Bldg．，Providence， R ．I
rrown \＆Sharpe Mifg．Co．， 235 Promenade ning Poridence， 1.
Bruning Co．Charles， 4700 Montrose calibron products，in
（
Cardinell Corp．，Montclair．N．J．
Carter＇s Ink Co．，Kendall Square，Boston
Coxhead Corp．，Ralph C．， 333 Sixth Ave， New York，N．Y
Dietzgen Co．，Eugene， 2425 Sheflield Ave． Chicago，Ill．
Jixon Crucible Co．，Joseph，Jersey City． Drafto d．（Siep page 171．）

Pa．Corp．，Pressler Ave．，Cochranton，
Dremel Mfg．Co．，1tth \＆Clark Sts．
Wagle Pencil Co．， 703 13th St．，New
Emmert alfg．Co．，Waynesboro，I＇a．
Eraser Co．， 936 University Block，Syra cuse，- ．
Faber Co．，A．W．， 41 Dickerson St．，New ark，N．J．（See page 29．）
－aber Pencil Co．，Eberhard， 37 Green－ point Ave．，Brooklyn，N．Y
Iamilton Mfg．Co．，Two Rivers．Wis．
lliggins Ink Co．， 271 Ninth St．，Brooklyn．
Iolliston Mills，Inc．，Norwood，Mass．
Iunt \＆Son Co．，C．B．，Salem，Ohio boken，N．J．（See page 3．）
Roh－1－Noor Pencil
Co， 373 Fourth Ave． New York，N．Y． on Metal Products，Inc．， 1933 Mont－
\％omery St．，Aurora，III．
O\％alid Products Div．．General Aniline $\mathbb{K}$ Film Corp．， 25 Ansco Rd．，Johnsm
Pararon－Revolute Corp．， 77 South Ave．．
Pease Co．，C．F．： 2679 W．Irving Park Rd．，
Chicago，Ill．

Post Co．，Frederick， 3650 Avondale Ave． Shaw lilue Print Machine Co．， 11 Camp－
 Sueidel \＆Coo，Chas． $\mathbf{W}$ ．， 112 N． 12 th st．，
 Starrett Co．，L．si．， 165 Crescent St．，Athol， Mass． United States I：lue Print lraper Co．， 207 S．Wabash Ave．．Chicalgo， 111. Third St．，cleveland，Ohio Weber Coo．$F$ ．， 1220 Buttonwood St．，I＇hil－
 Wickes dros．Sork，N．Witer St．，Saginaw， Mich
Williams．．．Brown \＆Farle，Inc．， 918 Chest－ nut st．，philadelphia，Pal．
Word－Regath lastrument Co．．Nutley，N．J． Wright，Inc．．L．（i．， 6205 Carnegie Ave， leveland，Ohlo

## Gases

GASES，RARE
Linde Air Products Co．， 304 E． 42 nd St． New lork，N．Y．（Nef page 195．）

## Indicators

## POSITION INDICATORS

Itutomatic Temperature Control Co．， 33 E． Batioy Meter C＇o．， 1050 Ivanhor Rd Bendix Marine Mroducts Div．，IBendix iviation Corp．i．$\overline{0} 4$ Lexington Ave． I Boston Auto Gage（＇o．， 70 Wrest St．，IPitts field，Mass．
Blectrie Indicator Corp．， 21 I＇arket Ave． stamford，ionn．
Vilectric speed indicator（＇o．， 16313 La－ verne Ave．，lakewood Ohio
Electric Tachometur Corp． 1354 Spring Foxhoro Co．，Neponset Ave．，Fanboro， eral Masectric Co．，Schenectady，N． $\mathrm{F}_{\text {．}}$ Hickok lilectrical Instrument Co．，111514 bionter instrument Div of leendix Avia－ tion corp．，lendix，N．J．
Westinghouse bilectric \＆ $1 f \mathrm{fg}$ ．Co．，boinst littsburgh，I＇a．

## PRESSURE INDICATORS

Brush Development Co．， 3311 Perkins Commercial Engineering Laboratories， 4612 Woodward Ave．，Detroit，Mich． Beneral Electric Co．，Schenectady，ぶ．Y． RCA Mrg．Co．，Camden．ぶ．J．

## SMOKE DENSITY INDICATORS and

## RECORDERS

Bailey，Meter Co．， 1050 I vanhoe Ral． eveland Ohio
Bristol（\％o，Waterbury，Conn．
Brooke Vngineering Co．， 4517 Wayne Ave．， Ptronic Laboratory， 306 S．Fadinburgh Ave，Los Angeles，Cal．
Lss Instrument Co．， 30 lrving Pl．，New York，N．Y．
General lilectric Co．，Schenectady，N．Y゙． General Television Corp．， 70 Brookline Ave．，Moston，Mass． Philadelphia，I＇a．
Lumenite Flectric Co．， $3^{-1} \mathrm{w}^{\circ}$ ，Van Buren
St．：Chicago，III．
Luxtroi Co．， 54 W． 21 st St．，New York， $\mathrm{Nevel}^{\mathrm{N}}$ ．
Neil inghineering Equipment Co．，T III．， 4057 W．V＇an Buren St．，Chicago Photobell Corp， 123 Liberty St．，New Photoswitch，Inc．， 21 Chestnut St．，Cam－ bridge，Mass． 21 Chosh Preferred Utilities Mig．Corp．， 31 w．60th Rehtron Corp．， 2159 Magnolia Ave．，Chi United cago， 111 ．
United Cinephone Corp，Torrington，Conn Weston Flectrical Instrument Corp．，fil Frelinghuysen Ave．，Newark，シ．，J．

## Intercommunicators

American Television Corp．， 130 W．56th Amblifier Co of America， 17 W .20 th St ぶew lork，N．Y． Audio Development Co．， 2833 13th Ave．
 link＇s Mrg．（＇o．，110：W．Lawrence Ave． 1，Chicago，III．
liell Sounl Systems，Inc．， 1183 bssex
lsendixe Ariation，Lid．，North Hollywood C＇al．
Boaren Co．，IDavid， 663 broadway，New
Bond Products（Sue bate 174．）
Bond Products Co．， 13139 Hamilton Ave．
Camnon biectric．
Humboldt St．Development Co．， 3209
Communication Equipment \＆Engrg．Co
ifl4 N．l＇arkside Ave．，Chicago，Jll．
Connecticut Telephone \＆Electric Corp． io Britannia St．，Meriden，Conn．（Nee puge 103．）
De wald Ikadio Mig．Corp．， 440 Lafayette lecironic I＇roducts Co．，St．Charles，Ill Eilectronic l＇roducts Co．，St．Charles，Ill．
（iblis \＆Co．，Thomas is．， 900 V ．Lake （ithis \＆Co．，Thomias 13．， 900 V．Lake Itureall Systems，Inc．，Fifth \＆Norwood Karadio Corp．， 2233 University Ave．，St l’aul，Minn． 2323 Chestnut St．，Onk Million Iradio \＆Television Laboratories， $161 \%^{\circ} \times 1$ Jumen st．．Chicago， 111. －wonmb Audio Products Co．， 2815 S． Hills st．，Los Ingeles，Cal．
Operadio $\mathbf{l l} \mathrm{fg}$ Co．，St．Charles，Ill
hilo Radito \＆Television Corp．，Tioga \＆ Lamlio．Recepter Co．， 251 W．． 19 th St．，New lintr，N．I．In Nox Ave Cht （eago，111． $\begin{array}{ll}\text { IR＇A Mfg．Co．，Camden，N．J．} \\ \text { IRegal Amplifier Mfg．Corp．，} 14 & \text { W．} 17 \text { th }\end{array}$ Select－O－Phone Co．，101\％Eddy St．，Pro－ －idence，$R$ ．I．
Setchell Carlson，Inc．， 2233 University Signal Engrg，\＆Mfg．Co．， 154 W． 14 th Talk－A－Phone Mig．Co．， 1219 W．Van Transformer Corp．of America， 69 Woos－ ter St．，New York，N．I．，De Koven Webster Electric Co．，Clark \＆De Koven Western Sound Re．Wis．

Tnc．， 311 Electric Laboratories winkee，Wis．Nimorn Ave．Mii Zonith Jadin Corr．， 6001 Dickens Ave．，
Chicako，lll．

## lrons

## ELECTRIC SOLDERING IRONS

Acme Electric Heating Co， 1217 Wash－ ington St．，1’oston，Mass
Adrola Corp．Adrola Bidg．，Port Jefferson，
All Rite Co．．Morgan \＆First Sts．，Rush ville，Ind．Ilectrical Ieater Co 6110 American Cass Avectr Brach Mig．Cörp．，L．S．， 55 Dickerson St． Cole Radio Works，Si Westville Ave． Dominion Iilectrical Mig．Co．， 22 Elm St． Minion lilectrical
Irake Electric Works， 3656 Lincoln Ave． Chicago， 111
IDual Remote Control Co．． 31776 WV．War Eagle Electrlc Mfg．Co．， 59 Hall St． Blectric Soldering Iron Co．， 205 w．Eln Generid Eleetric Co．，Schenectady．N．Y． llexacon Electric Appliance Corp．， 163 w． Clay Ave．，Roselle Park，No．I． Ave．，Sycamore，III．
Insuline Corp．of America，30－30 North－ ern Elvd．，Isong Island City．N．Y． Jackson Electro Corp．，625 Broadway， Fiay Co，J，II．，12i Second St．，San Fran－ cisco，Cal．
I immers，Frary \＆Clark， 47 Center St． Lt nk Mig．Co．，Newton Lower Falls，

## The mostefficient combination for 200-watt TV translators



## THOMSON-CSF

## Communications

## Tone encoder's distortion is low

## Module for phone uses

also minimizes variations
in output amplitude

Telephone-tone encoders, which are frequently merely oscillators to which logic, switching, amplifiers, and other components have been added, have been plagued by such problems as a high level of distortion and wide variations in output amplitude. Now, Frequency Devices Inc., Haverhill, Mass., has introduced the model 510 telephone tone-encoder module, which contains all the necessary components and keeps distortion and variations in output-amplitude low.

The encoder, which is used to produce frequencies for automatic dialing of Touch Tone telephones, as well as telephone-test equipment and data-communications systems that transmit over telephone lines, consists of two separately programable oscillators, two separate gating circuits, and an output-summing amplifier.

Alan E. Schutz, director of engineering, says the 510 uses one re-sistor-capacitor oscillator to produce low-tone and one to produce hightone frequencies, which-when combined with a novel filter techniquehold distortion to only $1 \%$. Oscillator one produces four frequencies of 697 hertz, $770 \mathrm{~Hz}, 852 \mathrm{~Hz}$, and 941 Hz , while oscillator two produces frequencies of $1,029 \mathrm{~Hz}, 1,336 \mathrm{~Hz}$, $1,446 \mathrm{~Hz}$, and $1,633 \mathrm{~Hz}$, the frequencies used by the Bell System. Each tone consists of a combination of one high and one low frequency, so the 510 can produce a total of 16 tone pairs.

Both frequencies and output gating are externally programable with TTL-compatible logic inputs that drive internal semiconductor switches. Six digital bits produce the desired frequency: two bits control
the output of oscillator one, two bits control oscillator two, and two bits gate the oscillator outputs to the output-summing amplifier.

Schutz says most encoders don't have any gates, but the Frequency Devices unit uses two gates-one for each oscillator. Tones are produced in bursts. The Bell System requires 50 milliseconds of tone and 50 ms of silence, and the gates are used to turn off the tone. With two gates, both oscillators can be reached, or one oscillator can be gated to test decoders at the other end of the line. The two gates can also be tied together to look like one gate.

Amplitude is 2.4 volts rms from each oscillator, amplitude stability is 1 decibel, and output impedance is 10 ohms. Output is protected against short circuits. The oscillators settle to frequency within half a cycle after they are switched; the amplitude-transient-time constant is 10 ms .

Since the gating controls do not introduce transients in the oscillator outputs, the amplitude and frequency transients can be eliminated by gating the outputs off before switching frequencies and gating them back on after the transients are over, an operation that takes 15 ms. Output-gating isolation is typically 70 dB when the output gates are off, enabling the receivers to respond to a wide amplitude of frequencies. Frequency tolerance is set to better than $0.2 \%$ and is better than $1 \%$ over the range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

The module measures 2 by 3 by 0.4 inches and requires supplies of $\pm 15$ volts at 10 milliamperes, and +5 V at 40 mA . Price of the 510 is $\$ 85$ each in quantities of 1 to 9 and $\$ 55$ each in lots of 100 . Delivery time is stock to two weeks.
Frequency Devices Inc., 24 Locust St., Haverhill, Mass. 01830 [371]

## Touch Tone frequencies select remote relays

The CM7200 line of tone-keyed receivers allows one or more remote relays and similar on-off devices to


THE X-Y EFFECT
X .
Recently, we received an assignment from customer $X$ to work with him in the development of his new product. Our monolithic crystal filter was to be a key part of his product's system. We started with him on his project at earliest breadboard and carried through over a two year span to final manufacturing. We worked in close collaboration with X , tailoring filter and product to one another. The result is a product unique in its field, which, based on performance and cost, has gained outstanding market acceptance. Our custom monolithics helped.

## Y.

Not every new product requires two years to develop. Customer $Y$ saw an immediate market for a new application of radio control. But his existing control receiver would be subject to interference in the new environment. Time was short. We were consulted, and recommended a standard model filter that provided the necessary i-f selectivity. Prototypes were shipped from stock Later we were able to speed his first production run by supplying several hundred of the same standard model filter in less than four weeks. In addition to saving time, customer $\gamma$ was able to take advantage of standard model engineering and pricing for his requirement, which eventually totaled a very modest, but highly successful, 1500 units for $Y$.
And success is the name of the game. Whether it's a brand-new project or a fast retread of an old standby we've got the filters to make your design successful. First there's the industry's largest selection of standard model monolithic and tandem monolithic crystal filters. And when it comes to custom modes, our unmatched experience assures you of the sound engineering advice you need. Last but not least, our unequalled capacity gets you your production units on time. We've proved it for $X$ and $Y$ and we'd like to add you to our alphabet. Drop us a line or call us.


Plezo Technology Inc.
2400 Diversified Way
Orlando, Florida 32804
305-425-1574
The Standard in monolithic crystal filters.


Choosing the right cassette is easy ... if you have a choice. CONRAC gives you 3 excellent cassette series so you specify the right one for your application.

- D Series-standard polystyrene case-good low cost applications with standard requirements.
- F Series-Glass-metal filled plastic case. Premium performance, general purpose digital cassette built to ANSI/ECMA standards.
- CM Series - metal computer grade case. Total performance ANSI/ECMA. Tape density 800 bpi or 1600 FCl . Speeds read/write 50 IPS, search 300 IPS.


## Write for descriptive literature.

Mill Rock Rd., Old Saybrook, Conn. 06475 (203) 388-3574

be selected and actuated from an ordinary Touch Tone telephone set. Touch Tone frequencies can be decoded or not, depending on the application. The short-circuit-protected output can drive relays or TTL/C-MOS circuits. The CM2700 receivers are immune to voice interference, due to use of adaptive am-plitude-ratio control and multiple timing circuits. According to the company, the interference level is about 100 times lower than in most other receivers. Prices of the units start at $\$ 150$ in quantities of 100 .
Mitel Canada Ltd., 39 Leacock Way, Kanata, Ont., Canada [373]

## Transmission/noise tester includes an oscillator

The model 1110A transmission/ noise test set measures transmission level, frequency, metallic noise, notched noise, and noise to ground. The unit includes a tunable oscillator and offers two digital displays for simultaneous measurement of the level and frequency of an incoming test tone. Transmit circuitry is separate from the receiver circuitry, so the 1110A can send test tones at the same time it is measur-

ing the signal being received.
Telecommunications Technology Inc., 555
Del Rey, Sunnyvale, Calif. 94086 [375]

## Modem operates

## to 1,800 bits per second

A multispeed synchronous modem, the model 1800 S, offers six strap-selectable operating rates of 1,800 , $1,200,900,600,300$, and 150 bits per second. The modems operate in half-duplex, full-duplex, or simplex mode over dedicated lines or dial networks using data couplers. A narrow-band carrier detector in the 1800S can be strapped to respond

only to a mark tone from the remote modem or to both mark and space tones. The 1800S is built on a single printed-circuit card.
Penril Data Communications Inc., 5520 Randolph Rd., Rockville, Md. 20852 [374]

## Transmission-test set

## measures audio systems

The model 12 C , a solid-state trans-mission-test set, measures transmission gain or loss, line noise, and

distortion in audio-frequency systems. The unit provides direct readings of the audio-frequency characteristics of passive or active components, such as amplifier transmission lines, networks, filters, transformers, and attenuators. The


Take a good, long look before you specify... check and compare all the features offered by the CONRAC A-31 Series Magnetic Card Reader. Here are only a few: - Read or write on Standard Magnetic Cards - Industry Compatible Credit CardsIATA, ABA, THRIFT, NTT • Card remains stationary and visible at all times-minimizing chances of card loss, damage or jamming - Card-inplace switch-insures proper insertion of card before operation - USA designed and made for OEM applications requiring rugged, long life - All this plus more and it's one of the lowest priced.

500
Write For Descriptive Literature.

CRAMER OIVIBION

Mill Rock Road, Old Saybrook, Conn. 06475 (203) 388-3574

## New products

model 12 C has a variable-frequency oscillator that covers from 5 hertz to 55 kilohertz in four ranges.
Edison Electronics division, McGraw-Edison Co., Grenier Field, Manchester, N.H. 03103 [380]

## Vhf/uhf receiver system designed for surveillance

The model RS-180A receiving system, designed for surveillance and frequency-management applications, offers a-m and fm reception from 20 to 1,000 megahertz. The customer can select a single i-f bandwidth for each receiver. In the $20-$ to $80-\mathrm{MHz}$ range, i-f bandwidths of 10,20 , and 50 kHz are available; over the $30-$ to $250-\mathrm{MHz}$ range, one

of five bandwidths can be selected, and seven bandwidths can be selected between 220 and $1,000 \mathrm{MHz}$. The system is available with equipment frames for mounting six or 12 receivers.
Watkins-Johnson Co., 3333 Hillview Ave., Palo Alto, Calif. 94304 [379]

## Responders are used in

## trunk-transmission testing

Code 105 responders, for use in automatic trunk-transmission testing, are designated the 1050 series. They are compatible with ATMS, Trace, Carot, or equivalent controllers. They will measure 1,000 hertz and transmit 1,000 hertz to the measuring unit. The responders provide two-way noise and transmission measurements on trunks and are easy to install.
Northeast Electronics Corp., Airport Rd., Concord, N.H. 03301 [378]


Now, there's no reason for you to "trade-off" when specifying an audio cassette tape transport... not if you specify the Conrac CAS-4. Here are only a few reasons why: - USA designied and manufactured - 3 motor design - No mechanical clutches or brake bands required - Designed for remote control - OEM priced. 501

## Write for descriptive brochure

Mill Rock Road, Old Saybrook, Conn. 06475 (203) 388-3574

## Pro-Log <br> Eliminates Hard Wired Logic等

Our 4-bit microprocessor system can replace a rack full of your TTL chips. You'll save design time and production costs. No big redesign jobs for options or changes because the logic is stored in reprogrammable ROMs. Our programmed logic systems are available now, off the shelf.

Our PLS-401 microprocessor system costs less than $\$ 400$ in a quantity of one, with substantial OEM discounts. Plus we've got all the support you need: Design manuals, 2-day intensive design course, ROM Programmers, System Testors, special interface cards and support hardware to make your system go together smoothly.

## and Mini Computers

Our MPS-800 microprocessor systems are modular production systems with mini-computer features such as: Expandable RAM, DMA, and 8 level priority interrupt. From under $\$ 950$ in a quantity of one with RAM. We have special interface cards and support hardware.

## Micro Processor Systems from Pro-Log <br> 

852 Airport Road
Monterey, Calif. 93940
(408) 372.4593

A line of Eccoamp electrically conductive adhesives, coatings, and casting resins has a conductivity lower than that of metals and offers certain advantages, the company says, over metallic conductors. These include: easier bonding to metals such as nichrome and aluminum in soldering applications and elimination of the need for hightemperature bonding. The products are said to have high thermal conductivity in comparison with most plastic materials.
Emerson \& Cuming Inc., Canton, Mass. 02021 [476]

A potting and sealing compound called Nordbak cures in four minutes at $200^{\circ} \mathrm{F}$. Available in one package, the material is suited for production-line use in temperaturesensitive devices. It remains stable at room temperature for six months or more. Nordbak epoxy 9945 has a viscosity of 14,000 centipoise per second at $25^{\circ} \mathrm{C}$ and, when cured, it gives a tensile strength of 3,000 pounds per square inch.
Rexnord, Nordberg Machinery Group, Brookfield, Wis. 53005 [477]

Clad-a-tive is the designation for a combination of micro-thin copper foil and a standard epoxy-glass laminate that adapts to existing printedcircuit production methods. The base material requires less etch time than other laminates, the company says, and breakdown is less likely. The material makes possible 5 -mil lines with 5 -mil spacing. In addition, ragged edges and solder slivers are eliminated.
Fortin Laminating Corp., 1323 Truman St., San Fernando, Calif. 91340 [478]

A low-alloy gold electroplating process specifically developed for printed-circuit boards, contacts, switches, and electronic components is called Autronex SN80. The acidtype process produces white tin-gold coatings with a hardness range from 160 to 240 knoop. The process will also maintain an $80 \%$ gold purity in deposits under normal electroplat-ing-control procedures.
The Sel-Rex Co., 75 River Rd., Nutley, N.J. 07110 [479]


## ELECTRICALLY ISOLATED

1/2" PRESS-FIT series IT (RMS) 6A to 35 A VDROM 50 V to 600 V ( 800 V Available on some series)
Two new additions to Hutson's 1/2" PRESSFIT series. Isolated PRESS - FIT and stud mount with BEO insulators for greatly improved thermal characteristics.
All 1/2" PRESS-FIT devices feature Hutson's unique construction and void - free glass passivated center gate chips. Call or write for com. plete information.

## 1 IHUTSON industries <br> Box $34235 \cdot 2019 \mathrm{~W}$. Valley View Datlas. Tex. 75234 (214) 241-3511

 TWK 910-860-5537Distributed by:
in U.S.A. BODELLECO. INC
Chicago. III. 312/468-1016
THORELECTRONICS
Elizabeth. N.J. 201/354-2430

## in Canada

SEMAD ELECTRONICS
Downsview, Ontario
4.16/634-9880

Hutson Industries
International
30 Rue Pierre Semard. Yerres. 91 France. Tel.: Paris 925-8258 TELEX 21-311

In Europe:
Belgium C. N ROODS. A.. Brussels 02-352135. Denmark E. V Johanssen A/S. Copenhagen (01). 295622. Norway INTELCO. Osio. 472207451 Spain BELPORT. Madrid 234.62.62. Sweden ELEKTROFLEX. Sundyberg 08-28-9290. Switzerland O. LEITGEB. Oubendorl 05185 9666 . UK: CLAUOE LYONS LTO. Hoddeston. Hertfordshire (09924) 67161


## custom-pick your oplions in this family of enclored I/4 amp I/2 inch suitches from Grayhill <br> Value engineered to compete in price and out-perform open wafers

- 10 or 12 positions, 1 to 6 poles, up to 12 decks.
- Options include concentric shaft, adjustable stop, PC terminals all out one side, and $1 / 8^{\prime \prime}$ or $1 / 4^{\prime \prime}$ shafts
- Ideal for instruments, medical electronics, avionics, mobile communications, and many more applications.
From Grayhill's capability at insert molding technology and value engineering emerges this miniature switch family that provides the performance benefits of enclosed construction at price levels associated with open-wafer. No compromise in materials - even gold plated contacts and diallyl phthalate insulation - in this
"best switch for the money" you're likely to find anywhere. For information on these Series 71 switches, consult EEM or write for engineering data.


561 Hillgrove Avenue • LaGrange. Illınois 60525 (312) 354-1040

## New literature

Semiconductor coolers. Wakefield Engineering Inc., Audubon Rd., Wakefield, Mass. 01880. A shortform catalog describes products for cooling semiconductors. These include heat sinks for single- or mul-tiple-device mounting, cup clips for mounting TO-5 or TO-18 cases to chassis or heat sinks, clamps, bus blocks and plates, aluminum extrusions, thermal joint compounds, and conductive epoxy. Circle 421 on reader service card.

Miniature connectors. A six-page catalog from B \& W Associates Inc., 21 B Street, Burlington Mass. 01803, provides information on a line of miniature precision connectors for coaxial and strip transmission lines. The catalog gives information on semirigid, flexible and stripline versions. [422]

Terminal inserter. Molex Inc., 2222 Wellington Ct., Lisle, Ill. 60532, has issued a brochure describing automated equipment for inserting terminals in printed-circuit boards. Described are the company's vibrator multipinsetter and a single pinsetter. [423]

Potentiometers. A guide to potentiometers and variable resistors is available from Electrical Research Association, Cleeve Rd., Leatherhead, Surrey, England. More than 2,000 components from 100 different manufacturers are covered by specifications, charts and tables. Price is about $\$ 50$. [424]

Bobbin coil winder Stevens Manufacturing Co., 6001 N. Keystone Ave.. Chicago, Ill. 60646. Technical bulletin 74A describes an automatic production machine that winds all types of multilayer random-wind bobbin coils and single-layer solenoids up to 4 inches in diameter and up to 2 in. long that use wire sizes 14 to 40. [424]

Rectifiers. A line of 800 -ampere Hockey-Puk power silicon rectifiers, the 801PD and 801PD-B series, is described in a data sheet available from the Semiconductor division,

## $\$ 5^{\circ 0}$ BALANCED



## MIXER

MODEL MD-108

- DC - 500 MHz
- 7dB Conversion Loss
- 30dB Isolation
- 8 - Pin Relay Header
* 500 piece aty. 1-49 pieces ( $\$ 7.00$ ) $50-499$ pieces ( $\$ 6.00$ ).
anzac
ELECTRONICS $\boldsymbol{x}$

39 Green Street, Waltham, Mass. (617) 899-1900 • TWX 710-324-6484

Circle 201 on reader service card

DON'T BE A FUEL WASTER!


Scoot to work on a Vespa and get over 100 miles per gallon. Sate, maneuverable, easy to park. Lowcost maintenance. Choose from five handsome models
Check Yellow Pages for Vespa dealer or write to:
MR. SHORT

WESTERN SCOOTER DISTRIBUTORS 1599 Custer Ave. - San Francisco, Ca. 94124


The 3101A now has a real second source. The new 6560/3101A 64 -bit RAM is just one of an expanding family of Random Access Memories from MMI.
You know the 3101A; now meet the $6560 \mathrm{~N} / 3101 \mathrm{~A}$. 35 ns access time. Plastic package. And a new, lower price. \$4.50 ( $100-999$ ).
Also meet the new 6561 N , a 3101 A with threestate logic outputs. This commercial part $\left(0^{\circ}\right.$ $70^{\circ} \mathrm{C}$ ), with 35 ns access time, also comes to you at the same low price. $\$ 4.50(100-999)$.

And mil versions of the 3101A, too: the 5560D open collector and 5561D three-state version. Both feature a ceramic package, 50 ns access time and the same low price: $\$ 8.00(100-999)$.
Call your nearest MMI field sales office, rep or franchised distributor and give him your P.O. number. If you don't remember 6560 , just ask for it by its last name. Monolithic Memories, Inc., 1165 East Arques Avenue, Sunnyvale, California 94086, (408) 739-3535/TW X 910-339-9229.

## Monolithic Memories, Inc. [inily



## MAGNETIC INSTRUMENTATION Gaussmeters • Fluxmeters

Magnetizers - Stabilizers - Demagnetizers Automatic Magnet Processing Systems Alnico Permanent Magnets - El Laminations<br>Thamas of Skinner Inc.<br>1120 East 23rd Street, Indianapolis, Indiana 46205 • 923-2501

## New literature

International Rectifier Corp., 233 Kansas St., El Segundo, Calif. 90245 [425]

Relays. Solid State Electronics Corp., 15321 Rayen St., Sepulveda, Calif. 91343. A 32 -page catalog describes the company's line of relay and choppers (analog switches) including reed relays, choppers, and chopper drivers. [426]

Substrate cutter. A revised edition of product bulletin 5000 from Aremco Products Inc., Box 429, Ossining, N.Y. 10562, describes the Accu-Cut 5000 substrate-cutting system. The brochure provides information on a new vacuum-holding fixture used to permit scribing of silicon wafers. [427]

Circulators. Trak Microwave Corp., 4726 Eisenhower Blvd., Tampa, Fla. 33614, has issued a catalog describing the company's line of circulators and other ferrite products. [428]

Rotary switches. An engineering handbook on miniature rotary switches is being offered by RCL Electronics Inc., 700 S .21 st St., Irvington, N.J. 07111 . Included are layout diagrams for pc-terminal switches, millimeter conversions, and charts. [429]

Card-edge connectors. Elco Corp., Maryland Rd. and Computer Ave., Willow Grove, Pa. 19090, has published a catalog describing press-fit card-edge connectors. [430]
dIP inserter. Synergistic Products Inc., 1902 McGaw Ave., Irvine, Calif. 92705. The EconoDip line of automated DIP-insertion machines is described in a data sheet, which provides specifications and general information. [431]

Materials. Emerson \& Cuming Inc., Dielectric Materials division, Canton, Mass. 02021. A brochure describing the Eccoamp line of electrically conductive products gives properties and applications for 11 types of conductive solders and adhesives, six types of coatings, and a conductive casting resin. [432]

## See the latest in electronic components from the Soviet Union at the IEEE ShowMarch 25-28. Booths 1100 thru 1110



For the first time in New York V/O ELECTRON. ORGTECHNICA will be exhibiting electron tubes, semiconductor devices, integrated circuits, resistors, capacitors, ferrite articles, and many other electronic components.
V/O ELECTRONORGTECHNICA is the Soviet foreign trade organization responsible for the export and import of electronic equipment, devices
and components produced by the USSR electronics industry. Every assistance is rendered to purchasers in design, engineering and assembly as well as the establishment and performance of maintenance service including the supplying of qualified personnel when required. You will find the "MADE IN USSR" label means REl_IABILITY, DURABILITY AND QUALITY.

Northern Électric Co., 5224 N. Kedzie Ohio Art Co., Bryan, Ohio
Samson-United Corp., 8 Jones St., liochessamsor, N. Y.
Stanley, Tools, Div. of Stanley Works, New Britain, Conn. 565 N. Chestnut Sta-Warm Electric Co.
Suttle Efulipment Co., Lawrenceville, Ill.
Trent Co., iIarold lio, 55 th St. \& Wyalus ing Ave., Philadelphia, Pa.
Vasco Electrical Mfg. Co., 4116 Avalon Blvd.. Los Angeles, Cal.
Vulcan Electric Co., 600 Broad St., Lynn Ward Mass.
Ward Mfg. Co., 1813 Winona Ave.. ChiWellmade Viectric Ilfg. Co. Failroad Sa \& Chureh St.. Torrington. (*olln.

## Meters

## LIGHT METERS

Amerlcan Instrument Co., 8010 Georgia Ave., Siver Spring, id
pplied Research Laboratories, 1208 San
Junan st., Los ingeles, Ca
ambridge instrument (o.; Grand Central
entral Scientific Co., 1700 Irving Park
Blvd., Chicago, Ill.
De Jur-Amsco Corp., 6 Bridge St., Shelton, Conn.
Gaertner Scientific Corp., 1201 Wrightwood Ave., Chicago, Ill.
General Filectric Co., Schenectady, N. Y. Jarrell-Ash Co., 165 Newbury St., Boston, Mass.
Leeds \& Northrup Co., 4970 Stenton Ave., Philadelphia, Pa. ${ }^{2}$ St Vow York ,uxtrol yo., 54 W. $21 s t$ St., \eW York, Narr Instrument Co., 222 52d St., Moline, Ill. Bauer, Inc., 350 Fifth Ave., New York, N. Y.
Photovolt Corp., 95 Madison Ave., New Pho-Tron Instrument Co., 5:13 Euclid Ave., Cleveland, Ohio
Rubicon Co., 3751 Ridge Ave.. Philadel United Cineph
United Cinephone Corp., Torrington, Conn. Welch Mrg. Co., W. M., 1515 Sedgwick Weston Flectrical Instrument Corp., 614 Zoiss. Inc., Carl, 485 Fifth Ave., New York, N. Y.

## TIME METERS

American Time Products, Inc., 580 Fifth Cramer Co., R. W. Centerbrook. Conn. Electric Tachometer Corp., 1354 Spring Garden St., Philadelphia. Pa. City) Indianapolis, Ind.
General Electric Co., Schenectady, N. Y Jaeger Watch Co., 304 E. 45 th St., New York, N. Y.
National Instrument Co., it School St. Boston, Mass.
Paragon Glectric Co., 37 W. Van Buren St., Chicago, Ill.
Lawson Islectric instrument Co., 102 Potter St., Cambridge, Mass. Thompson Clock Co., H. C., 38 Federa arrein Trilechron Co
Warren Telechron Co., Homer Ave., Ashstinghouse Electric \& Mig. Co, Eas Pittsburgh, Pa.

## Machines

## COIL WINDING MACHINES

Armature Coil Equipment, Inc., 2605 Vega Ave., Cleveland, Ohio
Chapman Electrical Works, P. E., 1820 Chouteau Ave., St. Louls, Mo.
Conran, Frederick M., 107 Colden St. Eisler Engrg. Co., 770 S. 13th St., Newark N. J.

Electric Service Supplies Co., 17th \& Cambria Sts., Philadelphia, Pa. General Electric Spectalty Co., 184-01 Guthman \& Co., Edwin I., 400 S. Peoria St., Chicago, IIl.
deal Commutator Dresser Co., 1631 Park Ave, Sycamore, Ill. Hemphill Ave., Seifert, Inc., E. R., 315 E. Washington St., Syracuse, N. Y.
Univirsal Winding Co., 1655 Flmwood Ave., Providence, R. I. Mill \& Main -iking Tool \& Machine Co., Mill \& Main sts. Belleville, N. J.

## tUbe manufacturing machines

Eisler Engineering Co., 751 S. 13th St., Gahle Engineering Corp., 1307 Seventh sit.. North lis.rgen. N. J.

## Micrometers

## ELECTRONIC MICROMETERS

Sensitive Research Instrument Corp., 4545 Televiso Products, Inc., 2400 N. Sheffield Ave., Chicago, Ill.

## Microscopes

## ELECTRON MICROSCOPES

ri'.l mfg. Co., Camden, N. J.

## Monitors

BROADCASTING MONITORS
Doolittle Radio, Inc., 7421 S . Loomis Du Blvd. Chicago, Lilies, Inc., Allen B. Main Ave., Passaic, N. J. General Electric Co., Schenectady, N. Y. General Radio Co., 30 State St., Cambridge, Nlass.
Howard Radio Co., 1731 Belmont Ave. Chicago, Ill.
Radio Engineering Laboratories, Inc. 35-54 36th St., Long Isiand City RCA Mig. Co., Camden, N. J.

## Phonographs

ELECTRIC PHONOGRAPHS and RECORD PLAYERS
Amplitier Co. of America, 17 W. 20th St., Ansley Radio Corp., 21-10 49th Ave., Long Autocrat Radio Co., 3855 N. Hamilton Ave., Chicago, Ill
Calvert Motors Associates, Ltd., 1028 Linden Ave., Baltimore, Md. S. MichiChicago Sound System Co., 2124 S. Michi gan Bre Corp., 1107 N. Highland Ave. Matone Corp. 1
Columbia Recording Corp., 1473 Barnum Ive., Bridgeport, Conn
Continental Radio \& Television Corp., 3800 Cortlandt St., Chicago, Ill.
Decca Records, 1nc., 50 W. 57 th St., New -X Radio Products Co., 1575 Milwaukee Ave., Chicago, Ill.
Dynavox Corp., 55 E. 11th St., New York, Electro Acoustic Co., 2131 Bueter Rd., Fort Wayne, Ind.
Emerson Radio \& Phonograph Corp., 111 Eighth Ave., New York, N. Y.
Espey Mfg. Co., 305 E. 63 d St., New Farnsworth Television \& Radio Corp. 3700 Pontiac St., Fort Wayne, Ind. Gabel Mfg. Co.; John, 1200 W. Lake St.,
Garrard Sales Corp., 296 Broadway, New York, N. Y. Thomas B., 900 W. Lake Gibbs \& Co., is., Mfg. Co., 2422 W. Seventh St., Los Angeles, Cal. Albany, Chicago, Ill.
Magnavox Co., 2131 Bueter Rd., Fort Wayne, Ind.
Majestic Radio \& Television Corp., 2600 W. 50th St., Chicago, Ill

Marconiphone, Inc., 679 Madison Ave. New Jork, N. Y.

Meck Industries, John, 1313 W. Randolph St., Chicago, 111. Angeles, Cal." 4100 Fullerton Ave Mills Šovelty Co., 4100 Fullerton Ave. Chicago, Ill
Music Master Mig. Co., 508 S. Dearborn St. Chicago, Ill.
Pacent Engineering Corp., 79 Madison Ave., New York, N. Y. Corp., Tioga C Sts., Philadelphia, Pa. 2 . 55th St Presto Recording Corp., 242 W. 55th St Ladiad Service, $720^{\circ}$ W. Schubert Ave. RChicago, Ill
Regal Amplifier Mfg. Corp, 14 W. 17 th Regal Ampw York Mg. Corp., 14 W. 17 th Rock-Ha Mfg. Corp., 867 N. Kedzie Ave. Chicago, Ill. 1510 N Dayton St Seeburg Corp.
Chicaro. Ill. P., 1510 N. Dayton St. Sentinel Radio Corp., 2020 Ridge Ave.. Evanston, Ill.
Sonora IRadio \& Phonograph Corp., 2626 W. Washington St., Chicago, Ill. ound Apparatus Co., 150 W. 46 th St., New lork, N.
Sparks-Withington Co., IS. Ganson Ave., Jackson, Micl
peak-(o-1'hone Recording \& Equipment Co., ${ }^{23}$ W. 60 th St., New York, N. I. ton Pkws゚. Brooklyn, N. Y. Hamm-omberg-Carlson Telephone Mig. Co., 100 Carlson Rd., Rochester, N. Y. Van Talk-A-Phone Mfg. Co., 1219 W. Van Buren St., Chicago, 11.
Transformer Corp. of America, 69 Wooster St., New York, N. Y.
Varner Co., J. J., 1244 Larkin St., San Francisco, Cal.
Waters-Conley Co., 501 First St., N.W.,
Vurlitzer Mfg. (`., Rudolph, North Tonawianda y

## Pumps

## VACUUM PUMPS

Allis-Chalmers Mig. Co., Milwaukee, Wis.
Beach-Russ Co., 50 Church St., New York, Beach-Russ Co., 50 Church St., New York, Butalo Foundry Buffalo N Y
Columbus Steam Pump Works Co., Columbus, Ohlo
Eisler I'ingrg. Co., 770 S. 13 th St., Newark,
General Electric Co., Schenectady, N. Y. Gerotor May Co., Baltimore, Md. N. Ingersoll-Rand Co., 11 Broadway, New York, ${ }^{\text {F. F. Finchine Works, North Ber }}$ Internationa J. Men. N. J. 1307 Seventh Kahle Engineering Corp., 1307 Seventh Kinney Mfg. Co., 3529 Washington St. Kraissl Co., 303 Williams Ave., IIacken sack, N. J.
Leiman Bros., 156 Christie St., Newark
New Jersey Machine Corp., 1800 Willow Ave., Hoboken, N. J. 303 Woerd Ave Waltham, Mass. H., 303 Woerd Ave. Waltham, Mass.
Pennsylvania Pump \& Compressor Co. Easton, Pa. Inc 1345 Iarond Robbins \& Myers, Inc., 1345 Lagonda Stokes Machine Co., F. J., 5850 Tabor Rd. Olney P. O., Philadelphia, Pa. Sullivan Machinery Co., 929 Woodland Ave., Michigan City, Ind.
Worthington Pump \& Machinery Corp. Yeomans Bros. Co., 1459 N. Dayton St. Chioago, Ill.
Zenith Products Co., West Newton, Mass.

## Receivers

## AIRCRAFT RECEIVERS

Abbott Instrument, Inc., 8 W. 18 th St., New York, N. Y.
Aircraft Radio Corp., Boonton, N. J.
Air Radio \& Instrument Co., 5214 W. 63 d Rassett Inc., Rex, Municipal Airport, Fort Laulerdale, Fla. North Hollywood Bendix Aviation, Istd., North Hollywood Bendix Radio, Div. of Bendix Aviation Corp., Baltimore, Md.

# INTERNATIONAL MARKETING 

## Communications Systems \& Hardware

We are one of the world's major designers and manufacturers of high quality radio communications systems and equipment. We are seeking a strong Manager with 10 years marketing experience which should include work with overseas dealers and distributing organizations, knowledge of foreign government financing, proposal experience, and familiarity with HF and VHF radio systems and equipment.

You will be a key person and in a promotable position in the Marketing Group and will be required to travel overseas frequently
We offer an excellent salary and benefits program and growth potential based upon individual contribution. Send resume in confidence to:
William Vickery. Placement Manager

## HARRIS.INTERTYPE CORPOMATION - MF COMMUNICATIONS OIVISION

## HARRIS 园F CDMANUNDCATOONS

1680 UNIVERSITY AVE $\quad$ ROCHESTER. N.Y. 14610 U.S.A. -
Equal Opportunity Employer M/F

## Communications Engineers

Boeing Aerospace Company has openings in the following specific fields:
Radio Systems-Both narrow and wide band transmission.
Intercoms and multiple subscriber swilching subsystems.
Communicotions Equipment and Systems-Iransmitters receivers, modems, multiplexers, teletype systems, data and audio distribution systems.
Communications Techniquesmodulation demodulation, multiplexing demultiplexing, encryplion decryption coding.
BSEE or comparable experience required.
Please send your resume 10 The Boeing Compony, P.O. Box 3707 . MBV, Seattle, WA. 98124.

An equal opportunity employer.

Getting people together.


> IMMEDIATE DELIVERY Minis \& Peripherals DEC-HIS-NOVA SEL-HP-MOHAWK
> CPU, Card. Printer, Tape, Disk NEW • MOHAWK 4320 PRINTERS

> PDP 11 PERIPHERALS
> PDP 8 CPU \$1500 \$750 Minis

TELETYPE 35 \& 37
DEC \& HONEYWELL Modules
617/261-1100
Send for Free Repart "Maintenanre of Computers
AMERICAN USED COMPUTER CORP.
P.O. Box 68. Kenmore Sta.. Boston. MA 02215
member COMPUTER DEALERS ASSOCIATIOA
CIRCLE 951 ON READER SERVICE CARO



CIRCLE 953 ON READER SERVICE CARD


CIRCLE 954 ON READER SERVICE CARD

## Rrearer POTIING APPLICATORS MANUAL OR AIR OPERATED 21/2cc Gcc 12cc 3Oce FOR POTTING, ENCAPSULATING ETC. PHILIP FISHMAN CO., INC. 7 CAMERON ST. WEILESLEY, MASS. 02181

CIRCLE 956 ON READER SERVICE CARD


CIRCLE 957 ON READER SERVICE CARD



The latest issue ... includes complete details and specifications on dozens of high performance, low cost instruments for design, R\&D and teaching applications. Here are just a few examples:

New 10 mV to 10 V Strip Chart Recorder... only \$335*. Four calibrated, hi-Z input ranges ... full $10^{\prime \prime}$ chart ... ten digitally-derived chart speeds from 10 to 0.01 inches or $\mathrm{cm} /$ minute.. switchable input filtering ... complete remote programming capability...easy conversion to metric work. . . pushbutton chart advance . . . rack mount design.

600 MHz Frequency Counter . . . just \$795*. 1 Hz to 600 MHz guaranteed range . . . input sensitivity: 10 mV @ $35 \mathrm{MHz}, 15 \mathrm{mV}$ @ $200 \mathrm{MHz}, 50 \mathrm{mV}$ @ $600 \mathrm{MHz} \ldots 50$ and 1 megohm inputs . . . high stability TCXO time base ...complete remote programming capability for all inputs, outputs \& func-
 tions, plus BCD output.. FCC typeapproved for AM \& FM broadcast.

Dual Trace 15 MHz scope... only \$595*. 15 MHz vertical bandwidth with 24 ns risetime... $50 \mathrm{mV} / \mathrm{cm}$ sensitivity... 1 megohm/35 pf input impedance... 9 position attenuator . . 18 calibrated sweep rates from 0.2 us/ cm to $100 \mathrm{~ms} / \mathrm{cm}$.. Chop, Alternate, Ch. 1, Ch. 2 and X-Y modes ... Internal/External, AC/DC, +/- triggering . . . external trigger input, sweep gate output. Standard camera mount bezel.


For your FREE copy, use coupon NOW!

	heath
Heath/Schlumberger Instruments	Schlumberger
Dept. 531-285	
Benton Harbor, Michigan 49022	
Please send electronic instruments catalog.	
Name	
Title	
Company/Institution	
Address	
City	Zip.
*Mail order prices; FOB factor	Y. EK 415 R

Abbott Transistor Labs Inc. Technical Advertising Agency

- $\ddagger$ ACDC Electronics, Inc

Rose Associates Advertising \& Public Relations
Adret Electronlque
Psycho Publicite
AEROCOM
Jacster Enterprises, Inc
Alien Bradley Compan
Hofiman, York, Baker \& Johnson, Inc
American Lava Corporation Sub. of MInnestoe
American Optical Corp. FIber Optlce a Industrial Prod. Div.
Wilson, Halght \& Welch, Inc., Advertising
American Smaiting and Reflning Company Clyne Maxon, Inc.
$\ddagger$ AMP incoporated
Altkin-Kynett Co., Inc
Analogic Corporation
Sommer Agency, inc
AOIP
OP Industrie
AVX Ceramice
Allied Advertising Agency, Inc
Ballantine Laboratorlos, Inc. MLF Graphics
$\ddagger$ Beckman Instruments Inc., Hellpot Div.
N.W. Ayer / Jorgensen/MacDonald, Inc
\# Bourns, inc
Mariborough Assoc., Inc

- Burndy

Burroughs Corp.
urroughs Corp.
Conti Advertising Agency, Inc

* Cambridge Thermionlc Corporallon ambridge Thermionic Cor
Chirug and Caurns, inc.
- Cambridge Thermionic Corporation ambrldge Thermionic
Chirurg \& Cairns, Inc.
Canon Amsterdam N.V. Euro Advertising B. V.
Carlo Erba MVE Pubblicita" \& Marketıng lanese Plastics Company D'Arcy MacManus Internatıonal, Inc.
- Celdie Ltd.

May, Winfield \& Associates Lid.
herry Electrical Products, Corp.
Kolb/Tookey and Associates, Inc.

- Clalrex Corporatlon
- Concord Electronlcs Corp. Sound Adverising
- Cooke Engineering Furrer
Cramer Dlviston of Conrac McCarthy, Scelba. DeBiası
CTS Corporation Reincke, Meyer \& Finn, Inc
- Curtis Instruments In Marc Dorian, Inc.
Data Control Systems, Inc. Ads \& Images
Datascan, Inc. McCarthy, Scelba, and DeBiası
or Electonice Division
elico Electronics Division General Motors Corp.
Delevan Division, American Precision Industries, Inc.
Precision industries, inc.
Comstock Advertising. Inc.
Delta Alr LInes
Burke Dowling Adams, Inc.
Dialight Corporatlon
Ducat Elettrotechica Microlarad Studio Busoli Gastone
F Eastman Kodak Company, Business Systems Markets Div. J. Walter Thompson Co.

Eastman Kodak Co.-GMD GD Photofabrication Micelectronic Rumnill-Hoyt Inc.
Ebauches SA
E.I.P. Inc

Dailey \& Associates
Electronic Communications, Inc.
W.M. Zemp \& Associates, Inc.

Electronorgiechnlka
Black-Russell-Morris

- Erg Industrlal Corporatlon Lid.

Esterline Angus, A Unit of Esterline Corporation
Odiorne Industrial Advertising, Inc
Exar Integrated System Regis McKenna Inc
\& Ferroxcube
Black-Russell-Morris

* Fluke

Marsteller
Fort Agence Domenach
F.R. Electronics Ltd.

Fujl Electrochemical Co., Lid.
u) Electrochemical Co., Lid.
General Advertising Agency, Inc.

Function Modules, Inc. Leon Richman Design, Inc
General Electric Co., Minlature Lamp Dlv. Carr Liggett Advertising, inc.
General Magnetics Meneral Magnetics
McCarthy/Scelba/DeBiasi Adv. Agcy., Inc.

- General Radio Grad Associates
- Gould Inc./Inatrument Syateme Div.

Carr Liggett Adv., Inc.

- Grayhill Inc.

Stral Advertising Company, Inc.
G. T Schlelahi Co
G. T. Schjoldahl Co.
Chuck Ruhr Assoc. Advertising Inc

Tucker Wayne \& Company
Hesth/Schlumberger Sclentific Instrumente

Hewlett Packard
Richardson, Seigle, Rolfs \& McCoy, Inc.
Richardson, Seigle, Rolfs \& McCoy, Inc.

- Hewlett-Packard

Tallant/Yates Advertising, Inc.

- Hickok Electrical Instrument Co

Hutson Industries
Greene, Webb Associates, Inc.
Intel Corp.
egls McKenna, Inc
lee Electronics Corp.
ITT Semiconductors
Hall \& McKenzie Advertising
epco Inc.
Weiss Advertising
Istier Instrumente AG
Atelier fur Werbung
Kurz-Kasch, Inc. 20
Kurz-Kasch,
David K. Burnap Advertising ICON division illinols Tool Worke Inc. 51 Post Keyes Gardner Inc. Itronix Inc. Regis McKenna, Inc
Matrix Systems
Maxwell Labs
Manning/Bowen and Associates
Mlero Mask, Inc.
Kassler/Noble Advertising
MIcro Power Systems
Associates Ad Ventures, Inc.
Micro Switch Division of Honeywell N.W. Ayer \& Son, Inc.

3M Electro Products Division Batten, Barton, Durstine \& Osborn, Inc
Monolithic Memorles, Inc.
Paul Pease Adventising, Inc.
Division af Litton Industries
Hartel, Catlano \& Assoc. Inc.
MOS Technology, Inc
Henry S. Goodsett Advertising, Inc.
ostek Corporation
David W. Evans, Inc Texas
otorola Semiconductor Products, Inc.
Motorola Semiconductor
Graham \& Gillies Limited

- National Semiconductor Corp.

Chiat/Day, Inc. Advertising
Neison Ross Electronlcs Div.
Polarad Electronics
McCarthy-Sceiba-DeBiasi Advertising Agency inc. 180
Nichicon Corporation
Elias/Shaffer \& Associates, Inc.
NIkko SelkI Co., Lid.
Nortron
Nortron
Technik Marketing
Nortronics Company, Inc. Allan \& Alan, Inc.
Ohmic Instruments Co.

- Phillpe Elcoma

Intermarco nederland
Phillps TMI
Brockies Communications Systems S.A.

- Plezo Technology, Inc.

Shattuck/Roether Advertising, Inc
Piner Intematlonal
Scott MacTaggart Advertising
Plastics EngineerIng Company Kuttner \& Kuttner, Inc.

- Plessey Semiconductors
Creative Workshop Lid.

Powercube Corp., Div, of Unitrode
Advertising Assistance, Inc.
Prime Computer Inc.
Wilson, Haight $\&$ Welch, Inc.
Primo Co., Ltd
General Advertısing Agency, Inc

- Procond S.p.A. Quadragono
Pro-Log Corpor ation
o-Log Corpor ation
Kassler Noble Advertising
- Radlometer Copenhagen

RAMTEK, CORP.
RAMTEK, CORP.
McDonough Communications
RCA-Solld State Divislon Marsteller, Inc.

- ACL Electronics inc.

Morvay Advertising Agency
$\ddagger$ Rental Electronlcs, Inc.
₹ Rental Electronlcs, Inc.
Humphrey Browning MacDougall, Inc

- Rlla MK Marknads Kommunikation AB

RO Assoclates Inc Salt \& Pepper
Rockwell international Electronics Group Campbell-Ewald Company Advertising
-Rohde 8 Schwarz

- R 2 E

Sagha
20E-21E
Sanken Electric Co., Ltd.
Global Adventsing Co., Lid.
Schauer Manufacturing Corp. 142

- Schlumberger \& Stites
chlumberger
60-61
- Sescosem
MacTaggent Advertising

17E, 31E-37E
Bazaine Publicite

- Siemens Aktlengesellschaft Linder Presse Union Gmbh
Signal Transformer
Russell Technical
ervices, Inc.
Signetics Corp. Sub. of Corning Glass Works 20.21
sinail Butler Blatherwick, Inc.
Quartz International
Stliconix
sult Robertson West. Inc.
Hall $\&$ McKenzie
\& Sorenten Compeny, A Unll at Ravtheon Compony 42 Provandie Eastwood \& Lombardl Inc.
Spectra-Strip Corp.
Wectra-Strip Corp.
Wishire Newport, Inc.
Spectrol Electronlcs Corp.
- Sprague Perez Publicite
Sprague Electrlc Company
Harry P. Bridge Company tions
Stewart-Warner Microcircults JMA Advertising
Syatron Donner Concord Instruments $\quad 51,179$ Fred Schott \& Associates
- teac Cord. Dentsu Advertising Lid.
- Tekelec Alrtronics S.P.F.D.

15E-24E, 36E, 39 E

- Tektronlx Inc. McCann Epickson, Inc.
Teledyne Philbrick
son, Inc.
2nd Cov
- Telonic Ind. Inc.

Jansen Associates, Inc
Theta Instrument Corp.
Flotcher-Walker-Gessell Inc
Thomas \& SkInner Inc.
Wask Skinner Inc. 17
Thoms on CSF Bazaine Publicite

- Tokyo Sokuhan Co. Lid

Showa Advertising Service, Inc.
Trinidad \& Tabago Industrial Development Corp. Development Counsellors International, Lid.
TRW/CAPACITORS
Gray \& Rogers, Inc.
TRW, Electronic Components Division 159

- TRW Electronion Division The ectronics, Semiconductor Division
Unitrode Corpor Culver Advertising
Unlversal Instrument Corp.
Conklin, Labs \& Bebee, Inc.
Vespa
James Plessas Inc. Advertising.
Public Relations
Victoreen Instrument Division
Dix \& Eaton, Inc.
V/O Techmashexpor
Vneshtorgreklama
- Wavetek Indiana

Chapman Michetti Advertising

- Yokogawa Electric Works, Lid.
General Advertising Agency, Inc

General Advertising Agency, Inc. 117
Zeltex
Moneyworth Advertising

3 ra Cov.
11E

- For more information on complete product line see adver-
tisement in the latest Electronics Buyer's Guide
- Advertisers in Electronics International
$\ddagger$ - Advertisers in Electronics domestic edition

Classifled \& Employment Advertising
F. J. Eberte, Manager 212-971-2557

EQUIPMENT (Used or Surplus New) For Sale
Boeing Company .........
Philip Fishman Co., Inc.
Inc. .. ........................................... 176
Harris Intertype Corp. ...................................................... 176
Jensen Tools Co.
Olivax.
176
.................................................... 176

## Advertising Sales Staff

Pierre J. Braudd [212] 997-3485 Advertising Sales Manager

Atianta, Ga. 30309: Joseph Lane 100 Colony Square. 1175 Peachtree St., N.E [404] 892-2868
Boston, Mass. 02116: James A. Pierce 607 Boylston St. [617] 262-1160
Chicago, III. 60611:
645 North Michigan Avenue
Robert W. Bartleft (312) 751-3739
Paul L. Reiss (312) 751-3738
Cleveland, Ohio 44113: William J. Boyle [716] 586-5040
Oallas, Texas 75201: Charles G. Hubbard 2001 Bryant Tower, Suite 1070 [214] 742-1747
Denver, Colo. 60202: Harry B. Doyle. Jr
Tower Bidg. . 1700 Broadway
[303] 266-3863
Detrolt, Michigan 48202: Robert W. Bartlett 1400 Fisher Bldg
[313] 873-7410
Houston, Texas 77002: Charles G. Hubbard 2270 Humble Blog. [713] CA 4-8381
Los Angeles, Callt. 90010: Robert J. Rielly Bradley K. Jones, 3200 Wilshire Bivd., South Tower Bradiey K. Jones
[213] 487-1 160
Now York, N. Y. 10020
1221 Avenue of the Americas
Warren H. Gardner [212] 997-3617
Michael J. Stoller [212] 997-3616
Philadelphia, Pa. 19102: Warren H. Gardner Three Parkway
[212] $997-3617$
Pittsburgh, Pa. 15222: Warren H. Gardner 4 Gateway Center. [212] 997-3617
Rochester, N.Y. 14534: Wilham J. Boyle 9 Greylock Ridge. Pitistord. N.Y. [716] 586-5040
San Franclaco, Callt. 94111 : Don Farris Robert J. Aielly, 425 Battery Street, [415] 362-4600

Paris: Alain Offer geld
17 Rue-Georges Bizet, 75 Paris 16, France Tel: 720-73-01

Geneva: Alain Oftergelo
1 rue du Temple. Geneva. Swizerland
Tel: 32-35-63
United Kingdom a Scandinavia: Keith Mantle Tel: 01-493-1451, 34 Dover Street. London Wi
Mllan: Robert Saidel
1 via Baracchinu. Italy Phone 87-90-656
Bruseels: Alain Offergeld
23 Chaussee de Wavre
Brussels 1040. Belgium
Tel: 13-73-95
Frankfurt/Amain: Fritz Krusebecker
Liebigstrasse 27c. Germany
Phone 720181
Tokyo: Tatsumi Katagin. McGraw-Hill
Publications Overseas Corporation
Kasumigaseki Building 2-5. 3-chome.
Kasumigaseki. Chiyoda-Ku, Tokyo. Japan [581] 9811

Ozaka: Ayji Kobayashi, McGraw-Hill Publications Overseas Corporation. Kondo Bidg.. 163. Umegae-cho Kita-ku. Japan [362] 8771

Australasla: Warren E. Ball, ITO Box 5106.
Tokyo. Japan

## Business Department

Stephen R. Wolse, Manager
[212] 997-2044
Thomas M. Egan.
Production Manager [212] 997-3140
Carol Callagher
Assistant Production Manager [212] 997-2045
Dorothy Cartor, Contracts and Billings [212] 997-2908
Frances Vallone, Reader Service Manager [212] 997-6057

## Electronics Buyers' Guide

George F. Werner, Associate Publisher [212] 997-3139
Regina Hera, Directory Manager [212] 997-2544

## Thefirst



For immediate information on Systron-Donner's new Model 7205 51/2-digit Multimeter, call us collect on our Quick Reaction line: (415) 682-6471. Or you may contact your Scientific Devices office or S-D Concord Instruments Division, 10 Systron Drive, Concord, CA 94518. Europe: Systron-Donner GmbH, Munich, W. Germany; Systron-Donner Ltd., Leamington Spa, U.K.; Systron-Donner S.A., Paris (Le Port Marly) France. Australia: Systron-Donner Pty. Ltd. Melbourne.

EYBTRON
N
— $\triangle$ DONNER
Circle 179 on reader service card


# go portable <br> Introducing THE Digital Panel Meter for Portanle Instruments 



Circle 180 on reader service card

## Workhorse Spectrum Analyzer... 100Hz

The new Nelson Ross Model 236 is a multi-purpose, easy to use, workhorse Spectrum
Analyzer with outstanding performance features and an exceptionally low price of $\$ 3275$.


- Preset $0-25 \mathrm{MHz}$ quick-look scan and $0-10 \mathrm{MHz}$ adjustable scan widths
- 100 Hz resolution, automatic and adjustable modes
-     - $105 \mathrm{dbm}(1.25 \mu \mathrm{~V})$ sensitivity
- $>60 \mathrm{db}$ dynamic range for IM and Harmonic Distortion analysis
- Self-checking: Crystal frequency marker combs at 1 MHz and 100 KHz intervals. Absolute level reference

Numerous other versatile NR Spectrum Analyzers are available from sub-audio through microwave, 0.5 Hz to 6.5 GHz ; complete free standing analyzers with interchangeable plug-ins, or just the plug-in analyzers for your TEK and HP scopes.

Call or write to the "Specialists"; complete specifications are yours for the asking; or, circle the reader service number.

## nelson • ross electronics

A DIVISION OF POLARAD ELECTRONICS CORP 5 Delaware Drive, Lake Success, N.Y. 11040 516-328-1100 . TWX: 510-223-0414

Please enter my subscription to ELECTRONICS for three
$\begin{array}{ll}\text { 1. } \\ \square \text { i prefer one year at } \$ 9 & \square \text { Payment } \epsilon \text { nclosed } \\ \square \text { Bill my company } & \square \text { Bill me }\end{array}$
NAME $\qquad$



NAME
$\qquad$ DIV or DEPT.
title $\qquad$
COMPANY $\qquad$
$\qquad$
COMPANY ADDRESS
CITY $\qquad$ STATE $\qquad$ ZIP $\qquad$ ZIP
Above rates apply only to those who answer all questions listed below. All others pay higher than basic price of $\$ 25.00$ per year.

CITY $\qquad$ STATE $\qquad$

## Signature

2. 1 2 $\quad \begin{aligned} & \text { Indicate the primary product manulaclured or service performed at your plant (Box } 1) \text { and in }\end{aligned}$
 PLANT $\square$ DEPARTMENT your department (Box 2). Be sure to indicate applicable letter in each of the two boxes even Large If they are the same letter.
$k$ Industrial contr equipment
C. Computer peripheral equipment
L. Sub-assemblies
D. Data Processing Systems (systems integraticn)
E. Olfice and business machines
F. Test and measuring equipment
G. Communications.systems and equipment
H. Navigation and guidance or control systems
3. Consumer entertanment electronic equipment
J. Other consumer electronic equip. (appliances, autos, hand tools)

M Passive electronic components
N . Active electronic components

- Materials and Hardware
P. Alrerall Missites space and ground support equipment
Q. Oceanography and support equipment

R Medical electronics
S. Industrial equipment containing electronic components or products
T. Independent R\&D laboratory and consultant
U. Research and development organizations which are a part of an educational institution
V. Government Agency and military

W Industrial companies using and/or incorporating electronic products in their mig., research or development activities
X. Utilities
Y. Broadcasting, sound and motion Dictures and recording studios
Z Commercial users of electronic equipment (rallroads, pipelines. police. airlines)
9. College. University
3. $\square$ Indicate your principal job function (place applicable num. ber in box. Il numbers 9.10. or 11 are used. fill in name of college or university)

1. General and corporate management
2. Design and development engineering
3. Engineering services (evaluation. quality control.
reliability, standards. test)
4. Basic research
5. Manufacturing and production
6. Engineering support (lab assistant. technician)
7. Purchasing and procurement
8. Marketing and sales
9. Professor at
10. Senior studental
11. Graduate student at

Senior and graduate students are eligible for professional rate for one year subscription only.
4. $\square$ Indicate your principal job responsibility (place ap. plicable number in box)

1. Management
2. Engıneering
3. Are you engaged in or do you supervise the design or redesign of electronic components or equipment? (check one)

4. 

Estimated number of employees at this location (check one) $\square 1$ to $49 \square 5010249 \square 25010999 \square$ over 1.000

## Electronics

McGRAW-HILL, INC. SUBSCRIPTION DEPT. P.O. BOX 514 HIGHTSTOWN, N.J. 08520

Complete entire card. Please print or type.

Circle the number on the Reader Service postcard that corresponds to the number at the bottom of the advertisement, new product item, or new literature in which you are interested.

To aid the manufacturer in filling your request, please check the appropriate industry classification box.

Postage is prepaid in U.S. Correct amount of postage must be affixed for all mailings from outside the U.S.

All inquiries from outside the U.S. that cannot reach Electronics before the expiration dates noted on the Reader Service postcard must be mailed directly to the manufacturer. The manufacturer assumes all responsibilities for responding to inquiries.

## Subscriptions \& Renewals

Fill in the subscription card adjoining this card. Electronics will bill you at the address indicated on the card.



If the cards below have already been used, you may obtain the needed information by writing directly to the manufacturer, or by sending your name and address, plus the Reader Service number, to Electronics Reader Service Department, Box 2530, Clinton, lowa 52732.

Affix

## Electronics

P.O. Box No. 2530

Clinton, Iowa 52732

Affix
Postage here

## Electronics Reprint Service

Bulk reprints of editorial matter can be ordered from current or past issues. The minimum quantity is 500 copies. Prices quoted on request: call 609-448-1700 Ext. 5494, or write to address below.

Bringing Slight to the Blind
8 pages $\$ 2.00$
Key no. R-408
Logic's New Design Tools
16 pages $\$ 3.00$
Key R-406
U.S. Market Report

28 pages $\$ 2.00$
Key R-404
European Market Report 1974
24 pages $\$ 2.00$
Key R-402
Japan Market Report 1974
18 pages $\$ 2.00$
Key R-400
The Pervasiveness of Electronics
Complete issue 284 pages $\$ 2.00$
Key no. R-328
The Optical Spectrum
$\$ 2.00$ Key no. R-326
Semiconductor Memory Syatems
16 pages $\$ 3.00$ Key no. R-324
New Electronic Displays
10 pages $\$ 2.00$ Key no. R-322
Planar Interconnection Techniques
13 pages $\$ 3.00$ Key no. R-320
Automotive Eiectronics
16 pages $\$ 3.00$ Key no. R-318
Hybrid Circuit Technology
16 pages $\$ 3.00$ Key по. R-316
Leadless, Pluggable IC Packages
Reduce Costs 7 pages $\$ 2.00$
Key по. R-312
Penetration Color Tubes are Enhancing Information Displays 6 pages $\$ 2.00$ Key no. R-310

Program for Transition from Non Linear to Linear Transistor Model
6 pages $\$ 2.00$ Key no. R-308
Charge Coupling Improves Its Image
8 pages $\$ 2.00$ Key no. R-306
Electromagnetic Spectrum Chart
Key no. R-213 \$2.00
Electromagnetic Spectrum Report
16 pages plus Wall Chart $\$ 4.00$
Key no. R-211

Active Filters
96 pages $\$ 4.00$ Key no. R-032
Circuit Designer's Casebook
162 pages $\$ 4.00$ Key no. R-031
To order reprints or for further informa tion, please write to:

```
Electronics Reprint Department
P.O. Box 669
Hightstown, N.J. 08520
```

Only orders with cash, check, or money order will be accepted. No invoicing will be done.

## 3 WIRE SYNCHRO TO LINEAR D.C. CONVERTER



Accuracy: $\pm 1 \%$ over temperature range Input: 11.8V, 400 HZ line to line 3 wire synchro voltage Output Impedance: less than 100 hms Input Impedance: 10K minimum line to line Reference: $\mathbf{2 6 V} \pm \mathbf{1 0 \%} 400 \mathrm{~Hz}$ (Unit can be altered to accommodate 115 V if avaliable at no extra cost) Operating temp. range: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage temp. range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ DC power: $\pm 15 \mathrm{~V} \pm 1 \%$ @ 75 ma (approx.) Case material: High permeability Nickel Alloy Weight: 6 Ozs. Size: $3.6^{\prime \prime} \times 2.5^{\prime \prime} \times 0.6^{\prime \prime}$

## A.C. LINE REGULATION

A new method has been developed which allows us to provide a low distortion highly regulated AC waveform without using tuned circuits or solid state active filters of any kind.
The result is a frequency independent AC output regulated to $0.1 \%$ for line and load with greater than $\mathbf{2 0 \%}$ line variations over a wide temperature range.

Features:

- $0.1 \%$ total line and load regulation
- Independent of $\pm 20 \%$ frequency fluctuation.
- 1 watt output
- Extremely small size
- Isolation between input and output

Specifications: Model MLR 1476.1
AC Line Voltage: $26 \mathrm{~V} \pm 20 \%$ @ $400 \mathrm{~Hz} \pm 20 \%$
Output: $26 \mathrm{~V} \pm \mathbf{1 \%}$ for set point
Load: 0 to 40ma
Total Regulation: $\mathbf{+ 0 . 1 \%}$
Distortion: 0.5\% maximum rms
Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Size: $2.0^{\prime \prime} \times 1.8^{\prime \prime} \times 0.5^{\prime \prime}$
Other units are available at different power and voltage levels as well as wider temperature ranges. Information will be furnished
upon request.

## 4 QUADRANT MAGNETIC ANALOG MULTIPLIER DC x DC = DC OUTPUT


\# MCM 1478-1

## Specificatlons Include:

Transfer Equation: $\mathbf{E}=\mathrm{XY} / 10$
Product Accuracy is $\pm 1 / 2 \%$ of all theoretical product output readings over Full Temperature
Range of $-55^{\circ} \mathrm{C}$ to
$+125^{\circ} \mathrm{C}$.
Maximum Output
Error for Either
$X=0, Y=10 \mathrm{~V}$
$Y=0, X=10 V$
$\mathbf{X}=0, \mathbf{Y}=0$
would be $\pm 2$ MV over
Entire Temperature Range.
$X \& Y$ Input Signal Ranges: 0 to $\pm 10 \mathrm{~V}$ peak
Maximum Static and Dynamic Product Error: $1 / 2 \%$ of point or
2 MV , whichever is greater, over entire temperature range
Input Impedance: $X=10 \mathrm{~K}, \mathrm{Y}=10 \mathrm{~K}$
Full Scale Output: $\pm 10 \mathrm{~V}$ peak
Minimum Load for Full Scale Output: 2000 ohms
Output Impedance: Less than 10 ohms
Bandwidth: 1000 Hz
DC Power: $\pm 15 \mathrm{~V}$, unless otherwise required, at 20 ma
Size: $1.3^{\prime \prime} \times 1.8^{\prime \prime} \times 0.5^{\prime \prime}$
Output is short circuit protected

Collins Radio Co., 2920 First Ave., Cedar Rapins, Iowa
Communications Co., 2700 Ponce de Leon Blvd., Coral Gables, Fla.
Doolittle Radio, Inc., 7421 S. Loomis Electronic Specialty Co., 3456 Glendale Blvd., Los Angles, Cal
Galvin Mifg. Corp., 4545 Augusta Blvd. Chicago, Ill.
Graybar Electric Co., Lexington Ave. at 4sd St., New Yor, N. (Sole Dis tributors for Western Electric Co. Hallicrafters Co., 2611 Indiana Ave., Chicago, Ill.
Hammarlund Mifg. Co., 424 W. 33d St. Harvey-Wells, Communications, Inc.
 Chicago, Ill.
Jefferson-Travis Radio Miff. Corp., 380 Second Ave. New York, N. Y.
Coradio Corp., 2233 University Ave., St. Paul, Ninn
Lear-Avia, Inc., 1718 Broadway, Piqua, Ohio.
vest Radio Corp., 909 Broadway, Cincinnati. Ohio Mass Radio Frequency Laboratories, Inc., Radio *avigational Instrument Corp., 500 Fifth Ave., New York, N. Y. Radio Receptor Co., 2 is WV. 19th St., New York, N. Y
RCA Mfg. Co., Camden, N. J
Setchell Carlson, Inc., $2233^{\circ}$ University Are, So. Paul, Minn. 1027 N. Highland Smith Co. Maxwell, 1027 N. Highland Sparks-Vi'ithington Co., North St., Jackson, Mich.
Taylor Airphone Products, Inc., Municipal wesiport, Long Beach, Cal.
Western Electric Co.-see Graybar Electric, Co.
Vestinghouse Electric \& Mfg. Co., East Pittsburgh. Pa.
Vicox Electric Co., 3947
Kansas City, Mo.

## AMATEUR RECEIVERS

Abbott Instrument, Inc., 8 W. isth, St., Echophone Radio Co., 201 F. 26 th St., Galvin Mfg. Corp., 4545 Augusta Blvd Chicago, Ill.
Hallicrafters Co., 2611 Indiana Ave., ChiHammarlund Mfg. Co., 424 W. 33d st., New York, N. Y.
Howard Radio Co., 1731 Belmont Ave., Chicago, 111
Kaar Engineering Co., 619 Emerson St., eissner Mro, Cal.
Meissner Mfg. Co., Mt. Carmel 111
Millen Mfg. Co., James, 150 Fxchange Vational Co. 61 Mass.

61 Sherman St., Malden, Philco Radio \& Television Corp., Tioga \&
 Pilot Ron Blvd., Los Angeles, Cal
Pilot Radio Corp,
Island City,
Y. Radio Mfg. Engineers.
Radio ${ }^{\text {Stania, }}$ Ill. Radio Transceiver Laboratories, 120-03 RCA Mag. Co., Camden, N. J. Hill, N. Y. Smith Co. Maxwell, 1027 N. Highland Smith Co., Maxwell, Cal.
Tefft Radio Co., Plymouth, Mich.
Wells-Gardner \& Co., 2701 N. Kildare Zenith Radio Corp., 6001 Dickens Ave. Chicago, Ill.

## AUTO RECEIVERS

Automatic Radio \& Television Co., 122 Calvert Motors Associates, Ltd., 1028 Linden Ave., Baltimore, Md.
Cavalier Motors Associates, Ltd., 1028
Colonisl Radio Corp., 254 Rano St., Buffalo, N. Y
Crosley Corp. 1329 Arlington St., Cincinnati, Ohio
Kokomo Ind. General Motors Service Detrola Corp., 1501 Beard Ave., Detroit, Mich.

F*idat liadio d Nectris Co., 30-20 Thom: Firnsworth Thevision \& Radio Corp., Farnsworth Television \& Radio Corp. (ialvin Mfy. Corlp., 4545 Augusta Blvd., Chicago, 111.
Howard Radio Co., 1731 Belmont Ave., Chicago, III.
Kiaradio Corp., 2233 University Ave., St. I'aul, Minn.
Noblitt-Sparks Industries, F. 17 th St. Columbus, Ind.
Radio l'roducts Corp., 3800 W. Cortland RCA Ïfr. Co. Cand
Sonora Radio \& Phonograph Corp., 2926 Stewart-Warner Corp., 1826 Diversey Prav-ler jarenola Thie Corb 1036 W Trav-ler Karenola Tele Corb. 1036 W. Van Buren Sit. Chicaro, Ill.
Warwick Mfg. Co., 1700 W. Washington Blvd., Chicaro. 111. Ave., Chicago, Ill.
Kenith Radio Corf.. finol Dickens Ive.

## FACSIMILE RECEIVERS

loinch Telecommunications, Inc., Passaic RCA Nifg. Co., Camden, N. J.

FREQUENCY MODULATION RECEIVERS
Air King Radio \& Television, 1523 63d St., Brooklyn, N. Y.
Insley Kadio Corn., $21-10$ 49th Ave. Autocrat Radio Co., $3855^{\circ}$ ․ Hamilton Emerson Radio \& Phonograph Corp., 11 Eighth Ave., New York, N. Y.
pey Mfg. Co., 305 E. 63d St., N゙ew Fork, $\dot{W}$. Y. Fada Radio \& Electric Co., 30-20 Thom son Ave., Long Island City, N. Y. arnsworth Television \& Radlio Corp., 3700 Pontiac St., Fort Wayne. Ind.
reed lladio Corp., $39 \mathrm{~W} .19 \mathrm{St}$. . New York, N. Y.
Galvin Mfg. Corp., 4545 Augusta Blvd. Chicagro, Ill.
General Flectric Co., Appliance and Mer chandise Dept., Bridgeport, Conn. Hallicrafters Co., 2611 Indiana Ave., Chinavox Co., 2131 Bueter Rd., For Wayne, Ind
Meissner Mfg. Co., Mt. Carmel, Ill
National Co., 61 Sherman St., Malden. Mass.
Pacent Engineering Corp., 79 Madison Ave., New York, N. Y..
Warmonic Radio Corp., 216 William St., New York, N. Y.
St, 216 William St., New York, N. Y. 2345 W. Wash ington Blvd., Los Angeles, Cal
Pilot Radio Corp., $37-0636$ th St., Long
Radio Engineering Laboratories, Inc. $35-54 \quad 36$ th $\mathrm{St}, \mathrm{Long}$ Island City,
Radio Receptor Co., 251 W. 19th St., New Scott York, N. Y. E. H., 4450 Ravenswoor Ave., Chicago, Ill.
Sentinel Radio Corp., 2020 Ridge Ave. Fivanston, Ill.
Smith Co., Maxwell, 1027 N. Highland Ave., Hollywood, Cai.
Stewart-Warner Corn., 1826 Diversey Pkwy, Chicago, Ill.
Stromberg-Carlson Telephone Mfg., 100
Zenith Radio Corp., 6001 Dickens Ave. Chicago, Ill.

## HOME RECEIVERS

Air King Radio \& Television, 1523 f3d St. Brooklyn, N. Y. 4820 . Woodside, N. Y. 4820 48th Ave. Ansley Radio Corp., $21-10$ 49th Ave., Long Autocrat Radio Co.. 3855 N. Hamilton Ave., Chicago, Ill.
Automatic Radio, \& Television Co., 122 Brookline Ave., Boston, Mass. 122
Bell Radio \& Television, 125 F. 46 th St. New York, N. Y.
Belmont Radio Corp., 5821 W. Dickens Ave., Chicago, II.
Corp., 206 Lexington Mersman Bros. Corp., 206 Lexington Ave., New York,

Calvert Motors Associates, Ltd., 1028 Linden Ave., Baltimore, Md
Colonial IRadio Corp., 254 IRano St., Buf inental . Continental Radio \& Television Corp. sley Corp., 1329 Arlington St., Cincin Crosiey Corp
Delco Radio Div, General Motors Service, Kokomo, Ind.
De Wald Radio Ifg. Corp., 440 Lafayette St.. New York, N. Y. 7421 S. Loomi Inva., Chicago, Ill.
Electrical Research Lab., Inc., 2020 Ridge Ave., livanston, Ill.
Flectromatic IDistributors, Inc., 88 Uni versity Ralio, \& Whonograpi, Corp., 111 loighth Ave, New Jork. N. Y. 11
Esples Iff: (o., 305 lí. 63il St.. New
sure
Fada Radio \& Electric Co., $30-20$ Thom Farnsworth Television \& liadlo Corp. 3700 Pontiac St., Fort Wayne, Ind.
Freerl Radio Corp., 39 V. 19 th St., New York, $\mathbf{N}$. $\mathbf{Y}$.
Galvin Mifg. Corp., 4545 Augusta Blvd. Chicaro, Ill.
Garod liadio Corp., 70 Washington St. Bral Fiectric Co., Appliance and Mer
eneral Flectric Co., Appliance and Mer chandise Dent., Bridgeport, Conn
General Television \& Radio Corp., 1240 Gilfilian Bros., Inc., 1815 Venice Blvd.
Los Angeles, Cal
Grebe Mfg. Co., 70 Washington St., Brook
Howard Radio Co., 1731 Belmont Ave. Chicago, Ill
Kadette Radio Corp., 310 First National Bldg., Ann Arbor, Mich
Laurehk Radio Mfg. Co., 3918 Monroe Tatro Mfg. Co., 417 W. Water St. Decorah, Iowa 131 Bueter Rd., Fort Wayne, Ind.
Majestic Radio \& Television Corp. 2600 Marconiphone, Inc., 679 Madison Ave. New York, N. Y. Carmel, Ill
Midwest Radio Corp., 909 Broadway, Cincinnati, Ohio
Mitchell Mfg. Co., 1550 N. Dayton St., Chicago, Il
Voblitt-Sparks Industries, E. 17th St., Columbus, Ind
Pacent Fingineering Corp., 79 Madison Packard Bell Co., $1320^{\circ}$ S. Grand Ave., Los Angeles, Cal. 967 22d St., Oak land, Cal.
Philco Radio \& Television Corp., Tioga \& Philharmonic Radelphia, Pa. 216 William St., New Yark Corp., 216 William Philmore Mfg. Co., 113 University Pl., Pilot Radio Corp., $37-06$ 36th St., Long Island City, N. ${ }^{3}$ Y.
Radio Products Corp., 3800 W. Cortland RCA St., Chicago, Ill.
den, N. J.
York $\mathbf{N}$ Cortlandt St . New Remler Co., 2101 Bryant St., San Franscott Labs Inc., E. H., 4450 Ravenswood Sentinel, Chicago, III. 2020 Ridge Ave Fvanston, Ill.
Setchell Carlson, Inc., 2233 University Sillcox Radin Saul, Minn.

Tower New Television Co., 60 Wall Tower, New York, N. Y.
Sonora Radio \& Phonograph Corp., 2926 parks-Withington Co., Jackson, Mich Sparks-Withington Co., Jackson, Mich. Stewart-Warner Corp., 1826 Diversey
Pkwy, Chicago, Ill. Stromberg-Carlson, Th,

100 Carlson Rd Telephone Mig. Co., Trav-ler Karenola Tele Corp.; 1036 W. Trebor Buren St., Chicago, Ill.
Walsh, Iincoln, 34 DeHart Pl., Elizabeth Warwick Mes. Co., 1700 W. Washington Blvd., Chicago, Ill.
Westinghouse Elpctric \& Mfg. Co., East Pittsburgh, $\mathbf{P a}$.
7enith Radio Corp., 6001 Dickens Ave. her Radio Co., 13139 Hamilton Ave. Detroit, Mich


New Type 9 photoconductive material is now available in thre photocell packages from Clairex - TO-5. TO-8. TO-18. Type 9 material is more stable at high temperatures and has less light memory than normal CdS materials. Type 9 material also has improved linearity and broader spectral response. Try Type 9 material if you have photocell stahility problems.
Call (9)14) 664-66(0) or write (latirex , 56() South Third Avenue, Mount Vernon. New York 1055().

## CLAIREX ELECTRONICS

A IIVISION OF CIAIREX CORPOR AIIGN


[^0]:    March 21 1974 volume 47 . Number 6
    copies of ims issue printed
    Pubhshed every other Thursdey by McGraw-Hall. Inc. Founder James H. McGraw 1860-1948. Publication office 1221 Avenue of the Americas. N. Y., N Y. 10020; second class poslage paid at New York, $\mathrm{N} Y$. and addtional mailing offices.
    Execuive, ediorial, criculation and adverising addresses: Electroncss. McGraw-Mill Building, 1221 Avenue of the Americas. New York 5234 Cable address'M C GRA WHIL L N. Y
    Subscriptions limited to persons with active, prolessional, functional esponstbility in electronics technology Pubisher reserves ine nghl to repect non-quenthed requests No subscriptions accepted without complote identification of subscriber name. tithe, or job function. company or organization, including product manutactured or services perand possessions, Cansida, and Mexico $\$ 900$ one year, $\$ 1800$ three years. all other countnes $\$ 25.00$ per year. except Japan $\$ 50.00$ per year and Brazil $\$ 4000$ per year, including ar Ireight. Lumited quota ol subscnptions avalable at higher--than-batic rate for persons outside of held served as loilows: U.S and possessions and Canada, $\$ 25.00$ one yesgions and Canade. 1.c0; all other countries, $\$ 1.75$.

[^1]:    International: RCA, Sunbury-on-Thames, U.K./RCA, Fuji Building, 7-4 Kasumigaseki, 3-Chome, Chiyoda-ku, Tokyo. Japan/RCA, 103 Nanking E. Road, Sect. 2. 2nd Floor, Taipel, Taiwan. In Canada: RCA Limited, Ste. Anne de Bellevue 810, Canada.

[^2]:    Litronix, Inc. 19000 Homestead Road, Cupertinc, California 95014 (408) 257-7910 TWX: 910-338-0022
    turopean Meadquanters: Litronix, Inc. Bevan House, Bancroft Court Hitchin, Mentordshire SG5 ILW England Tel: 2676 Telex: 825.497

[^3]:    Albuquerque, (505) 268-6729; Baltimore, (301) 788-6611; Bosion, (617) 894-5637; Burlington, NC (919) 228-6279; Chicago, (312) 297-5240; Cloveland, (216) 261-2000; Denver, (303) 573-9466; Dayton, (513) 298-9904; Dallas, (214) 231-8106; Detroit, (313) 363-2282; Ft. Lauderdale, (305) 721-4260; Hamden CT (203) 248-9361; Huntsvilio, AL (205) 536-1969; Houston, (713) 623-4250; Indianapolis, (317) 783-2111; Kanses City, KS (913) 631-3818; Los Angeles, (213) 641-4800; Minneapolis, (612) 544-1616; New York City area (201) 871-3916: Norfolk, (804) 499-8133; Oriando, (305) 841-8180; Phlladelphla, (215) 825-9515; Phoonix, (602) 834-1682; Rocheater, NY (716) 334-2445; San Antonio, (512) 694-6251; San Dlego, (714) 249-6642; San Francleco arae (415) 964-4230; Seattle, (206) 454-0900; St. Louis, (314) 842-2535; Syracuse, (315) 457-7420; Washington, DC area (703) 451-6500.

[^4]:    VARNISHED TAPE
    A・ロ1t，W＂ire Co．． 1255 Dixwell Ave．N゙ew Haren，Conn．

[^5]:    BIBLIOGRAPHY
    F.P. Kapron, D.B. Keck, and R.D. Maurer "Radiation Losses in Glass Optical Waveguides," Appl. Phys. Letters, Vol. 17, 1970, pp. 423-425.
    S.E. Miller, E.A.J. Marcatili, and Tingve Li, "Research Toward Optical-Fiber Transmission Systems, " Proc. IEEE, Vol. 61, No. 12, 1973. pp. 1,703-1,751.
    J.D. Crow. "Power Handling Capability of Glass Fiber Lightguides," to be submitted to Applied Optics Letters.

[^6]:    REFERENCES

    1. George E. Bodway, "Circuit Design and Characterization of Transistors by Means of Three Port Scattering Parameters," Microwave Journal, May 1968.
    2. A 26 -page booklet that describes the use of the Speedy program is available, free of charge, from Fairchild Semiconductor, Transistor division, 464 Ellis St., Mountain View. Calif. 94040.
    3. Inlormation on obtaining access to the G. E. Mark ill Information Network is available from General Electric Co., Information Services Dept., 1120 San Antonio Rd., Palo Alto, Calit. 94304.
    4. Phitip H. Smith, Electronic Applications of the Smith Chart, Chapter 12, McGraw-Hill Book Co., New York, N.Y.
[^7]:    1. Spine. The 12 -bit bidirectional bus (color) communicates with external devices and also interconnects functional units within the microprocessor itself, transferring both data and addresses.
