Electronics

Removing noise from low-level signals: page 80 Higher power from avalanche diodes: page 96 Low-cost video recording: page 110

July 8, 1968
$\$ 1.00$
A McGraw-Hill Publication

Tackle your signal-source problems with this line

No one calls the signals exactly the way you do; and different applications require different features in signal source. That's why we offer you a whole line of sync-able RC oscillators - so you can match your signal source to your needs.

If you are measuring distortion, low. level noise, or transient response, a low-distortion test signal is your primary concern; the Type 1309 oscillator is for you. Total harmonic distortion is specified at $\leq 0.05 \%$, and it is typically much lower. The 1309 also offers sine and square-wave outputs, a calibrated attenuator, and a $10 \mathrm{~Hz} \cdot \mathrm{to} \cdot 100 \mathrm{kHz}$ frequency range . . . all for $\$ 325$.

Wide range is the big feature of the 1310. This oscillator spans a frequency range of 2 Hz to 2 MHz in six decade ranges. Its flat output ($>20 \mathrm{~V}$ open circuit) makes it ideal for frequency. response measurements, and its excellent resolution and stability permit its use for measurement of narrow-band devices. Price . . . \$325.

With high-output power, the 1311 is tailor-made for use as a bridge oscillator or for driving low-impedance devices like acoustic transducers. It has a 1-watt, transformer-coupled output at 11 fixed frequencies from 50 Hz to 10 kHz , with a $\perp \mathrm{f}$ control for $\pm 2 \%$ adjustment. Price . . . $\$ 260$.

Production applications require easy settability and good repeatability. The 1312 decade oscillator fits on both counts. This oscillator has in-line readout with automatically positioned decimal point and unit of measurement. Thus the frequency is easy to set virtually impossible to misread precisely reset. It has a 10 Hz -to- 1 MHz frequency range with $>20-\mathrm{V}$ open. circuit output . . . all for $\$ 415$.

Other production-line testing requires that devices such as amplifiers and loudspeakers be response- and distortion-tested quickly and without being overdriven. The 1313 oscillator is ideal for this use. Its $10 \mathrm{~Hz} \cdot$ to $\cdot 50 \mathrm{kHz}$ frequency range is covered on one dial, so you don't have to switch ranges. This means fast testing, no transients, and unambiguous dial, and no range switch to replace periodically because of constant use. Price . . . \$325.

All these oscillators are equipped with the GR-developed sync jack to lock the instrument to an external source or to provide a triggering signal for counters, scopes, or other devices. All provide high, flat output and an unusual combination of performance, reliability, and economy that make each oscillator ideally suited for particular applications. So you call the play: choose the features you need in a signal source. Then choose the GR oscillator with those features.

For more information, call your nearest GR office, or write General Radio, W. Concord, Mass. 01781 : Telephone (617) 369-4400. In Europe, Postfach 124, CH8034, Zurich 34. Switzerland.

Prices apply only in U.S.A.

GENERAL RADIO

Circle 900 on reader service card

140A Plug-in Oscilloscope
141A Variable Persistence Oscilloscope
185 CHN Analyzer
310A. 312A Wave Analyzers
313A Tracking Oscillator
340B Noise Figure Meters
400E AC-to-DC Converter
400EL High-Accuracy AC Voltmeter 410C Electronic Volimeter 411A RF Millivoltmeter 412A Voltmeter. Ammeter. Ohmmeter 415B, 415E. 416B Standing Wave Ratio 419A DC Null Voltmeter
428B Clip-on DC Milliammeter
431C Microwave Power Meter
500B Frequency Meter
562A Digital Recorder
581 A D/A Converter
675A Sweeping Signal Generator
775, 776 Automatic Preparative Gas Chromatograp 780-7 Patient Monitor
8551B/851B Spectrum Analyzer
1416A Swept Frequency Oscilloscope Indicator
1782A Oscilloscope Display Scanner
2010A, 2012A Data Acquisition Systems*
2116A, 2115A. 2114A Computers*
2801A Quartz Thermometer
3300A Function Generator
3400A RMS Voltmeter
3406 A Brpadband Sampling Voltmeter
${ }_{3}^{34305 A}$ These are some of 3439A 3440 A plug-in. Digital Voltmeters* ${ }_{36}{ }^{3646}$ ithe HP instruments that ser

5214L Preset Counter*

5275A Time Interval Counter*
5280A Reversible Counter*
5400 A Nuclear Multichannel Analyzer
5552A Spectrum Scanner
5751B Research Gas C
8051A Loudness An.
7561A, 7562 A
8405A

Get One Source for Any Waveform to $\mathbf{1 0 0} \mathbf{k H z}$

Linear sweep in decade steps over a 0.01 Hz to 100 kHz -sine, square and triangular waveforms-variable dc offset for each function including sawtooth-from one source, the hp 3304A Sweep/Offset Plug-in and the 3300A Function Generator.

Manual Sweep: start frequency and sweep width are individually adjustable over at least one decade for easy location of sweep range. Swept frequencies and the sawtooth are simultaneously available for display on oscilloscope or recorder.
Programmable Sweep:External sweeping or programming over a decade of frequency is possible with 0 to -10 V with the basic function generator.

DC Offset: Use the dc offset with any waveform $- \pm 16$ Vdc range with $\mathrm{a} \pm 1 \mathrm{~V}$ vernier control. Makes hard-toget driving functions readily available.

The 3300A/3304A combines to give swept and CW sine ($<1 \%$ distortion), square (<250 ns rise time),
triangular ($<1 \%$ linearity) waveforms, and sawtooth waveforms (with $<5 \%$ flyback time).

Two fully-floating non-interacting outputs with separate amplitude controls provide up to 35 V p-p.

Price: hp 3300A Function Generator, \$625.00; hp 3304A Sweep/Offset Plug-in, $\$ 250.00$. For full specifications, contact your nearest hp field engineer. Or, write to Hewlett-Packard, Palo Alto, California 94304. Europe: 54 Route des Acacias, Geneva.

097/15

HEWLETT hp PACKARD

News Features

Probing the News

123 Computers: Federal libraries cast a long shadow
129 Integrated electronics: Semiconductor firms' captive lines capture defense contractors' fancy
135 Manpower: Recruiters flock to Negro campuses

Electronics Review

52 Companies: Fairchild shakeup
54 Consumer electronics: Pushing tubes for color tv ; while others go solid state; Broader use of IC's

58 Commercial electronics: IBM collects the fare
60 Military electronics: Plastic-packaged circuits
60 Government: For less competition; It pays to shop around
62 Management: Belt-tightening at Sperry Gyroscope
64 Communications: Role of the military satellites

For the Record

Electronics Abroad

Japan: IC replaces 35 -mm camera meter
Great Britain: Scanning electron microscope checks IC's; Computer quizzes pupils
The Netherlands: Philips' computers rival IBM 360's
Canada: Low-cost gear guides vessels
West Germany: Siemens moves up on IBM
France: CSF trims down Around the worid

New Products

TTL makers expand product lines

Components review

SCR device replaces thyratron
IC holds voltage within $.005 \%$
Instruments review
The averager uses analog approach Altimeter is all-electric
Subassemblies Review Magnetic-tape reader-writer costs \$1,200
Memory stack stores 64,000 bits H-P sells counter parts
Semiconductors review
Comparator's fanout is 10
IC triggers triacs, SCR's Microwave review

Klystron is tuned in seconds Consumer electronics review Low-cost color tv camera has broadcast quality

Technical Articles

I. Design

Design theory 80 Taking noise out of weak signals Synchronous method of cleaning up microvolt or nanovolt transmissions with a lock-in voltmeter is free of zero-drift and zero error problems Richard Brower, Brower Laboratories Inc.

Circuit design 90

Solid state 96

Advanced 104
technology

Fabrication advances boost potential of avalanche diodes
Improved methods of heat-sinking and new techniques for creating abrupt junctions make the devices strong contenders for microwave power sources
Harry L. Stover, Texas Instruments

II. Application

Designer's casebook

- Voltage comparator is made with op amps and logic gates
- Diodes in a multivibrator lessen frequency variations
- Transistor and zener protect series regulator

Storing light and current in crystals Ability to absorb energy and release it when tapped makes some lithium- and sodiumdoped semiconductors potentially useful as infrared detectors, optical memories, and other optoelectronic devices Cole W. Litton and Yoon Soo Park Wright-Patterson Air Force Base

Departments

Electronics

Editor-in-Chief: Donald Christiansen

Associate managing editors

Technical: Stephen E. Scrupski
News: Robert Henkel
Copy: Sally Powell
Senior associate edltors Joseph Mittleman, Harry R. Karp

Department editors

Avionics \& Space: Alfred Rosenblatt Computers: Wallace B. Riley Communications: William Bucci
Components: George Watson
Consumer electronics: John D. Drummond
Design theory: Joseph Mittleman
Industrial electronics: Harry R. Karp
Military electronics: Richard Gundlach

Senior staff editor

Samuel Weber

Section editors
Electronics abroad: Arthur Erikson Electronics review: Stanley Zarowin New Products: H. Thomas Maguire, William P. O'Brien
Probing the news: Eric Aiken
Assistant editors
Stephen Wm. Fields, Peter Schuyten, James Kirby, Owen Doyle

Domestic bureaus

Boston: James Brinton, manager
Chicago: Frederick Corey, manager
Los Angeles: Lawrence Curran, manager; Burton Bell
New York: Howard Wolff, manager
San Francisco: Walter Barney, manager; Peter Vogel
Washington: Robert Skole, manager; Paul Dickson, William F. Arnold
Foreign bureaus
Bonn: John Gosch
London: Michael Payne
Tokyo: Charles Cohen

Copy editors

James Chang, Larry Miller

Graphic design

Art director: Saul Sussman
Assistant art directors: Ann Mella, Valerie Betz, Susan Hurlburt
Production editor: Arthur C. Miller
Editorial research: Kay Fontana
Editorial secretaries: Lorraine Longo, Claire Benell, Lynn Emery,
Patricia Gardner, Barbara Razulis, Frances Vacca
McGraw-Hill News Service
Director: Arthur L. Moore; Atlanta: Fran Ridgway; Chicago: Robert E. Lee
Cleveland: Arthur Zimmerman; Dallas: Marvin Reid;
Detroit: James Wargo; Los Angeles: Michael Murphy
Pittsburgh: Louis Gomolak
San Francisco: Margaret Drossel
Seattle: Ray Bloomberg; Washington: Charles Gardner, Daniel B. Moskowitz,
Herbert W. Cheshire, Seth Payne, Warren Burkett, William Small, William D. Hickman
McGraw-Hill World News Service
Bonn: Robert Dorang; Brussels: George Williamson; Hong Kong: Wes Perry;
London: John Shinn; Mexico City: Gerald Parkinson; Milan: Ronald Taggiasco, Jack Star;
Moscow: Howard Rausch; Paris: Robert E. Farrell, Peter Kilborn;
Rio de Janeiro: Leslie Warren; Tokyo: Marvin Petal
Reprints: Susan Nugent
Circulation: Isaaca Siegel
Publisher: Gordon Jones
Electronics: July 8, 1968, Vol. 41, No. 14
Published every other Monday by McGraw-Hill, Inc. Founder: James H. McGraw 1860-1948.
Publication office: 12821 W . Sl
paid at Brookfield. Wis. $\$ 300 \mathrm{~s}$.
Executive, editorial, circulation and advertising addresses: McGraw-Hill Building. 330 W. 42 nd Street New York, N. Y. 10036. Telephone (212) 971.3333 . Teletype TWX N.Y. 710.581.4235. Cable address: MCGRAWHILL N.Y.
Subscriptions solicited only from those professionally engaged in electronics technology. Subscription rates: qualified subscribers in the United States and possessions and Canada, $\$ 8.00$ one year. $\$ 12.00$ two years. $\$ 16.00$ threa years; all other countries $\$ 25.00$ one year. Non-qualified subscribers in the U. S. and
possessions and Canada, $\$ 25.00$ one year; all other countries $\$ 50.00$. Air Preight service to Japan $\$ 50.00$ possessions and Canada;
Officers of McGraw. Hill Publications: Joseph H. Allen, President; Bayard E. Sawyer, Executive Vice President; J. Elton Tuohig, Senior Vice President.Operations; Vice Presidents: John R. Callaham. Editorial:

John M. Holden, Marketing; Paul F. Cowie, Circulation; Jerome D. Luntz, Pianning \& Development;
Roluert M. Withelmy, Controller.
Officers of the Corporation: Shelton Fisher, President and Chief Executive Officer; John L. McGraw, Chairman; Dice President \&, Donald C. McGraw, Jr. R.E. Slaughter, Senior Vice Presidents; John J. Cooke,
of this publication may not be reproduced either int 1968 by McGraw. Hill, Inc. All rights reserved, The contents
Subscribers The publisher, upon itter request to New York officefrom any subsciber,
agrees to refund that part of the subscription price app New York office from any subscriber, agrees to refund that part of the subscription price applying to copies not yet mailed.
Please send change of address notices or complaints to Fulfillment Manager; subscription should provide old as well as new address, including postal zip code number. If possible attach address label from recent issue. Allow one month for change to become effective.
Postmaster: Please send form 3579 to Fulfillment Manager, Electronics,
P.O. Box 430, Hightstown, New Jersey 08520

Readers Comment

Reverberations

To the Editor:
In my 40 years of work in the scientific field there has never been such a vitriolic denunciation of our work as in the article "Signal gains for electronic music," [April 29, p. 95].

I talked to Professor Milton Babbitt of Princeton University with regard to the paragraph in the article that concerns the RCA Electronic Music Synthesizer. He was very much distressed. Professor Babbitt has given many public concerts of his work produced on the RCA synthesizer. I know of at least two instances where he received very fine reviews in the New York Times. In addition, Professor Babbitt was honored with the New York Music Critics Circle Citation in 1964. Others have also received acclaim for their work on this instrument.

On May 14, Professor Vladimir Ussachevsky, chairman of the committee on direction of the Columbia Princeton Electronic Music Center, wrote me: "Your RCA synthesizer remains our constantly used tool and center of attraction at the Electronic Music Center. We have spent hundreds of hours demonstrating it to students from all over the United States, as well as countless persons from abroad, and I am sure that our visitors have carried away the correct impression of the RCA synthesizer." In view of this I am at a loss to know why you call this development a white elephant.

It was around 1955, during the period that Professors Babbitt and Ussachevsky were producing electronic music, that RCA invited them to work on the RCA synthesizer. They were so intrigued that the Columbia Princeton Electronic Music Center was started in New York City, and the synthesizer moved there.
As for the statement in the article that the synthesizer is on permanent loan, that too is incorrect. The lease is on a yearly renewable basis.
Since RCA is engaged in the reproduction of sound, we carry out

Here's a new digital IC from Sprague. The 54/74107A.

It's a single-chip

 replacement for the 5473/7473 dual JK m-s flip-flop.

In DIP it has pin 7 GND,
just like the rest of the Series 54/74 family. For existing designs,
it's also offered in the "old"
pinning in either DIP or flat pack.

SPECIFICATIONS Dual JK m-s Flip-Flop
Choose 0 to $\mathbf{+ 7 0}$ or -55 to $\mathbf{+ 1 2 5 C}$ temperature range. Choose "old" or new compatible pinning.
Choose Sprague for all Series 54/74.

	DIP	DIP	TO-88
	PIN 7 GND	PIN 11 GND	PIN 11 GND
0 to +70 C	USN-74107A	USN-7473A	USN-7473J
-55 to +125 C	USS-54107A	USS-5473A	USS-5473J
Clock freq.	15 MHz	15 MHz	15 MHz
Pdiss	$50 \mathrm{~mW} / \mathrm{ff}$	$50 \mathrm{~mW} / \mathrm{ff}$	$50 \mathrm{~mW} / \mathrm{ff}$
Fan Out	10	10	10

To request samples, call your Sprague representative. For further information, write to Technical Literature Service, 35 Marshall St., North Adams, Mass. 01247.

SPRACUE

the mark of reliability
SPRAGUE WORCESTER . . . the world's finest microcircuit facility.

Introducing the Heinemann JA/Q ${ }^{\text {m }}$ electronics protector:

Nanosecond transient/overvoltage response
 Millisecond overcurrent trip time

Delicate semiconductors are vulnerable to a trio of electrical hazards: transients, overvoltages, and overcurrents. Only a device which responds to all three can offer adequate protection to solid-state equipment.

Heinemann now offers you such protection, in a single package: the JA/Q electronics protector.

With a JA/Q protector in your equipment, a dangerous transient doesn't stand a chance. The JA/Q will sense it instantly, close an internal solid-state switch, and shunt it to ground. Line voltage passes back through the nominal supply value typically within 500 nanoseconds. With the switch closed, the protector trips, removing the equipment from the line in as little as 5 milliseconds.

Overvoltages are handled in the same manner. In fact, the JA/Q is insensitive to rise times: any voltage over the firing point of the protector will trigger it.
For overcurrents, the JA/Q provides protection comparable to a non-time-delay magnetic circuit breaker.

It is guaranteed to trip at 125% of rating. At 200% of rating, it will trip within 20 milliseconds; above 300%, trip time drops to 5 milliseconds. For delayed protection of blowers, starters, and other associated equipment, JA circuit breaker poles with time delays and special function internal circuits can be added to the standard fastresponse JA/Q pole.
Any solid-state equipment can benefit from the addition of JA/Q protection. Designers presently using Series JA circuit breakers can now give their equipment triple protection by switching to JA/Q's. No changes in mounting, and only one additional lead-a referenceare required.
To learn more about the JA/Q electronics protector, write for Bulletin 3370. Heinemann Electric Company, 2600 Brunswick Pike, Trenton, N.J. 08602.
both pure and applied research in the ficld of sound reproduction. The reason we developed the synthesizer was to learn more about the sound that we reproduced.

After we developed the synthesizer, Mr. Belar and I decided to test the fidelity of performance of the instrument. To do this we analyzed excerpts from disk records of two piano selections, namely, "Polonaise" and "Clair de Lune" and a violin selection, "Old Refrain." The piano selections were played by Iturbi, Rubenstein and Horowitz. The violin selection was played by Kreisler. We synthesized the analysis. We then assembled on tape seven original and seven synthesized selections. We played these for musicians, scientists, and laymen. They could not tell which was the real and synthesized. This demonstration showed that the synthesizer was inherently capable of producing great music.
We demonstrated the RCA synthesizer to numerous scientific societies including the National Academy of Scicnces, of which I am a member. We received nothing but compliments on the development. The scientific fraternity has recognized the rea Electronic Music Synthesizer as an outstanding pioneering development in the field of electronic music.

In the entire article I find that the snide, derogatory and irresponsible remarks, wholly lacking in accuracy and sensationally phrased, are all directed towards the rea Electronic Music Synthesizer. Nowhere else in the article is there any denunciation-only in the section devoted to RCA. I am at a loss to know why you singled out our development for
this undisciplined attack.
Harry F. Olson
Vice president
RCA Laboratories
Princeton, N.J.

- James Seawright, technical advisor to the Columbia Princeton Electronic Music Laboratories, told Flectronics that the RCA Electronic Music Synthesizer was originally built as a commercial proposition. Electronics did not intend to indicate that it had not been used successfully to compose contemporary music. When Seawright said the sound was "too tinny," he was referring to a harpsichord selection on the machine.

Color them wrong

To the Editor:
In our article, "Isolation prol)lems get an airing," [April 29 , p. 75] the two drawings at the bottom of page 77 are in error.
The drawing on the left, of a chip and wire structure, is completely irrelevant. The drawing on the lower right should look exactly like the photograph at the top of page 77. The one shown in the article is of an earlier mask set that is no longer leeing used.

Hal Clausen
Roger B. Rusert

Fairchild Semiconductor Mountain View, Calif.

Readers' letters should be addressed: To the Editor,
Electronics,
330 West 4.2nd Street, New York,
N.Y. 10036

WHY SETTLE FOR LESS? GET TOP PERFORMANCE WITH DELTA'S FABULOUS MARK \cdot TEN

\$44 poc. 9 CPACITIVE

 peatar oiny IISCHARGE IGNITION SYSTEMYou read about the Mark Ten in the April issue of Popular Mechanics!
Now discover why even Detroit has finally come around. In 4 years of proven performance and reliability, the Mark Ten has set new records of ignition benefits. No wiring. And works on literally any type of gasoline engine. Buy the original; the genuine, the real McCoy - Mark Ten.
From Delta. The true electronic solution
to a major problem of engine operation.

READY FOR THESE BENEFITS?

A Dramatic Increase in Performance and in Fast Acceleration

- Promotes more Complete Combustion

A Points and Plugs last 3 to 10 Times Longer
A Up to $\mathbf{2 0 \%}$ Mileage Increase (saves gas)
literature sent by return mail BETTER YET-ORDER TODAY!

Need a custom fork oscillator

For process control? Or for test or ground support equipment? Or for a signaling system?

call Varo.

This lead-mounted, 11-gram package is not only compact ($7 / 8^{\prime \prime} x^{7 / 8^{\prime \prime}} \times 7 / 16^{\prime \prime}$), it's a lot more rugged than larger fork oscillators. Frequency range is 2 KHz to 40 KHz . Performance: $.05 \%$ from -20 degrees C . to +70 degrees C. If we can't adapt this package to meet your specs, we'll build you one that does.

Varo answers fast.

Because our business is oscillators. Not oscillators and ovens and crystals and etc. But oscillators, period. Tell us what you need. We'll tell you how and when. Like we've done for General Precision, Westinghouse, Sandia, Litton, Raytheon, and others. Try us for speed.
Varo's WESCON address is
Booth 445 in Hollywood Park

TIME \& FREQUENCY PRODUCTS

402 GUTIERREZ STREET
SANTA BARBARA. CALIF
TWLEPRONE (805)

The problems of separating lowlevel signals from a noise voltage isn't a new one for Richard Brower. He has been living with it for more than 15 years. He received an MSEE degree from Northeastern University in 1955, and in 1961 founded Brower Laboratories Inc., a company producing instruments for the electro-optical field.

One of the firm's new products is similar to the instrument dcscribed in the article on page 80 . Richard Brower is a strong proponent of the synchronous method of picking out a low-level signal. He notes, though, that most engineers aren't familiar with the technique, and that those that are often don't know how to use it to the fullest advantage. He has developed many practical guidelines to follow.

Brower

To our subscribers

If your copy of Electronics arrived late, we apologize. Pressmen at the upstate New York plant that prints Electronics magazine-as well as Business Week, Time, Aviation Week and other major publications-walked out last week and we had to scurry to find another printing plant, with free press time, large enough to handle this 230 -page issue on an emergency basis.
The index of activity, which customarily appears in the first issue of each month, was a victim of the strike. It will run in the issue of July 22.

Despite this-and a host of other tribulations-we consider ourselves lucky to have kept reasonably close to our issue date. Many subscribers will get their copies on time thanks to a handful of editors who rushed off to a Wisconsin printing plant to put the book together.

Gordon Jones
Publisher

What started out as a small inhouse study of cadmium-sulfide and zinc-sulfide single crystals at the Air Force's aerospace research laboratories has grown into a large program financed partially by outside contracts. Cole W. Litton was in the program when researchers discovered tap effects in these crystals and he has since spent most of
his time studying the electrical and optical properties of CdS. Litton, coauthor of the article on tap crystals on page 104, began working in optics as a research assistant at the University of Tennessee's physical optics laboratory. He took his B.S. and M.S. at the university, and is now on a leave of absence in England working on his Ph.D.
at the University of Reading.
Yoon Soo Park joined the program about the time that work began on ZnO tap crystals. Before coming to the lab he was a physicist at the D.H. Baldwin Co., where he worked on cadmium-selenide film type photoconductors. A native of Korea, he holds a B.S. from Seoul National University, an M.S. from the University of Alberta in Canada, and a Ph.D. from the University of Cincinnati. Park is now investigating the mechanism that triggers tap luminescence.

Since getting a Ph.D. in plasma physics, Harry L. Stover has been concerned with the interactions between electron microwaves and semiconductors. The author of the piece on avalanche diodes on page 96 was trained in physics, mathematics, and German at Southern Methodist University, where he received his B.A. and B.S. He also holds an M.S. and doctorate from Stanford University.

Stover has been a physicist at the Bell Telephone Laboratories, where his work included the injection locking of such high-frequency devices as tunncl diodes,
 and lasers.

Since 1966, he has been section manager of the exploratory microwave device and applications group at Texas Instruments.

Here's a new direct-

 reading broad range capacitance meter

MODEL 2WI $\$ 197 .{ }^{00}$

This new instrument covers the range from 300 pF to $10,000 \mu \mathrm{~F}$. An easy-to-read scale on a large $4^{\prime \prime}$ meter gives you readings to $\pm 3 \%$ accuracy.

Impressed voltage is only 1 volt a-c, thus
low voltage electrolytic capacitors may be
Impressed voltage is only 1 volt a-c, thus
low voltage electrolytic capacitors may be safely measured.

Solid-state circuitry provides drift-free mea. surements without warm-up, makes the 2W1 small and lightweight. Only $6^{\prime \prime}$ high x $81 / 2^{\prime \prime}$ wide $\times 5^{\prime \prime}$ deep, it fits neatly into inspection stations!

Put this versatile capacitance meter to work at incoming inspection, on the production line, in the lab, or out in the field.

For complete technical data, write for Engineering Bulletin 90,020 to the Technical Liferature Service, Sprague Electric Co., 35 Marshall Street, North Adams, Mass. 01247.

SPRAGUE
the mark of reliability
 new products in the last 40 weeks.
Our goal is fifty-two new integrated circuits in fifty-two weeks. To obtain the Reader Service number for any product announcement ad, simply add 100 to the new product number. For example, New Product No. 3 is Reader Service No. 103.

Up/down decoded decade counter.

Combine New Products \#1 and 4, and you have the basis of an up/down counter with decoded outputs for process control. If only the decoded outputs are used, you don't need a weighted up/down counter. A shift counter will do the job.
The 9300 universal register can be used to form a decade shift counter counting through a sequence of 10 stable states. A logic " 1 " or " 0 ' is injected into the first stage of the register at each clock pulse and the previous contents shift one place. After 10 clock pulses, the shift counter has passed through all 10 stable states in a loop. On the next clock pulse, it arrives back at the starting state. A shift register can be made to count in this sequence by decoding the states through which it passes and by using the decoder outputs as a minterm generator to effectively force a logic "1" at the input of the shift register when the state sequence demands. The following block diagram shows a circuit of this type which requires only four devices.

Consider the up count sequence below with the desired input for the next state included:
In states 0000, 1000, 1100 and 0011 a logic " 1 " must be forced into the first stage of the shift register on the next clock pulse. This may be accomplished by using two 9301 one-of-ten decoders to decode all the sixteen possible minterms from four variables, then sum the appropriate minterms by a 4 -input active low input OR
gate and let the OR gate drive the JK inputs connected together on the 9300 shift register. Each 9301 decoder acts as a $1 / 8$ decoder with the most significant A_{3} input acting as an enable input. The first three outputs of the shift register go to the first three inputs of the decoders and the first decoder has Q_{3} from the shift register as the A_{3} input and the other decoder the Q_{3} thereby producing a one-of-sixteen decoder. The outputs of the two decoders are so arranged as to give the decoded outputs in sequence which can then be used to select or drive external circuitry.

COUNT SEQUENCE											
UP			DOWN								
Q_{0}	Q_{1}	Q_{2}	Q_{3}	INPUT	Q_{0}	Q_{1}	Q_{2}	Q_{3}	INPUT		
0	0	0	0	1	0	0	0	1	0		
1	0	0	0	1	0	0	1	0	0		
1	1	0	0	1	0	1	0	0	1		
1	1	1	0	0	1	0	0	1	1		
0	1	1	1	0	0	0	1	1	1		
0	0	1	1	1	0	1	1	1	0		
1	0	0	1	0	1	1	1	0	0		
0	1	0	0	0	1	1	0	0	0		
0	0	1	0	0	1	0	0	0	0		
0	0	0	1	0	0	0	0	0	1		

The synchronous parallel enable facility can be employed to make the shift register effectively shift to the left rather than the right by connecting the three most significant shift register outputs to the corresponding lower stage parallel inputs and operating the 9300 in the parallel enable mode. The same shift count sequence can now be used. Appropriate minterms are summed by an additional active low input OR gate which drives the shift left counter, making it pass through the same 10 stable states as before, but in the opposite direction. By this means, the shift counter performs as an up/dcwn decoded decade counter with the parallel enable/shift input as a count up/count down control. Since cnly the desired minterms are summed and logic "Os" are inserted into the first stage of the register rather than at specific states, no lock-up sequence can occur.
To obtain specifications and other applications information, simply circle Reader Service numbers 101 and 104. If you have an immediate requirement, call your local Fairchild distributor now.

Fairchild Semiconductor A Division of Fairchild Camera and Instrument Corporation 313 Fairchild Drive, Mountain View. Caliornia 94043
(415) 962-5011 TWX: 910-379-6435

Television. Show Business. To Belden it's all a world of wire. Belden plays a leading role in many complex systems of sight and sound communication. By delving into design, processing, packaging and a host of factors, Belden's team of wire specialists have helped many people wring out hidden costs. Success takes a supplier that is really perceptive - one who makes all kinds of wire for all kinds of systems. Want to join us in wringing out values and costs? Just call us in...Belden Corporation P.O. Box 5070-A, Chicago, Illinois 60680.

Who's who in Electronics

Bridge Kits

contain: 1 Reflection Coefficient Bridge, 2 Standard Loads and 3 Standard Mismatches KRCB-3...

5 MHz to 1 GHz
KRCB-4...
5 MHz to 2.5 GHz

TEXSCAN CORPORATION 2446 N. Shadeland Avenue Indianapolis, Indiana 46219 Telephone (317) $357-8781$ TWX: 810-341-3184

It's no accident that the Amperex Electronic Corp. built its new electro-optical facility next door to its semiconductor plant in Slatersville, R.I. Norman Neumann, newly appointed vice president and general manager of the Semiconductor and Microcircuit division, says he will be working very closely with the Electro-Optical division. Kenneth Spitzer, the new general manager of that division, says they'll work toward using photodiodes to replace the photoconductive layer in a television pickup tube. Spitzer, 38 years old, who helped organize the Elec-tro-Optical division in 1959, says 500,000 to $1,000,000$ discrete silicon diodes would be needed for each tube.

The Electro-Optical division, he says, also plans to diversify its

Neumann

Spitzer

product line from pickup deviees and X-ray image intensifiers into low-light-level amplifiers, infrared detectors, channel multipliers, and various hybrids of the Plumbicon tube.

The division expects to clouble its work force to 300 by 1970. A key aim of these expansion plans is the application of solid state devices to electro-optical technology, and this is where Neumann and the Semiconductor division come in. Neumamn, 42, a former vice president and general manager of the General Instrument Corp.'s Semiconductor and Components division, says one of his reasons for coming to Amperex was the chance to apply his knowledge of solid state teclnology to electro-optics.

Neumann says his division will enter new areas of the semiconductor busincss. He won't say which, but strongly hints at the possibility of metal oxide semiconductor development.

For more than a decade the Phillips Petroleum Corp. has been developing its own process control techniques and building its own

ML. 8785

New Machlett tetrode... for single tube design at high power levels

Vapor-cooled ML-8785 (or ML-8786, water-cooled) is particularly suitable for these applications:

High Power Communications
Class C Telegraphy...to
350 kW
Linear RF Power Amplification
Class AB-Suppressed Carrier Service to 260 kW PEP

Pulse Modulation or Amplification

40 kV	DC Plate Voltage
50 kV	Peak Plate Voltage
500 a	Pulse Cathode Current
$1000 \mu \mathrm{~s}$	Pulse Duration
.01	Duty
Pulse Power to 15 Mw	
Write today for details on these	
versatile "single-tube-design'" tetrodes.	
The Machlett Laboratories, Inc.,	
1063 Hope Street,	
Stamford, Conn. 06907.	

The company that developed the industry's first precision R \& D lab etcher

now gives you a choice.

Until recently, you couldn't buy a precision etcher designed specially for experimental and laboratory etching of small PC boards, ceramic chips, and thick film masks.

Then Western Technology introduced the Dynamil VRP 50. Compact, portable and only $\$ 995$, yet containing all the design features of our well-known Dynamil VRP production series. Rugged all-PVC and Titanium construction - automatic resetting timer - 500-watt Titanium heater-dual spray manifolds - and our exclusive VRP etching mechanism that ensures consistent 1 mil line/1 mil space etching.

Now we've added the Dynamil VRP 70. Same size as the 50 , but fully instrumented for closely controlled etching. Included are a Baumé monitor and hydrometer for constant Baumé readings - solid-state proportional temperature controller and Titanium cooling coil for regulating etchant temperature to $\pm 1 \mathrm{~F}$ - and a control valve for variable nozzle pressure. Price - $\$ 2,995$.

When it comes to lab etchers - or large capacity precision production models - Western Technology's Dynamil VRP Series is the logical place to turn.

> For all the facts, write for a brochure.

WESTERN TECHNOLOGY INC.
z2o west central avinue santa ana, calif, 92707
(714) 5.ati-(1) 81, 121:3) 625-1065
electronic instrumentation. Now, Phillips has formed a subsidiary, Applied Automation Inc., to sell its process control-systems-even to its competitors. The man who helped convince Phillips to take this plunge is Thomas C. Wherry, who formerly directed the parent company's development efforts in process and computer control. Not unexpectedly, he has been named manager of research and development for the subsidiary, which is in Bartlesville, Okla.

Wherry believes that Applied Automation's strength lies in systems development and applications -talent which large and small process control firms find scarce. The company's over-all strategy, he says, is to study a customer's control problems and then specify, build, and install the appropriate system.

Based on his experience with several computer-control projects for Phillips, Wherry anticipates some major changes from current practices in the control field. For example, he suggests there may be more emphasis on hardware and less on softivare.

On the chip. "Present-day computers are too hard to program, so we may be taking a different approach by designing integrated circuits that have the control equations (algorithms) built onto printed-circuit cards. Soon, we may be doing the same thing with large-scale integrated circuits," he explains.

This means that when Applied Automation starts writing systems specifications and builds or buys computers to these spees, many of the functions now done in the main frame may be accomplished in the input-output equipment.

Wherry's not stretching the technology when he talks about such new computer systems. The group he headed at Phillips has already installed one-a direct-digital-control system for Phillips' Sweeny, Texas, refinery. Its output cards, designed and made by Phillips, include digital-to-analog conversion and the control algorithm.

Charlie Straightarrow was dazzled digitally. Don't let it happen to you!

Charlie Straghtarrow is a good engineer He's heen at it for ahout ten vears now. Like a lot of us. Charlie's bought his share of soopes. counters, voltmeters and other assorted test and measurement equirment during that time
And also like a lot of us. Charlie has heen imprewed with the digital instrimentation he's wen on the marke latetr. (So are we espectially since we make the only true RNAS digital voltmeters. Bun hach of our story.) In fact, for awhile this winter (harlie was dazzled digitally. Fiver thing he beoght had to be digital. Recently. Chatrie was looking for a digital scope when, quite by aceident. he stumbled across our little pamphlet Differential or digital, the unvarnist ed truth about precision voltmeters.
Charlie got perspective after that Charlie found but that the most aceurare digital voltmeter on the market toda: cosis upwards of $\$ 4.000$. He also found ieveral Fluke differential voltmeters witt twice the accuraty of the best digital and ten times the resolution for far less moncy. lowest price units are less than $\$ 1.000$. Highest, orly $\$ 1.535$ and that inclules AC capabiltity as well. Or. put another way. Is analog dead?
So as Charlie reasonably decided. the problen of choosing : volmeter somes down to application. A Fluke differential such as or x 895A , hould he your choie in lahoratory applications where the ultimate in frecivion
measurement witnout ambizuily is required. Accuracy of the Model 895A is 25 parts per million. The heat digital is alwass limited by its parts per milline accuracy and plus or minus 1 dgit Resolution of the Model 895: is 1 ppmeremared to 10 ppm for the hest digital.
It's ir sestems applications that the digital voltmeter offers the most pronixe. If your problem involves making a great number of measurements using chatively untrained personnel and if accuracy demands are modess. then the digital voltmeter is ustally the best answer. But if you teed azcur acies better the n zeen 104 ppm . ther the dollar-perfont ance bias sin favor af the difteremial volmeser.

If you would like to stop "sligital dazze ioo. wrice for the same pamphlet Cthatie read. We ll even send one to digital design engineers. Please address Frank Peep for your fiee copy
+P.S. out readoul is dieital, too!)

The Fluke Model 895 A solid state differential rolmeter is
but

one of more than 150 nrecision voltmeters. calibrators, power supplies. and frequency and time inuments. Components for Fluke instrurents are te:ted and checked sut in one of the hest standards abs anywhere the only lab more complete is operated by the NBS). Fluke instruments are guaranted to work in your environment. Or put another way, if the Fluke instrument doe in't work there. you cant live there.

Fluke. Box 7428. Scatule. Washingion 98133. Phone: 1206) 774-2211. rWX: (91(1) 449-2850. In Europe. address Fluke International Corporation. P.O. Box 5053 Ledehoerstriat 27. Tilburg. Holland. Telex: 344-50237 In U.K. address Fluke International Corporation. P. O. Bo* 102. Watford Herts. England.

MAGNETICS

 Forward-looking manufacturers are now experimenting with hard ferrite starters and alternators. And, of course, forwardlooking manufacturers look at Arnold for high-quality magnetic materials, design, technology, components. Magnetic cores. Powder cores. Laminations. Permanent magnets. You ask. We'll supply. The best in magnetic materials.

BY ARNOLD

ARNOLD

SPECIALISTS IN MAGNETIC MATERIALS

The Arnold Engineering Company, Main Office: Marengo, Ill. Branch Offices and Representatives in Principal Cities

In the average family car you'll find hard ferrite permanent magnets in windshield wiper motors - power windows • heater - defroster - rear window defogger - power seats - power antenna - air conditioner, Arnox I magnets collect metal chips in the transmission and differential. An Arnold Alnico magnet for loudspeakers helps the radio sound off.

Write for your free guide to the only complete line of magnetic materials.

1GTS CERMET PROVIDES GREATER STABILITY under all operating conditions, particularly high temperatures. CTS cermet is a patented resistive material available only from CTS.

2EXCELLENT TC. Exclusive CTS cermet provides excellent temperature coefficient at high sheet resistance (ohms per square).

3ATTACHMENT TECHNIQUES. Six methods of attaching active devices are available: chip and wire; flip chip; LID attachment; beam lead; welded or soldered planar construction and hole through. These techniques allow unrestricted use of all semiconductor device types.

CIRCUITS

CAPABILITY

Uncased Chips - Thermal Bond Construction - Plastic

Pack

Uncased Chips - Thermal Bond Construction - Hermetic T08 Pack

Note exceptionally high stability and excellent TC

Chip (die) attach $380^{\circ} \mathrm{C}$ for 15 min.	$0.5 \% \triangle \mathrm{R}$
Short term temp stability $500^{\circ} \mathrm{C}$ for 60 min.	$1.0 \% \triangle \mathrm{R}$
Max hot spot temp (without solder)	$200^{\circ} \mathrm{C}$
Load life $10,000 \mathrm{hrs} .\left(1125^{\circ} \mathrm{C}\right.$	$1 \% \triangle \mathrm{R}$
TC $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}(10 \Omega$ to 1 meg$)$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}(1 \mathrm{meg}$ to 10 meg$)$	$\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Moisture resistance	$0.5 \% \triangle \mathrm{R}$
Full load temp	$125^{\circ} \mathrm{C}$
Solder dip $\left(1250^{\circ} \mathrm{C}\right.$ for 15 sec.$$	$0.5 \% \triangle \mathrm{R}$

Standard Discrete Devices - Hole Through Soldered Construction - Conformal Coat

Founded 1896 CTS

CORPORATION
 Circuits To Specifications

YOU MEAN I SHOULD BUY GENERAL ELECTRIC PANEL METERS AND METER RELAYS

 NOT JUST BECAUSE THEY'RE GENERAL ELECTRICnot just because theyire the fullest line in THE INDUSTRY, BUT BECAUSE THEY'RE BACKED BY A SALES AND SERVICE ARMY READY TO HELP ME

AT A MOMENT'S NOTICE?

YOU'VE GOT THE GENERAL IDEA

General Electric's Sales and Service Army-the largest in the industry-offers you the fullest line of quality panel meters. And that same Sales and Service Army is at your command, ready to bring you the finest, most comprehensive back-up available - whenever you need it. Remember, quality instruments and the in-depth ability to back them up are yours every time you specify and buy panel meters from General Electric. Contact your GE Electronic Components Sales Office or your dependable General Electric panel meter distributor.

592-33

Meetings

Wescon agenda covers a wide range

The 32 technical sessions directly associated with this year's Western Electronic Show and Convention (Wescon) encompass topics ranging from law enforcement to pattern recognition, but those that crop up most often are integrated circuits and communications. Surprisingly, however, large-scale integration isn't included in any of the three sessions devoted to integrated clectronics.

Wescon will be held Aug. 20 to 23 in Los Angeles. Two special symposiums are also planned-the usual one on circuit packaging, Aug. 19 and 20, and an applicationsoriented program on designing with hybrid circuits, Aug. 21 and 22. The latter will include papers on both thin- and thick-film hybrids and a session on microwave microelectronics.
New directions. Microwave technology will also receive attention at two sessions during the technical program. There will be four papers on microwave ic's and four on microwave solid state receivers. In the former, Arthur Solomon of Sylvania Electric Products Inc. will discuss integrated microwave components and subsystems using beam-lead devices, and a paper by Meyer Gilden of Microwave Associates Inc. will treat avalanche and Gumn oscillators. The other ic ses-
sions will cover new directions in linear clevices and include four papers on ic testing as secon by the ic: manufacturer, tester manufacturer, industrial user, and military user.

Three sessions are deroted exclusively to communications, and one is the program's only pancl discussion. The panel will explore the impact of new technology on data communications. A session entitled "New developments in digital communications" features four paperstwo each by representatives of the Hughes Aircraft Co. and of the Autonetics division of the North American Rockwell Corp. A paper by D. M. Motley and G.K. McAuliffe of Autoneties will cover the firm's new adaptive data equalized modem. P.N. Winters of Hughes will explain quadrature signal processing techniques, and is also teamed with J. E. Toffler for a paper on a Ilughes data modem. Another Motley and McAuliffe paper is devoted to equalization for data transmissions.

The final session on communications is entitled "The application of state variable and optimal control techniques to communication systems."

For more information write Robert Ashby, Autonetics division, North American Rockwell Corp.. 3370 E. Miraloma Ave., Anaheim, Calif. 92803

Calendar

Nuclear and Space Radiation Effects,

 IEEE; Missoula, Mont., July 15-18.Design Automation Workshop, IEEE; Washington, July 15-18.
Reliability and Maintainability Conference, American Institute of Aeronautics and Astronautics; Jack Tar Hotel, San Francisco, July 15-18.

International Federation for Medical and Biological Engineering Conference,
IEEE; Palmer House, Chicago, July 22-25.
Symposium on Electromagnetic Compatibility, IEEE; Benjamin Franklin Hotel, Seattle, July 23-25.

Conference on Pattern Recognition, Institute of Electrical Engineers, National Physical Laboratory; Teddington, Middlesex, England, July 29-31.

Research Conference on Instrumentation Science, Instrument Society of America; Quinnipiac College, Hamden, Conn., July 29-Aug. 2.

Conference on Electron Microprobe Analysis and Meeting of the Electron Probe Analysis Society of America, Pick-Congress Hotel, Chicago, July 31-Aug. 2.

mingham	Lincolim
	Scoing
Humssille ${ }^{\text {a }}$	Schne
	NEW JERSEY
Electro. Tech. ImC. ${ }^{\text {a }}$ (E.T Instiumenis \& Contron
arizona	
Phoenix	M
Meterctalk, inc.	Albuquerque ${ }^{\text {a }}$
arkansas	
Nomer	ORK
E	Elmmurst
${ }^{\text {Cumen }}$ Hamilion tiectru Sales	Rado Corp.
Emerville ${ }^{\text {a }}$	$G 10$
	Cilens Palis Electic Supaly Co .
ISOEngneering	
	Latam Eline
Metermaster, Inc.	Luve
	Wew York
Pato Alto	E.TInstic
Kienulit Elec	
${ }^{\text {Redwo }}$ Fodity	Powe instrument Control Su
Sarcramenta	Evans and Dient, Inc.
ento Elec. Surply Co	
diag	
	Coxie Radios
colorado	
Want per Ras	som
CONNECTICUT	OH
${ }_{\text {Cramden }}^{\text {Cramer Electronts, }}$, Inc.	
Pra	Cincinnati
rat Electuc Sup	Generat Elec
creof colu	Cleveliand
Washimetan Cramer; Washungion	Istel
Siberme Rasio e Electionics	
R10a	
mer Florida Electronics	Buckeye Electronic Distr, inc.
sonvil	
,	Toledo
crio.Tech. Inc.	Warren R
Wes	Wrr
GIA	Rem
GIA	
ntra	
General Cliect	PEE
en Electronic Supply	Alle
Giererat Electic Supply Co.	H2
Haperille	Raduo Dismbuting Co .
Fle	
Chicaso	
Allied Rasio	Almo Industral E l
${ }^{\text {J G, }}$, Bo	
	Sim
Schiller Paik	Eugerly Instrume t t abs, inc
Electionics supplies	Sup
Bruce Eliectronics inc.	
indiana	RHoore ISLAMD
srile	Vridence
fort wayme	south carolima
Fort Wayne Electianic Supply ${ }^{\text {co }}$	
	Columbia
Graham Electio	Dixie Radio
less El	
Cewar Rape	co
Ctupe Elec	Chatanoog
lowa ciry	Electric Motor Soles and
KANSAS	Distrituatars
Wuchits	Kn
Radio Sup	Chemreily Electroncs ${ }^{\text {co}}$
uckr	me
	Elee. 3 Mech Comp.
General Eleectric Supply $\mathrm{Co}^{\text {O}}$	
touisiana	为
n Roure	${ }_{\text {Texas }}^{\text {teecta }}$
Latayente	arringto
New Orlesms	Arco bela
Marine S	
New Orlea	
Sterling Electiomics, Inc	Electronic Equr. A Enarg. Co.
ylano	Contact Electrenics
merte	Co.
ly Insir	
assachusetis	Houston
Botion	Bussacker Electoric Equip. ${ }^{\text {a }}$
	UTAM Eectic Supply Co.
Cambride	Sall lake C
nsitumenis a Conito	S. R. Ross,
Ele	Rero
Neroth	Cain Electronics.
instrum	Rich
er E	
inglield	Peooples Ra
AN	
(oit	Aberdeen
reral Electua Supply C_{0}	cs
moale	came
13200	instrument taboralory, 1
en Rad	Kierult' Elect
spatrich Electric	
Athiald	west virginia
S.	$1{ }^{\text {d }}$
mespolis	liesten
Boin Co.	moty Elec
ISSIPP1	
	nic
missouri	an Ele
12 poltm	
Kamas City	General Electric Supply Co.
Electicic Supply C	
Radia Labs, Inc. University City Olive Industrial E	lis Radic Supply C

99\% Fewer Cavities With Cinch-Graphik

Cinch-Graphik's advanced multilayer production techniques eliminate voids in thru-hole plating and intra-layer lamination. This is why Cinch-Graphik circuits have greater electrical reliability (complete interface bond between plated thru-hole and individual circuit layers), better final assembly quality (good component contact) and increased physical integrity (no delamination under wave soldering). For a brighter smile, use Cinch-Graphik multilayer circuitry. Write for our illustrated brochure.

200 South Turnbull Canyon Road, City of Industry (Los Angeles), Calif. 91744 . Phone (213) ED 3-1201. Sales offices in 33 principal cities throughout the United States, Great Britain, Canada, Australia and West Germany.

Meetings

(Continued from p. 23)
International Computer Exhibition, International Federation for Information Processing; Edinburgh, Scotland, Aug. 5-10.

Joint Automatic Control Conference, IEEE; University of Colorado, Boulder, Aug. 6-8.

Guidance, Control and Flight Dynamics
Conference, American Institute of Aeronautics and Astronautics,
Huntington Sheraton Hotel,
Pasadena, Calif., Aug. 12-14.
Intersociety Energy Conversion Engineering Conference, IEEE; University of Colorado, Boulder, Aug. 14-16.

International Electronic Circuit Packaging Symposium, IEEE; Statler Hilton Hotel, Los Angeles, Aug. 19-20.

Symposium for Service to the Nation Through Photo-Optical Instrumentation, Society of Photo-Optical Instrumentation Engineers; Washington, Aug. 19-23.

Western Electronic Show and
Convention, IEEE; Biltmore Hotel and Sports Arena, Los Angeles, Aug. 20-23.
National Electronics Convention, Institute of Electronic and Radio Engineers and the New Zealand Electronics Institute, Auckland, New Zealand, Aug. 20-23.

Conference on Systems Dynamics and Automatic Control in Basic Industries, Institution of Engineers; Science House, Sydney, Australia, Aug. 26-30.

Astrodynamics Specialist Conference, American Institute of Aeronautics and Astronautics; Jackson Lake Lodge, Jackson, Wyo., Sept. 3-5.

Conference on Solid State Devices, Institute of Physics and the Physical Society, Institution of Electrical Engineers, IEEE; Institution of Electronic and Radio Engineers; University of Manchester, England, Sept. 3-6.

Symposium on Automatic Control in Space, International Federation of Automatic Control; Vienna, Austria, Sept. 4.8.

Electrical Insulation Conference, IEEE; Sherator Boston Hotel and War Memorial Auditorium, Boston,
Sept. 8-12.
Antennas \& Propagation Symposium, IEEE; Northeastern University, Boston, Sept. 9-11.

International Broadcasting Convention, IEEE, Institution of Electrical Engineers, (Continued on p. 26)

Just by looking at Sierra's new $50-200 \mathrm{MHz}$ High-Power Signal Generator

On the front panel above, for example, a two -ange wattmeter that keeps you posted on r-f power output. Right next to it, a meter that monitors grid ard cathode current. Above right, see where Sierra has placed the final output tube. You can change it in 30 seconds. In some other high-power signal generators, that tube's out-of-sight and takes hours to change

Sierra's new Model 470A-200 delivers 50 mw to more than 50 W in a continuously tunable $50-200 \mathrm{WHz}$ range, more than enough power to comply with field-strength requirements of currently effective EMI specifications. It inco poraies automatic noload, underload circuitry. It s capable of CW, scuare wave (internal or external), or pulse-modulated outputs. A monitor output jack provides power samples 35 dB down from the main output, corresponding to frequency counter input requirements. All-solid-state (save for the final output tube), it measures only 10^{*} $\times 63 / 4^{\prime \prime} \times 18^{1 / 22^{\prime \prime}}$, weighs but 45 lbs

Model 470A-200's the rewest in Sierra's five-instrument line of r-f signal generators, spanning a spectrum of 50 to 2500 MHz . Now, train your eyes on the product bochure, available from Sierra/Philco-Ford, 3885 Bohannon Drive. Menlo Park, California 94025.

...you can see the advantages!

PHILCO

PHILCO-FORD CORPコRATION Sierra Electronic Operation Menlo Park. California •9402S

How's Your Memory?

If you're not getting what you paid for, give us a call next time you have to order one. Chances are, you won't pay as much and you won't have to make any adjustments to get it to turn on.

DATACRAFT MEMORY PRODUCTS

MODEL	SPEED (FULL CYCLE)	MAX. CAPACITY
DC-20	600 NANOSECONDS	$8 \mathrm{~K} \times 25$
DC-30	1 MICROSECOND	$1 \mathrm{~K} \times 32,2 \mathrm{~K} \times 24,4 \mathrm{~K} \times 18$
DC-31	900 NANOSECONDS	$512 \times 16, \quad 1 \mathrm{~K} \times 8$
DC-32	1.5 MICROSECONDS	$8 \mathrm{~K} \times 26$
DC-33	1 MICROSECOND	$1 \mathrm{~K} \times 8$
DC-51	4 MICROSECONDS	$256 \times 18,512 \times 9$
DC-53	2 MICROSECONDS	$1 \mathrm{~K} \times 10$

OUR MOST IMPORTANT PRODUCT IS YOUR SATISFACTION. CALL OR WRITE US TODAY ABOUT YOUR REQUIREMENT.

Meetings
(Continued from p. 24)
Institution of Electronics \& Radio Engineers, Royal Television Society, and the Society of Motion Picture \& Television Engineers, London, Sept. 9-13.

Congress of the International Council of the Aeronautical Sciences, American Institute of Aeronautics and Astronautics; Munich, West Germany, Sept. 9-13.

Electronic and Aerospace Systems Conference, IEEE; Sheraton Park Hotel, Washington, Sept. 9-11.

Petroleum and Chemical Industry Technical Conference, IEEE; Marriott Motor Hotel, Dallas, Sept. 9-11.

Electrical and Aerospace Systems
Convention, IEEE; Sheraton Park Hotel,
Washington, Sept. 9-11.

Short Courses

Modern theory of communications, Ohio University's Department of Electrical Engineering, Columbus, July 15-26; $\$ 275$ fee.

Semiconductors in protective relaying circuits, Texas A\&M University's Department of Electrical Engineering, College Station, July 22-Aug. 2; $\$ 75$ for members of the Electric Power Institute and $\$ 150$ for others.

Automation in electronic test equipment, New York University's School of Engineering and Science, N.Y., Aug. 26-30; $\$ 245$ fee.

Call for papers

Relay Conference, National Association of Relay Manufacturers and the School of Electrical Engineering; Oklahoma State University, April 22-23, 1969. Aug. 15 is deadline for submission of abstracts to D.D. Lingelbach, Oklahoma State University, Stillwater 74074

Spring Joint Computer Conference, American Federation of Information Processing Society; War Memorial, Boston, May $14-16,1969$. Oct. 7 is deadline for submission of papers and abstracts to T.H. Bonn, Honeywell EDP, 200 Smith St., Waltham, Mass. 02154

Power Industry Computer Application Conference, IEEE; Brown Palace Hotel, Denver, May $18-21,1969$. Nov. 15 is deadline for submission of abstracts to W.D. Trudgen, General Electric Co., 2255 W. Desert Cove Rd., P.O. Box 2918, Phoenix, Ariz. 85002

New, more versatile scribing . . . identical operation

Changes have been made in the new Model "C." Tempress Automatic Scribing Machine, but only where they matter
to increase operating flexibility and to incorporate improved components where they will contribute to the efficiency, dependability, or lorgevity of the machine. Follow the same set-up procedures. press " $\exists \mathrm{ctu}$. scribing any rectangular or triangular pattern from .001" to .399", with incremental nesolution to $.001^{\prime \prime}$. HCw versatile? Choose a model to scribe either - $1^{1} 2^{\prime \prime}$ or 2 " wafers, decimal or metric indexing, extended range, 50 or 60 cycle operation, without aifecting
price. The only optıon for which you pay extra is a binocular optical system. Third generation of the machine that brought low-cost, automatic scribing to the semiconductor industiy; the new Model "C" meets the Tempress Standard of Excellence, your assurance of precision when you purchase any nember of the growing family of Tempress min ature assembly tools and production machines.

TEMPRESS

Tiampress Rersearch Co., 566 San Xavier Ave., Sunnyvale. Calif. 94086 Eircle 27 on reader service card

Design engineers' favorite

Series A. Fully sealed high reliability connector. Machined pins and sockets, reliable gold over nickel plate. Precision crimped. Available in 50 and 100 contact versions with. $100^{\prime \prime}$ center spacing.

Series DD. Shell takes two Series D inserts, providing up to 156 contact positions. Cavity identification front and rear. Quick center fastener. Same contacts and operating characteristics as Series D con. nectors. Optional accessories include straight or 90° shields and cable clamps.

Series WW. Shells incorporate two Series W inserts back-to-back, provide up to 90 contact positions. Center fastener. Three polarizing posts prevent mismating. Same insert materials and contacts as used in Series W connectors. Accepts coaxial contacts.
 ious module styles accept several types and sizes of pins and sockets. Snap one, two, or three module inserts into the die-cast aluminum housing. Snap in dependable crimp type contacts. Highspeed assembly tooling assures lowest installed costs. Mix power contacts and coaxial circuits. For 32 thru 8 AWG wire sizes.

Series G.
Versatile modular connector. Var. h-

ARINC type. Fully environmental rack and panel connector with crimp, snap-in, frontextractible contacts. Intermateable with present ARINC connectors. Dual-spring socket contact assures consistently reliable performance under vibration and overload conditions. Silicone sealed front and rear. Hard dielectric clip and contact retainer. Contacts crimped, inserted and extracted with MS tooling. Automated tooling available. For any plane that flies.

Which IC Test System does all these things?

DIAGNOSTIC COMPUTER

PROGRAMS automatically check out system operation

DATALOG A FORCING FUNCTION such as the input threshold level of a flip-flop needed to produce a specified output.
\qquad

AUTOMATIC SELF.CHECKING assures accurate data transfer between operator, teletypewriter, computer and test instrument.

VERY COMPLEX TEST SEQUENCES can be programmed, yet preparation of simple tests can be learned in two hours.

TYPED SUMMARY SHEETS.
Whenever desired. No interruption in testing. Give total units tested per test station, test yields and bin yields.

DIRECT ENGLISH data logging type-out, showing job name, serial number, test number, decimal point and units.

ABSOLUTE SOURCE CONTROL. Sources can be turned ON or OFF and changed in value in any sequence with variable delays from $100 \mu \mathrm{sec}$. to as long as you please.

DATALOG at any test station-without slowing down classification tests at any other station.

MULTIPLEXING. Several jobs simultaneously. Any assigned, at any time, to any test station.

FAST TESTING. 1.5 msec per test. If crosspoint is changed, 5 msec . 10 msec on the lowest current scales.

Editorial comment

Getting your money's worth

A dollar's value for each dollar spent is the goal of the conscientious designer. In the case of the designer for the military and for most industrial markets, that value is measured in functional performance in preference to esteem or trade-in value. The latter can be important for the consumer market.

More than 20 years ago the General Electric Co. developed the technique of value analysis"a specific set of techniques, a body of knowledge, and a group of learned skills"-aimed toward eliminating costs which do not contribute to performance, quality, life, or appearance. The military helped value analysis gain acceptance, particularly over the past 10 years, by writing its requirements into procurement contracts.

Value analysis, by common definition, is applied after the fact; that is, one takes a look at an existing product to sec if parts can be eliminated or combined, or whether it can be modified to use standard parts, or whether it can be changed to take advantage of automation. It's a rare product that cannot be improved through redesign; yet fewer redesigns might be necessary if value analysis were applied earlier in the original design eycle. When this is done, the technique is called value engineering. Some designers put down value engincering. They say "this is what should have been done in the first place."

Donald Herzog, formerly an engineer and product plamer in the aerospace and electronics industry and now a consultant, emphasizes that the objective of value enginecring is to look at the function, then design and manufacture the product to perform its function at the lowest possible cost.

The Defense Department includes these elements as part of value engineering:

- Select the product (not all are worth applying value engineering)
- Define the function
- Develop alternate ways of implementing the function
- Analyze the costs of the alternatives
- Verify that the alternative chosen will not degrade performance

It is the Defense Department's intention to share with its contractors any savings that accrue from using value engineering. Sometimes the incentives are no more than a carrot on a stick and occasionally the contractor makes even less than he would have without value enginecring. To forestall this unwanted result, instructions have been written to augment basic 1OOD procurement documents.

Designers who have been indoctrinated in the concepts of valuc engineering may be tempted to apply it too soon. Herzog warns that to maximize savings, value engineering ought to be applied as carly as possible in the life cycle of a product yet premature use could mean effort wasted on a product that does not meet even preliminary design goals. Furthermore, it is often easier to cvaluate a product for value enginecring if it exists in plysical form. The upshot is that value engincering is usually best applied somewhere between preliminary design and procluction.

The benefits of value engincering can be handsome. For the Covernment or other customer it can mean lower cost. For the contractor it can mean higher profits, and his successful application of value engineering weighs in his favor in getting follow-on or new business.

The Etrandand of Exccellence

Diamond Bracelet by J. E. Caldwell Co., Philadetphia--\$17.000

Silverline Synchros by CLIFTON

The Top of the Line-that's Silverline!
There simply are no production line synchros as good available
$\square 5^{\prime}$ accuracy; 3^{\prime} units available. Guaranteed, in quantity, through design rather than on a "pick and choose" or yield basis
\square Outstanding repeatability. Once the error curve has been obtained it holds that original pattern.
\square Temperature stability and extend-

CLIFTON
DIVISION OF LITTON INDUSTRIES
ed range. EZ shifts are limited to 3^{\prime} over a standard temperature range of $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (instead of $125^{\circ} \mathrm{C}$). Units available for ambients up to $232^{\circ} \mathrm{C}$.
\square Lower Null Voltages. On Silverline 26 volt CX's, CT's and CD's max total nulls are 20 mv .
You expect Clifton to be a little bit better. When you specify Silverline, you're getting the best.

Call your Local Clifton Sales Office, or telephone 215 622-1000 for prompt service.

Electronics Newsletter

July 8, 1968

Amelco to change marketing stance

Honeywell readies industrial computer

Honeywell is developing a new computer for the industrial market, but officials at the company's Computer Control division in Framingham, Mass., won't confirm this. Dubbed the X-9 in its present experimental version, the computer will be called the DDP-316 when it's released for production. The 316 will be structurally similar to Honeywell's 516, but will have a longer cycle time: 5 microseconds. A prospective user of the 316, an applications engineer, says he has been promised the computer "next month" since February, but it probably won't be on the market until next year.

The target price for the 316 , with 4,000 words of core memory, is $\$ 10,000$. Similar computers sell for less. However, the applications engi-neer-who uses and likes the 516 but doesn't need its speed-expects to offset any higher price by being able to use his $\$ 70,000516$ software package on the 316 without modification.

Lower cost PDP-8 By eliminating "frills" from its economy computer, the PDP-8I, Digital Equipment has designed an even lower-priced model, the PDP-8L. At $\$ 8,500$, the PDP-8L will be the least expensive 12-bit general-purpose computer available. The L model is slightly slower, offers less inputoutput flexibility, and has fewer computing functions in the hard-wired form than the I model, which sells for about $\$ 12,800$. Deliveries of the L model are due to begin in October.

[^0]meter wafer and can operate from d-c to 10 megahertz. Competitive MOS designs, say TI officials, can operate over part of that range, but not over all of it.

The TI arrays are the same as those used in the general-purpose airborne computer it's developing for the Air Force [Electronics, June 24, p. 47]. An even faster array-operating up to 15 Mhz -is being developed at TI. It includes three kinds of TTL circuits-clocks, registers, and output buffering devices.

> FCC to regulate phone companies' CATV leasebacks

Fairchild starts selling silicon

CATV operators see a victory in the FCC's decision last month requiring phone companies to obtain commission approval before getting involved in cable-tv leasebacks. In a leaseback, the phone company sets up the system and leases it to the operator. Operators have told of facing protracted delays or unsatisfactory offers in talks with phone firms, and the FCC in effect bought these complaints by stating that phone companies have been able to "preclude or substantially delay" CATV.

The operators feel that bringing the telephone CATV efforts under FCC control-which also implies price regulation-will mean they'll be able to appeal to the agency if a phone company proves too difficult to deal with.

Fairchild Semiconductor has started to supply silicon ingots and wafers -thus nearly doubling in one stroke the silicon available to semiconductor makers. A doubling of silicon inventories during a switchover to 2 -inch wafers, plus the company's virtual departure from the power transistor business (which accounted for most of its epitaxial wafer production), has left its huge wafer-making, slicing, and polishing facility perking along at a mere third of capacity for the past six months. But William H. Welling, headquarters marketing manager, says Fairchild isn't merely selling its excess capacity; it's in the business for good.

8,800-watt laser Raytheon continues to lead the field with high-powered carbon-dioxide lasers. Scientists at its Research division in Waltham, Mass., have generated 8,800 watts, continuous wave, with a 40 -foot design. The laser, made up of 15 plasma tubes, has an effective lasing length of 600 feet. Efficiency of the system is 15%.

Award due for giant pulse-power machine

A $\$ 2.5$ million contract to develop the world's most powerful pulsedpower generator for the Defense Atomic Support Agency (DSA) will soon be announced by Physics International Inc. of San Leandro, Calif.

The contract follows a one-year feasibility study by the company of DASA's Aurora simulation facility, which will be built in Washington. Physics International will supply equipment to generate 3 to 4 megajoules in less than 1 microsecond. The pulses must be reproducible 40,000 to 50,000 times, and the pulsed power will be the equivalent of a billion watts.

The project's manager, Frank Ford, explains that the earlier designs were used to simulate temperatures and pressures generated by nuclear explosions, producing power an order of magnitude greater than the output of any previous machine. The contract is nonclassified; many of the earlier pulsepower machines were made for classified projects.

TTL Trends

from Texas Instruments

Linking soldier to satellite . . . that's the job for these seventeen low-power TTL integrated circuits from Texas Instruments. They help form the "intelligence center" for an Alert Receiver Terminal - part of an advanced new communica.
tions system being developed by
Collins Radio Company for the
Tri-Service TacSatCom (Tactical
Satellite Communications) program. Prototype receiver terminals are being built for the U. S. Army under a Tri-Service contract administered by the U. S.
Air Force's Electronic Systems Division. Collins engineers use 54L circuits in achieving a portable and
lightweight receiver capable of
unscrambling messages from a satellite 22,000 miles away.
Weighing only 12.8 pounds (with battery) and just $8^{\prime \prime}$ by $11^{\prime \prime}$ by $2^{\prime \prime}$ in size, the Alert Terminal is designed for battlefield use. It is made to go where the soldier goes - detecting, decoding and verifying satellite-relayed digital messages - to get the "word" out . . . fast!

Low-power TTL unscrambles satellite messages

Objective: Demonstrate that a man-carried satellite receiver can effectively get the "word" out-to widely dispersed soldiers-fast!

Approach: Book-size digital receivers are being developed to detect and display coded messages dispatched from distant ground stations and relayed by satellite. Prototype models are now being built by Collins for the Tri-Service system. Each receiver uses 17 Series 54L low-power TTL integrated circuits from Texas Instruments. Included are: Six SN54L71 R-S master-slave flip-flops, four SN54L00 quadruple 2-input NAND gates, six SN54L20 dual 4-input NAND gates, and one SN54L30 8-input

Keeping the equipment small and portable, while still meeting the rigid performance and reliability levels specified, presented extremely tough design problems. A high performance level is essential in decoding and displaying messages weakened by 44,000 miles of space travel. Series 54 L circuits provide positive triggering with low-signal currents under severe conditions of humidity, dust, shock and vibration - at temperatures as low as minus $40^{\circ} \mathrm{C}$.

Another requirement is to make the receiver-plus batteriessmall enough to be carried by one man. The low power drain of Series 54 L , only one-tenth that of standard TTL, helps keep down hattery requirements while small size and low package count helps hold overall receiver size to only $8^{\prime \prime} \mathrm{x}$ $11^{\prime \prime} \times 2^{\prime \prime}$. With battery, the equipment weighs only 12.8 pounds.
While the Alert Terminal can be carried and set up by one man, it can also be incorporated into any of three larger and more versatile systems Collins is building for TacSatCom. These units can transmit and receive voice and teletype as well as coded messages. All systems operate in the UHF band of 225 to 400 MHz and are engineered to meet the same critical performance and reliability standards.
Based on acceptance by the Department of Defense, TacSatCom -including the Alert Receiver Terminal and other sophisticated system components - can be operational by the early '70's. The complete system will make possible voice and teletype communication to hundreds of mobile receivers without the formal procedures, interference and waiting periods confronting present satellite communication users.

The task of helping link soldier to satellite is a tough, new job for integrated circuits. It's the sort of job that requires outstanding reliability...along with an optimum balance of signal power and ow temperature operating capability. In short, it's the kind of job made to order for Series $54 \mathrm{~L} / 74 \mathrm{~L}$ TTL integrated circuits from Texas Instruments.

New plastic package, two new complex-function circuits, expand low-power TTL line

TI now offers its Series 54L/74L low-power TTL integrated circuits in dual-in-line plastic packages... with bonus results. The line's low drive requirements and low power dissipation are now coupled with the low first cost and reduced handling costs of the plastic package. This is in addition to the popular long-lead hermetic flat pack (available in either the Mech-Pak ${ }^{191}$ or Barnes carrier) as shown above.

TI's low-power series is also more versatile than ever, thanks to two new complex-function circuits. These include a dual J-K masterslave flip-flop (SN54L78/74L/78) and an eight-bit shift register (SN54L91/74L 91). Together they now bring the extra reliability and lower cost-per-function of complex-function ICs to military and industrial low-power applications.

For data sheets on the entire family of low-power TTL, write on your company letterhead to Texas Instruments Incorporated, P. O. Box 5621, MS 980, Dallas, Texas 75222.

Dual 50-bit static shift register highlights eight new MOS ICs

This is a photomicrograph of the longest static shift register available in a production device today. It's TI's new dual 50-bit MOS IC... one of eight new computer-designed circuits. Companions include three other dual SRs (32,25 and 16 bit), a six-channel analog switch, an audio amplifier, a dual full adder, and a dual 3-input NOR gate.

For your moderate speed digital applications, TI's new MOS integrated circuits can offersignificant savings. For example, cost-per-bit for these MOS static shift registers is only about one-fourth that of bipolar registers.

All four new MOS static regis-
ters operate over the full d-c to 1 MHz spectrum (3 MHz under moderate loading). Unlike dynamic registers with a minimum clock rate, these static MOS circuits can store information for relatively long periods. They also possess high noise immunity, because of high input
impedance, typically 10 megohms.
The dual 50 -bit static register features very low power drain of only 1.6 mW per bit. Furthermore, longer static MOS registers and specially tailored units can be readily provided...thanks to TI's com-puter-aided design which makes custom derivitives possible in economical and timely quantities.

Six-channel analog switch
To permit switching of lower-level signals without excessive attenuation, the TMS 1A 6009 AA features low "on" resistance (150 ohms).

It is recommended for analog and time-division multiplexing, and chopping circuits.

Audio amplifier

Small size and modest cost make the TMS 7A 7000 LA ideal for many industrial and consumer applications. It is an $R-C$ coupled audio amplifier with a gain of 45 dB over the frequency range of 10 Hz to 50 kHz . Output voltage swing (8 volts peak-to-peak) is obtainable with a single -20 to -30 volt power supply.

Dual full adder and dual NOR gate

High input impedance, buffered outputs and high noise immunity are characteristics of the TMS 1A 1700 AA dual full adder and TMS LA 1702 dual 3 -input NOR gate.

For data sheets on any or all these new MOS ICs, write on your letterhead to Texas Instruments Incorporated, P. O. Box 5621, MS 980, Dallas, Texas 75222.

TEXAS INSTRUMENTS

makes a few colorful claims

for its blower line.

We've painted these Torrirgton blowers to illustrate some points. Torringion makes abolt as many different types of blowers as there are colers in the spectrum. Backward and forward curved, single or dual centrifugal units, th be axials, vane axials, single or multi-staged turbine-driven units, Crossflo's and you-name-it-we'll-make-it units.
We'll not only produce any type you require (nany standard in our line), bu't we'll maxe them in an almost endless range of sizes to meet your application rieeds. Between Torrington's vast productive capabilities at home and abroad and the tectrological know-how of its engineers, no proble n's too big or too small.
Like a more detai ed account of what modern blowers can do for you? Send for our 24-page reprint from a major industrial publication.
Profusely illustrated with charts, drawings and photographs, it shows and describes every type of blower made.
Write today, to The Torrington Manufacturing Company,
Torrington, Connecticui.

Allen-Bradley hot-molded

 trimmers

 trimmers}

best in "set" ability... best in "hold" ability

This family of Allen-Bradley trimmers features a solid resistance track made by A-Bs exclusive hotmolding technique. This solid resistance element assures smooth adjustment at all times. It approaches infinite resolution-there are never any of the abrupt changes in resistance which introduce transients as is characteristic of wirewound controls.

When Allen-Bradley hot-molded trimmers are once set, ther will remain stable during severe
mechanical shock and vibration. In addition, A-B trimmers have low distributed capacitance and are essentially noninductive, permitting their use at high frequencies where wirewound units are totally useless.

For complete specifications on these high performance trimmers, please write: Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee, Wis. 53204. In Canada: Allen-Bradley Canada Ltd. Export Office: 630 Third Ave., N.Y., N.Y., U.S.A. 10017.

Type \boldsymbol{F} trimmers are single turn controls built to withstand severe environmental condition. They are $1 / 2^{\prime \prime}$ in diameter and are rated $1 / 4$ watt at $70^{\circ} \mathrm{C}$. Can be used from $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$. Enclosure is nonmagnetic, corrosionresistant, and watertight. Available in resistance values from 100 ohms to 5.0 megohms. Various tapers can be furnished. Send for Technical Bulletin B5201.

Type Y trimmers are economical single-turn units designed for use where environmental conditions are not particularly severe. The low profile construction allows them to fit easily within the commonly used $3 / 8^{\prime \prime}$ stacking. Options for the Type Y include thumb wheel and mount for horizontal installation. Type Y is also made with snap-in mount for panel mounting, as shown in drawing. Rated $1 / 4$ watt at $70^{\circ} \mathrm{C}$. Resistances from 100 ohms to 5.0 meg. ohms. Please write for technical literature.

Pushbuttons? Why not go where you have the whole spectrum to choose from!

With panel design continually increasing in sophistication, pushbutton specifications are becoming more and more exacting. Whatever the case - whether your needs call for the simple or the complex-your best bet is to call MICRO SWITCH. The reason is plain. No one can match our pushbutton line in breadth of selection.

What's more, your MICRO SWITCH Distributor can offer you literally thousands of pushbutton varieties right off the shelf. For example, he stocks hundreds of interchangeable operator and switch modules that combine into thousands of different assemblies-allowing
you to economically customize your panel with unlimited design freedom.

Special problems? MICRO SWITCH also puts the broadest field engineering service at your beck and call. These pushbutton specialists, backed up by the largest manufacturing and design facilities in the industry, can come up with the right solutions fast.

Just a sampling from our spectrum of pushbuttons is shown at left and described below. For more details, call a Branch Office or an Authorized Distributor (Yellow Pages, "Switches, Electric"). Ask for Catalog 51.

1. Unlighted Pushbutton Switches. Bushing or bracket mounted. Available in 1-, 2-, 3- or 4-pole double-throw circuitry, momentary or alternate action. Black, red and green buttons in various diameters. Sealed designs available. Wide range of electrical power-handling capabilities.

2. Series 2C200 Modular Lighted Push-

 button Switches. Rectangular display lighted by projected or transmitted 4 lamp color. Can be relamped without tools. 1, 2, 3 and 4 section split-display screens. Maintained, momentary or magnetic hold-in operation. Switch modules with silver or gold contacts, multiple circuits and broad choice of contact arrangements and electrical capacities. Also reed switch module.
3. PT Heavy-duty and CMC Pilot-duty

 Industrial Manual Controls. Oiltight pushbuttons, selectors and indicators with the modern square look. Lighted or unlighted. Large easy-reading legends. Multi-circuit control with up to 32 circuits per unit.4. KB Switch/Display Matrix. New keyboard building block concept consisting of pushbuttons and pushbars (lighted and unlighted), switches, indicators, mechanical interlock units, and modular hardware for mounting and wiring. En-
tire KB matrix can be bench assembled. Switches can be pre-wired and plugged in like a radio tube. Milliamprated "encoding" switch produces a coded output for data entry, exclusive of separate circuit packages. "Power" switch with 5 amp. 115 vac rating has lighted display option.
5. 50PB Bushing Mounted Pushbutton Switches. One-lamp indication. Choice of button sizes, shape and colors. Longand short-stroke and turn-to-hold momentary action; one- and two-level alter-nate-action. 1-4 pole double-throw and two-circuit double-break contact arrangement.
6. DM Pushbutton Switches: Attractive, rugged snap-in panel mount. SPDT or

DPDT circuitry. Three snap-on button styles, $1 / 2^{\prime \prime}$ to $1^{\prime \prime}$ diameter, red or black. Also ${ }^{11} 3_{2}{ }^{\prime \prime}$ diameter integral momentaryaction and push-pull alternate action buttons. Rating: $10 \mathrm{amps}, 125$ or 250 vac; $1 / 3 \mathrm{hp}, 125$ or 250 vac.
7.302PB Niniature Pushbutton Switches. One- or two-section two-lamp display. Momentary and alternate-action operation of two SPDT switches. Spacing barriers and panel seals available.
8. Series 2 N Modular Lighted Pushbutton Switches. Relampable without tools, these switches feature spring-lock mounting. Molded color housings, in gray, white or black, can be supplied with terminals for two or four lamps. Modularity provides a number of circuit, operation and display possibilities paralleling the 2 C 200 options. Spacing barriers and hold-in coil modules are available.
9. Series 2M Round Display Modular Lighted Pushbutton Switches. Colored guard rings encircle display screen, prevent accidental operation, code control function. Broad choice of circuitry through switch modules used with Series 2 N. Many choices of transmitted and projected display colors. Panel mount in 1/16" to "㣙" thick panels.

MICRO SWITCH

FREEPORT, ILLINOIS 61032

A DIVISION OF HONEYWELL

TRIMMERS

 @ $70^{\circ} \mathrm{C}$. $\pm 10 \%$ tolerance. $\pm 20 \%$ available for low-cost needs. Chroice of two PC pin arrangements:
2. SERIES 400. Wirewound RT-12 C2L or 'RT-12 C2P' size, Also with staggered RT-11 pins for direct replace ment while saving space. 1 watt (Q) $70^{\circ} \mathrm{C} . \pm 5 \%$ tolerance. 100Ω to 100 K .
3. SERIES 650. Infinite resolution in RJ=11 size. $\pm 5 \%$. tolerance. ± 250 ppm $/{ }^{\circ} \mathrm{C}$ over range of 100Ω to 20 K . 1 watt @ $70^{\circ} \mathrm{C}$.
4 SERIES 600 . Wirewound RT- 11 has MIL quality at industrial prices. Mois-ture-sealed construction. 1 watt @ $70^{\circ} \mathrm{C} . \pm 5 \%$ tolerance. 10Ω to 700 K .

1. SERIES 255 , RI-22 stylos with infinite resolution. $\pm 5,10,20 \%$ tolerances to meet all your needs. $3 / 4$ watt @ $70^{\circ} \mathrm{C}$. 00Ω to 1 meg. 2. SERIES 205. Four RT-22 styles for MIL or high-grade industrial needs. 1 watt @ $70^{\circ} \mathrm{C} . \pm 5 \%$ toler- $\hat{\mathrm{H}} \mathrm{B}$ ance. 10Ω to 50 K .

All stylés available from IRC Qualiffed Industrial Distributors.

Panel mcunting versions avallable for all styles. IRC also offers hundreds of terminations, mounting variations and adjustments.

only IRC offers all popular styles

NOW...

NEW 3/s" MIL TRIMMERS

Infinite resolution or wirewound types

1. $5 / 16^{\prime \prime}$ CUBETRIM Miniature units Frovide significant space $\leq a v i n g s$ for all PC board applications. Infinite resolution Series 350: 0.3 watt @ $70^{\circ} \mathrm{C} . \pm 10$ and 20% tolerances. 50Ω thru 500K. Wirewound Series 300: 0.6 watt @ $60^{\circ} \mathrm{C}$. $\pm 5 \%$ tolerance. 50:2 to 20K. Both series available with top or side adjust.

The simplified desigr of these new IRC $3 / 8^{\prime \prime}$ MIL units provides precsion, stability, and eccnomy in a small, board-hugging package.

A proven clutch assembly assures positive drive of the wiper at all times. These trimme:s have molded-in pins, and are sealed to resist moisture. Dielectric strength is a full $1,000 \mathrm{~V}$ A.C.

METAL GLAZE TYPE 750 offers essentially infinite resolution over the full resistance range from 100Ω to 1 megohm. The glasshard, thick-film resistance element defies catastrophic failure. MIL-R-2209i performance. Rugged epoxy case.

WIREWOUND SERIES 700 in RT-24 size exceeds all MIL-R-27208 requirements. Silver brazed terminations guarartee 0.25% minimum resistance setting and freedom from catastrophic termination failures Precious metal wiper. Heat-resistant diallyl fhthalate case.

POWER:
TOLERANCES: RESISTANCE:
TEM?. COEF.:
TEM ${ }^{2}$. RANGE:

CAPSULE SPEZIFICATIONS

NETAL GLAZE TYPE 750
1.2 watt @ $70^{\circ} \mathrm{C}$
$\pm 10,20 \%$
100.2 to 1 meg.
$\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max .
$+25^{\circ} \mathrm{C}$ to $\left.+125^{\circ} \mathrm{C}\right)$
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

WIREWOUND

 TYPE 7001 watt @ $70^{\circ} \mathrm{C}$
$\pm 5 \%$
10Ω to 50 K
$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
$-65^{\circ} \mathrm{C}$ to $+1.5^{\circ} \mathrm{C}$

Both types are immedictely available and at prices that are Icwer than you would expect. Write for data on these new $3 / 8$ " trimmers. Or ask for sur new potentiometer catalog.

DIVISION OF TRW INC.

There are probably a thousand different ways to set up a reliable patching system...... which way is the best?

The answer lies between you and Trompeter, the company that specializes in patching and switching. Trompeter has a new colorful 28 page catalog that covers everything from panels, standard and miniature, to hundreds of coaxial, twinaxial, and triaxial patching components. What's more, it has a unique technical discussion on "Noise Pickup in Cable Systems" that will help you design the system best for you. If then, you still have a problem, ask the people at Trompeter, they've been involved with the design of just about every patching system made.

Is your carbon comp resistor supplier ho-hum about your business?

You'll like the way we document our interest. We're one of the few manufacturers who will furnish you with written data to prove how our resistors meet the requirements of MIL-R-39008. We've also insured that our documentation is fallibility-free, by developing the world's only on-line computerized resistor quality control system. Is the reliability of your present military, aerospace, or industrial resistors something you have to take on faith?
Get in touch with us. We can prove what we say, and we also have bright flexible ideas that will keep pace with your requirements. So....

Call the passive innovators at Airco Speer.

42
elis

Specify TI 709 op amps in low-cost plastic packages now...from Kierulff

It's easy to see why our big stocks of TI 709 IC operational amplifiers are your best choice to fill the booming demand. Why? Because only TI gives you complete package versatility, economy and performance. TI features a dual in-line plastic package priced lower than ever before... along with standard flatpack and TO-5 type configurations. This opens up hundreds of new applications in both industrial and military equipment markets.

Want performance? Our TI 709s provide high gain, high common mode rejection, high output voltage swing, and low offset. You'll find these devices perfect for instrumentation, process control, computation, and communications.

Want variety? Then consider our TI 702s (high-gain, wide band), 710s (differential inputs and low output impedance) or 711 s . Op amps, you know, are the closest thing yet to truly universal circuits.

Check the convenient Linear IC Interchangeability Chart below. You'll find TI circuits are spec-forspec and pin-for-pin replacements of competitive types. And...we have exclusive low-cost package advantages in many areas!

Make it easy on yourself. Include TI 709 op amps on the requisition you use to order TTL ICs.

Starting with TI's leadership line of TTL integrated circuits, we offer prompt shipment from complete stocks to fill all your IC needs. So call today... or circle Reader Service Number 290 and we'll send you a data sheet for the device type you're interested in. This will help you fill the empty spaces in your procurement schedules-fast.

LINEAR IC INTERCHANGEABILITY CHART					
OPERATIONAL AMPLIFIERS					
Texas Instruments	Package	Temp. Range	FSC ${ }^{+}$	Motorola ${ }^{\text {+ }}$	Raytheon ${ }^{\text { }}$
SN5 2 702AL SN5 2 702AF SN5 2 702AN SN52 702L SN5 2 702F SN52 702N SN52 702BL SN52 702BF SN52 702BN SN72 702L SN72 702F SN72 702N SN52 709 AL SN52 709AF SN52 709AN SN52 709L SN52 709F SN52 709N SN52 709BL SN52 709BF SN52 709BN SN72 709L SN72 709F SN72 709N	T0-99 Flat Pack Plastic Dip ${ }^{*}$ T0-99 Flat Pack Plastic Dip T0.99 Flat Pack Plastic Dip T0-99 Flat Pack Plastic Dip		U5B770231X U3H770231X U3H7702313 U5B771239X U3H77 1239X U5B7709311 U3T7709311 U5B770931X U3T770931X U3T7709313 U5B770939X U3T770939X U6E7709393	MC1712G MC1712F MC1712CG MC1712CF MC1712CP MC 1709G MC1709F MC1709CG MC 1709CF MC1709CP	RM 702 RC 709 RM 709 RC 709
COMPARATORS					
SN5 2710 L SN5 2710 F SN52 710 N SN52 710BL SN52 7108 F SN5 $2710 B N$ SN72 710 L SN72 710 F SN72 710 N	T0-99 Flat Pack Plastic Dip T0-99 Flat Pack Plastic Dip T0-99 Flat Pack Plastic Dip		U5B771031X U3H771031X U3H77 10313 U58771039X U3H77 1039X U6E7710393	MC1710G MC1710F MC1710CG MC1710CF MC1710CP	RM 710 RC 710
DUAL COMPARATORS					
$\begin{aligned} & \text { SN52 711L } \\ & \text { SN52 } 711 \mathrm{~F} \\ & \text { SN52 } 711 \mathrm{~N} \\ & \text { SN72 } 711 \mathrm{~L} \\ & \text { SN72 } 711 \mathrm{~F} \\ & \text { SN72 } 711 \mathrm{~N} \end{aligned}$	T0-100 Flat Pack Plastic Dip T0-100 Flat Pack Plastic Dip		U5F771131X U3T771131X U5F771139x U3T771139x	MC1711G	RM 711

albuquerque

6405 Acoma Road, S.E.
Albuquerque. New Mexico 87108
PHOENIX
2633 E. Buckeye Road
Phoenix, Arizona 85034

PALO ALTO

3969 East Bayshore Road
Palo Alto, California 94303
 highly vulne rable to excessive voltages.
Transients from lightning strikes, static charges, internal switching, short circuits, etc., are a constant danger to the reliability and life expectancy of your equipment.

The least you can do is use Siemens Gas-filled Surge Voltage Protectors. Least in terms of size, weight and price. But most in performance. Siemens SVP's are the smallest and lightest you can buy. Yet they deliver more protection by providing a higher current carrying capability (up to 5,000 Amps.) than any other proven arc-suppressor in their price range. And they have a virtually instantaneous reaction speed -extending to the nanosecond range.

So why run the risk of damage to unguarded circuits? When Siemens gas-filled protectors cost less than a dollar in quantity and provide long-life protection.

Siemens Surge Voltage Protectors come in many standard models, with a nominal DC striking voltage standard models, with a nem can custom-design SVP's
ranging from 90 V to 1000 V . Or we cour special applications.
for your

Delivery? Immediate, from our stock in N.Y. Better get more details now. Write:
SIEMENS AMERICA INCORPORATED
350 Fifth Avenue, New York, N.Y. 10001

It's the fastest. It's the most accurate.

The MD51 is a high-level 64 channel multiplexer, a sample and hold amplifier and a 15 -bit A to D converter, all in a single chassis. It has a total sample and conversion time of 10 mic rosec-
onds max. and an accuracy of 0.01%. And it sells for under $\$ 10,000$. If that doesn't say it all, write for the rest.

Electronics Review

Advanced technology

GaAs on sapphire

Even though silicon-on-sapphire devices are still too new to be widely used, the Autonctics team that pioneered SOS is developing microwave devices using gallium arsenide as the semiconductor material on such insulating substrates as sapphire, spinel (magnesium aluminate), and beryllium oxide.
The group, headed by Ralph Ruth, has produced Schottky-barrier mixer diodes and tumnel diodes using GaAs on sapphire. Ruth is group scientist in the physieal sciences department of Autoneties' researeh and engincering division. He's also one of the prime movers. along with Harold Manasevit, a member of the technical staff, behind a new chemical vapor-deposition process that's fundamental to the diode work. This process is designed for large-area epitaxial growth of single-crystal semicon-
ductor materials-such as GaAson both semiconductor substrates and the single-crystal spinel and beryllium-oxide insulating substrates.

So far, no semiconductor devices have been produced on spinel or beryllium oxide substrates, but the Schottky-barrier mixer diode is expected to operate at 10 gigahertz and have a reverse breakdown voltage of about 6 volts at 10 microamperes. Marcian Roth, who is heading the mixer-diode development, says the device has been characterized only for its dec features so far, although microwave evaluation is under way. He thinks the microwave measurements should confirm the d-c characteristics.
"We'll have a Schottky-larrier mixer diode with an operating frequency of 10 Ghz ," Roth maintains, "and we don't know of anyone clse who has done this with GaAs on sapphire. The fact that we've made good devices with these materials is significant in it-
self." Roth believes the most significant facet of the developnent is that the mixer diode arrays are monolithic and compatible with monolithic microwave IC's.

In a hybrid approach, Roch explains, a microstrip would le put clown first, then the active devices would be put down on it. Fabrication of the monolithic mixer diode array is compatible with evaporation and photo-lithographic teshniques used in the planar process. Basically, a GaAs island is formed by etching to the substrate. A metal semiconductor Schottky barrier is formed, along with an ohmic contact. The next step is to evaporate the appropriate metal microstrip lines onto the sapphire substrate and over the mixer diodes' ohnic and barrier contacts.
Electron mobility. Manasevit says there are variations in the temperatures at which GaAs is deposited on all three insulator substrates, but these are proprietary. looth notes that GaAs has greaer clectron mobility than silicon and

that this points to miver-diode cutoff frequencics in GaAs greater than in SOS devices (100 Gllz against about 50 Ghz).

The tumel-diode effort is headed by Richard Palmquist, who says the main advantage over the usual hylbrid fabrication techmiques is similar to that of the mixer dioclethe devices can be made in monolithic microwave stripline arrays. In addition, peak-to-valley current ratios as great as 20:1 and typically 10:1 are possible for the first time in GaAs on sapphire. Also, the process produces vertical junctions instead of the more fragile horizontal junctions associated with hybrid microstripline tunnel diodes.
Vertical junctions are formed when the metal "dot" alloys sul-phur-cloped tin through to the GaAs-sapphire interface in a cylindrical fashion. As a result tumneling takes place around the circumference of this cylindrical junction, not just at the base as in horizontaljunction tunnel diodes.
In both the mixer-diode and tun-nel-diode work, Autonetics officials say, the monolithic approach leads
to better reproducibility. Higher packing density should also be possible because of the electrical isolation of individual devices on an insulating substrate, which should minimize stray capacitances.
New materials. Ruth believes that the GaAs-on-sapphire work at Autonetics-a division of the North American Rockwell Corp.-is more advanced than the firm's sos effort was after the same amount of development work, and that the sophistication is attributable to the new vapor-deposition process. The process involves the reaction in a hydrogen atmosphere between a C oup III organometalic compound (trimethylgallium or triethylgallium) and a hydride from Group V-arsine, phosphine, or arsinephosphme mixtures, depending on the semiconductor compound desired Roth says that the companysponsored work represents the first practical use of this new class of reaction.
Its advantages over other chemical vapor-deposition epitaxial GaAs growth processes are that it requires only one temperature zone, compared with two carefully con-

Ring up a computer. Engineers at Bell Telephone Laboratories in an in-house experiment, linked an unmodified commercial computer to this Picturephone so their device could be used as a desk terminal to display data on such things as inventories and news, stock, and weather. Bell plans additional tests; no marketing plans have been made.
trolled zones for established methods; the atmosphere is probably free of etchants, minimizing outdoping and other kinds of substrate contamination; the technique can be used for simultancous epitaxial growth on both semiconductor and insulator substrates; doped or undoped growth is accomplished at lower temperatures $\left(600^{\circ}\right.$ to $\left.825^{\circ} \mathrm{C}\right)$ than those used in other kinds of reactions, and the process is simple, flexible, and compatible with methods now used to grow epitaxial layers of elemental semiconductors.

Autonetics chose sapphire substrates initially, mainly because of the division's SOS experience, but officials in the physical sciences department believe beryllium oxide has even greater potential. Its thermal conductivity at room temperature is seven times that of sapphire, promising devices with more power than those with sapphire substrates.

Spincl's chicf attraction is that its cubic crystal structure is better matched to the structure of GaAs and silicon semiconductor materials than are sapphire or beryllium oxide. Ruth says this should contribute to a lower defect density in the semiconductor layer.

Companies

Parent and child

A man who had dinner with Robert N. Noyce a couple of months ago came away from that meeting, he recalls, with the distinct impression "that Noyce was making up his mind whether or not to grab for the big brass ring." The big brass ring is the presidency of the Fairchild Camera \& Instrument Corp. Noyce was then sharing the duties of that office with Sherman N. Fairchild and two of his financial advisers after Fairchild had ousted two previous chief executives in five months.
Almost everyone who knew Noyce said that he wouldn't want the top job because he was too nice; he wouldn't want to be the
kind of head-knocker that a corporation president has to be. On the other hand, they felt that he might take the job anyway, to influence further the growth of Fairchild Semiconductor, whose chief foumder he was and whose fortunes had been so bound up in his own.

Problem solved. Noyce apparently decided that the corporate position wasn't worth the sacrifice, and in any case the corporation was skeptical of his business experience; Fairchild was making informal feelers for a new chief executive, and in June reportedly made at least one formal offer, which was declined.

If Noyce was not to be president, his role in the corporation and in the division was cloudy. At a directors' mecting late last month, Noyce solved his problem by resigning from both operations -thus leaving the parent company without any operating executive for the moment. Simultaneously, Gordon E. Moore, a cofounder of Fairchild Semiconductor and now its research and development chief, announced that he, too, was leaving. Moore had decided to quit two weeks previously, but colleagues at Semiconductor had been trying to persuade him to change his mind with the argument that Noyce, as heir presumptive to the presidency, would protect Moore from the attentions of corporate headquarters.
Double challenae. Whoever the new president of Fairchild is, he will have to shape a new position for Fairchild Semiconductor both within the parent corporation and in the semiconductor industry.
Fairchild Semiconductor was founded by cight scientists, and has maintained a reputation as a technological leader. The technology has produced profits-to such an extent that the logistics of production and activities at the New York Stock Exchange are now more important to the division than the future of gallium arsenide. The departure of Noyce spotlights what has been a reality for some time: technology, Fairchild's strength, is a tool of the corporation, not a goal in itself.
Except for the fact that its role

has been entirely benevolent, the Semiconductor division has been like the camel in the tent for Fairchild Camera \& Instrument. Founded in 1957 lby Noyce, Moore, and six other refugees from Shockley Laboratories Inc., the semiconductor division has been profitable almost from the start. And last year its sales accounted for well over half of Fairchild's total revenue of $\$ 209$ million. (Insiders saythat "well over half" is a corporate euphemism for about two-thirds.)

Moreover, only thrce of Fairchild's eight divisions were profitable last year, and the pressure on the Semiconductor division to produce profits for the rest of the corporation has been a source of continuing tension between the unit's Mountain View, Calif., headquarters and the corporate offices in Syosset, N.Y. Fairchild Semiconductor's target is pretax carnings totaling 20% of sales.

Resistance. But with prices of linear integrated circuits falling rapidly, ficrce competition in digital circuits, and a buyers' market in discrete components, the division tends to resist corporate pressure. This pressure manifests itself as a stream of questions from
the corporate level about day-today operations, such as why a certain R\&D) program is being carried out, or why a given section has a particular number of employees. The corporation has never tried to cut down on research and development, but it has tried to get outsiders to pay for it. The division has traditionally shied away from Government-sponsored R\&D, though, and has successfully resisted the pressure from above.

Richard Hodgson, who took over as president of Fairchild last November when it was already apparent that the corporation was heading for a bad year, did what he could to relieve the pressure by dealing off the money-losing Davidson division and the memory products and oscilloscope operations, and writing off tremendous amounts of inventory and obsolete equipment. But Hodgson apparently moved too fast for board members Walter Burke, Sherman Fairchild's financial adviser, and Joseph B. Wharton, an investment counsclor, who were worried by Fairchild's erratic performance on the stock market. Hodgson was elevated to vice chairman of the board in April.

In contrast to Hodgson's performance, Noyce's two-month stint as a director (with Fairchild, Burke, and Wharton looking over his shoulder), has been a quiet one.
There are still reports that Fairchild will sell off the unprofitable Space and Defense Systems division, but no steps have been taken yet. One other possibility is that Fairchild will recognize the importance of the Semiconductor division by splitting the corporation into two separate entities, one comprising the Semiconductor and Instrumentation divisions and the other the rest of the firm.
Too big. That would give what many consider the proper importance to the Semiconductor division. But with Noyce gone, Syosset is clearly in control.
Of the eight Semiconductor founders, only one, Julius Blank, is now active in the corporation (though another, Victor Grinich, is on leave of absence). All are wealthy, but, in a way, the founders have been engulfed by success. They have bccome involved in big business without realizing it. Moore now wants to start afresh with his own company, though at present his plans aren't far advanced. Noyce, too, said on resigning that he would like to
establish an association with a small company trying to develop some new product or technology.

It seems that no one wanted to become really big. "As recently as a couple of years ago," said one friend after the resignation was announced, "you might call Noyce's home and they'd tell you, 'Bob's gone over to the lab,' because that's how they felt about Fairchild Semiconductor."

Consumer electronics

Some push tubes...

Despite the trend to replace all television tubes with semiconductors, at least two electronics companies are bucking the tide. The tube divisions of RCA and General Electric are trying to stave off the day of tubeless tv by developing better and better tubes and novel ways to use them.

RCA, for example, is offering a family of nine-pin miniature tubes that can be used in a vertical deflection circuit to enable adjustment of the picture height control with little or no interaction between the height and linearity con-

Tube tv. General Electric is trying to convince television makers to design color receivers with its Compactron tubes.
trols. The tube is a member of the new 6JQ6 family.

Model set. GE's tube division in Owensboro, Ky., has gone farther by designing a color tv set. It's being shown to tv set makers as an example of how to build a 10 inch color set to sell for under $\$ 150$. The GE design, called $8+1$ (for eight multifunction Compactron tubes plus one Compactron high-voltage rectifier tube) uses the nine tubes at a total tube cost of under $\$ 8$. The $8+1$ is a followon to last year's highly touted, though markedly unsuccessful, $4+1$, which was intended for black-and-white sets.
In the $8+1$ design the signal channel uses a double pentode Compactron that provides two stages of i-f amplification and a pentode video amplifier that shares its envelope with the chroma amplifier. The i-f circuit is of the conventional variety and includes traps for the 41.25 - and 47.25megahertz signals.
The audio and sync are picked off from the second i-f stage, then amplified in one of two triode sections of the Compactron, which provides automatic gain control keying and horizontal feedback. This signal amplifier feeds the agc keyer, audio detector, and sync clipper circuits. The color burst is gated to the $3.58-\mathrm{Mhz}$ color subcarrier by the horizontal retrace pulse. The color signal is demodulated by a low-level diode demodulator and matrixed in the color difference amplifiers.
However, the deflection circuits represent the most important development of the $8+1$ color set. For example, the horizontal deflection circuit, which develops the 18,000 volts for the picture tube. is of the self-oscillating type, and is synchronized by the incoming horizontal sync pulses. Therefore, no afc circuit is provided. This is essentially the same circuit that CE had used in the abandoned $4+1$.

Yoke driver. The vertical deflection circuit is being used for the first time. Its principal advantage is that it can drive the deflection yoke directly without the use of a matching transformer. To simplify convergence, the $8+1$ uses

 YA5IEM 10 MTMDE WITH PGLARDI] [IRCULAR PDLARIZER5Look what happened to the readab lity when we tock the filter away from the top half of our readout.

A 25% transmission neutral density filterwould improve the readability by about 4 times.

But the Polaroid Circular Polarizer at the bottom of our readout improves unfiltered readability by about 110 times. Because it polarizes the light that others only filter.

If you're designing a display, and you'd like a sample for testing, write Polaroid Cor 0. , Polarizer Sales, Dept. 76, Cambridge, Mass. 02139.

Then you can prove that no matter how bright roon lighting conditions may be, your readout will stand out.

And, after all, isn't that the whole idea?
a picture tube that has in-line guns.
Some corners had to be cut to keep the price of the $8+1$ down. One concession was the use of hot chassis construction with a 600 millianupere heater string, a design gencrally found in low-price sets.

. . . others go solid

Meanvhile, component producers are still pushing for tubeless tv sets.
First Amperex introduced its A705 high-voltage horizontal output transistor [Electronics, Oct. 16, 1967, p. 46]; then Varo entered the race with the first solid state high-voltage rectifier [Electronics, March 4, p. 42], just when Amperex' solid state rectificr project ran into difficulties and had to be shelved, at least temporarily. Now Delco Radio is ready to take on Amperex with its new DTS-0713E transistor for the horizontal-deflection circuit for color sets, and the DRS-112 damper cliode.
Across the ocean, ITT's European subsidiary, Standard Elektrik Loren\% $A C$ of Germany, is trying to hop aboard with a line of highvoltage selenium rectifiers that include a miniature cartridge type that can be used in a multiplier arrangement to achieve the required high-voltage rating for color sets.
Motorola is already using the Varo clevice in its 1969 color line. However, the sales leader in the color tv market, RCA, is holding back. Its latest designs are all solid state except for the high-voltage rectificr. Explains Wayne W. Evans of RCA's color-tv engineering staff: "We have sampled a number of devices, but we've found tubes to be more reliable than the devices that we have experimented with so far."

Varo's Jan Collmer counters with: "It's more a matter of ceonomics than reliability-tubes are still cheaper. We have devices that are rated at 45,000 volts, peak inverse voltage, and that is clearly leetter than any kind of tube can take."

IC's in tv's

Despite all the ballyhoo, integrated circuits have made very little headway in television sets. IC's are being used only in the audio section and automatic fine-tuning circuits of some top-of-the-line color sets. The only reason set makers advance for this slow pace is that IC's still cost more than discrete

Solid state. ITT's selenium high voltage rectifier...
components. But with IC prices gencrally going down as volume picks up, most set makers at last month's IEEE Spring Conference on Broadcast and Television Receivers in Chicago conceded that they will be using IC's extensively

.. stacked to provide wide variety of voltages.
-and soon.
At least four microcircuit pro-ducers-Spraguc Electric, Motorola, Gencral Instrument, and Fairchild Semiconductor-have developed IC chroma demodulators for color sets. And Gencral Instrument says it will soon be offering monolithic circuits for all the colorprocessing functions: chroma burst separation, color killing, color matrix, and color sync.
Recover color. Sprague's devices, ULX-2114K, uses two balanced quadrature detectors that operate simultancously to recover the blue and red information from the 3.58megahertz chroma subcarrier.

Motorola's circuit, the XC1325P, uses differential amplifiers instead. The reference signal is applied differentially between base terminals of the two amplifier pairs, while the signal to be demodulated is applied through current amplifiers.
The Fairchild circuit, $\mu \mathrm{A} 737 \mathrm{E}$, uses a cuadrature amplifier arrangement somewhat similar to the Motorola circuit. In this setup, the $\mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ color-difference voltages are developed across collector loads and added to the collector currents to produce the $\mathrm{G}-\mathrm{Y}$ signal.

Manufacturing

Cool stripper

At least one semiconductor manufacturer, the Signetics Corp., is using radio-frequency-induced plasmas instead of acids to remove photoresist from silicon wafers. And the technique can also be used in the laying down of silicondioxide and silicon-nitride passivation layers, doing the job at relatively low temperatures and thereby greatly simplifying the process.
Steve Irving, a materials scientist at Signetics, is credited with the first application of electrodeless, r-f-induced atomic oxygen plasma-low-temperature ashingto the semiconductor field. Asked to find some way of removing

No other 100W silicon power transistor in the industry can match this

 performance point

Maximum Safe Area Operating Curve for Type 2N5239 and 2N5240

Now, full second breakdown protection up to 100 W dissipation and 150 volts, plus safe area rated up to 300 volts! That's a brand new level of power performance and reliability for high-voltage silicon transistors.

We made this capability possible by creating a unique pellet construction technique-multiple diffusion combined with the multiple emitter concept made famous by RCA "overlay." To you, this means better performing, more reliable circuits for high-voltage regulators, series regulators, high-speed inverters for off-the-line operation, switching bridge amplifiers for servo motor controls, and ultrasonic power amplifiers.
Depending on your circuit requirements, you can choose between the 2N5240 with a $\mathrm{V}_{\text {cer }}$ (sus) of 350 volts or the 2 N 5239 with a 250 volt rating. Both transistors have an I_{c} (max.) of 5 A and P_{\uparrow} of 100 W .
For more information consult your RCA Representative or your RCA Distributor. For technical data, write: Commercial Engineering, RCA Electronic Components and Devices, Section IN7-1, Harrison, N. J. 07029.

Etch it. R-f.induced plasma, rather than acids, removes photoresist from silicon wafers in new Signetics operation.
photoresist, the highly toxic chromic and sulphuric acid mixtures sometimes left on wafers, Irving found that he could do away with the acids entirely.

College memories. "Photoresist material," he explains, "is nothing but organic material, and I had remembered from college that when we were looking at trace elements in diseased human tissue, we had had the same problem of removing the organics without volatilizing the elements we wanted to look at." If low-temperature, r-f-induced oxygen plasmas could handle this job, he reasoned, why couldn't they volatilize organic materials without altering the crystal structure of nonpolymers on a wafer?

Experiments performed by Signetics a year ago showed that lowtemperature ashing could completely strip photoresist material without degrading the wafer in any way. Although the company won't say what percentage of its production volume this technique is now being applied to, spokesmen have indicated that the use of strong oxidizing agents is on the way out.

Supplier. And according to Richard L. Bersin, president of the newly formed International Plasma Corp. in Hayward, Calif., the same technology can be used in the process of laying down the five to six passivating layers required for complex semiconductor wafers.

Equipment being built by International Plasma will strip 100 wafers covered by 5,000 angstroms of polymer photoresist in less than five minutes. In the process, a 5 torr plasma is initiated in one or more chambers by applying an r-f voltage to externally mounted electrodes. Highly reactive atomic and ionic oxygen created in the plasma decomposes and removes the photoresist compound by forming volatile reaction products that are immediately pumped away. The operation is generally performed at around $100^{\circ} \mathrm{C}$ in an atmosphere of 20% atomic oxygen.
With the same equipment, but at $500^{\circ} \mathrm{C}$, a plasma of either atomic oxygen or atomic nitrogen will lay down a passivating layer, the thickness of which is a function of time of exposure, pressure, gas flow rate, and r-f power.
Independent steps. Because it's performed at a temperature about half that needed for conventional thermal oxidation, this operation doesn't generate the diffusion of silicon dopants typical of oxidation. And because there's no need to make allowances for these dopants, each layer of passivation can be applied independently of the others.
The equipment, due to be marketed by International Plasma next month, will operate at 13.5 megahertz at up to 1,000 watts. The machines, which will sell, accord-
ing to Bersin, for under $\$ 10,000$, contain only four plug-in circuit boards and 12 test terminals; a common voltmeter set to the 10 volt range can be used to test all voltages. Bersin notes that repairs can be made simply by correlating an incorrect voltage with a defective circuit and then replacing that circuit.

Commercial electronics

Fare price

The simplest system of all was a hands-down winner of the automatic fare-collection contract let by the San Francisco Bay Area Rapid Transit District (BART) late last month. IBM, a surprise entry, was so far under the competition with its bid of $\$ 4.9$ million that there was really no contest at all.

The IBM system, which will automatically deduct fares from a magnetically coded card, uses no external computer, only a memory and logic system inside the ticket reader.

Three types of systems were tested by bart. The fmic Corp. and Control Data, which jointly developed a system using a huge central computer, didn't even bother to bid. The Advanced Data Systems division of Litton Industries, whose system used a computer in each BART station, though not in each gate, entered a bid of about $\$ 20$ million. General Electric, whose system is also simple, was still far above IBM at about $\$ 9$ million.

Open-door policy. The district had expected to spend $\$ 6.8$ million to $\$ 9.8$ million for the system. It was so delighted at the IBM price that it picked the most expensive option, one calling for a normally open gate (instead of one that closes after each passenger goes through), plus two years of maintenance. The open gates, which will close if any passenger doesn't pay his fare, permit greater traffic loads in peak hours.

The system, developed in IBM's

POWER WITHOUT PERIL for Analog Equipment

New Philbrick/Nexus current booster and voltage regulator modules fully protect op amp circuits against overloading Whether your analog circuits require high load power, high stability or a high degree of regulation, Philbrick/Nexus power products have exactly what you need. Philbrick/Nexus helps you shrink op amp circuits by supplying compact, fully encapsulated, completely overload protected booster amplifiers and voltage regulators.
Model 2001 Current Booster provides $\pm 500 \mathrm{~mA}$ at ± 10 volts with wide frequenc, response. A slewing rate of 10 volts $/ \mu \mathrm{sec}$. offers full output response to 80 KHz . Voltage gain approaches unity with current gain greater than 40,000 times. Phase shift is less than 10° at 10 mHz .
Model 2101 Dual Voltage Regulator delivers $\pm 100 \mathrm{~mA}$ at ± 15 volts. Accepts input range from 19 to 40 volts. Unit offers high regulation $(.01 \%)$. Low ripple and noise. Operates over a range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at 50 ppm .
A dual output regulated power supply, Model NPS-300 is also available from Philkrick/Nexus. It features separate positive and negative outpu's with individual adjustments to any output between 12 and 18 volts at any load between zero and 300 mA each. Model NPS-300 is short circuit proof. Price: \$135.
Call your Philbrick/Nexus sales representative for complete specifications, prices and applications assistance. Or write, Philbrick/Nexus Research,22 Allied Drive at Route 128, Dedham, Massachusetts 02026.
Philbrick/Nexus invites technical employment inquiries

Los Gatos, Calif., advanced development facility, will be made by the Federal Systems division in the same Huntsville, Ala., plant where Apollo-Saturn launch vehicle instrumentation is built. IBM will deliver 236 gates, 96 ticket-reading machines, 47 add-fare ma-chines-for persons whose magnetic cards don't have enough left on them for the full fare-119 money changers, and 44 special ticket readers for station agents, to detect faults in magnetic coding.

Like the other systems, IBM's requires a passenger to insert his ticket into a reader on entering the station and again on reaching his destination. The second reader automatically deducts the fare, and prints out a notification of the amount remaining on the card. IBM's way of doing this, which reportedly capitalizes on existing components in IBMI computers, has implications for airline quickticketing systems.

The district also awarded a $\$ 1$ 629,000 contract to the WDL division of Philco-Ford Corp. for yard control and communications
systems. Philco beat out six other bidders, including Western Electric, contractor for the main train control and communications system.
Philco will build a command and control system that will take care of the trains when they aren't in servicc. Sensors will read serial numbers as cars enter the yard, and the central console will direct them to repair shops, storage areas, and washing facilities. The bid was another bargain; the district had estimated the cost at $\$ 2.9$ million.

Military electronics

Plastic's progress

Plastic-encapsulated integrated circuits have been around for several years but have yet to receive the blessings of the Pentagon or NASA. Now the Government has indicated its willingness to give plastics a hard look and has set up an organization to test them.

On display. The A.B. Dick Co. has long been known for its duplicating and copying machines. But now, as a result of spin-off from its electrostatic high-speed label-printing equipment, the firm has entered the electronic data-display field with this unit, the Videograph Series 900. It can present up to 512 characters in 16 rows directly from a keyboard or a computer. This installation is at Penn Central Station in Washington.

Late last month representatives of the Army, Air Force, Navy, and NASA met in Washington and established three groups that will make or break the devices for Government service. They are a working group for test methods and procedures, a unit on research and development, and a management policy group.
Sticky problems. The test methods group will examine the most critical aspects of the acceptance problem. It plans to tackle such issues as perfecting test and evaluation procedures; determining differences between plastic and hermetically sealed devices; setting up standards for temperature and humidity tests; and considering changes to be made in published standards and testing publications (such as military standard 750 and 883) and the costs and tradeoffs involved in screening plastic devices.
The group will be struggling with two sticky problems that came up at a May triservice-NASA meeting on plastic IC's [Electronics, May 27, p. 25]. It was determined at that meeting that there is no consensus among users, potential users, and manufacturers on the reliability of plastic semiconductor devices.
It was also agreed that there has been no good determination of the costs of screening. Some delegates even brought up the possibility that plastics might cost more than metal cans because of the extensive screening that may be necessary before they can go into military and space systems.

Government

That's a switch

An economist testifying before the Senate antitrust subcommittee has challenged the very premise of the panel's investigation of defense contracting practices. The Senators, exploring charges that the Pentagon wastes public funds by

Don't tell our new Model 128 it has a low price teg. Actually, the E-H 128 thinks, acts and talks like a much higher-כriced box - gives jou features never offered in a general purpose pulser at this price.
For instanze? Risetime of < 3.5ns and < 4ns falltime; rep rete to 50 MHz ; dual outputs (positive and negative), 5 v amplitude; independently ccntrolled and contir uously variable, attenuation ranges of 1 ,

2, 4, 8, 16: single end double pulses; sinsle cycle pulses; external driving and external gating. All this and cctiouvusly variable trigger width (- Ons. to 50 ns), Flus pulse w dth and pulse delay cortinuously variable frem 10 ns to 10 milliseconds. What it adds $u \boldsymbol{o}$ to, Jf cou-se, is a pulser which gives you more discrete measurements and wider breadth of measurement thar many pulsers costing tundreds of dollars more. Worth looking into.

163 Adetine Street • Oakland, California 94607 - :415) 8š-3C30 • TCXX 910-366-7258
In Europe: E H Research Laboratories (Ned) N.V., Eox 101E, Eind ourer The Netherlands. Telex 511: \mathbf{E}
In Japar: Iwatsu Electric Co., L:d., No. 710, 2.Chome Kugayama Susinemi-Ku, Tokyo, Japan
often ignoring competitive bidding, heard Frederic M. Scherer of the University of Michigan assert that there's already too much rivalry for orders and that the situation is squandering both money and engineering talent.

Scherer, a specialist in military spending, stressed that price cannot be the sole criterion in defense contracting. "What often counts more-and properly so-is technical performance, operational reliability, and speed of delivery." he declared.

Short list. About half the $\$ 40$ billion spent each year on the military procurement is awarded noncompetitively. And almost half the Pentagon's prime contracts go to just 25 companies.

But Scherer would like to see the competition further limited. He told the subcommittee that whethor the emphasis is on technical competence or price, contractors now enter "one competition after another until enough successes have been scored to ensure a full order book." This activity, he continued," is a voracious consumer of the contractors' creative talent. The best scientists and engineers in industry . . . spend a large part of their time working on proposals and relatively little on the actual implementation of contracts won."

Scherer noted that the Government has a difficult time choosing among technical proposals because of the uncertainties that blur the figure of any advanced weapon and because contractors tend to view any task through "rosecolored glasses." Consequently, it has moved away from making judgments solely on the basis of specific designs and is putting increasing emphasis on companies' total technical and managerial capabilities, widening the competition.

This trend has led, according to Scherer, to a "hoarding of talent and facilities by defense contractors that probably represents a waste of billions of dollars annually." The Government, he contended, "gains little, and in all probability encourages the waste of valuable resources, when it invites more than three to five care-
fully chosen companies to submit technical proposals for a new program."

Confrontation. The Senators were further told that "implicit and explicit pressure from Congress to present at least the appearance of vigorous and impartial competition contributes to excessively widespread dissemination of invitations to bid." The Pentagon has to indulge in this "winclow dressing" and wade through a great deal of "talentwasting brochuremanship" by contractors for the sake of appearances, Scherer said.
The cconomist suggested that the Pentagon put more emphasis on past performance in choosing contractors. He said the Defense Department is moving in this direction, "although not very vigorously."

Scherer proyed to be less sanguine than the Pentagon about the benefits of incentive contracts. He concerded that they spur some added efficiency, "but profits under incentive contracts depend not only upon skill in cost reduction, but also upon skill in bargaining for the initial cost targets and for making changes in the targets as design modifications are authorized in midstream."

Scherer concluded his testimony on a note of irony. He suggested to the panel that waste and inefficiency in the awarding of military and space contracts might not be so bad after all. About the only "unambiguous braking force" on the rising economic burden of armaments, he said, is the high cost of weapons; higher efficiency and lower costs in weapons development could thus lead to bigger arms inventorics and a heavier over-all financial burden in the long run.

On the other hand

At just about the same time that Senate hearings opened on military procurement policies, the Pentagon was making an award that showed how competition can cut prices.

The contract went to the Elec-
trospace Corp. of Glen Cove, N.Y.. and covered a $\$ 2,260,476$ first increment of a $\$ 19,261,841$ four-year purchase of AN/PRC-77 manpack radio transceivers and RT-841 transmitters. Electrospace, which was identified in the brief Pentagon contract announcement as "a small business firm," submitted the lowest of 21 bids for the orders.

Quick whistle. The radios were developed by RCA in 1966 at a cost to the Defense Department of $\$ 694,000$. The Army then awarded RCA two production contracts. The first, in 1966, stipulated a unit price on the sets of $\$ 1,222$. In the second contract, let last year, the price was $\$ 937$. Sen. Peter Dominick (R., Colo.) got wind of the affair and blew the whistle in May [Electronics, May 27, p. 73]. He noted that though the initial contract included $\$ 54,834$ to pay for manufacturing drawings, the Army had justified the award of the second order to RCA on the basis of "urgency of delivery and lack of manufacturing drawings."

As a result of Dominick's investigating, the Army did an aboutface and put the radios up for bidding. Electrospace's proposal came to about $\$ 480$ per unit; RCA's bid, at about $\$ 610$ a unit, was about the tenth lowest even though the company has had previous production experience.

Dominick estimates that the Pentagon will save as much as \$15 million because it went to competitive bidding instead of continuing to award the contract noncompetitively to RCA.

Management

Life or death

A year ago, when Charles S. Rockwell took over as vice president and general manager of ailing Sperry Gyroscope, his orders were simple: cure it or kill it. Now Rockwell, after laying off 450 production workers, believes the prognosis is encouraging.

Rockwell has used two kinds of

Looking for Fast, High Volume AC and DC Calibration Capability?

Whenever and wherever you need precision, high volume calibration capability for your calibration labora. tory, production line, maintenance testing shop - Hewlett-Packard has an instrument that specifically meets your requirements.

Two of these instruments-design. ed specifically to meet high accuracy and high volume calibration needsare the hp 740B for DC and the hp 745A for AC. With either instrument, you press a button, turn a dial and you have an instant voltage reference!
High Resolution DC Calibration. The hp 740B DC Standard/Differential Voltmeter delivers output voltage to 1000 V with six digit resolution in discrete steps of 1 ppm of range. Accuracy of $\pm(0.002 \%$ of setting $+0.0004 \%$ of range) extends over 30 days.

As a differential voltmeter, the 740B measures voltage to 1000 V dc with an input resistance of $>10^{10} \Omega$, independent of null condition. Accuracy is \pm (0.005% of reading $+0.0004 \%$ of range $+1 \mu \mathrm{~V}$).
The 740B is also a precisior dc amplifier and high impedance voltmeter, and can be used to drive a recorder.

Fast, Accurate AC Calibration-Cut your ac calibration time in half with the state-of-the-art hp 745A. AC Cali-brator-an excellent choice for pro-
duction line calibration and mainenance testing.

The 745A has a calibrated output voltage with $\pm 0.02 \%$ accuracy. It also has a six-digit readout, pushbutton ranging and a continuously adjustable frequency from 10 Hz to 110 kHz .

Eliminate tedious error calcula. tions with the exclusive 745A direct reading percent error scale.
Get full specifications on these and other calibration instruments from your hp field engineer. Or, write to Hewlett-Packard, Palo Alto, California 94304. Europe: 54 Route des Acacias, Geneva. Price, 740B, $\$ 2350$; 745A, \$4500.

Circle 63 on reader service card

Marshall? He's the crankiest of the Twelve Cranks on Pleasant Avenue. One of the extra-picky grumps at Trygon Power Supplies who feels good all over only when he can pick something off our production line and shriek, "Hey! This is no \% \#\&ç@\# good!'
So far, he's had problems with our Super-Mercury series. Because there haven't been any problems.

The Super-Mercury is a brand new competitively priced series, the new generaticn of the industry-accepted, field-proven Trygon Mercury Series: fully programmable wide-range power supplies, power and value packed, offering precision Constant Voltage/Constant Current operation. Precision performance (with up to 2000 watts output), in ranges up to 160 volts and up to $100 \mathrm{amps} . ~ .005 \%$ regulation and 0.015% stability are standard (.005\% stability optional) as is MIL Spec, RFi-free performance. Total ripple and noise less than Imv rms and 10MV P-P (to 10 MHz). Master-slave tracking, auto-load shêre paralleling and remote sensing and programming are also standard with Trygon's patented tracking overvoltage protection available.

Marshall and his friends check the dozens of Super-Mercury features that make this series a Super-buy for you. Now it's your turn to check on them. Order a Super-Mercury as a starter.

Trygon Power Supplies
111 Pleasant Avenue, Roosevelt, L.I., N.Y. 11575 Trygon GmbH 8 Munchen 60, Haidelweg 20, Germany
radical surgery. First, he has shied away from risky contracts, reducing business but increasing profit margins. Second, he has "consolidated facilities" by the layoffs and by closing sections of the huge plant at Lake Success on Long Island, N.Y. The latest layoff, for example, will leave only half of the building's 2.4 million square feet in use.

Still breathing. All this has led to persistent reports that the plant is being phased out. Sperry spokesmen are equally persistent in their denials. "That," says one, "is just what we're trying to avoid."

Work is going on at Lake Success on five projects-modernization of the Terrier missile's fire-control system, the prototype of an advanced destroyer sonar system, the guidance unit for the Spartan missile (part of the Sentincl antimissile system), inertial navigators for attack submarines and aircraft carriers, and clectronically scanned phased-array radars.

Communications

Bridging the gap

The second phase of the Defense Satellite Communications System (DSCS-2), which has just gotten a formal Pentagon go-ahead, will blur the boundary between the long-haul strategic relay craft the program will produce and the experimental tactical communications satellite being built by Hughes Aircraft for the three services.
The missions differ, of course, and the Tacsat will transmit at ultrahigh as well as super-high frequencies, but otherwise the craft will be markedly similar. Both will employ narrow-beam stecrable antennas. The DSCS- 2 will also have the earth-coverage antennas carried by satellites in the first-phase system, but it will work with smaller ground terminals-stations similar in size to those specified for Tacsat. Like Tacsat, the stationkecping DSCS-2's will be placed in stationary orbit; the first-phase satellites drift in a near-syn-
chronous orbit about 21,000 miles out.
One design? The Defense Communications Agency (DCA), sponsor of the DSCS program, is already planning for a third-phase system that would be operational around 1975. Bound to be more technologieally advanced than its predecessors, the DSCS-3 might well combine tactical and strategic roles in one large satellite.

Phase one of the program was completed June 13, when cight of the 100 -pound DSCS-1 craft, built by Philco-Ford, were successfully launched. There are now 25 operational satellites in the system.

DCA expects to issuc a request for phase-two proposals sometime this summer, with launches expected to begin in late 1970 or 1971. Comparable in size to the giant Intelsat 4 craft to be built for Comsat [Electronics, Junc 24, p. 139], the higher-powered satellites will be launched two at a time by Titan 3C vehicles. Four satellites will make up the operational sys-tem-one over the Atlantic, one over the Inclian Occan, and two ower the Pacific.

Each will be able to relay the equivalent of more than a thousand voice channels. In contrast, the smaller phase-one satellites have a capacity of 12 tactical voice channels working with the 40 -foot AN/ MSC-46 transportable ground terminals and eight teletype channels with the 18 -foot-diameter an/TSC-54 terminals.

Boosters have already been purchased for the phase-two effort, and the fiscal 1969 budget is said to include an estimated $\$ 60$ million to get DSCS-2 rolling. Besides relaying voice broadeasts for the worldwide Military Command and Control System, the National Emergency Airborne Command Post, and for ship-to-shore communicators, the system will provide a 500-kilobit-per-second digital data chamel. Employing multiple fre-quency-shift keying modems from Philco-Ford, a similar data channel is now being used by DCA to transmit high-quality photographs from Saigon to Washington via the initial DSCS system.

Groundwork. A big chunk of

DESIGNERS SAY THE NEW SURMETIC 40 ZENER DIODE HANDLES 175 W SURGES ${ }^{\dagger}$ AND 5 W DC.

P.A.'s Say It's Cheap.

Better-than-metal cheap! In fact, the ri:gged, reliable and reasonablypriced 1N5333-88 plastic Surmetic* 40 series replaces more than 300 twice-as-costly, metal stud zener diodes and does everything these units will do for only $\$ 1.85,100-u p .$. yet its surge capability is up to four times greater than the Mil spec for metal 10 -watt units !

With leads clipped to $3 / 8$-inch and held to $75^{\circ} \mathrm{C}$, it will easily handle 5 watts $P_{D}-40 \%$ greater than other lead mount units under similar conditions and is the only device of its kind to conform to the proposed JEDEC method of rating a diode according to lead length/temperature.

Unique oxide-passivated junctions, 3.3- to 200-volt application capability, low leakage and complete mounting freedom (you don't have to compromise on special clips or terminals for heat sinking) complete the picture.

Send for complete data to P.O. Box 20912, Phoenix, Arizona 85036, or contact your franchised Motorola distributor.
${ }^{\text {a }}$ Trademark of Motorola Inc.
$\dagger 8.3 \mathrm{~ms}$, square wave

This

 refirigeritur heills to 1000 degrees.It also cools to
- 300 degrees. It does both with remarkable accuracy, O. 1°.

Send for our latest catalog.

[^1]the phase-two money will go to build second-generation ground terminals and to upgrade existing stations. The new system will use morc than twice as many ground stations than are currently operational. The work will proceed in three stages, the first of which will involve some modifications of existing terminals for 1971 operation. In the second stage beginning in late 1971, these terminals will be overhauled to increase bandwidth and channel capacity. The final stage is expected to start in 1973 and include a change in basic modulation and multiple-access techniques from frequency division to time division.
New fixed earth terminals also will be added during the first two stages to replace the transportable terminals now being used in the U.S.

Hughes is now designing several second-phase ground terminals, including a 40 -foot fixed-site unit. The company, which had trouble in the early stages of the initial phase with its MSC-46 terminal's antenna feed horn, has now developed a horn that combines different signals in a multimode pattern to achieve better over-all aperture efficiency. Hughes has already built a 10 -foot dish with the multimode feed horn and expects to get an efficiency of 70%, compared with the 45% to 50% initial aperture efficiency of the MSC-46. This level has since been raised to about 60% with the addition of Radiation Inc.'s Dialguide feed. Hughes' 3 -foot-diameter shipboard antenna, the AN/SSC-3, also has an efficiency of about 60%.
Companies expected to bid for ground terminals may include Collins Radio and RCA, as well as Philco-Ford, Hughes, and Radiation.
The Navy has been having reliability problems with the shipboard SSC-3. "Most of our troubles have becn mechanical," a Hughes engineer says, involving such things as air conditioning. The shipboard environment, he comments, hasn't always been what the Navy specifications stated.
The SSC-3 is only a passenger on the ship at present, being housed
in a hut. But Hughes is now working to integrate the satellite antenna right into the design of the ship. The Navy will include this intcgration feature in its request for proposals for an upgraded SSC-3 to be used with the phasetwo DSCS program.

For the record

Back to school. Two workshops will be held this summer to acquaint college and university teachers with recent advances in d-c measurement. One will be July 22 to 26 at the Argonne Na tional Laboratory, Chicago, and the other Aug. 5 to 9 at the University of California, Irvine. Both will concentrate on modern ratio devices.

Dial a book. The days when one can browse through library bookstacks may be numbered. An automated book-retrieval system that could double libraries' storage capacity has been developed by the library bureau of the Sperry Rand Corp. Called the ABC-801, the prototype uses optical and mechanical identification systems. A borrower selects a book from the library's card catalog and gives the volume's number to an operator. The book is delivered by an automatic "picker."

Down the drain. Now that the Victor Comptometer Corp. and Philco-Ford's Microelectronics division have confirmed that they've dropped their joint calculator venture, the calculator itself seems headed for oblivion. Philco says it has absolutely no plans for the Victor 3900 , the MOS machine it built for Victor. And Victor will be marketing the Wanderer line of electronic calculators built by the Heinz Nixdorf Laboratory for Electronics in Germany. Victor owns the rights to the 3900 , but it hasn't announced any plans to exercise them.

Pick out any two any time.

You'll get identical twins.

Despite temperature excursions, or any other environmental extremes, every single CORNING ${ }^{\oplus}$ Glass Capacitor will give you the same exact capacitance behavior as every other one.
So every single one of the capacitors in the timing, tuning, oscillator or multivibrator circuits you build this year will be performing identically five years from now. You get this operating retraceability and this part-to-part repeatability, only in CORNING CYFM, CYFR, and TYO Glass Capacitors.
Get the figures on this long-term uniform stability.
Write: Corning Glass Works, Electronic Products Division, Corning, N.Y. 14830

COMPONENT CAPSULES

Abstract

GE's 1-amp D28D transistor-try this one for low-cost control circuits

This reliable 1-amp medium-power transistor offers economy for consumer and industrial applications. Including: audio output circuits, solenoid and small motor controls, switching, hi.gh-power transistor drivers and other systems.

Fused Quartz, Fused Silica meet the unusual in application problems

Highest purity General Electric Fused Quartz is being applied in crystal pulling, zone refining, semiconductor diffusion and research labware.
Many new and varied electronic applications are continuously being developed.
General Electric Type

Here's reliable indication, monitoring and control-at low cost

Proved design of GE meter relays is better three ways:

- New contactless control action - solidstate, light sensitive switch means exceptional control simplicity, reliability.
- "Piggyback" control module - plug-in design

New reduced-cost thermistors for temperature sensing uses

New Economy Package 1H-Series units are ideal for volume printed circuit board application.
These new GE thermis tors cover a specific resistance range from 18 K ohms to 56 K ohms. They operate at temperatures to 275 C .
Dimensions are $0.150^{\prime \prime}$

Transmittance Curve-151 Fused Silica for 1 cm thickness*

151 Fused Silica, for critical optical jobs, is a schlieren grade material offering highest ultraviolet transmission.

It's the newest and highest quality optical material within GE's numerous grades.

Type 151 is ideal for use in laser optics, ab sorption cells, spectophotometer optical elements and schlieren photography.

For technical data and application assistance Circle Number 232.

[^2]assures time-saving installation.

- Choice of styles -easy-reading BIG LOOK® or low-profile HORIZON LINE ${ }^{\circledR}$ meter relays.

Variety of GE meter relay functions includes energizing an alarm; close differential relaying; controlling temperature, power, speed and frequency.
Applications are virtually unlimited - from critical monitoring in hospital intensive-care units to deep-well drilling control.

GE meter relays cost less than any other comparable instruments . . . makes GE your best meter relay bargain.

New publication has ratings, dimensions, ordering and pricing data on all GE meter relays and other panel instruments. For free copy, Circle Number 233.
long, $0.070^{\prime \prime}$ diameter; $1.125^{\prime \prime}$ gold-plated Dumet leads may be welded or soldered . . . ideal for PCB's.
TYPICAL CHARACTERISTICS - 1 H Thermistors

\section*{| Resistance | $\mathbf{R}_{25^{\circ} \mathrm{C}}$ | $\mathbf{2}$ |
| :--- | :--- | :--- |
| Ratio; | $\mathbf{R}_{125^{\circ} \mathrm{C}}$ | 29.85 |
 | $R_{125^{\circ} \mathrm{C}}$ |
| :--- |
| Dissipation milliwatts |
 Constant $(\delta) ;{ }^{\circ} \mathrm{C}$
 Thermal Time Con-
 stant (τ); (sec.)
 Niaximum Operating 275
 Temperature; (${ }^{\circ} \mathrm{C}$)}

The units offer new opportunities in appliance, heating system motor, fan and textile controls.
Authorized distributors now have Economy Package 1 H -Series thermistors with resistance tol erance of $\pm 10 \%$. Other tolerances available are: $\pm 5 \%$; $\pm 20 \%$; and $\pm 30 \%$.
Prices drop when units are bought in OEM quantities. Order your copy of price and data sheets. Circle Number 234.

GE cooling fan assemblies meet reliability demands of computers

GE cooling fan assemblies offer many years continuous duty, without maintenance.
The fans feature allangle operation and efficient air flow.

Twosizes are available. Small 90 and 100 CFM blowers have GE KSB33Frame Unitized ${ }^{\circledR}$ motors.

Price? In the 30 -cent range. And, it's NPN, planar, epitaxial, passivated in the proved lowcost GE Cl06 power tab ckage
GE's D28D is capable wat.s power dissipa ion at 70C case; 1-amp continuous and $1.5-\mathrm{amp}$ peak collector curren from 30 to 75 V ceo
It features excellent linearity, low saturation voltage and fast switching with an $85 \mathrm{mHz} \mathrm{F}_{+}$ typical. Class B audio output san go to 10 watts. Leads are formable to TO-5 configuraNumber 231

Application flexibility combines with

 low cost in this 4-ampere SCRGeneral Electic's timeproved C106 planar, passivated SCR is ideal for gas ignitions, motor control, sequential light systems, malfunction sensing, appliance control and other uses.

C106 price is low: in the 35 -cent range. And, it's always a reliable

Want versatility? Check these
 new snap-acting limit switches

Small. Durable. Precise. With maximum flexibility! These limit switches are built to a designer's needs.
The CR:15JA is rated to 600 volts a-c; 6 amperes break. Contacts are SPDT. Size is only $l^{\prime \prime}$ high $\times 13 / 32^{\prime \prime}$ wide $\times 13 / 32^{\prime \prime}$ long. Terminals are

How about this for reed switch contact stability!

Excellent contact resistance stability is just one teature of the new GE DR138 form C (single-

New 4-pole latching model joins 150 -grid sealed-relay family

Introducing the smallest 4 -pole latching relay on the market: GE's Type 3SBM.

This new sealed relay is only $0.32^{\prime \prime}$ high, $0.31^{\prime \prime}$ wide, ard $0.61^{\prime \prime}$ long.
Don't let the smallness fool you. This relay's big on performance. Its contact rating is 2

New data rodems let you meet almost ary digital communications need

General Electric offers a complete line of digital data modems.
It's the new DigiNet Series, capasle of handling you digital data requirements at speeds from 60 bits to 250,000 bits per second.
Twenty-two separate models are available.

C106

actual size

Desk-top Cabinet
performer.
Now the RMS rating has been extended to 4 amps; peak current increased to 75 amps and surge current to 20 amps -at no increase in cost! It takes only $200 \mu \mathrm{~A} / 0.8 \mathrm{~V}$ max signal to control 4 amperes or a current gain of 20,000 .

Several lead configurations allow mounting versatility. Voltage ratings are available to 300 V . . . scion to 400 V . Circle Number 236.
screw tyoe or push on. A variety of operators is available.

Applications include electrical interlocks, pilot signals, computers, vending machines, light material handling systems and industrial devices.

The CR115JB is GE's smallest limit switch, only $5 / 8^{\prime \prime}$ high $\times 13 / 32^{\prime \prime}$ wide $\times 13 / 2^{\prime \prime}$ Icng.

It's rated to 600 volts a-c; 3 amperes break. Contact form is SPDT Terminals are screw or combination push-on solder. A variety of operators is available.

Applications include electrical circuit interlocking, small appliances, business machines, process and packaging machinery. Circle Number 237 for details.
pole, double-throw) reed switch.
Contact rating is 5 watts $(50 \mathrm{~V}$ at 100 mA$)$ d-c resistive. Expected life: 20 million operations (tested at full load, 50 volts d-c, $0.1 \mathrm{amp}, 20$ opns/sec). Initial contact resistance limit: 100 milliohms.
The new DR138 reed switch is suited for reedrelay and communication jobs in commercial, industrial, or military markets. For all the facts, Circle Number 2.38 .
amps. And, it meets or exceeds MIL SPEC environmental and electrical requirements.

Radiation harden ing and all-welded construction enhance reliability of the Type 3SBM.

Like other GE 150 -grid relays, the 4 -pole latching form may be selected with a variety of options. You have a choice of coil ratings for a wide range of system voltages, plus popular mounting forms and header types.
For the full story Circle Number 239.

You can specify them in EIA stardard rack mounts, stylish desk-top cabinets or even CCITT Standard "shallowdepth" tacks.

DigiNet units feature high MTBF and exceptionally wide environmental specifications.

GE DigiNet modems and standard plug-in modules can be easily integra:ed into your equipment and systems. Find out how. Circle Number 240.

FOR THE NEW IDEAS IN ELECTRONICS, look to General Electric -your best single source for electronic components.

ELECTRONIC COMPONENTS SALES OPERATION general electric

5things you should

3. Applications:

Fairchild MOS FETs are excellent amplifiers. They're also the closest thing to an ideal switch. They've got high input impedance, zero offset voltage, wide dynamic range, low cross modulation, and good noise figure. They're perfect for analog and digital switches, high speed solid-state choppers and amplifiers from DC through UHF frequencies.

1.Gate protection:

MOS FETs used to be so sensitive, they'd burn out in your hand. Fairchild has solved the problem with Gate Protection. It's provided by our unique integrated diffused resistor Zener diode. The resistor, in series with the gate capacitance, provides an RC time constant. Any transient static charge applied to the gate is delayed until Zener breakdown. The charge is then shunted through the Zener to ground.

2.Stability:

Some MOS devices have unstable thresholds. That usually means there are many free positive ions in the oxide. Fairchild's patented Planar II* process reduces the number of ions and keeps them under control. Under worst case bias conditions, the average Fairchild MOS FET will experience less than a six percent threshold change over 1000 hours of operation. That's better stability than any bipolar device made. Even ours.

know about mos fets:

4.The price:

When MOS FETs first came out, they cost about five times as much as bipolars. Now, they dori't. In fact, you can't afford not to use them.

5.The kit:

To prove our specs are in the right place, we've prepared a sample kit to help you get involved with MOS FETs. It's worth $\$ 160.10$. You can tuy it from any Fairchild distributor for $\$ 39.95$. You can also get a bundle of applications information. Free. Just circle the Reader Service Number below.
Fairchild Semiconductor A Division of Fairchild Camera and Instrument Corporation, 313 Fairchild Drive, Mountain View, California 94040

FAIRCHILD
SEMICONDUCTOR

QUANTITY	DEVICE		AFPLICATION
2	FT701	Dual Differential Amplifier	VOLLAR
2	VN147	Series/Shunt Chopper	18.00
2	3N148	Dual Analog Switch	30.00
2	FT703	High Gain Amplifier	18.00
2	3N149	Low On-Impedance Switcr	12.00
2	3N150	Large Signal Switch	24.00
4	FT704	Small Signal Amplifier	18.00
2	3N145	Low Capacity Switch	8.10
2	3N146	Small S gnal Switch	12.00
			$\$ 160.10$

lower attenuation...

higher
 power

$8^{\prime \prime}$ dianeter flexible HELIAX ${ }^{\text {® }}$ coaxial cable

$8^{\prime \prime}$ Air dielectric HELIAX coax extends the advantages of flexible cable to very low attenuation or very high power applications that formerly required rigid transmission line.
Corrucated inner and outer copper conductors accommodate thermal expansion without the need for sliding contacts. End connectors mate with $61 / \mathrm{s}^{\prime \prime}$ EIA flanges and lock inner and outer conductors together to eliminate differential expansion.
The continuous, connector free cable assures freedom from the VSWR "spikes" associated with the periodic inner connectors of rigid line in a long feeder. Cable assemblies can easily be electrically tested on the reel to assureyour exact system performance. For complete details write Andrew Corporation, 10500 West 153 rd Street, Orland Park, Illinois 60462.

HJ 10-50 HELIAX COAXIAL CABLE

At 30 MHz
$.027 \mathrm{~dB} / 100 \mathrm{ft}$

300 kW

For SSB, 200 kW PEP with antenna VSWR of $3: 1$
2 Megawatts Peak

At 600 MHz
$.15 \mathrm{~dB} / 100 \mathrm{ft}$
58 kW
TV transmitter power ratings, 223 kW at Channel 4 and 70 kW at Channel 35

Washington Newsletter

July 8, 1968

Some at NASA rap apathetic attitude to parts failure ...

. . . but the agency sets crash program to improve bearings

Some NASA officials are openly critical of both industry and the agency itself for not moving to solve the many parts reliability problems that have been plaguing the space program. What's bothering them are such things as solders that crack, electrical connectors that don't connect, and tape recorders that conk out.
A number of concerned officials are calling for immediate action. But one experienced NASA manager says "it's pretty obvious that the agency's Office of Advanced Research and Technology is the one that should be carrying the ball." This official cites the apathy with which connector problems are met. 'We've been struggling with faulty and unreliable connectors for years. NASA knows it and the manufacturers know it, but neither will do a damn thing to correct the problem."

One example of the present attitude: a memo out of NASA headquarters in March stated that a meeting with industry on parts reliability was to be held as soon as possible [Electronics, April 1, p. 45]. The meeting has yet to take place.

There is one parts reliability problem, though, that will get some attention at NASA. A crash program to improve bearings will be conducted by Marshall Space Flight Center.

Problems with ball bearings have become increasingly severe in the Apollo program's gyros and accelerometers. Unless something is done, the guidance and control system may present a hazard in future manned space flights. "I hate to admit it," says one official involved in testing the gear, "but the performance of some instruments has been downright lousy and all because of ball bearings."

New law bugs firms making snoop gear

The Justice Department is getting worried inquiries from manufacturers of "bugging" equipment concerning the section of the recently enacted "safe streets" bill that forbids the sale of eavesdropping devices to any but government agencies. Businessmen are wondering, among other things, how they can sell or advertise such devices, and whether the rule applies to transactions already in progress when the law was signed June 19. These questions will probably have to be settled in court-or by an amendment-since the law provided for no grace period.

All Justice Department spokesmen will say is that this section of the law is "open to interpretation." They advise inquiring businessmen to find a good lawyer.
The law may eventually benefit the manufacturers. It's sure to open a larger "official" market since local law-enforcement agencies are being given broader eavesdropping rights than they had before.

Phone firms to stall foreign attachments despite FCC ruling

Although the FCC has ruled that "foreign attachments" can be tied directly into telephone-company equipment, there remains the question of when the first such tie-ins will be made. The commission's decision on an application by the Carter Electronics Corp. of Dallas on behalf of its Carterphone device was not entirely unexpected [Electronics, June 10, p. 80], though it does overturn the traditional telephone-company

Washington Newsletter

ban on such attachments.
Since the FCC did not establish any performance standards to insure that the attachments won't degrade phone systems' technical qualityleaving this to the phone companies themselves-there is no telling when the attachments will make their bow. The phone companies are expected to seek court injunctions against the attachments until standards are established, or to appeal the FCC ruling itself. Either move will delay any implementing of the decision.

Lack of funds may slow Navy missile

North Electric
borrows from past

to win Army award

The advanced surface missile system (ASMS) that's slated to replace the Talos and Standard missiles aboard 100 Navy ships during the 1970's is still proceeding on schedule. It made it through the Senate and is now awaiting House approval. But there's a good chance that the Pentagon's financial problems will force a stretchout of the program. "Right now, no one can say what will happen to the program," says one Defense official. "It's too early in the fiscal ballgame."

The multipurpose phased-array radar system has been modified somewhat to take advantage of technology developed for the Army's Sam-D, which is also facing a stretchout. The Navy expects to receive contract definition proposals in August from North American Rockwell, RCA, General Dynamics, Westinghouse, Boeing, and Sperry Rand. It wants to award definition-phase contracts by October and hopes to begin development early next year.

The North Electric Co. of Galion, Ohio, has gained a preeminent position in the electronic-switching portion of the military communications market by winning a contract for the Army's tactical automatic switching system. Chosen for the first operational test of the system is the Seventh Army in West Germany. North won with a bid of $\$ 4,115,000$.

The Army's new equipment will be similar to the Air Force's 407L tactical air control system, which uses electronic switching centers made by North [Electronics, May 27, p. 74]. The company was, until two years ago, a subsidiary of the Swedish telecommunications firm, LM Ericsson; its system is based on early Swedish developments in the field.

Addenda

Rumors are flying around Washington as the August deadline approaches for the report of the President's task force on telecommunications. One rumor making the rounds has the task force urging that all ultrahighfrequency television stations be taken off the air and put on cable. This action would clear the valuable 470-to-890-megahertz band, which could then be used, so the story goes, primarily for land mobile radio. But even if such a change was urged, insiders say it's unlikely it would be accepted . . . If cutbacks in nonessential military spending postpone follow-on orders for the Combat Service Support System (CS3) that IBM is building for the Army [Electronics, June 24, p. 145], the company could lose as much as $\$ 100$ million worth of business. This summer, IBM will deliver the last of the five CS3's specified in the initial order. Each $\$ 2$ million system with its $360 / 40$ computer enables field commanders to keep tabs on troops, equipment, and spare parts. The Army holds options on 44 additional systems. After indications that the Defense Department wouldn't permit the service to exercise them, the Army rounded up top officials last month for a demonstration of the CS3.

Sorensen High Performance QRC Series:

The QRC Series covers a wide target area without performa ce trade offs. Standard features include excellent regulation for voltage and current, fast response time ($\leq 25 \mu \mathrm{sec}$.), and surprisingly small size for power outputs to 1200 watts at ambent temperatures to $71^{\circ} \mathrm{C}$.

Some laboratory power sources offer high power levels, but are bulky and, by today's standards, are unregulated. Others offer excellent regalation specifications, but are inefficient and, if high-power levels are desired, become large heat sirks. Sorensen QRC's are high efficiency, compact power sources which have excellent performance characteristics with prices
starting at $\$ 325$. Seven models are available from stock, covering the range of $\mathrm{Q}-40 \mathrm{Vdc}$ at currents to 30 amperes.
Additional features resulting from the utilization of sophisticated regulation techniques include low ripple ($\leq 1 \mathrm{~m} V$ r.m.s.); output voltage and current resolutions of 0.01% and 0.05%, respectively; remote programming in bcth the voltage and current modes; remote-sensing and a solid state automaticcrossover indicator.
Contact your local Sorensen representalive or: Raytheon Company, Sorensen Operation, Richards Avenue, Norwalk, Connecticu: 06856, TWX 710-468-294C.

Today

one company is being: called the "production house of the industry" by

engineers who specify integrated circuits.

The name

 is getting around.
New complementary negative output series lets Helipot fill all your dc voltage regulator requirements positive and negative.

12 Outstanding features on the negative:

- $\ddagger 0.05 \%$ regulation
- short circuit prơof models
- small size-0.5 sq. in.
- low profile-0.170"
- up to 5 amps load current
- fully sealed
- -3 to -21 volts output range
fixed and adjustable
- hybrid cermet construction
- $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- up to 60 db ripple attenuation
- mil spec tested
- self-contained models, require no external components

Voltage Range	Positive		Negative	
	Fixed Output	Adjustable Output	Fixed Output	Adjustable Output
3 to 9 volts 9 to 21 volts 21 to 32 volts	Series 805 Series 801 Series 803	Model 806 Model 802 Model 804	Series 855 Series 851	Model 856

The price (1 to 9 quantity):

- $\$ 30.00$ - fixed output models
- $\$ 35.00$-adjustable output models
(delivery fron sectory stock)

Positive or negative, Helipot fills your complete voltage regulator requirements.
Shown here is Model 851 Negative output DC Voltage Regulator - one of Helipot's four negative, hybrid cermet thick film units with outputs from -3 to -21 volts. Also available are 6 positive models with outputs from +3 to +32 volts.

For complete information on our unique Negative and Positive regulators, simply circle the appropriate number on the reader service card-or contact your local Helipot Sales

Representative.

Beckman*

INSTRUMENTS, INC. HELIPOT DIVISION

$$
\text { FULLERTON, CALIFORNIA • } 92634
$$

INTERNATIONAL SUBSIDIARIES: GENEVA; MUNICH; GLENROTHES, SCOTLANO: TOKYO: PARIS: CAPETOWN; LONDON; MEX:CO CITY

Technical Articles

Lock-in voltmeters remove noise page 80

Avalanche-diode outputs go up page 96

A synchronous technique using a lock-in voltmeter removes noisc from a low-level signal. The voltmeter locks on to a synchronous signal and rejects the noise, which is nonsynchronous. This method is free from the zero-drift and zerocrror problems that plague a-c and cl-c techniques.

Techniques for improving heat dissipation and fabricating abrupt junctions have made avalanche diodes strong contenders for a place as microwave power sources. One recent development is an ultrasonic scrubbing method that makes it easier to flip-chip the diode. Another is a method of growing double epitaxial layers on a substrate to sharpen the clemarcation at the junction and thus increase efficiency at low currents.

Crystals store light and current page 104

Electronics

Though a way of exciting luminescence in certain crystals by mechanical tapping was discovered back in 1960, the causes and physical models have been explained only recently. It's now been shown that when class II-VI compound semiconductors are cloped with sodium and stimulated optically, their conductivity rises sharply and remains high. If they're then tapped, they give off light. Doped with lithium and stimulated thermally, the crystals also emit light when tapped. Applications for the large single crystals now being built include use as infrared detectors, image intensifiers, computer memories, and diode lasers.

Taking noise out of weak signals

The synchronous method of cleaning up microvolt or nanovolt transmissions with a lock-in voltmeter is free of zero-drift and zero-error problems

By Richard Brower
Brower Laboratories Inc., Westboro, Mass.

Noise voltages are present in all kinds of electronics systems and since they are in millivolts, they overpower weak microvolt or nanovolt signals. That means the engineer trying to pick a low signal out of the noise runs into trouble.
For example, the designer of a microwave antenna may measure false loads procluced by interfering signals. The biomedic may miss the faint wiggle of an electrocardiogram and misinterpret a heart condition, and a photo-optic engineer might see light when he shouldn't.
A technique, still too new to be widely used, combined with a lock-in voltmeter that is itself only a year old, eliminates the problem. Unwanted noise is rejected and only the weak signal remains.

Such a synchronous system locks in on the repetitive signal, rejecting noise and interfering frequencies. The lock-in voltmeter is equivalent to a narrowband tuned a-c voltmeter, but it has a very high Q that conventional tuning methods can't get. Moreover, tuning and frequency-instability problems that plague conventional high- Q tuned circuits cease to exist. The sync method is also free from problems of zero drift and zero error, which are among the major drawbacks of a-c and d-c methods [see "Comparing previous methods," p. 82].

Outlining the problem

In any application, one type of noise usually dominates the others. This primary source of noise may be any one of the following: random fluctuations of energy in the true signal; the signal detector; faulty connections (particularly the leads from detector to amplifier) or ground loops; the amplifier; mechanical vibration; magnetic or electrostatic pickup from the power line, nearby radio transmitters or oscillators; or switching transients from relays, motors, and other components in the system.

Before an engineer can understand how a lock-in voltmeter is able to extract a low-level signal from
such noise voltages, it is helpful for him to understand how noise is produced and what its effects are on an clectrical system. As an example, consider a photometric system-comprising a source, detector, amplifier and recorcler-used to measure a spectrum produced by the radiation source. To obtain the maximum resolving power of the system, the optical spectroscopist would often like to narrow his slits, but narrower slits mean fewer photons and less signal. Reduction of noise levels in this case may give an improvement in the quality of spectroscopic data.

Thus, aside from the optical and physical problems, the experimenter must also be able to solve difficult clectrical problems if his measurements are to be meaningful. Each type of racliation detector will have a different impedance, intrinsic noise, and operating environment, and for optimum results cach detector requires matched-impedance input circuitry. Also, the electrical signal is so weak that great care must be taken in designing the link between detector and amplifier.

The basic requirements for accurate measurements can be summarized as:

- Reduce zero drift and gain errors to a negligible point.
- Minimize system noise to that of the detector and the source.
- Check the performance of the whole system frequently.

The basic approach

In a synchronous system, a lock-in voltmeter is substituted for the amplifier and a chopper blade is inserted between the source and thermocouple detector.

When the chopper blade is rotated at a constant speed, the thermocouple detector produces a fluctuating voltage at the signal input. This is because light gets through the chopper blade only during

Synchronous system. Lock-in voltmeter, in coior, replaces amplifier in basic sync system; chopper blade is rotated at a constant speed between the source and detector. At input A, detector produces a square-wave voltage, with amplitiude proportional to radiant energy, superimposed on d-c and noise voltages.
every half-rotation; the system is automatically rezeroed once per cycle. The signal consists of a square wave-whose amplitude is proportional to the radiant energy-superimposed on a continuous background of $\mathrm{d}-\mathrm{c}$ and noise.
In the lock-in voltmeter, the d-c part of the signal is rejected, while the noise and square-wave component are amplified and fed into a transformer that supplies push-pull signals to the relay contacts. The breaker points and cam are adjusted to synchronize the relay drive voltage with the push-pull signals from the transformer. The positive halfcycles of the push-pull signals are mixed by the relay to produce a full-wave rectified output, with the noise superimposed on it. Random noise fluctuations, however, average out over successive halfcycles of the relay and thus don't produce a d-c output. To get rid of any remaining noise, the d-c signal is filtered by an RC network before being applied to the output terminals of the voltmeter.

Thus, when the synchronous system is used to make the output measurement the results are significantly better. For example, in an ideal case, there is complete freedom from zero error and greatly improved measurement accuracy. This is because the system measures only the instantaneous difference in the signal level between the light and dark cycles of the chopper blade. Thus, the system is automatically rezeroed once per cycle.

Designing the system

One of the main considerations in building the system is designing the voltmeter so it doesn't gencrate its own noise. This requires designing the detector in such a way that its characteristics will match those of the voltmeter.

Any detector may be represented by a signal generator with an internal series resistance, R. In a thermocouple, R may be as low as 2 ohms or as high as 1,000 ohms. In a photomultiplier tube, the series resistance R is theoretically infinite, because the photomultiplier is a constant-current device, and a

Waveforms. Analysis of signals as they travel through the system. Color in waveforms indicates desired signal.

Photometric system. Four basic components in any photometric system are a source, detector, amplifier, and recorder. Noise is introduced by the detector because the signal level at its input is much smaller than the noise voltage.

Comparing previous methods

Before the advent of synchronous technique, an engineer faced with the task of removing a low-level signal from one mixed with noise had only a d-c or a-c system to choose from-both have limitations. The d-c system has zero error and zero drift; the a-c system cannot be built with high Q's, and even if it could, would not be frequency-stable.

In a straight d-c measurement of the energy radiated by a source, an engineer might use a thermocouple or thermopile as a detector, because these exhibit a constant sensitivity regardless of wavelength. The thermocouple is connected to a high quality d-c microvoltmeter, and all necessary precautions are taken to prevent zero drift and errors due to contact potentials. An output-chart recording for such a system would indicate the thermocouple voltage when the source is switched on and off.

Even with the source off, a varying d-c error is produced due to the ambient temperature of the thermocouple junction. The true signal measurement is the difference between the ambient signal level and the total signal, and thus a d-c offset voltage must be subtracted from the signal voltage to correct for the zero error. As the engineer attempts to measure weaker signals, he finds that they are eventually lost in the fluctuating d-c zero level. The same conditions exist for photomultiplier tubes that produce an output current under dark conditions.

Since there is no correlation between the ambient temperature and the zero offset voltage used to buck out the error, most measurements with d-c systems are plagued with zero drift problems.

A-c system. If a conventional a-c voltmeter is used in place of the (l-c voltmeter to detect the chopped detector signal, it will also reject the d-c NO NOISE NOISY INPUT

D-c output. Even though the source is off, plot of the $d \cdot c$ output indicates an error voltage due to the ambient temperature of the thermocouple junction.
background signal. However, it will not give similar rejection of fluctuating noise components even if it is tuned to the chopper frequency with the same equivalent bandwidth as the lock-in voltmeter. This is because the a-c voltmeter produces a d-c output as the input noise level is increased, whereas the lock-in voltmeter does not produce a d-c output as the result of noise. It produces increased noise on the output; the average level remains the same.

The tuned a-c voltmeter, however, will rectify a portion of the noise to cause a shift of its output d-c level. This results in a serious measurement error.
NO NOISE NOISY INPUT

EFFECT OF NOISE
Shiftless. With the lock-in voltmeter in the system, no shift in output d-c level occurs.
shunt load resistor then establishes the source impedance. To determine the amplifier requirements for these radically different devices, it is helpful to examine the characteristics of a typical amplifier-a vacuum-tube amplifier stage or a field-effect transistor with its input shorted to ground.
For this circuit, $\mathrm{E}_{\text {ont }}$ fluctuates around an average zero level. If the noise voltage $\mathrm{E}_{\text {out }}$ is measured with an a-c voltmeter and divided by the gain of the amplifier, the equivalent input noise voltage is obtained under short-circuit conditions.
Because this noise voltage varies as a function of both frequency and bandwidth, it's customary to tune the a-c voltmeter to a 1 -hertz bandwidth and
plot the amplifier noise as a function of frequency. The noise amplitude increases at low frequencies because of flicker noise; such increases are characteristic of virtually all amplifier stages.
A pure resistance produces a Johnson noise voltage that can be calculated from the relationship:

Noise voltage $=$

$\sqrt{K} \times$ temperature \times bandividth \times resistance
where K is related to the Boltzmann constant. Because both temperature and bandwidth are usually constant, the noise voltage can be converted into equivalent noise resistance. This resistance, R_{s}, is plotted at the bottom of page 83.

This value of R_{X} appears as a resistor in series with the amplifier input, and should be as low as possible to hold down noise.

The matching formula

The big advantage in expressing an amplifier's performance in terms of its equivalent noise resistance is that this allows rapid evaluation of the system's performance. Mating the equivalent diagrams of the detector and the amplifier shows that if R_{S} equals the detector impedance, R_{S}, half the noise is due to the amplifier and half to the detector. The noise is defined as the square root of the sum of the squares. In this case, the noise is 1.4 times worse than that obtained with the best amplifier. If F_{x} is a third of the source resistance, the total noise produced by the amplifier is only $1 / 9$ that of the detector.
In any application, therefore, the proper matching conditions can be quickly determined by simply comparing the detector resistance with R_{x}. For best results, the detector should have at least three times the noise resistance of the amplifier.
Many detectors, including thermocouples, produce only Johnson noise, and the amplitude of the noise is proportional to the resistance of the detector. Lead sulphide cells and most other semiconductors generate additional noise because of the bias current that passes through them. Photomultiplier tubes are usually operated with enough anode voltage to produce a high current gain in the tube. Thus, the output shot noise of the photomultiplier is much larger than the Johnson noise of the load resistor.

Nevertheless, the most dependable and easily checked matching condition is achieved when the input amplifier design is limited only by the Johnson noise of the detector.

For every application, a chart showing equivalent noise resistance versus frequency should be obtained for the input amplifier. If this isn't available, the equivalent noise resistance should be measured.
If the detector impedance is in the megohm range, however, another problem arises. Many amplifiers produce a minute leakage current in the detector's resistance. When this resistance is made very large, the current can produce a noise voltage across the input that excceds the Johnson noise-and the system then isn't detector-noise-limited as it should be. The only remedy is to substitute an input amplifier that has exceptionally low leakage current. When an amplifier with both low voltage noise and low current noise is used, minimum noise is obtained with the greatest range of detector impedances.

Transforming the situation

When the detector impedance is lower than R_{N}, an input impedance transformer is required. If this transformer is properly selected, it can result in a system that is detector-noise-limited even with impedances as low as 1 ohm.

The following are important points:

* Step-up turns ratio of the transformer should be

Synchronous output. With the source off, no error voltage occurs.

Measuring noise voltage. With the grid shorted to ground, $E_{\text {out }}$ fluctuates around a zero level. If the value of $E_{\text {out }}$ measured with an a-c voltmeter is divided by the gain of the amplifier, an equivalent input noise voltage is obtained for short-circuit conditions.

Flicker noise. Plotting the equivalent noise voltage at several frequencies reveals that the noise amplitude increases at low frequencies because of flicker noise.

Johnson noise. Noise that enters the amplifier is due to the Johnson noise. In the equivalent circuit this can be represented as a voltage developed across the amplifier's equivalent noise resistance, R_{N}. If R_{N} is plotted against frequency, the designer can see that small values of resistance are necessary to match the detector and amplifier.

Mating circuits. If R_{s} and R_{s} are equal, half the noise will be due to the detector and half to the amplifier. However, the detector resistance should be three times the value of R_{N} to make the detector noise-limited.

$$
\frac{\mathrm{N}_{\mathrm{SEC}}}{\mathrm{~N}_{\mathrm{PRI}}}=2 \sqrt{\frac{\text { Equivalent noise } \mathrm{R}}{\text { Detector } \mathrm{Z}}}
$$

- Primary input impedance must be large enough to prevent loading of the detector at the lowest operating frequency. Because this input impedance is determined by the inductive reactance rather than the d-c resistance, the following rule applies:

Primary inductance (henrys) \geqq Detector impedance (ohms)

Frequency (hz)

- D-c resistance of the windings should be kept as low as possible, because it appears as a resistance in series with the amplifier or detector. This will cause increased Johnson noise and must be minimized by choice of the proper transformer. In any case, the resistance of the transformer primary winding should be less than a third of the detector Z. The secondary resistance should be less than a third of R_{N}.
- Secondary stray capacitance must be low enough to prevent loading of the detector at the highest operating frequency. This usually isn't specified, and it's hard to measure. This loading condition can be avoided by operating the transformer only up to its self-resonant frequency.
- Multiple magnetic-alloy shielding on the transformer should be used to prevent power-line hum pickup. If possible, the transformer should also have hum-bucking construction.
- Core material and size must be chosen to prevent saturation and nonlinearity on the largest signal level expected.
- The entire transformer should be vacuum-impregnated with epoxy and potted to prevent microphonics.

Impedance matching. If the detector impedance is lower than the amplifier noise resistance, a transformer is required to increase the detector impedance.

The transformer should be tuned to the frequency of operation. This is done by connecting an audio oscillator to the primary through a series resistance 50 times larger than the detector impedance. Then tune for peak amplitude while monitoring the secondary with a scope.

Semiconductors limit noise

Lead sulphide cells and many of the other semiconductor devices used in the system operate by varying their resistance in proportion to the level of incident radiant energy. Therefore, they are biased with a d-c current so an a-c signal voltage is produced when the radiant energy is chopped. Because the d-c voltage is connected through a resistor and capacitor directly to the high-gain amplifier input, an extremely quiet power supply must be used. Because noise levels as low as $1 \mu \mathrm{v}$ to $10 \mu \mathrm{v}$ can't be achieved with conventional solid state sup-

Semiconductor bias. Battery enables an engineer to vary the resistance of a semiconductor in proportion to the level of incident radiant energy. The battery also makes it possible to produce an a-c signal voltage when the radiant energy is chopped.
plies and because little current is required, batteries are preferred. They should be relatively new to guarantee a low noise level.

To help prevent stray noise pickup and groundloop errors, the leads must be kept short, and the battery must be grounded to the same point as the detector and amplifier. The load resistor should be a high-quality metal-film type for low noise, and the coupling capacitor should be a low-leakage type, hermetically sealed in a metal can for low microphonics.

Photomultiplier precautions

Photomultiplier detectors are current amplifiers whose gain is controlled by the high voltage across the dynode network. (A dynode is an electrode whose function is secondary emission of electrons.) Because the photomultiplier's output current remains constant regardless of the load resistor used, the signal voltage increases in direct proportion to the load resistance.

However, the Johnson noise voltage of the load

Differential amplifier. Multiple grounds between the source and amplifier chassis provide a good path for circulating ground-loop currents. The currents introduce an error voltage.
resistor increases only in proportion to the square root of the load resistance. Therefore, for a small signal current, the signal-to-noise ratio will be improved 10 times if the load resistance is increased 100 times.

The expensive 10 - to 15 -dynode tubes, however, have very high current gain, and amplify their cathode shot noise to the point where it's much larger than the Johnson noise of the load resistor. With these tubes, any value of load resistance 10 times larger than R_{N} will result in a system that is ideal-or limited by photomultiplier shot noise.

In the more inexpensive photomultiplier tubes, or in tubes with certain cathode surfaces, the high voltages on the dynode network must be kept relatively low to prevent additional noise due to ion bombardment of the structure. This limits the cur-
rent gain ahead of the load resistor. The largest possible load resistance- 10 to 100 megohms-must be used with these tubes.

With very large load resistors, the input amplifier must have extremely low current noise. It must also have very low input capacity to prevent shunting of the load resistor at higher frequencies. Usually, a cable with a driven shield or a buffer amplifier must be used so the system's gain will be determined by the precision load resistor rather than stray input capacity. For example, at a chopping frequency of 30 hz with a 50 -megohm load resistor, only $10-$ picofarad shunt capacity is permissible for a 10% loss of gain.

Eliminating ground-loop errors

In almost any low-level detection system, exces-

Isolation. By grounding and shielding all the inputs and isolating the main chassis output circuit, ground-loop currents are prevented.

Waveform comparison. Fundamental sine-wave component of a square wave is larger than the square wave.
sive noise and errors are most likely to be introduced at the detector or preamplifier. Differential input amplifiers have been used extensively in an effort to eliminate these problems, but they are only partially successful.

In one scheme, a $1-\mu \mathrm{v}$ signal source is grounded and connected to the differential input amplifier by means of a shielded pair cable. The chassis of the amplifier is also grounded, and any potential difference between the two grounds causes a current flow in the shielded cable between detector and preamplifier. This produces an error voltage, which is usually in the millivolt range.

If only 1 mv is assumed for the error voltage, the amplifier must have at least 1000:1 common-mode rejection to give less than full-scale error on the $1-\mu \mathrm{v}$ range. It must have $100,000: 1$ or $100-\mathrm{db}$ rejection to guarantee 1% measurement accuracy. This is virtually impossible to maintain with a differential balance control. Furthermore, the system now has the noise level increased because two identical input amplifiers are required instead of one.

Stray capacity problems

If the signal source is disconnected from ground to eliminate these ground-loop problems, stray capacities result that introduce unbalanced error volt-

Signal changer. Inserting a thermocouple in a system whose optical beam is larger than the chopper aperture results in a trapezoidal signal.

Charging signal. Shunting a high-resistance signal by stray capacitance produces an exponential waveform.
ages into the two amplifier inputs. Therefore, the common-mode rejection is a function of frequency, and only very low-frequency error voltages can be minimized with this technique.

If the circulating ground loop is broken by disconnecting the amplifier from ground, the results are even less successful, since the main power transformer has a large interwiring capacity to the power line-and the power line is always grounded. Furthermore, connection of an external data recorder, oscilloscope, or trigger in-out cables again causes ground-loop currents to flow.

Common-mode problems can be circumvented by grounding and isolating the main chassis output circuits. Differential input amplifiers can't maintain adequate common-mode rejection with nanovolt signals. In addition, a high-gain single-ended input amplifier is needed at the signal source to amplify the weak signal.

The circulating ground currents in this type of scheme flow through a separate ground bus rather than the signal-ground wires. This arrangement gives three main advantages:

- The differential preamplifier is no longer necessary, enabling a reduction of the input noise level.
- Common-mode error signals in the ground bus can be rejected by a factor of more than $1,000,000$ times-without requiring a balance adjustment.
- All leads of the oscilloscope and data recorder are referred to the system ground rather than the output ground of the lock-in voltmeter. Thus, any connection can be made without affecting measurement of the signal.

Calibrating the system

When making measurements of low microvolt or nanovolt signals with a lock-in voltmeter, many sources of error are possible, such as an adjacent synchronous magnetic field, improper grounding techniques, and strong r-f interference. Unfortunately, these errors are often difficult to detect, since the signal levels are well below the range of most laboratory oscilloscopes or other test equipment.

The best method of evaluating system performance and accuracy is to substitute a known signal at the input terminals for the true signal. Because errors become increasingly pronounced in the more sensitive ranges, the calibration signal must be applied on all ranges of the instrument.

If the calibration square-wave source is grounded to the main chassis of the instrument, the calibration procedure isn't likely to be reliable at very low
signal levels. This is because the synchronous voltage difference between the signal input and main chassis grounds is an appreciable part of the calibrator voltage. For example, it is easily possible to obtain an error of $10 \mu \mathrm{~V}$ or more across the face of an instrument from one connector to another.
The error can't be detected by connecting the preamplifier input to the calibrator output and then switching the calibrator off, because the calibrator may produce the ground-error current. This shows up as a percentage error, not a zero drift. If an instrument must be calibrated under these conditions, the preamplifier should be disconnected from the signal source and all grounds, then connected through a short cable to the calibration source.
If a remote preamplifier is used, the problem is even more severe. In such a case one must use a separate calibration source that isn't grounded anywhere except at the preamplifier input terminals.

Recovery. A lock-in voltmeter can recover either a high or low frequency, but indicates only half of the true energy.

This arrangement avoids errors by preventing the calibration ground currents from flowing in the signal ground leads.
The synchronous rectifier-output filter combination of the lock-in voltmeter recovers only the fundamental component of the signal and, to a lesser extent, the odd harmonics. This is true regardless of the signal waveform, especially because a tuned signal amplifier is usually put in the instrument to help reduce the system bandwidth.
The energy of the fundamental component isn't the same for different waveforms even if they have the same peak-to-peak amplitude. Therefore, it is necessary to take this factor into consideration in calibrating a system's sensitivity. The least error is obtained when the calibration and signal waveforms are similar.

Choosing a waveform

Signal waveforms from photodetectors are frequently square or trapezoidal waves, because it's easier to turn the radiant energy source completely off and on than to provide linear modulation. To calibrate a photometric instrument, therefore, a peak-to-peak square wave is much better than an rms sine wave.

Averaging. The instrument averages the energy of the signal regardless of its shape.

Because the fundamental sine-wave component of a square wave is larger than the square wave itself, the signal waveform is very important in cases of absolute energy measurement with a calibrated thermocouple. The thermocouple is illuminated with radiant energy that's cut off and turned on sharply, and its output is calibrated against an accurate square-wave voltage. If the thermocouple is used in a system whose optical beam is bigger than the chopper aperture, a trapezoidal signal waveform results. It has a different fundamental component than a square wave with the same peak-to-peak amplitude, and this difference causes a serious measurement error, on the low side.
When a signal detector is used to recover a frequency higher than its response time permits, or when a high resistance signal source is shunted by stray or cable capacity, the signal waveform at the bottom of page 86 results. A loss of energy again occurs, and the detector sensitivity has been changed. Thus, it must be calibrated under these conditions if it's to be used to measure radiant energy in absolute units.
The on-off duty cycle of the signal also determines its energy content at the fundamental frequency to which the instrument is tuned. A square wave provides maximum signal strength for a given amplitude, but the instrument averages the energy in any repetitive signal.

As the square-wave duty cycle to the area becomes unsymmetrical, the signal energy declines in direct proportion. It's important, therefore, to provide a stable duty cycle in the generator that produces the signal waveform, or otherwise the jitter in

Noise threshold. Typical value of Johnson noise is plotted for a given detector as a function of detector impedance. The choice of operating frequency is arbitrary, as long as the system has a $1 \cdot$ hertz bandwidth.

Calculating the effects of random noise

The following four-step procedure can be used to analyze the effects of random noise on a synchronous system:

Step 1. Connect a square-wave oscillator with exactly 1 -volt peak-to-peak amplitude to both the signal and sync inputs of a lock-in voltmeter. The controls for frequency, phase, and gain must be adjusted on the lock-in voltmeter so the center-zero meter deflects full-scale in the positive direction-with the meter calibrated to indicate 1 volt. Examination of the Fourier series for the 1 -volt peak-to-peak squarewave input shows that the fundamental sine-wave component is 1.27 volts peak-to-peak. Therefore: 1.27-volt peak-to-peak sine-wave input - 1 -volt output.

Step 2. Disconnect the sync input and switch the lock-in voltmeter reference channel to its own internal oscillator. The meter now swings back and forth slowly from positive to negative full-scale. This is because of loss of synchronization and a resultant beating between the internal and external oscillators. Under this condition, the internal oscillator of the voltmeter establishes the signal frequency, and the external oscillator becomes a steady-state noise gener-ator-since any frequency not synchronous with the signal is considered to be noise. Therefore:
1.27-volt peak-to-peak steadystate noise $= \pm 1$-volt or 2 -volt peak-to-peak output. This artificial steady-state noise doesn't produce a steady meter reading on a lock-in voltmeter.
Step 3. Since true noise has random variations, it produces additional fluctuations of the meter
over a period of time. The amplitude distribution of Gaussian noise is such that for 99% of the time, the true rms value is $1 / 5$ of the maximum peak-to-peak value. Therefore, if the steady-state noise is replaced by a random-noise generator, then $\frac{1.27 \mathrm{v} \mathrm{p}-\mathrm{p}}{5}$
$=0.26 \mathrm{v} \mathrm{rms}$ random noise
$=2 \mathrm{v}$ maximum $\mathrm{p}-\mathrm{p}$ output
Step 4. Therefore, for a system calibrated in terms of a square wave peak-to-peak, the true rms input noise is $1 / 8$ of the measured peak-to-peak output noise level.

If the instrument is calibrated in rms values instead, an additional correction factor of 0.45 rms, sine-wave, to 1 -volt peak-topeak square wave, must be applied. Therefore, for a system calibrated in terms of a sine-wave rms, the true rms input noise is 2/7 of the measured peak-to-peak output noise level.

Bandwidth. With the voltmeter slowly drifting from full-scale positive to full-scale negative as in step 2, the engineer selects a single section output filter with a 1 second RC time constant. Changing the frequency of the external oscillator very slightly in either direction causes the meter beating to become more rapid and the amplitude to decline. The effect may be plotted for a 10 -hertz center frequency as shown on page 89. The conventional curve of a tuned amplifier is produced; the system bandwidth may be measured as the frequency difference between 70.7% points. In this case, the difference is $\pm 0.16 \mathrm{hz}$ or 0.32 total bandwidth.

The half-power bandwidth that
was just derived, however, isn't the same as the true noise bandwidth, which is represented by the total area under the curve. This is, by definition, 1.57 times the bandwidth of the conventional curve. A 1 -second, single-section, RC time constant produces an equivalent noise bandwidth of 0.5 hz , so:

$$
\text { Equivalent noise bandwidth }=\frac{1}{2 \mathrm{RC}}
$$

Risetime. Reconnect the squarewave oscillator to the sync input of the voltmeter, and adjust the controls for full-scale meter deflection, as in step 1. Alternately short-circuit the signal input and then reconnect it to the oscillator. The d-c output may now be plotted during the signal off-on conditions, see bottom right-hand drawing on page 89.

A single 1 -second RC filter, curve A, gives a 10% to 90% rise time of two seconds. Substituting a double 0.7 -second RC filter, curve B, gives the same 10% to 90% rise time, but has the advantage of reaching the 99% point faster than the single filter. A second advantage of the double filter is its improved reduction of highfrequency noise in the output.

From these values, the following approximations may be made:
Single-section filter
10 to 90% rise time $=2.2 \mathrm{RC}$
Noise bandwidth $=\frac{1}{2 \mathrm{RC}}$
Double-section filter
10 to 90% rise time $\cong 3.4 \mathrm{RC}$
Noise bandwidth $\cong \frac{1}{41 R \mathrm{C}}$
pulse width produces noise and error in the output.

Choosing a preamp

When the background noise becomes 100 times or more greater than the signal, a preamplifier with extreme linearity and overload capability must be used so the highly amplified noise peaks can be averaged without introducing errors caused by driving the amplifier into its nonlinear region.

For other applications, the signal may be a millivolt or more obscured by noise. Here, the high-gain preamplifier is advantageous because the tuned main signal amplifiers can now accept the noisy signal directly-with the least noise overload.

Usually, the preamplifier has a much wider bandwidth than the tuned signal amplifiers in the main instrument. It is possible, therefore, to overload the preamplifier on thumps or high-frequency spikes. This can drive it into a nonlinear region without any visual indication from the meter, oscilloscope monitor jacks, or overload light of the main instrument, because these all monitor the signal waveform only after it has passed through the tuned amplifiers, and the distortion is no longer obvious. To prevent this error, the preamplifier bandwidth must be restricted as much as possible around the signal frequency, and the preamplifier output level should always be monitored on an oscilloscope.

System bandwidth. Bandwidth for output response is found by measuring the width of the curve at the 70.7% values; for this curve, the bandwidth is 0.32 hz .

Equivalent noise bandwidth. By definition, true noise bandwidth is 1.57 times the measured bandwidth. In this case, the measured bandwidth is 0.32 hz , so the noise is 0.5 hz .

OUTPUT NOISE

Rise-time measurement. Rise time of the d-c output response is the time it takes the curve to go from 10% to 90% of its maximum value. Rise time is the same for both filters, but the double-filter section reaches the 99% point faster than the single-filter section.

Equivalent noise bandwidth ${ }_{(h z)} \cong$

$$
10 \text { to } 90 \% \text { rise time }{ }_{(\mathrm{scc})}
$$

Regardless of the output filter used,

Tuned amp. The voltmeter usually has a tuned signal amplifier, and this provides an additional reduction in the bandwidth of the
instrument and increases the risetime. Therefore, the measured values of rise time and bandwidth won't agree with the theoretical values derived from the filter RC time constants unless the tuned amplifier has a relatively low Q or the filter time constant is longer than the frequency of oper-
ation. For a typical system in which signal amplifier $\mathrm{Q} \leqq 15$

$$
\text { Rise time }{ }_{(s \mathrm{se})} \leqq \frac{20}{\text { Frequency }(\mathrm{hz})}
$$

The over-all system bandwidth can always be determined by measuring the actual rise time and applying the rise-time formula.

The dominant noise source can usually be identified by examining the output of the relatively wideband preamplifier on an oscilloscope. To make sure that the lock-in voltmeter works properly, one should block the radiation of the detector and check for an accurate zero level. In particular, the phasing controls should be rotated to verify that they don't affect the output level without an input signal.

The number of on-off signal cycles that may be averaged over a period of time has a direct effect on noise reduction. As a result, a compromise must always be reached between the amount of noise that can be tolerated and the time available to make the measurement. For certain applications, a high-speed
response is the main requirement, and this limitation established the minimum signal-to-noise ratio.
In either case:

$$
\text { Output noise }=\frac{\mathrm{K}}{\text { Rise time }}
$$

Thus, the response time must be increased 100 times to improve the signal-to-noise ratio 10 times.

A quick check

Because the minimum noise level can never be less than the Johnson noise of the detector, system performance can be checked quickly by measuring the actual input noise level and comparing this with

Example. Designer plots a 3 -kilohm noise resistance and reads the value of noise voltage obtained where this line intersects 1 hertz. In this example, the value is 60 nanovolts. Then he checks the peak-to-peak value of the output chart to be sure that the value doesn't exceed 60 nanovolts.
the theoretical value for the detector Johnson noise.
The plot of Johnson noise, in nanovolts, that may be expected from a given detector at room temperature appears at the bottom of page 87. It doesn't matter what operating frequency is chosen, provided that the system always has a 1 -hertz bandwidth. Thus, a 100 -ohm detector, for example, will give approximately 1.3 nv rms noise in an ideal system.
However, measurement of the actual system noise level is more difficult than it appears, because most instruments aren't calibrated in noise bandwidth. This parameter must usually be determined for the system to be tested, and the input noise will appear as random fluctuations of the output. These fluctuations can be related to the Johnson-noise plot only if the correct conversion factor is known.

If the effects of random noise on a lock-in system are analyzed, however, a simple technique may be devised for determining both the system bandwidth
and a measurement of the noise level in terms of its peak-to-peak rather than rms value. This procedure is described on page 88.

The equivalent noise bandwidth may be measured in any system regardless of the type of tuned signal amplifiers or output RC filter used. This is done by keying a full scale signal on and off to determine the time required for 10% to 90% rise time to occur.

Determining noise bandwidth

Once a chart is developed for the system bandwidth in terms of peak-to-peak values, the following four-step procedure can be used to determine the minimum noise voltage:

Step 1. Switch the system gain to low sensitivity to reduce the noise level. Alternately remove and reapply a strong signal to measure the over-all system 10% to 90% rise time. If possible, select an RC time constant to give a one-second rise time, since this results in a one-cycle bandwidth-the standard specification for most detectors, amplifiers, or components.

Step 2. Block the signal to the detector and increase the system gain until the peak-to-peak noise level can be measured over a period of about one minute. Use progressively longer measurement times with rise times of less than a second.

Step 3. Check the system sensitivity to calibrate the output noise level in terms of noise voltage (peak-to-peak) at the detector.

Step 4. Plot the insertion of the measured noise voltage and bandwidth on the appropriate chart to obtain the value of equivalent noise resistance at the input for comparison with the actual detector impedance.

Illustrating the point

The ease of this procedure can be demonstrated by the following example: the instrument is considered to be noise-free and the input load is a 3 kilohm resistor. Using the peak-to-peak voltage curve, the designer enters the load and reads the noise voltage where the load line intersects the $\mathrm{I}-\mathrm{hz}$ line; in this case, the reading is 60 nanovolts. Then he checks the output plot to make sure that the peak-to-peak voltage doesn't exceed 60 nv .

If the detector is cooler than room temperature, it will have considerably less Johnson noise for a given impedance. The correction factor is:
equivalent noise resistance $=$
detector impedance $\times \frac{\text { detector temperature }\left({ }^{\circ} \mathrm{K}\right)}{297^{\circ} \mathrm{K}}$
Thus, if the detector were 3,000 ohms at a temperature of $4^{\circ} \mathrm{K}$, its equivalent noise resistance would decline to:

$$
(3,000) \frac{4^{\circ} \mathrm{K}}{297^{\circ} \mathrm{K}}=40 \mathrm{ohms}
$$

The measured noise voltage, therefore, should be reduced from the original 60 nv to about 8 nv peak-to-peak.

Circuit design

Designer's casebook

Voltage comparator is made with op amps and logic gates

By Walter Ellermeyer

U.S. Navy Electronics Laboratory, San Diego

A comparator for a voltmeter's automatic ranging circuits can be made with readily available logic circuits and operational amplifiers instead of the usual transistors and diodes. Using gates and op amps makes the comparator much easier to wire together. A feedback circuit to make the op amp a switch is also simple to assemble.

The two voltage limits of such a "high-go-low" comparator are independently adjustable. When an input voltage is applied to the circuit, one output will indicate whether the input is above the upper limit, another will indicate whether the input is between the limits, and a third will indicate whether it is below the lower limit.

The limits may be both positive, both negative, or one positive and the other negative. Because
the outputs are unipolar, high-speed relays and logic circuitry can be used.

If the input is 5.1 volts and the wiper of potentiometer R_{1} is set at the middle of its range, a positive 0.05 volt will appear at the negative input of op amp 0_{1}. Because the op amp is in an inverting configuration, its output is a negative voltage. This negative voltage must attain a magnitude of 10 to cause avalanche in the zener, thus holding the negative input at zero volts. The - 10 volts are also coupled out to a relay to turn on the high-voltage meter. Another inversion takes place in inverter I_{1}, and a zero voltage is presented to the A.VD gate.

The same process takes place in the lower half of the circuit. The zero voltage from the output of the inverter keeps the relay in the low-voltage meter circuit inactive, and the AND gate's zerovoltage output keeps the relay in the intermediatevoltage meter inoperative.

When the input falls below 5 volts, the wiper of R_{1} has a negative voltage that makes 0_{1} generate a positive output voltage. However, this output never gets above 0.8 volt, because zener D_{1} becomes forward-biased at this point, and current is

Comparison and assignment. ©perational amplifiers control the selection of meter scales in an automatic voltmeter. Zener diodes are usad as the op amps' feedback loopis thus they operate as switchess. The poten tiometers R_{3} and R_{2} deternine what input level causes the op amps to switch
drawn through it. This holds the negative input of the op amp down to a voltage close to zerothe desired condition when an op amp is used for switching. Obviously, the 0.8 volt at the output of 0_{1} can't energize the relay in the high-voltage meter circuit.
The 0.8 volt is inverted in the AND/OR gate I_{1}, and so -10 volts are presented to an input of the AND gate. The output of 0,2 has placed -10 volts at the gate's other input. These two inputs make the output of the AND gate -10 volts, and the relay in the intermediate-voltage meter system is energized. After inversion by I_{2}, the -10 volts at the output of 0_{2} becomes zero volts, thus preventing the relay in the low-voltage meter system from being energized.

There is a -10 volts at the output of 0_{2}, because a positive voltage at the input is inverted in the op amp.
An input voltage that's more negative than the -5 volt supply makes the output of both op amps zero. This keeps the high-voltage meter circuit out of opcration, places two different voltages - -10 volts and zero volts - at the input of the AND gate, and makes inverter I_{2} generate a zero output voltage. The two different inputs to the AND gate result in a zero output voltage and an inoperative intermediate-voltage meter circuit.
Resistors R_{3} and R_{4} provide hysteresis to the op amp to prevent any noise from triggering the circuit when the input voltage is close to either the supply voltages.

Transistor and zener protect series regulator

By Bob Phillips

Motorola Semiconductor Products, Phoenix, Ariz.
Before it blows the fuse in a power supply, a short in the load circuit usually has enough time to destroy the supply's regulating transistor. This can be avoided, though, by adding a responsive pro-
tection circuit to the regulator. Not only will this circuit prevent destruction of the regulator, but it will automatically return the regulator and the power supply to normal operation when the short is removed.
A short circuit in the output causes all the supply voltage to appear across zener D_{1}, the decibel R_{n}, and the emitter-base junction of Q_{2}. Since the input supply voltage is greater than the zener breakdown voltage of D_{1}, the diode draws reverse current and supplies base drive to Q_{n}. As Q_{2} a pproaches saturation, it robs Q_{1} of base drive and cuts that series pass transistor off.

Capacitor C_{1}, which was charged up to the output voltage before the short appeared then aids in turning Q_{2} on by discharging through the transistor's base. Although C_{1} discharges to a very low voltage when the regulator is in a short-circuited mode, Q_{2} remains in saturation because of D_{1} 's zener current.

The series pass portion of the circuit is conventional in operation and is designed so that its presents an output impedance of 200 milliohms to the load when supplying 50 milliamperes.

When the short is removed, the voltage across the output begins to rise due to the current that flows through R_{1} and the saturated Q_{2}. Since the base of Q_{2} is held to a low voltage by C_{1} and the emitter voltage is rising, the $V_{B E}$ of Q_{2} drops, causing this transistor to begin to turn off. Since the current through R_{1} is essentially constant and the current through transistor Q_{2} has decreased, some current is shunted into the base of Q_{1}, caus-
ing this transistor to begin to turn on.
As transistor Q_{1} supplies current to the load, the voltage across the output increases even more. This action eventually causes the reverse biasing of $Q_{2,}$, turning it off completely.

With Q^{2} off, normal control current is supplied to the base of Q_{1} and the circuit resumes normal of ration. Diode D_{2} prevents the emitter-base junction of Q_{2} from breaking over when the short across the output is removed.
Capacitor C_{2} enhances the a-c stability of Q_{2} but may not be necessary in all circuits.

The response of the protection circuit is limited by the storage and fall time of Q_{1}. For the devices and load conditions shown, it operates in approximately 1 microsecond.

When the power supply is operating into its nominal load- 36 ohms-the protection circuit is biased off and in no way affects the regulation. The zener D_{1} is a high resistance and Q_{2} is cut-off.

Diodes in a multivibrator lesson frequency variations

By James Teixeira

Sylvania Electronic Systems, Waltham, Mass.

The astable multivibrator is an excellent source of square waves-it's inexpensive to build and can be casily designed for operation over a wide frequency range. Unfortunately, because its frequency is sensitive to changes in temperature, it can't be used in applications where marked environmental changes are encountered. Compensating diodes added to the multivibrator, however, will nullify those transistor changes that cause frequency shifts. These diodes costs much less than the LC oscillators and clipping circuits usually used as frequency sources where marked temperature changes are encountered.

Half of the multivibrator's period-the width of one of the square waves-is related to the transistor and supply voltages by

$$
\mathrm{t}=\mathrm{RC} \ln \left[\frac{\mathrm{~V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{be}}-\mathrm{V}_{\mathrm{ce} \text { sat }}}{\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{be}}}\right]
$$

where $\mathrm{t}=$ half the multivibrator's period of oscillation

$$
\begin{aligned}
& \mathrm{R}=\text { 30.9-kilohm base resistor } \\
& \mathrm{C}=0.01 \text {-nicrofarad coupling capacitor } \\
& \mathrm{V}_{\mathrm{C}}=\text { transistor collector voltage } \\
& \mathrm{V}_{\mathrm{B}}=\text { transistor base voltage } \\
& \mathrm{V}_{\mathrm{be}}=\text { base-to-emitter voltage across the transis- } \\
& \text { tor } \\
& \mathrm{V}_{\text {ce(sat) }}=\text { collector-to-emitter saturation voltage of } \\
& \text { the transistor }
\end{aligned}
$$

This equation is valid only if the transistors have high gain and low reverse leakage current. Because the transistors aren't operated at their upper limit of gain, temperature changes won't affect the gain. And because the leakage current is so low, any changes induced in it by temperature will be infinitesimal. These two temperature-sensitive parameters can therefore be disregarded when the multivibrator is subjected to temperature variations. The use of metal-film resistors and mica capacitorscomponents whose values don't change with tem-perature-keeps the values of R and C constant.
Differentiating the equation with respect to temperature and then writing it in differential form results in the following

$$
\begin{aligned}
& {\left[\mathrm{dt}=\mathrm{RC} \frac{\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{be}}}{\mathrm{~V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{be}}-\mathrm{V}_{\text {ce(} \mathrm{gat})}}\right]} \\
& {\left[(V _ { B } - V _ { b e }) \left(d V_{C}+d V_{B}-d V_{b c}-d V_{\text {ce }\left(g_{a t}\right)}\right.\right.} \\
& \left.-\left(V_{C}+V_{B}-V_{b c}-V_{\text {ce(sat })}\right)\left(d V_{B}-d V_{b e}\right)\right]
\end{aligned}
$$

A squared term in the denominator has been re-
moved; because the numerator is eventually set equal to zero.

Because the difference between V_{B} and V_{C} is the negligible forward drop of the diodes D_{1} and D_{2} and because $V_{\text {be }}$ and $\mathrm{V}_{\text {ce (sat) }}$ are smaller than V_{C}, the first bracket in the above equation

$$
\frac{V_{B}-V_{b e}}{V_{C}+V_{B}-V_{b e}-V_{\text {ce(sat) }}}
$$

can be rewritten as

$$
\frac{\mathrm{V}_{\mathrm{B}}}{2 \mathrm{~V}_{\mathrm{B}}}=\frac{1}{2}
$$

By eliminating all the $\mathrm{V}_{\text {be }}$ and $\mathrm{V}_{\text {ce(sat) }}$ terms and making all V_{C} terms equal to V_{B}, the second bracket in the equation becomes

$$
\begin{aligned}
& {\left[V_{B}\left(d V_{C}+d V_{B}-d V_{b e}-d V_{\text {ce }(s a t)}\right)\right.} \\
&-2 V_{B}\left(d V_{B}-d V_{b e}\right)
\end{aligned}
$$

After multiplication and transposition, it takes the form

$$
\begin{array}{r}
{\left[V_{B} d V_{C}+V_{B} d V_{B}-V_{B} d V_{b g}-V_{B} d V_{\text {ce(sat) }}\right.} \\
\left.-2 V_{B} d V_{B}+2 V_{B} d V_{b e}\right]
\end{array}
$$

When like terms in this bracket are subtracted and
the bracket is then recombined with the first, the differential equation becomes

$$
d t=\frac{R_{1} C_{1}}{2} d V_{C}-d V_{B}+d V_{b e}-d V_{\text {ce(sat) }}
$$

Replacing dt with zero mathematically expresses what happens when the multivibrator's frequency doesn't change. All the terms that indicate the change in supply voltages are moved to the left of the equals sign, and those that indicate transistor voltage changes are kept on the right. This equation

$$
d V_{B}-d V_{C}=d V_{b e}-d V_{\text {cef(sat) }}
$$

shows which voltages compensate for temperature changes in the multivibrator.

In a transistor, $\mathrm{dV}_{\mathrm{be}}$ is usually $-2 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ and $\mathrm{dV}_{\text {ce }}$ (sat) 0.2 mv . This total change of $-2.2 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ in the voltages on the right-hand side of the equation doesn't affect circuit operation because there is a $3 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ change in the supply voltages on the left side. Because of the way the diodes are placed in the circuit, $d V_{\mathrm{B}}$ is $1 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ and $\mathrm{d} \mathrm{V}_{\mathrm{C}}$ is $2 \mathrm{mv} /^{\circ} \mathrm{C}$, giving the total of $3 \mathrm{mv} /{ }^{\circ} \mathrm{C}$. Over the temperature range from -10° to $90^{\circ} \mathrm{C}$, a 1 -megahertz multivibrator will have a frequency shift of only 10 hertz.

Of course a highly stable power supply should be used with the compensated multivibrator.

[^3][^4]
Fabrication advances boost potential of avalanche diodes

Improved methods of heat sinking and new techniques for creating abrupt junctions make the devices strong contenders for applications as power sources in the microwave range and broadband noise generators

By Harry L. Stover
Texas Instruments Incorporated, Dallas

Abstract

Design techniques that allow avalanche diodes to dissipate heat faster are boosting the devices' power levels and suiting them to some new microwave applications. However, the technology has a long way to go and only few companies have successfully applied these methods.

Avalanche diodes are operating at power densities of 10^{6} watts per square centimeter, a figure unprecedented in semiconductor device history. A typical diode must dissipate tens of watts of heat to perform well at such levels.

It's not surprising then that the most important advance in the field has been the flip chip, a design in which the junction side of the diode is bonded to a metal heat sink. This configuration permits heat generated at the junction to flow directly to the sink instead of through the thick semiconductor substrate.

With the employment of this and other techniques, including several for the paralleling of diodes and the control of diffusion profiles, avalanche devices can now generate up to 4.7 watts of continuous-wave power at 13 gigahertz with 6% to 8% efficiency. Noise performance has also improved because as current increases, avalanche noise decreases. To date, germanium diodes have delivered the best noise performance- 28 decibels at 6 Ghz , for example, when used in a reflection amplifier. Silicon diodes are about 10 db noisier, though this disadvantage is offset by the fact that silicon is a better heat conductor and is easier to reproduce. The noise performance of gallium-arsenide diodes is expected to be at least as good as that of germanium, but experimental data is too sparse as yet

for meaningful comparisons to be made.
The linewidth of avalanche-diode oscillators has been narrowed and noise sidebands close to the carrier have been suppressed by injection locking the devices to a quiet source, such as a crystal-controlled oscillator-multiplier chain. Flip chipping also improves linewidth because it lowers the diode's thermal resistance, cutting down on low-frequency noise. This kind of noise causes the most trouble in amplifiers and oscillators because it modulates the negative resistance and susceptance, introducing frequency-modulated noise into the microwave output signal.

Potential low-noise applications for avalanche diodes include use in linear negative-resistance reflection amplifiers, as local oscillators, and-when injection locked-in frequency- and phase-modulation amplifiers. On the other side of the coin, these diodes should also find widespread use as secondary noise standards. Not only are they smaller and more reliable than gas discharge tubes, but when operated at low currents they put out more noise over a broader band of microwave frequencies.

Although avalanche diodes are designed to perform at a particular frequency, they can be operated over very wide ranges. A diode designed for X band, for instance, can operate from C to Ku band.

Vital region

Very little improvement has been made in the original avalanche diode, a four-layer device called the Read diode. Potentially the best of the breed, it unfortunately is also the most difficult to fabricate. Most of the progress has been made with a

Flip chip. Bonding the junction side of avalanche ciode to heat sink has given biggest boost to performance.
three-layer mesa design, the $\mathrm{p}^{+} \mathrm{n}^{-} \mathrm{n}^{+}$diode.
The operation of both these structures is similar in that they develop a negative resistance caused by a 90° phase lag between the electric field and the avalanche-generated current and a 90 phase shift between the voltage and extemal current. The transit time of carriers across the drift region canses the latter phase shift [see "Time to start an aratlanche", p. 98].

Primary design parameters for a three-layer diode are thickness and doping of the n^{-}region and size of the cross-scectional area of the junction.

The n- region's thickness determines the midband oscillation frecuency. Thickness should be such that carriers travel across it in half a cycle. The region's doping is the major factor in the device's efficiency and should be of a level sufficient to cause full depletion near avalanche breakdown.

Diode power, thermal capacity, and impedance depend on the size of the junction area. The larger the area, the greater the power and the lower the impedance. However, the ability to dissipate heat doesn't increase with the junction area but rather with the junction diameter, previded the diode is designed for minimal thermal spreading resistance. That is, heat must be dissipated radially as well as straight down. It's thercfore preferable to mount several small diodes far apart rather than placing a single large diode on a heat sink.
These rule-of-thumb considerations in regard to doping and thickness hinge on having abrupt $\mathrm{p}^{+} \mathrm{n}^{-}$ and $n^{-} n^{4}$ interfaces and a uniform n^{-}region, con-
ditions rarely found in actual diodes because of the nature of the fabrication processes used.

Most ammon is the diffusion approach in which the n^{-}epitaxial layer is doped with boron to form the p region. During the time the cliode is held at the required high temperature for the boron diffusion, impurities in the $1 n^{+}$substrate can diffuse into the epitaxial n^{-}layer. This moves the $n^{-} n^{+}$interface awo from the physical substrate-epitaxial interface, thereby shortening the n^{-}region and creating a nonmiform distribution of impuritios in this region.
The resulting uneven or incomplete depletion hurts dicde cifficiency. Also, the distribution of the electric field in this kind of n^{-}region puts a higher voltage across the diode than would the field distribution in a region with an alorupt demarcation.

Specialized diffusion techmiques have been dereloped to reduce these effects, but silicon diffused diodes nevertheless rarely approach the ideal. Howwer, theye been around longer than other types and still cffer the highest powers and efficiencies.

Sowing and growing

In attempting to solve the out-diffusion problem, R.S. Ying and R.W. Bowers, rescarchers at the Hughes Aircraft Corp., have abandoned the conventional fabrication process and have instead formed p•n n silicon diodes by implanting boron ions in an n^{--}eptaxial hayer. This mothod, along with annealing, creates an abrupt $\mathrm{p}^{+} \mathrm{n}^{--}$junction because the temperatures recuired aren't high enough to

Regular curves. Tl's double epitaxial diode (right) shows the uniformity of breakdown of guard ring diode.
cause impurities to diffuse out of the substrate.
Provided high-temperature fabrication steps- oxidation, for example-aren't taken afterwards, the $\mathrm{n}^{-} \mathrm{n}^{+}$interface should be a sharp one. Because ion implantation is still a relatively new technique, the performance of diodes fabricated in this manner comes close to-but still hasn't reached-that of the best diffused avalanche devices.

The latest fabrication method, developed by H.M. Leady, the author, and E.A. Trantham of Texas Instruments, avoids the out-diffusion problem by growing n^{-}and p^{+}epitaxial layers separately on a laighly polished n^{+}substrate at lower temperatures over a much shorter period of time. The ability to
precisely control cpitaxial doping and thickness is an important advantage; doping profile measureneents indicate very abrupt doping interfaces.
Diodes fabricated by this double epitaxial process thus consist of physically separate n and p layers, and this raised the possibility of crystal imperfections introduced during deposition. It was also feared that the p and n layers might etch differently during the fabrication of the mesa structure. Any defective area would break down before the rest of the junction, producing a nonuniform avalanche.

To determine whether this was so, researchers compared the noise-versus-current performance of a double epitaxial diode to that of a low-frequency

Time to start an avalanche

Basic to the performance of avalanche diodes is the negative resistance developed by phase shifts introduced by the avalanche-process and by carrier transit time.

These diodes are reversed biased with a d-c voltage into junction breakdown. Once oscillations begin, the resonant circuit superimposes an a-c voltage across the diode. The electric field at the p-n junction is nominally in phase with the voltage across the diode except at very high currents.

When the field exceeds a threshold value, valence electrons are knocked into the conduction band, producing hole-electron pairs. Electrons and pairs then collide with surrounding atoms, generating more electron pairs by impact ionization. The d-c component of the electric field causes electrons and holes to drift in opposite directions, resulting in a net avalanche current.

Time lag. As the a-c component of the field changes, the avalanche-
generated current lags behind because it takes time for the ionization rate to increase and decrease. It's been shown in the case of small signals that the rate of change of the avalanche-generated current is proportional to the a-c field, that is, $\mathrm{di} / \mathrm{dt}$ is proportional to $\mathrm{E}_{\mathrm{a}-\mathrm{c}}$. Thus, the buildup of ava-lanche-generated current resembles the buildup of current through an inductor under an a-c voltage; the current lags the voltage 90°.

While the avalanche-generated carriers travel across the drift region, current flows in the resonant circuit. This external current peaks at the same time the peak number of carriers are halfway across the drift region. The length of the drift region is chosen so that the total carrier transit across it takes half a cycle. The peak external current then occurs a quarter of a cycle, or 90°, after the peak injected current.

Half circle. The net phase shift between applied voltage and ex-
ternal current is thus 180°, the sum of the 90° phase lags caused by avalanche buildup and transit time.

In the four-layer Read diode, avalanche is confined to a thin region, whereas it may occur across a large part of the n-region in a three-layer structure. Doping of the n-region in either type of diode should be light enough so that full depletion occurs before avalanche breakdown. Otherwise, efficicncy suffers because:

- Over part of a cycle, the electric field in the undepleted region drops below the value required for the carriers' saturation-limited velocity. This can cause a decrease in carrier phase coherence.
- The undepleted region acts as a nonlinear parasitic series resistance.
- The diode capacitances will vary with voltage and can cause a-c power to be wasted in parametrically generated sidebands and harmonics.
noise diode developed previously by a Texas Instruments physicist, R.H. Haitz. Using a guard ring -an auxiliary electrode that shapes the electric field across the junction to guarantee uniform breakdown -- Haitz achieved a uniform decrease of noise as current drops. The tests indicate that the double epitaxial diode has a very uniform avalanche breakdown.
Just as rugged mechanically and thermally as the diffused devices, double-epitaxial diodes aren't significantly affected by the ultrasonic bonding employed in Tr's Hip-chip process or by any other fabrication and mounting step. Prototype doubleepitaxial diocles have delivered up to 700 milliwatts of $\mathrm{c}-\mathrm{w}$ power at X band with 7% efficiency-figures that compare favorably with the performance values for diffused diodes of similar dimensions. And powers should increase with enlarged junctions and fabrication refinements.
A further advantage of these diodes is that they turn on with high efficiency-about 5% when run 50 muw or so above the oscillation threshold. As more d-c current is applied, efficiency climbs slowly to 7%. Diffused diodes, on the other hand, are generally very inefficient when run at low powers.

This behavior of the double epitaxial device at low power apparently reflects the full depletion of the n^{-}region at low currents because of the abrupt $\mathrm{n}^{-} \mathrm{n}^{+}$interface. Conversely, diffused diodes probably don't fully deplete at low input-power levels because doping isn't uniform near their $\mathrm{n}^{-} \mathrm{n}^{+}$interface; their undepleted region becomes smaller at higher powers, though, and efficiency therefore improves.

It should be noted that out-diffusion is a problem with silicon diodes because even the slowest dopant used with this material, antimony, moves rapidly out of the substrate at the high fabrication temperatures required. The gallium used as a dopant in germanium diodes, on the other hand, hardly diffuses out of the substrate at all during fabrication.

Beating the heat

It was engineers at Bell Labs who first successfully tackled the heat problem during diode operation by applying the flip-chip design. Their method -thermocompression bonding-involves joining the junction side of the diode under heat and high pressure to a gold-plated copper slug. Many other companies haven't had success with this technique because bonding at too high a temperature causes the silicon and gold to alloy together. And lowering the bonding temperature necessitates raising the pressure, thereby risking physical damage to the diode.

Texas Instruments has taken a different approach to Hip chipping. Their modified form of thermocompression bonding can be done at somewhat lower temperatures and considerably lower pressures. The TI technique involves the use of ultrasonic scrubbing; the gold contact on the silicon and the gold plated heat sink are rubbed together so that their surfaces "wet" each other-that is, make close molecular contact.

Ins and outs. Dots show efficiencies of about 9 Ghz for TI diodes while lines show projected efficiencies.

Flip-chip silicon diodes dissipate about threc times as much heat as do noninverted diodes. On the other hand, germanium and gallium-arsenide diodes dissipate up to 10 times as much heat when inverted because they're both relatively poor conductors to begin with. Therefore, flip chipping tends to remove silicon's heat advantage. While this is yet another plus for germanium, silicon continues to dominate the avalanche-diode field because its technology is more advanced.

Other methods of improving heat dissipation include bonding to diamond or silicon-carbide heat sinks and the paralleling of several diodes. The problem with paralleling is that it's difficult to get identical bonds and to match electrical characteristics. The general practice now is to bond a number of diodes to a sink, draw current through each, and then scratch off the ones that don't perform.

Deciding which of the diodes to retain is itself a major problem. Until recently, measuring a diode's thernal resistance was a complicated procedure and usually meant burning out the device. But TI has developed an accurate and simple technique that's based on the fact that thermal resistance just about disappears at high frequencies because of the avalanche mechanism.
At low frequencies, the diode's net series resistance consists of the thermal resistance and such other terms as the contact and space charge resistance. Therefore, subtracting the high-frequency
series resistance from the low-frequency series resistance gives the thermal resistance in ohms. The big advantage here is that this method can be used t) measure the resistance of diodes in circuits without destroying them.
As new techniques continue to be developed, knowledge of the avalanche transit-time mechanism is increasing. A recent study showed that the temperature-dependent current-density distribution in avalanche diodes becomes time dependent during pulsed operation. The pulses can become distorted because the oscillation frequency depends on current density. And since thermal time constants are typically tenths of microseconds, they can cause an appreciable delay between the bias pulse and the output r-f pulse.

Some experimenters have even reported an initial and a delayed mode during pulsed operation. At first, an annular region near the diode's edge conducts most of the current. But the rise in temperature due to conduction causes less current to flow in this region and more current to flow in the cooler center area. And this shift affects r-f output, frequency, efficiency, and noise behavior.

Score card

Today's avalanche diodes offer microwave power in a range from milliwatts to watts, efficiencies as high as 15%, and very large power-impedance products.

TI has obtained 5 to 10 watts of peak pulse power at frequencies from 6 Ghz to 15 Ghz from silicon $\mathrm{p}^{+} \mathrm{n}^{-} \mathrm{n}^{+}$diodes with diameters of 4 to 5 mils. Efficiencies are generally less than 6%, however. C.A. Burrus and L.S. Bowman of Bell Labs have reported the pulsed operation of silicon diodes over the millimeter range up to 340 Ghz ; typical figures were 15 mv at 100 Ghz and 1 mw at 300 Ghz .

Others have claimed higher power levels, but from diodes much larger in area and having, therefore, very low power-impedance products. Moreover, their results indicate that large areas of their diodes acted as parasitic shunt capacitances and resistances and didn't contribute to the r-f power output.

The highest $\mathrm{c}-\mathrm{w}$ powers so far have been reported by T. Misawa and C.B. Swan of Bell Labs, who used a 4 -mil silicon $\mathrm{p}^{+} \mathrm{n}^{-} \mathrm{n}^{+}$diode to produce 1.5 watts at 12 to 14 Ghz with efficiencies of 6% to 7%. Cooling this cliode and circuit in liquid nitrogen boosted power output to 2.7 watts and efficiency to 10.2%.

Swan recently mounted a silicon diode on a goldcoated diamond chip to achieve 2.7 watts $\mathrm{c}-\mathrm{w}$ power at 13 Ghz at room temperaturc. He has also paralleled five diodes to obtain 2.8 watts $\mathrm{c}-\mathrm{w}$ at from 13 to 14 Ghz , and has gotten 4.7 watts c-w at 13 Ghz from two paralleled diodes on a diamond chip.

Because of gallium arsenide's higher carrier mobility, the material is potentially more efficient than either silicon or germanium. But material and fabrication problems have generally resulted in uneven and noisy breakdown, poor thermal conductivity,
and low efficiency. As far as the state of this art goes, S.G. Liu of RCA has achieved 1 to 2 watts peak pulse power in Ku band with an efficiency of about 5%.
D.R. Melick of Cornell has reported 0.38 watts of pulsed power at 6.8 Ghz and an efficiency of 7.8% with GaAs diodes, and 1.3 watts with 3.6% efficiency.
The integration of avalanche-diode oscillators in microstrip circuits at TI has produced 0.7 watts of peak pulse power at 9 Ghz. But efficiencies to date have been only about 1% because of the difficulty of tuning these experimental circuits for maximum power.
Other TI experiments on $\mathrm{c}-\mathrm{w}$ Gunn diodes integrated on ferrite substrates show that impedances can be matched for maximum output by magnetic tuning. And efforts are under way to develop beryllia IC substrates for improved heat sinking.

Another road to avalanche

Several researchers have postulated a negative resistance from avalanche diodes at frequencies well below those required for the avalanche transit-time mode of operation. In an analysis of large-signal oscillations, Bernd Hoeffinger of Siemens suggested a feedback mechanism in which the space charge distorts the electric field at high current densities. The net result, he said, would be a low-frequency negative resistance. J.B. Gunn had advanced a similar theory back in 1956. And others, such as Bell Labs' Misawa predicted the same effects.
Hoefflinger reported oscillations from $\mathrm{p}^{+} \mathrm{nn}^{-} \mathrm{n}^{+}$ silicon diodes at frequencies where the transit angle, $\omega \tau$, is much narrower than π. At frequencies from 100 megahertz to 2 Ghz , power and efficiencies were very low. Hoefflinger's theory is consistent with TI's report of low-transit-angle oscillations from $\mathrm{p}^{+} \mathrm{n}^{-} \mathrm{n}^{+}$diodes; power levels ranged from 1 to 6 watts at from 2 to 6 Ghz , and efficiencies were near 1%. And TI recently got $\mathrm{c}-\mathrm{w}$ powers of 150 to 150 mw in a low-transit-angle mode at ultrahigh frequencies; efficiency was about 7%.
However, the theory doesn't account for the spectacular results reported by H.J. Prager, K.K. Chang, and S. Weisbrod of RCA, who claimed low-transitangle oscillations of several hundred watts at frequencies below 1 Chz with efficiencies from 25% t. 60% from silicon $\mathrm{p}^{+} \mathrm{n}^{-} \mathrm{n}^{+}$diodes. No one to date has duplicated these results.

When efficiency is that high it becomes a parameter itself, ruling out many otherwise feasible explanations of these results. A 60% level implies Class C operation, a condition in which external current flows over only a small portion of the cycle. But this, in turn, implies that the time delay causing the negative resistance cannot be due to the transit time of carriers travelling at saturation velocity across the depletion region, because external current flows continuously during such travel. Any explanation of these results would have to allow for efficiencies even higher than 60% because circuit and contact losses would have to be accounted for.

PROGBEES REPORI คเรงองระ COMPOSITE SUBSTRATES

AlSiBase Composite Substrates have demonstrated their ability to pack so much dependability and performance in so little space that our engineers have been asked for many new features in custom designs. We are continuing our work on many of these requests.
Some requests have been met. Here are a few examples of progress.
On most designs, AlSiMag 772 alumina ceramic with surface finish of 8 microinches (CLA) or better, can be used to provide a top surface suitable for thin film deposition. Via holes can be flush with the top surface. A standard array of via holes can be designed to allow a number of different circuits off the same basic composite structure.
Ground and voltage planes can be placed at any level and connections from other levels made to these planes wherever desired. Connections also may be made between signal planes located above and below ground or voltage planes by means of insulated passages through these planes.

Any number of planes can be stacked on one side or on both sides of the base substrate with inierconnections made through the substrate.

AlSiBast Eomposite Substrates permit the designer to stack electrically conductive patterns by planes. separated and insulated by layers of A.ISiMag alumina ceramic. All internal circuitry is thus hermetically secled. Eonductive in-erconnections join the metal planes wherever designed.
Sreater device concentration in the same surface area is sbtainec secause conductors can cross over anc jnder each other without destroying the electrical integrity. Since the interconnettions are encased in the ceramic -hey are secure agains unintentional shorts. Sherter electrica paths result in faster switching and lower electrical resis ance. Congested pattern areas may otter be relieved by routing a partion of the conductors to another plene.
A summar, shet on AlSiBase Composite Substrares is regularly revised to keep pace with advances in technique. It gives design criteria, design paramete-s and suggests c peferred method for dciwing and dimensioning inquiries on AlSiBase Comfosite Substrctes. A copy of the rewest sheets on Composite Substrates is available on request. Please use your business letterread.

Storing light and current in crystals

Ability to absorb energy and release it when tapped makes
some lithium- and sodium-doped semiconductors potentially useful as infrared detectors, optical memories, and other optoelectronic devices

By Yoon S. Park and Cole W. Litton

Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio

Heating or illuminating certain types of crystals gives startling results and may, as a technique, provide the basis for a new family of devices. Certain group II-VI semiconductor compounds doped with lithium store energy when heated, releasing it as a light pulse when they're mechanically tapped. These same materials doped with sodium and stimulated eptically not only flash when tapped but also when exposed to infrared light. Further, their electrical conductivity jumps appreciably after stimulation, and when they're electroded, they show negative resistance related directly to the intensity and duration of stimulation.

Although these so-called "tap effects" were first observed several years ago by Donald C. Reynolds and Douglas M. Warshauer of the aerospace research laboratories at Wright-Patterson Air Force Basc, it's only recently that the causes have been pinpointed. It's been established that the sodium and lithium impurities are responsible for the lightstorage capability, high conductivity, and controllable negative resistance. And it's now possible to grow large single crystals of sufficient quality to be used in experimental devices.

Of immediate interest is a design for an infrared detector that promises much higher efficiencies than can be achieved with conventional photoconducting devices. As the tap-crystal device is envisioned, a mosaic of sodium-doped crystals would first be stimulated by ultraviolet or blue light. Then, in its storage state, the mosaic would "look" at the reflected infrared signal from a target and typically give off a visible photon for every 10^{4} infrared photons. Because each visible photon potentially can generate 10^{6} electrons in a light-amplifying system, gains of 10^{2} from infrared to the visible are anticipated. The amplified image could then be seen on a television screen.

Other potential applications of tap crystals include lasers that theoretically could cover the entire range from infrared to ultraviolet, computer memories, tuned oscillators, negative-resistance amplifiers, and optical exposure meters.

The range of applications depends in part on the number of different group II-VI compounds, doped with group I impurities, that can be successfully grown. There's good reason to believe that any crystal in these classes will show tap effects. To date, though. cadmium sulfide, cadmium selenide, zinc sulfide, and zinc oxide, doped either with sodium or lithium, are the only tap crystals that have been grown.

They're produced by a vapor-phase technique; the compound and dopant are mixed together in a sintered powder, sublimed, and then condensed in an oxygen-free atmosphere at temperatures ranging from 900° to $1,500^{\circ} \mathrm{C}$. CdS powder containing 0.1 to 0.01% lithium hydroxide or sodium hydroxide produces crystals that are 100 to 500 parts per million lithium or sodium.

Flashing lights

For maximum effectiveness, tap crystals must be cooled to a temperature of at least $77^{\circ} \mathrm{K}$. Experiments show that sodium-doped CdS crystals flashed green and the ZnO crystal blue-green when exposed to infrared radiation or tapped in a direction parellel to the c axis, the crystal's hexagonal axis of symmetry. But when tapped perpendicular to this axis, the crystals flashed weakly or not at all. The sodium-doped crystals flashed up to several hundred times-once for each tap-before their stored energy was depleted.

The emitted light radiates in streamers from the point of impact along the direction of the c axis. As with ultraviolet emission in photo luminescent

Infrared trigger. Lithium-doped ZnS crystal flashes blue as hot soldering gun bathes it with infrared light.
materials, the light's clectric vector is polarized perpendicular to the caxis. Both types of luminescence are often called "edge emission" because light is emitted in the wavelength region corresponding to the forbidden gap energy (the absorption edge) of the crystal.

Lithium-doped crystals behave somewhat differently. Exposure to optical radiation doesn't cause them to store energy. But they do store energy if they're heated to about $200^{\circ} \mathrm{K}$ and then cooled to $77^{\circ} \mathrm{K}$. Tapping must be done in the dark because ambient light quenches emission. The gentlest tapping, sometimes only the rattling due to heating the crystal, is enough to induce emission. Lithiumdoped crystals flash very uniformly in all directions but a few taps exhaust their stored energy.

Because lithium-doped CdS crystals are also photoluminescent, it's possible to compare the spectra resulting from ultraviolet and tap excitation. Photographs that were taken with 10,000 ASA speed film through a fast spectrograph with a dispersion of 11 a per millimeter pointed up similarities and differences.

As the chart on the next page shows, both spectra peak at the same wavelengths beginning at 5,129 A.

Side effect

In discharging energy, the excited electron drops to the ground state, and gives off a photon. As it drops, it interacts with the crystal lattice (which is always in vibration) and gives up some of its energy to it, energy that is then released by the crystal in the form of phonons (quanta of thermal energy). The peaks thus correspond to optical transitions where no phonons are emitted, and to transitions at progressively higher frequencies when inereasing numbers of phonons are released.

Tapping causes optical transitions to take place throughout the bulk of the crystal, whereas ultraviolet radiation involves only the crystal's surface.

Apparently, the tap bulk effect aceounts for the strong and very narrow (about 40 A wide) poak at $4,900 \mathrm{~A}$; the ultraviolet spectra shows almost no energy at that wavelength. The intensity and sharpness of this peak has raised hopes that a CdS diode laser may ceventually be developed to operate at 4,900 A.

The pulse from a lithium-doped tap crystal has a long tail and sharp peak with a rise time of 10^{-8} seconds, a characteristic that could be useful in application involving high-speed impact photography.

Normal CdS or ZnO crystals grown from pure materials have resistivities of a few ohm-centimeters. Doping with lithium or sodium raises the resistivity to about 10^{4} ohm-centimeters, and the crystals become photoconducting. Electrical conductivity drops still further when the sodium- or lithim-doped erystals are cooled in the dark to about 10^{-11} mhos per centimeter. IIowever, stimwating the sodim-doped crystals with light increases their conductivity to levels as high as 10^{-3} mhos per centimeter.

What is particularly useful is that the raised conductivity in the sodium-doped crystal remains high when the stimulating light is removed-as if electrons were stored in the conduction band. Therefore, these tap erystals are also called "storage crystals." Their high concluctivity isn't affected by tapping because as soon as they emit light, they reabsorls part of it. Lithimm-doped crystals, on the other hand, don't show the storage property.

Cold storage

The stronger the light stimulation, the faster the tap erystal reaches maximum conductivity. These crystals earry the highest currents-and emit the strongest light pulses-at $77^{\circ} \mathrm{K}$. The current in CdS erystals slowly decays as temperature rises, and drops rapidly at $200^{\circ} \mathrm{K}$. In ZnO , the sudden drop

Tap colors. Spectra from mechanically-excited CdS tap crystal (color) and ultraviolet-excited crystal are similar. Most striking difference is the sharp peak at 4,900 angstroms in the mechanically-excited spectrum.
starts at $166^{\circ} \mathrm{K}$ althongh current jumps momentarily at four discrete temperatures $-126^{\circ}, 185^{\circ}, 206^{\circ}$, and $235^{\circ} \mathrm{K}$.

The amount of optical stimulation, as noted before, also determines the negative resistance characteristic of the sodium-doped crystals. Even though negative resistance has been found in some normal CdS erystals, this direct dependence of threshold voltage $\left(\mathrm{V}_{\mathrm{t}}\right)$ and mininum voltage $\left(\mathrm{V}_{\mathrm{t}}\right)$ on stimula-

TIME (20 nsec/div)
Quick flash. Pulse emitted by lithium-doped CdS crystal has sharp rise time and can be used in such applications as high-speed ballistics photography.
tion is unique to these semiconductor compounds.
When the sodium-doped crystal is electroded with arr indium cathode and sitver anocle, the voltage increases with current until a point is reached at which the indium clectrode injects electrons and the silver electrode injects holes, thereby causing the voltage to drop very sharply into the negativeresistance region as current increases. The absorption of the stimulating radiation by hole traps apparently increases their lifetime, thereby widening the negative-resistance region of the crystal. When a tap crystal was connected to a tank circuit, stimulated, and biased near the threshold voltage, for instance, it was possible to get stable oscillation at frequencies ranging from 60 hertz to a few kilohertz by tuming the tank circuit.

Although not enough work has been done with tap-crystal oscillators to compare them with, say, gallimm arsenide bulk-effect clevices, the ability to change oscillating frequencies by varying the level of alkali-metal cloping is promising.

Holes and traps

Explaining the light-storage effect requires the postulation of electron and hole traps-discrete en-
ergy levels within the "forbidden" region of the crystal. Stimulating a CdS crystal with a wavclength of the bandgap light produces hole-electron pairs; electrons in the valence band are sent up to a trap 0.14 electron-volts below the conduction band, leaving behind holes in a trap 0.75 ev above the valence band. Stimulating the same crystal with light of 6900 A excites electrons in the hole trap (which is also an clectron trap in the dark) leaving behind trapped holes.
Energy remains stored until tapping or infrared excitation frees a trapped hole, allowing it to recombine with a trapped electron. Thus, the trapped holes act as the storage medium in the crystal.
In lithium-doped crystals there might be traps near cnough above the storage level to pick up electrons stimulated out of storage as the crystal is being cooled. Mechanical excitation frees the trapped holes, which then combine with the electrons.
This explanation may be a bit oversimplified but it does describe experimental observations.
Since the optical bandgap in CdS is 2.50 ev (5000 X) and the threshold for optical stimulation in CdS is $6,900 \mathrm{~A}$, the hole trap level is therefore about 0.75 ev above the valence band. And 0.75 ev corresponds to infrared light of 1.65 microns, explaining why CdS crystals emit when exposed to this wavelength.
The optical stimulation threshold in ZnO occurs at $3,680 \mathrm{~A}$. The hold trap is thus about 0.065 ev above the valence band, corresponding to infrared light of 19 microns wavelength. Detectors can be built, therefore, to respond to infrared radiation of various wavelengths.

Mechanics of release

The details of hole release in tap crystals still aren't clearly understood. It seems, though, that the pyroclectric nature of lithium-doped CdS crystals plays an important part. Cooling the crystal gencrates an electric polarization; the cadmium side becomes positively charged and the sulfide side negatively, producing an electric field of about 10^{-7} volts per centimeter. Moving a conductor slowly toward one of the faces causes the crystal to spark, demonstrating the existence of the field. Tapping the crystal affects the field, which in turn frees the trapped holes.
The trapped holes in the sodium-doped crystals are released cither by the strain wave set up by the tap or a short-lived piezoelectric potential generated by the strain wave moving through the crystal as a dipole ficld. Experiments are now being conducted to clarify these theories.
Relating the release mechanism to the current storage property of sodium-doped crystals also requires further study. B.A. Kulp, K.A. Gale, and R.G. Schulze of the aerospace labs at VrightPatterson recently completed a detailed study of the high conductivity in stimulated tap crystals. Their experiments showed that carrier mobility in these crystals is anisotropic and is on the order of 1 to $10 \mathrm{~cm}^{2} /$ volt-second parallel to the c axis at

Threshold. Plot of electrical conductivity in sodiumdoped CdS tap crystal against reciprocal temperature shows a gradual decay of current as temperature rises until a sudden drop point is reached. Temperature range covers 115° to 300°.

Current curve. In sodium-doped ZnO tap crystals that have been thermally stimulated electrical conductivity increases, remaining high at low temperatures. But current drops sharply at about $167^{\circ} \mathrm{K}$ and picks up briefly at $176^{\circ}, 185^{\circ}, 206^{\circ}$ and $2,350^{\circ} \mathrm{K}$. Curve starts at $77^{\circ} \mathrm{K}$ and extends to room temperature.

Negative resistance. Oscillograph of the current voltage characteristic of a sodium-doped CdS crystal at $4.2^{\prime} \mathrm{K}$ shows negative resistance. Values of V_{1} and V_{m} are, respectively, $145 \vee(I=7 \mathrm{ma}$ and $75 \vee(I=29 \mathrm{ma})$. Tap crystals are unique because their negative resistance depends on the intensity and duration of stimulation.
low temperatures and from 10 to 30 times that perpendicular to the axis.

Carrier mobility in undoped CdS crystals doesn't vary in relation to direction and is very low at low temperatures. The findings indicate that electrons taking part in luminescence and conduction are in an impurity band rather than the conduction band.

On to the drawing board

To investigate the practical applications of tap effects, engineers have built a simple energy storage device consisting of a sodium-doped crystal in a container cooled by liquid nitrogen. After stimulation by ultraviolet light, the crystal is tapped on its side by a metal lever moved either mechanically or electromagnetically. As the crystal flashes, a photomultiplier senses the emission.

An elcetromechanical transducer-a piezoelectric crystal, for example-might also be used to tap the crystal. Lithium-doped crystals could be stimulated

Storage device. This simple arrangement could form basis of memories, image intensifiers, or light meters.

Energy model. Wavy arrows represent radiative transitions, solid arrows those of stimulating energy in this representation of tap storage mechanism.
thermally either by direct heating or by subjecting them to infrared energy of a very long wavelength.

Besides serving as an infrared detector, a mosaic of CdS tap crystals could also act as a frequency multiplier, taking in light at $6,900 \mathrm{~A}$, for instance, and converting to light of $5,200 \AA$. To vary the frequency of the emitted light, one would change dopants or select different crystals from the group II-VI family.

The potentially wide range of available colors has, of course, heightened interest in lasing diodes. But no one has been able to get these crystals in the form of diodes to generate coherent light. The major task now is to develop electrical contacts that can pass large amounts of current.
In yet another application, the sharp rise time of the crystals' emitted pulse could trigger a camera that might, say, photograph a bullet on impact. Shock waves generated by the speeding projectile would provide the necessary tap.

If any old evaporator is read this.

 good enough....don't

If you're tired of fighting tinker toy equipment, look into Sloan's radical approach to thin film production. You get:
270 accessibility-waist high automatic valving sequences top and bottom access to collar a
integrated deposition control dual bell-jar
capabilities plus horizontal or vertical positioning
resistance and EB sources completely fixtured.
Write for data on our new vacuum system.

SLOAN

Another new line of instruments from Lambda

The

0-20, 0-40, 0-120, 0-250 VDC
Up to 1.8 amps
Regulation: 0.0005\% plus $100 \mu \mathrm{~V}$ Ripple: $35 \mu \mathrm{~V}$ rms
AC Input: 105-132 VAC, $47-440 \mathrm{~Hz}$ (Ratings based on $55-65 \mathrm{~Hz}$)
With Remote Programing:
Accuracy- $0.01 \%+1 \mathrm{mV}$
Stability- $0.001 \%+100 \mu \mathrm{~V}$ for 8 hours
Temp. Coeff. -0.001% plus $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Constant current/constant voltage by automatic crossover For rack or bench use
Guaranteed five years
Prices start at \$285

Model	Voltage Range	MAX. AMPS AT AMBIENT OF I				Price 2
		$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	
LR-612-FM	0.20 VDC	1.8 A	1.6 A	1.3 A	1.1 A	$\$ 285$
LR-613-FM	0.40 VDC	1.0 A	0.9 A	0.75 A	0.6 A	285
LR-615-FM	0.120 VDC	0.33 A	0.29 A	0.25 A	0.21 A	285
LR-616-FM	0.250 VDC	0.1 A	0.09 A	0.08 A	0.07 A	325

1 Current rating apples over entire voltage range. Ratings based on $55-65 \mathrm{~Hz}$ operation. 2 Prices are for metered models. LR Series models are not available without meters.

OVERVOLTAGE PROTECTION For Use With	Model	Adj. Volt. Range	Price
LR-612-FM (0.20VDC)	LH-OV-4	3-24 V	\$35
LR-613.FM (0-40VDC)	LH-OV-5	3.47 V	\$35
Rack Adapter LRA-1 51/4" Height $\times 161 / 2^{\prime \prime}$ Depth (For use with chassis slides) Price $\$ 60.00$ Rack Adapter LRA-2 51/4" Height. Price \$35.00	Rack Adapter Blank LRA-2 Front Panels $51 / 4^{\prime \prime}$ Height. Model LBP-10 Price $\$ 35.00$ (1/4 rack size) Price $\$ 5.00$ Model LBP-20 (1/2 rack size) Price $\$ 10.00$		

CHASSIS SLIDES: To order LRA-1 with chassis slides order LRA-1-CS, and add $\$ 50.00$ to price.

OR choose from these other Lambda power supplies

LH-LK Series
Regulation: (line or load) $\mathbf{0 . 0 1 5 \%}$ or 1 mV
Ripple: LH models $\mathbf{- 2 5 0}{ }_{\mu} \mathrm{V}$ rms, 1 mV p. to p .
LK models $-500{ }_{\mu} \mathrm{V}$ rms
LH, LK

LH models - 105-135 VAC, 47-480 Hz LK models - 105-132 VAC, 47-63 Hz (LK7" package available in 188-238 V and 205-265 V only)

Size $5 \% \times 1 \omega^{\prime \prime} \times 10 \%{ }^{\prime \prime} \times 1 / 2$ Rack \cdot LPD Series

Modelis:	Voltage Range Per outpuid Outputs in series	I MAX AMPS AT AMBIENT OF: 11 , Per output Outputs in parallel				Prace ${ }^{3}$, US and Canada
	VDC	30 C	$40^{\circ} \mathrm{C}$	50 C	60 C	
LPD.421.fM	$0.20 / 0-40$	1.74/3.4A	1.5A 3.04	1.3A/2.6A	09 A 1.8A	\$325
LPD-422.FM	0- $\pm 40 / 0-80$	1.0A/2.0A	085A/1.7A	0.7A/1.4A	0 55A/1.1A	260
LPD.423.fM	$0 \pm 60 / 0-120$	0.7A/1.4A	06A, 1.2A	O 5a 1.0a	04a, 0.8a	325
LPD.424.FM	$0- \pm 120 / 0.240$	0.38A/0.76a	032A 0.64 A	0.26A 0.52A	0 20a/0.40A	325
(PD-425-fM	$0 . \pm 250 / 0-500$	0.13A/0.26A	0.124/0.24A	$011 \mathrm{~A} / 0.22 \mathrm{~A}$	0 19a/0.20a	350

Size $5 \% / 10^{\prime \prime} \times 4 \frac{1}{10^{\prime \prime}} \times 10^{\prime \prime} \quad 1 / 4$ Rack LP Series.

Model ${ }^{2}$	Voltage Range	CURRENT RANGE AT AMBIENT OF: 1				Price ${ }^{1}$
		$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	
LP. 410	0.10 VDC	0.2A	0.1 .8 A	0.1 .6 A	0.1.4A	\$129
LP. 411	0.20 VDC	0.1.2A	0.1 .1 A	0.1.0A	0.0 .8 A	119
LP-412	0.40 VDC	0.0.70A	0.0.65A	0.0.60A	0.0.50A	114
LP-413	0.60 VDC	0.0 .45 A	0.0 .41 A	0.0.37A	0.0 .33 A	129
LP. 414	0.120 VDC	0.0 .20 A	0.018 A	0.0.16A	0.0 .12 A	149
LP. 415	0.250 VDC	0.80 mA	0.72 mA	0.65 mA	0.60 mA	164

Size $51 / 10^{\prime \prime} \times 41 / 0^{\prime \prime} \times 15 \frac{1}{\prime \prime \prime} 1 / 4$ Rack LH Series

Model:	Voltage Range	CURRENT RANGE AT AMBIENT OF:				Price:
		$30^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	60 C	$71 . C$	
LH-118A	0-10VDC	0-4.0A	0-3.5A	0-29A	0-2 3A	\$180
LH-121.A	0-20VDC	0-2.4A	0-2.2A	0-1.8A	$0-1.5 A$	170
LH-124A	0-40VDC	0-1.3A	0-1.1A	0-09A	0-0.7A	170
LH-127A	0-60VDC	0-0.9A	0-0.7A	0-0.6A	0-0.5A	185
LH-130A	0-120VOC	0-0 50A	0-040A	0-035A	0-0.25A	240

Size $5 y_{14}{ }^{\prime \prime} \times 8 y_{i} \times 15 \% " \quad 1 / 2$ Rack \cdot LH Series

Model'	Voltage Renge	CURRENT RANGE AT AMBIENT OF: 1				Price ?
		$30^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$71^{\circ} \mathrm{C}$	
LH-119A	0-10vDC	0-9.0A	0-8.0A	0-69A	0-5 8A	\$289
LH-122A	-20VDC	0-5.7A	0-4.7A	0-40A	0-33A	260
LH-125A	O-40VDC	0-30a	0-27A	0-23A	0-19A	269
LH-128A	0-60VDC	0-2.4A	0-21A	0-1.8A	0-1.5A	315
LH-131A	0-120VDC	0-1.2A	0-09A	0-084	0-06A	320

Size $5 \frac{1}{10^{\prime \prime}} \times 8 \% 0^{\prime \prime} \times 15 \% " 1 / 2$ Rack \cdot LK Series

Model2	Voltoge Range	CURRENT RANGE AT AMBIENT OF: '				Price ${ }^{\text {a }}$
		$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60 . \mathrm{C}$	$71^{\circ} \mathrm{C}$	
LK-340a	0-20VOC	0-8.0A	0-7.04	0-614	0-4.9A	\$330
LK-341A	0-20VDC	0-13 5A	0-11.0A	0-10.04	0-7.7A	385
LK-342A	$0-36 \mathrm{VDC}$	0-5.2A	0-5.0A	0-4.5A	0-3.7A	335
LK-343A	0-36VDC	0- 9.0A	0-8.5A	0-7.6A	0-6.1A	395
LK-344A	0-60VDC	0-40A	0-3.5A	$0-3.04$	0-2.5A	340
LK-345A	0-60vDC	0-6.0A	O- 5.2A	0-4.5A	O-4.0A	395

Size $51_{4 \prime \prime} \times 19^{\prime \prime} \times 161_{2 \prime \prime}^{\prime \prime}$ Full Rack - LK Series

Model'	Voltage Range	CURRENT RANGE AT AMBIENT OF: 1				Price ${ }^{2}$
		$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	60 C	$71^{\prime} \mathrm{C}$	
LK-350	0-20vDC	O-35A	0-31A	0-26A	0-20A	\$675
LK-351	0.36vDC	0-25A	0-23A	0-20A	0-15A	640
LK-352	0-60voc	0-15A	0-14A	0-12.5A	0-10A	650

Size $7^{\prime} \times 19^{*} \times 18 \frac{1}{2} \quad$ Full Rack \cdot LK Series

Model ${ }^{\text {2 }}$	Voltage Range	CURRENT RANGE AT AMBIENT OF: 1				Price ${ }^{3}$
		$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$71^{\circ} \mathrm{C}$	
LK-360-FM	0-20VDC	0-66A	0-53A	$0-804$	O-40A	5995
LK-361-FM	0-36VDC	0-48A	0-43A	0-36A	0-30A	950
LK-362-FM	$0-60 \mathrm{VDC}$	0-25A	$0-24 \mathrm{~A}$	0-22A	0-19A	995

Overvoltage Protection Overvoltage protection up to 70 VDC is available as a plug-in accessory with all LR, LP and LPD models and for LH and LK models with Suffix "A".			
For models with this VDC	Specify this OV Accessory	Adj. Volt Range	Price
$0.10,0.20$	LH.OV-4	3.24 V	\$35
$0.36,0.40$	LH-OV-5	3-47VDC	35
0.60	LH-OV-6	$3-70 \mathrm{VDC}$	35
Overvoltage protection up to 70 VDC as a built-in option for full rack LK models. To order, add suffix (-OV) and add $\$ 90.00$ to price of models LK-350-352; add $\$ 120.00$ for models LK-360-FM -362 -FM.			

NOTES:

1 Current rating applies over entire range. Ratings based on 57.63 Hz operation.
2 Prices are for non-metered models. For metered models, add suffix ".FM" and add $\$ 10$ to price for LP, \$30 for LH and LK.
3 Available metered only,
4 For chassis slides for full-rack models, add suffix "CS" and add $\$ 60$ to price for $51 / 4$ " LK models, $\$ 100$ for $7^{\prime \prime}$ LK models.
5 All subrack models in this ad fit rack adapters described on previous page.

Ali specifications and prices subject to change without notice.

Write, wire, or call to order direct, for information, or for new Lambda Power Instruments catalog. LAMBDA Electronics Corp. 515 Broad Hollow Road, Melville, L. I., New York 11746 , TEL. 516-694-4200, TWX 510-221-1897.

What's Hewlett-Packard doing in the volume components business?

Lowering the price of Hot Carrier Diodes to...

Because we found a new way to build them: combining the superior performance of a hot carrier diode with the best features of PN junction diodes, eliminating the cat whisker of earlier designs, and using low-cost assembly techniques. The result is the HP 2800 Hot Carrier Diode with silicon temperature capabilities and turn-on equal to germanium. You get 100 picosecond switching speeds, 70 volt breakdown, low turn-on voltage at 410 mV at 1 mA , and operating/storage temperature of $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. Ideal for RF and digital applications, or for mixing, detecting and sampling. Prices: 10004999, 55¢; 100-999, 75ф; 1-99, 99ф. Get the specs from your local HP field engineer, or write Hewlett-Packard, Palo Alto, Calif. 94304; Europe: 54 Route des Acacias, Geneva.

MM 505 DUAL 32-bit static register 4 pieces at $\$ 30.00^{*}$ each $\$ 120.00$ MM 582 DUAL digital multiplex switch 4 pieces at $\$ 8.00^{*}$ each $\$ 32.00$ 8 pieces \quad TOTAL $\$ 152.00$
100 to 999 price

A drum memory as reliable as this would cost at least $\$ 563.91$. Our kit delivers now for $\$ 152.00$. For more on this, write National Semiconductor Corporation, 2975 San Ysidro Way, Santa Clara, California 95051. Or call (408) 245-4320.

General Electric

introduces

the smallest

50mw, 2-amp

relay on the

 market
Tiny, powerful

and turned on with the touch of a feather
This extra-small, 2-pole, 2-amp relay needs only the slightest tickle to operate- 50 milliwatts. With this impulse, it performs standard high-level output switching from low-level, microelectronic input.
Sizewise, it's only $0.32^{\prime \prime}$ high, $0.31^{\prime \prime}$ wide, and $0.61^{\prime \prime}$ long. And, it meets or exceeds all MIL-Spec environmental and electrical requirements of relays many times larger.

Because of its low operate power and size, this relay is ideally suited for microelectronic applications. Its low profile lets you stack many more circuit boards in the same space.

Like all General Electric 150-grid relays, this new 50 mw type is available with a number of options to suit your individual application. You have a choice of coil ratings for a wide range of system voltages, a choice of popular mounting forms and header types.

If this new relay tickles your fancy, contact your General Electric Electronic Components Sales Engineer. Or, write for Bulletin GEA-8589, Section 792-43, General Electric Company, Schenectady, New York 12305.

GENERAL ELECTRIC

Our new LM-105 is not only a switching regulator, linear series regulator, shunt regulator, or current regulator, but you can even use it as a temperature controller. It plugs into the LM-100 socket for powering a few IC's at low current levels, or current can be boosted up to 10 amps with external power transistors.
The 105 features 0.1% regulation, which is 10 times better than the LM-100, as well as 1% temperature stability. Input voltage has been increased to 50 V , and output voltage is adjustable from 4.5 V to 40 V .
We've got a wealth of voltage regulator application information on the full temp LM- 105 (and its $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ companion, the LM-205) as well as the LM-100. 100-999 prices are $\$ 40$ for the LM-105, $\$ 24$ for the LM- 205 , and $\$ 30$ for the LM-100. For your free wealth of information, write National Semiconductor Corporation, 2975 San Ysidro Way, Santa Clara, California 95051. (408) 245-4320.
National Semiconductor

for versatile research, development, and training NEW HEATH MODULAR

delivery begins in September for any requirement-

Heath "805" Series Digital Instruments begin at $\mathbf{\$ 9 4 0}$

The First Truly Universal Digital Instruments
struments
The sos Series Perform All These Funa

- Frequency Mete
- Events Counter Voltmeter (optional feature
- EU-805A includes all functions; EU-805D does not have DVM function)
- Ratio Meter
- Time Interval Mete
- Period Meter
- Voltage Integrator

The 805 Features
The 805 Features:

- 6 digit readout plus over-r
- 0.05\% Accuracy As DVM
interval, and period modes
- Count mode has electronic start \& stop as well
- Time Base Stability better than one part in 10^{6} $\left(15^{\circ}\right.$ to $55^{\circ} \mathrm{C}$.)
- TTL Integrated Circuitry
- Compatibility with Heath 801 Digital System Modules for education and instrument development
- Versatile circuit cards can be used to make many instruments
Input Comparator Features
- Two Independent Input Comparators
- Automatic Mode Triggering
- Rear Panel Comparator Outputs
- Switch Selection for AC or DC Coupling or Signal Disconnect
- Four Levels of Input Attenuation
- Includes Provisions for Independent use of Inpu Comparator B
- Input Comparator B may be controlled at rear panel to provide Main Time Base Input
Readout Features
- Front Panel Display Memory Switch
- Front Panel Accumulate Switch
- Extended-Range Varıable Display Time
- Rear Panel Input for External Time Standard
- Rear Panel Access io Clock/Scaler provides Standard Time intervals in Decades from 1 microsecond to 10 Seconds. or Continuous microsecond
- Voltage to Frequency Output available at Rear Panel when operating in any mode
Events Counter Features
- Either Manual or Electronic Gating for Start \& Stop - Events may be scaled in Decade Steps to 10 6 digit display permits count to 10^{3} withou over ranging
- Input Pulse Resolution better than 50 Nanoseconds.
Frequency Meter Features
- Frequency Measuring Capability better than 12.5 MHz
- Two-Channel Input for Frequency Comparison or A/B Ratio Measurements
- Resolution at Max. Gate Time $0.1 \mathrm{~Hz} \pm 1$ Count
- Time Bases, 1, 10.,100 microseconds; 1, 10, 100 milliseconds; i \& 10 seconds

Digital Voltmeter Fearures:
High Accuracy Integrating Type

- gigohms ($5 \times 10^{\circ}$) Input Impedance on separate 1 v. Range (10 microvolt resolution)
-1.10.100 \& 1000 Volt Ranges - 10 megohm input impedance
- Selectable Gating/Integrating Times ... 0.1. 1 10 Seconds
- Automatic Polarity Indication
- 10\% Over Range Capability

Time Interval Meter

- Either Manual or Electronic Gating for Start and Stop
- Switch Selection for minimum. Time Resolution 1.10.100 microseconds; 1.10.100 milliseconds; \& 10 seconds
- Resolution +1 Count

Period Meter Features

- Either Manual or Electronic Gating for Start \& Stop - Switch Selection for minimum Period Resolution 1.10. 100 microseconds; 1,10.100 milliseconds: 1 \& 10 seconds
- Resolution ± 1 Count
- Two-Channel Input for Period Comparisons or A 13 Ratio Measurements
Ready For September Delivery
Assembled EU-805D, as above less DVM function. (EU-805-12 may be added later if desired at Assembled EU-805A, Universal Digital Instru
A
ment with DVM ment with DVM

HEATH COMPANY, Dept. 580-04
Benton Harbor, Michigan 49022
\square Please Send Free EU-805 series Spec. Sheet
\square Please Send Free EU-801 System Modules Spec. Sheet
\square Please Send Free Circuit Card Spec. Sheet
Name
Company
Address
City

FREE SPECIFICATION SHEETS

EU-805A/D UDI \$pec. shett contains complete details, photos, prices and explanations of all functions and controls.

EU-801A MDS Spec. Sheot contains complete details of each module, explanations of all circuit cards and prices.

Circuit Card spec. Sheot contains complete details and specs. on each circuit pius card prices.

DIGITAL \& ANALOG SYSTEMS

Systems, Instruments, Modules, or Circuit Cards

Heath '" 801 '' Series Digital Analog System Modules at $\$ 435$

A Unicue Design-it-Yourself Approach To Digital "Analog Instrumentation. The 301 Has Evervithing You Need To linvestigate Digital Circuitiy. Design Your Own New Circuits. Or "Custonize" For Specific Functions As A Discrete Digital Instrument
Generai Features

- Fartory Assembled Digital Pcwer Module. Binark Information Module. Digitaf Timing Module. and Plug-In Circuil Cards - each available separately if cesired
- Uniqua System of Circuit "Breadboarding" for experimentation . fast, eisy solderless con
nexions
- TTegrated Circuis
- IL- ntegrated Circuit Logic
- Biegra time base
- Birary readout (optional digntal readout avail able later)
- Integral Power Supplies
- Acrepprs Circuit Cards from Heath 805 Universal Digital lastrument
Now You Can Investigate
- Counter Circuils
- Scaling Circuits
- Gating Circuits
- DVM Circuits
- Adders \& Subtracters
- Integrators
- Dignal-Analog interface
- Special Circuite of your own desigin

Custom-Design Your Own

- Counters
- Frequency Metars
- Precision Timere.
- Frequency Standards
- Operational Amptifier Systems
- Digital Analog Interfaces
- And Hundreds of other Digital \& Analog in struments
Recommended System (EU-801A as illas trated) Includes
EU-801-11 Digital Power Module
Supphes all voltages necessary to operate the sys tem. distributed ty 6 pin connector. (15 15. -170 v.) Power also avallable on front paner at octal socket. at toD of circuit cards, and at banana plugs. $\$ 75$.
EU-801-12 Binary Information Modul.
10 neor lamps and driver circuits; lanips light with application of $\log c$ 1. 8 SPJT switches and 2 SPDT spring returi switches for binary iom on inputs. Connections for switches and lamps avend able at top of circuit cards. $\$ 50$.

EU-801-13 Digital Tining Module
Contans function generitor and three controls for use with monostable and :omparator circuils. Generator range, 0.1 Hz to 10 kHz , variable in 5 decade steps. External capachter position for other frequencies to 100 kHz . Guiputs: complementary square wave, complementary pulse, and ramp. 560 . EU-801A Circuit Cards
Included are four Nand gate cards, two duai J-K flip floos. one dual moroztable multivibrator, Jne relay card (contains 7 relays), one comparator/ voltage to frequency converter card, one dual inline cards card, two mulnple connector/blank p cards. one operatona minpliter card wh 1200 megg miom s10. 540 . ringe from $\$ 10$ to $\$ 40$. (Ncle : many cards from the EU 805A U.D.I, can be used
EU-800-RC Three-Module Cabinet
Holds any three modules: has elevating supporl to allow unit to be thled back for access to frort panel controls or forwaro when "patching" circuit cards. $\$ 20$.
Ready For September Delivery Assembled EU-801A Eystem (as described above) (prices of individual modules total $\$ 468$ if purchased separately).

Unique, Hexible, extendable This new Heath Malmstadt Enke Modular System provide:: the first instrumentation oackage with the means to achieve virtual'y everything you wish ia digitat \& analog circuitry. To investigate existing digital circuitry, just plug in the components requited . . .t. design your own special digital circuitry. just plug in the components required ... If you wish to design your own digital or analog-digital instrument, agan it's just a matter of plugging in the components ... it's al here in this new system. Factory assembled cucuit cards pug into the chassis. Each card has a special connectur toard on top which features soldertess connectors to accept ordinary hookup wire and component leads for fajt assembly of special circuits (several hundred patch wires are insluded). Integrated circuits using TTL logic provide state-of-the-ait electronics. This systeur is also open-ended ... other motules and circuit cards will be avalable as leghnology changes so the system can be expanded to more and more applications. Information - Application Manual is included

Recording transducer output with the new. ultra-sensitive Honeywell 560. Fully portable. it converts to rack mounting with ease.

This new Honeywell 560 is recording at $10 \mu \mathrm{v} /$ inch-- 10 times the sensitivity of any other X - Y recorder!

Our design philosophy on $X-Y$ recorders boils down to this: first, you make one that doesn't break down. Then you give it state of the art electronics.
So, we borrowed the best mechanical concepts we developed a while back in our 550 recorder and incorporated them in the new 560. We used the same rugged. die-cast aluminum bezel and base, as well as the tough molded back cover that seals out dust and dirt. even when the recorder is rack-mounted. For smooth, quiet operation, we used the same precision-ground stainless steel carriage axis rods. ravel-free braided stainless steel drive cable, and snap-fit pen with non-clogging polished sapphire tip.
We topped off the mechanics with a sealed follow-up system, a maintenance-free fan vacuum system. and a standby position for easy paper loading. The result is an instrument built to last a long. long time. We know this because we subjected the 550 to more than 4.8 million cycles of constant operation before we designed the new 560 . Its reliability exceeded our wildest expectations!

Now for the electronic sophistication: the 560 has ranges from $10 \mu v$ to 50 v per inch, permitting you to record just about any parameter you'll encounter without the need for additional signal conditioning equipment. It features accuracy of $\pm 0.15 \%$, and its time base is accurate to $\pm 1 \%$ of full scale. Frequency response is DC to 5 Hz ; input impedance is two megohms on all ranges. with provision for potentiometric operation of the nine most sensitive ranges. A solid-state chopper and all silicon solid-state circuitry mean high performance over a wide ambient temperature range. The years-ahead $560 \mathrm{X}-\mathrm{Y}$ recorder is another example of how Honeywell's broad line, backed by local sales and service, can provide the precise solution to your instrumentation problems. For full details on the new 560. call your local Honeywell Sales Engineer, or write: Honeywell, Test Instruments Division. P.O. Box 5227. Denver, Colo. 80217.

Honeywell Honeywell engineers sell solutions

What is small, has stripes, and shrinks boards?

New CORNING*

 C3 Resistor.

16 transistors 8 capacitors 52 C3 resistors Actual size

16 transistors 8 capacitors
52 RL07 resistors Actual size

Now you can get $1 / 8$ watt in a clean lead length of $.150^{\prime \prime}$ and diameter of $.066^{\prime \prime}$ maximum. That means a 35% reduction in board size for these eight Schmitt trigger circuits. Plus the proven stability of glass tin oxide film construction.
Put more circuit in the same space.
Or put the same circuit on a smaller board.
For specs and samples, write to Corning Glass Works, Electronic Products Division, Corning, N. Y. 14830.
CORNING
ELECTRONIOS

NEW EG\&G PICOAMMETERS
 A full line of low-level current measurement instruments

All EG\&G Picoammeters include features others only talk about. Like the unique combination of precise accuracy and rapid, accurate calibration capability without resorting to calibration charts or resistor measurement. And, the all solid-state design, including a low level MOS FET input stage. What's more . . . you'll find an

EG\&G Picoammeter to meet your needs and your budget. That's because EG\&G offers the most complete line of low level current measurement instruments available. From high precision units or automatic ranging units, both complete with digital readout, to general purpose, man-ually-operated bench top models.

HERE ARE THE SPECIFICS ON FOUR OF THE MOST POPULAR EC\&G PICOAMMETERS.

Model ME-1035, Precision Picoammeter - for Standards or Calibration labs. Current measuring range of 10^{5} amps to $10^{-12} \mathrm{amps}$ with $10^{-15} \mathrm{amps}$ resolution. All solid state design with MOS FET input, temperature controlled feedback resistors for added stability, pushbutton range control, adjustable summing point voltage and current offset monitor, pushbutton controls for rapid internal calibration requiring no external standards or sources. Digital readout. Price: $\$ 3,945.00$

Model ME-930, Digital Picoammeter - for general lab work and automatic digital systems. Current measuring range of 10^{-11} amps through 10^{-2} amps full scale in 10 decade steps. A full digital picoammeter with automatic range changing capability and automatic polarity selection. All solid-state design with MOS FET input, remote function control and optional printer drive, digital readout of level and range. Price: $\$ 3,575.00$

Model ME-920, Automatic Range Changing Picoammeter - for general laboratory use and production line testing. Current measuring range of 10^{-11} amps through 10^{-2} amps in 10 decade steps. An automatic ranging picoammeter with remote function capabilities. All solid-state design, with MOS FET input and automatic polarity indication. Price: $\$ 2,435.00$

Model ME-705, General Purpose Picoammeter - for general laboratory use. Current measuring range of $3 \times 10^{-13} \mathrm{amps}$ through $10^{-2} \mathrm{amps}$ in 22 steps (11 de cades with X 3 meter multiplier). A general purpose, manually operated bench-top picoammeter. All solidstate design, with MOS FET input stage. Price: $\$ 560.00$

For more complete details on the more complete line of EG\&G Picoammeters, contact your local EG\&G Products Division representative. Or, write EG\&G Inc., Laboratory Products Division, P.O. Box 755, Goleta, California 93017.

"Daddy told me, 'Order all of your power supplies from Acopian, my boy. They'll ship any of 62,000 different kinds in just 3 days!'"

"On my own initiative I decided to order from someone else."
"Six weeks later the power supplies had still not arrived."
"I now have the milk run from Roxbury to Hoag Corners."

The new Sony/Tektronix Type 323 Portable Oscilloscope weighs 7 lbs , is $41 / 4$ inches high, $81 / 2$ inches wide and $105 / 8$ inches deep. It operates from self-contained batteries for up to 8 hours. With this compact, lightweight instrument, a user may move from one remote application to another without concern for power connections. The Type 323 is especially attractive for maintenance of remote communications equipment, mobile communications equipment, aircraft instrumentation, marine instrumentation, production control equipment, etc. Batteries are rechargeable overnight (16 hours) by simply plugging the instrument into an AC outlet. The built-in charger will provide a fresh power source for use the next day. The Type 323 may also be powered from DC, 6 V to 16 V , up to 4.5 watts, and 90 to 136 VAC or 180 to 272 VAC, 48 to 440 Hz , up to 14 watts.

This solid-state portable oscilloscope also provides performance!

Bandwidth is 4 MHz at $10 \mathrm{mV} /$ div deflection factor. For low signal level applications, $1 \mathrm{mV} /$ div at 2.75 MHz is provided. Sweep rates are $1 \mathrm{~s} / \mathrm{div}$ to $5 \mu \mathrm{~s} / \mathrm{div}$, extending to $0.5 \mu \mathrm{~s} / \mathrm{div}$ with the X10 magnifier. A single control knob permits automatic or manual level sweep triggering, positive or negative slope. With no input the automatic trigger mode provides a bright baseline reference at all sweep rates. A 6×10 ($1 / 4$-inch div) internal non-illuminated graticule permits parallax free measurements.

The Type 323 is designed for severe environments. Performance specifi-
cations are maintained within an operating temperature range of $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. It also passes shock, vibration and humidity tests which simulate environments "portable" instruments are likely to encounter.

Your Tektronix Field Engineer will demonstrate the performance of the Type 323 in your application at your convenience. Please call him or write: Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97005.

Type 323 Portable Oscilloscope (including batteries)
$\$ 850$
U.S. Sales Price FOB Beaverton, Oregon

Probing the News

Computers

Federal libraries cast a long shadow

Electronic systems being pioneered by Government institutions to cope with an information flood may lead to nationwide communications networks

By Paul A. Dickson
Washington regional editor

Washington wags have long claimed that the principal product of the nation's capital is paper. Only those civil servants already louried under mountains of reports, periodicals, and publications of all sorts would deny that this is an overstatement, but the fact remains that Federal agencies do place a tremendous importance on printed material.

Kecping track of all this paper has always been difficult, but now, in an age when information is proliferating at an alarming rate, the jol, has lecome monumental. And the institutions charged with the task-the Library of Congress, the National Library of Medicine, the National Arehives, the National Agricultural Library, and the Smithsoniam Institution-are turning to electronies to cope with the flow and to provide access to stored information.

The trend to electronies is recent, but, as with the generation of printed matter, the pace is stepping up. New projects and systems are being announced regularly. And changes in the practices of the national repositories are causing corresponding shifts in the general fiekl of the library arts. Local libraries are beginning to do parallel work on their own.

New role. Paul R. Reimers, director of the information services office of the Library of Congress predicts that over the next few years there will be massive development in the field of automated libraries, meaning a sizable new
market for computers and other electronic hardware. He notes that librarians are already adding terms like "network," "regional center," and "automated clata relay" to their working vocabularics. "A basic change is taking place," Reimers declares. "Automation is transforming the library from a storehouse to a communications center."
Reiners believes that the major advances being made by the Fecl-
eral libraries will be followed on the local level, and that the Washington programs should therefore be viewed as harhingers of a widespread changeover. He cites a mecting held last year by the Library of Congress for computer manufacturers. Library officials told the industry what they were planning in the way of services, and manufacturers are now working on software to implement such services

Versatile. The Library of Congress' machine readable catalog format can be used to produce such items as the book catalog seen at left, catalog cards, and worksheets with searching slips seen at the right.

A single pair of wires, or a leased telephone line, can carry the oudio signals for
a complete control system.

REMOTE

CONTROL For inaccessible areas or
mabile installatians, a radio transmitter and receiver system can carry the
signals. SWITCHING WITH AUDIO SIGNALS

contactless resonant reed encoder / decoder $.395 \times .620 \times 1.100$

An audio tone can be generated by an electronic oscillator or resonant reed encoder circuit, then transmitted by wire or radio. The tone activates a resonant reed relay to perform a control function.
Bramco reeds permit over 100 selective control frequencies within the 67 to 3000 Hz . spectrum. This is assured by: (1) the narrow response band-width of about 1% for decoders and (2) the high accuracy of Bramco reed encoders ($1 / 10$ of 1% of design frequency).

A big advantage of reeds in control switching is that they are ideally suited for simultaneous and sequential coded tone systems. The actual number of control functions possible in such a system is virtually unlimited. For example, over 3300 individual control functions are possible with only 16 frequencies coded sequentially in groups of three.

Compared to other types of tone filters, resonant reeds are small and inexpensive. They give more control functions per spectrum, per size, per dollar.

If you work with controls that select, command, regulate, or indicate, you should know how it can be done with audio signals. We custom design and stock a broad line of encoder/decoder components and modules. Bramco also custom designs LC filters from 0 to 200 KHz .

For literature write Bramco Controls Division, Ledex Inc., College and South Streets, Piqua, Ohio, or call 513-773-8271.

BRAMCO CONTROLS DIVISION LEDEX INC.
College and South Streets, Piqua, Ohio 45356
throughout the country.

Medical pioneers

The National Library of Medicine, a unit of the National Institutes of Health, has pioneered li-brary-based information-retrieval systems. In 1964, the library began operating a computer-based system called Medlars (for medical literature analysis retrieval system). Medlars has had a strong impact on the library sciences-and on clectronics as well-for it's the first system to employ a high-speed electronic phototypesetter.

The library is continually expanding Medlars. Earlier this year, for example, the main library in Bethesda, Md., was electronically linked through IBM 1050 equipment to two remote information centers at the University of Colorado in Boulder and Harvard University in Cambriclge, Mass. And last month, the library announced the award of a $\$ 2$ million contract to the Computer Sciences Corp. of Los Angeles for a threc-year program to upgrade and expand the system. In addition, the library plans to tic an IBM $360 / 50$ computer into the new version of the system.

In handling its basic task of providing fast access to the medical and biological literature of the
world, Medlars currently performs three major functions:

- It compiles and prints the Index Medicus, a monthly listing of medical references from journals throughout the world. An average issue contains references to about 14,000 new articles.
- It draws up bibliographies for doctors upon demand. In other words, when presented with a complex medical question, the system will procluce a list of citations regarding the subject from the world's literature.
- It turns out recurrent biblingraphies for medical specialists. A monthly is produced on rheumatism, for instance, and a quarterly index is prepared on artificial kidneys.

In addition, Medlars is cranking out an increasing number of card lists and catalogs of medical literature from its base of some 750,000 references.

The expanded system, to be called Mcdlars 2, will be, claims Computer Sciences, "the most sophisticated total management system yet developed for third-generation computers." Officials at the library are a bit more modest in their assessment, maintaining only that Medlars 2 will be the most advanced library-based computer sys-

Congressional records. Tape drives are integral part of computer center at Library of Congress, which is working on machine readable catalog format.

Getting the word. The National Library of Medicine, which pioneered library-based data retrieval systems built around computers was also the first to use phototypesetting equipment like that shown above.
tem in actual operation.
On-line library. The library's project officer for Medlars 2, Barbara Sternick, explains that the new system will be implemented in two steps. By the middle of next year, the system's special medical sub)ject headings vocabularly will be expanded to include new terms and some "dictionary" words; this last will permit addressing in terms close to conversational English. Another first-level project will be to adapt the system to print out 150 word abstracts of medical articles.
In the second stage, which will be completed in 1970, the system will go to on-line operation. Remote cathode-ray-tube displays will bo used for reviewing material, and om-line indexing, cataloging, and corrections will be done by keyboard operators. Searches for material will be conducted on-line. and the system will "remember" all queries to speed retricval the second time around.

Modules containing data on the rapidly expanding fictls of drugs and chemicals, and the system will get the capability to produce graphic images-chemical structure diagrams, for example.
The complete Medlars 2 will control the flow from the moment a work is ordered, through the nor-
mal library functions of indexing and cataloging, to its appearance as a reference in a library publication or as the object of a special search. The system will be busy; library officials predict that Medlars 2 will contain more than 2 million items of information by 1972, and will process more than 26,000 bibliographics a year.

Offspring. In assessing the effect of Mecllars on electronic libraries generally, Scutt Adams, deputy director of the National Library of Medicine, observes that "Medlars computer tapes are already being used in medical libraries in Sweden and Britain," and that Japan, Canada, Australia, France, and Germany have expressed an interest in acquiring the tapes. Also, the World Health Organization of the United Nations is having two of its technicians trained in Medlars techniques. Adams further states that Medlars development has helped foster such computer-based systems as the National Parkinson's Disease Information Center at Columbia University, the Brain Research Information Center at the University of California at Los Angeles, the Sensory Perception Information Center at Johns Hopkins University and the Visual Perception Information System at

if we haven't made it . . . nobody has asked for it

We make not orly a wide variety of standard cable constructions, including all the standard RG/U Coaxial cables, but also a tremendous number of special constructions to customers' specifications. These special Flexlead cables are precisely engineered to meet the exacting requirements of high and low temperatures, corrosive atmospheres, repeated flexure, abrasion, excessive corona, weathering, and many other severe conditions. Whatever your requirements, Markel will make a cable to meet them. In fact, the chances are good that we've already made one like it . . . and that could save you both time and money! Your letterhead request will bring a copy of our complete Flexlead catalog.

L. FRANK MARKEL \& SONS, INC. Norristown, Pa. 19404 • Phone: 215/272-8960 INSULATING TUBINGS AND SLEEVINGS HIGH TEMPERATURE WIRE AND CABLE

You've got it made with Cambion ${ }^{\text {® }}$ Logic Assemblies

Difficult digital application? Noisy environment? Need high speed or a large variety of functions? Ask for CAMBION DTL, TTL or HTL logic assemblies. CAMBION gives you more functions per card and all cards are compatible.

Choose from over 200 assemblies with high package densities and 70 -pin input/output capability. That's twice the number of any competitor, and CAMBION assures you the lowest cost per function. The complete line includes power supplies, card files, drawers . . . available off the shelf, in the widest variety.
For more information on CAMBION's IC assemblies, contact: Cambridge Thermionic Corporation, Digital Products Division, 447 Concord Avenue, Cambridge, Massachusetts 02138. Phone: (617) 491-5400.
(1) REG..u.s. Pat. off

Standardize on CAMBION
21,541 guaranteed electronic components

... the National Library of Medicine is studying networking concepts...

Harvard University:

Adlams notes that the research and development arm of the National Library of Medicine is studying networking concepts with an (eye to establishing a national net. work of computer-based operations. The staff, he says, is looking into automated problem solving and such advanced concepts as remote browsing and high-resolution visual transmissions.

Leading the way

Of the several automation projects now being conducted by the Library of Congress, the one that will have the most immediate impact on libraries throughout the U.S. is called Marc, for machine readable catalog. The program was launched in 1966 when 16 libraries around the country were sent magnetic tapes of the English-language monographs received by the Library of Congress. After making some format changes, the library recently amounced that Mare tapes will be available to any library that wants them starting this fall. Reimers expects about 100 libraries to subscribe initially
The modified tapes, produced by an IBM1 $360 / 30$ computer, will be sent each week to participating libraries. During the pilot operation. Mare tapes, together with other simple software, were used to produce such items as catalog cards, specialized listings and bibliographies, labels for book cards. card pockets and spines, and new catalogs. The Washington State library produced catalogs for smaller public library systems in the state and Yale University's library used the tapes to alert faculty members to new titles in their ficlds.
Reimers notes that Mare cataloging is now being applied not only to books and such, but also to maps in the library's collection. and similar handling is slated for the library's comprehensive collections of recorded folk music and photographs, as well as the 624,000 periodicals in the library"s collection. The Smithsonian will use Mare for similar applications. And Reimers says the British and

Canadians are considering the Mare format for comparable programs. Eventually, he says, Mare will be used by computer-equipped regional libraries to serve smaller local branches.

United front. Last month, the Yational Library of Medicine and the National Agriculture Library, along with the Library of Congress, amnounced the adoption of the standardized Mare communications format.

Under another Library of Congress program, the Hamilton Standard division of the United Aircraft Corp. has just completed a study of ways to automate the library's central bibliographic facility. After the study has been cvaluated, system specifications may be drawn up and a request for hardware proposals issued. The library, though short of funds, hopes to have the system installed and debugged by 1970. Reimers contends that massive automation schemes such as this one are now feasible because of new terminal clevices and the large memory capacity of third-generation data

Anarchy in the archives

Because of the trend to the wholesale use of computers, serious infomation retrieval problems are cropping up at the National Archises and other record-keeping institutions. The fact that more and more data on matters of scientific and historical importance is kept oll magnetic tape is at the root of such difficulties.
Tape, says one specialist, is not a stable archival medium. It mast constantly be rewound and cleaned, and it doesn't last as long as paper. An even more serious drawback involves tape compatibility: The National Archives, for example, is getting tapes from all kinds of computers in a variety of formats. "What happens in 1985 when a researcher wants data on the 1960 census, and the only available ama 1401 is in the Smithsomian"s computer collection," asks an official. Because of such problems. a new Federal task force is cheching tape-conversion schemes.

A FET FOR UHF

The 2N5397 has guaranteed 450 MHz performance Power gain 15 dB min...NF 3.5 dB max.

High $\mathrm{g}_{\mathrm{m}}-6000 \mu \mathrm{mho} \min$ - and low $\mathrm{C}_{\mathrm{rss}}-1.2$ pF max - combine to give these results in a neutralized common source amplifier. But if you're against neutralizer twiddling then design a common gate circuit. With the 2 N 5397 it'll be unconditionally stable up to 800 MHz and, at 450 MHz , still have 13 dB power gain with NF less than 4 dB . Used either way - CS or CG - the FET's "square law" character reduces inter- and cross-

mod products... better than any other active device.

We also make other RF FETs... 2N 3823; 2N4220-24; 2N4416... some industrial types and a power EET or two. We've crammed all this data plus more detailed specs on these two CS and CG circuits into an "RF FET Data Packet" ... write for it.

FET TESTER

For BV - Vgs-lo - gis - Igss (to less than 100 pA). Write for specs. SI200 Main Chassis . . . \$ 963.00 SI201 FET Test Module . 1,335.00

the Library of Congress keeps tabs on automation programs in its field ...

processing equipment.
Among other projects at the Library of Congress is a study of the use of punched cards as "call slips" in the library's manuscript division. The cards would aid in locating manuscripts, keep track of them by computer, and compile statistics on the relative use of different sources.

Also, the library has just selected RCA from among seven bidders to build a system that will automatically produce the almost universally used Library of Congress catalog cards (some 75 million are sold by the library each year). The contract will probably call for a spectra $70 / 45$ computer and a Vidcocomp crt-driven phototypesetter.

Finally, optical scanning and sorting equipment, supplied by Radiation Equipment Inc., will be installed at the library this summer to read, sort, and record orders for catalog cards.

Paper chase

The National Archives and Re-
cords Service is another library of sorts that's looking to electronics for help. Well it might; the service has the formidable task of keeping track of the records of the U.S. Government. Besides the National Archives, with its 900,000 cubic feet of historical records in the Capitol, the organization is responsible for 14 regional record centers plus the various Presidential libraries containing the papers of Franklin D. Roosevelt, Harry S, Truman, and Dwight D. Eisenhower.

At present, the National Archives is working with nine institutions that collect personal papers or maintain archives. The venture, dubbed Spindex (for selective permuting index), centers on a computer program for indexing manuscripts and papers. Frank G. Burke an information-retrieval specialist at the National Archives, explains that Spindex will permit information to be examined in every conceivable manner, as the program lists all the key words in the de-

Departed past. Automation's nothing new for the Library of Congress. When it opened for business in 1897, there were a number of ingenious systems to get books around the building in jig time. The apparatus shown above was called the "Capitol Carrier." Until earlier this year, it served faithfully, shuttling books between the library proper and Congress. But the Capitol Carrier-one of the first setups to which the term automation was applied-is finally making way for progress.
scription of a document.
If all the institutions that store historical documents use Spindex -and the indication is that most will-they will have access, through the computers, to each other's collections. The Smithsonian will use Spindex to catalog its scientific manuscripts and the Library of Congress is planning to go along with all its manuscripts, as are various historical societies, museums, and universities.

Burke, like others in this field, is talking about a network: "Our regional record centers are tied in with 10 General Scrvices Administration clata centers, centers that could be used to question a central data bank about the location of a certain document." He envisions a time when a professor in California will interrogate a Washington data bank through a GSA center about a historical document that will be located for him in Arizona. And he sees no reason why such a central bank could not be hooked up with university computer systems to provide a nationwide research facility.

Keeping tabs. The Library of Congress maintains a file on automation programs in the library field. This file, which answers to the acronym Locate (for Library of Congress automation techniques exchange), is used to keep libraries abreast of developments and to keep those working on new systems informed about what their colleagues have tried, are working on, or are planning.

Locate now contains reports, manuals, flow charts, and other documents on several hundred systems around the world, but Reimers warns that the file may not be an accurate barometer of activity since many current projects may not have yet been reported. However, he believes Locate will grow rapidly over the next few years because the library is now seeking out information on new systems instead of waiting for it to come in over the transom. Also, of course, there should be many more launched in the near future.

Reimers isn't planning to let documentation fall behind, either. He plans to convert Locate's citations, index terms, and abstracts to a machine-readable form for fast access.

Semiconductor firms' captive lines capture defense contractors' fancy

Abstract

Increasingly stiff reliability requirements induce military systems suppliers to establish their own production enclaves on the premises of components makers

By Peter Vogel
San Francisco regional editor

For the past two months, in sequestered areas at the Semiconductor division of the Fairchild Camera \& Instrument Corp. and at Texas Instruments Incorporated, two tramsistor assembly lines have been operating under the direct supervision of the Sandia Corp. Sanclia owns the equipment, and the semiconductor makers supply the labor. This sort of arrangement is becoming less and less uncommon in the freewheceling semiconductor industry. However, the relationship of such operations to such touchy subjects as radiation hardening and missile reliability makes buyer and seller alike somewhat leery of detailed discussion.

The function of the two new lines, says a Sandia source, will be the application of new or improved assembly techniques to prevent repetition of circuit failures. He adds that these efforts will be supported by separate research and development work in assembly techniques.

Division of labor. Although all R\&I) will be done at Sandia's Albuquerque, N.M., headquarters, the assembly work will be done on either the Fairchild or TI line. These companies will also supply the dice. The cost of the Fairchild line, says a Fairchild official, is a onetime item that includes the work space and bonding and packaging equipment plus all required testing gear. Beyond the initial investment, Sandia is charged on a time-plus-materials basis; Fairchild gets a guaranteed minimum fee.

Uncler a contract of finite duration, Fairchild is responsible for maintenance costs on equipment,
and it pays the wages of the assembly personnel. Sandia stipulates that employeres on its facility work there exclusively and that the le of high caliber and "highly motivated."

Six transistor chips, especially designed by Sandia for radiation resistance, are being manufactured and assembled under close controls by Fairchild and TI on the Sandia lines. The clevices are to be used in Atomic Energy Commission projects and on other high-reliability programs underwritten by the Government.

The lines give Sandia exceed. ingly accurate wafer-to-package
quality control. Sandia keeps comprehensive records on each chip throughout assembly to allow evalwation of procedures and correlation with circuit reliability.
Sandia calls such operations "captive assembly lines." The products from them are exclusively the company's and any process developments and patents also belong to Sandia. Fairchild and TI may not sell Sandia circuits to other buyers -as the Autoneties division of the North American Rockwell Corp. could when it set up earlier "controlled lines" in its own plant and elsewhere for procluction of highreliability components for the Min-

Women's work. Captive, or controlled, semiconductor assembly lines like this one operated by Texas Instruments for Autonetics needs in Minuteman program are increasingly common in the field.

Couch 2X 1/7-size relays meet MIL-R-5757D/19 in $1 / 25$ th of a cubic inch

The new, third generation Couch $2 x$ relays solve switching problems where space and weight are critical. Thoroughly field-proven in electronic and space applications. Relays are delivered fully tested. Additional screening tests available at your option.

	$\stackrel{2 X}{(D P D T)}$	$\begin{gathered} 1 X \\ \text { (SPDT) } \end{gathered}$
Size	$0.2^{\prime \prime} \times 0.4^{\prime \prime} \times 0.5^{\prime \prime}$	same
Weight	0.1 ox. max.	same
Contacts	0.5 amp @ 30 VDC	same
Coil Operating Power	100 mw 150 mw	70 mw 100 mw
Coil		
Resistance	60 to 4000 ohms	125 to 4000 ohms
Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	same
Vibration	20 G to 2000 Hz	same
Shock	$75 \mathrm{G}, 11 \mathrm{Ms}$	same

Broad choice of terminals, coil resistances, mounting styles. Write for detailed data sheets.

RUGGEO ROTARY RELAYS Oynamically and Statically Balanced

COUCH ORDNANCE INC.
3 Arlington St., North Quincy, Mass. 02171 Area Code 617 CYpress $8-4147$
A subsidiary of S. H. COUCH COMPANY, INC.
. . . radiation tolerance is still tied to tight controls on assembly line . . .
man 1 and 2 projects.

New Directions

Sandia's reasons for setting up the two lines have implications for the entire semiconductor field and may herald significant changes in the industry's response to demands for high-reliability devices. The Navy, for example, may soon request captive lines for hardware for the fleet ballistic missile program. And the Space and Information Systems division of the Raytheon Co., which is building the guidance computer for the Navy's Poseidon missiles, will use captive lines to assemble a special NAND gate, a T-K flip-flop, and dual four-input line receiver. Other captive lines to be purchased by Raytheon will turn out more than 20 kinds of integrated circuits and transistors. The Lockheed Missiles and Space Corp., the prime contractor for Poseidon, is reliably reported to be soliciting bids from four companies on captive lines for dielectrically isolated circuits.

In an effort to get in on Raytheon's business for bipolar clielectrically isolated devices, Fairchild, TI, the Philco-Ford Corp.'s Microelectronics division, Motorola, Inc., and Radiation Inc. are competing to set up one or more captive lines. Fairchild is supplying one of the circuits from a regular line.

Big time. Chaz Haba, Fairchild's director of aerospace and defense marketing, says the company may set up as many as six to 10 lines in the next year or so. Fairchild has a whole room, now empty except for the Sandia line, set aside for such operations. Haba predicts that some hybrid work will also be done on captive lines, adding that anyone who wants high-reliability devices will go to captive lines from here on out. He points to the everincreasing proportion of the military budget going into missiles, where a "reliability and damn the cost" attitude prevails, as an indication of captive lines' potential.

Missile components, with their one-shot nature, are prime targets for captive lines, especially with the tightening in Government re-
liability specs. But circuits that will operate in space in the Van Allen radiation belts, in an environment contaminated by a nuclear explosion, or near a nuclear reactor or source of isotope radiation, must also be hardened. David Myers, radiation effects program manager at Fairchild, says that only recently did state-of-the-art work in semiconductors permit exact specifications to be written for reliability in the little-known area of fast-neutron irradiation. Post-irradiation specs, he says, have, until recently, been subject to negotiation and were done on a "best-effort" hasis. Currently, he adds, Government policy has hardened to the point where racliation tolerance isn't considered open to negotiation.

Circuit-design advances in the past nine-months, says Myers, have shown that certain variables can be controlled at the wafer stage to enhance radiation tolerance. Items: voltage requirements must be minimized; dielectric isolation must be used to control spontaneous generation of photocurrents; and supply currents must be limited by using thin-film resistors in collector legs. But even when the circuit designer has done his best, radiation tolerance and reliability are still closely tied to tight controls on the assembly line.

Buyers and sellers

The captive assembly line idea which stresses these strict controls is thus becoming widely accepted among both buyers and sellers of semiconductors. The user gets assurance of high reliability; the vendor gets a guaranteed customer for devices with high unit costs.

RCA hasn't done any captive-line work, but Frank Rohr, manager of marketing administration at the Electronic Components division, says, "If someone came to us about setting up a captive line we wouldn't necessarily say no. You get a certain amount of guaranteed business without any of the responsilsility for reliability." In Dallas, TI is running the line for Sandia along with operations that supply "bits and picces" of Lockheed's
semiconductor requirements for Poscidon and Autonctics' Minuteman needs. The Ti lines differ from others in being strictly assembly areas. The front-end work and diffusions are done in a laminar-flow clean room that serves as a sort of central clearinghouse for all circuits produced by the company. Proposals for captive lines from anyone working on high-reliability programs, says a TI official, would be welcome.

In southern California, Jack Hirshon, division manager of Hughes Semiconductor, says his company would be interested in selling captive lines if the volumes were high enough. Hughes has apparently had sceveral attractive offers; it's considering at least two proposals to set up captive lines. Hirshon wams that the customer must be willing to pay the "substantial" costs involved in setting up a line. Radiation Inc. is also negotiating to build a captive line for missile components, but won't comment, because, according to a company spokesman, "the question is too loaded politically."

Costs plus. That spokesman was probably thinking of costs and profits. The costs for a customer who wants highly reliable devices from a captive line are, on the evidence. astronomical. But circuits intended for extremely critical functions have always come ligh. One Fairchild official estimates that of every 10 .000 circuits purchased by the AEC and comparable agencies, only 500 ever pass final acceptance testing and specification. An official in the

Fan. Raytheon's C. N. Dewey lines the concept of captive assembly lines.

Navy's Special Projects Office, which administers the Polaris and Poseidon programs, says: "Costs will probably be only marginally greater because of the greater control and checking in the captiveline process."
But cost estimates by IC manufacturers aren't quite so comforting. Glenn Penisten, manager of lusiness development at TI's Components group, says it's axiomatic that a special line can't operate as efficiently as a conventional production setup. He adds, however, that the additional costs may be worthwhile because of the reliability gains built into systems with devices made on captive lines.
What's more, programs for which captive-line production will be used are generally not cost-conscious propositions. Reliahility is the single best consideration. Probably because of the costs, the profits, and the "polities" involved, no supplier or contractor is willing to comment in depth on agreements for setting up lines. The semiconductor houses bidding on the Raytheon captive lines even refuse to spell out such details as whether they plan to lease or sell assembly equipment to the contractor. However, Chauncey N. Dewey, manager of fleet ballistic missile programs at Raythcon, has given some indication of what he expects from (aptive-line vendors soliciting work on Raytheon's Poscidon requirements.
Stressing that Sandia captive lines usually build products of Sandia design, Dewey says, "Raytheon tends to think of the captive line more in terms of workmanship and/or quality assurance than as a device for creating our brainchildren."

Get-together. Raythcon, he says, called in vendors last December, told them what was wanted, and asked for proposals and comments. The key to the captive-line idea, Dewey told the vendors, is the noed for large numbers of parts over long periods of time. These factors, he said, make it possible to set up equipment, train personnel, and maintain the skill levels needed. In addition, Dewey wants a separate plant area where Raytheon will receive elcetronically and visually presorted dice, and be able to assemble, test, and sort

Bulova can supply the crystal you need

 to match your specs!Many years of supplying crystal control units for the most advanced military and space programs enable Bulova to offer a full line encompassing virtually the entire frequency spectrum - 2 kc to 125 Mc for oscillator and filter applications. We can supply every type of packaging -including koldweld and glass sealed. Our military crystals meet latest MIL-C.3098D specifications. All reasons why you should make Butova your single source of supply.
HIGH PRECISION GLASS SEALED CRYSTALS 1 Mc to 125 Mc . Available in vacuum sealed, glass enclosures of the $\mathrm{HC} .26 / \mathrm{U}$ and $\mathrm{HC}-27 / \mathrm{U}$ type.
Example: Precision SSB Crystals
Frequency: 1 Mc to 5 Mc Holder: HC-27/U
Tolerance: $\pm .0025 \%$ from $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$, or to specification
Aging: 3×10^{-8} per week after one week stabilization at $75^{\circ} \mathrm{C}$

KOLDWELD SEALED CRYSTALS—low aging, high reliability, 1 Mc to 125 Mc . Now available in TO.5, HC. $6 / \mathrm{U}$ and HC-18/U type cans sealed by the koidweld process to eliminate effects of heat and to reduce contamination.

Example: TO-5

Frequency: 15 Mc to 125 Mc
Tolerance: $\pm .0025 \%$ from
$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, or to specification
Aging: 1×10^{-7} per week after one week stabilization at $75^{\circ} \mathrm{C}$

Write or call for specifications on Bulova's complete line of crystals. Address: Dept. E-17.

Bulova
 FREQUENCY CONTROL PRJDUCTS

ELECTRONICS DIVISION
 OF BULOVA WATCH COMPANY, INC.

61.20 WOODSIDE AVENUE

WOODSIDE, N.Y. 11377 , (212) DE 5.6000
 folder and chart. Casting resins, impregnants, coatings, adhesives, rod \& sheet - some foams - some Hi K - all with dissipation factors below 0.001. For RF, UHF, VHF and microwaves -- capacitors, coils, etc.

Circle 516 on reader service card

PLASTICS / CERAMICS for ELECTRONICS condensed catalog

New folder describes product lines-costing resins, adhesives, foams, sheef stock, coatings, silicones, microwove absorbers, anechoic chambers, shielding materials, efc. Post card included for obtaining more details.

Circle 517 on reader service card

ECCOAMP electrically conductive ADHESIVES \& COATINGS

New four page folder describes materials from 0.0001 to 100 ohm-cm. Adhesive pastes to replace hof solder, thin liquids, silver lac quer in oerosol spray, lossy coatings, efc.

Circle 518 on reader service card
Emerson \& Cuming, Inc.
 CANTON, MASS. GARDENA, CALIF. NORTHBROOK, ILL. Sales Offices in Principal Cities
EMERSON \& CUMIMG EURDPE N.V., Oevel, Belgium
again. But Dewey hasn't closed the door on starting with the unscribed wafer; nor has he decided whether burn-in, sealing, and testing should be done on the captive line.
The way it looks now, he says, the semiconductor manufacturer will supply equipment, space, and people, and write off overhead in the usual way. There could also be a buy-back clause in case a vendor had acquired an expensive piece of equipment for the contractor's line and couldn't use it because of program cancellation.

From its experience on the Apollo guidance and navigation computer, says Dewey, Raytheon found that most failures were related to assembly defects: poor bonds between chip and case, poor wire-chip bonds, poor wire-post bonds, scratches, and related difficulties. Components for the Apollo computer, which were made on a Philco-Ford captive line, also showed that tight material specifications and stringent visual inspection on the production line were necessary to achieve high reliability. Because of this experience and a check of Sandia's program with Fairchild and TI, Raytheon decided to go with the captive-line idea for Poseidon components.

The success of the captive-line approach to high-reliability assembly, says Dewey, will be proven by the narrow distribution of electrical characteristics in devices from the lines. There may be, he concludes, a dramatic increase in system reliability because of the captive line concept.

Nobody's perfect

What does this all mean for the semiconductor industry? Although most captive-line managers are talking about 100% reliability or failure rates in fractions of 1%, it seems perfectly obvious that there will always be a small number of circuit failures. But, as methods of reducing failure rates become more effective, says Fairchild's Myers, it can be reasonably expected that the general level of reliability in all circuit applications will be pushed upward. And where only critical missile components are now getting the captive-line treatment, it may soon be that important ground and avionics systems will be candidates for the kid-glove approach.

Myers believes that if the captive lines prove their worth in reliability enhancement, more and more circuits will be produced in this way.

Raytheon's emphasis on captive lines will have certain other industrywide implications. Says Dewey: "Under the old rules, vendors might have supplicd one or two out of perhaps 25 to 30 semiconductors for a specific project. Now, one firm will tend to supply most or all of the IC's or discrete components." But, Dewey is quick to stress, captive-line production of Poseidon computer ciranits won't mean the end of second sourcing either as a method of ensuring circuit delivery or as a means of cutting cost through competition.
Captive lines, he thinks, will be concentrated in houses with the broadest product lines. He mentions Fairchild, tI, and Motorolabut doesn't include Raytheon's own semiconductor operation-in the list of houses that could get a share of the captive-line business. Raytheon Semiconductor's line doesn't include the chips that would be put into such a line. Says a Raytheon Semiconductor official: "We would have had to buy the chips to put into the captive line for Radiation Inc.; we would have lost money."
In the cold. Raytheon Semiconductor's virtual exclusion from the captive-line business could indicate what small- and medium-sized firms will experience under the "new rules" established by Raytheon's Space and Information Systems division. Not only will the smaller companies lose the opportunity to participate in the captiveline contracts, but they'll also be denied the experience that the larger companics will get from this form of subsidized research on assembly techniques.
An official with the PolarisPoseidon office says: "Where there is sufficient advantage for us to call for a captive line, we will." That advantage, naturally, will be obtained most easily from companies that have had experience working with strict assembly techniques and that have had access to knowhow derived from radiation-hardening research sponsored on captive lines.

417-the lightweight recorder that fits under the seat

If you have to fly to where the data is, take the 417: the one recorder you carry aboard and keep with you right under the seat. No time lost in packing, shipping, and unpacking. No chance of damage from mishandling
Only $6^{\prime \prime} \times 14^{\prime \prime} \times 15^{\prime \prime}$, the rugged 417 weighs just 28 pounds -50 pounds less than any comparable recorder. Works in any position, under roughest vibration conditions, for dependable data gathering in plants, labs, on and under the seas, or out in the wilds.
Maintenance-free mechanism has exclusive low-mass differential capstan drive for precision operation.

LOCKHEED

Phaselock servo for piecise speed control, with accuracy matching large rack machines. Recoras on 7 channels, IRIG compatible. Runs on $110 / 220 \mathrm{~V}$ AC/DC or internal battery. Power consumption as low as 10 w . Frequency response: 100 kc direct, 10 kc FM.
Priced as low as $\$ 7,000$.
Send for our catalog containing full details on the 417, one of a family of precision data recorders for lan - , ocean, air and space applications. Write: Boyd McKnight, Dept. ED.7-A, Lockheed Electronics Company, Edison, New Jersey 0881 ?.
Have questions on data recording? Call us at (201) 757-1600.

BELL LABORATORIES

Microbridges for electrons

Part of an experimental test pattern. This pattern, with 13,700 microbridge crossovers on a silicon substrate, has been fabricated without a short circuit. Each of the crossovers is less than $1 / 16 \mathrm{in}$. long. The combination of air and solid insulation can withstand 200 volts.

Cutaway view showing formation of the new microstructure: First, layers of titanium and platinum are deposited over the substrate to form both the conductors to be crossed and the bottom contacts. A layer of zirconium is then put down. Next copper, a spacer for formation of the crossover, is evaporated overall. Windows are etched through the copper so the crossover can reach the lower-level contact. The crossover is then applied in position by gold-plating the copper spacer; the spacer is then etched away. The zirconium layer is oxidized to act as protective insulation. Any pinholes present do not become short circuits.

As integrated circuits become more complex, designers are faced with something akin to the old puzzle: "without crossing any lines or lifting your pencil from the paper, connect so-and-so-many points." In a puzzle, it's just for fun. but with circuits it has been a design requirement.
Until now, most conductors have been crossed in virtually the same plane, separated only by extremely thin insulators. Such crossovers are undesirable because of the danger of leakage through pinhole imperfections in the insulator. As integration technology evolves, hundreds of crossovers may be needed on a single substrate. A short in any one means rejection of the entire substrate. For such integrated circuits to compete economically, the integrity and manufacturing yield of crossovers must approach perfection.

Obviously, the designer would like to "lift his pencil". . . make the crossing conductor rise above the one beneath it.

Recently, Martin P. Lepselter of Bell Telephone Laboratories has done just that. He has invented a process for mak. ing ''microbridges"., . integrated-circuit leads which cross others through the air, without touching (photo, left).

This new technique solves the insulation problem; because of the air gap, pinholes in the insulator do not cause leakage. It also reduces capacitance between the conductors. Finally, by separating the various materials, it eliminates stresses due to unequal thermal expansion.

The key to the technique (drawing, left) is a layer of a material like copper that can be selectively etched away, leaving an air gap between the conductors. Thus the combination of air gap and insulating layer provides a degree of insulation protection not previously available. Insulated circuits with microbridge crossovers will be used in a wide variety of communications equipment in the Bell System.

Recruiters flock to Negro colleges

Black schools produce relatively few EE's, and many problems remain, but tokenism seems to be on the way out as grads are hired on merit

By Robert Skole
Washingtor bureau manager

Five years ago, recruiters sceking the enginecring graduates of predominantly Negro universities were about as numerous as black faces at an IEEE mecting. Today, the status quo still prevails at technical get-togethers, but the campuses weec overrun this spring.

The rush to hire black engineering graduates is, in most cases, prompted ly Federal equal-employment regulations covering Goverument contracting.

But some companies began to hire hlacks years ago and gave them real opportunities for aclvancement. Many others waited and made only token efforts. And even today, some firms only go through the motions of recruiting black engineers or take on a few as showpieces.

Because so many recruiters are besieging the Negro universities, competing hard for engineering graduates, the placement directors at these institutions are saying: "We'll be keeping out those companies that haven't been sincere and working harcler with those that have given our graduates the best opportunities."

Bench marks. The situation is still fluid, not only because of the dynamics of the civil-rights movement but also as a result of ambivalent attitudes on the part of both blacks and whites. However. certain patterns are clearly discornible:

- Smaller companies without extensive recruiting programs face tough going even when they sincerely want Negro enginecrs.
- Although Negro universities are turning out relatively few electrical enginecrs- about 100 from the
dozen schools offering such de-grees-there will be a big increase in future years, making these schools far more attractive from a quantity standpoint. Mcanwhile, moves are being made to upgrade curriculum quality.
- Some recruiters and personnel managers are so far out of touch with Negro students that they will find it tough to catch up with efforts made by more understanding officials.

Roundup

Electronics firms are increasing their cfforts to recruit at Negro universities at a rate far greater than most other industries. "I wish
we had five times as many engineers graduating this year," says W.I. Morris, placement director of 1\&'T College, Greensboro, N.C. "In the last six years we've certainly had a $1,000 \%$ improvement in the number of recruiters coming here."

A\&T had a dozen EE grads in a senior class of 425 this year; overall, only 60 were science majors. "For so many years, opportunities in engincering were not open to us," says Morris. "But prospects are lorighter today. Each of our enginecring graduates had three to six jol) offers."
The dramatic growth in the

New start

Most engincering graduates of Negro miversities head for the Northeast or West Coast, but one in Howard University's class of '68 preferred going south-to his hometown. Atlanta.

Thomas Jones had five job offers from top electronics and acrospace firms. "But I accepted an offer from Lockheed-Georgia," he says, "Ive worked two summers as a draftsman there. I know the company and I think Atlanta is the only place to go. It's fast-growing and has an affluent Negro community. Most of the attitudes are pretty liberal."
Jones says he tried to encourage a classmate from Virginia to take a job in Atlanta. "Ile told me, 'I'm from Virginia and Athanta's too far south.'" Jones says. "I couldn't convince him it might be better to live there than in some northern cities."

More than money. Jones is framk in discussing the problems a Negro engineer faces. "It's ahays a big problem to figure out if a company' wants you because you're you or because you're black," he savs. "But if you watch to see who the companies are after on campus, you can tell. I often wonder what it would be like to get a job if I weren't a Negro. But this makes you determined to do the job better."
Jones says that he'll be working in aircraft stress analysis to start with. Eventually, he wants to work his way into control systems and computer controls. Jones notes that a lot of his classmates were attracted by the "glamour" of $13 \times \mathrm{a}$ and its work with computers, and he says they know ibar is sincere.
As for money, Jones was offered from $\$ 730$ to $\$ 800$ a month-about average for new ee's. Jones says, however that job opportunity and housing are even more vital to black graduates than salary.

New $\underset{\sim}{*}$ Miniature Motorized Programmable Stepattenuators come with values as high as 129 dB in 1 and 10 dB steps. These 50 ohm ${ }^{4}$ series 96,97 and 98 Stepattenuators come in a choice of 8 standard RF connector options (coaxial or waveguide); 5 standard frequency ranges; 17 standard insertion loss ranges; and single, double or triple drum assemblies internally connected in series with low reflection adapters to minimize mismatch errors.
They feature a switching life exceeding $1,000,000$ steps a excellent repeatability a high stability under wide range of environmental conditions a low leakage a low VSWR a and low minimum insertion loss. In addition, they are motorized and easily programmable.
Switching time is typically 2 seconds. Repeatability exceeds $\pm .01$ $\mathrm{dB} /$ drum up to 10 GHz . Maximum VSWR for all E series 96 units is held to less than 1.50 and to 18 GHz and to below 1.15 for lower frequencies.
The ease with which these models are programmable makes them especially useful in systems employing automatically controlled levels. These stepattenuators can be switched more than one million times without deterioration and without in-between maintenance.

Designers and

Manufacturers of Precision Microwave Equipment WEINSCHEL ENGINEERING
Gaithersburg, Md. 20760
Tel: (301) 948-3434
TWX: 710-828-9705
number of recruiters seeking black graduates is apparent in data from Southern University, Baton Rouge, La. In 1960, 15 recruiters went to the school; 12 were after teachers and three were from Federal agencies. This year, there were 556 recruiters on campus only 55 of whom were seeking teachers.
"About 50% of the recruiters were looking for engineers, and a large part of these were after EE's," says James McKay, placement director for Southern U. The school graduated 24 EE's this year, and each averaged cight jol offers.

Bigger rosters. This is now more or less typical of Negro universitics. Also typical is an increase in engineering enrollment. In 1967, Southern's engineering departmentwhich graduated 40 this year-had a total enrollment of 450 ; the 1968 figure was 570. Thus, in a few years, the number of graduates will double.

Becanse of the intense competition for the relatively few gradnates, many companies don't feel the effort is worth it. And some companies will say-privately, of course-that they don't think the scholastic standards at Negro institutions are high enough for them to go to the trouble of recruiting there.
In general, the approach to recruiting at Negro universitics is the same as at white schools. However, few firms have tried to tailor their programs. For example, when they were new to this whole thing, some companies thought it would be a good idea to send Negro recruiters to Negro schools. This clidn't work well, especially when the recruiter was obviously not a professional. Students resented the companies' patronizing attitudes.

However, some firms today send an integrated team to Negro uni-versities-a white professional personnel man accompanied by a Negro engineer or scientist. The white recruiter will talk to the prospect about the job and the company, and then leave the Negro alone with the student "to tell it like it is." Most Negro college placement directors have serious doubts about the effectiveness of this approach.
"One of the biggest problems facing companies that want to hire our students," says Southern U's

McKay, "is the quality of the re-cruiter-they often can't identify with the students."

Placement directors agree that students can easily identify an "insincere" recruiter, and they're getting ready to lower the boom. "It's going to be very necessary to screen the companies and recruiters in the future," says McKay. "We know the recruiters who come just for show."

Shortcomings

A major problem facing most Negro universities is the lack of facilities for recruiters and adequate job-counseling and placement services. And even though it is understandable that no Negro college administration a few years ago would have believed there would be an urgent need for such facilities, there are still recruiters who can't figure it out. A personnel director with a large West Coast aerospace firm, who insists on remaining anonymous, grumbles: "Interviewing rooms are about as big as my desk and the furniture must have been left over from the Civil War."

Because of a lack of facilities, most Negro schools have good reason to screen companies and concentrate only on those with a history of "sincerity." Officials say Negro universities will no longer be "used" by companies that simply go through the motions. "I'm convinced some companies are not sincere," says Walter G. Hawkins, placement director at Howard University, Washington, D.C. "This is particularly true of insurance and banking. But there are some in engineering, and they can least afford the luxury of prejudice."

Paeans. IBM receives high praise on Negro campuses. Hawkins says that although he and his staff try to be impartial, the track record of IBM and some other companies is so good that they naturally do all they can to help these firms. IBM, for example, interviewed more Howard students than any other company this year: 60 graduating seniors. It made 15 job offers, and cight students accepted. On the other hand, some lesser-known companies that don't have a reputation on Negro college campuses have trouble even getting students to interview.

For cxample，Ampex got only two applicants from Howard this ycar，the first time it recruited at the schocil．＂We were terribly dis－ appointed，＂says Arthur O．Stoc－ fen，the empany＇s recruiting chicf． Figuring the averages，however， Ampex did very well．Howard had 100 engincering graduates this ycar， 30 of them EE＇s．But 400）com－ panies were after enginecring talent at the school．

Some companies know very
little about clesires of Negro graduates．While most enginecr－ ing graduates want to work in the Northeast or on the West Const． where housing is generally less of a problem，Stocfen，for one，says he feels that the students at Howard didn＇t want to move to the coast．And Richard G．Henne－ muth，vice president for industrial relations at the Raytheon Co．， Lexington，Mass．，says：＂W＇e have considered recruiting at Tuskegee

Ben Berry＇s way

One Negro electronics engineer who has＂made it＂as a respected pro－ fessional in his specialty says the goal of others like him is entry into corporate policy－making positions in the nation＇s acrospace industry．

Ben Berry，a graduate of the University of Southem California who came from the ghettoes of Los Angeles to become a department staff engineer with the Electronic Systems division of trw Systems in Redondo Beach，Calif．，satys Negroes are now being promoted to a cer－ tain point－hut no higher．＂When I first came to work in the industry a decado ago people used to stop and stare at us，＂Berry says．＂Now we＇re accepted，but not as completely as we might like．Initially，Negro engincers were very close to each other－it was like a club－because the whites were ostricizing us．We banded together almost for protection．＂

Negrees are now readily accepted at nearly all levels within the industry．＂But at upper－echelon positions，the competition for advance－， ment is stiff，and it＇s difficult for Negroes to move into top management，＂ Berry says．＂Certainly it＇s harder for a black scientist or engineer to move beyond a certain level，＂he continues．＂You can count the number of black managers in Los Angeles on your fingers．I know them all，and there aren＇t many．＂

Hope．But Berry is far from leeing disillusioned about the fate of talented Negroes in industry．＂Things have definitely moved ahead for the black professional，＂he says．＂The situation is really improved in respect to the smaller electronic outfits．They used to be the ones who positively wouldn＇t hire Negro engineers．It got to a point that blacks wouldn＇t even bother responding to their ads．Because of contractural requirements set up by the Government，these firms are dying to get some blacks on the pay－roll，but the black man isn＇t interested．These companies have developed bad reputations among Negro professionals and it＇s छ⿴囗十介
Limits．At present，Berry says he and other Negroes don＇t feel they are completely accepted by some of their white colleagues．＂For example，we find that at meetings what we say is often not regarded with much concern，＂he notes．＂We＇d like to think it＇s a case of our not being forecful enough in presenting our views，but deep down we know differently．＂
＂The Negro professional walks in two different worlds．At work it＇s the white man＇s world．At home，it＇s the world of the ghetto，＂Berry says．
The taw engineer has formed an organization called Society of Scientists and Engineers of Americal．Composed mainly of black profes－ sionals，it works with ghetto youngsters to show them there is a way out of the slums．＂This summer we＇re conducting a series of workshops and lectures at Negro high schools in the Los Angeles area to try and get these kids to realize the opportunities open to them，＂Berry says．＂We tell them the same cross－section of intelligence exists in the ghetto as in other areas of the city．But high school is really too late．For kids to be motivated，you have to reach them early，before they become so dis－ gusted with socicty they feel therc＇s nothing in it for them．＂
－Burton Bell
Los Angeles regional editor

General Electric Fused Quartz Meets The Electronics Industry＇s Challenge With：

－high temperature strengit －PURITY －THERMAL SHOCK RESISTANCE

Here＇s an example of General Electric＇s fused quartz at work for the Computer Control Division of Honeywell Inc．，Framingham， Mass．This diffusion tube manufactured from GE Type 204 quartz tubing contains a＂car－ rier sled＂loaded with photographically processed silicon discs，allowing them to be chemically treated inside a high terperature $\left(1200^{\circ} \mathrm{C}\right)$ furnace．Ultimately，the discs be． come monolithic integrated circuits for com－ puters，with each pinhead－size circuit the equivalent of 20 to 60 discrete components． Why does Honeywell use GE fused quartz tubing？Because of its noncontaminating purity，high temperature strength and ex－ cellent thermal shock resistance．And as Honeywell continues to benefit from the ex． ceptional properties of GE quartz，researchers everywhere are discovering more and more excitingly new and purposeful applications for this extraordinary quartz．Are you？

WORLDWIDE SERVICE．For sales and application assistance，contact your nearest regional office： CALIFORNIA，Los Angeles ．．．．．．．．．．． 213723.2541 ILLINOIS，Chicago ．．．．．．．．．．．．．．．．．．．．．．．． 312282.7905 MASSACHUSETTS，Boston ．．．．．．．． 617332.6200 NEW JERSEY．Newark ．．．．．．．．．．．．．．．． 201824.5200 OHIO．Cleveland .216266 .4001 CANADA．Toronto .416537 .4481

Wrise for illustrated technical literature today．

GENERAL ELECTRIC

24400 Highland Road
Richmond Heights．Ohio 44143
Manufacturers of Lucaloxe Ceramic
Electronic Glassware－Fused Quartz Products

IC SEALING

 PROBLEMS SOLVED
WITH WILLIAMS' IMPROVED

 ALLOYS FOR MICROELECTRONIC DESIGN.
PARTIAL LIST OF AVAILABLE ALLOYS \& SOLDER PREFORMS

88% Gold 12% Germanium (Eutectic Alloy) Strip and solder preforms in all sizes 80\% Gold 20\% Tin (Eutectic Alloy) Strip, wire and solder preforms in all sizes Gold with . 1 to 1.2\% Antimony Wire, strip and solder preforms all sizes Gold - . 05% Min. Phosphorous Wire, strip and solder preforms all sizes 95\% Gold 5\% Nickel
Wire, strip and solder preforms all sizes Gold and up to $.5 \%$ Ar senic Strip and solder preforms all sizes Silver with . 1 to 1.2% Antimany Wire, strip and solder preforms all sizes Silver - 1% Min. Phosphorous Wire, strip and solder preforms all sizes 95\% Silver 5\% Nickel
Wire, strip and solder preforms all sizes Silver and up to $.5 \%$ Arsenic Strip and solder preforms all sizes Special alloys produced on request at minimum charge
Precious Metals in 99.9\% Pure, 99.99% Pure, and 99.999% Pure

Modern. up-to-date refinmg of precious metals and complete spectrographic facillites avalable

HIGH PURITY METALS

USEO ON ALL ALLOYS
write for complete precious metals catalog ano specification sheets. phone 116.834.7204 OVER 50 YEARS OF PRECIOUS METAIS EXPFRIFNCE

2978 MAIN ST. BUFFALO, NEW YORK 14214 Oivision of Williams Gold Refining Co., Inc.

Institute in Alabama, but our experience has been that neither blacks nor whites like to come this far north. Gencrally, we find about 50% of our new engincers in the New England area, though we recruit throughout the country."

Pro and con

Companies are taking different approaches in working with Negro universities and students. Some, like Hewlett-Packard, donate laboratory equipment to colleges. Others with years of experience working with Negro educators and placement directors-for cxample, IBM-arrange luncheon meetings to get faculties to pass the word that the company is seriously looking for a broad range of graduates.

But some companies appear to have taken a hard-nosed attitude and researched themselves right out of this market. TRW Systems, Redondo Beach, Calif., formed a team of scientists, engineers, and personnel specialists to visit Negro universitics to get a "feel" for the schools. "We intended to add them to our campus recruiting schedule," explains James Lacy of the placement staff. "But we rejected the idea because their graduates were not, in our view, equipped to handle the technical tasks required of them here." Many companies say the same thing, but don't want to be identified, even though most Negro administrators agree that their schools are indeed deficient in curriculum and equipment.

Disadvantaged. The Negro graduate of a predominantly white school is as capable as a white graduate, stresses Robert Thomson, director of manpower planning at the Bendix Corp. "But at the predominantly Negro school," he says, "the student is at more of a disadvantage. Here the enginecring program may have been in existence only five years. MIT probably wasn't all that good after only five years. Where the engineering curriculum is very new it takes longer to get top-quality grads. In the past three years, however, we have seen a narrowing of the gap."

Some companies have set up programs to compensate for educational shortcomings of graduates of Negro schools. The Western Development Laboratories division of the Philco-Ford Corp., for example, will sometimes bring a graduate of
a Negro university who doesn't measure up to the average grad and give him supplemental job training and support to continue his education.

Other companies, for example the one whose recruiter complained about the Civil War furniture, flatly write off the scholastic competence of most Negro universities. "The graduates can read and write and that's about all," says the company's top employment officer. "Spending money to recruit Negro engineering graduates from predominantly Negro colleges in the south is like throwing money down a rat hole."
Old story. This kind of attitude is familiar to Negro educators and students. "I have a feeling that company representatives are often laboring under a stereotype," says Fred Scott, placement director of Hampton Institute, Hampton, Va.

Most educators, administrators, and students realize that many companies will hire a few blacks for show. "But I don't think the electronics industry is as guilty in this regard as others," says Scott.

Uneasy dialogue. One of the major problems remains communications between the recruiters and prospects. Most recruiters say that students at Negro universities aren't as well prepared for interviews as their white counterparts. Officials and faculty members at Negro schools respond that this comes of companies' precipitate rush to hire blacks; the move is so new that the schools haven't had a chance to organize for it.

Phillip M. Oliver, industrial relations director for Philco-Ford's Western Development Lab, says: "At any college, where we find a black engincer, we hire him. I regularly visit a half-dozen Negro colleges. Their real problem is getting men to appear for an interview and to condition them for competition in the white world. They want this competition-but they aren't trained to accept it.
"They are almost like foreigners in their own country in that respect. Take, say, an engineer from Indonesia; he might want very much to win a job and get ahead, but he wouldn't know exactly how to go about it. Some of the Negro graduates are in the same position, like fish out of water."

HERE'S HOW...

THE ELECTRONICINDUSTRYIS USING THESEFAMOUS ULANO FILMS IN ULTRAMINIATUREMASK TECHNOLOGY AND COMPLEX PRINTEDCIRCUITRY

Cat a piece of the desired film large enough to cover area to be masked. Tape it down firmly at the top with dull-side up.

With sharp blade, outline the areas to be masked. Do not cut through the backing sheet. The Ulano sheet. The Ulano
Swivel Knife does the Swivel quickly, easily.

Using the tip of the blade, lift up a corner of the film thus separating it from the backing sheet.

Now carefully peel off the film as outlined leaving a completed mask, positive or negative, that corresponds exactly to the desired pattern.

Ulano offers the most versatile line of hand-cut masking films, including:
.0075-RUBYLITH 75 DR* . 005 -RUBYLITH 5 DR \dagger . 005 -AMBERLITH 5 DA \dagger

Where exact register assures a critical importance, you will find these new, thick, polyester based films the positive answer.
*Available in sheets only, cuf fo your specifications \dagger Available in rolls and sheets

"Ulano"-'Rubylith"-"Amberlith" are registered trade marks of the Ulano Companies.

Do you want to go LSI now?

If you really want LSI now, grab the next plane to Mountain View. (It lands in San Francisco.) It's the quickest, least expensive way to get LSI into your system.
Plan to bring along your blueprints. And be ready to answer a lot of questions. We'll need to know what you have in mind for sub-systems, functions and specs. And, don't be surprised when we ask "why" a couple of times. It's all part of Fairchild's systems approach to complex circuitry.
We'll take your requirements and match them against our family of fundamental building blocks. We've got LSIs (and MSIs) that work in any digital logic system. The most advanced circuitry on the market. Offspring of computer-aided design and double-layer metal technology. And, they're all so versatile, we can probably give you a counter that has a dozen other applications in your system.
 a system with standard building blocks. To finish the job, you'll need interface devices to tie the whole thing together. And, here's where Fairchild can really save you time and money. We don't have to custom design each LSI interface circuit. We use Micromatrix ${ }^{\text {TM }}$-a unique cellular array that's completed when we add your specific interconnection pattern. Your specs customize the entire array for your system.
Of course, there's a lot more to the story. But, you ought to hear it in person. Just call your Fairchild salesman. He knows the flight schedule to San Francisco.

Or do you want to think about it?

We've got an LSI design kit. It's based on our new 4500 Bipolar Micromatrix Array - the first device in a highly versatile LSI family. The $\mathbf{4 5 0 0}$ is an eight-cell array that can be customized for virtually any function. All it needs is your interconnection pattern. You can determine the pattern by designing your own Micromatrix array with our kit. You can buy a kit from your Fairchild distributor for about $\$ 100$. And, in a couple of months, we'll see you in Mountain View.

FAIRCHILD

SEMICDNDUCTDR

Our story starts with a very superior polyester film.

To which we add exceptional dimensional stability.

The best dimensional stability of any polyester film. An independent testing lab, DeBell \& Richardson, Inc., tested calibrated lengths of Celanar and other polyester films at temperatures from 73 F to 120 F for over 24 hours. When measured, other films showed up to 77% greater thermal expansion than Celanar film.

And greater strength.

Celanar is the strongest balanced biaxially oriented plastic film commercially available.

And insulation resistance.

An outstanding property of Celanar film is its high insulation resistance over a wide range of temperatures. Celanar has superior electrical properties, including excellent dielectric strength, dielectric constant and dissipation factor. Good reasons why Celanar is widely used as an insulating material in electrical insulation applications.

To bring you Celanar Film with a combination of properties unsurpassed for electrical uses.

Celanar polyester film offers a balance of electrical, mechanical, thermal and chemical properties that make it your best choice for applications from flexible circuits to wirewrap. Want proof? Just mail the coupon.

SB GENDURE
NuF CTLNDTR

कOYA
CLASS E 1.30
GENDURE N
3ne 1 wire
th. over
persomer terishic
Maาu.
10 cosil
chether
wite
4.13 30
 polrurethane Ny or mellent charactertilucs Hor combune inill ang solecause of the of Eenproved wndabiliy bot reduce the has novercat Aybr dificanlly iscreases n) enovility but sigm and therm rasing me solvent ress inalio permits the use of dere nsula 10 m .

If you need magnet wire to meet almost any
 application requirement, here's the first place to look.

It's the GCC Guide to Magnet Wire.

It indicates which insulation to use if you need magnet wire to withstand heat or abrasion; with special winding characteristics, electrical properties, high moisture resistance, or immunity to solvents, oils, or freon refrigerants.

This Guide also tells you that you can get them from GCC. We'll be happy to send you a copy. Write to General Cable Corporation, Section 700-04, 730 Third Avenue, New York, New York 10017. For detailed information on specific applications, call your local GCC salesman.

Is it possible to get a really good computer for less than \$10K? How about \$9,950 and some odd change?

(or 8000) of them at a time in memory. Fetching them out of memory in two microseconds. It'll tie in I/O devices with standard plug-ins and use the same set of programming languages-FORTRAN, ALGOL and Conversational BASIC. It may be the littlest computer in the HP family... but even at that it more than holds its own against its big brothers.

> That's right. The HP 2114 A offers the most desirable price/performance ratio of any computer on the market. And it won't take up much room, either, not even on your desk. One compact package $121 / 4$ " tall houses both processor and power supply.
> Yet the economy model is fully compatible with all the $2115 / 2116$ software and $1 / O$ interfaces. The main frame accepts either 4 K or 8 K memory, has eight $1 / O$ plug-in slots and operates within a wide temperature range. Low-cost options include parity error check and power-fail protection.
> If you think this powerful little computer is right for you, get more information from your local HP field engineer. Or write Hewlett-Packard, Palo Alto, Calif. 94304 ; Europe: 54 Route des Acacias, Geneva.

New Products

Integrated electronics

TTL. makers switch their sales pitch

Texas Instruments, Sylvania, and their followers contend on pin configurations and encapsulation techniques, but every semiconductor house emphasizes complexity

By Eric Aiken
Probing the news editor

"Transistor-transistor logic has reached a real flowering stage," says Walt Weyler, marketing manager for TTL at Texas Instruments. "What's morc, its success is based on economic as well as technical considerations." Toward the end of last morth, TI put through price cuts of 40% on low-power TTL lines in plastic packages. At the same time, prices of comparable devices in flatpacks were reduced by 25%.

The company was not simply indulging itself in a self-fulfilling prophecy. Priends and foes in the semiconductor field share Weyler's optimism so a marketing struggle seems inevitable.
Twosome. At this point, the principals in the contest are Sylvania with its two lines of SUHL (for Sylvanıa Universal High-Level Logic) and TI with its 54/74 series of circuits. Lesser lights are aligning themselves with one or both of the top two as second sources, while concerns like Motorola, Signetics, and Fairchild Semiconductor push p:oprietary entries.

The already large dollar sales of TrL are expanding at a heady pace. For example, first-quarter volume was around $\$ 17$ million. "With a flat projection for the rest of the year, this would suggest an annual volume of around $\$ 70$ million," says 'ri's Weyler. "But we're
not dealing with a flat pattern. Growth is going to be strong and chamatic from here on out."

Quickstep

Joscph Nola, product planning specialist at Sylvania's Semiconductor division, agrees: "We were predicting that TTL would overtake diode-transistor logic some time in 1970 or 1971. But it now appears the crossover will occur next year."
"From June to December in 1967, TTL grew from 15% to 26% of the market. And who was shipping SuHL then?" asks Bill Berg, marketing manager at Signetics, in a rhetorical reference to Sylvania's delivery problems. "What gives SUHL more thrust this year is that Motorola has it."

Flushed with success, inte-grated-circuit makers have even begun to change their sales pitch. Where once they talked lightningfast switching speeds, noise immunity, high fanout, and low power requirements, marketing men now extol the widespread availability and complexity of their devices-perhaps because they can now produce acceptable assemblies in commercial quantitics.

Gaining experience

TTL circuits require small geometries, thin lines, and shallow dif-
fusions-all of which can lead to production woes. With experience, however, IC makers have overcome most, if not all, of their diffculties. "Our yields are as much as four times greater than a year ago," reports Sylvania's Nola. "We're climbing right up the learning curve with output."

At Raytheon Semiconductor, which has invested $\$ 500,000$ in a separate TTL facility with a rated

Big ante. Raytheon regards TTL outlook rosy enough to have invested $\$ 500,000$ in a facility to second-source SUHL.
-With a little square hole at one end and a
round one at the other, our HW Series Wire-Wrap* connectors are positioned quickly and perfectly. Every time. The result is a higher rate of Wire-Wrap production. Especially with our new AccurFrame Packaging.

- But the hole is only a part. Winchester Wire-Wrap connectors have a configuration designed for automatic equipment, high strip
force retention, bifurcated spring contacts for superior interfacing. They're available in sizes ranging from 22 to 50 contact positions.

Standard contact spacing in two sizes: .125 center to center with .250 between rows; and .100 center to center with .200 between rows. Contacts are easily removed. Retained by a 90° twist. Molding is diallyl phthalate SDG-F.

Contacts plated to MIL-G-45204 Type II. -HW connectors are the heart of AccurFrame, a simple and reliable packaging technique that capitalizes on Winchester's long experience
in precision molded connectors. No new
fabrication methods are required. Frame
positioning is simplified with no tolerance buildup. All at a low average cost per contact.

That, pardon the pun, is the hole thing.
Except that HW connectors are available from your distributor.
Or Winchester Electronics, Main St. \& Hillside Avenue, Oakville, Connecticut 06779.

Alignment holes in HW Series connectors are polarized for fast, su:e alignment.

With the comneciors in position, a wiring frame is added.

Connectors are aitached with maxchine screvrs and the frame s ready for au omat:c wire-wrapping.

you go the hard way or not at all with TTL, says Raytheon Semiconductor . . .

capacity of 1.5 million dice a month, Paul Sullivan, the marketing director recalls that his company learned the hard way. "When we set out to make SUHL circuits, we decided to make it as casy on ourselves as possible," he says. "We relaxed photoengraving tolerances and the like, but found we were getting rotten yields and marginal performance. We finally came to the conclusion that the low road was a dead end. Sylvamia's right: You go the hard way or not at all." Raytheon now reports having achieved wafer yields as high as 37% on production runs.

End of an era

Don Winstead, product marketing manager at Signetics, feels that TTL delivery is no longer a significant problem. He notes that companies are redesigning their circuits to increase yiclds rather than resorting to tighter process controls. By way of example, he says, the input threshold of a TTL gate depends on the values of the phase-splitter resistors. These resistor tolerances have been adjusted to raise the threshold to afford higher noise immunity. The relation to yield is that the device will no longer trigger on a marginal pulse.

A savvy West Coast source, familiar with the ins and outs of TTL manufacturing and marketing, says Sylvania solved its early photoresist and diffusion problems by going to very fine tolerances. "Second sources have a tougher time making tTL," he says. "And plastics still present some sticky reliability problems that TI seems to have solved. In the main, such difficulties are caused by wire deformation during transfer molding. The temperatures required in this process can cause thermal wire bond strains, ripping them away from the pads."
Some observers, including a source at RCA, which is about to introduce some versions of the 54/74 series, say that TI picked up a reputation for inferior work at the outset of the TTL rivalry because of its desire to get the broad-
est line on the market as fast as possible. But Thomas Thorkelson, a product plaming manager at National Semiconductor and an alumnus of ti, disputes the contention that tolerances for the 54/ 74 series are looser than for suill.
Tolerances are not the issue anyway," he says. "And speed is by no means the principal selling point for TTL. The industrial market wants noise immunity and low cost. The totem-pole output (low impedance) is TTL's most important feature.

Pinned down

There's also a good bit of contention within the semiconductor field over the best pin-connection arrangement. "Where DTL was a pretty standardized proposition with regard to pin configurations, the present situation is something of a mish-mash," says a knowledgeable observer. At the moment, TI is promoting the old DTL 930 pinout for dual in-line packages in its $54 / 74$ series; Sylvania is sticking with its original SUHL configuration.

Both have their adherents. A marketing man at RCA, which is going the TI route puts matters this way: "Customers like the pinout arrangement better because

[^5]
We do all the work... you get high yield, low cost, guaranteed performance.

MINIATURE CABLE ASSEMBLIES

As producers of an in-depth line of miniature connectors and semi-rigid miniature coaxial cable, we can make a pretty strong case for ourselves as a source for miniature coaxial assemblies shipped complete with mounted connectors.

Specify any flexible, braided cable or, request our own semi-rigid coax, in sizes from .070 to .350 inches in impedances of 50 and 75 ohms. Specify crimp-type miniature connectors or patented Emlock ${ }^{(3)}$ compression metal-to-metal fit, in matched impedances. We will cut cable to precise mechanical and electrical
lengths, bend semi-rigid cable to individual requirements, mount selected connectors, test to your established parameters and guarantee performance. All this, at a price lower than your cost if you were to buy your own coax and connectors and do the job yourself. How? Our assembly speed is faster, our yield is greater.
Can we tell you more? Write for full details today; Phelps Dodge Electronic Products Corporation, 60 Dodge Avenue, North Haven, Connecticut 06473

Try this on your fragile parts.
Pelaspan-Pac ${ }^{\oplus}$ loose fill packing. It weighs 3 to 6 times less than most other dunnage. It won't absorb water. It cuts shipping losses. Because it's highly shack-resistant, and it interlocks to prevent settling. It cuts cleanup, too. Because it's clean, nondusting and noncorrosive. Write for details.

MnM| LOWER BIAS CURRENTS LOWER OFFSETS LOWER THERMAL RATES

in Bell \& Howell's Expanding Line of Advanced Hybrid OP AMPS!

No matter which of these high quality units you select from Bell \& Howell's growing line of precision linear circuits, you'll get performance you'd expect only from larger, high price devices ... and a combination of specifications no other op amps can offer.

Type 20-008 (FET input Op Amp)
Type 20-007 (general purpose Op Amp. Same size)

You don't have to worry about:

- Offset Trimming
- Compensation
- Short Circuits
- Wrong Connections
with either the Bipolar or the FET Amplifier.

BIPOLAR	$\begin{gathered} \text { TYPE } \\ \text { 20-007-A } \end{gathered}$	$\begin{aligned} & \text { TYPE } \\ & \text { 20-007-B } \end{aligned}$	$\begin{gathered} \text { TYPE } \\ \text { 20-007-C } \end{gathered}$
voltage offset (max.)	$200 \mu \mathrm{~V}$	$500 \mu \mathrm{~V}$	1 mV
voltage offset vs. temp. (max.)	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
common mode rejection	100 dB	100 dB	100 dB
open loop gain (at 10 kHz)	2.000	2,000	2,000
output current (min.)	5 mA	5 mA	5 mA
PRICE (in quantities of 10-99, any mix)	\$25	\$20	\$15
FET-INPUT	$\begin{gathered} \text { TYPE } \\ \text { 20-008-A } \end{gathered}$		$\begin{gathered} \text { TYPE } \\ \text { 20-008-B } \end{gathered}$
voltage offist (max.)	1 mV		2 mV
voltage offset vs. temp. (max.)	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		$75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
input bias current (max.)	10 pA		25 pA
common mode rejection	76 dB		76 dB
open loop gain (at 10 kHz)	2,000		2,000
output current (min.)	5 mA		5 mA
PRICE (in quantities of 10-99, any mix)	\$33		\$28

Write or phone for complete technical information on Bell \& Howell op amps. Ask for a Bell \& Howell sales engineer to call on you to discuss your particular application, and get advance information on how we employ new and proved concepts in hybrid microcircuit technology to bring you a growing family of precision linear circuits.

COMTROL PRODUCTS DIVISIDח

- Belle Howell

seem to be vinning the battle of hermetically sealed ceramic-encapsulated IC's, says R. Edward Shaut, marketing manager for digital IC's at Transitron. "But TI was first out with a plastic package and that shaped the market. We hopc to be in the market with plasticpackaged SUHL by autumn." Sylvania's plastic offerings are due in two months. But, for the record, Nola professes to be unconvinced about reliability. "We may restrict plastics to certain applications to keep our customers out of trouble," he says. Working both sides of the street, Sylvania is trying to cut prices of its SUHL in ceramic packages. This way, the company's marketing men reason, they could offer cqual performance at low cost in what is probably a more reliable package, effectively blunting the thrust of Tr's plastics.

Off the beaten track

Not all houses are pushing "pure" TTL in the Sylvania-TI mold. Signetics, for example, offers an 8000 series it calls Designer's Choice Logic, a TTL line that's can- and pin-compatible with DTL. At Fairchild Semiconductor, Ben Anixter, IC marketing manager, says the company is not really pushing TTL. "We're interested in something else-mediumscale integration-because we figure that's the way the wind is blowing in systems work. We figure TTL and DTL will be incidental."

Cost plus. Anixter believes 60% to 80% of a system can now be built with MSI. "This is where the real cost advantage will be," he says. "If you design with DTL or TTL, you're using last year's methods, and you won't be competitive on cost, size, maintainability, or repairability." So the rallying cry at Fairchild is "Systems not sockets." But Anixter concedes Fairchild's 9000 TTL series is on shaky ground. "There'll be a gap in our penetration of the TTL market, but not digital outlets," he says.
Jack Jordan, manager of digital IC marketing at Motorola's Semiconductor Products division, says his company is planning to add a number of complex new functions to its own TTL line. The company, a notable advocate of volume, already second-sources SUHL, and

Nomex** nylon paper is the one insulation you can use for just about every application. It won't melt or support combustion-it's UL-rated at $220^{\circ} \mathrm{C}$. and it complies with MIL-I 24204. Durable "Nomex" paper won't crack when creased or bent and does not flake. It can be easily slit or punched for close tolerance and can be ased in automated operations. -Du Port registered prademark
"Nomex" is compatible with all major resins, varnishes and enamels. It is relatively unaffected by moisture, and there are no shelf-life problems.
"Nomex" is available in \exists wide variety of fabricated forms designed to fit any application. So look 10 one material - "Nomex"-for all ycur insulation needs.

To get more information. write:

Du Pont Company, Nomex Marketing, Fioom J-6, Wilmington, Delaware 19898. In Canaja, write Du Pont of Canada Ltd. In Europe, Du Pont de Memours Int., S. A., 81, Route de l'Aire, Geneva, Switzerland.

This is our new CD-95 Series Regulated DC-DC Converter.

It's the best in its field.

consider:

- 84 fully isolated models -2.8 to 1000 VDC, up to 270 watts;
- Efficiency -60 to 80%;
- Wide input range -21 to 30 VDC (15 to 21 VDC possible with derating);
- 2:1 adjustable output voltage;
- Regulation: Line $\pm(0.05 \%+5 \mathrm{mV})$, Load $\pm(0.10 \%+10 \mathrm{mV})$;
- Peak to peak ripple less than $0.5 \%+50 \mathrm{mV}$;
- Designed to meet MIL environments with EMI provisions per MIL.1.6181-D, operating range $-55^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$.
Best of all. . the price range is $\$ 125$ to $\$ 495$, and a sizeable discount schedule reduces this further in quantity!
Write or phone for full information. Incidentally, there is an AC-DC companion line we also want to tell you about.

Benrus Center, Route 7, Ridgefield, Connecticut 06877
Telephone 203-438-0333

...TTL makers are anxious to exploit complexity ...

is looking into the possibilities of making devices in the 54/74 series. Its own MTTL 3 offerings have pin configurations "that permit customers the privilege of interchangeability with 930 DTL." Active pulldown is a distinguishing feature of Motorola's line which also uses input diodes to short out the ringing that plagued earlier versions of TTL.

On the drawing boards

Just about everyone in the business is anxious to cash in on the complexity ploy. Jordan of Motorola notes that while TTL was once sold largely on the basis of speed, the availability of more complex functions like binary counters, shift registers, decoders, 16-bit scratchpad memories, and 8-bit parity trees is now the most important element in the field's growth. "TI emphasized complexity early in the game," he says. "And this probably accounts for the gain it's made on Sylvania."

Meanwhile Motorola plans to pad its line with an 8 -bit parity tree, a dual 4 -hit parity tree, a dual 2 -input 4-output gated decoder, a quad flip-flop shift register, and quad flip-flop counters.

Penny wise. ti's Weyler believes that complexity affords economies of production as well as greater reliability. "By replacing six to eight IC packages, you save six times 14 soldered pin connections," he says. "Any time you can do that you're ahead of the game on assembly costs and built-in reliability." Upcoming from TI are coders that accept 4 -line to 10 -line inputs, and decode them into decimal formats. In addition, the company is working on more complex counters.

National also is moving toward more complex circuits and is about to introduce an MSI circuit, the DM7520/DM8520, a Modulo-N divider with more than 50 gates. This device will divide by any number from 2 through 15. By cascading the circuits, it is possible to divide by very large numbers.
Signetics is beginning to develop more complex TTL devices. In 60 days, it will announce the 8260

Why MIL-C-81511A is the best subminiature you can buy.

Araphenol Astro ' 348 to this spec provides:

- Due-piece molded contact retention system-a design (f revolutionary simplicity. Ease of handling. If the pr ce of miniaturization is smaller and smalle contacts, the MIL-C-S15I 1 A design makes it as casy as possible for the ser to handle them. Insertion'removal procedures are easier than with standard sizes. - Contacts with a true \#22 gauge wire fit to accommodate a wire sealing range of 0.30-to 054 -in. © Contact dielectric reparation of 0.21 inches on 085 -in centers, equivalent to existig miniatures with 130 -in centers. Damageprof miting. Pins are recessed beyond reach of shells. Cosed entry haud socket inserts, probe-proof socket cortacts. Crounding springs that mate prior to electicai engrgement. Shielding for EMI protection.

The sull-C-s1511A family is growing; additional contact sizes and insert arrangements are on the way

Ask an Amphenol sales engineer or distributor to show vou the complete Astro 3.48 f:mily: Or write Amphenol Comnector Div.. 2s01 S. 25th Ave., Broadview, Ill. 60153.

Dependable Hermetic Seals For Highly Critical Specs...

> Specify E-I Glass-to-Metal Seals for Sophisticated Applications:

Quality Control at E-I begins with the raw material and follows through to the finished product. The picture above depicts one phase of this program - X-Ray Spectrographic Analysis. The Spectrograph provides a quantitative chemical analysis of the metals, alloys and glasses which are utilized in the manufacture of Electrical Industries' glass-to-metal seals. Continued surveillance of the chemical constituents of materials is just the beginning of the E-I quality control program that assures our customers of the highest quality hermetic seals each and every time.
If you require standard or custom seals or sealing of your own components, check with E-I. Our engineers will gladly make recommendations. Illustrated technical literature is available - call or write today.

[^6]Patented in U.S.A., No. 3,035,372; in Canada, No. 523,390; in United Kingdom, 734,583; other patents pending
four-bit adder, which will have 57 gates on an $80-b y-100-\mathrm{mil}$ chip. This circuit will come in a 24 -pin silicone DIP as well as a flatpack; and it will use much of the gating to achieve full anticipation carry. Most adders, Winstead says, must ripple through the whole chain at a cost of X times the propagation delay of any given segment (about 1.0 nanoseconds each) to carry. The 8260 senses a carry as it appears, and gates it ahead to the next bit in parallel with the add output. Each bit thus becomes more complex. It's possible to cascade as many of these adders as necded to make up a word; thus 16 packages would be needed for a 64 -bit word. In such a case, 64-bit words could he added in 56 nanoseconds.

Transitron is working on a 64bit monolithic memory chip due early in 1969. The device bears a family resemblence to the 16 -bit scratchpad memory developed for Honeywell's big computers but will come in two models-one with internal decoding and one with external decoding. This assembly will probably be marketed in a 22 pin flatpack of DIP.

Also in clevelopment are adders to second-source Sylvania lines. There is also a gated full adder on tap at Transitron which would be compatible with TI's 7400 line. Both sorts of devices, says the company, would be at least twice as fast as their Sylvania or TI counterparts.

Before ycar's end, Sylvania plans to add to both suifl 1 and 2 lines. One of the new IC's will be a dual D-type flip-flop which Nola says is a useful building block for machines organized along the lines of data transfer registers. This IC is expected during the third quarter of 1968.

There will be many additions to Sylvania's line of functional arrays -comparator IC's, an 8-bit parity gencrator, a 4-bit fast shift register, binary and decade counters, programable dividers, and the like. Late this year or early next Sylvania will bring out an up-down counter IC.
"Our philosophy was to round out SUHL and afterward to emphasize complex functions," Nola says. "But during 1969, we'll be looking toward improvements in the TTL format itself."

A NEW FUNCTIONAL APPROACH TO MACHINE AND PROCESS CONTROL!

Struthers-Dunn has analyzed control operations by function . . . and reduced them to a family of versatile, solid-state plug-in printed circuit cards like this.

This is the new Struthers-Dunn simplified, money saving approach to the design and use of solidstate control circuitry . . . for both new equipment and machines already in use.

Just tell us your control problems. We will supply a combination of functional cards to meet any need . . . control of timing, counting, comparing, load handling, storage and handling of information, and others.

Cards can be combined three ways. One, with magnetic tape cartridges in a card-file enclosure, such as our TP-1000, for changeable program cycles. Two, in a card-file enclosure without magnetic tape control with a fixed program for singlecycle or repetitive operations. Three, as building block sub-assemblies, ready for installation in your own enclosure.

We match cards to your control needs . . . and package them in this compact enclosure with optional magnetic tape programming. Your control costs and headaches are over!

YOU GET THESE ADVANTAGES

Simplified design technique. No need to be a computer expert. No need to send engineers to special schools. No complicated control circuits.
Easy programming. Magnetic tape with infinitely expandable capacity. Cartridge load. If program changes, just change cartridge.
Easy hook-up. Simple screwdriver connection from TP-1000 to your equipment.
Money-saving maintenance. All solid-state circuitry. Long life. Plug-in cards for fast replacement. Troubleshooter indicator lights quickly identify load circuit faults due to coil failures, etc. All load circuit cards have "fail-safe" feature.
A sales plus. A competitive edge for equipment manufacturers.
Total design service, too. We can provide complete, unbiased service in design and manufacture of control systems for many machines or processes. We offer solid state, reed, plug-in and conventional machine tool relay controls according to needs of the application rather than a single approach or catalog.

Full details in Bulletin 10010. Send for it today! See how far ahead you can be with the Control People!

1114 State Street, Bettendorf, Iowa 52722 / Telephone: 319-359-0318

Subminiature case style C reed relay is designed for high speed switching applications. It features axial leads and is available as an unshielded model in Form A and C. Reed package is hermetically sealed, gas filled. Contact rating of Form A is 500 ma and Form C withstands currents up to 100 ma. Aztec Electronics Inc., 163 Liberty Ave., Anaheim, Calif. 92801. [341]

Copper-clad laminate Micarta 65M27 eliminates "measling" (shown at right in photo) in the normal manufacture of printed circuits. It meets requirements of Mil-P-13949. It is translucent. light green and ranges in thicknesses from $1 / 32$ to $1 / 4 \mathrm{in}$. The laminate is available in standard shect sizes with copper on 1 or both sides. Westinghouse Electric Corp., Hampton, S.C. [345]

Fiexiule nat caule connctors called AMP-UNYT use an insul-ation-piercing crimp to make physical and electrical contact with the cable. Designed for use with cables meeting NAS729 10.063 in . wide conductors on 0.100 in. centers), these connectors are available in cable-tocable, cable-to-wire, and cable-lo-board configurations. AMP Inc., Harrisburg, Pa. [342]

Printed-circuit toroids that are transfer molded of high temperature epoxy resin allow opcration at ambient temperatures of -55° to $+130^{\circ} \mathrm{C}$. They have nickel-alloy leads spaced to match 0.1 in. circuit board grids. Leads may be mounted by sold. ering or welding. More than 100 values are available, from 0.05 mh to 3 t. Collins Radio Co., Newport Beach, Calif. [346]

ivinsature reea relay KA 3013 was designed to have max. coil resistance providing minimum contact thermal eleatronotive force and minimum operating power. Contacts can switch dry circuit loads to 10 watts and 0.5 amp; withstard $2,000 \mathrm{hz}$ vibration and 150 g shock. Temperature range is 55° to $85^{\circ} \mathrm{C}$. Elec-Trol Inc., Box 304, Northridge, Calif. [343]

Miniature, hybrid, cermet thickfilm ladder switch model 841 is designed for use in digital to analog conversion systems. It offers 4 switching sections, each using 2 bipolar transistors. Rise and fall time is typically 200 nsec, and load range is 0 to 5 ma . Operating temperature range is -55° to $+125^{\circ} \mathrm{C}$. Beckman lnstruments lnc., 2500 Harbor Blvd., Fullerton, Calif. [347]

Quick-connect terminals for use in high-volume assembly operations are now available on the type HL wirewound incustria: resistors. The terminals can be obtained on round core pesistors with core diameters from $5 / 16$ in. through $11 / 8 \mathrm{in}$. They are also available on flat core styles. Dale Electronics Inc., a subsidiary of The Lionel Corp., P.O. Box 488, Columbus, Neb. 68601. [344]

Dual-in-line IC sockets are available in the W series for hard wiring and the S series for solder type terminations. All types accept any dip with round, square, rectangular, hollow or solid leads with a cross section of 0.008 in. to 0.023 in . and 0.090 in . minimum lead length. Body mater'al meets MIL-M-14F. Robin-son-Nugent Inc., New Albany, Ind. 47150. [348]

New components

Solid state thyratron challenges tubes

Billed as a pin-for-pin replacement for mercury devices, it lasts 50 times longer and draws only 100 ma

Until a suitable triggering circuit for silicon controlled rectifiers was developed, mercury vacumm-tube thyratrons resisted replacement by solid state devices. Now, however, engineers at Radiatronies Inc. say they've licked the triggering problem and huilt a solid state thyratron
that plugs right into the old mer-cury-tule sockets.

Fredrick ITanly, the project manager, says the device uses an arrangement of SCR's and diodes mounted on a printed-circuit board with the mique triggering circuit, for which a patent is being sought.

Rookie and vet. Solid state thyratron, top, is designed to duplicate mercury tube physically and electrically.

4.5V, 20 MIL LAMPS give tung-sol readouts LOW POWER DRAIN, MINIMUM HEAT, MAXIMUM RELIABILITY

The new T-3/4 lamps used in Tung-Sol readouts, both digital and alphanumeric, provide important performance advantages without loss of effective brilliance. The low-power factor is especially advantageous where energy-source weight must be mini-mized-such as in aircraft and space vehicles.
Tung-Sol digital and alphanumeric readouts have excellent off-on contrast and a 150° viewing angle. They are designed to be intermixed. Write for brochure T-431, which contains 12 pages of detailed information. Tung-Sol Division, Wagner Electric Corporation, One Summer Avenue, Newark, N.J. 07104.

. . . there's no r-f emission
 from solid state unit . . .

According to Hanby, the trouble designers faced in building an SCR pin-for-pin replacement was taking the thyratron grid voltage and converting it to a signal that would trigger SCR's.

The Radiatronics unit is mounted in the same kind of plastic base as mercury thyratrons and it is encased in a tube made of blue ano-dized-aluminum.

Thyratrons have found their greatest use as sources of variable output voltages in power supplies. Hanby says the two principal advantages of the solid state design are increased reliability and ruggedness. "We guarantee a minimum of 10,000 hours mean-time between failures, whereas you would be lucky to get 200 hours from mercury thyratrons. Also, our unit is shockproof and can withstand all types of hostile environments." Hanby also says the solid state unit doesn't produce radio-frequency emissions.

Radar role. Over a range from d-e to 500 hertz, the thyratron has a maximum peak inverse voltage of 2,400 volts and a maximum forward surge current of 50 amps.

The clevice draws 100 milliamperes, compared with about 7 amperes for conventional thyratrons, and it generates little heat. After using more than 40 of the units in power supplies for its AN/MPQ-T2 bomb-scoring central radars in tests this year, the Air Force is ordering 1,000 more at $\$ 39$ each for use in radar power supplies (including the $A N / T S Q-81$ and $A N / M S Q-35)$. Civilian prices haven't been established yet.
"Mercury thyratrons go for about \$13," says Hanby. "However, with a guaranteed lifetime 30 to 50 times longer than that of these devices, plus increases in operating efficiency, the service felt the added costs were not out of linc."

Five thyratron types can be replaced by Radiatronics devices. Radiatronics SS 2207 replaces the 393A, 6901, 7410, and 395; the SS 2212 replaces the 3 C 23 , ve 967. 714 and 7021 ; the SS 2213 replaces the 394; the SS 2214 replaces the 627 , and the SS 2215 replaces the 629 and RCA 885.

[^7]
Two new tachometers with hardly a ripple

By adding a printed armature tachometer to a printed armature servo motor，PMI has created two unique designs that provide low ripple velocity feedback．

INTEGRAL TACHOMETER－Adds a superior tach－ ometer to standard printed motors with no increase in motor size．Tach features include low ripple（5\％ peak－to－peak at 100 rpm ；below 2% over 1000 rpm ）， excellent linearity and elimination of mechanical coupling and torsional resonance problems．The printed tachometer armature typically has the equiv－ alent of over 100 commutator bars raising the fre－ quency of output ripple far beyond that attainable with conventional tachometers．Ideal for wide speed range velocity servos．

LOW INERTIA TACHOMETER－Designed for high performance incrementing servos where low ripple， low inertia and minimum torsional resonance are necessary．Built as an integral part of the rear shaft extension of any standard PMI motor，this tachom－ eter has a lower ripple output than any comparable tach available today．．． 1.5% peak－to－peak at 50 rpm．Inertia added by the tachometer is only .0006 oz．－in．－sec．${ }^{2}$ ．Couplings and mounting hardware are eliminated by this design and accidental damage to the tach is minimized by housing it in a rugged $1 / 4^{\prime \prime}$ aluminum casting．

Mail this coupon－for information and litera． ture on these exciting new tachometer devel． opments．

PRINTED
MOTORS，INC． GLEN COVE，NEW YORK 11542

Engineering，Manufacturing and Sales by： PHOTOCIRCUITS CORPORATION glen cove，new york

PRINTED MOTORS，INC．

33 Sea Cliff Avenue，Glen Cove，N．Y． 11542

Dear Sirs：Please send me information on your new printed armature tachometers．

```
\square Integral Tachometer
\square \text { Low Inertia Tachometer}
```

NAME \qquad title

COMPANY
ADDRESS
CITY STATE／ZIP

Regulator has .005\% control

Thick-film hybrid IC

 delivers up to 10 watts, has $80 \cdot \mathrm{db}$ ripple rejectionVoltage-regulator makers are in for tough competition from Varadyne Inc. This small California firm has developed a regulator that holds a voltage to within 0.005% of a desired level, a figure the company calls 10 times better than that offered by competitive units.

Each of these Varadyne devices, given the family name of Series J, is a thick-film hybrid integrated circuit mounted on an inch-long alumina substrate. The ripple rejection

is 80 decibels at 10 kilohertz, and the device can be used from 10 hertz to 600 khz . Pcak deliverable power is 10 watts normally, and 24 watts if the regulator is coupled to a $36^{\circ} \mathrm{C}$ heat sink. The active clement in the device is a Motorola opcrational amplifier.
Three models, covering ranges of 3 to 8 volts, 9 to 21 volts, and 21 to 32 volts, are available with either a fixed or variable output.
Charles Tobias, Varadyne president, lists ripple rejection, percent regulation, and deliverable power as the factors to consider when evaluating regulators. "We beat the competitors on all three counts," he says. "And we're just as competitive in pricc." In quantities from one to nine the regulator costs $\$ 32.50$.
Varadyne Inc., 1805 Colorado Blvd.,
Santa Monica, Calif. 90404 [350]

now you see it

now you don't

THE PANEL INSTRUMENT WITH BUILT-IN FLEXIBILITY

TWO NEW SIZES!

 $5^{1} 12^{\prime \prime}$ and $11 / 2^{\prime \prime}$ (Miniature)New Triplett G-Series Panel Instrumens offer a modern design that features a greater degree of flexibility and interch angeability.

1Two types of mounting are available-conventional flush type or behind-the-panel with a bezel for modern picture window appearance. \rightarrow The insert shield or the front of the meter can be custom painted or printed to mect customer's requirements.

Triplett's famous self-shielded Ber-Ring magret, with one-piece die-cast frame, in all DC and DC suspension type instrumerts.
In five pepular sizes: $5^{1 / 2^{\prime}}$ DC and $A C ; 4^{1 / 2^{\prime \prime}}$ DC and $A C ; 3^{1 / 2} 2^{\prime \prime}$ $D C$ and $A C ; 2^{1 / 21} 2^{\prime \prime} D C$ and $A C ; 1^{11 / 2^{\prime \prime}}$ (corsventional flush mounting only) $[\mathrm{DC}$ and $A C$ rectifier type.
Circle 163 on reader service card

NOW IN FIVE POPULAR SIZES:
1½" (Miniature); 2½"; $3^{11 / 21 "}$; 4½"; \& 51⁄2".

O, ",

New Sperry X band BWO offers dramatic size/weight savings

Now you can specify the advantages of metalceramic BWO's into your own system or equipment; the size and weight penalties connected with glass tubes need no longer be paid.

Sperry's newest BWO is designated SBX-2980. It comes in a $1.5 \times 1.6 \times 6$ inch package, and it weighs only 1.7 lbs., including its focusing magnet. The tube is voltage tunable across the 8.0 to 12.0 GHz range,
and it typically delivers 22 to 80 mW of output. Sperry's minimum output spec is 15 mW . This BWO is fully qualified to airborne environmental specs.

SBX 2980 is now in volume production. Because of that you can expect fastest delivery and unusually attractive prices. For more details or quotation, contact your Cain \& Co. representative or write Sperry Electronic Tube Division, Gainesville, Florida, today.

4

Variable delay pulse generators series 2306 feature bipolar outputs to 50 v , and less than 1 nsec rise and fall time. Repetition rates for all models are variable by front panel control from 1 hz to 1 Mhz, or may be externally triggered to 1 Mhz. Overshoot and undershoot is less than 5% for amplitudes over 2 v. Gralex Industries Inc., 28 Di Tomas Ct., Copiague, N.Y. [361]

Lightweight vibration monitor model VM-10M can be used with any piezoelectric accelerometer with sensitivities from $1 \mathrm{mv} / \mathrm{g}$ to 100 mvig . Feätures include high input impedance of 1,000 megohms, 6 full-scale acceleration ranges of 1, 3, 10, 30, 100 and 300 g , and a constant $10 \mathrm{mv} / \mathrm{g}$ output. Price is $\$ 395$. Agac-Derritron Inc., P.O. Box 358, Alexandria, Va. 22313, [365]

High level d-c output (± 1.5 v) linear accelerometer model 100 has an output accurately proportional to the sensed acceleration vector with ranges of $\pm 1 \mathrm{~g}$ to $\pm 259 \mathrm{~g}$. Power input is $6 \mathrm{ffv} \mathrm{d}-\mathrm{c}$. The self-contained transducer measures I in. square by $11 / 8 \mathrm{in}$. high, and weighs approximately 3 oz. Price is $\$ 345$. Setra Inc., 12 Huron Drive, Natick, Mass. 01760. [362]

Dual-range pressure transducers series 200 M feature a linearity of better than 1% of full scale. The primary range is the highest pressure range to be measured (0.05 to $\pm 5 \mathrm{psi})$; the secondary range is obtained by an internal amplifier and can be as much as 10 times lower, or typically 0.005 psi full scale. Lion Research Corp., 60 Bridge St., Newton, Mass. [366]

Go/no-go noise limit tester 60 2300 can be used to inspect precision or trimmer, wirewound or film potentiometers. The unit contains a constant current source to energize the wiper and a high input impedance adjustable limit detector to noniter wiper voitage. A pane! light indicates when a preset limit is exceeded. Solatron Enterprises, Venice, Calif. [363]

General purpose oscilloscope model 101 is suited for applications on CATV sites, remote communicatiors sites, flight lines, ship-board and field use. It combines $50 \mathrm{mv} / \mathrm{cn}$ sensitivity and d-c to 20 Mliz bandwidth. The unit measures $9 \times 81 / 2 \times 15 \mathrm{in}$. and weighs 17 lbs. Price is $\$ 665$; delivery, from stock. Texscan Technical Products Corp., Indianapolis. [367]

Modulation meter model 409 provides wide carrier ranges-a-m: 3 to $1,200 \mathrm{Mhz} ; \mathrm{f}-\mathrm{m}: 3$ to 1,500 Mhz-and measures percentages of amplitude modulation in 3 ranges, and $\mathrm{f}-\mathrm{m}$ deviation up to $\pm 600 \mathrm{khz}$ in 6 ranges. A-m measurement accuracy is better than $\pm 3 \%$ to $5 \mathrm{khz} ; \mathrm{f}-\mathrm{m}$, better than $\pm 5 \%$ to 50 khz . Winslow TeleTronics Inc., 1005 First Ave., Asbury Park, N.J. 07712. [364]

Sine/scuare wave, true rms differential wattmeter mode' 4201 offers high resolution and stability designed to continuously monitor and record gyro power. Power range is 0 to 12 w . direct digital reading with $100 \mu \mathrm{~N}$ resolution. Accuracy (2.5 to 12 w) is 2% of reading for 1 to 0.5 pf loads. Price is $\$ 1,995$. NH Research Inc., 1510 S. Lyon St., Santa Ana, Calif. 92705 [368]

New instruments

From Britain, a low-cost averager

Analog system uses 350-picosecond gating circuit to extract repetitive signals from noise, 1,000 times more intense.

Finding a signal buried in noise isn't a difficult task. When the noise is random and the signal repetitous, the noise will drop out when the complete input is integrated for a period that's several hundred times longer than the signal's width. This averaging technique is so success-
ful that engineers are no longer intimidated by high noise-to-signal ratios.

The popular signal averagers, like Nuclear Data's Enhancetron, are digital. But their prices start at about $\$ 5,000$. Now a British firm, Aim Electronics Ltd., has built an
amalog averager that will sell in the U.S. for $\$ 3,075$.

Called the System 7.3, Aim's avcrager can dig out a signal that's buried in noise 1,000 times its amplitude, as long as the signal repeats and its width is less than 1 second. The 7.3's response is linear for inputs from d-c to 1 gigahertz, after which it gradually drops. At 3 Chz, the response is off by no more tham 3 decibels.

The 7.3 has a gating circuit that opens for 350 picoseconds each time a signal is received. A trigger, which can be either internal or external, alerts the 7.3 each time a signal is transmitted. The gating

Computer Performance; Calculator Price.

WANG 380

640 Program Steps 24 Storage Registers
 LOG $_{e} X, \mathrm{e}^{\mathrm{x}}, \mathrm{X}^{2}, \sqrt{\overline{\mathrm{x}}} \frac{1}{\mathrm{x}},+,-, \mathrm{X}, \div$ Performs Subroutines, Loops, Branches, Makes Decisions.
 \$3795.

No special programming language needed. The Wang 380 learns programs directly from keyboard operations and stores them on plug-in magnetic tape cartridges.
You can tailor system capability to your exact needs with compatible accessories including:
Output Writer, CRT Display, additional Data Storage, Teletype, Trig Pack, and On-line Interface.
There is nothing comparable, anywhere.

Dept. 7H, 836 North St., Tewksbury, Massachusetts 01876 . Tel. 617 851-7311

Call today for immediate trial:									(70	931.7878
(201) 241.0250	(216)	333-6611	(313)	278-4744	(416)	364-0327	(604)	685-2835	(713)	668-0275
(203) 223-7588	(301)	588-3711	(314)	$727-0256$	(504)	729.6858	(612)	881.5324	(714)	234-5651
(205) $595-0694$	(301)	821.8212	(317)	$631-0909$	(505)	255-9042	(613)	224-4554	(716)	381.5440
(206) 622-2466	(303)	364.7361	(403)	266-1804	(512)	454-4324	(614)	488-9753	(717)	397-3212
(212) 682.5921	(304)	344.9431	(404)	457-6441	(513)	531-2729	(615)	588-5731	(805)	962-6112
(213) 278.3232	(305)	564.3785	(405)	842.7882	(514)	482-0737	(617)	851.7311	(901)	272-7488
(214) 361.4351	(305)	$881-3691$	(412)	366.1906	(518)	${ }^{463.8877}$	(702)	322.4692	(916)	489.7326
(215) $642-4321$	(312)	889-2254	(415)	454-4140	(602)	265-8747	(703)	877-5535	(919)	288-1695

Average performer. The 7.3, shown at left, continually integrates repetitive signal to eliminate random noise.
circuit examines a $350-\mathrm{psec}$ segment of the input and the amplitude of this gated portion is stored in a capacitive memory. Each time a signal is received, the opening of the 350 -psec window comes a little bit later than it clid on the previous cycle. Erentually, the window moves down the entire waveform and then the process repeats. The amplitudes are averaged in either an internal integrator that has a 0.025 -hertz bandwidth or an external integrator. The averager's output can be fed to an oscilloscope, a roltmeter, a storage scope, or an x-y recorder. dim recommends using a recorder in order to take advantage of the 7.3 's linearity.

Aim offers, as an option, an ana-log-to-digital converter for users recuiring a digital output. But this adds $\$ 1,200$ to the price of the basic system.

Research tool. Aim's first customers will most likely be medical researchers. Their attempts to measure specific physiological signals are always hindered by the presence of high-level signals from other parts of the body. The 7.3, like other averagers, is already being used in neurological studies on animals.

In a typical experiment, an electrode is placed in a specific spot in the brain and another is placed elsewhere in the nervous system. A stimulating pulse is applied through the first electrode and the second clectrode detects the response and feeds it to the averager. The stimulus also acts as the trigger, and is continually applied until the noise is averaged out.

The 7.3 can also be used to detect chemical and nuclear reaction

in $\mathbf{1 - 1 0 0 0 ~} \mathbf{~ M H z}$ work Voltage tells only half the story

The HP Vector Voltmeter tells all.

'All" means phase, the key to every RF measurement. Especially the tough ones like open-loop gain of feedtack amplifiers, electrical lengths, resor ance characteristics, or filter pass and rejection bands. And this 2 -channel millivoltmeterphasemeter makes them directly, ascurately and conveniently.
The Vector Voltmeter covers the frequency range from 1 to 1000 MHz and automatically locks onto the signal anywhere within an octave - no fine tuning required. It's exiremely sensitive-full scale $100 \mu \mathrm{~V}$. With its 90 dB dynamic range, you can easily measure hign gain and high loss networks. It ras a 360-
degree phase range with 0.1^{c} resolution. The 8405A also serves as a "frequency translator." How? By :ransforming the RF inpuis to 20 kHz outputs whose wave shapes, amplitudes and phase relationship remain identical to the original RF signals. You can use these cutputs for further analysis with low frequency scopes. You needn't waste time making a tough RF measurement any longer. The HP 8405A does it faster and more completely than ever before. Application Note 91 tells you how. Just call ycur HP field engineer for details, or write Hew'ett-Packard, Palo Alto, California 94304; Europe: 54 Route des Acacias, Geneva.

HEWLETT hp PACKARD

MAJOR SPECIFICATIONS, HP 8405A VECTCR VOLTMETER
=REQUENCY RANGE is 1 to 1000 MHz in 21 over-laoping oc:ave Jands; automa:ic tuning within эach band.
JOLTAGE RANGE FDR CHANNEL . 7 (synchronizing channel), $300 \mu \mathrm{~V}$ 101 V rms ($10-500 \mathrm{MHz}$), $500 \mu \mathrm{~V}$ to $1 \mathrm{~V} \mathrm{rms}(500-1000 \mathrm{MHz}) 1.5 \mathrm{mV}$ to V rms ($1-10 \mathrm{MHz}$).
HOLTAGE RANGE FOR CHANNEL B (input to Chanrel A required) ${ }^{1} 00 \mu \mathrm{~V}$ to 1 V rms:, full-scate. Fullscale meter ranges from $100 \mu \mathrm{~V}$ to -V in 10 dB steps. Both channels can be extended to 10 V rms with 11576A 10:1 Divider.

FHASE RANGE of $36 C^{\circ}$ indicated on zero-center meter with end-scale ranges of $\pm 180^{\circ}, \pm 60^{\circ}, \pm 18^{\circ}, \pm 6^{\circ}$. Fhase meter OFFSE, of $\pm 180^{\circ}$ in 10° steps permits use of $\pm 6^{\circ}$ range for 0.1° phase resolution at any phase angle.
PRICE: $\$ 2750$.

GCC makes every type of Teflon coated wire you need today. And some you may need tomorrow.

Everyone agree's Tefon ${ }^{\text {n }}$ insulated wire is more than a match for outer sface. But, can you thepend on getting it to your plant on time to meet your production schedule?

GCC is ready to meet your needs, wherever your plant happens to be. 51 GCC distributing centers and a rationwide network of manufacturing facilities are ready, willing and able to tack up every order. GCC's delivery
policy goes one step further; tell us your needs and we'll be sure to stock your most popular items, so you'll always have a readily available source close by.

For specific data on the scope of our Teflon insulated product capabilities, drop us a line.
General Cable Corporation, 730 Third Avenue, New York, New York 10017.

products with short lifetimes, and to clean up signals received in telemetry systems. When not averaging, the 7.3 can act as a sampler, allowing a low-speed scope to display high-speed signals-up to 1 Ghz.

Ling Electronics, which sells the system in the U.S., says the 7.3 is a a ailable now and dolivery time is 10 to 12 weeks.

Ling Electronics Div., LTV Altec Inc., 1515 S. Manchester Ave., Anaheim, Calif. 92802 [369]

New instruments

Airplane altimeter goes all-electric

Servoed device has analog/digital display; may threaten pneumatics

The way the engineers see it, an all-electric airplane altimeter is superior to the pancumatic units now commonly used. It can deliver more power to the displays, its analog needle movement is less delicate, and it has longer mean time between failures.

All this adds up to high hopes at Sumbeam Electronics Inc. for its new all-electric servoed digital altimeter. The subsidiary of the Sunbeam Corp. developed the unit, which is a counter and pointer, for the Bocing 747 and such advanced aircraft as the McDonnell Douglas DC-10 and Lockheed L-1011 airbuses. Trans World Airlines is the

Twice told. Unit indicates altitude with both a pointer and a digital display.

Hi-G provides the most complete line of miniature coaxial relays that meet or exceed the applicable portions of MIL-R-5757/D . . . and at competitive prices. These hermetically sealed coaxial relays have been specifically designed for high frequency RF
switching applications. Their trouble free performance characteristics are a result of Hi-G's long experience in the design and manufacture of sophisticated switching devices. All $\mathrm{Hi}-\mathrm{G}$ relays are built to withstand extremely tough environmental conditions.

SOLVE YOUR HIGH FREQUENCY RF SWITCHING PROBLEMS WITH THESE QUALITY COAXIAL RELAYS

Call, write, or check the reader service card for your copy of Hi-G Product Bulletin 155. Hi-G radio frequency relays are available through Hi-G distributors and, if you need applications engineering assistance, an exper-
 ienced $\mathrm{Hi}-\mathrm{G}$ representative awaits your call. Telephone: 203-623-2481.

. . . altimeter is fed by plane's computer ...

NOW greater capability...

 with CEI's new model 8421
SIGNAL MONITOR

For CEI's VLF/LF/MF Receivers

CEI's new type SM-8421 Signal Monitor extends the capability of any CEI VLF/LF/MF Receiver, operating from a 2 MHz IF output to provide a visual display of signals in a band around the received signal.

With a maximum sweep width of 50 kHz , the SM-8421 has been designed as an operating accessory for CEI Receivers covering the VLF, LF and HF frequency ranges. Typical are CEI's $354,355,356$ and 357 Receivers.

All active elements in the Signal Monitor are solid state except for the cathode ray tube, providing high reliability and low power requirements. Crystal filters are used to restrict the input bandwidth for the two narrow sweep widths. The SM-8421 features ease of operation, a high-light output CRT and a built-in crystal marker to indicate the center of the unit's passband.

Supplied in a panel 3.5 inches high by 19 inches wide, the unit provides three selective sweep widths of 50,15 and 3 kHz , with associated resolutions of 2500,1200 and 250 Hz . This provides sufficient definition to view low modulation rates.

Call or Write for Specifications
EEI SUBSIDIARY OF WATKINS JJOHNSON UU

COMMUNICATION ELECTRONICS
6006 Executive Blva., Rockville, Md. 20852 - 301/881-3300 • TWX 710-824-9603

first carrier to specify Sunbeam's version for its 747's, making it the first airline to switch to an all-electric servoed altimeter. Conventional airplanes have the venerable pneumatic units or servopneumatic models with pneumatic as the standby mode.
Plugs in. The Sunbeam altimeter, type 9802-07, operates off the plane's central air-data computer. Its pointer is the conventional con-tinuous-moving analog type. In the face of the unit is the five-digit electromechanical counter, moving in ± 20-foot increments, snappingin in less than 100 milliseconds. Digits are $3 / 8$ inch for 1,000 's and 10,000 's, $1 / 4$ inch for units, 10 's and 100 's. The altimeter accepts analog synchro information and is compatible with Arinc specs 545 and 565 for air-data computers. The face presentation can be changed to provide a continuous digital display, or ± 50-foot increments, or whatever special features the customer wants.

When altitude is negative, a flag covers the digital display.

There are, however, scveral problems. Sumbeam still must convince airlines that the all-electric unit is more reliable operating from the central computer than the pneumatic models operating from static pressure ports. Also, the new altimeter could cost several thousand dollars more than airlines are used to paying for altimeters.
But in the words of Sunbeam marketing manager Andrew Barbaccia, the clincher is the way the new device licks one of the peskier problems encountered with pointer units now in use-human error. "Pilots now misread the figures100 feet instead of 1,000 , or 10 instead of 100 . Digital readout eliminates this," he says.

The unit is accurate to within ± 5 feet over a range from $-1,000$ to $+50,000$ feet, and has $25,000-$ feet-per-minute slew rate.

A 26 -volt, 400 -hertz signal and a 5 -volt, a-c or d-c, signal are needed to drive it. The weight is 4.5 pounds and the maximum length is 7 inches.

Sunbeam Electronics Inc., Fort Lauderdale, Fla. 33304 [370]

Let us throw you a curve

If you've problems with LC circuits, Magnetics' new Iso-Q contour curves speed ferrite pot core selection.

No more spuinting at tangles of curves on log paper to find the ferrite pot core site you need. Magnecios new Iso-() contour curves le you rero in on your tangen sire in seconds. We ve platied over 100 of these time-savers to hamdle more than 90% of normal design
requirements. Theyre all contamed in our new Forrite Cores Catalog. first of its kind in the industry.
Magnetios high purity fernites cover frequencies up w? megahera. Linear temperature coeflicients on $750,1+100$ and 2000 permeability materials a ce guaranteed from -30 10 $+70^{\circ}(\therefore$ Flat temperature cocflicient on 2300 perm material is guaranted from $+20^{\circ} 10+70^{\circ} \mathrm{C}$:
Magnetios wide selection of ferries comprises eight international standand sies and fise addinional sies175 part numbers for design freedom. li'e ant give jou quich
delivery from our large inventory that includes both gapped and ungapped cores in your most asked-for si/es. Of course. we provide one-piece clamping hardware for most si/es. Finally, we offer you a complete choice of tuning assemblies, bobbins and shapes-toroid, E. U and I.

Get your set of our new Iso-Q Curves. You'll like their curvilinearity. Write on your letterhead to Magnetics Inc., Dept. EL-101, Butler, Pa. 16001. Please include your title and/or job function.

An Important Announcement to Users of Ku-Band 1N78 Diodes

Microwave Associates has developed, is manufacturing, and stocking coaxial Schottky-barrier mixer diodes electrically and mechanically superior to, and interchangeable with, standard 1N78 diodes.
Broadband. 12.5 to 17.5 GHz .
10 ergs burnout.
6.5 dB noise figure.

Batch photoetching and deposition techniques guarantee reproduceability and reliability.

1N Equivalent	MA Model Number	Max. Noise Figure (dB)	Burnout (ergs)
None	MA-4861H	6.5	10
1N78G	MA-4861G	7.0	10
1N78F	MA-4861F	7.5	10
1N78E	MA-4861E	8.0	10
1N78D	MA-4861D	8.8	10
1N78C	MA-4861C	9.5	10

microwave associates

Burlington, Massachusetts
Offices: Northwest Industrial Park, Burlington, Mass. 3605 Long Beach Blud., Long Bcach, Cal. Subsidiaries: Microwave Associates (West) Inc., Sunnyvale, Cal
Microwave Associates, Ltd., Luton, Beds, England.

Four $a-c$ to $d-c$ plug-in power supplies have a current rating of 3 amps at output voltages ranging from 6 to 10 v . Line regulation is $\pm 0.05 \%$ and load regulation is either $\pm 0.5 \%$ or $\pm 0.25 \%$ depending on the model. Designed for use in an ambient temperature range from 0 to $55^{\circ} \mathrm{C}$, the units require no additional heat sinking. Acopian Corp., Easton, Pa. 18042. [381]

Variable voltage bench supply model BP-118 has an output of 0 to 34 v at 1.5 amps . Regulation is mv or 0.01% with ripple a low $250 \mu \mathrm{v}$. Voltage and current output are continuously monitored by two taut-band meters. The unit meets MIL Specs and is completely shortcircuit proof. Price is $\$ 118$. Power/Mate Corp., 163 Clay St., Hackensack, N.J. 07601. [385]

Differential operational amplifier KM25 is internally compensated and has a full power output of 15 khz at +10 ma and 100 v . Stability is 10 uv $/{ }^{\circ} \mathrm{C}$. Gain is 200,000 at rated load (106 db). The unit is designed for instrumentation, control and computation applications. Price (1 to 9) is $\$ 50$; availability, from stock. K\&M Electronics Corp., 102 Hobart St., Hackensack, N.J. [382]

Dual output power supply NPS300 features separate positive and negative power outputs, Each output is adjustable to between 12 and $18 \mathrm{vd}-\mathrm{c}$ at any load between 0 and 30 ma each. Low ripple and noise with fast response time allows unrestricted use in sensitive circuitry. Regulation is to $\pm 0.05 \%$ for load and line. Philbrick/Nexus Research, Dedham, Mass. [386]

Magnetic core memory model $D C$ 32 is a medium speed 3D unit with 4,096 and 8,192 word basis modules available from 4 to 26 bits in 2-bit increments. Full cycle time of typical 4096×8 unit is $2.5 \mu \mathrm{sec}$ and will vary up to 40% in larger configurations. Access lime is 600 nesc Prices start at $\$ 3350$. Datacraft Corp., P.O. Ecx 23550, Ft Lauderdale, Fla. 33307. [383]

Solid sate device model 678 converts 3 -wire synchro input to linear d-c voltage at high speed. It provides an output from - 10 to +10 v linear to angles from 0° to 360°. It samples as mary as 100 synchros 25 times per sec each in multiplexed systems Unit costs $\$ 1,125$ (1-9), is avail able on a stock to 10 days basis. Transmagnetics Inc., Flushing, N.Y.[387]

Miniature power supplies have been developed for use with integrated and discrete component operationa! amplifiers. Mode 2.15 .50 has dual output current of 50 ma and costs $\$ 35$ (1 to 9) Model 2.15.100, with dual output of 100 ma, selis for $\$ 48$ (l to 9). Both measure 3 in wide $\times 4.5 \mathrm{in}$. long $\times 2.5 \mathrm{in}$ high. Semiconductor Circuits Inc. Woburn, Mass. [384]

Pulse amplifier model 1002A is designed for MOS driver applications. With a +2 to $5 v$ pulse into its 50 ohm imput, from a word or pulse generator, and a -22 $v d-c$ supply voltage, it supplies a pulse with a m'nimum of -15 v into a 200 ohm load with 50 pf across its output. Unit measures $1 \times 21 / 2 \times 5 \mathrm{in}$. Price is $\$ 150$. Multi-Phase Electronics, Van Nuys, Calif. [388]

New subassemblies

Budget-price magnetic-tape transport

Unit is intended to replace paper tape in small computers;

frequency-independent detection method is used

With a basic computer and memory costing as little as $\$ 6,000$, even a small engineering company can afford to buy its own. But because high-speed input and output subassemblies are costly, most users of low-cost systems rely on a teleprinter and its slow integral paper-
tape punch and reader.
A Texas firm, however, has developed a magnetic-tape unit that specds input and output without straining the user's budget. The company: International Computer Products. The unit: Model 200. With read and write speeds of

4,000 bits per second, the Model 200 is 50 times faster than teleprinter punching and reading. This 4,000 -bit speed is about the same as that of a typical paper-tape reader, but considerably faster than a typical paper-tape puncher. The Model 200 is priced at $\$ 1,300$.

There are, of course, other rela-

when we perfected our Fast-Cycle Coater

Even unskilled operators can produce consistently uniform, high-quality products at high production rates with automated Airco Temescal Fast-Cycle Coaters. This is because every step in the cycle is preset, every step is automatically controlled, and the cycle can continue only after each programmed step is completed. Rejects are practically eliminated. Check these features:

- The automated cycle is reproducible.
- The coating chamber, sources, and feed material are under continuous vacuum at all times.
- Elimination of repeated pumpdowns results in fewer contaminants, purer coatings.
- Evaporant may be replenished without interrupting oferation.
- Efficient rate-monitoring system can be used for precise control over film thickness.
- The rotating substrate holder assures piece-to-piece uniformity.
- Substrates may be heated to exact specified temperatures for more effective coating.
- Coated substrates can be cooled in vacuum and/or in inert gas.
- Thoroughly proved electron-beam heat sources can evaporate elements, alloys, refractory metals and dielectrics.

The Airco Temescal Fast-Cycle Coater, Model FC-1100, replaces eight bell jars and seven operators. Why settle for less? Write for details.
A 1 RCO Temescal
A DIVISION OF AIR REDUCTION COMPANY, INCORPORATED 2850 Seventh Street, Berkeley, California 94710 Telephone 415 841-5720
.. . system operates with existing software . . .
tively low-priced magnetic-tape transports. The Digital Equipment Corp., for example, introduced its TU-55 more than two years ago for small computer systems that lack disk, drum, or conventional magnetic-tape subsystems. With a data-transfer rate of about 100,000 bits/second, the TU55 costs $\$ 2,300$.

Substitute. But W.A. Rocssl, International Computer president, points out that his firm isn't aiming at the magnetic-tape transport market. The company is offering the Model 200 as a replacement for paper-tape units. It can be driven from existing paper-tape software.

Connectors and interface circuits to match the 200 to most computcrs are optional. The tape transport measures 17 by 14 by $31 / 2$ inches, and weighs just 18 pounds.
The unit employs a frequencyindependent method of sensing recorded l's and 0's. Two tracks are recorded on the tape: a clock track and a data track. To detect data bits, the output from one track is beat against the other, the phase difference indicates a 1 or a 0 . Inexpensive oscillators are used-frequency stability and accuracy aren't critical; low-cost tape-drive motors are used too because large variations in tape specd are tolerable. Roessl says that tapes recorded from a 50 -hertz power line have been successfully played back at 60 hz .

Tape is contained in standard cassettes, cach holding as much as 360,000 cight-bit characters180,000 on each sidc. Rewind time is less than 30 seconds. The transport has two tape decks so that tapes can be duplicated or modified, or reading and writing can be clone at the same time.

The input levels are +2 to +5.5 volts for a onc, and -1.5 to +0.8 volts for zero. At the output the levels are +2.4 to +5.5 v for a one and 0 to +0.45 v for a zero.
Elco varicon connectors are standard on the unit but other types are available.
International Computer Products, Dallas, Texas 75229 [389]

If the world's biggest snap-switch buyer wanted a single source...

there are only two companies he could call

CHERRY IS ONE OF THEM. That's right. . . Cherry. Because Cherry's line of snap action switches is one of the most complete in the industry.
In addition, Cherry can provide thousands of switch variations at little or no extra cost (in some cases, at less cost than that of a standard type).
In the past 15 years, Cherry has supplied well over 100 million switches in a variety of sizes, shapes and operating characteristics for O.E.M. product applications.
It's a good bet that the Cherry switch you will be specifying has already undergone the rigorous field testing you demand.

If you want further proof, write for a sample switch today.

S30-50W OPEN TYPE miniature

E61-10H LEVER subminiature

E33.00K ROLLER miniature

E51-00E LOW TORQUE rotary actuation

E34-00J PUSH-BUTTON miniature

E19-00R DOUBLE POLE RESET TYPE

E13-00H SINGLE POLE LEVER TYPE POLE MONENTARY TYPE

CHERRY

WE SPECIALIZE IN CUSTOM MICROCIRCUITS

Here Are A few Specialties...

We have been producing custom hybrid thin film circuits since 1960, pioneering in a number of techniques and processes that enable us to offer a range of digital and analog circuits with short lead time and low initial set-up cost.

Whenever you require special circuit functions, flexible interconnection, high frequency, precise resistor tolerances and close temperature tracking characteristics, consider our custom thin films and functional modules. Contact Joe Crist at (213) $346-6000$ today or write to:

MICROELECTRONICS OPERATION

THE BUNKER-RAMO CORPORATION DEFENSESYSTEMS DIVISIDN 8433 FALLBROOK AVENUE - CANOGA PARK, CALIFORNIA 91304

Memory stacks up as a rugged item

Read-write unit has
a 1,280-word capacity, can take 30-G shocks

Makers of conventional computer memories concede that the advent of large-scale integration could make solid state units a competitive threat to their own products. However, as long as volatility is a problem with active memories, the conventional varieties will command a healthy portion of the market. So the Librascope group of Gencral Precision Systems Inc. had no qualms about going ahead with its 64,000 -bit, woven platedwire stack.

The Librascope 64 K WPW is a 10-plane stack; each plane has 128 50 -hit words, for a total of 1,280 words. At $21 / 2$ pounds, it weighs about as much as a comparable core memory but offers several advantages, according to Librascope engincers.
The big difference, says Ralph Kocrner, engineering head of the plated-wire-memory department, is that the Librascope unit is a nondestructive readout memory. "It would take a pretty complex core to duplicate this," he declares, "and the core memory would still be slower. The read cycle for our memory is 150 nanoseconds, and the write is about 200 ." The typical cycle time of an equivalent core memory would be between 1 and 2 microseconds, Koerner cstimates.
James Cade, a Librascope pro-

Tough customer. Memory was designed to withstand vibration and severe shock.

squeeze powder!

Fansteel's "FD" capacitor grade tantalum powder cuts anode size...capacitor cost. Yet improves electrical parameters.
How's that for putting on the squeeze! Compare standard with FD powder. You'll see how FD reduces material cost $35-45 \%$ per anode . . . how high purity achieves maximum capacitance without sacrificing electrical

grade of Ta Powder	Standard	Fansteel FD
weight	4.4 gm	2.3 gm
density	10.5 gm per cc	8.5 max. gm per cc
CV rating	7000	7000

As a result of new powder making techniques, you can have smaller, more economical medium and high voltage capacitors. Fansteel FD powder is available in finished anodes or bulk powder form.
Your Fansteel Sales Engineer hés detailed technical data. Ask him... or write us for your copy.

FANSTEEL INC.
NUMEER ONE TANTALUM PLACE NORTH CHICAGO, ILLINOIS 60064

introducing

 a new versatile phase angle voltmeter for production testNorth Atlantic now brings you a new group of solid-state Phase Angle Voltmeters for precision phase-sensitive nulling applications in production test and ground support equipment.

Designed for versatility, they feature measurement of the vector components (including phase) of complex AC signals at 4 discrete frequencies from 30 Hz to 20 KHz . Operating frequencies can be rapidly changed without calibration by direct plug-in replacement of frequency modules and harmonic rejection filters. Full operating performance is maintained over a bandwidth of $\pm 5 \%$ and with 10 X signal input overload.

The unit illustrated is the Model 214A. Also available are the Model 214B with reference isolation, and Model 214 C with both signal and reference isolation.

North Atlantic's sales representative in your area (see EEM) can tell you all about these units as well as other Phase Angle Voltmeters and Phase Sensitive Converters.

NORTH ATIANTICindustrics,inc. TERMINAL DRIVE, PLAINVIEW, NEW YORK 11803•516-681.8600

. . nondestructive memory

draws only 12 watts . .

ject engincer, notes that the stack is suitable for the aerospace environment. It was built to take the shock and vibration encountered by missiles, Cade says, and it meets many of the requirements of mil specs E-5400 and E-8189, and military standard 810.

Put to the test. The memory has undergone acceleration tests up to 30 G's for five minutes in each direction of orthogonal axes. It has also withstood three half-sine shock pulses of $30-\mathrm{G}$ amplitude for S milliseconds along its orthogonal axes while operating, and a half-sine shock pulse of 530 G's while off. In addition, random vibration loads of 17 G's rms have been applied for five minutes along each axis while the unit was operating. Operating temperature ranges from -40° to $85^{\circ} \mathrm{C}$. Librascope had these tests performed by an independent laboratory.

As for power consumption, the IWPW draws only 12 watts when used in a 200 -kilohertz system. Kocrner says an equivalent core memory would consume three to 10 times that amount of power, and adds that, "the low level of power consumption derives from the short operating cycle, and the fact that the memory doesn't have to rewrite."
Operating currents for the dcrice are 650 milliamps $\pm 10 \%$ for word write, 65 milliamps $\pm 10 \%$ for digit write, and 230 milliamps $\pm 5 \%$ for word read.
The stack is 4.6 by 5.7 by 2.3 inches and has word-selecting diodes to minimize external connections. Each of the 10 planes is 5.3 by 3.7 by 0.15 inches. Like all other Tibrascerpe plated-wire memories, the wpw is woven on a specially morlificl, automated textile loom.
The company says the memory's price will depend on the characteristics and volume requested by customers. The company feels that no core can duplicate the stack's features, so engineers will pay more per bit for a stack than for a core memory.

[^8]

s4500 is a lot of money for a portable multi-channel recorder. Or is it?

It depends on what portable recorder you're 1alking about. Take that new Mark 260 up there. It costs $\$ 4500$. But it's a bargain. It has six analog channels, and four event channels. (That's more than you get with recorders twice as big . . . and a lot more expensive). It has the famous Brush patented pressurized ink-writing system. (No spatter, no puddles . . . crisp clear smudge-proof traces at any writing speed) . . rugged, reliable solid state electronics. (Bounce it around a bit. We don't mind, and it doesn't either) . . . 8 pushbutton chart speeds (easy as changing stations on your radio) . . . $991 / 2 \%$ accuracy (which is as good as our best, the Mark 200. And that's a
good deal better than anything else on the market) frequency response out to 150 Hz at usable amplitudes. Measu:ement range of 1 millivolt to 500 volts (covers anything you're likely to handle). At $\$ 4500$ the new Mark 260 by Brush is the recorder bargain of the year. A full-color brochure is yours for the asking. Write: Clevite Corporation, Brush Instruments Division, 3773 Perkins, Cleveland, Ohio 44114.
clevite BRUSH

A little light...

On

subminiature
 lamp prices!

They're low, as low as 29 cents each. Yes, IEE really shines when it comes to providing quality subminiature lamps at $1 / 2$ the price of competition.

The big features are inherent... hand placed filaments, seamless and tipless envelopes, and each lamp is aged and selected. All this adds up to uniform brightness for over 100,000 hours.

Place a little IEE light on your lamp needs. You'll make lots of cents!
IIE)

It's what's inside that really counts

Engineers find a counter's circuit board blossoms
as a separate counter

Like a chick that's emerged from its shell, a "baby" counter has popped out of Hewlett-Packard's new 5221A counter and is now being marketed on its own. Called the KO1-5221A, the baby came about quite by accident.

At the IEEE show earlier this year in New York, the company's engineers took the 5221A apart to explain its operation. They took the circuit board that forms the heart of the counter, Nixic tubes and all, and set it to counting inside a big plastic sphere at Hewlett-Packard's booth. Much to their suprise, several systems people stopped by to ask if they could buy the board itself. The company got so many inquiries that it decided to market the board as a stripped-down counter. Unlike the 5221 A , the offspring has no power supply, no input amplifier, no case, and no front-panel controls-it gets these from the system it's designed into.

On its own. The counter, with no power source, amplifier or controls, is intended for design into new systems.

With suitable transducers, the counter board can sense and display weight, length, angle, pressure, flow rate, or any other parameter that can be converted to either pulse rate or time interval. Primary applications are in com-

NORTON Magnetic Tape

SERIES 7500
Crosstalk-40 DB
$+75^{\circ} \mathrm{C}$ Temperature Operation
Send now for complete technical literature.
NORTON
ASSOCIATES, INC.
10 Di Tomas Court, Copiague, N.Y. 11726
Phone: 516 598-1600

Gries' special methods and give you the highest functional value. We take the most imaginative engineering ideas and furn them into precise, uniform tiny parts. You save every step of the way . . . basic part thru final assembly.
NO SIZE TOO SMALL! MAXIMUM SIZE FOR PLASTIC MOLDINGS: $13 / 4,{ }^{\prime \prime} .05 \mathrm{oz}$.
Write foday on company letterhead for your kit.
Coil Bobbins
Gears \& Pinions
GRIES REPRODUCER CO.

151 Beechwood Ave. New Rochelle, N.Y.
(914) 633.8600

Circle 267 on reader service card

Very, very Varo.

(Very good. Very inexpensive.)
Each of these Varo epoxy bridge rectifiers has full-wave bridge, controlled avalanche, and $200 \mathrm{~V}, 400 \mathrm{~V}$, and 600 V ratings.

1 amp EBR. For printed circuit board mounting.

ONLY $91^{\text {¢ }}$

in 200 V rating and quantity of 1,000.

2 amp EBR. For circuit board mounting.

ONLY $95^{\text {c }}$

in 200V rating and quantity of 1,000 .

6 amp EBR. For chassis mounting. ONLY \$1.59
in 200 V rating and quantity of 1,000.
Write for complete information on Varo rectifier products.

SEMICONDUCTOR DIVISION

2203 WALNUT STREET, GARLAND, TEXAS 75040 (214) 272.3561

. . . a four-digit unit

costs $\$ 300$. . .
puters, data systems, and measuring instruments, according to IIew-lett-Packard.

Rise and fall. The board counts at rates up to 10 megahertz and displays the result on Nixie tubes as a total or, when the count is gated, as a frequency. It can also measure time interval. It requires an input pulse amplitude between +3 and +5 volts, with a minimum pulse width of 40 nanoseconds and a maximum rise or fall time of 10 nsec. Accuracy is ± 1 count, \pm the aceuracy of the power-line frequency, which is usually better than 0.1%.

When measuring time interval, the counter displays the number of clock pulses, derived from either a power line or an external oscillator, occurring during an event.

The sample display time can be varied from 50 milliseconds up to almost any period. Readout storage provides a continuous display of the most recent measurement. In the readout-storage mode, the display changes only when the new count cliffers. To simplify the readout, Hewlett-Packard uses a blanking circuit to suppress unwanted zeros to the left of the most significant digit.

For operation, the board requires a circuit power supply of 5.1 volts d-c, 750 milliamperes; a clisplay power supply of 170 volts d-c, 1.5 ma for each Nixie tube, and a time reference of 9 volts mm at 60 hz . These inputs reach the board via a single eircuit-board connector.

The counter board costs $\$ 300$ with a four-cligit display; fifth and sixth digits are optional at $\$ 50$ each.

Hewlett-Packard is also offering another offspring of the 5221A. The $\mathrm{KO} 4-5221 \mathrm{~A}$ is an input amplifier board that can be used with the stripped-down counter. It permits operation of the counter without any preshaping of the input.

Priced at $\$ 30$, this amplifier accepts signals from 5 hz to 10 megahertz and has an input impedance of 1 megohm .

Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif. 94304 [391]

When your system requirements need continuous monitoring of multiple functions, include a BINARY ELEC. TRONICS X Y Monitor, Oscilloscope.
Each Monitor is an independant func. tional unit with modular construction, allowing versatile packaging.
The 5" flat-faced CRT has good deflection accuracy and $D C$ to 1 MHz frequency response.
Standard Bezel on a $7^{\prime \prime}$ front panel is compatible with most camera mounts and viewing hoods.
Circuits are time proven designs adopted to this Model from BINARY ELECTRONICS 5Mc-2P Dual Gun Oscilloscope.

Write for complete specifications.
We Are Authorized to Up Date or Repair Your PACKARD BELL

Model 5Mc-2P Scope
BINARY ELECTRONICS
of California
1429 STATE COLLEGE BLVD.
ANAHEIM, CALIF. 92806 714-772-3070 a division of
Avionic Structures, Inc.
Circle 268 on reader service card

MITSUMI UHF TV TUNER
Far outrsting the FCC and VDE specifications. which are widely prevaling in the World as telecommunication standards. the 54 dB below the reference field strength. Material, plating soldering, as well as the proprietorial circuit design are the technical achievements by MITSUMd based on a long-term fundar mental research

MITSUMI

MITSUMI ELECTRIC COMPANY LIMITED
1056 Koadachi, Komae-machi, Kitatama.gun, Tokyo. Tel: 489-5333 Marienstuasse 12. Dusseldorf, W. Germany. Tel:352701 MITSUMI ELECTRONICS CORPORATION 11 Broadway. New York 4. N Y. 10004. Tel-HA.5-3085

Kodak's ESTAR Base Films with new, tougher surface take more erasures.

As a matter of fact, your draftsmen can erase and draw in the same spot as many as 10 times . . . still have plenty of "tooth" for sharp pencil or ink lines. Because these films won't be "rubbed-out" before their usefulness is-you'll have fewer remakes. What's more, they process easier and faster than ever.

Kodagraph Wash-Off Films have been improved too. New drafting surface allows twice as many erasures as before.

Your Kodak Technical Sales Representative will be happy to show you how Kodagraph Products can help you to serve your draftsmen and engineering customers better and faster. And save you time, money-and monotony.

Write: Eastman Kodak Company, Business Systems Markets Division, Rochester, N.Y. 14650.

Centralab's Little Giant zeners thrive in tight spots. Their performance and competitive pricing have opened new product miniaturization possibilities in entertainment, industrial and high reliability military and aerospace applications. Our 400 mW regulator has a zener voltage breakdown of 6.8 through 200 volts; the 1 watt from 6.8 through 200 volts; and the 1.5 watt from 6.2 through 200 volts. So the Little Giants do a big job in crammed quarters. What else?

Centralab 'rLittle Giant" Microglass Zener Regulators

 N $\rightarrow \square$ $\square \infty \quad \infty$ They're tough. So tough that gruelling tests of acceleration, mechanical and thermal shock, vibration, lead and body strength, temperature, humidity, salt spray and altitude leave them unscathed. Centralab's Little Giant zeners. Real crowd pleasers. FOR MORE INFORMATION ON DIODES, solar cells and readout devices, WRITE CENTRALAB TODAY. THESE CENTRALAB PRODUCTS ARE MARKETED DIRECT TO MANUFACTURERS AND THROUGH CENTRALAB SEMICONDUCTOR DISTRIBUTORS;

R-f/i-f amplifier LM171 is a versatile circuit that can be used in the emitter-coupled or cascode configuration from d-c to 250 Mhz. In the cascode configuration it provides 100 Mhz tuned power gain of 27.5 db . In the emittercoupled configuration it provioes 100 Mhz tuned power gain of 24.6 db . National Semiconductor Corp., 2950 San Ysidro Way, Santa Clara, Calif. [436]

Epitaxiai silicont tuning varactor; series MA-45000 are 75 and 110 v units designed for large capacitance variation with bias. Typical performance is shown by the MA-45011, which has a typical r-f input power of 5.0 w , minimum breakdown voltage of 75 v , and a power dissipation of 350 mw. Units have wide applications for vhf-uhf. Microwave Associates Inc., Burlington, Mass. [440]

Measuring only 0.005 in . in diam eter, the Micro-Bead thermistor is designed for measurement and control of temperature and of liquid or gas flow in any application where the mass of a larger element can not be tolerated. Response time is 0.12 sec in still air at $25^{\circ} \mathrm{C}$. Dissipation constant is $0.04 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Victory Engineering Corp., Springfield Ave. Springfield, N.J. [437]

Three families of dual MOS transistors are offered with and with. out diode gate protection. Minimum source-drain breakdown voltage for the SD5014/15 is 120 v ; for the SD5012/13, 65 v ; for the SD5010/11, 30 v . Threshold voltages are typically 4 v ; transconductance ratios, 0.8 to 1.0 . Solid State Scientific Corp., Commerce Drive, Montgomery, Pa 18936. [441]

VMonolithic MOSFET quad devise HRM8052D is packaged in a 1,4 \times 2's in, flatpack. Each of the FET's in the chip is a P-channel enhancement mode, diade srotected insulated gate device optimized for multichannel commutation applicazions. Each de vice has a typical channel resistance of 300 ohms with a -10 v bias. Hughes Aircraft Co., Newport Beach, Calif. [438]

Microminiature forward requlato diodes, with from 1 to 6 individual junctions offer low voltage and low dynamic impedance. Four discrete voltage ranges are of fered from 0.470 to 3.0 v , with or without controlled stored charge. Units may be operated with forward current from 0.1 to 10.0 ma . Reverse voltage at 10 $\mu \mathrm{a}$ is 10 v. Computer Diode Corp. Fair Lawn, N.J. [442]

Single-phase-bridge, siliccn rectifiers model B172 offer reduced space requirements by handling maximum power per unit size. Units include double ciffused, passivated junctions in a cold case design for high reliability. Current rating is 2 amps with free air mounting. Voltage ratings range from 50 to $1,200 \mathrm{v}$ piv. Edal Industries Inc., East Haven, Conn. [439]

High-speed TTL one-shot iircuit, or monostable multivibrator type TT μ L9601 features a retriggerable design. It provides a stable and accurate output pulse adjustable from 50 nsec to any width within the range of practical capacitor values. Input circuitry has a max. repetition rate greater than 10 Mhz . Fairchild Semiconductor, 313 Fairchild Dr., Mtn. View, Calif. [443]

New semiconductors

Three-stage comparator challenges 710

Engineer who designed both linear IC's says he's added current sink to older design to increase versatility

Ever since switching to the Na tional Semiconductor Corp. a year ago, Robert J. Widlar has been trying to improve on the linear integrated eircuits he designed at Fairchild Semiconductor, IC's that have become industry standards. National's LM101, for cxample,
was a modification-and direct market competitor-of Fairchild's 709 operational amplifier. In the same way, the latest from National, the $\mathrm{mml06}$, is a three-stage, cur-rent-sinking version of the 710 voltage comparator.
"The biggest drawback of the

710 is that its output-current source supplies two milliamperes," Widlar says. "Yon have to sink a minimum of 1.6 mils cven with only one transistor-transistor-logic output. The LM106's current-sinking output has a guarantced worstcase fan-out of 10 ."
When the two-stage 710 was designed, Widlar explains, the objective was to make a simple circuit. Designing a current-sinking output would have required an extra stage and slowed the devicc.
Explanation. The Lail06 has that third stage. By analyzing response times, Widlar found out what was slowing down the 710. First, he says, the input gain had to be

Model 79 Linear IC Tester

New automatic Linear IC Tester offers simple, preprogrammed operation
The simple operation of the new automatic Model 79 Linear Integrated Circuit (LIC) Tester from Test Equipment Corporation virtually eliminates costly operator training. This savings, combined with its low initial cost, makes the Model 79 an excellent buy for production, engineering and quality control applications.

TEC's Model 79 "LIC" Tester is completely automatic with the

for up to 15 different test measurements. It provides five dc and eight dynamic tests. In addition, two auxiliary positions are available for customer-specified tests.

The Model 79 features low current measurements to 99.9 pa full scale, low voltage measurements to $99.9 \mu \mathrm{v}$ full scale, and high speed typically 100 ms or less per test. It accepts all IC package configurations.

Write today for full technical and pricing information on the new TEC M odel 79 "LIC" Tester.

Test Equìpment

$\subset 口 \cap P \square R A T 1 D N$ P.0. BOX 20215, DALLAS, TEXAS 75220 - 214/357.6271

Second thoughts. Circuitry in the shaded areas has been added by Robert Widlar to his original design for an IC voltage comparator.
large to get high over-all gain, and second, there was so much overdrive on the sccond stage that it saturated easily.
"On the 106, I knocked down the input-stage gain, clamped the second stage so it wouldn't saturate, and added the current-sinking output stage," he explains. "There is enough lase drive to sink 2 mils. or 100 mils or whatever is needed."
The circuit can sink currents up to 20 ma with a saturation voltage of less than 0.4 volt, providing a 10 -output fanout with TTL or diode-transistor logic. A 5-kilohm pullup resistor gives the device an output of about 5 volts. However, a blocking diode disconnects this resistor so that the output can drive loads connected to as much as 18 volts. Since the circuit can sink currents up to 100 ma , it can drive indicator lamps and relays directly.

More changes. Widlar has touched up his old design in other ways. The 710 , for instance, has two blank pins; in the 106, which is a pin-for-pin replacement for the 710 , the blanks are used for
strobing. If either input is held at the threshold voltage of a logic device, the other input can provide the 1 's and 0 's. When the input of the 106 is at logical 0 , the output is high; when the input is at logical 1, saturating the input transistor, output is low. Thus the circuit is equivalent to a 710 with a two-imput NAND gate added.

Widlar also claims more flexilility in regard to supply voltages for the 106. The 710, he says, is limited to -6 and +12 volts; if the supply becomes more negative, there is excessive power dissipation, and if it becomes less negative, gain declines. The 106 is designed so that the negative supply can vary from -3 to -12 volts without significantly affecting performance. The 106 docs require slightly more operating power than the 710 , but Widlar asserts that this is offset by the greater output drive.

Typical voltage gain for the 106 is 25,000 , compared to 1,500 for the 710.

National's new entry won't come cheaply, nor will it go unchallenged. The Lar106 will cost $\$ 27$

In addition to offering one of the industry's widest ines of small signal transistors, Solitron will provide low cost differential amplifiers to meet your specific design requirements. Contact your local Solitron sales representative to obtain information for your circuit.
Or...
Dial 1.800-327-3243 for a "No Charge" telephone call and further information.
When you think of semiconductors... think Salitron!

in lots up to 24 units, $\$ 21.60$ up to 99 units, and $\$ 18$ for over a 100 . And from Fairchild comes word that it will have an improved version of the 710 on the market in the first quarter of next year.

National Semiconductor Corp., 2950 San Ysidro Way, Santa Clara, Calif. 95051 [444]

New semiconductors

IC triggers

high-power devices
Circuit that handles triac or SCR motor controllers is compact and inexpensive

Triacs and SCR's are great for controlling a-c induction motors, but they, in turn, are controlled by trigger circuits that are often complicated. A phase-control trigger circuit might incorporate a refer-ence-voltage source, ramp generator, pedestal-level source, and differential comparator, for example. But a monolithic integrated circuit that handles all these functions and comes in a dual in-line package is now available from the General Electric Co. This IC, the pa436, along with the few external components it requires, can be mounted right on the motor housing. It's inexpensive, too-\$3.45 in quantities of 100 or more.

The PA436 converts an analog input signal into a phase-control pulse for triggering thyristors. The signal is compared with a reference and the proper trigger is obtained by the ramp-and-pedestal technique. In the case of a-c in-duction-motor speed control, the input signal comes from a tachometer on the motor. The device can be used to control temperature or light levels, too, in which case the control signal would come from a thermistor or a photocell.

The IC contains a zener diode for voltage regulation and a circuit for temperature compensation.
Semiconductor Products Dept., General Electric Co., Syracuse, N.Y. [445]

Preserve your data integrity by converting quasi-static DC Signals to frequency analogs prior to transmission with the New Rack Mounted version of the Ultra. Linear NUS "EFcon" Voltage to Frequency Converter Model 7400 ... With practically NO DEGRADATION OF DATA.

- Linearity . 003% - Stability $.002 \% /{ }^{\circ} \mathrm{C}$
- Available in single unit bench mount or seven channel rack mount.

For further information and specifications, please contact:
 9 Keystone Place Paramus, N. J. 07652 Phone: (201) 265-2400

Circle 270 on reader service card

2 MOOERN buIIDIMGS FOR OFFICES, LIGHT INOUSTRY NEER CAPE KEMEEOV, FIORIDA

Prime 2-story bldgs. on Merritt Island, ideal for space-oriented firms. $4,653 \mathrm{sq}$. ft. Mila Office Bldg. available in $423 \mathrm{sq} . \mathrm{ft}$. units. 56,400 sq. ft. Corps of Engineers Bldg. for industry and office use. $25,000 \mathrm{sq}$. ft. each floor. Minimum leasable area, $6,000 \mathrm{sq}$. ft. Alter to suit. Attractive rentals.
PSOO
Eastern Shopping Centers. Inc
P.O. Box 3095 G. Orlando, Fla. 32802

When your IC bugs out, chances are the heat's on!

Devices packaged in Dow Corning ${ }^{(1)}$ silicone molding compound are physically and electrically stable -even after long term exposure to both high heat and humidity. Derating, a practice common with organic packaging, is not necessary. In fact, you can design for high device and component density by using silicone molding compound. One manufacturer of glass package power diodes reduced the part to $1 / 30$ th of its former volume. Sizes from $1 / 5$ th to $1 / 3$ rd smaller can be obtained by using silicone molding compound in place of other plastics.

Little moisture absorption. Silicone molding compounds when exposed for 1000 hours to 93% RH at 70 C showed an average weight increase of 0.32% with the greatest increase being 0.5% and the least being 0.17%. Five organic plastics had average weight increases ranging from 1.0 to 2.1% -an average of nearly five times greater than silicone molding compounds under the same test conditions.

No cracking. Unlike other thermal setting plastics, Dow Corning silicone molding compounds are virtually unaffected by thermal shock. For example, a power resistor molded in Dow Corning ${ }^{(3)} 307$ compound was cycled repeatedly from -65 to 350 C without damaging the packaging material or the component.

Will not burn. Silicone molding compounds are
inherently nonburning. Thus, components and devices packaged in silicone molding compound do not constitute a fire hazard. No flame snuffers are used-a source of ionic contamination for devices packaged in organic materials.

Corrosion free. These silicone molding compounds are free of ionic contaminants which may contribute to metallic corrosion when operating in high humidity and influenced by voltage bias.

Competitive price. Costing only a fraction of a cent per device, Dow Corning silicone molding compounds enjoy a substantial price advantage over metal cans ... glass packages.

Manufacturing economies. Transfer molding enables manufacturers to package devices and components with a minimum of manual labor and supervision. Good mold release and minimum flash assure high production rates . . . reduced deflashing costs. These manufacturing advantages make silicone molding compounds totally competitive with organic plastics.

So why be bugged by device failures because of a cheap plastic package? Specify Dow Corning ${ }^{\left({ }^{(}\right)}$ brand silicone molding compound, and get the best package protection in your electronic equipment . . . lets you keep your cool. For technical data, write: Dept. A-8472, Dow Corning Corporation, Midland, Michigan 48640.

di/dt capability 10 times industry's best EVEN WITH LOW POWER GATE DRIVE

NATIONAL ${ }^{\circ}$ INVENTS THE REGENERATIVE GATE SCR

NATIONAL ELECTRONICS, INC. regenerative gate SCR is the only SCR that will give $600 \mathrm{amps} / \mu \mathrm{sec}$. when tested according to JEDEC SUGGESTED STANDARD NO. 7

Section 5.1.2.4. This is a di/dt rating at three times the peak on-state current and $1 / 2$ the switching loss of any SCR now on the market. No sacrifice is required in gate drive, turn-on time, turn-off time or any other characteristic. Presently available in 55 amp and 110 amp SCRs.

NATIONAL ${ }^{\circledR}$ manufactures SCRs from
16 amp to 470 amp .
*Patent Pending

NATIONAL
 ELECTRONICS, INC.

a varian subsidiary
PHONE: (312) 232-4300 • GENEVA, ILLINOIS 60134

Ku-band tunnel diode ampiifier model NC-12001 operates at 12 to 12.3 Ghz , with a noise figure of 6 db max. and intermodulation distortion in the third order not greater than -35 db relative to either of two signals at -50 db max. input. Input vswr is 1.20 and supply voltage is 18 vd c . Micro State Electronics Operation, Raytheon Co., 152 Floral Ave., New Providence, N.J. [401]

Master oscillator-power amplifier cascade subsystem 10078 is for drone control use. It consists of a pulsed master oscillator tetrode cavity, driving a Class C power amplifier tetrode cavity rated at 14 kw output. Operating range is 410 to 460 ivhz. Duty cycle is 0.00015 ; output impedance, 50 ohnis. Microwave Cavity Laboratories Inc., 10 N. Beach Ave., LaGrange, III. [405]

Transistor amplithers ranging from 1 Ghz to 1.8 Ghz deiiver output powers of 1 to 3 w depending on center frequenc and bandwidth. Typical model 1600-40-1.5-25D has a center frequency of 1.6 Ghz and a minimum 1 db band. width of 40 Mhz at a power output of 1.5 w with 25 db gain. Dimensions are $2 \times 15 / \mathrm{B} \times 9 \mathrm{in}$. Microwave Power Devices inc., Lynbrook, N.Y. [402]

Five kilowatts of r-f power are dissipated in miniature Termaline load resistor model 8720. Designed for $15 / 8 \mathrm{in}$. EIA flanged line systems, the loads have a low vswr of 1.10 max. from d-c to 1 Ghz and 1.20 max. to 2 Ghz . Units are 8 in . long and weigh 2 lbs. Price is $\$ 325$ and delivery is 60 days. Bird Electronic Corp. 30303 Aurora Road, Cleveland 44139. [406]

Calibrated spectrum aralyzer model 2600 covers 10 Mhz to 90 Ghz. Using plug-in backward-wav: oscillators, a sensitivity of -95 dbm can be maintained up to 10 Ghz by fundamental mixing and the instrument's standard 2 Ghz dispersion can be increased to an image-free 4 Ghz . Price is $\$ 9,850$. Polarad Electronic Instrurients 34-02 Queens Blvd., L.I.C., N.Y 11101. [403]

The 1,750-1,850 Mhz and 2,200 2,300 Mhz telemetry bands are efficiently diplexed using the F173A. Consisting of 2 bandpass filters, the unit is suited to both transmit-receive diplexing and signal separating or combing. Insertion loss in each band is under 0.35 db ; isolation between bands, over 60 db . Peninsula Microwave Laboratories, 855 Maude Ave., Mtn. View, Calif. [407]

Airborne antenna array type 56360 may be mounted on missiles with diameters of less than 18 in . It consists of 3 low-silhouette monopole antennas and a 3 -way power divider. It provides an omnidirectional pattern in the frequency band 1.435 to 1.540 Ghz, and operates at altitudes to $100,000 \mathrm{ft}$, and at air speed of Mach 2. Andrew Corp., 10500 W 153rd Sa.., Orland Park, III. [404]

Amplifier-multiplier subsystem, packaged as a single unit features a bandwidth of 750 Mhz and operates over a temperature range from 0° to $70^{\circ} \mathrm{C}$. It has a multiplication ratio of 36 to 1 , requires no tuning, and operates with an output frequency of 8.375 to 9.125 Ghz from an input of 233.6 to 253.4 Mhz. Applied Research Inc., 76 S. Bayles Ave., Port Washington, N.Y. [408]

Klystron is tunable automatically

Sliding contact in cavity permits precise tuning

 in seconds; 1,000 channel changes guaranteedThe trouble with klystrons is tuning. The usual inductive- and ca-pacitive-tuning systems are subject to wear, arcing, and loss of vacuum. But Varian Associates has changed all this with a new version of their VA-884 klystron-the VA-884D.

Varian guarantees an operational life of 1,000 channel changes for its tumable klystron, but typical life expectance is at least twice that. The tube is tuneel by a slid-

For Extra Meter Precision and Consistency Specify Hitachi Magnets

To create these extremely stable mag. nets Hitachi developed its own processes for the compounding and heat.treatment of fine alloys. The result is a range of cast magnets for metering that are precisely finished to unusually close tol erances, are more compact, and yet retain magnetic stability and uniformity. You can get a fast supply of Hitachi meter magnets with properties to suit your particular application. Each one has guaranteed characteristics. Full in formation on types for your application can be quickly mailed.
Products:
Meter Magnets:
For Speedometer, Tachometer,
Amperemeter
Motor Magnets:
For Micro Motor, Hysteresis Motor,
Wiper Motor, Blower Motor
Generator Magnets:
For A.C. Generator, Flywheel

Head Office

Chiyoda Bldg., Marunouchi, Tokyo, Japan Hitachi Metals America, Ltd. Magnet Materials Sect.
437, Madison Ave., New York, N.Y. 10022, U.S.A. Tel. 212-758-5255

... channel changing is

fast and repeatable...

The klystron also contains a mechanism for automatically selecting any of 10 channels in the frequency range between 5.925 to 6.425 gigahertz. When the tube is retuned to a particular channel, the difference in bandpass characteristics isn't discernible, according to Varian. The output characteristic of each channel is flat, and the l-decibel bandwidth at each preselected center frequency is between 60 and 70 megahertz.

Contact control. The channelchanging mechanism is an indexing head that positions a set of plungers, which, in turn, control the position of the sliding contact in each cavity. There are 10 positions for the indexing head, one for each channel. The mechanism can be operated remotely; the tube can be mounted in an antenna, for example, and operated from a control room.

The plunger system replaces the conventional screw adjustments and is much faster; typically, a channel change takes 4 seconds. The center frequency of each channel is set at the factory, but it can be changed simply by adjusting set screws in the indexing head.

Varian says the new klystron has the edge in applications in which relatively noisy travelingwave tubes have been used for easy tuning.

The connectors at the klystron's input and output mate with UG344/U waveguide flanges, and both liquid and forced air are used to cool the device. A 175-pound electromagnet is needed to focus, and the tube itself weighs 30 pounds.

The klystron's voltage standing wave ratio is typically 1.05 , and the maximum is 1.5.

The 884D has a continuous-wave output of 5.3 to 17 kilowatts, depending on the beam voltage (12 to 19 kilovolts) and the r-f input (typically 80 milliwatts). Gain is at least 50 db , so a large r-f input isn't required. Efficiency is typically greater than 35%. The device is priced at $\$ 10,000$, with delivery in 30 to 60 days.
Varian Associates, 611 Hansen Way, Palo Alto. Calif. [409]

DIFFERENTIAL TRANSFORMERS
For measurement and control use
Capable of obtaning output voltages exactly proportional to any kind of mechanical variation.
Measuring value: $1 / 100,000 \sim 100 \mathrm{~mm}$
More than 500 rypes are availoble.

Features: *Outstanding interchangeability *Quite free from outer magnetic field
*Insensitive to ordinary shock, water and heat

Manufacturers of Difforentlal Transformers
NIPPON COIL CO., LTD.
Amakawa Bldg. 1, 1-chome, Hommachi, Higashl-ku, Osaka, lapan.
Circle 272 on reader service card

One gift works many wonders THE UNITED WAY

The miniature relay with built-in arc suppression

Every time we add to the already enormous capabilities of Teledyne TO-5 Relays we surprise a lot of "relay skeptical" engineers.

Now all standard Teledyne Relays are available with internal diode chips for arc suppression. It is no longer necessary for you to add external diodes on your circuit board. Single :

TELEDYNE RELAYS
A TELEDYNE COMPANY
3155 Weat El Segundo Boulevard - Hawthorne, California
90250 Telephone (213)679-2205•772-4357

at

you have

no choice of
 black
 also black

but they're Stocked In Depth by BOURNS Distributors!

the specs are better than "those other makes" that cost more! The Model 3305 TRIMPOT® potentiometer has been designed from the ground up as a commercial.
Here are the facts on the $3305 \ldots$ besides the price, that is! The unit is sealed to prevent contamination from fluxing, soldering, and cleaning ... in addition our pins can be used on boards using $0.1^{\prime \prime}$ grid spacing. This small $5 / 16^{\prime \prime}$ dia. unit has a resistance range of 50 ? to $25 \mathrm{~K} \Omega$, with standard resistance tolerance $\pm 5 \%$. Being a wirewound unit, it provides plus features such as low temperature coeificient. better resistance tolerance . . . and superior noise characteristics. Operating range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \ldots$ temperature coefficient is only $\pm 70 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$... power rating $1 / 2$ watt and noise is negligible at 100 ENR.
*500 piece price

Check into our one color-basic black-Model 3305 for the best ... at a low-low price For complete technical data contact your nearest Eourns office, representative, or stocking distributor.

FREE
 Exploded-view drawing and new informative specification comparison chart

TRIMPOT® and Precision Potentiometers

Stereo tape recorder has three heads for sound-on-sound and special-effects recording. Sony 355 operates at three speeds ($71 / 2,33 / 4,17 / 8 \mathrm{ips}$), and has a 7 -in.-reel capacity. Features include noise suppressor, tape-source monitor, scrape-flutter filter. The unit retails for less than $\$ 229.50$. Superscope Inc., 8150 Vineland Ave., Sun Valley, Calif. 91352. [421]

Battery-operated, 50,000 ohms-per-volt multitester measures resistance in four ranges up to 10 megohms. Meter has $51 / 4$ in. face, spring-backed jewels and self-shielded movement. It's useable at frequencies up to 100 khz , has built-in overioad protection Price is $\$ 19.95$. Lafayette Radio Electronics Corp., 111 Jericho Turnpike, Syossett, N.Y. 11791 [425]

Two-way, transistorized f-m basestation radio for the $450-\mathrm{Mhz}$ band has IC-osciliator module to provide 0.0002% stability. Line includes mobile units. Silicon transistors are used throughout both base stations and mobiles, including power output stages. Multichannel capability is available. General Electric Communication Products Dept., P.O. Box 4197, Lynchburg, Va. [422]

Paging terminal with automatic memory bank uses only groups of 100-number assignments. Capacity range varies from 50 to 2,500 calls in blocks of 50 -code groups. Output interconnections can be line-per-terminal, level, or leased line. The systeni operates with all-PBX boards. Prices are quoted per application. Richmond Radiotelephone, P.0. Box 565, Richmond, Ind. 47374 [426]

R-f modulator with separate audio and video attenuation permits variation of inplt levels. Two r-f carriers transmit picture and sound on the same tv channel to one or more receivers in closedcircuit system. Model MPS-15 (channels 2 through 6), \$150. Model MPS-16 (channels 7 through 13), \$160. Packard Bell, Box 337, Newbury Park, Calif. [423]

Portable $\mathrm{a}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ radio and cassette recorder operates on batteries or standard a-c. Output is 0.8 watt; signal-to-noise ratio, 43 db ; frequency response, 100-9,000 hz , 士6 db. Recorder has two tracks. Speed is $17 / 8 \mathrm{ips}$. Dimensions are $10 \times 71 / 2 \times 21 / 2 \mathrm{in}$. Price is $\$ 99.95$. Bell \& Howell, Photo Products Group, 7100 Mc Cormick Rd., Cricago, Ill. 60645 [427]

R-f programing switch has six normally-open contacts that can be arranged in any combination of fan-in and fan-out groups. Maximum crosstalk is 80 db ; insertion loss, 0.4 db . Up to 270 Mhz minimum isolation is 60 db and maximum vswr is 1.09; up to 500 Mhz , minimum isolation is 45 db and maximum vswr is 1.30. Sealectro Corp., 225 Hoyt St., Mamaroneck, N.Y. 10543 [424]

Ten-watt portable single-sideband radiotelephone and radiotelegraph unit operates up to two independent and two dependent channels in the 1.6 to 15 Mhz range. It can be powered by "D" batteries, alkaline cells, or nickel-cadmium batteries which may be recharged from a 12 -volt auto electrical system. Kaar Electronics Corp., 1203 W. St. Georges Ave., Linden, N.J. 07036 [428]

New consumer electronics

Color tv camera focuses on low cost

Broadcast-quality unit costs $\$ 18,500$; setup time is short since mirrors, three vidicons are permanently positioned

The success of the International Video Corp.'s low-priced (under $\$ 13,000)$ color television camera [Electronics, Nov. 13, 1967, p. 238] will be dwarfed by that of its Model 100 , priced at $\$ 18,500$, says Louis Pourciau, the company's engineering manager. Thus far, he
says, IVC has delivered more than a hundred of the new cameras and has "large quantities" backlogged to the Bell \& Howell Co., which agreed to purchase $\$ 10$ million worth of cameras and related equipment in April.
When the newly formed com-
pany introduced its first camera it emphasized that though the picture quality was good, the camera did not mect broadcast-quality standards. Nonetheless, the low-cost-one-seventh that of comparable cameras-and picture quality made the camera a success in closed-circuit tv operations.

The new model is aimed at another market-television stations. It produces a standard NTSC color signal and fulfills the FCC requirements for color broadcasting. The price includes the external color encoder, cable, studio junction box, remote control and 6:1 zoom lens. For most stations that are already in the color broadcast

DUNCAN electronics, inc.

A DIVISION OF SYSTRON.DONNER CORPORATION 2865 FAIRVIEW ROAD. COSTA MESA. CALIFORNIA 92626 Phone: (714) 545.8261

business, no additional equipment is necessary. For stations just getting into color work, a $\$ 1,600$ EIA color sync generator is required. But even with the cost of the sync generator included, the Model 100 makes color tv available to many stations that have been forced to squeeze black-and-white commercials between network color shows. The camera will also make color shows of local origin available in areas where revenues could not support an $\$ 80,000$ investment for color equipment.
Simplicity. The camera's success, says Pourciau, can be attributed to its extremely accurate colorimetry, even though the camera uses vidicon rather than the more expensive Plumbicon tubes. Most of the credit, he says, goes to the simplified system of plate beamsplitters. From relay lenses that shorten the back-plane focal length of the taking lens, light passes through a series of computer designed dichroic (semitransparent, selectively transmissive) mirrors which split the light into the three primary colors and direct them to the vidicon tubes. The optics are so good, says Pourciau, that high quality pictures can bc obtained with illumination levels as low as 300 foot-candles.
Also, says Pourciau, most of the usual mechanical adjustments have been climinated through use of an elaboratc tool-and-jig system employed during manufacture. All mirror positions and vidicon lateral and vertical positions are fixed and need never be changed. The IVC 100 has a maximum of 28 internal setup adjustments, far fewer than any professional-quality color television camera. Operation, setup, and maintenance are simplified and approach that of a monochrome camera, Pourciau adds.

International Video Corp., 67 East Evelyn Avenue, Mountain View, Calif. [429]

business trips rule out evening classes?

here's a practical way
 to update your knowl-
 edge of electronics

Are irregular nours, travel and family obligatioris keeping you from attending classes-even though you worry about jecoming technically c.bsolescent? Check int the Special Frograms in Electronics far
Engineers developed by CREI, the Home Study Division of the McGraw-Hill Book Company

These are not simply courses. but comprehensive programs in edvanced electronics offering major electives in such fields as

Communications Engineering, Aeronautical and Navigational, Television Engireering, Automatic Control Engineering. Missile and Spacecraft Guidance, Radar and Sonar Engineering, Nucleat Instrumentation and Contral. Computers.

Industry-recognized CREI Programs make t possible for you to catchi up on new developments in elect onics through study in your own home, at ycur own pace.
your own schedule. Free book gives; complete information and details of technical material covered. For your copy, mail coupon below or write : CRE, Home Study Division,
McGraw-Hili Book Company,
Dep1. 1828-G, 3224 Sixteenth St. N.W. Washington, D.C. 20010.

[^9]

Design - Changes in Government and Industry RF shielding specifications can quickly obsolete costly shielded rooms. That's why LMI RF shielded rooms are designed with built-in capability for upgrading. Any of the seven standard rooms designed and manufactured by LMI can be upgraded with appreciable savings over the cost of a new room. LMI designs utilize solid membrane, clamp-together or all-MIG-welded seams and provide maximum shielding over the widest frequency range.
Upgrade - For example, Class D Rooms can be upgraded by MIG welding all seanns and/or adding an additional shield.

All-welded Class C and higher rooms can be upgraded by the addition of an inner shield, acoustic and microwave anechoic material at any future date.

Class AA and AAA are all-welded dual wall, solid shielded rooms for the highest performance from low audio to highest microwave frequencies.
Cost - The initial low cost and final costs are one and the same with LMI all-seamswelded rooms. There is no seam leakage nor any maintenance requirements over the life of the shielded room.
Technical Bulletin - For a complete description on all classes of LMI shielded rooms, write for your complimentary copy of Technical Bulletin (TB-101) "Technical Discussion and Specifications for Electromagnetic Shielded Rooms."
Quick Reaction - For fast personal service on your shielding problems telephone or write direct to Fred J. Nichols, Carl T. Luce or James C. Senn.

LectroShield Division LectroMagnetics, Inc.

6056 West Jefferson Boulevard Los Angeles, California 90016 Area Code 213 870-9383

New Books

Betwixt and between

Radiation Effects in Semiconductor Devices
Frank Larin
John Wiley \& Sons Inc.
287 pp., \$11.95
All writers direct their product at a certain audience, and all must decide fairly early in the creative process just what kind of group they want to address. For writers of books aimed at engineers, the decision can be especially difficult. How much material in a book on a specialized field of interest should be devoted to educating nonspecialists? Too much background information will try the patience of the specialist; too little will strain the understanding of the outsider.

Larin, like many others, hasn't been able to resolve the dilemma. Apparently assuming that the reader needs a good refresher course in semiconductors, he provides a detailed coverage of them in chapters 2 through 7. This abundance of tutorial information means that the subject of radiation and its effects isn't discussed as fully as it might be; for example, there are aspects of radiation hardening, such as testing, that the author hasn't explained in detail. On the other hand, however, an engineer with little or no familiarity with semiconductors will probably need even more instruction than the book offers to attain the necessary level of understanding.

The book has very little to offer to an engincer already working in the field of radiation hardening. However, the radiation-effects engineer will probably find chapter 12 of great interest, because it is here that Larin discusses the process of obtaining data on the physical semiconductor parameters required for analysis of the effects of radiation. This has been one of the most frustrating aspects of such analysis, and the lack of this kind of information has led many investigators to develop empirical relations involving only electrical parameters.

As an introduction to the techniques of hardening semiconductor circuits, however, the book should find a widespread welcome. It provides a good foundation of knowl-
edge on the effects of neutrons, gammas, and charged particles on semiconductor devices. The text could be a very good candidate for use in courses on the state of the art.

Larin is obviously quite expert, and his discussion is relatively thorough from the analytical point of view. This is not to say that the book is free from minor problems of exactitude; for example, the author's assertion in the preface that the equations allow "precise" calculations of the effects of radiations is not necessarily true, even if one knows the "hard-to-find" physical parameters for each and every semiconductor device in the circuit. But even thongh these equations do lack some precision, they can provide meaningful relative predictions.

Joseph T. Finnell Jr.
Avco Corp.
Wilmington, Mass.

Thoroughly modern

Elements of Control Systems Analysis Chih-fan Chen and I. John Haas Prentice-Hall Inc.
471 pp., $\$ 13.50$
Traditionally, control engineers have tackled design problems by taking an electrically oriented approach based on the complex function theory of mathematics. They measure variables, convert data for analysis, describe a system analytically or from a model, determine response, perform qualitative analysis, and finally modify an existing system or develop a new one. Recently, an alternate, mechanically oriented technique, based on statevariable theory and called the modern approach, has been developed.

This text clearly and comprehensively covers this newer approach, and, fortunately, pays equal attention to the older conventional approach. The authors know that effective engineering demands versatility and thus believe that two approaches to any complex problem are better than one.

They're to be commended for their liberal use of design examples to illustrate complex points. And just as welcome is the transla-

Instant photometric measurement... of cw and pulsed light with the direct-reading EG\&G LumenMeter

The new EG\&G Model 565 LumenMeter lets you meastre both cw and pulsed light events (as fast as 10 nsec .) d rectlo. It ofters absoluse accuracy of $\pm 6 \%$; repeatability of $\pm 1 \%$. An easy-to-see, direct-reading meter provides a dynamic measurement range of 0.1 to 1000 lumen/ $\mathrm{ft}^{2}{ }^{2}$ for average power or 0.1 to 1000 lumen-sec. / $\mathrm{ft} .^{2}$ for integrated energy. System response of the Madel 565 closely conforms to the CIE lumircasity carve. To assure accuracy, the Mcdel 55^{5} LumenMeter is calibrated against both a tungsten staridard ($\approx 28.0^{\circ} \mathrm{K}$.) and a

Xenon lamp standard ($\approx 6000^{\circ} \mathrm{K}$.) with traceability to the N.E.S. In addition the 565 features: four decade range selection with a scale expander for low sizale readings - compensation circuit to balance out spurious back ground I ght • flat, well defined 8° solid angle field e provision for syrchronous trigge-ing of pulsed light sources, The new, EG\&G LumenMeter is a completely sclf-contained, lightweight, portable instrament selling for only $\$ 1375$. It's suitable for both laboratory and fiekd work. It is small enough to be hand-held, or it can be tripod mounted.

The Model 565 is battery-powered using standard " D " cells. An optional leather carrying case with neck strap is available to protect your LumenMeter when not in use. If you'd like more information on the first, really new photometric measuring instrument, EG\&G's LumenMeter, or for that matter on any of our products such as photodiodes, light instrumentation, flashtubes, thyratrons, krytrons, spa"k gaps, transformers, or picoammeters, write: EG\&G, Inc., 166 Brookline Avenue, Boston, Massachusetts 02215.
Tel.: 617-267-9700. TWX: 617-262-9317.

NEW THERMOCOUPLE REFERENCES WITH 25 CHANNELS ONLY \$259.00!

Now - ACROMAG Series 330 Thermocouple References with 25 channels of $0^{\circ} \mathrm{C}$ ice-point compensation for only $\$ 259.00$, including ALL 25 thermocouples! Uniformity $0.05^{\circ} \mathrm{C}$, one-second warmup, easy to use. Ideal for scanned TC systems, DDC, and laboratory use. Series 340 References ($150^{\circ} \mathrm{F}$ oven-type) with 25 channels for $\$ 289.00$! Series 320 Single-Channel $0^{\circ} \mathrm{C}$ References, AC powered, for only $\$ 75.00$! Stocked in ISA Types, J, K, T, R \& S. Others to order!

Request Technical Data 32 . . .

ACROMAG

INCORPORATED
30765 Wixom Road • Wixom, Michigan 48096 Phone (313) 624-1541
Makers of Precision Instrumentation and Controls

Circle 273 on reader service card

Whether it's the well-known tube, one of several rear projection systems, EL, or even Dialight's in-plane seven-segment readout, you can't tell the difference when it's off. There's one way you can really see the difference. Send us the coupon on the adjacent page and borrow a Dialight demonstrator unit.

DIALIGHT

New Books

tion of several systems analysis problems into computer language.

In their discussion of the conventional approach, the authors concentrate on high-order differential equations to describe a system, poles-zeros to analyze it, frequency measurements to identify it, trial and error to design it, and indirect approaches to optimize it. They rely mainly on the Laplace transform and on the analog computer. The first few chapters cover in detail several points usually ignored in modern texts, such as Lagrange's formula.

The second half of the book, describing the modern approach, confines itself to analysis. It covers the set of first-order differential equations used to describe systems, linear transformations for analysis, Liapumov theory for studying system stability, time-domain analysis for identification, and the direct approach for optimizing. Here, the main mathematical tool is matrix theory, the main physical one the digital computer.

Not much light

Optical Lasers in Electronics
Earl L. Steele
John Wiley \& Sons
267 pp., \$11.95
Don't be misled by the title-the scope of this book isn't as broad as all that. Optically pumped and semiconductor lasers are discussed as they're used in industry, but not gas lasers. The book should interest those looking for a good review of such laser devices as oscillators and amplifiers, but it will disappoint those expecting a sophisticated and complete account of laser physics.

There's no reason to insist on equal time for gas lasers, but the single sentence in the preface, "The gas laser is not treated," is short slrift indeed. And something important is lost by avoiding quantum mechanics in the chapter on laser radiation physics.

Unfortunately, some of the terms used are confusing. For example, the pump chamber (the container used to concentrate pump light into the laser rod) is defined as the laser
cavity-a technical malapropism started by pioneers in optically pumped lasers. The term "laser cavity" ought to be reserved for the resonant cavity formed by mirrors at the ends of the amplifying medium.

Even the term "optical lasers" is confusing-primarily because it is redundant. The author would have done better to call the devices optical masers or just lasers.

Another crror is a common one: E.I. Gordon is incorrectly listed in a reference to an article called "The Laser"; the author is actually J.P. Gordon. Both are active in the field.

On the positive side, the author does a creditable job in his discussion of semiconductor lasers. The language, for the most part, is straightforward, and many diagrams, illustrations, and graphs complement the text. The glossary defines all the symbols that appear. chapter by chapter.

Charles B. Zarowin International Business Machines Corp.
Yorktown Heights, N.Y.

Recently published

Sophisticated Signals and the Uncertainty Principle in Radar, D.E. Vakman, SpringerVerlag New York Inc., 253 pp., $\$ 14.80$.
Translated from Russian, this book discusses the theory of signals whose time-spectrum product substantially exceeds unity and how they make it possible to improve the resolution of targets, simultaneously measure range and range rate, and electrically scan over and range rate, and elect
finite angular dimensions.

Electro-Optical Photography at Low lllumination Levels, Harold V. Soule, John Wiley \& Sons, Inc., 392 pp., $\$ 15.95$.

Tells the reader how to handle problems with low light level systems. Details the physical characteristics of both vacuum tube and solid state image intensifiers, image-intensifier camera and high-speed television line-scan recording techniques, neutron and X radiation conversion techniques and applications through near infrared, and natural night radiation sources.

Applied Optics: A Guide to Modern Optical System Design, Leo Levi, John Wiley \& Sons, Inc., 620 pp., \$18.95.

Covers analysis and design of optical components and systems. Includes sections on incandescent, discharge. luminescent, laser light sources, and light modifiers-including mirrors, prisms, and lenses. Emphasizes optics for communications.

Earth's Particles and Fields, Billy M. McCormac, Reinhold Book Corp., 464 pp., $\$ 27.50$

Edited proceedings of a 1967 NATO Advanced Study institute meeting covers both high- and low-energy charged particles, diffusion, acceleration and loss of charged particles, electric and magnetic fields and wave-particle interactions, and solar wind-magnetosphere interactions. A reference source for such applications as satellite measurement and space environment, communications, and despace environment, communicatio
tection of nuclear tests in space.

Our little black book has over 100,000 phone numbers.

You never had a black book like it. Over 1,500 pages. And those phone numbers! More than 100,000 telling you who to call/where to go, for the over 4,000 different product categories listed and advertised in the yellow pages of the Electronics Buyers' Guide. It's the industry's one-stop shopping center that lets you find the products and services you need quickly.

You can depend on EBG.
Electronics Buyers' Guide
A McGraw-Hill Market Directed Publication 330 West 42 nd Sireet. New York, N.Y. 10036

DIALIGHT CORPORATION
60 Stewart Ave., Brooklyn, N. Y. 11237
Yes, l'd like to borrow a demonstrator unit. Have your representative call. No obligation.

My readout application is

Dept. Tin

Company
Address

... until they're turned on.

What a difference! Try walking back 10 feet, 20 feet ... even 30 feet. No trouble with the sharp, bright, 1-inch high numerals of Dialight readouts even from extreme angles. Modules as low as $\$ 3.99$ less lamps in 1000 lot quantities. Send coupon to borrow demonstrator unit shown here and see for yourself.

BUSSMANN MFG. DIVISION, McGraw-Edison Co. St. Louis, Mo. 63107 Circle 202 on reader service card

The Complete Line of Signal-Indicating Alarm-Activating Fuses
For use on computers, microwave units, communication equipment, all dectronic circuitry.

BUSS MIN-13/32 $\times 11 / 2$

FNA FUSETRON Fuse $13 / 32 \times 1 / 2 \mathrm{in}$. slowblowing, Visual-Indicating, Alarm-Activating, (Also useful for smail motors, solenoids,
transformers in matransformers in ma
chine tool industry.)

Writo for BUSS Form SFB

BUSSMANN MFG. DIVISION, McGraw-Edison Co. St. Louis, Mo. 63107 Circle 202 on reader service card

BUSS: The Complete Line of Fuses and...

SPECIAL COSMICAR LENSES

COSMICAR lenses have improved in quality as CCTV cam. eras have improved.

There is no problem whether your cameras are with a built-in EE mechanism or a viewfinder mechanism.

COSMICAR will make whatever new lenses you need for your CCTV cameras to satisfy your every CCTV purpose.

FOR YOUR SPECIAL CCTV CAMERAS

5 o'clock shadow

Migration and whisker growth of tin and solders induced on thin metal films by direct current and heat G.M. Bouton and W.G. Bader Bell Telephone Laboratories, Murray Hill, N.J.

Too much current can make a thinfilm tantalum-nitride resistor look old-and perhaps cause circuit failures. The device grows whiskers. In one cass', 100 milliamperes flowing through a $\overline{5}(0)-0 h 1 m$ resistor on an alumina substrate generated whiskors in a fow days that started at the juncture of the tantalum nitricle and the soldered positive-polarity termination.
()ther emrent magnitudes create different types of growths. On a 5) ()-ohm-per-square resistor, 20 ma produced spheres. 180 mat produced ribhons and fine whiskers as well as spheres, and 160 ma ereated masses of fast-growing fine whiskers.

Solderable areas at the terminals are formed when sucessive laters of nickel chromium, copper, and palladium are evaporated over the tantalum nitride. Growths oecur most rapidly on circuits in which the heat from the soldering operation causes the thin copper laver to dissolve into the solder. This exposes the nicket-chromimm layer to the solder.

Tests show nickel-chrominm alboss are susceptible to whisker growths, while nickel, chromimm, titanium, tantalum, and tantalumnitride films aren't. Usually. a nickel-chromiun alloy is very difficult to wet with solder. Ifowerer, a freshly cut piece of tin (a major constituent of solder) will react with nickel-chromium when heated whove the tin's melting point of $232^{\circ} \mathrm{C}$ for four hours.

The tin diffises through the alloy and needles and whiskers start to form and grow. The growth
rate, which depends on current, time and temperature, can be as fast as 1 millimeter a minute.

A thick copper layer may prevent whiskers.

Presented at the IEEE.EIA 1968 Electronics Components Conference, Washington. May 8.10

Light altimeter

Low-altitude laser measurement system James E. Hopson
Raytheon Co., Lexington, Mass. William D. Isaac USAF Institute of Technology, Wright-Patterson AFB, Ohio Rudy C. Beavin and Paul Polishuk Flight Dynamics Laboratory, Wright-Patterson AFB
An experimental laser system for moasuring an areraft's altitude as it comes in for a landing has been tested aboard a Comvair 40. The results indicate that a small, lightwoight haser altineter applying current solid state technology can

- Fuseholders of Unquestioned High Quality

THE COMPLETE LINE OF small Dimension FUSES

For The Protection of All Types of Electronic and Electrical Circuits and Devices ...

BUSSMANN MFG. DIVISION, McGraw-Edison Co. St. Louis, Mo. 63107 Circle 203 on reader service card

BUSSMANN MFG. DIVISION, McGraw-Edison Co. St. Louis, Mo. 63107 Cirsle 203 on reader service card

with

Play it SAFII! check microwave radiation hazards
International's Microlite-287
This handy test light provides an instrument for safety checks in the laboratory or other areas where microwave radiation may be a hazard. The Microlite-287 was designed for testing radiation from microwave ovens at 2450 MHz . In this service it indicates fields of $10 \mathrm{MW} / \mathrm{CM}^{2}$ or more. It may be used for testing other ranges of radiation and can be calibrated to indicate glow level. Connect to nearest 115 vac outlet and it's ready to use. Store in drawer or tool box. Unit shipped complete with instructions. $\$ 26.00$ r.o.b. Okla. City. Write for our complete catalog.

CRYSTAL MFG. CO., INC. 10 NO LEE OKLA CITY. OKLA. 73102

Technical Abstracts

provide precise and accurate altitude measurements.

The system, called Lalms for low-altitude laser measurement system, uses as a signal source an RCA TA2930 gallium-arsenide diode operating in a pulsed mode. Light from the laser is reflected from the ground into a photodetector on the aircraft. The measured altitude depends on the time it takes the light to make the round trip.

Transmitted laser light-20-nanosecond pulses have given 100 watts peak with a rise time of less than 5 nanoseconds-is sampled by a small mirror in the beam and is used to illuminate a silicon photodiode. This reference signal is fed to a tunnel-diode discriminator that processes it and provides a standard start signal for triggering the external time-interval counter.
Laser light, triggered at a $1,000-$ hertz rate and reflected from the target, is received by an optical system, spatially filtered by an aperture plate, and passed through a narrow-bandwidth optical filter onto the surface of a 10 -stage photomultiplier tube. The output of the tube is amplified and processed by another tunnel-diode discriminator, which generates the stop signal for the counter. The system is designed so that accuracy is independent of target range or of pulse-to-pulse variation in laser power or target reflectivity.

Different kinds of target materials were used in lab tests, including white and gray poster board and brown wrapping paper. Distances to the targets were 100,49 , and 28.5 fect. Standard deviations of measurements ranged from 0.06 to 0.12 foot.

Flight tests were conducted over an airport runway and the grassy strip alongside, at altitudes from 29.51 to 163.89 feet. Maximum standard deviation was 0.7 foot over the runway and 0.31 foot over the grass.

Several runs were also made over a set of bleachers at the end of the runway. The readings clearly showed the stepwise configuration of the bleacher seats.

[^10]
New 5 KVA

 audio power amplifierDesigned to go down the hatch of submarines, the model 55 K is a workhorse audio source for ship or shore. The unit delivers 5 KVA CW and 15 KVA instantaneous peak power from 100 to $10,000 \mathrm{cps}$. Full power is available into reactive loads . . . no power factor correction needed.
Another CML exclusive: selectable output taps for wide range load matching.
Other power sources from 70 VA to 200 KVA .
Call or write today.

CML, Inc.
A subsidiary of Tenney Engineering, Inc 350 Leland Avenue • Plainfield, New Jersey (201) 754.5502 - TWX: 710.997.9529

Circie 275 on reader service card

Copper-Clad Laminates Ready For Immediate Shipment

Our new and greatly increased warehouse facilities make it possible for us to produce and store a arge quantity of copper-clad sheet laminates. All firstquality Synthane. Clad on one or both sides. Range of thicknesses and sizes. Thin copper-clad laminates. Also a very large inventory of B-stage pre-preg, reaciy to laminate on short notice. Call our district representative nearest you (see Yellow Pages) or phone us direct (215) 666-5011. Synthane Corporation, 36 River Road, Oaks, Pa. 19456.

SYNTHANE
copponation onss an ipaso
Lanumated Plastic Sheets, Rods. Tubes and Fabricated Parts

Quickly snap PC boards on or off a chassis

with Johnson spacer/bushings

Now you can mount and insulate PC boards to panels or metal chassis without the use of nuts, bolts, and hollow spacers. When the grommet end of a Johnson polyamide spacer/bushing is snapped in pre-drilled or punched holes on the chassis or panel, it is in place to stay! The PC board, on the other hand, can be easily snapped on or off the opposite end of the spacer/bushings to facilitate service or modifications.

Machined from polyamide, Johnson spacer/bushings are designed for use on any $1 / 16^{\prime \prime}$ thick PC board, chassis or panel. By providing a mechanically secure, non-conductive, convenient mounting method, Johnson spacer/bushings can cut production time and costs substantially.

FREE CATALOG includes specs and prices on these and other high quality E. F. Johnson components. See your E. F. Johnson representative or write for your copy today.

E. F. JOHNSON COMPANY

3064 Tenth Ave. S.W., Waseca, Minnesota 56093
Providing nearly a half-century of communications leadership

with Pfizer magnetic iron oxides

Whenever there's a need for a more versatile magnetic tape with a high cutput, chances are Pfizer has the magnetic oxide for you to produce it. Significant adrances in magnetic tape technology have coincided with Pfizer's continuing development of high quality oxides. Available are IRN ${ }^{(®)}$ magnetic oxides of high density which facilitate more magnetic action in a given volume, providing greater sensitivity in a wide variety of uses:

Audio, video, computer and instrumentation tapes:
Memory drums and discs;
Cinema film stripings;
Magnetic inks;
Transfer tapes;
Ribbons.

FYI*

Pfizer is also pleased to announce the availability of Ultralap-a new emul-sion-coated, bonded abrasive on a polyester back-avalable with many dirrerent materials and grit sizesproviding a mazing effectiveness and
durability. For complete technical data, please write.

Pioneering in Physical Chemicals

MINERALS
PIGMENTS
E METALS
DIVISION
Dept., 75, 235 East 42nd Street
New York, New York 10017

New Literature

Oscillators. Allen Electronics Division, Allen Organ Co., Macungie, Pa. 18062. Detailed specifications of the type C audio oscillator and type P plug-in sine-wave oscillator are featured in a catalog sheet.
Circle 446 on reader service card.
Tape readers. General Electric Co. 511 North Broad St., Philadelphia 19123. Eight-page brochure GEA-8492 describes a line of photoelectric tape readers, reelers, and reader-reeler combinations. [447]

Fluids dispenser. Headway Research Inc., 3713 Forest Lane, Garland, Texas 75040, offers a brochure on the EC102-NRD dispenser, which was designed to work in conjunction with the EC100 photoresist spinner. [448]

Digital automation technique. Theta Instrument Corp., 22 Spielman Rd., Fairfield, N.J. 07006. A method for automating machinery, processes, and instruments with encoders and encoding systems is described in a four-page bulletin. [449]

Thermocouple system calibrator. General Resistance Inc., 430 Southern Blvd., Bronx, N.Y. 10455. Bulletin 804 illustrates and describes the model DAS46CJC thermocouple system calibrator. [450]

Temperature controllers. Burling instrument Co., 16 River Rd. Chatham, N.J. 07928. Six-page condensed catalog G-33 describes a line of temperature controllers. [451]

Miniature r-f connectors. Sealectro Corp., 225 Hoyt St., Mamaroneck, N.Y. 10543, has available a catalog on the SRM series of miniature r-f connectors, which meet or exceed requirements of MIL-C-39012. [452]

Strip-chart recorder. West Instrument Corp., 3860 North River Rd., Schiller Park, III. 60176, has released bulletin FS describing a strip-chart recorder capable of recording up to six variables simultaneously. [453]

Avalanche diode sources. Frequency Sources Inc., P.O. Box 159, North Chelmsford, Mass. 01863. A four-page brochure describes in detail the FS-40 series avalanche diode sources. [454]

IC core memories. Computer Control Division, Honeywell Inc., Old Connecticut Path, Framingham, Mass. 01701, offers a brochure summarizing key operating specifications for its line of IC core memories. [455]

Directional coupler. Sage Laboratories Inc., 3 Huron Dr., Natick, Mass. 01760, has issued a 20 page applica-
tions guide, "The Microwave Directional Coupler." [456]

Microwave tubes. S-F-D Laboratories Inc., 800 Rahway Ave., Union, N.J. 07083, has available a six-page catalog on microwave tubes for advanced systems. [457]

Data communication products. Milgo Electronic Corp., 7620 N.W. 36th Ave., Miami, Fla. 33147. An illustrated folder describes a line of data communication products. [458]

Photoresist. Shipley Co., 2300 Washington St., Newton, Mass. 02162. Bulletin S-1350 describes AZ-1350H, a positive-working photoresist engineered for IC applications. [459]

Recording oscillograph. Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif. 91109. Type 5-119 Datagraph recording oscillograph is described in an eight-page brochure. [460]

Silicon rectifiers. Edal Industries Inc., 4 Short Beach Rd., East Haven, Conn. 06512 . Bulletin 115 offers full specifications on a line of silicon rectifier miniature single-phase bridges. [461]

Coaxial adapters. Weinschel Engineering, Gaithersburg, Md. 20760. Model 1513 precision coaxial adapters that cover the frequency range from d-c to 18 Ghz are described in a catalog data sheet. [462]

Photomultiplier tube housings. Pacific Photometric Instruments, 3024 Ashby Ave., Berkeley, Calif. 94705. A 16 -page catalog contains specifications and dimensions for 10 types of photomultiplier tube housings. [463]

Plug-in power supplies. Acopian Corp., Easton, Pa. 18042, offers literature that describes 21 new a-c to d-c plugin power supplies. [464]

Data set. Sangamo Electric Co., Box 359, Springfield, III. 62705. A fourpage bulletin highlights the functions and features of the Transidata T401E data set. [465]

Relays and coils. Solid State Electronics Corp., 15321 Rayen St., Sepulveda, Calif. 91343, offers a 48 -page catalog describing its line of miniaturized, rug. gedized relays and coils. [466]
Computerized testing. Arma Division, Ambac Industries Inc., Roosevelt Field, Garden City, N.Y. A four-page publication describes an automatic computerized testing system, detailing its application to a variety of electronic and electromechanical equipment. [467]

nuew Dijp- Formed

General Electric's new dipformed Dumet F offers 15% better electrical and thermal conductivity - assured weldability and sealability - unbrazed, metallurgically bonded core and sheath - increased copper purity - longer continuous lengths without welds. Available forms: spools, cut straights, welded lead wires. Also available in gold, nickel and other platings. Used in electronics, semiconductors or lamps. For details on Dumet F , write or call: General Electric Company, Lamp Metals \& Components Department, 21800 Tungsten Road, Cleveland, Ohio 44117. Tel: (216) 266-3472.

GENERAL ELECTRIC

Circle 277 on reader service card

Our 1st . . . is a 100 mA hex driver for lamps or relays with diode suppression, driven directly from DTL or TTL.
Flip chip semiconductors are mounted on thin film multilayer substrates ... all in a 16 pin dual-in-line package.
We can ship the hex driver to you tomorrow, or this technique can be applied to your special. Try us.

intelluex

Big performance in a quarter ounce package.

Looking for something better in a low frequency filter? Look no more. Clevite's new generation of fixed-tuned ceramic band pass filters combine narrow bandwidths and high performance with surprisingly small size and low weight.
Check the specs and see for yourself
Center Frequency - from 9 kc to 50 kc
Bandwidth (\% fo) - (a 3db-1\%; (i) 20db-13\%
Stability - Within 0.2% for 5 years
Within 0.2% from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Dimensions-HC-6/U case $3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \times .3^{\prime \prime}$ (hermetically sealed) Shock -20 g any axis 20-2000 cps per mil std. 202B.
As we said, look no more for a high performance, low frequency filter. This new one from Clevite is the perfect choice. Write for free Technical Bulletin 94023. Clevite Corporation, Piezoelectric Division, 232 Forbes Road, Bedford, Ohio 44014.

The day Albert Jones conceived a new IR test technique

Technically, it was the day after he and Frank Porter, AGE major domo, agreed there was a problem. No combination of available components could field-test the aircraft IR sensor practically. "Well," said Al, "looks like we start from scratch." Which understated the problem, since they'd only 6 months to develop a working prototype. Al left Frank with a "Don't worry'. But he'd already started worrying.

At home, Al popped the family off to bed after an evening's TV ... and pondered. Everything seemed to hinge on the weight. Even latheways cast in magnesium or aluminum clocked in at 1500 lbs . available sensor-holding units hit the scales at $300+$. What was needed would have to weigh far less. So, he gave it considerable thought.

With considerable success. Resulting in the basic parameters for a portable, air-transportable, autocollimated, lab quality optical bench. Capable of ultranarrowband spectral analysis; sensitivity checkout; testing resolution and total field of view, with micrometer sensor positioning and a built-in substitute cryosource. Total weight: 300 lbs!

Funny thing about Al. He doesn't consider what he did especially unusual. It's typical of the all-of-a-sudden problems that crop up in developing multi-function AGE systems whose frequencies run from DC to light. And, he's gotten used to pioneering ideas like automated test equipment using a time-shared central computer. He likes it. All of it.
If there are any more of you out there like AI, why not investigate what our AGE laboratory can offer you. Even if you'd prefer to pit your intellect against a provocative study or development program in another advanced area, we'd like to hear from you: we'll tell you about ongoing programs in our radio communications, navigation aids, data equipment, countermeasures and tracking systems labs.

Direct your resume, in confidence, to Mr. J. P. O'Reilly, Dept. 186.

Electronics Division

1400 N. Goodman street, Rochester. New York 14601
We are an equal opportur it'; employer in cead, not only an equal spportuาity $ə m p$ oyer in words.

AUTOTRACK ANTENNA MOUNT

PULSE MODULATORS

MIT MODEL 9 PULSER 1 MW-HARD TUBE Mutput 25 ky 40 amp, 30 kr 40 amp . max. Duty cy 002 microsec. Uses BC21. Input 115 F 60 cycle AC. Mfig
 2 MEGAWATT PULSER
Output 30 kF ht 70 amp . Duty cycle 001 . Rep rates 1 microseo 600 pps. 1 or 2 msce 300 pps. Uses 5948 hydrogen thyratron. Input $120 / 208$ VAC 60 escle
Mifr
GE
Complete mith high roltage Dower supply 250 KW HARD TUBE PULSER
Output 16 kv 16 amp, Duty cycle 012 . Pulbe can 60 cy . AC $\$ 1200$ ea
18 MEGAWATT PULSER
Output 150 KY at 120 amps liep rate: $50-500 \mathrm{PPS}$ lulse length: 5 msec. 15 KV 120 amp. Into puls. transformer. Ifise time 1.5 msec . Fila ament sudply 5 V 80 anid incl. 17.5 KX .
Input: $220 \mathrm{~V}^{2} 60 \mathrm{cs} \mathrm{AC}$ amp DC power supdly

INDICATOR CONSOLES

 HIGH VOLTAGE POWER SUPPLIES 1 10WK cy2011:
SCR 584 AUTOTRACK RADARS
Our 584 s in like new condition. ready 10 Ro. and in earch and derelopment. miasilo tracking. Batellito tracting. Fully Deic. Mit Rad. Lab. Beries. Vol. 1

SONAR SYSTEMS IN STOCK
AN/FQS-1A. AN/CQS.IHB, Q1113, scanning zonars,

MICROWAVE SYSTEMS

200-2400 mc. RF PKG

Conimnous tewrage, watts CW nominal onvout

L BAND RF PKG.

 KW Deak 990 to 1040 AC, Irulse widh 7 to 1.2 Inlero sec. lite rate 180 to 420 Dos. Indut 115 rac200-225 mc RADAR SYSTEM
1 Megawatt output. 200 nautucal mulle range for lona range detpetion of medium und hlyh a lititude jet a
craft as well as general search. AN/TPS 28 .
SURVEILLANCE DRONE RADAR SYSTEM
X Band tracking ssstem whb photing hoards. Tsur 5 MEGAWATT C-BAND
Klystron RF package delivering nominal 5 meka watt 500 KW L BAND PADAR 500 KW L BAND RADAR
$500 \mathrm{kw} 1220-1359$ mso. 160 nautical mile search ranke P.'P.I. and A socopes. MTI. thyratron nood $5 J 28$
maknetron. Complete systen AN/GPG-1 SKY-
 3 cm . sutomatdo track
ing radar gytem. Com ing radar savtem com-
pleto packas with
pindioator system. Full
 put 115 roith 600 cyalo New. In stock for fm-
mediate deliver Fitlie Tediate delivery Entire wido, $10^{\circ} \mathrm{high}$ tdeal for Infrared Tracker. Drone Tracker. DHesil

500KW S BAND RADAR

250 miles ramoh 116760 a AC. Mfg. G. I
RADAR SYSTEMS GROUND AND AIRBORNE, AUTOMATIC
 TPS-28 FAA.ASR-2 AIRBORNE SYSIEMS APN-BA. APN-102.
APS-23. APS-27 APS-45 DPN-19 DIGITAL COMPUTERS APS-23. APS-27
IBM 650 . IBM 70
A. IARGEST invintory of radar and

MICROWAVE FOUIPMENT IN THE WORLD.
RADIO RESEARCH INSTRUMENT CO. 45 WEST 4STH 51. N. Y. $10036 \quad 212$-JU $6-4691$

CIRCLE 953 ON READER SERVICE CARD

What is

your

problem?

Competent men for your staff? . . . employment?
or are you looking for-or of-fering-a business opportunity of special interest to readers of this publication? You can get their attentionthrough an advertisement in the Employment Section of Electronics.

Send New Ads to:

ELECTRONICS

Class Adv. Div., P. O. Box 12, N. Y., N. Y. 10036

GET IT from GOODHEART:
0.01 \% SORENSEN Line Voltage Regulator

Sup. Electric $=1 \mathrm{E} .5102$ is same spre, $\$ 199.50$
 Sup. Elect. IE-20060: $\%$ kiva. Samo specs as aboro but

 Sorensen R5010 all-solid-state, zener references, 0-5
kra, jore efficient. |legular $\$ 792$. With cabinet $\$ 450.00$ Sup. Elect. E-5i05: Same spers as Sorensen : S° suries. $0-5$ Krat. requilarly $\$ 655.00$. Onty...... $\$ 349.50$
 ALL ABOVE are 1 lhation

Ahowe are electronic. Following are electromech. ,

Gen. Radio $41570 \mathrm{AL}: 0.6$ kva, refultar $\$ 199.50$

Sup. Elect. EM -4115 in metered callinc:: $\mathbf{\$ 2 9 5 . 0 0}$
Atmen are all $15-130 \mathrm{v}$: $1: 30-200$ v follows
 EMT 6220 (transistorizul) : m man lead $\$ 450.00$
812

kryt ….................	

Lavole LA.70A \& Gertsch Fm-3A Freq. Meters. . .ASK Tektronix 541A, 5G1A, Hewl. P. \& other scopes.ASk Sp. 600 's \& R. 392 late-model Radio Receivers. Automichron Cessium-Beam Freq. Standard. Regulated Power Supplics. Meter calim:tors. All kinds of AuDIo Test Fquipment.
Graphic Recorders at very low prices Counters, Freq. Mcters, DVM's Spectrum Analymers δ P Plug-lns
 Electronic \& Roterneters, wher Lab Standards. Noise \& Field Strength Meters.
we probably have the best inventory of GOOD LAB TEST EQUIPMENT IN THE COUNTRY, but please do not ask for catalog: ask for Specific items or kinds of items you need we also buy! what do you have?

R. E. GOODHEART CO. INC.

Box 1220-E, Beverly Hills, Calif. 90213 Phones: Area 213, office 272-5707, messages 275-5342

CIRCLE 951 ON READER SERVICE CARD

ELECTRON TUBES

KLYSTRONS •ATR \& TR • MAGNETRONS
SUBMINIATURES C.R.T. T.W.T.

- SEND FOR NEW CATALOG A2• A \& A ELECTRONICS CORP 1063 PERRY ANNEX
WHITTIER, CALIF.

LOOKING FOR AN IC SUPPLY TO MATCH THE QUALITY OF YOUR MICROCIRCUITS? KEPCO HAS THE ANSWER!

The CPS Power Supplies with redundant overvoltage security for delicate IC's.

Offered in two versions, fully metered and equipped with the usual assortment of panel controls for lab-bench use, or in modular form-with recessed (screwdriver adjusted) controls, Kepco's CPS Power Supplies are the perfect low voltage precision sources for critical microcircuits.

MODEL	DC OUTPUT RANGE VOLTS AMPS		STYLE	PRICE
CPS 6-10M	0-6	0-10	lab-panel	\$350.00
CPS 6-10	0-6	0-10	OEM-modular	320.00
CPS 15-6M	0-15	0-6	lab-panel	350.00
CPS 15-6	0-15	0-6	OEM-modular	320.00

All models employ a new fully dissipative regulator operating linearly without SCR's or switching to regulate $0.005^{\prime \prime} / \mathrm{w}$ for line, $0.01^{\prime \prime}, 0$ or 0.2 mIV for load, and operate from -20 C to +71 C WITHOUT DERATING!

The quarter rack, self-cooled package is FULLY ENCLOSED and equipped with a tilting bail for bench use. Both styles fit rack adapter $\mathrm{R} \wedge$ - 24 (pre-drilled for slides), which can accommorlate up to four power supplies.
The Kepco CPS models (bench style or OEM modular style) feature a fast-acting built-in overvoltage crowbar whose trip-point is adjustable from the panel (recessed behind the end plate in the modular version). The overvoltage protector features Kepco's redundant security circuit, with fully independent, fail-safe, reference-comparator and triggering circuit. Timing is from 5-10 microseconds with an adjustable delay to minimize the false alarm rate.

The power supply (as well as the overvoltage protector) is equipped with remote error sensing connections for control and protection directly at the load circuit card Units may be paralleled or connected in series for driving greater loads.

We'd be glad to send you the data sheets,
simply write Dept. AH-14 or call:

Newsletter from Abroad

July 8, 1968

Hologram patents disputed in U.K.

Battelle Development Corp. faces a battle in Britain to get its off-axis laser holography technique patented there.

Lined up against Battelle are the Ministry of Technology, HawkerSiddeley Dynamics, and Agfa-Gevaert, a German-Belgian photo-materials maker.

Although the recording of images by means of optical interference patterns was proposed two decades ago by Dennis Gabor of London's Imperial College of Science and Technology, Battelle's opposition bases its case not on that but on a British law that makes unpatentable an invention described in public print before the patent application. Battelle filed for a British patent on Feb. 21 this year. The ministry has offered as evidence eight articles on laser holography that appeared before then.

Battelle acquired the rights to off-axis holography urder an inventiondevelopment agreement with the University of Michigan, where the first laser holograms were made. The Holotron Corp., a joint venture of Du Pont and a Battelle subsidiary, has the license to Battelle's rights.

U.S. space offer may aid Symphonie

Space authorities in Western Europe are wondering what will result from the lift promised them in late June by the U.S.

At a Munich meeting of the European aerospace trade association, Trevanion Nesbitt, assistant head of the State Department's space office, said Washington was now ready to help countries that want to put up experimental communications satellites. U.S. aid thus far has been limited mainly to research satellites.

Nesbitt said the U.S. would consider almost any proposition, from launching satellites to cooperating in the development of launchers. The offer, though, doesn't apply to projects that would compete with Intelsat's commercial communications network.

The switch in U.S. policy is a boost for the Franco-German Symphonie satellite project. Its big problem at the moment is getting a satisfactory launch vehicle, and a firm deal for a U.S. rocket could guarantee its success. However, officials at the French space agency are skeptical about the offer, largely because nothing came of earlier U.S. proposals of aid to European development programs for missiles and nuclear weapons.

Possible rift clouds startup of Britain's big computer firm

There may be some infighting between former officials of International Computers \& Tabulators and English Electric after Britain's "national" computer company, formed by the merger of these firms, starts operations officially this week.

ICT and English Electric were strong rivals for business-computer sales before they were prodded by the government to join forces in International Computers Ltd. And some insiders say the competitiveness between the two groups will only be dropped when the nêw company markets a single line of fourth-generation computers in the mid-1970's. Until then, International will sell both ICT's 1900 machines and English Electric's Series 4 line.

One hint of possible factiousness within International came two weeks ago when ICT announced that it will launch a time-shared com-

Newsletter from Abroad

puter service next January. The utility will initially have the capacity to serve 30 subscribers but will later be expanded to handle about 100 . The plan is potentially divisive because English Electric officials are known to have a time-sharing scheme of their own in the works. Two time-sharing services-both using U.S. made computers-are already operating in Britain.
International, though, is taking stops to avoid a split. Along with ICT and English Electric, the Plessey Co. and the government have holdings in the merged company. And International has named as its head a neutral, Sir John Wall, now a ranking Post Office official and before that a managing director of Electrical \& Musical Industries Ltd.

Grundig and Ferranti team up for NC sales

Honeywell to sell a Nippon Electric optical reader

Numerical-controls producers are in for some stiff new competition. Two of the strongest European companies in the field-West Germany's Grundig Werke GmbH and Britain's Ferranti Ltd.-plan to pool their NC marketing effort.
The two companies still have to nail down details, but an agreement calling for joint worldwide sales and service operations is in the works. The pact will cover a wide range of NC equipment, from simple positioning controls to multiaxis, continuous-path systems. The firms will also market digital measuring instruments and precision test equipment as a team.

Japanese industry leaders point to Honeywell's agreement to market optical character readers from Nippon Electric Co. as another sign of Japan's advancing computer technology. Honeywell is the first U.S. computer maker undertaking to sell Japanese peripherals to its customers.
Meanwhile, Nippon is busily denying rumors that another Honeywell agreement limits its computer sales to Asia. Nippon insists that it can export the machines-Models 200, 300, and 400 of the Neac 2200 (Honeywell 200) series-anywhere except North America. The rumors started in March, when a new agreement, providing for lower royalties, was signed.

German data links may aid pill-pushing

West German pharmacies may soon be ordering drugs from wholesalers through a nationwide data transmission network. The system the druggists want would place input keyboards at each of the country's 10,000 retail outlets and link them over telephone lines to receivers at wholesalers.

Siemens AG and Standard Elektrik AG-a subsidiary of the International Telephone \& Telegraph Corp--are the most likely suppliers of the network's equipment.

Addenda
West Germany's drive to consolidate its aerospace industry paid off twice in June. Late in the month, Dornier Werke GmbH picked up a $\mathbf{7 4 \%}$ holding in Merckle Flugzeugwerke GmbH. Dornier also has an option on the remaining shares in Merckle, a helicopter producer. Earlier, Messerschmitt and Boelkow GmbH merged [Electronics, June 24, p. 204] . . . The Shiba Electric Co. has developed a linear integrated circuit that produces 1.5 watts over a range between 30 hertz and 8 megahertz. The Japanese firm plans to use the circuit in television cameras and other broadcast equipment.

Need to satisfy a multitude of circuit demands?
Our connectors give you complete interconnection freedom.

We arranged it that way!

Chances are that a CANNON ${ }^{2}$ Plug already is available with contect types and insert arrangement: for your circuit application.
Fick and pack From a wide range of insert arrarigements to meet your system requirements... arrangements which include:
Minimum-temperature-rise potcer contacts. Bussed contacts to provide greater circuit flexibility. The 'mocor'ple contacts with contact materia. which prevents secondary induced voltages.

Contacts with precious metal surfaces for low-level current and voltages.. dry circurt conditions. Shielded contacts to reduce RFI. $R F^{\prime}$ coarial contacts rith good impedance matching eharacteristics. Filter contacts for attenuation of over 50 db from 100 mhz to 10 ghz . Printed Curcuit contacts designed for consistent contact pressure on printed circuit boards. (These include low-force bourd insertion systems.) Microminature MICROPIN*
contacts with spacings of $.050^{\prime \prime}$. Available from ITT Cannon are councetors meeting: military and industry specifications in solder, crimp, weld or wire wrap contact designs... all in various sizes, materials and platings. For our "Contact Technology" paper, write ITT Cannon Electric, 3208 Humboldt Strect, Los Angeles, California 90031.
A division of
International Telephone and Telegraph Corp.

RCA
 Solid-State Data for Designers

Have You Considered These "UNIVERSAL" Linear IC's?... RCA-CA3020 and CA3020A

Why "Universal"? ... It's applicable from small-signal to power...from DC into VHF. It's ideally suited for a wide spectrum of electronic-design functions...audio, RF, Mixer, IF, servo systems, relay control, signallight control, frequency multipliers, modulators... and imaginative designers are discovering "lodes" of new ones regularly. CA3020A provides a power gain of 75 dB (typ) and delivers 1 watt (typ) of power output. CA3020 delivers 550 mW (typ). Use them in applications to 8 MHz with resistive loads... into VHF with tuned circuits.
Try the "UNIVERSAL" Linear IC's ...RCA CA3020 and CA3020A. Circle Reader Service No. 507 for details.

"Chopper Designers'Delights" RCA-3N153 and 3N138 MOS/FETS

If you have critical industrial chopper and multiplex applications in mind, investigate the RCA 3N153 and the 3 N138. Both offer unique advantages over "classical" chopper components.

These two MOS/FET* units feature extremely-low feedback capacitance, low "on" resistance and high "off"' resistance-plus virtually zero inherent offset voltage. COMPARE!

Fill in the blanks below in relation to your own application-good, fair, poor?

"Ideal" Criteria	MOS/FET	Bipolar	Electromechanical
Infinite life	good		
Infinite frequency response	good		
Infinite "OFF" resistance	good		
Zero "ON" resistance	fair		
Zero drive power consumption	good		
Zero offset voltage	good		
Zero feedthrough between driving signal and signal being chopped	fair		
Small size	good		
Price (1,000 units) 3N138	\$2.00		
3N153	. 96		

Circle Reader Service No. 508
*Metal-Oxide Semiconductor/Field-Effect Transistor.

Critical Switching At Up To 50 V/1A in 30 ns Through Inductive Loads? Try This!

The RCA 2N5262 is great for highspeed, high-voltage, high-current switching transistor applications.

Hermetically sealed in a low-profile TO-39 metal package, this unit still sells for only $98 \&$ in 1,000 unit quantities! And look what else you get: safe operation under forwardbias and reverse-bias conditions without second breakdown damage (under specified maximum ratings); 30 ns maximum turn-on and 60 ns maximum turn-off at 1 Alc , and low saturation voltages. Spec'd to meet MIL-S-19500. Circle Reader Service No. 509.

Look to RCA's PHP MAX VALUE Line...

for hermetically sealed transistors capable of operating over wide temperature ranges.

These silicon n-p-n amplifiers and switches give premium transistor performance at plastic transistor prices-as low as 19% for the 2N5183 in quantities of 1,000 or more.

Check your RCA Field Representative for complete information on the RCA 2N5262 and/or RCA's PHP MAX VALUE line of transistors. Ask your RCA Distributor for his prices and delivery. Circle Reader Service No. 510 for the technical bulletin and application information on the RCA 2N5262 and Reader Service No. 511 for information on PHP transistors.

40-A Triac... One of RCA's Hottest New Products

Reaction to our announcement of a 40-A Triac has been spectacular. Sample requests were at a peak and the reasons why are obvious. Now available as the 2N5541 and 2N5442, they are packaged in a press fit and rated at 200 V and 400 V , while the 2N5444 and the 2N5445 are 200-V and $400-\mathrm{V}$ stud packages. They are the highest power handling Triacs in our pace-setting line. Depending upon your line voltage requirements, you can select versions for either $4800-$ or 9600 -watts control. RCA's special pellet design provides surge current protection up to 300 A . Applications include high current heating, furnace and motor controls and power switching systems.

Our assembly lines are now geared up for full production. So if you haven't ordered any 40-A Triacs yet, what are you waiting for? Circle Reader Service No. 512 for details.

How to Get Broadband RF Power Out of the TO-60 Package

One of the problems facing the high frequency designer working with TO60 packages has been broadband amplification. The principal factor restricting such performance has

been the parasitic inductance of the TO-60 package. Our Applications Group has, however, recently developed a new circuit technique which permits excellent broadband operation of RCA's 2N5016, a 15-watt (min.) $400-\mathrm{MHz}$ transistor in the TO-60 package.

This design uses a lumped-constant reactive ladder network to provide the required input impedance matching. Basically, this circuit first tunes out the parasitic inductance values by making them appear resistive. Then this "resistance" is transformed by the input L-C circuit
stages into an impedance of 50 ohms. With the inductance thus tuned out, broadbanding becomes possible.

This approach is shown schematically in a $225-400 \mathrm{MHz}$ power amplifier which provides 16 watts plus or minus 1 dB with an input of 6 watts. Circle Reader Service No. 513.

New IR Emitter Has "Mini" Shape but"Maxi"Performance

RCA's 40598 gallium-arsenide emitter is one of the world's smallest infrared sources, but everything about its performance is big. This new optical device features a power output of 0.3 mW at 50 mA operating current, making it compatible with inexpensive IC drivers. The unique lens design uses a miniature reflector system to focus radiation into a 15° half-angle cone of high radiant intensity. Its 9100 A emission can be readily sensed by conventional silicon photodetectors. Another important highlight is room temperature operation; it is rated for -73° to $+75^{\circ} \mathrm{C}$ performance.

RCA's 40598 is a reliable and economical substitute to perform the function of tungsten light bulbs in card readers. Other operations include shaft encoders, isolated switching circuits and intrusion or

burglar alarms. Circle Reader Service No. 514.

The "Super" TO-3 Power Transistor-100 A and 300 W

 Up to now, industrial equipment designers requiring high-power, highcurrent transistors had to rely on expensive, space-consuming studdevices. RCA's new developmental TA7016 family has changed all that. Six transistors in all, this family uses the standard TO-3 form factor with all its obvious advantages of size and cost. Only the leads have been modified to handle the high currents involved. Inside the case, we've put a 380-mil-square Hometaxial-base pellet, one of the largest ever for power transistors.

The word "super" really takes on meaning when you examine the spec's for the TA7016. It has a peak collector current of 100 A . Dissipation is 300 watts at $25^{\circ} \mathrm{C}$ with a $V_{\text {CEX }}$ (sus) of 70 volts. The useful beta range is $10-30$ at 60 A . And depending upon your mounting requirements, you can choose from three terminal designs: heavy pin, soldering lugs, or flexible leads with solderless connectors. It all adds up to a new circuit cost savings for inverters, regulators, controls, and other linear and switching power applications. Circle Reader Service No. 515.

See your RCA Representative for full information on all products shown. Ask your RCA Distributor for his price and delivery. Or write RCA Electronic Components, Commercial Engineering, Section Q-N-7-1, Harrison, N. J. 07029 for specific data sheets.
R(B/

The penny-pincher.

Something new is cooking in our pots. Litton, always associated with high prices, tight tolerances, and state of the art conformities, is broadening its line to include a new series of low-priced potentiometers. First to be introduced is our LD09 $78^{\prime \prime}$ diameter 10 turn.

Don't let the low price fool you. The LD09, like all our other wirewound potentiometers, is designed to meet all the stringent requirements of Mil-R-12934 and is recommended for practically all applications, military and space included. No shortcuts or compromises in Quality Control or Reliability. All we are doing is combining a unique new design approach with our excellent manufacturing capabilities.

ELECTRICAL

Total resistance range Total resistance tolerance Resistance-temperature coefficient
Linearity standard
End voltage
Resolution
Electrical travel
Phasing (2 section only)
Noise
Power rating Insulation resistance Dielectric strength Temperature range Additional taps
100Ω to 150 K
$\pm 3 \%$
$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.
$\pm 0.2 \%$ independent 0.5% max.
Within linearity tolerance
$3600^{\circ}+10^{\circ}$
CCW taps aligned $\pm 1^{\circ}$
100Ω max.
2.0 watts @ $+85^{\circ} \mathrm{C}$
$1000 \mathrm{meg} . \Omega \mathrm{min}$. 1000 VRMS, 60 CPS $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Available as special

MECHANICAL

Mounting type	Servo or bushing
No. of sections	Single or dual
Bearing type	
\quad Servo mount	Stainless steel ball bearings
Bushing mount	Sleeve bearings
Lateral runout	.001 max. TIR
Pilot surface runout	.001 max. TR
Shaft runout	.001 max. TIR
Radial play	.002 max. TIR
End play	.001 to .004
Starting torque (oz. in. max.)	1 section 2 section
\quad Servo mount	$0.4 \quad 0.7$
\quad Bushing mount	0.5
Stop torque	4802. in. min. 0.8
Mechanical travel	$3600^{\circ}+10^{\circ}-0^{\circ}$
CONSTRUCTION	
Housing	Thermo-setting
Mounting	high density plastic
Shaft	Anodized aluminum
	Stainless steel passivated

To get the ball rolling, we are offering the single-section servo mount model LD09 in any of the following resistances, with an independent linearity of $\pm 0.1 \%$: $1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}$, and 100 K . The price in quantities of $1-9: \$ 19.95$ each. (We'd be happy to talk about larger quantities, of course.)
If you require a non-linear function, output load compensation, tighter linearity tolerance, additional taps, or special mechanical travel-don't fret. This versatile device has been designed to meet your special needs at only slightly higher costs. Simply let us know your special requirements, and we'll respond-at once, and competitively.

5 things you should know

3.More than a switch:

Most double-diffused power transistors can only be used for switching applications. But, Fairchild power transistors have extremely high power dissipation. That means they can also be used as amplifiers. (Servo-amps, power amps, class B push-pull amps, etc.) They also make good switches.

1.The discrete emitter:

Fairchild has improved beta linearity characteristics of power transistors. We chopped the emitter into many small discrete emitters connected in parallel by buss bar metalization. As a result, the increased emitter-base peripheral area raises emitter injection efficiency.

2. Integrated feedback
 resistors: we also increased the safe

 area of operation. With a built-in safety fuse. Each discrete emitter is connected to the buss bar through a deposited thin film nickel-chromium resistor. That keeps the current flow under control and increases the device's second breakdown capability. If any emitter overheats, its resistor will open. Fairchild power transistors will perform without detectable degradation with up to 10% of the emitter sites opened.

about silicon power transistors:

4.Planar II:

Several manufacturers use the Planar* process to make power transistors. But, not the way we do. (That's why other power transistors are limited to switching functions.) So, if you're a circuit designer, you don't have to put up with the low reliability and poor frequency response of Mesa designs. Fairchild offers reliable, 100%-tested epitaxial Planar power transistors with high frequency response. And, with all the advantages Fairchild power transistors offer, they cost only a little more than Mesa.

5.Power source:

You can get power transistors from your local Fairchild distributor. He's got NPNs and PNPs. Amplifiers and switches. Simply circle the Reader Service Number below for complete specifications and applications information.
Fairchild Semiconductor, A Division of Fairchild Camera and Instrument Corporation, 313 Fairchild Drive, Mountain View, California 94040 (415) 962-5011 TWX: 910-379-6435 FAIRCHILD

Quick reaction

It means different things. To the pilot, it may be a violent maneuver to dodge an enemy missile. To the systems contractor, it means getting operational gear designed and built and delivered in a hurry.

Working with QRC contractors, MEC has developed TWTs and solid-state microwave acoustic delay lines for signal repeating, augmentation, microwave memory, direction finding, communications and target simulation systems. And all were built to perform in hostile environments.

If you're designing a quick reaction system, contact MEC. We have a reputation for "turning it on" and reacting quickly.

You can learn more by calling the men from MEC.

Microwave Electronics
A TELEDYNE COMPANY
3165 Porter Drive, Palo Alto, Calif. 94304

Electronics Abroad

Japan

Exposure by IC

So far, camera makers have stuck to galvanometers for the inclicators in exposure meters. But a challenge to the galvanometer's domination may be in the offing from the integrated circuit.

The Yashica Co., one of the major Japanese camera producers, is showing the way. Last month, the company started selling in its home market for $\$ 60$ a $35-\mathrm{mm}$ camera with IC-controlled indicator lamps to show when the shutter speed and aperture setting are right for the light available and the film speed. The camera, the Yashica Lynx 5000 E , sells for about $\$ 2$ more than a similar model with a conventional meter. If the IC camera catches on, Yashica may find its competition sincerely flattering.

Lights out. In the 5000 E , the exposure indicator is mounted inside the viewfinder. When the user wants to check his settings, he pushes a button that switches two 1.3 -volt batteries onto the IC-lamp circuit. If the speed and aperture settings would cause an overexposure or an underexposure, "Over" or "Under" lights up in the viewfinder. When the settings are right, out goes the light.

Each lamp is controlled by a pair of transistors on the IC, a thick-chip hybrid made by the Nippon Electric Co. In addition to the four transistors, the IC has six resistors and two thermistors. Off the IC, but in the lamp circuit, is a small resistance ring through which the film speed, shutter speed, and aperture settings are fed to the circuit.

Cell mates. The ring works with a cadmium sulfide cell, whose resistance goes down as the light falling upon it becomes brighter. If there's too much light for the
(amera settings, the ring's resistance is higher than the cell's. This condition turns on the first-stage transistor in both the Under and Over sides of the circuit. These two transistors are pmp types. So is the second-stage transistor on the Under side, and it is held off when its mate is on. But the sec-ond-stage Over transistor, an npn type, turns on and lights the overexposure lamp.
If there's too little light, the resistance of the CdS cell is higher than that of the resistance ring, and neither first-stage transistor can turn on. In that case, the sec-ond-stage pup Under transistor and its associated indicator lamp switch on.

When all's right, the resistance ring and the CdS cell balance. In this case, the first-stage pmp Under transistor switches on, holding off the second-stage pnp transistor. The first-stage pnp Over transistor, however, cannot switch on because its emitter resistance is higher than that of its Under counterpart. Neither lamp, then, can be switched on.

Great Britain

Blinking at IC's

More than a decade ago, researchers found they could get a better look at integrated circuits by applying small steady voltages to them and viewing them with a scamning electron microscope. A difference of even 1 volt between two small areas, ordinarily look-alikes, results in substantial contrast on a micrograph.

Trouble is, most IC's work with fast-changing voltages. So studying them with a steady voltage doesn't show what goes on during highfrequency operation. What's needed is a stroboscopic technique, one that keeps the electron-beam illu-
mination of the microscope in step with the varying voltage applied to the IC.
Two British researchers, Graham Plows and William Nixon, will tell this week how they've managed to take strobed micrographs. Plows and Nixon, of the engincering department of Cambridge University, will be addressing a Cambridge scanning-microscopy conference sponsored by the Institute of Physie's and the Physical Society.

Gated. Like a sampling oscilloscope, the scamning microscope used in the Cambridge technique looks at only a small part of the applied waveform. A 7 -megahertz, 5-volt peak-to-peak distorted sinc wave is applied to the IC. At the same time, the microscope's main electronic beam is pulsed at a 7 Mho repetition rate with pulses 10 nanoseconds long. The video circuit in the microscope is gated on just before each pulse is applied.

Conspicuous. At the start of the 7•Mhz applied voltage cycle, energized gate (arrow at top) is at its most negative potential and appears as brightest spot on MOS circuit. A half-cycle later (below), the gate is at its positive peak and becomes the darkest part of the circuit. The gate is about 25 microns wide.

Except for the short bursts, the device operates the same way as a conventional scanning microscope: The main electron beam scans the surface of the specimen being viewed, provoking an electron emission. This emitted charge is collected and amplified to obtain a video signal that modulates the brightness of a cathode-ray tube scanned in synchronization with the main beam.

Because the collector that picks up the specimen's emission is sensitive to voltage variations, a correction is needed when the specimen has a varying voltage applied to it. Otherwise, the video signal applied to the crt would result in a meaningless image. Plows and Nixon use a special filter network to maintain a lincar relationship between the applied voltage and video signal.

Computer quiz

Cost alone dictates that it will be a long time-if ever-before computers will take over from the overworked teachers in British classrooms. And even when the price is right, there'll still be those who insist that the teachers should be human.

Among the proponents of human teaching, paradoxically, is the educational adviser to International Computers Ltd., Peter Lambert. He sees the computer as a teacher's aide, largely to test students individually after a lesson. Lambert has devised a system to do this, and it's scheduled to be operating in a Sussex school toward the end of the year.

Birds and bees. The system links keyboard units having cathode-raytube displays to a 1903 computer in the company's headquarters. At the outset, the computer's subject will be biology-as told to 11-and 12-year-olds. Later, other subjects and perhaps other schools will be included in the system, which Lambert thinks is Britain's first com-puter-aided teaching in a school.

Vith Lambert's setup, the children first go through a lesson under the guidance of a teacher. When the child thinks he knows
the material, he goes to a keyboard unit and types in his name and his file number. This connects him to a file in the computer memory that holds his record for the subject. Thus, the computer knows how to quiz him.
Q. \& A. A "hello" is flashed on the screen before the first question. The computer then analyzes the key words in the pupil's answers to decide if they're right or wrong.

As the quiz goes on, the computer sorts out any wrong answers, and from them figures out where the pupil is confused. At any rate, Lambert expects that to happen most of the time. If the computer can't cope with a scries of answers, it will tell the child to go see the teacher.
The child's answers and his progress from wrong to right ones are stored in his computer file. The teacher can call them back up on the display if he wants to review a pupil's work.

The Netherlands

Philips unveils computer

Speculation about the activities of Philips' Gloeilampenfabrieken's computer division, established in 1962, ended abruptly last month when the company announced that it has developed a trio of third-gencration computers and will start deliveries in 1969. The Dutch post office will get the first [Electronics, June 10, p. 261].

Peers. Philips, the largest electronics company based outside the U.S., calls its line the P1000 series. Each of the three basic models has a rough counterpart in the International Business Machines Corp.'s 360 series, the best seller among third-gencration machines.
Philips' P1100, for example, has an add time of 21.5 microseconds, a memory cycle time of 1 microsecond, and a monthly rental starting at $\$ 5,700$, characteristics that put it in the same class as the IBM $360 / 30$, which adds in $39 \mu \mathrm{sec}$, has a memory cycle time of 1.5
$\mu \mathrm{sec}$, and rents at $\$ 2,700$ or more per month.

Next up in size is the P1200, a competitor to the IBM $360 / 40$. The Dutch computer has an add time of $7 \mu \mathrm{sec}$ and a memory cycle time of $1 \mu \mathrm{sec}$. Comparable figures for the IBM machine are $11.88 \mu \mathrm{sec}$ and $1.75 \mu \mathrm{sec}$.

Largest of the Philips machines is the P1400, which the company describes as a counterpart of the IBM $360 / 50$. Its add time is $2.5 \mu \mathrm{sec}$ and its memory cycle $1 \mu \mathrm{sec}$, making it slightly faster than the 360/ 50. Monthly rental for the most extensive Pl400 version is $\$ 57,000$.

Building blocks. Philips claims a real advance for the P1000 internal core store, which ranges from 16,000 octads for the smallest machine up to 512,000 octads for the largest. All have a $1 \mu \mathrm{sec}$ cycle time.

Internal stores for the P1200 and P1400 can be expanded considerably. Up to seven core-memory modules can be added, each with a capacity of 2 million octads. Cy cle time for these modules is 2.5 $\mu \mathrm{sec}$.

These memories are paired with programs that insure store protection. And, like the memories, the programs can be built of modules that can be handled in the working store. As many as 16 programs can be handled at the same time by the central processor.

Programs, of course, are compatible among the large and small P1000-scries machines. Philips has developed its own programing language, but there are also programs for such standard languages as Algol, Cobol, and Fortran. And to arm its maintenance people, Philips has had its computer designers prepare trouble shooting programs.

Canada

Fixed positions

Budget-watchers at Canada's Hydrographic Service are expecting some good news soon. A new lowcost system for positioning vessels

In on the plot. Canadian hydrographic survey system puts loudspeaker and walkie-talkie on mother ship, special receiving equipment on side vessel.
following precise parallel courses during charting surveys will get a full-fledged tryout this summer, and everyone believes it will be a sucerss.

If they're right, it will mean sub)stantial savings for hydrographic survers. Instad of conventional $\$ 15,000$ position-keeping receivers, most survey vessels would gret equipment costing about $\$ 1,000$. A mother ship earrying the expensive receiver wonld guide up to a half-dozen other vessels.

The idea of taking soundings by ships in parallel courses has also been tried out by the Swedes [Electronics, Dee. 2.5. 1967, p. 164]. But their hardvare is considerably more sophisticated-and wore expensive. The Swedish equipment costs $\$ 60,000$ and keres nine ships on station. The Canadians could handle seven vessels with hardware costing about $\$ 20,000$. However, the Canadian gear is still experimental, while the Swedes have theirs in production.

Over and under. Walter Wyslouzil, who developed the station-keeping system at Canada's National Research Council (NRC) points out two major differences between the Swedish and Canadian versions. Though both are based on the dif-
ference in speed between radio and sound waves, the Canadians use orerwater sonies and the Swedes use unclerwater ultrasonics. And the Canadian system has no delay in the radio signal.
NRC aroided the need for a delay line by using the radio signal to trigger the position indicator on each side vessel. The signal releases a recording arm that swecps across a 3 -ineh band of conductive paper in 1 second. When the slower sound pulse arrives, it causes a pin on the rotating arm to burn a mark on the paper to indicate the distance from the mother ship. A full 3-inch sweep across the paper corresponds to a distance of 200 feet; the start of the sweep, though, can be set to represent any distance from 200 to 900 feet.

Bullhorn. Audio-tone bursts, at 2,000 hertz, are leamed to the side vessels from the mother ship's loudspeaker at 1.2 -second intervals. The 30-watt driver for the loudspeaker gives the system a range of 1,000 fcet. An ordinary walkie-talkie alongside the loudspeaker transmits the radio signal. With this arrangement, there's no need for special circuits to synchronize the two signals.
Because the sound wave travels overwater, the NRC system needs a
correction for winds and variations in air temperature. The recciver is calibrated for zero-correction readings at $20^{\circ} \mathrm{C}$ and no wind. As long as air temperature is measured to within $1^{\circ} \mathrm{C}$ and wind gauged with an accuracy of 10 miles per hour, the corrected readings are within 17 feet of the true distance between the mother ship and the side vessel.

West Germany

Moving up on IBM

All things considered, Siemens AG is West Germany's top electronies producer. But when it comes to computers, the company runs a poor second in its home market to the International Business Machines Corp.
When you're Number Two, acrybody knows, you try harder. And that's what Scimens is doing in computers. Early last year, the (ompany acquired a majority holding in Zuse KG, a veteran German manufacturer of data processing equipment. Series production of computers has just started at a plant at Augshurg, the company's second for business machines. Sales bases are appearing all over Western Europe, and capital speuding in the data processing fickd will continue unabated at an amnual average of $\$ 75$ million for at least two more years.
Outdistanced. Siemens, though, doesn't expect to displace IBM from the Number One spot. IBM's lead is so great that the company will remain unchallenged for quite some time. In dollar value of computers installed or on order, the U.S. firm has gohbled up almost two-thirds of the Cerman marketsix times more than Siemens can claim.
Siemens' goal is to keep its position in the world's second largest computer market and to stay on the inside track in the race for a larger share of the expanding West European market. By 1975, industry observers predict. there'll bo 11,500 computers installed in West Germany alone, three times the
number at the beginning of this year.

Good growth. Siemens is a Johnny-come-lately in computers, but is now doing nicely. Since its start in 1957, the company has been gaining ground steadily, overtaking such computer heavyweights as the Univac division of the Sperry Rand Corp. and Bull-ce. With more than 400 machines, worth $\$ 185$ million, ordered or installed in West Germany as of last month, Siemens can claim just under 11% of its market, twice the share it had three years ago. Siemens predicts its computer sales in fiscal 1968, anding in September, at $\$ 100 \mathrm{mil}$ lion, including exports. That's sis times more than in fiscal ' 66 .

Expansion like that, Siemens concedes, can't be expected to keep on forever. Still, annual growth of 20% is expected for at least another half-decade. And no significant letdown is predicted for the following five years.

Most of the push is coming from the company's System 4004, built under license from RCA. The 4004, largest in the Siemens lineup of commercial machines, is a version of RCA's Spectra 70, but it's becoming more and more a homemade product; the proportion of RCA hardware has fallen from twothirds to a half. Take software into account, and the RCA share of an installation falls to about onequarter. Siemens' goal is to increase the share of German-made hardware in the 4004 to 70%.

Under control. Though only second in Germany's business-computer market, Siemens is far and away the leader in process control. Of the 120 process computers installed in Germany at the end of last year, 80 carried the Simens label.

The company figures that of the 900 process control computers expectecl to be in operation in Germany by the end of 1972, 500 will be Siemens-made. This fast-growing market is the target of the firm's System 500, introduced in late 1966, which consists of four compatible machines, costing an average of $\$ 200,000$ each.

Still another area in which Sie-
mens stands out is traffic-control computers, for which the company has just booked its 32nd order. Its two traffic-control machines, the vSR 16000 and VSR 3000, are best sellers in Europe. Seventeen systems, all of the more powerful VSR 16000 type, have already been installed in Gernan cities, Helsinki, and Vienna. Eight more are about to be clelivered.
Despite these successes, Siemens' capital spending for computer operations is still running ahead of sales and rental income. So far, Siemens lias invested $\$ 150$ million in its computer ventures, but it will be another two years or so before the company's data processing division will start showing a profit. By then, Siemens will have spent about $\$ 300$ million on computers.

France

CSF trims down

Last year, Paul Richard had little exposure to electronics but a reputation in French board rooms as a wizard in straightening out tottering companies. This year, the electronics knowledge is still relatively slight, but the reputation is more glittering than ever.
Richard is the vice chairman of Compagnie Française Thomson Houston-Hotchkiss Brandt who moved over to CSF-Compagnic Générale de Télégraphie sans Fil last year almost on the day Thom-son-Brandt announced its plan to take over CSF. Richard was assuming control of a company that had lost $\$ 27$ million in 1966 on sales of $\$ 293$ million. He did his job quickly and well; last year CSF showed a profit of $\$ 17.3$ million on sales of $\$ 317$ million.
Against itself. A big factor in the turnaround was the selling off of deficit-ridden subsidiaries. This is still going on, and when the takeover becomes fully effective in September-a year after ThomsonBrandt picked up a 46% holdingCSF will have lopped off many
more losing operations than most industry observers expected.

First to go was the company's only important production venture in the U.S., Warnecke Electron Tubes Inc. CSF sold its interest to the Northrop Corp. After that went a good chunk of CSF manufacturing operations in Africanotably Algeria, Chad. Cameroon, and the Malagasy Republic. Then went a minority holding in BullGE and part of CSF's small share in the Compagnie des Compteurs. In both cases, CSF had been in a sense competing against itself; it has affiliates that produce computers, as does Bull-GE, and industrial control equipment, as does Compteurs.

And most recently, the company's vast administrative operations have been consolidated at Rocquencourt, near Versailles. Even the former headquarters in Paris, kept as a meetings center, has now been sold.

Encore? But Richard will be hard put to turn the trick again this year. Like all companies with heavy military orders, CSF has dismal short-term prospects now that President de Gaulle's defensehardware budget may be under pressure [Electronics, June 24, p. 203]. Thomson-Brandt, for its part, was harder-hit by the strikes than most. Some of its workers stayed out until late June.

Richard, then, will face a double setback when the takeover becomes official and he's running Thomson-CSF, which, as a division of Thomson-Brandt, will lump together all nonconsumer electronics operations.

Around the world

Soviet Union. A computer has found gold in Siberia. Yuri Zhuravlev of the Soviet Academy of Sciences reports that several deposits were located by using a computer program that assesses geological data obtained by electronic exploration.

Our living depends on it.
We turn out 50 million customfabricated parts a day. To exact specifications.

Including precision stamping of hightolerance, miniature metal shapes.

Precision molding of intricate plastics parts.

Precision forming of wire for critical electronics.

Combining metals, plastics and wire into precision-built assemblies.

We live by our accuracy. After all, if we don't do what we're told, you
may not tell us anymore.
We've been doing it for over 17 years. Or transistor leads, comsuter memory core frames, connectors, pen caps, aercsol spray tips, razor blade dispensers, integrated circuit frames. You name it.

We've got nine plants, the most advanced equipment, and the best angineers and die makers around to do it.

And we'll even help you design the part. Then wz'll build the dies, prociuce the parts, and do the assembly. Exectly as we'retald.

That means you get the parts you want, the way you want them, when you want them-probably at less cost than you could do it for yourself.

So the next time you need a custom fabricated part, call a Sylvarian and tell him what to do.

Sylvania Metals \& Chemicals, Parts Division, Warren, Pa. 16365.

- Acopian Corporation Mort Barish Associates	121
Acromag Inc. Watkins-Rogers, Inc.	200
AEG-Telefunken Werbungs-Makler	OAS-6
Airco Speer Electronic Components Hazard Adv. Co., Inc.	47
Allen-Bradley Co. Fensholt Adv. Agcy.	40, 41
American Electronics, Inc. Alden Adv. of California, Inc.	188
American Lava Corp., Sub. of Minnesota Mining \& Mfg. C Designers Incorporated	101
AMP, Inc. Garceau, Hallahan \& McCullough,	$28,29$
Amphenol Corp. Marsteller Inc.	155
Andrew Corp. Fensholt Adv. Agcy.	72
Arnold Engineering Co. Buchen Adv., Inc.	18. 19
Ates Componenti Elettronici, S. P. A.	OAS 14

- Beckman Instruments, Inc., Helipot Div. 78 Hixson \& Jorgensen, Inc.
Belden Corp.
12, 13
Fensholt Adv. Agcy.
Bell Telephone Laboratories 134
N. W. Ayer \& Son, Inc.

Binary Electronics of California
182
Bourns Inc., Trimpot Div. 194 Lester Co., The
Brush Instruments Div. of Clevite Corp. 179 Carr Liggett Adv., Inc.

- Bulova Watch Co., Electronics Div. 131 Levy Adv. Assoc.
Bunker-Ramo Co.
Diener \& Dorskind, Inc.
- Bussmann Mfg. Div. of

McGraw Edison Co.
Henderson Adv. Co.
202, 203

Cambridge Thermionic Corp.
Celanese Plastics Co., Div. of Celanese Corp.

142, 143
MacManus, John \& Adams, Inc.
Centralab Div. of Globe-Union, Inc. Brady Co., The

- Cherry Electrical Products Corp. 175 K \& A, Inc.
Cinch Graphik Div. of United Carr Fastener Co.
Reach McClinton \& Co.
Clarostat Mfg. Co. Horton, Church \& Goff, Inc.
- Clevite Corp., Piezoelectric Div. Carr Liggett Adv., Inc.
- Clifton Precision Products Co., Div. of Litton Industries

Ivey Adv., Inc.

- CML, Div. of Tenny Engineering Co. 205 Keyes, Martin \& Co.
Communication Electronics, Inc. William C. Estler-Public Relations
Control Products Div., Consolidated Electrodynamics Corp.,
A Bell \& Howell Co.
Corning Glass Works, Electronics Div.--Capacitors 67
Rumrill-Hoyt Co., Inc.
Corning Glass Works, Electronics Div.-Resistors Rumrill-Hoyt Co., Inc.
- Cosmicar Optical Co., Ltd. Matsushita, Inc.
1 Couch Ordnance Inc., Couch Co. Div. 130 Culver Adv., Inc.
CREI, Home Study Div. of the
McGraw-Hill Book Co McGraw-Hill Book Co. Henry J. Kaufman \& Associates
a CTS Corp. Burton Browne Adv.

Datacraft Corp
Delta Design, Inc.
Pacific Publications
Noble De Roin \& Associates
Di-Arco Corp., Div. of
Houdaille Industries, Inc. 162
Charles E. Brown Adv. Agcy.
Dialight Corp.
200, 201
Michel Cather, Inc.
Dow Chemical Co., The
MacManus, John \& Adams, Inc.
Dow Corning Corp.,
Engineering Products Div.
Church \& Guisewite Adv
OAS-9
Dow Corning Int'l., Ltd.
Marsteller Beigium, S. A
Duncan Electronics, Inc.,
Sub. of Systron-Donner Corp. 196
Helme Associates, Inc.
DuPont de Nemours Co.,
Industrial Fibers Nomex
Batten, Barton, Durstine \& Osborn, Inc.
Dynameo, Ltd.
Leslie Ingham Associates, Ltd.

Eastern Shopping Centers, Inc. Miller Adv. Agcy., Inc.
Eastman Kodak Co.,
Business Systems Markets Div. 183
J. Walter Thompson Co.

E G \& G, Inc.
120, 199
Culver Adv., Inc.
Steedman, Cooper and Busse Adv

- Electrical Industries
Douglas Turner, Inc.

Emerson \& Cuming, Inc.
Edwin F. Hall

$$
132
$$

- Fairchild Semiconductor,
inc. $10,11,70,71,140,141,218,219$ Faust/Day, Inc.
Fansteel Metallurgical Corp.
177
Reincke, Meyer \& Finn, Inc.
Fluke Mfg. Co., John
Bonfield Associates

General Cable Corp. Hicks \& Greist, Inc.

- General Electric Co., Capacitor Div. Robert S. Cragin, Inc.
- General Electric Co., Electronic Components Sales Operation Components Sales Operation 68, 69 Robert S. Cragin, Inc
- General Electric Co., $\begin{array}{ll}\text { Instrument Dept. } & 22,23\end{array}$ Robert S. Cragin, Inc.
- General Electric Co., Lamp Glass Dept, Dix \& Eaton, Inc.
- General Electric Co., Lamp Metals \& Components Div. Dix \& Eaton, Inc.
- General Electric Co. $\begin{array}{ll}\text { Specialty Control'Div. } & 114\end{array}$
Robert S. Cragin, Inc.
General Radio Co.
Horton, Church \& Goff, Inc. Horton, Church \& Gaff, Inc
Globe.Union, Inc., Int'l. Div. Brady Co., The

OAS-10
Gries Reproducer Co.
Harold Marshall Adv.

- Heath Co., Sub of

Schlumberger, Ltd.
Advance Adv. Service
Heinemann Electric Co. Thomas R. Sundheim, Inc.

116, 117

Hewlett-Packard,
Colorado Springs Div. 3rd Cover Tallant/Yates Adv., Inc.
$144,145,168$

Honeywell, Test Instruments Div.

Industrial Electronic Engineers
Hewlett-Packard, Loveland Div.
Tallant/Yates Adv., Inc.
Tallant/Yates Adv., Inc.
Lennen \& Newell, Inc.
Hewlett-Packard, Moseley Div.
ewlett-Packard, Palo Alto Div.
-

Marketing Assistance, Inc.

Gray \& Rogers, Inc.	44,45
ITT Cannon Electric	213

Bonfield Associates
Mitsumi Electric Co., Ltd.
Motorola Semiconductor

Mullard, Ltd
Parker-Rumrill Int'I., Inc.
LectroMagnetics, Inc.

- Kepco, Inc.
- Norton Associates, Inc. J. J. Coppo Co.

Nus Corp., Electronic Systems Div. Graphic Assoclates

- Pfizer \& Co., Chas., MPM Div. Newmark, Posner \& Mitchell, Inc.
Phelps Dodge Electronics Products Corp
Smith, Dorian \& Burman, Inc
Smith, Dorian
Culver Adv., Inc.
Philco Ford Corp-1 Sierra Electronics Operation
\square Philips Eindhoven N. V.
- Photocircuits Corp.

Radio Corp. of America		
4th Cover, 57, 214, 215 Al Paul Lefton Co.		
	Rotron Mfg. Co. Lescarboura Adv., Inc.	OAS. 12
	cientific Data Systems Doyle, Dane, Bernbach, Inc.	50
	fernice Publicitor	OAS-16
	iemens America Muller, Jordan and Merrick, Inc.	49
	Signetics Corp., Sub. of Corning Glass Works Cunningham \& Walsh, Inc.	95
	iliconix, Inc. Graphics West	127
	Ioan Instruments Corp. Palmer/Larson Communications	109
	olartron/Schlumberger Electronics Ltd. OAS-2, OAS-3, OAS-4, OAS-5, Southern Adv., Ltd.	Group. OAS-13
	olitron Devices, Inc., Transistor Div. Haselmire Pearson Adv., Inc.	187
	Orensen Operation, Raytheon Co. Urrutia \& Hayes, Inc.	75
	. P. Elettronica Publicitas SPA	OAS-18
	Sperry Rand Corp., Sperry Electronic Tube Div. Neals \& Hickok, Inc.	164
	prague Electric Co., The Harry P. Bridge Co.	5, 9
	truthers-Dunn, Inc. Harry P. Bridge Co.	157
	ylvania Electric Products, Inc., Parts Div. Doyle, Dane, Bernbach, Inc.	225
Synthane Corp. Arndt, Preston, Chapin, Lamb \& Keen, Inc.		

- Varo, Inc. 8, 182 Tracy-Locke Co., Inc.
- Wang Laboratories

Weinschel Engineering Co.
E. G. White Adv., Inc.

Western Technology, Inc.
Williams Gold Refining Co., Inc., Precious Metals Div.
Stahika, Faller \& Klenk, Inc.

Classified Advertising
F.J. Eberle, Manager

EMPLOYMENT OPPORTUNITIES 208-209
General Dynamics Electronics Div.

EQUIPMENT

(Used or Surplus New)
For Sale
A \& A Electronics Corp.
Goodheart Co., Inc., R. E. 209
Radio Research Instrument Co. 209

- For more information on complete product line see advertisement in the latest Electronics Buyer's Gulde

Advertisers in Overseas Advertising Section following Newsletter from Abroad

Electronics Buyers' Guide

George F. Werner, General Manager [212] 971.2310
Ray Smyth, Eastern Regional Manager [212] 971-6538
Robert M. Denmead,
Midwest Regional Manager
Regina Hera, Directory Manager
[212] 971-2544
Thomas M. Egan, Production Manager
[212] 971-3140
Circulation Department
Isaaca Siegel, Manager [212] 971 -6057
Research Department
David Strassler, Manager [212] 971-6058
Chloe D. Glover, Research Associate

Advertising Sales Staff
Frank E. LeBeau [212] 971-6464
Advertising Sales Manager
Wallis Clarke [212] 971 -2187
Assistant to sales manager
Donald J. Austermann [212] 971-3139
Promotion Manager
Warren H. Gardner [215] LO 8-6161
Eastern Advertising Sales Manager
Atianta, Ga. 30309: Michael H. Miller, 1375
Peachtree St., N.E.
[404] 892-2868
Boston, Mass. 02116: William S. Hodgkinson
McGraw-Hill Building, Copley Square
[617] CO 2.1160
Cleveland, Ohio 44113: William J. Boyle, 55
Public Square, [216] SU 1-7000
New York, N.Y. 10036
500 Fifth Avenue
Donald R. Furth [212] 971-3615
James R. Fierce [212] 971-3616
John A. Garland [212] 971-3617
Philadelphia, Pa. 19103:
Jeffrey M. Preston
Warren H. Gardner,
6 Penn Center Plaza,
[215] LO 8-6161
Pittsburgh, Pa. 15222: Warren H. Gardner,
4 Gateway Center, [412] 391-1314
Rochester, N.Y. 14534: William J. Boyle,
G Greylock Ridge, Pittsford, N.Y.
[716] 586.5040
J. Bradley MacKimm [312] MO 4-5800

Midwest Advertising Sales Manager
Chicago, Ill. 60611: Kenneth E. Nicklas J. Bradley MacKimm, Ralph Hanning, 645 North Michigan Avenue
312] MO 4.5800
Dallas, Texas 75201: Richard P. Poole, 1800
Republic National Bank Tower,
[214] RI 7.9721
Houston, Texas 77002: Kenneth George, 2270 Humble BIdg., [713] CA 4.8381
Detroit, Michigan 48226: Ralph Hanning
856 Penobscot Building
[313] $962-1793$
Minneapolis, Minn. 55402: J. Bradley
MacKimm, 1104 Northstar Center
[612] 332-7425
St. Louis, Mo. 63105: Robert M. Denmead The Clayton Tower, $7751 \cdot$ Carondelet Ave. [314] PA 5-7285

James T. Hauptli [415] DO 2-4600
Western Advertising Sales Manager
Denver, Colo. 80202: Joseph C. Page, David M. Watson, Tower BIdg., 1700 Broadway

303] 255-5484
Los Angeles, Calif. 90017: Ian C. Hill,
John G. Zisch, 1125 W. 6th St.,
[213] HU 2.5450
Portland, Ore. 97204: James T. Hauptli, 218 Mohawk Building, 222 S.W. Morrison Street, Phone [503] 223-5118
San Francisco, Calif. 94111 :
James T. Hauptli, 255 California Street,
[415] DO 2-4600
Pierre Braude Tel: 22585 88: Paris
European Director
Paris: Ken Davey
$88-90$ Avenue Des Champs-Elysees, Paris 8
United Kingdom and Scandinavla
Brian Bowes Tel. Hyde Park 1451
34 Dover Street,
London W1
Milan: Robert Saidel
1 via Baracchini Phone: 86-90-656
Brussels: F.I.H. Huntjens
27 Rue Ducale Tel: 136503
Frankfurt/Maln: Hans Haller
Elsa-Brandstroem Str. 2
Phone: 720181
Geneva: Ken Davey
1, rue du Temple Phone: 319560
Tokyo: Takeji Kinoshita
Shiba, Minato-Ku [502] 0656
Osaka: Ryoji Kobayashi 163, Umegae-cho
Kita-ku [362] 8771
Business Department
Wallace C. Carmichael, Manager
[212] $971-3191$
Stephen R. Welss, Production Manager
[212] 971.2044
[212] 971-2044
Thomas M. Egan,
Assistant Production Manager [212] 971 -3140
Dorothy Carmesin, Contracts and Billings
[212] $971-2908$
Frances Vallone, Reader Service Manager
[212] 971-2865

Self-contained

Gunn effect

oscillator

generates 5mW

7 Vsupply...
 cavities for Gunn effect devices. These oscillators, for the next generation of radar equipments, consist of a GaAs device (type 106 CXY) fitted in a resonant cavity which is mechanically tuned over the specified range. Other types will have electronic tuning.
Oscillators available are
CL8 860 for 8 to $9 \mathrm{GHz} \quad$ CL8370 for 9 to 10 GHz
CL8380 for 10 to $11 \mathrm{GHz} \quad$ CL8390 for 11 to 12 GHz
They only need a 7 V supply to generate a typical X-band output of 5 mW -an obvious advantage over conventional low-powered klystron sources.

Other specialist microwave devices include varactor diodes with resonant frequencies of 9 and 30 GHz and high figures of merit. And low noise mixer diodes in small, rugged ceramic and titanium casings with a wide frequency range.

Every designer should have a copy of the Mullard Quick Reference Guide giving information on semiconductor microwave devices. Also ask to be put on the mailing list of the Mullard Bulletin-a regular publication which gives details of new components and applications . . . the result of extensive research and development programs in the Mullard laboratories in England. Mullard employ 1000 qualified scientists and engineers and have six major plants, with over 3 million square feet of floor space.

Write for information on Mullard semiconductor microwave devices, and for the name of your local Distributor.

Mullard Limited, Mullard House, Torrington Place, London WCi, England.
U.S.A. enquiries to Mullard Inc., 100 Finn Court, Farmingdale, Long Island, New York 11735, U.S.A. Telephone: (516) 694-8989 Telex: 961455.

	VERTICAL PLUG－INS												COMPATIBLE TIME BASES						DBL．SIZE PLUG－INS	
hp 140 Scope System PLUG－IN CAPABILITIE	S O －	\＄	《	\＄	¢	¢	苍		$\stackrel{4}{\square}$	发	－	【	S	发	む		令		\％	\＄
1．Wide Band			－		\bullet								－	－		－				
2．Sampling								－	－	－	－	－					－	－		
3．High Gain Differential	－			－		\bullet	－						－	－	－	－				
4．Dual Trace		－	－		\bullet			－	－				－	－	－	－	－	\bullet		
5．X－Y	－	－	\bullet	－	－	\bullet	\bullet	\bullet	－				－	－	－	－	－	－		
6．Delayed Sweep														＊				－		
7．No Drift						\bullet	\bullet						－	－	－	－				
8．High Common aode Rejection				\bullet		\bullet	－						－	－	－	－				
9．Algebraic Addilion		－	－		－			－	－				－	－	－	－	－	－		
10．Time Domain Feflectometry																			－	
11．Wide Band TDF									－	－							－	－		
12．Swept Frequency																				－

Get the same accuracy，the same linearity，as the hp 140A ．．．with higher resolution－the new $8^{\prime \prime} \times 10^{\prime \prime}$ CRT hp 143A Oscilloscope．Use it when the readout is to be viewed from a distance or by several people at a time． Use it anywhere you need a big picture．

In a bright，easy－to－see 8×10－inch display，the 143A has a 20 kV electrostatic CRT．It accepts all 17 of the 140 Series vertical and horizontal plug－ins．This gives you up to 15 MHz dual channel real－time displays，plus exclusive hp 140 Scope System capabilities．

Now get bigger performance in any direction．The selection chart shows the broad measurement capabil－ ity available．

Call your nearest hp field engineer and ask him about the new hp 143A．Or，write to Hewlett－Packard，Palo Alto，California 94304．Europe： 54 Route des Acacias， Geneva．Price：143A Oscilloscope mainframe，\＄1400； plug－ins，$\$ 250$ to $\$ 1600$ ；samplers，$\$ 1000$ to $\$ 3000$ ．

HEWLETT hP PACKARD

and Super-versatility from DC to 120 MHz with RCA CA-3028B

Voltage gain (typ) \mid diff.
@ 10.7 MHz

$@ 10.7 \mathrm{MHz}$

 cascoderange (
@ 10.7 MHz
Input offset voltage (max) @ $=-12 \mathrm{~V}$
Input offset current (max)
@ 12V
Input bias current (max)
$@ \pm 12 \mathrm{~V}$
Max. p-p output
voltage swing (min)
$@ \pm 12 \mathrm{~V}\left(\mathrm{Rt}_{\mathrm{t}}=1.6 \mathrm{k} \Omega\right.$,
$f=-1 \mathrm{kHz}$)
Voltage gain (min)
@ $+12 \mathrm{~V}\left(\mathrm{R}_{\mathrm{L}}=1.6 \mathrm{k} \Omega\right.$,
$\mathrm{f}=1 \mathrm{kHz}$)

CA-3028A $89 \leftarrow(1,000$ units $)$
$32 X$
$98 x$
CA-3028B
$\$ 1.25$ (1,000 units)
32X
$32 X$
98
62 dB
\qquad

- $\quad 6_{\mu \mathrm{A}}$
$106 \mu \mathrm{~A}$
$106 \mu \mathrm{~A}$

- 15V
\qquad
- Single or dual power supply
- Controlled input-offset voltage and current
- Controlled input bias current
- Unique-use as Differential OR Cascode Ampt
- RF, Converter, and IF in Commercial FM receivers
- Limiter
- Oscillator
- Mixer
- TO-5 package for -55° to $+125^{\circ} \mathrm{C}$ operation

See your RCA Representative for full details. Ask your RCA Distributor for his price and delivery. And for full technical information and Application Notes on the CA-3028A and the tight spec CA-3028B, write RCA Electronic Components, Commercial Engineering, Section IC.N.7.1 Harrison, N. J. 07029.

[^0]: Discretionary LSI
 gets a job

[^1]: Delta Design, Inc. 8000 Fletcher Parkway
 La Mesa, California 92042
 Telephone (714) 465-4141

[^2]: * Excluding surface reflection losses

[^3]: Straight and narrow. Those changes in transistor characteristics that cause the multivibrator frequency
 circuit to shift are nullified by diodes D_{1} and D_{2}. The ghanges in the forward drops of the diodes are nearly the changes in the base-emitter and collector-emitter voltages in the transistors.

[^4]: If all the intormation contained In our
 Silicone Packsoge Qualification Report were
 printed in type this size, It would more than printed In tyepe this sizize it would mort were
 pill this pago. Wo have inough rellabilty dats
 fol Till this page. We have enough reliability data
 to convince anyone that our siliccone-pack 1 's's quality for full military use. If you write to us, we'll zend you all the factis in nice, readable
 type Slinetice Corporation, 811 EArques Ave. Sunnvale Calif. 94006. A subsidiary of corning alass Works.

[^5]: Jobs in industry. Texas Instruments is promoting TTL for such industrial applications as food sorters.

[^6]: Sealed Terminals and Multiple Headers - Transistor and Diode Bases - Compression-type Threaded End Seals

 - Plug-in Connectors - Vibrator Plug-in Connectors - High Voltage Glass•bonded Ceramic Seals - Hermetically-sealed Relay Headers - Special Application Custom Seals - Custom Sealing to Specifications

[^7]: Radiatronics Inc., 18842 Teller Ave., Irvine, Calif. 92664 [349]

[^8]: Librascope Group, General Precision Systems Inc., 1100 Frances Court, Glendale, Calif. 91201. [390]

[^9]: CREI Home Study Division, McGraw-Hill Boak Company
 Dept. 1828-G, 3224 Sixteenth St., N.W.
 Washington, D.S. 20010
 Send me free brochure describing CREI Programs in Electronics for Engineers.
 NAME \qquad AGE \qquad
 ADDRESS \qquad
 CITY \qquad STATE \qquad ZIP CODE \qquad
 COMDANY \qquad
 TITLE \qquad

[^10]: Presented at NAECON, Dayton, Ohio May 6-8

