electronics

Facsimile equipment, below, uses meteor-burst propagation to transmit data such as weather map shown in background, $p 85$ Practical design techniques for thin-film networks, $p 90$

Continuous Readout to 10 Megacycles

The "memory" in this Counter constitutes an important new operating aid. Four of the instrument's eight decades are used for storage and continuous display, while the remaining four decades count continuously. At the end of each counting interval, the total accumulated by the counting decades
is transferred automatically and quickly (only 100 $\mu \mathrm{sec}$) to the storage and display decades. Continuous counting offers many advantages - information is sampled more often; frequency adjustments become easy; analog recording is greatly simplified; and operator eye fatigue induced by the dancing lights of intermittent displays is eliminated.

The Type 1130-A Digital Time and Frequency Meter is not just another counter. It embodies a number of new engineering contributions that are of fundamental importance.
This instrument is designed like a digital computer - to achieve a uniform level of high reliability throughout. "Down time", the bugaboo that robs the user of his full investment, is at a minimum.

Unsurpassed reliability is achleved by:

1. New decade codes and high-speed counting circuits, unlike those in other counters, that make this instrument inherently reliable.
2. Circuits designed to operate properly under the worst combination of cumulative tolerances imposed by tubes, component values, and voltage levels. Counter performs properly even with tubes approaching the half-dead state.
3. Use of proven "hard-bottoming" multivibrator dividers that make for exceptional stability - eliminate need for periodic adjustments of time-base circuits.
4. Elimination of critical voltages. Neither plate nor filament supplies are, or need be, regulated.

RANGES:
Frequency: dc to 10 Mc
Period: $10 \mu \mathrm{sec}$ to $10^{7} \mathrm{sec}$
Time Interval: 1μ sec to $10^{7} \mathrm{sec}$
Also measures 10 periods.
frequency ratios, phase shifts,
pulse characteristics, and counts random events.
SENSITIVITY:
0.25 v ms

DISPLAY
4 digits continuous; 8 digits for sequential counting and display. with display-time variable from 0.1 to 10 sec.

ACCURACY:
$\neq 1$ count \pm time-base
oscillator stability

AVAILABLE WITH SEVERAL PLUG-IN TIME-BASE OSCILLATORS Buy the Time-Base Stabllity You Need

Complete Instrument Type . Price	Short-Term Stability Better Than	Long-Term Stablity Better Than
Completely $\quad\left\{\begin{array}{l}1130-\mathrm{A} 4, \$ 2,950 .\end{array}\right.$	1 part in 10^{9} per min.	5 parts in 10^{8} per week
Self-Contained $1130-\mathrm{A} 3, \$ 2,670$.	1 part in 10^{8} per min.	2 parts in 10^{\prime} per week
For Use from $(1130-\mathrm{A} 2, \$ 2,750$.	-.-- Same Also operates fro 1-Mc, and 5.Mc in	s 1130-A3 \qquad om external $100-\mathrm{kc}$, puts.
$\left.\begin{array}{l}\text { External } \\ \text { Standards }\end{array}\right\}\left\{\begin{array}{l}\text { E, } \\ 1130-\mathrm{Al}, \$ 2,585 .\end{array}\right.$	Requires 5.Mc 1113.A 5-Mc Sta cillator provides	driving signal: G-R stability of 1 part in

For Digital Recording

1132-A Data Printer . . . $\$ 1450$.
Records 8 digits from counter plus 4 digits from clock or other source, at speeds to 3 prints per sec . . . no modification of counter is required
For Graphic Recording
1134-A Digital-to-Analog Converter . . . $\$ 595$
Makes possible low-cost, ALL-ELECTRONIC graphic strip-chart recording (no data printer needed)... high accuracy of 0.1%
For Measurements to 500 Mc
Frequency conversion units are under development

NEW YORK, WOrth 4.2722 NEW JERSEY, Ridgefield, WHitney 3-3140	CHICAGO Ook Pork VIlloge 8.9400	PHILADELPHIA Abington HAncock 4.7419	WASHINGTON, D.C. Silver Spring JUniper 5-1088	SAN FR ANCISCO Los Altos Whitecliff 8.8233	LOS ANGELES Los Angeles HOllywood 9-6201	IN CANADA Toronto CHerry 6-2171

electronics

A McGraw-Hill Publication 75 . Cents

W. W. MacDONALD, Edifor

J. M. CARROLL, Managing Edifor

 SENIOR ASSOCIATE EDITORS: Samuel Weber, Roland J. Charest. ASSOCIATE EDITORS: Frank Leary, Michael F. Tomaino, Sylvester P. Carter, William P. O'Brien, John F. Mason, William E. Bushor, Thomas Emma, Sy Vogel, Leslie Solomon, M. M. Perugini, George J. Flynn. ASSISTANT EDITORS: Michael F. Wolff, Nilo lindgren, Stanley Froud, Stephen B. Gray, Roy J. Bruun, George V. Novolny, Leon H. Dulberger.fegional editors: Harold C. Hood (Pacific Coast, Los Angeles), Thomas Maguire (New England, Boston), Cletus M. Wiley (Midwest, Chicago). BUYERS' GUIDE EDITOR: George Sideris. ART DIRECTOR: Harry Phil. !ips; Howard R. Berry. PRODUCTION EDITOR: John C. Wright, Jr. EDITORIAL ASSISTANTS: Gloria J. Filippone, Bernice Duffy, lorraine Rossi, Virginia T. Bcstian, Lynn Emery, Avis Pomeranz, Florence Hajaistron, Laura W. Smith, Bette H. Snyder.
BUSINESS
Stereo's Impact and Collins' Program Highlight NAB Convention 24
Fresh Look At Space Communications. 1,000 going to Chicago 25
How Do You Rate As A Vendor? Today a low price isn't enough 26
Soviet Cosmonaut's Cabin Instruments. How they operate 28
Tropo Net Employs All-Steel Dishes. 60-ft parabolic reflectors 30
Data System Uses Regular Phone Lines. Data system also versatile 33
Crosstalk 4 Financial 20
Comment 625 Most Active Stocks 21
Electronics Newsletter 11 Meetings Ahead 34
Washington Outlook 14
ENGINEERING
Facsimile system uses meteor-burst propagation paths to exchangedata. Specially designed transmission and reception techniquestake full advantage of meteor paths. For details, see p $8 \overline{5}$ COVER
Transmitting Facsimile Messages Over Meteor-Burst Paths.Send-receive equipments comprise high-speed data link. ByB. F. Gedaminski and W. G. Griffin, Jr.85
Step-by-Step Design Techniques for Multilayer Thin-Film Net- works. Analysis of several approaches. By W. N. Carroll and F. F. Jenny 90
Emitter Peaking Improves Video Amplifier Response. Design equations are given. By J. H. Fisher 94
Voltage Variable Capacitors Make a Relaxation Oscillator. New type of waveform generator. By J. Lopez and J. Brown 96
Transformers and Shunt Transistors Regulate D-C Power Supply. Uses constant voltage transformer and shunt regulator. By J. Keefe 99
Vibrating Wire Probe Maps Magnetic Flux Fields. New type of probe has advantages of small size and accuracy. By R. J. Radus 102
Adjustable Clamp Circuit Shifts A-C Signal Level. Permits adjustable d-c restoration. By H. O. Hoadley 104
DEPARTMENTS
Research and Development. Producing Space Items 106
Components and Materials. Packing Microfarads 110
Production Techniques. Versatile Molds 114
New on the Market 118 Literature of the Week 147
New Books 144
People and Plants 154
Thumbnail Reviews 145
Index to Advertisers 164

SOLA writes this new for reliable d-c power浣

This schematic tells "CVQ's" secret at a glance . . . how SOLA's remarkably reliable new power supply achieves d-c output ideal for computers and other volt-age-sensitive equipment. "CVQ" integrates the advantages of shunt-circuit regulation with the inherent high stability of the SOLA static-magnetic transformer. And the result is transistorized voltage regulation with splitcycle response!
"CVQ" answers the demands of dynamic loading. Voltage variations are ironed out down to the last transient - even to the last ripple of the a-c source. And the SOLA static-magnetic transformer automatically prevents damage in event of a short circuit.

SOLA "CVQ" d-c power supplies are available right now, in a wide range of ratings; also in custom units
built to your specific requirements. Advantages include:

- More watts per dollar.
- Continuous automatic protection without fuses, both for output short circuits, and for open circuits in the voltagesensing circuitry.
- Output regulated within $\pm 0.04 \%$ for line voltage variations $\pm 15 \% ; 0.2 \%$ static-load regulation, 0 to full load. Excellent response time.
- Standard models available in the 120 -watt range for 5,6 , 10 and 12 volts d-c ($100-130 / 181-235 / 200-260$ volt input).
- Compact mechanical layout - only $121 / 4 \times 51 / 4 \times 19^{\prime \prime}$.

Get full facts by writing for new SOLA Catalog DCX361A. Or telephone HEmpstead 9-2800, Elk Grove Village, Illinois.

sola electric co. Busse Road at Lunt, Elk Grove Village, IIJ. HEmpstead 9-2800 IN CANADA, Sola-Basic Products Ltd., 377 Evans Ave., Toronto 18, Ontario

SPECIFY ARNOLD IROH POWDER CORES ... COMPLETE RAMGE OF SIZES AND SHAPES FOR YOUR DESIGHS

Arnold offers you the widest range of shapes and sizes of iron powder cores on the market.

In addition to toroids, bobbin cores and cup cores-typical groups of which are illustrated below-Arnold also produces plain, sleeve and hollow cores, threaded cores and insert cores, etc., to suit your designs. Many standard sizes are carried in warehouse stock for prompt shipment, from prototype lots to production quantities. Facilities for
special cores are available to order.
The net result is extra advantage and assurance for you. No matter what shapes or sizes of iron powder cores your designs require, you can get them from a single source of supply-with undivided responsibility and a single standard of known quality. And Arnold's superior facilities for manufacture and test assure you of dependably uniform cores, not only in magnetic properties but also in high mechanical
strength and dimensional accuracy.

- For more information on Arnold iron powder cores, write for a copy of our new 36-page Bulletin PC-109A. The Arnold Engineering Company, Main Office and Plant, Marengo, Illinois.

ADDRESS DEPT. E-5

branch offices and representatives in Principal CITIES - Find them FAST in the YELLOW PAGES

Published weekly, with Electronics Buyers' Guide and Reference issue, as part of the subscription, by MeGraw-Hill Publishing Company, Inc. Founder: James H. McGraw (1860-1948).

Title registered U.S. Patent Office; Copyrighted 1961, McGraw-Hill Publishing Company, Inc. All rights reserved, including the right to reproduce the contents of this publication, in whole or in part.

Executive, editorial, circulation and advertising offices McGraw-Hill Building, 330 West 42nd Street, New York 36, N. Y. Telephone Longacre 4-3000. Teletype TWX N.Y. 1-1636. Cable McGrawhill, N. Y. Printed in Albany, N. Y.; second class postage paid.
officers of the publications diVISION: Nelson L. Bond, President; Shelton Fisher, Wallace F. Traendly, Senior Vice Presidents; John R. Callaham, Vice President and Editorial Director; Joseph H. Allen, Vice President and Director of Advertising Sales; A. R. Venezian, Vice President and Circulation Coordinator.

OFFICERS OF THE CORPORATION: Donald C. McGraw, President; Joseph A. Gerardi, Hugh J. Kelly, Harry 1. Waddell, Executive Vice Presidents; L. Keith Goodrich, Vice President and Treasurer; John J. Cooke, Secretary.

Subscriptions are solicited only from those actively engaged in the field of the publication. Position and company connection must be indicated on orders. Subscription rates: United States and Possessions, $\$ 6.00$ one year; $\$ 9.00$ two years; $\$ 12.00$ three years. Canada, $\$ 10.00$ one year. All other countries $\$ 20.00$ one year. Single Copies, United States and Possessions and Canada 75¢; Buyers' Guide $\$ 3.00$; Single Copies all other countries $\$ 1.50$; Buyers' Guide $\$ 10.00$.

The Publisher, upon written request from any subscriber to our New York Office, agrees to refund that part of the subscription price applying to copies not yet mailed.

Subscribers: Please itpadress all correspondence, charigh of address notices, subscription orders or com. plaints to Fulfillment Manager, Electronics, at above address. Change of address notices should provide old as well as new address, including postal zone number if any. If possible, attach address label from recent issue. Allow one month for change to become effective.

Postmaster: Please send Form 3579 to Fulfillment Manager, Electronics, 330 West 42nd Street, New York 36, Now York.

Audited Paid Circulation

CROSSTALK

organic semiconductors. The Inter-Industry Conference on Organic Semiconductors, co-sponsored by Electronics and Armour Research Foundation in mid-April, was a success. The technical quality of the papers presented was high, the sizable audience was serious and attentive. It represented a highly-placed, significant cross-section of the electronics and chemical industrial community.

We greatly enjoyed this experience. We heard portents of great significance to our industry and others in the technical dissertations. But we derived no big story from this conference. No new electronic devices have as yet been fabricated utilizing organic technology. Indeed, any references to plastic transistors or organic photocells must be relegated to that class of devices wryly referred to by W. O. Baker of Bell Labs as "journalistors," compounded of blue sky and printer's ink. But some day the real devices will come. Of that we are convinced.

Baker, speaking at a Conference luncheon, touched upon another intriguing aspect of organic semiconductor research. He speculated that complete understanding of the conduction process in organic compounds would lead to knowledge of the control and signaling processes in living organisms with untold applications in computer and communication fields. It might eventually lead to synthesis of the mechanism of the life process itself. Indeed, one scientist told Electronics that a better comprehension of organic semiconductors might stem from biology rather than from physics. Whichever approach is the right one, it is apparent that the two disciplines are now inextricably linked. Electronics intends to follow this exciting field carefully, and as developments unfold, they will be reported to our readers.

Coming In Our May 26 Issue

air-traffic control. As reported recently in Electronics (p 26, Feb. 10), the FAA believes the ultimate approach to the problem of midair collision is to keep fights of all aircraft continuously under surveillance by ground control centers. A step in this direction is the ground-based system for controlling high-density straffic at air terminals described in our next issue by R. Meuleman and S. D. Moxley, Jr. of Avco Corp. of Cincinnati. Aircraft can be controlled out to 80 miles and 18 arrivals and six departures governed s:multaneously. System automatically computes instructions for the pilot and controls landing time with a precision of ± 9 seconds.

UV detection. Reliable ultraviolet radiation detector tubes have many applications in systems where uv radiation is the independent variable either by nature or design. Typical applications include fire detection, explosion detection and communication between satellites.

Next week, D. H. Howling and R. C. Roxberry of McGraw-Edison Co. describe a gas-filled uv detector tube that exhibits a power gain of 110 db. Counting rate approaching 3 Mc is expected to allow unambiguous detection of explosions in a few microseconds.

FURTHERMORE. A variety of interesting feature material to appear next week includes: a transistor amplifier that controls remote appliances by Midwest Editor Wiley; a carrier phase reversal system for transmitting digital data over telephone lines by J. R. Masek of The Hallicrafters Co.; interstage design for stagger-loaded amplifiers by L. A. Beattie of the University of Idaho; and a survey of transmission media by J. H. Vogelman of Capehart Corp.

On the ground, or high in the sky, Raytheon's line of rugged diode rectifiers gives dependable arc-free operation.

Example: Raytheon 583, one of six Raytheon half-wave rectifier types. Operating as a clipper diode at altitudes to 36,000 feet, maximum ratings are 15,000 volts PiV, 8 amperes peak plate current. Arc-free clipping action makes sure a magnetron can be fired once without refiring automatically or uncontrollably!

The reliability of Raytheon diode rectifiers is the result of exceptional care in design and manufacture . . . with no compromise in quality control. Gold-plated plates and zirconium coatings assure reliable operation at high voltages. Cathodes are heliarc welded. Higher exhaust temperatures mean less gas and longer life. For more information on Raytheon's growing line of dependable diode rectifiers, please write: Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

GET PEAK

 POWER WITH RAYTHEON RUGGED, ARC-FREE DIODE RECTIFIERS| RAYTHEON DIODE RECTFIERS | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | heater | | max. plate mapimes | | |
| TYPE | SERVICE | VOLIS | AMPS | PEAK INVEASE (VOLTS) | PEAK CURRENT (AMPERES) | averace CURRENT (AMPERES) |
| 583* | ```H. W. RECT. (to 36.000 ft.) CLIPPER OIOOE (to 36,000 ft.)``` | 2.5 2.5 | 4.9 4.9 | $\begin{aligned} & 17.000 \\ & 15,000 \end{aligned}$ | $\begin{aligned} & 0.250 \\ & 8.0 \end{aligned}$ | 0.065 0.240 |
| $\left.\begin{array}{l} 3824 \mathrm{w} \\ 3824 \mathrm{wA} \end{array}\right)$ | H. W. RECT. (HALF FIL.) (FULL FIL.) | $\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ | $\begin{array}{r} 20.000 \\ 20,000 \end{array}$ | $\begin{aligned} & 0.150 \\ & 0.300 \end{aligned}$ | $\begin{aligned} & 0.030 \\ & 0.060 \end{aligned}$ |
| 3826 | $\begin{aligned} & \text { CLIPPER } \\ & \text { OIOOE } \end{aligned}$ | 2.5 | 4.75 | 15.000 | 8.0 | 0.020 |
| 3829 | H. V. RECT.
 (OP. 1)
 (OP. 2)
 (OP. 3)
 CLIPPER
 OLOOE | 2.5 2.5 | 4.9
 4.9 | $\begin{array}{r} 16.000 \\ 7.700 \\ 5.000 \\ 10.000 \end{array}$ | $\begin{aligned} & 0.250 \\ & 0.300 \\ & 0.300 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 0.065 \\ & 0.080 \\ & 0.095 \\ & 0.018 \end{aligned}$ |
| 4831 * | H. W. RECT. CLIPPER DIODE | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 16,000 \\ & 16,000 \end{aligned}$ | $\begin{aligned} & 0.470 \\ & 12.0 \end{aligned}$ | $\begin{aligned} & 0.150 \\ & 0.060 \end{aligned}$ |

-Mil-Std-200E Preferred Type

For Small Order or Prototype Requirements, See Your Local Franchised Raytheon Distributor

ultra-high precision capacitors
Southern Electronics high-precision capacitors are demonstrating their proven reliability today in twelve different missiles, analog computers, and many radar and communications applications.
SEC high-precision capacitors utilize polystyrene, providing $.01 \%$ tolerances, and mylar and teflon to meet $.5 \%$ requirements. They show excellent stability characteristics over an extended temperature range, and tolerances are unaffected even at extreme high altitudes.
The unusual accuracy, stability and reliability of SEC capacitors are the result of engineering experience concentrated on the design and manufacture of precision capacitors only, plus rigid quality control standards subjecting each capacitor to seven inspections during manufacture, plus final inspection.
Our engineering experience enables us to meet your size requirements, while holding to exact capacitance and tolerance specifications.
SEC capacitors are manufactured in a wide range of capacitance to meet your needs from 100 mmfd . to any higher value, and meet or exceed the most rigid MIL-SPECS.

COMMENT

Medical Electronics

Re.: your articles on medical electronics (p 49, Jan. 20; p 46, Feb. 3; p 54, Feb. 20) ...

The Burnham Beeches unit here is the Australian division of the Nicholas Institute for Medical Veterinary Research. This Institute is the basic research organization of the Nicholas group of companies and has another division at Slough, Buckinghamshire, in England. The work at Burnham Beeches is about equally divided into veterinary and medical pharmacological research aimed at producing new drugs and information about new drugs. The medical pharmacology group contains a small neurophysiology unit which is investigating the effect of analgesic drugs on the central nervous system.

The equipment of the neurophysiology unit is probably of interest to you. Electrodes are inserted into the brains of dogs using standard stereotaxic methods and the electrical activity of the site at the electrode needle tip is led off to a Tetroniks 122 preamplifier, thence to a main amplifier of an electroencephalograph unit and recorded by both pen recorder and cathode-ray oscilloscope. We have the standard Grass Instrument equipment, stimulators, cro photocamera, photic stimulator for this work. The whole system is a fourchannel one and in this respect is unusual-it is based on the use of a 20 th Century (English) crt which has four separate guns. We have a visual monitor and a paralleled crt for photographing. The timebase and trigger circuitry is orthodox and was made here in Melbourne.

The eeg unit, of which four main amplifiers are used in the four recording channels, is also unusual. It was made to our specifications in Adelaide and, although suffering from the usual drawbacks of an experimental model, has been on the whole very successful. The eight channels of amplifiers, both preamps and main amplifiers, have a frequency response from 0.1 to 10 Kc , and two of the main amps have a response from d-c to 10 Kc . The gains attainable are also higher than usual, and five microvolts can be recorded satisfactorily. We do a
good deal of straight eeg recording from dogs, especially from chronically implanted electrodes . . .
N. R. Beechy

Nicholas Institute

Burnham Beeches, Victoria
Australia

Help Wanted

I am writing in the hope that one of your readers may be able to help me. In connection with some research that I am conducting on human leukemia, I have been trying, without success, to obtain 18 in. each of 5 - to $10-\mathrm{mil}$ platinum and silver wire with an insulated coat capable of withstanding 200 C ; the final dimension of the insulated wire should not exceed 15 mils.

I wonder whether any of your readers can help me locate this wire; I will be most grateful for any assistance in this matter ...

John A. Sykes, M. D.

Texas Medical Center

houston, Texas
Our local contacts in the wirespecialty field were unable to help Dr. Sykes. Can anybody else?

Character Counter

The prompt appearance in your Apr. 28 issue (p 120) of my short article "Character Counter Aids Teletypewriter Routing" was indeed gratifying. Unfortunately an error in the published diagram would prevent the device from functioning as described. Further, the relay K_{1} in the original drawing was described as a Sigma series 72 polar relay and was schematically shown as a polar relay . .

Roy E. Pafenberg Arlington, Va.

The bottom winding of K_{1} is shown returned to the anode of $0 B 2$; it should have been returned to the bottom of capacitor C_{1} so that that capacitor shunts the lower windin!g of the relay.

To the Editator

Concerning the "Birdbanding" item on p 10 of the Apr. 14 issue (Electronics Newsletter): your editator must be slipping.

George Langer
Denver, Colo.
The headline calls a capacitor a capacitator. Oh well ...

Here's new

H1] THMD

Here are seven new (by coaxial instruments to simplify your microwave work and give you greater measuring flexibility in the important 1-to-4 GC frequency range. Look at the increased versatility of measurements possible with these instruments, each carrying the assurance of quality, versatility, dependability and value which make Hewlett-Packard's one of the world's most widely used lines of microwave instrumentation.

536A Coaxial Frequency Meter

For lab or production use this general-purpose frequency meter is a high resolution, broadband, direct reading instrument. Frequency is read directly in GC with high accuracy over a wide range of environmental conditions. Readability is increased by a long spiral scale calibrated in small frequency increments. The tuning plunger is spring-loaded to eliminate backlash. Smooth tuning and long life result from use of a non-contacting plunger.

\$4 393A / 394A Variable Attenuators

Accurate attenuation in high power coaxial systems are provided by these direct-reading, multi-purpose instruments, the $\$ 393 \mathrm{~A}, 0.5$ to 1 GC , and (19394A, 1 to 2 GC. They are variable attenuators, variable directional couplers and local oscillator mixers. The direct-reading feature eliminates the need for calibration curves, and the attenuators handle up to 200 watts average, depending on line terminations. Two 908A low-power coaxial loads (furnished) permit the instruments to attenuate at levels up to 0.5 watt average power.

Specifications

Frequency Range:
1 to 4 GC
Overall Accuracy:
Dial Calibration Accuracy:
0.10%
Max. Temp. Coefficient/ ${ }^{\circ} \mathrm{C}$: 0.0016%
Connectors:
Type N
Dimensions: $\quad 9 y^{\prime \prime}$ high $\times 6^{\prime \prime}$ long $\times 6^{\prime \prime}$ deep. 13 pounds Price:
(\$536A, \$500.00

Specifications

Frequency Range: $393 \mathrm{~A}, 0.5$ to 1 GC ; $639 \mathrm{~A}, 1$ to 2 GC Attenuation or Coupling: (7) 393A, 5 to 120 db , () 394A, 6 to 120 db ; both continuously variable Absolute Accuracy: Within $\pm 1 \mathrm{db}$ ar 1% of dial (1) 393A), $\pm 1.25 \mathrm{db}$ or 2% of dial (10)394A), whichever is greater. (With matched generator and load)

50 ohms
SWR: $<2.5: 1,5 \cdot 10 \mathrm{db}$ attenuation; $<1.5: 1,10.30 \mathrm{db}$; $<1.2: 1,30.120 \mathrm{db}(6) 393 \mathrm{~A})$; $<1.4: 1,30.120 \mathrm{db}$ (6) 394A) Directivity: Greater than 15 db (1) 393A), or $10 \mathrm{db}(\$$ $394 \mathrm{~A}), 10$ to 40 db atrenuation with laads of less than
1.05:1 SWR

Maximum Voltoge:
500 v peak
Connectors:
Dimensions:
$51 / 2^{\prime \prime} \times 12^{\prime \prime} \times 23_{4}^{\prime \prime}$
Price: \quad (1) 393A, $\$ 420.00$; (4) 394A, $\$ 420.00$

4 872A Coaxial Slide-Screw Tuner

With the 872A Coaxial Slide-Screw Tuner, insertion of the precision probe carriage into a specially developed slab line is quickly and easily varied with a micrometer drive, and position along the line may be read directly on a recessed scale. Probe travel is at least $1 / 2$ wavelength at 0.5 GC so that any phase reflection may be compensated. Logging penetration and position of the probe makes repetition of settings simple, and the probe can be withdrawn so that no correction is applied.

4 906A Coaxial Load

This sliding coaxial termination is a movable, low reflection load for terminating 50 -ohm systems in their characteristic impedance. The load moves at least $1 / 2$ wavelength at its lowest rated frequency. It features a movable center conductor which insures proper seating in the mating conductor. Included are adapters for Type N connectors, plus storage case.

Specifications

Frequency Range: $\quad 0.5$ to 4 GC
Correctable SWR: 10
Insertion Loss af Max. Correciable SWR: 1 db or less
Charocteristic Impedance: 50 ohms
Connectors:
Type N
Dimensions:
$27^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime \prime}$
Price:
(1)872A, \$525.00

760D/761D Dual Directional Couplers

New 760D/761D Dual Directional Couplers, twooctave vhf-uhf instruments, are especially useful for power monitoring, mixing and power sampling with tightly controlled coupling. High directivity and flat frequency response make them ideal for reflectometer systems. Power capacity is 50 watts cw and 10 kw peak.

Specifications

Frequency Range:
1 ta 12.4 GC
Lood SWR:
Power Rating:
Less than 1.05

Dimensions: $\quad 31^{\prime \prime}$ long. 2 lbs.
Greater than $1 / 2$ wovelength of $1 G C$
Price:

Specifications

Frequency Range:
Mean Coupling:
Coupling Variation: Directivity (Minimum): Primary SWR (Maximum): Secondary SWR (Maximum): Connectors: Price:

Model 760D Model 7610 $20 \pm 1 / 2 \mathrm{db} \quad 20 \pm 1 / 2 \mathrm{db}$ $\pm 1 / 2 \mathrm{db}$ 35 db $35 \mathrm{db} \quad 30 \mathrm{db}$ 1.20 1.25 Type N
$\$ 200.00$

30 db
1.25
1.30

Type N
Type
$\$ 185.00$

HEWLETT-PACKARD COMPANY

1072A Page Mill Road
Cable "HEWPACK"

Palo Alto, California, U. S. A.
DAvenport 6.7000

Sales representatives in all principal areas
HEWLETT-PACKARD S. A.
Rue du Vieux Billard No. 1
Cable "HEWPACKSA"
Geneva, Switzerland
Tel. No. (022) 26.43. 36

The exclusive Clarostat PotPot encapsulation technique
is available for standard Clarostat potentiometers
and switches. It consists of a pre-sealing operation with a moisture test before encapsulation irı a high density compound of desirable electrical and mechanical properties. Shaft and bushing assemblies are completely sealed.

Write for complete technical information...see for yourself
how performance reliability increases through the PotPot technique...

ELECTRONICS NEWSLETTER

Power Sources Conference
 Discusses Energy Converters

IMPROVED TECHNIQUES for thermal and solar energy conversion, and progress in fuel cells and batteries, drew the attention of some 1,000 engineers at the 15 th Power Sources Conference in Atlantic City, N. J., last week.

Cryogenic fueled thermoelectric generators were discussed by J. Angello of U. S. Army Signal R\&D Labs. Experiments with a singlestage bismuth-telluride converter using liquid nitrogen yielded a maximum power of 875 milliwatts at a temperature difference of 126 C and a cold-junction temperature of -191 C . Technique may yield conversion efficiency of 20 percent.

Increase in thermoelectric efficiency by impeding heat flow by structural means was described by R. C. Evans of Johns Hopkins. His report on isthmus effect experiments covered the construction of welded and sheared barrier generators. Experiments with chromelconstantin thermocouples showed an efficiency of 1.3 percent for two welded barriers per leg compared with 0.2 percent with no barriers.

In surveying recent advances in thermal energy conversion. D. C. White of MIT postulated the possibility of achieving 35 -percent efficiencies by using the photovoltaic effect for conversion. An incandescent surface would supply photons to a pin photocell for conversion to electrical energy.

Increasing the power density and efficiency of thermionic converters by using cesium plasma triode converters was discussed separately by A. O. Jensen of GE and W. B. Hall of RCA. According to Jensen, a device now under development may achieve power density of four watts per square centimeter and efficiency of 20 percent at cathode temperature of $1,300 \mathrm{C}$.

Methods of reducing cost of solar-cell systems and increasing their resistance to radiation were discussed by several speakers. A. Herchakowski of Army Signal Labs described concentrator configurations for increasing power output
per unit cell area; J. F. Elliott of GE reported on work aimed at increasing yield and efficiency by constructing large-area thin-film photovoltaic cells. P. Berman of Transitron and J. Mendelkorn of USASRDL both presented data indicating that resistance to radiation is increased with n or p-type cells.

Seek Optical Maser

To Use Solar Power

AIR Research \& Development Command has awarded a research contract to American Optical Co. to develop a sun-powered optical maser for satellite and space use. The proposed device would be a ruby maser fed from a solar collector instead of being powered by flash tubes. AO chief physicist E. Snitzer figures that a large solar collector would be able to produce enough of the necessary green and blue light to cause the ruby rod to go into continuous oscillation. Project is aided by the fact that sun power falling on an earth satellite is much more intense than the solar energy reaching the earth's surface.

Defense Spending Rise

 Seen Paced to GNPECONOMIC FORECASTS being bruited about Washington these days indicate that Department of Defense expenditures will rise at a rate equivalent to the increase in the gross national product. Rapidly growing resources of the Sino-Soviet bloc are being allocated to military forces; planners in Washington figure that U. S. preparedness must at least keep pace. Average increase being forecast-privately and without administration publicity-is around 5 or 7 percent annually, about $\$ 2$ billion or more. Present budget is about $\$ 45$ billion; 1970's may be near $\$ 80$ billion. Research and development expenditures will continue to take about 10 percent of this figure. Even if an
effective plan for disarmament can be adopted, the R\&D expenditure will continue high since detection devices will require more R\&D than the weapons they replace.
In other defense developments last week: Bendix received $\$ 12$ million in contracts to equip aircraft of the North Atlantic Treaty Organization (NATO) with advanced electronic navigation systems. Air Force awarded a $\$ 35.8$ million contract to Philco for continuation of work begun in 1957 in development of command and control subsystems for space and satellite programs. Another Air Force contract, for $\$ 10$ million, was awarded to GE for ICBM target vehicles to test the Nike-Zeus countermissile; the target vehicles will be flown in place of operational ICBM nose cones.

Develops Small, Cheap
 Negative-Ion Generator

COMPACT INEXPENSIVE generator for producing negative ions was put on the market in England last week by Winston Electronics, an associate of Dynamics Corp. of America. Ion generator is $14 \times$ 6×73 inches, consumes about 75 w , handles about $4,000 \mathrm{cu} \mathrm{ft}$ of air. Cost is about $\$ 52$ DCA, which developed the basic generator of which the Winston model is an improvement, is expected to manufacture the improved version.

Unit consists of a fine filter to trap dust particles, four ultraviolet lamps to generate negative ions at the rate of about 4,000 per cubic centimeter, and a negative-ion mul-tiplier-a metallic mesh from which electrons are ejected by secondary emission-to increase the ion content to about 100,000 per cubic centimeter. A small fan forces air through the unit.

Air Agency Prohibits F-M Radios in Aircraft

federal aviation agency last week prohibited the use of portable f-m radios on U. S. civil aircraft. The ruling results from an investigation of interference from electrical and electronic devices on aircraft
instruments. The investigation disclosed that local oscillators in f-m radios affect the vhf navigation systems, causing the appearance of the "red flag" which indicates to the pilot that the instrument is not working properly. The red flag warns the pilot not to trust the reading of the instrument, and prevents the instrument from giving a faulty indication.

"Next-Hour" Facsimile Delivery Proposed to Post Office

subcommittee on the Post Office \& Treasury of the Senate Appropriations Committee last week heard Alden Electronic \& Impulse Recording Equipment Co.'s proposal of a next-hour delivery system using facsimile techniques. Alden proposes to pay the Post Office Department for a franchise to install high-speed facsimile equipment in local postoffices for use by the commercial and other mailers who need a high-priority mail delivery service. Alden fax equipment would be able to send two letterheads per minute; copy arriving at the destination postoffice would be automatically wrapped, and a clerk would put it in the regular postoffice box of the addressee.

Aerospace-Electronics Show
 Favors Data-Handling Gear

aUTOMATIC devices for tape preparation, digital guidance and control computer, power-spectrum analyzer and fiber-optics scrambler were among newer products introduced by 70 firms who filled the booths at last week's National Aerospace-Electronics Conference in Dayton, 0.

McDonnell Aircraft showed tape preparation equipment for automatic checkout and machine control. Logic circuits in the unit analyze word groups and numerical keyboard commands, convert them to complete coded programs. A digital guidance and control computer, still under development by McDonnell, will feature nondestructive wired-rope core memory of passive elements which allows a 16 -bit word to be read from a single core. Scratchpad memory will store 64 16-bit words.

Incremental power-spectrum analyzer for countermeasures was demonstrated by Hallicrafters. It will substitute continuous display of microwave power in $12510-\mathrm{Mc}$ increments for point-by-point plotting; unit covers the $2.4-3.6 \mathrm{Gc}$ range.

Security for codes and secret messages is provided by fiber-optics scrambler device developed by Chicago Aerial Industries. More than 300,000 glass fibers are packed in an area whose cross-section is a little more than a square inch; scrambling the fibers scrambles the message. Transmitter and receiver are equipped with the scrambler devices to maintain communications security.

Granite Being Tested for Underground R-F Transmission

DEEP-ROCK transmission of r-f energy is being investigated by Raytheon in an abandoned dry well in Concord, Vt. Under an Air Force contract, Raytheon is working with l-f and vlf energy, sending to receivers in a granite quarry nearly 20 miles away. The company reports results at Globecom in Chicago this week.

Prior investigations have used potash and salt strata; granite seems a better medium, both because of its lower conductivity and also because granitic strata can be found all over the continental land mass.

Jamproof character of deepstrata electromagnetic transmission is attractive to the military planners, particularly for shortrange communications between missile silos and underground com-mand-control centers in the event that surface communications are disrupted by possible enemy attack.

Sales And Imports
 Of Radio-Tv Rise

Japan's Ministry of Finance last week released figures on February exports of electronic products to the U. S., indicating that all categories increased over the January level.

Exports of transistor radios with more than three transistors jumped
from 157,447 units valued at nearly $\$ 2$ million in January to 251,725 units worth $\$ 3.2$ million. Tube radios went from 56,639 units worth $\$ 398,000$ to 105,168 units worth $\$ 722,000$; toy transistor radios (containing one or two transistors) from 177,188 units worth $\$ 520,000$ to 196,665 units worth $\$ 601,000$. Exports of tv sets with 21-in. screens or larger jumped from 1,935 units worth $\$ 97,000$ to 2,677 units worth $\$ 132,000$, and taperecorder shipments went from 25 ,374 units worth $\$ 525,000$ to 30,787 units worth $\$ 802,000$. Ministry of International Trade \& Industry figures that some 3 million toy radios (one or two transistors) will be produced in fiscal 1961, of which most will probably be exported to North America. The toy units are exempt from Japan's quota regulations.

In the U. S., Electronic Industries Association announced last week that retail sales and production of radio and tv sets continued to rise in March, but that cumulative totals remained below the totals for the first three months of 1960 in all categories excepting radio sales. March tv sales totaled 530,105 units, an increase of 77,823 over February. Radio retail sales totaled 853,821 , up 187,593 over February's figure.

British Companies Wary Of Space Agency Contracts

ELECTRONICS and control-equipment manufacturers in Great Britain are expressing wariness about accepting contracts from National Aeronautics \& Space Administration because of NASA's patent terms. British companies have asked their government for advice on their rights to inventions made under contracts placed by the space agency or to which the agency contributes financial aid. Some firms are afraid that the NASA patent terms might be interpreted as retroactive, since the wording of the law defines the making of an invention as "a conception or first actual reduction to practice;" if a contractor files for an invention which is first used in a subsequent NASA contract, the U. S. government may be able to lay claim to the patent rights.

Microdot Expands Telemetry Capability

South Pasadena - Microdot Inc. has recently acquired Spectralab Instrument Co. of Monrovia, California. The acquisition provides Microdot's Instrumentation Division with outstanding capabilities in the field of VHF and UHF cavities and related instrumentation. Spectralab has been widely noted for its recent scientific breakthrough in the new UHF telemetry field with the first operational UHF telemetry transmitter, and for its high power transmitter designed for the Pioneer V satellite. Spectralab instruments have also flown in the Redstone, Jupiter, Atlas and Pershing missiles.

The Pioneer V transmitter shown above is typical of the sophisticated instrumentation now offered by Microdot. This miniaturized unit features an output of 150 watts, ease of adjustment, and proven outer space reliability.

With the Spectralab acquisition, Microdot's telemetry capability now includes a broad product line ranging from sensing devices through transmitters. As a single source for instrumentation, Microdot can provide weldable strain gages, load cells, temperature probes, thermocouples, amplifiers, power supplies, signal conditioning equipment, power amplifiers, frequency doublers, oscillators and transmitters.

MICRODOT INC.

220 Pasadena Avenue
South Pasadena, California

"MAKE A NOISE IN THE EAST, BUT STRIKE IN THE WEST"

Mao-Tse-Tung's arsenal is impressive : 700-million expendable people. And soon, nuclear capability.

To those of us in the defense business the prospect is worthy of sober consideration. We cannot match Red China in expendable human lives. Instead we must rely upon the effectiveness of our defense capabilities to keep fingers off buttons.

The responsibility is clear. The real business of the defense business is survival.

SPRAGUE PIEZOEleCTRIC CERAMIC Elements
 TRANSDUCER ASSEMBLIES FOR MOST APPLICATIONS, SUCH AS UNDERWATER SOUND AND VARIOUS ORDNANCE AND MISSILE DEVICES.

Sprague-developed mass production and quality-control techniques assure lowest possible cost consistent with utmost quality and reliability. Here too, complete fabrication facilities permit prompt production in a full, wide range of sizes and shapes.

Look to Sprague for today's most advanced ceramic elements - where continuing intensive research promises new material with many properties extended beyond present limits.

SPRAGUE ELECTRIC COMPANY
35 Marshall Street, North Adams, Mass.

WASHINGTON OUTLOOK

ELECTRONICS INDUSTRY competition for a place in the commercial communications satellite field was dramatically played up during the House Space Committee's inquiry into the program.

The hearings pointed up the basic disagreements within the industry. The sharpest dispute is over the division of ownership in a space communications system. Generally, it's accepted that the government will prevent any single company from getting a dominant position.

The real in-fighting, therefore, shifts to what combination of companies should be allowed to pool their efforts. One bloc of companies wants ownership confined to firms already in international communications. Another group wants to include domestic communications companies-not only those already in the business but others that might crop up. General Telephone \& Electronics Corp., for example, favors this.

Still another camp wants to pull in producers of aerospace equipment as well as common-carrier communications firms. GE backs this idea. The company recently formed a subsidiary, Communications Satellites, Inc., with ownership open to all interested firms with a miximum 10 percent equity ceiling stipulated.

There's also a divergence of technical opinion. One group of firms wants a system of synchronous satellites that would be placed some 22,300 miles out in space and appear to remain in a stationary position. This would require only three or four satellites to provide worldwide coverage. Other companies, however, are plumping for a system of 50 or more satellites in 3,000 to $5,000-$ mile high orbits.

NASA, meanwhile, is not content to allow industry to pace development of a space communications system. While the shapeup in industrial ownership goes on, the Agency is pushing for development of a system under Project Relay. The government-developed system will undoubtedly have a dominant role in any commerical system that eventually evolves.

Seven proposals, including three joint ventures, were submitted to NASA in March to develop Project Relay. A contract is due soon.

A TIP-OFF on administration views on electronic imports may be apparent in President Kennedy's first major policy decision on foreign trade. Only textiles are immediately covered in the new decision, but it could be applied to products such as electronic parts.

Kennedy has ruled against imposition of country-by-country import controls on textiles, as the domestic industry urged. Instead, he wants to work for an international voluntary agreement under which some other major industrial nations, such as West Germany, would take more textiles from the under-developed nations which produce them.

The President has ordered a series of steps aimed to help the industry at home. The State Dept. will begin negotiations with textile-producing and major consuming countries this month. If the efforts prove successful, the idea of an international voluntary agreement may be tried for other light-manufactured products-electronics, for example.

PENTAGON efforts to minimize over-pricing on major weapon contracts are being accelerated. Officials appearing before a congressional committee have spelled out what's being done:

Competition is being expanded by increasing the number of potential sources in negotiating contracts for which advertised bidding is not practical. Internal audit of cost estimates and price proposals from contractors is being substantially broadened. Purchasing techniques, cost estimating procedures, and financial cost controls "have been improved."

In addition, excessive inventories are being slashed, more effective controls are being clamped on overhead expenses, "more effective" subcontract management has been instituted, the "quality of negotiations have been improved," and the use of value engineering to trim costs is being encouraged.

Set the date you need any standard type coaxial cable on the job, and Chester will meet it . . . with from-stock shipments of one of the country's most complete lines of coaxial cable.

With Chester cable you can make a quick selection of exactly the right cable for each specific application. From micro-waves to missles... in conformance with military or commercial specifications...for military or commercial applications...there's a Chester cable tailored to your design and requirement.

For special cable problems, you can depend on Chester to custom-engineer the correct cable to meet your specifications. Select the type conductor, insulation, jacket, and armor which your requirements demand. But, be sure you select Chester for the cable "jobtailored" for you.

NEW,
Chester's fact-pucked coaxial cable selection guide. Write for your free copy.

this is the Brush Mark II...

anyone

 can plug it in put it in writing

anywhere

There is no direct writing recorder on the market that approaches the compact Mark II in sheer usefulness. It is a completely integrated engineering tool that can be operated by anyone . . . in the shop or in the field . . . for countless research or design requirements. Every function necessary for uniform, crisp, easily reproduced readouts is "built-in". The Mark II gives you two analog channels plus two event markers; 4 chart speeds; DC to 100 cps response with 40 mm amplitude; $10 \mathrm{mv} / \mathrm{mm}$ sensitivity; high input impedance. Ink or electric writing models. Immediate shipment from stock.

brush

Rosjonse-atiliut!

plus reduced size and weight

ACTUAL
SIZE
(versus
ordinary commercial servo-type

Design instant response into your recording instruments and, at the same time, miniaturize your "package" with substantial cost-reductions. EAD 60 cycle, size 15 miniature servomotors are engineered for RE-SPONSE-ability... the ability to produce rapid acceleration and revers-
ing without over-power and over-size.
These 60 cycle, size 15 servomotors, now available for commercial applications, have the same precision RE-SPONSE-ability as EAD's military versions...your assurance of high performance and reliability.

TYPICALPERFORMANCEDATA									
MODEL	Voltage	FREQUENCY	STALL POWER/ PHASE	$\begin{aligned} & \text { STALL } \\ & \text { CURRENT/ } \\ & \text { PHASE } \end{aligned}$	time CONSTANT	REVERSING TIME	ROTOR INERTIA	$\begin{aligned} & \text { NO LOAD } \\ & \text { SPEED } \end{aligned}$	stall tORQUE
\$2HBZ7.*	115 volts	60 cycles	6.0 watts	70 MA	. 0052 Sec.	. 0089 Sec .	$4.0 \mathrm{gm} \mathrm{cm}{ }^{2}$	$1500 . \mathrm{RPM}$	1.7 oz - in
S2HAX7.*	115 volts	60 cycles	6.0 watts	70 MA	. 00915 Sec.	. 0155 Sec .	$3.3 \mathrm{gm} \mathrm{cm}{ }^{2}$	3000 RPM	. 1.6 oz -in

*Basic models. Mechanical modilications ovoitoble to customer requirements
If your responsibility is improved recorder design, look first to EAD for the servomotor line that meets all your RESPONSE-ability requirements. Call your nearest EAD representative or write about your specific needs.

Rotation Is A Science At
 EASTERN AIR DEVICES,Inc.

A SUBSIDIARY OF NORBUTE CORPORATION
385 CENTRAL AVE., DOVER, NEW HAMPSHIRE

A Tinnerman T-Marked Original...

Dual SPEED NUTS ${ }^{\text {® }}$ open door to 20\% savings on as-assembled cost

Gibson refrigerator door hinges are held in place with new cost-cutting, time-saving twin-type Speed Nuts. They replace "\%í" plate hinge retainers which had to be drilled and tapped for machine screws.

Gibson Refrigerator analysts estimate that special twin-type Speed Nuts save 14% on the cost of each hinge retainer assembly, 20.5% on the as-assembled cost. Labor is reduced by half. Former problems with cross-threading and stripping are eliminated... Speed Nuts and A-type screws go together naturally every time-and faster!

The T-mark of quality and dependability identifies the more than 10.000 variations of Speed Nut brand fasteners. From this unlimited selection come many saving opportunities for you. Ask your Tinnerman representative to arrange for a free Fastening Analysis of your product. An engineering service that may produce similar savings for you.

You'll find Tinnerman under Fasteners in your Sweet's Product Design File and in the "Yellow Pages." Tinnerman Products, Inc., Dept. 12, Box 6688, Cleveland 1, Ohio.

SPECIAL "J" SPEED NUT cuts production time in half for a major gas range manufacturer. Simplified right-angle panel or brace attachments for a variety of appliance.cabinet.andinstrument applications. Live-spring tension means a vibration-proof grip.

SNAP-IN FIXTURE FASTENER
developed specially for Imperial Lighting Products Co.. trimmed 80% off lighting fixture assembly time. Once fastened to the ceramic socket, this unique Spled Nut snaps quickly into the fixture base...replaces three parts.

PUSH-ON SPEED NUT anchors latching bars on steel desks, reduces material and assembly costs by 50%. Push-on Speed Nuts can be attached on studs. rivets. or tubing in a split second, and eliminates need for threaded parts... saves time and money.

CANADA: Dominion Fasteners Ltd., Hamilton, Ontario. GREAT BRITAIN: Simmonds Aerocessories Ltd., Treforest, Wales. FRANCE: Simmonds S.A., 3 rue Salomon de Rothschild, Suresnes (Seine). GERMANY: Mecano Simmonds GMBH, Heidelberg.

This versatile instrument is a

1) highly sensitive interference lo-cator-with the widest frequency range of any standard available unit! Model 500 tunes across the entire standard and FM broad-- cast, shortwave, and VHF-TV spectrums from 550 kc . to 220) mc. in 6 bands.

It's a compact, portable, rug-
> ged, versatile instrument-engineered and designed for most efficient operation in practical field use. It features a transistor-

- ized power supply, meter indications proportional to carrier strength as well as sensitivity of
- 5 microvolts minimum for 5% meter deflection over entire tun-- ing range.

For full details, send for brochure IL-106.
> SPRAGUE ELECTRIC COMPANY 35 Marshall Street, North Adams, Mass.

FINANCIAL

Earnings Go Up In First Quarter

FIRST QUARTER reports and annual statements being issued this month shown an upturn in sales and earnings for many electronics companies.
hoffman electronics, Los Angeles, reported 1961 first quarter sales of $\$ 16,098,315$ were the highest in any quarter in company history and resulted in a net profit after taxes of $\$ 256,668$, or 16 cents a share. The sales volume for the quarter compares with $\$ 10,215,897$ in the same period of 1960 , when the after-tax profit was $\$ 2,530$. The increase is attributed to sales rises for the military products and semiconductor divisions of the company.

FAIRCHILD CAMERA AND INSTRUment, Syosset, N. Y., reports 1961 first quarter net earnings after taxes of $\$ 877,000$, or 71 cents a share. This is an increase of 9.5 percent over first quarter 1960 earnings of $\$ 801,000$ or 65 cents a share. John Carter, company president, says this year's first quarter earnings are the best in company history. Sales during the period were $\$ 20,655,000$, a 49 -percent increase over sales of $\$ 13,838,000$ in the first quarter of 1960. New orders this year, during the first quarter, were up 58 percent over 1960's first quarter, while backlog rose 75 percent.
electronic specialty co., Los Angeles, reports 1961 first quarter sales more than double those of 1960 for the same period. This year the figure is $\$ 6.1$ million as compared with $\$ 2.5$ million in 1960. Profits for the January-March period this year were at an all-time high of $\$ 185,000$, or 21 cents a share. Backlog at the end of this year's first quarter exceeded $\$ 20$ million as against the $\$ 4.2$ million on Mar. 31, 1960.

BOWMAR INSTRUMENT CORP., Ft. Wayne, Ind., reports record sales
for the six months ended Mar. 31, 1961, first half of the company's fiscal year. Earnings after taxes were $\$ 187,285$, making this the seventh consecutive year the company has shown increases in sales and earnings. Sales rose from $\$ 2$,724,896 for the same period a year ago to $\$ 3,122,837$ for the six-month first half of this fiscal year. Pretax earnings rose from $\$ 302,749$ to $\$ 378,285$. Per-share earnings after taxes were up from 20 cents to 24 eents.

General precision equipment CORP., Tarrytown, N. Y., reports preliminary figures for the first quarter of this year show a net income of 87 cents per common share. This is a 12.9 -percent rise over net income of 77 cents per share in the same period a year ago. Net income for the period this year was $\$ 1,334$,000 after taxes, up from $\$ 1,224,000$ in the first quarter of 1960 . In addition to this, a 51-cent per share special gain was realized from the sale of the company's downtown Manhattan 'headquarters building. Preliminary figures for the first quarter of this year show sales of $\$ 62,897,000$, up 13 percent from 1960's first quarter.
the martin company, Baltimore, Md., reports a rise of 40 percent in sales and earnings for the first quarter of this year as compared with the same period of 1960 . Net earnings of $\$ 4,914,690$ on sales of $\$ 198,248,575$ this year exceed the net of $\$ 3,488,122$ on $\$ 140,839,907$ of sales in the first quarter of 1960 . This year's per-share earnings are equal to 79 cents net as against a 57 -cent figure a year ago.
siegler corporation, Los Angeles, apnounces earnings of $\$ 553,363$ on sales of $\$ 24,592,863$ for the threemonth period ended Mar. 31 this year. Earnings per share were 25 cents on $2,214,363$ shares outstanding. Earnings in the first nine
months of the company's fiscal year were $\$ 2,330,228$ or $\$ 1.05$ per share on sales of $\$ 73,646,826$. Because of a merger with Jack \& Heintz, Cleveland, O., in February of this year, company spokesmen say there is no basis of comparison with last year's figures.
glass-tite industries, Providence, R. I., reports sales and earnings for 1960 to be the highest in company history. Sales in 1960 were $\$ 3,636$,454 against $\$ 1,899,446$ in 1959 . Net income rose to $\$ 263,436$, equivalent to 26 cents per share as against $\$ 139,015$, or 20 cents a share in 1959. The order backlog at the end of last year was in excess of $\$ 3$ million.

CONTROLS COMPANY OF AMERICA, Schiller Park, Ill., announces first quarter sales of $\$ 10,535,076$, a drop from the $\$ 13,158,316$ recorded a year ago. Net earnings after taxes for the first three months of this year were $\$ 283,605$, equal to 22 cents a share. compared with $\$ 437$,338 , or 35 cents a share in the same period a year earlier. Louis Putze, company president, said cost reduction measures taken in the past year will result in improved performance during the remainder of 1961.

25 MOST ACTIVE STOCKS

The above figures represent sales of electronics stocks on the New York and American Stock stocks on the New York and American Stock Exchanges. Listings are prepared exclusively for blrctronics by lra Haupt \& Co., investment

New Line of Precision

Toroidal Inductors

For Practically

Every Application

Designed for use in commercial, industrial, and military apparatus, Sprague Precision Toroidal Inductors are customarily supplied to the close inductance tolerance of $\pm 1 \%$. The broad line of Sprague inductors includes such styles as open coil, plasticdipped, rigid encapsulated types with tapped or through-hole mounting, and hermetically-sealed inductors.
All styles, with the exception of the open-coil type, meet the requirements of Specification MIL-T-27A.
Several core permeabilities may be obtained in each of the five basic sizes of Sprague inductors to give the circuit designer the optimum selection of desired Q and current carrying abilities. Each of the core sizes is available with several degrees of stabilization. Inductors made with cores which have not been subjected to the stabilization process exhibit low inductance drift with time and have a low temperature coefficient of inductance. Where a greater degree of permanence of characteristics is required, cores with two different stabilization treatments can be used for most types of inductors.
Sprague toroidal inductors may be operated from -55 C to +125 C . Temperature cycling of finished inductors is a standard production procedure in order to equalize internal stresses and insure permanence of electrical characteristics.

Fordetailed information onSprague Precision Toroidal Inductors, write on company letterhead for portfolio of engineering data sheets to Technical Literature Section, Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

Three New Additions to the Sprague MADT* Transistor Line

The Sprague Electric Company has added a new series to their highly-successful line of Micro-Alloy Diffused-base Transistors.
The new units, Type 2N768, 2N769, and 2N779A, are high-speed switching transistors in TO-18 cases. Their unique electrical characteristics further expand the varied applications to which Sprague MADT Transistors can solve circuit design problems.
Type 2N768 is a micro-energy switch designed for low current, low voltage, high speed applications.
Type 2N769 is the fastest switching transistor yet developed. It will operate reliably at speeds in excess of 100 mc .
Type 2 N 779 A is manufactured with tighter parameter control than any other transistor in the industry. It is ideally suited for NOR logic and other super-critical applications.

These hermetically-sealed germanium transistors are made by a con-trolled-etch process to insure extreme uniformity. Maximum frequency capabilities have been improved by graded-base construction. Automated manufacturing techniques have brought about increased production efficiency, permitting favorable reductions in prices. This is why Sprague MADT Transistors can offer you greater performance per dollar than other high-speed devices in low-current switching circuits.

For prompt application engineering assistance, write Commercial Engineering Section, Transistor Division, Sprague Electric Company, Concord, N.H.

For complete engineering data sheets, write Technical LiteratureSection, Sprague Electric Company, 35 Marshall St., North Adams, Mass. *trademark of phicco Corp.

NO STEPPING SWITCHES IN THIS

 ULTRA-RELIABLE DVM: Cubic announces a new digital voltmeter design that eliminates stepping switches and, with them, the need for periodic maintenance. The new Cubic V-70 uses the same ultra-reliable reed relays developed for submarine cables. These reed relays are sealed in glass and have practically unlimited life. They are noiseless and completely unaffected by operating position.Accurate: The V-70 reads any d-c voltage from 0.001 to 999.9 volts with an absolute accuracy of 0.01% plus or minus 1 digit. The Cubic V- 70 Digital Voltmeter provides these and other premium features at a cost of only $\$ 1,580$. For details, write to Dept. E-104, Industrial Division, Cubic Corporation, San Diego 11, Calif. (in Europe: Cubic Europa S.p.A., Via Archimede 185, Rome).

Cubic manufactures a complete line of quality digital instruments, including $a-c$ and $d-c$ voltmeters, ohmmeters, ratiometers, scanners and printer controls.

INDUSTRIALDIVISION san diego, calif.. u.s.a. ROME, italy

Now-A High-Performance Potentiometer For As Little As \$3

Never before could you find a low price tag on this kind of potentiometer performance. Now-for as little as $\$ 3$ a unit in quantity orders - you can buy a single-turn $1 / 2^{\prime \prime}$ wirewound rotary that meets the highest standards for computer and industrial control applications.

Weighing in at a scant .05 ounce, the $1 / 2$ " dia. Trimpot ${ }^{2}$ Model 3367 dissipates 0.5 watt, operates in $105^{\circ} \mathrm{C}$ heat, and holds residual end-setting resistance from 0 to 1.0%. It meets require ments for steady-state humidity and MII Specs for sand, dust, salt spray and fungus. Designed for conventence, too, it has index points that let you check your setting at a glance.

Reltability well beyond the expected is made possible by the exclusive Bourns Silverweld $\overline{\text { ® }}$ termination. Alloyed with multiple turns of the resistance wire. Silverweld eliminates vulnerable single-wire terminations, is virtually indestructible under thermal or mechanical stress. Units are 100% inspected, and subjected to the rigid double-check of the Bourns Reliability Assurance Program.
Model 3367 is available immediately from factory and distributor stocks with resistances of $100!$ to 20 K . Your choice of printed circuit pins (spaced for interchangeability with more expensive devices) or solder lugs with bushing mount. Write for complete data and list of stocking distributors.

Fresh Look At Space Communications

CHICAGO-Space communications will be in spotlight of Fifth Na tional Symposium on Global Communications sponsored by AIEE and IRE here at the Hotel Sherman next week (May 22-24), monopolizing three of 18 sessions and 15 of 88 technical papers.

More than 1,000 engineers, scientists and managers are expected to attend. Three simultaneous sessions will be held each morning and afternoon with topics ranging from space communications down to sharing earth radiation spectrum, through switching, data handling and transmission to compression methods for packing more meaning into speech transmissions.

George Mueller, vice president of Space Technology Labs, Los Angeles, will address the Tuesday luncheon session. Two dozen manufacturing and engineering firms will display communications equipment, processes and technical advances on first floor of symposium headquarters.

Saturation of present intercontinental message facilities points up need for symposium's study of communication problems, currently assigned top priority in offices and labs of government, industry and universities, says William L. Firestone, general chairman.

Ultraviolet communication system extending range of one watt of
radiation to 20 million miles will be described by J. W. Ogland, Westinghouse, Baltimore, Md. Video information may be transmitted with same power at shorter, lunar distance ranges. Beam focused down to two minutes of arc provides antenna gain of about $50 \mathrm{mil}-$ lion or 77 db .

Ultraviolet, infrared, visible light, x-ray and other exotic means of space communication will also be explored in a paper by L. R. Bittman, Martin Co., Baltimore, Md., with goal the attainment of enormous additional channel capacities.

Antenna of strip steel prestressed into tubular shape, stored on drum, then unfurled in orbit to form two-dipole system 150 and 75 ft between tips to cover one to 15 me range will be displayed and discussed by Richardson and Molozzi, of the Canada Defense Research Telecommunication Establishment, Ottawa.

High antenna gain without need for attitude control of vehiclethrough use of active Van Atta arrays positioned over multiple faces of satellite-will be explained by R. C. Hansen, Aerospace, Los Angeles.

Comparison of satellite communication with rural party line-allowing two or more party use for interconnection of any two points on globe-will be presented by Walker,

Buttoning Up Polaris Guidance System

Polaris Mark I inertial guidance by GE Ordnance and MIT is smallest in any U.S. ballistic missile. Same team is working on 2,500-mi Mark II

Campbell and Glomb of Hoffman and ITT, N. J.

Restriction of deep space communication systems band to $1,2-10 \mathrm{Gc}$ by strong influence of atmospheric and galactic noise will be discussed by Breese and Sferrazza, Sperry Gyro, Great Neck, L. I.

Incremental delay problem effecting data transmission and transit delay problem limiting orbit height of satellites for telecommunication without impairing conversation quality through hybrid echo effect will be discussed by Vadasz and Haviland, GE, Lynchburg, Va.

Performance estimates of delayed time satellite repeater system will be discussed by J. Dressner, Army Signal Research and Development Lab., Ft. Monmouth, N. J., and study of orbital patterns proriding most efficient coverage of globe by Hight and Kreer, Bell Labs, Whippany, N. J.

Near-infinite channel capacity, capable of simultaneous transmission of several tv and hundreds of voice channels will be discussed by T. Hafner, Surface Conduction, Inc., N. Y.

Digitized transmission of speech at 1,000 bits per second will be discussed by Campanella, Coulter and Irons, Melpar, Falls Church, Va., through derivation of seven parameters digitized into a 23-bit code word sampled 43.5 cps to provide 1,000 bit serial digital stream. Receiving end of system decodes and converts stream to synthetic speech.

Automatic message handling system to be installed in downtown Manhattan in 1962 for worldwide communications net linking 68 countries will be described by Becken and Andres, RCA, N. Y.
G. I. Carlson, Motorola, Chicago, will discuss microwave communications system in which transistors substitute for all but one vacuum tube, solid state logic and switching circuitry may be used instead of solenoids and meter relays and harmonic generator supplants local oscillator to reduce size from four standard seven-ft racks to single unit, while increasing transmitter stability four to 10 times.

Stereo's Impact and Collins' Program Highlight Broadcasting Convention

WASHINGTON-Impact of the Federal Communications Commission's recent approval of the multiplex system of f-m stereo broadcasting dominated the 39th annual convention of the National Association of Broadcasters here last week. In all, 3,000 persons attended.

Exhibitors, anticipating the surge of interest, displayed new equipment that had been hurriedly prepared for the convention after the decision was announced.

Equipment makers showed lines along two fronts, for the broadcasting stations and the listeners. Orders, particularly for new broadcasting units, were being placed at a fast pace.

Fisher Radio and Scott were showing new f-m stereo adapters that can be used by the listener. Prices on the adapters ranged from around $\$ 45$ to $\$ 90$ for self-powered units. Units that take their power from the set won't be so expensive, but no units were demonstrated and manufacturers shied away from predicting a price.

The big showing on home adapters is expected to come in September at the New York hi-fi show.

Klystron Tester Crackles

Lightning-like bolts test klystron tubes used in radar. Sperry facility can deliver 100 million watts of peak power

Then, it is expected that virtually all manufacturers of f-m tuners will be exhibiting their own lines of adapters.

Manufacturers don't see any mass movement to dump existing f-m equipment dealers have on the shelf. Reason is, for the past couple of years most manufacturers have been providing space in f-m tuners for the adapters needed in anticipation of FCC approval of stereo broadcasting.

Buoyed by the FCC decision, National Association of Broadcasters' president Leroy Collins bluntly told the convention he wanted support for a new program he has laid out for the industry.
"If you do not approve of the course I have outlined for NAB," Collins told the broadcasting industry, "I want you to say so. If you do approve, I want your supportyour active support, not just your acquiescence."

Keyed to this tone, Collins then laid out this program:

- For the broadcasting industry to become the initiator, rather than the defender, of legislative proposals relating to the industry.
- The establishment and operation of an NAB research center.
- For the broadcasting industry to begin an imaginative and energetic public-relations program.

Collins lashed out at pay-tv and warned that its acceptance could mean the ultimate elimination of free television with the public the ultimate loser.

The networks, Collins continued. should provide more quality programs and the advertisers should support them.

Federal Communications Commission Chairman Newton N . Minow backed up Collins in calling for advertiser support for quality programs.

The FCC chairman told the industry:
"We need imagination in programming, not sterility ; creativity, not imitation; experimentation, not conformity; and excellence, not mediocrity.

German air traffic control digital computer TR4 (Telefunken) is part of new system installed in Frankfurt

British Output Rises 25% In Five Years

BRITAIN'S electronics industry ouz put, excluding telecommunication: equipment, now exceeds $\$ 700$ million a year.

This is an increase of 25 percent in five years and exceeds the prewar figure 10 times.

About half of present output consists of consumer electronics, mainly radio and television receivers. Electronic capital goods account for about $\$ 140$ million. British authorities estimate 2,000 different products are being placed on the market.

The electronics labor force, which has doubled in the past decade, now totals around 230,000 and equals the number of people making electrical machinery in the British Isles.

Over seven percent of United Kingdom scientists and engineer: working in industry are employed in electronics, according to a British Treasury report, and two-thirds of these are involved in research and development.

A recent British study found that 12 percent of electronics industry output is now being spent on research.

This, for England, exceeds the percentage spent by any other industry except aircraft.

HOW DO YOU RATE AS A VENDOR?

By ROY J. BRUUN,
Assistant Editor

TODAY potential customers are taking a long hard look inside their prospective vendors' factories before signing contracts. Object is to spot potential trouble with deliveries or quality before it occurs. Afterwards, when the contract is in force, representatives of the customer's purchasing department keep up their vigilance. If things slip, they may move in with you.

Here is how a medium-sized firm, large firm and smaller firm rate their prospective vendors before letting contracts and how they follow up after contracts are let:

At Arma division of American Bosch Arma, members of the internal liaison staff complete source questionnaires to evaluate capabilities of possible bidders. Answers are based on visits to vendors.

The source questionnaires cover: adequacy of technical library; amount of vibration-test equipment; vintage of model shop equipment; whether firm is engaged in work of equal complexity; plant efficiency; plant morale; cooperation displayed; test techniques; assembly and wiring capability; variety of work; type and amount of test instruments; caliber of lab people; computational facilities.

At a conference attended by bidders selected on the basis of the completed questionnaires, the product design specification data are reviewed, technical and program-
ming requirements outlined, terms and conditions stated, hardware demonstrated, Arma's policies are highlighted and all questions pertaining to the bid answered.

After the conference, purchasing releases to the bidders a request for proposal which in addition to information discussed at the conference includes schedules and form of contract, cost-plus-fixed-fee (CPFF), fixed-price-redeterminable or other.

A price-analyst from purchasing's support section summarizes the bid-pricing data and prepares an abstract of each bidder's proposal. He is assisted by engineers and other specialists from various Arma departments.

Proposal abstracts permit comparison among bidders of required man hours, hourly rates, burden rates, general and administrative rates, profit and conformity to schedule requirements.

The internal liaison staff reviews the abstracts and the technical proposals and rates bidders on experience, personnel and facility to do the work, engineering approach and technical concept, production methods and reliability control, cost and pricing structure, overall program plan, and effective management.

On the basis of rating, purchasing recommends a vendor to top management for approval.

During the contract, the internal liaison staff will visit the vendor's plant unannounced in an effort to check if he is either maintaining or
improving his original capabilities.
If it looks as if delivery dates may be missed because of significant design changes, expedited delivery requirements, and other emergencies, Arma's management support team physically moves into the subcontractor's plant to assist in a recovery effort.

Headed by a purchasing man, the team has members from engineering, manufacturing, product reliability and the program manager's office. The team reports to the purchasing manager.

Careful and elaborate sizing-up of potential suppliers is done by RCA's Industrial Electronics Products activity. Performed by value analysts from purchasing, the sizeup is guided by a vendor survey report. Among questions posed: is the potential vendor now producing products requiring government quality and specification standards? Do production and engineering capabilities appear adequate to do work up to missile standards?

These questions do not mean IEP is going into the missile business; they do emphasize its interest in high quality parts for industrial products in the face of an increasingly competitive climate.

Under employees and labor relations, the forms asks: shop union? Office union? Their names? Expiration dates of union agreements? Previous strike experience? Copies of union agreements and contracts?

Also wanted: information on number of graduate engineers, an

RCA processing diagram shows expense and inconvenience to vendor and customer caused by rejected products
appraisal of management's experience and capabilities, firm's position in case of mobilization, a copy of the potential vendor's quality-control manual.

The form also asks: how many shift hours are being worked in the first, second and third shifts? Are adequate production records maintained? Is the procurement system adequate? How much of available equipment is company owed?

Purchasing also wants to know if the supplier is capable of performing in the field of endeavor without extensive subcontract support.

In addition to IEP's initial evaluation of vendors, the quarterly vendor rating report is maintained by purchasing's follow-up personnel. These people are in day-to-day contact with suppliers. The report indicates the number of lots inspected and the number of lots found to be defective.

A vendor rated as A would have

ARE SEPARATE DEPARTMENTS WITH SKILLED PERSONNEL AVAILABLE FOR THE FOLLOWING?

	Seporote Dept.	
	Yes	No
Procurement		
"Order Follow-UD"		
Personnel		
Field Service		
Mointenonce		
Security		
Fincnce		
Cost Control		
Sales		
Controct Adminstration		
Operations Control		
Planning 8 Scheduling		
Production		
Testing		
Quolity Control		
Engineering		
Research \& Development		
Traffic		

Excerpt from a vendor survey report form used by RCA's Industrial Electronics Products activity. The form runs into several pages

With the revolutionary new Potter High Density Recording System, one tape transport has the capacity of 5 or more conventional transports.
For highly reliable computer applications, Potter High Density Recording can give you data transfer rates of 360,000 alpha-numeric characters per second. at densities up to 1500 bits per inch on 1 -inch tape. Sixteen parallel channels can be accommodated on one-inch tape. Because Potter has made the information channels self-clocking, no separate clock channel is needed, and multichannel data can be read out in true parallel form, despite interchannel time displacement.
in production units delivered by Potter for the BENDIX G- 20 COMPUTING SYSTEM at the Carnegie Institute of Technology, this dramatic new technique makes recording so reliable that in 40 hours of continuous operation less than 2 seconds re-read time are required to recover information lost through transient error. Dropouts are fewer than 1 bit in 10 billion at 1100 alpha-numeric characters per inch. More than 20,000 passes of the tape can be made without losing information or significantly increasing the reading error rate.
Tested and proven in computer systems, Potter High Density Recording is presently available in the Potter 906II High Speed Digital Magnetic Tape Handler, and will be available in other Potter Tape Systems.
Write today for details on how High Density Recording can be applied to your data handling problem.

POTTER INSTRUMENT COMPANY, INC. • SUNNYSIDE BOULEVARD, PLAINVIEW, NEW YORK

Vendor . . .

between 0 and 3 percent defective material. He is classified as a satisfactory supplier. Rating B indicates 3.1 to 10 percent defective lots and that improvement is required. The vendor receiving a C would have rejects at the rate of 10.1 percent and over, and is considered to be unsatisfactory.

Delivery ratings are also given. The ratings 1,2 and 3 indicate satisfactory, improvement required and unsatisfactory.

IEP's experience has indicated that quality and delivery go hand in hand so that if a supplier is unsatisfactory in quality, he is usually unsatisfactory in delivery. The reports are mailed out to all suppliers, and those who are unsatisfactory are called in far further discussion. Every vendor is given every opportunity to improve his rating, but if he is unsatisfactory for three successive quarters, he is dropped.

Huyck Systems' purchasing department relies on a vendor survey quality control rating sheet. Items such as the following are checked: condition of equipment (is there a program of maintenance and calibration?) ; does quality control or inspection report to production? (no-100 points, yes- 0 points) ; is there a quality control manual? ; are formal inspection records maintained and are they adequate?; is equipment government approved?

A vendor performing special processes such a welding, X-ray, plating, anodizing, magnetic particle inspection is automatically disqualified if he does not have gov-ernment-approved equipment.

In obtaining conventional components, Huyck limits itself mainly to three suppliers bidding on individual orders. With some components such as transformers it will have the winner of a previous threebidder competition bid with another set of two suppliers, and will continue this to keep active with a number of vendors to reap the benefits of new designs as well as gaining price and quality advantages.

Once a vendor has had an inspection visit, Huyck will make other visits only in response to deteriorating performance. Afterwards, if the vendor does not improve his performance, he is dropped.

Soviet Cosmonaut's Cabin Instruments

INTERIOR of Soviet Union spaceship's cabin (photo) shows controls and instruments used by Yuri Gagarin in his recent orbital flight. Visible are:
(1) Pilot's dashboard for control of cabin temperature, radiotelephone systems, and the switching in of manual control for functions such as engine retardation. Two sets of flight instruments for manually controlled descent are provided. Beneath a band extending from forty to sixty kilometers above the earth, conventional aerodynamic controls are used. Above this band inertial controls are employed.
(2) Instrument panel with mounted clock. Also present is a globe which revolves in synchronism with the vehicle's motion in orbit, to aid the pilot in determining his position in flight.
(3) Television camera. Two images of the pilot are transmitted back to earth. (Second lens not identified.)
(4) Optical instrument (not otherwise identified) and illuminator.
(5) Handle for manual control of ship orientation. Automatic orientation in descent and landing is accomplished by an optical and gyroscopic sensing system which feeds signals to an electronic coverter for transformation into commands. When the vehicle is properly oriented, the retarding engine is fired. Commands for switching on the
orientation system, retro engine and other systems are issued by an electronic programming control.
(6) Radio receiver and (7) container with food.

The spaceship carries a radiometer for orbital measurements, and telemetry system for transmission of this information to earth.

A radio transmitting system provides tracking assistance and sends other telemetry information on 19.55 Mc .

Communication with earth is performed on a two-way radiotelephone which operates on $9.019 \mathrm{Mc}, 20.006$ Mc and 143.625 Mc . The pilot also has a telegraph key for c-w operation.

Contact with the Soviet Union could be carried out during most of the orbit. A tape recorder transcribes the pilot's voice in flight for subsequent transmission over ground receiving stations if desired.

Ninth Czech Tv Station

Begins Operations
prague-Czechoslovakia's ninth television transmitter went into operation recently in the community of Dubnik near Presov.

Location of the station in eastern Czechoslovakia indicates the equipment may be used as a relay station between this country and the Soviet Union.CHARACTERISTICS

- HIGH RESISTANCE TO NUCLEAR RADIATION

Write for FREE Helpful Bulletins

Bulletin A-7R provides detailed description and specifications of Alite. Bulletin A-40 describes Alite facilities and complete line of standard bushings.

ALITE

Looking for ways to improve reliability, reduce maintenance problems? The unique advantages of Alite high-alumina ceramic-to-metal seals may be just what you need!

With maximum working temperatures in the range $1300^{\circ}-1600^{\circ} \mathrm{C}$., Alite can be metallized and brazed to metal parts to form rugged, vacuum-tight seals which, in turn, can be welded into final assemblies.

From design to finished part, every manufacturing step - including formulating, firing, metallizing and testing - is handled within our own plant and carefully supervised to assure strict adherence to specifications, utmost uniformity and reliability.

Over 100 standard sizes of Alite bushings in a range of types are available to simplify design problems and speed delivery. However, when special units are called for to meet unusual requirements, a team of Alite engincers stands ready to help you take advantage of Alite's superior properties.

CAN YOU ALWAYS FORECAST DEA WORKLOADS?

Anticipating peak loads is difficult . . . variables are involved. Even so, once they're forecasted-how do you cope with them? Overloading skilled manpower can reduce efficiency and endanger reliability within any technical organization.
A good solution is to utilize specialized assistance such as provided by the RCA Service Company. Depending on your requirements, RCA's service arm can assign one . . . five $\ldots 100$ or more specialists to assist you. This reserve of stable technical talent is familiar with complex electronic equipment and systems. It's a ready-made back-up support you need to handle unanticipated workloads and special assignments.
Highly skilled personnel are available in these specialized areas:

\author{

- Electronics
 - Electrical Engineering
 - Reliability Analysis
 - Maintainability Prediction
 - Space Environmental Chambers
}

It makes good business sense to utilize qualified manpower customed to assist you in specific assignments. RCA Service Company has been providing this type technical support for almost two decades to the U . S . Armed Forces, governmental agencies and prime contractors.
Look to RCA for ingenuity and excellence in technical support services. You can meet your requirements during peak loads and still maintain the quality of your in-plant capabilities.

For complete information, contact J. R. Corcoran, Location 206-2, RCA Service Company, Camden 8, N.J.

The Most Trusted Name in Electronics
radio corporation of america.
ingly lower transmitter power might make the receivers susceptible to ignition interference and jamming.

Urges More Research For New Components

SAN Francisco-Keynoting the 1961 Electronic Components Conference here earlier this month, James Bridges, director of electronics, Office of Director of Defense Research and Engineering, spoke out for curbing the weaponssystem concept and for more applied research to develop radically new components and concepts. About 500 attended the three-day meeting.
"I think the weapons-system pendulum has swung a little too far," said Bridges, who believes research and development management has become too strongly systems oriented. The result, he says: a lot of money spent to achieve marginal improvements over existing weapons systems and too little spent on applied research to develop radically new concepts.

Bridges placed most, but not all, of the blame for this situation at the doorstep of government. "The government has created in the defense electronics industry a competitive and profit-or lack of profit -situation that makes a very extensive involvement in applied research appear unattractive to most companies," he said.

Bridges proposed two fundamental changes in fiscal policy and management organization to foster what he called "more thought given to weapons of the future."

One change would be establishment of a separate budget category for applied research, and "building a fence around that money" so that it may not be diverted for systems.

Bridges suggested the possibility of combining applied research funds with basic research funds, since the latter are already well established in most levels of the military.

The second suggested change is to establish in each military service a management organization for applied research and component development "that will remove the planning and direction of these important R\&D areas from influence of weapons-system managers."

AVAILABLE IN FREQUENCIES FROM 20 CPS to 90 KC

Massa Sound Pressure Microphones employ ADP (Ammonium DiHydrogen Phosphate) crystals as the active elements for the best combinations of reliability, stability, and accuracy. These proven microphones are in widespread daily use in highly critical fundamental acoustic measurements over both the audible and ultrasonic ranges.
For example, in the study of scaled-down test jet and rocket engines, the resonant frequencies reach well into the ultrasonic frequency range. Without adequate microphones subtle sonic waveforms, indicative of expected full scale sounds, will be missed.

Massa Sound Pressure Microphones Provide:

- EXCLUSIVE ADP Crystals: For maximum reliability, stability, and accuracy.
- Wide Frequency Range: From as low as 20 to as high as $90,000 \mathrm{cps}$.
- Wide Dynamic Range: Linear to Sound Pressures in Excess of 200 db .*
- Near Infinite Acoustical Impedance: No loading of sound field.
- Omni-Directional Pattern: For sure pickup of sound in difficult areas.
- Small Size: Diameters from $5 / 8$ inch to less than $1 / 4$ inch . . . for easy probing of small cavities.
*above 0.0002 microbars.
There is a complete line of Massa Sound Pressure Microphones from which you may select the unit best suited to your application.
Massa designed and manufactured companion equipment, Adaptors, PreAmplifiers, and Power Amplifiers are available to facilitate installation.
Write for Technical Bulletin SPM-5

When does it pay to pay more for a digital voltmeter?

You can buy an NLS Digital Voltmeter for as little as $\$ 1,125$

...but there are many times when it pays to pay much more! When accuracy, reliability, specd, scrvicing case or versatility cannot be compromised, you'll gain far greater long-term econony by specifying one of these premium NLS instruments:

M24 Multi-Purpose InstrumentMeasures DC voltage from $\pm .0001$ to ± 999.9 and DC voltage ratio to $\pm .9999$ ($\pm 0.01 \%$ accuracy), resistance from 0.1 ohm to 1 megohm...1/3 second balancing time...with accessories, measures AC voltage or AC ratio, low-level DC... completely automatic... output for data logging.
\$5,650
V24 Voltmeter-Ratiometer - Similar to M24 except it does not measure resistance. \$4,950

R24 Ratiometer-Measures DC ratio with ranges of $\pm .9999 / 9.999$. $\$ 4,650$
(2) V44 All-Electronic Voltmeter-200 readings per second... measures DC voltagcs from ± 0.001 to $\pm 999.9 \ldots$ output for data logging... input impedance 10 megohms on all ranges without internal or external preamplifiers...recommended for high-speed applications requiring maximum reliability and dependable $\pm 0.01 \%$ accuracy...there are no decade or amplifier potentiometers to trim; the V44's "NO POTS AT ALL" stability is designed in, not trimmed in.
\$6,150
V35A Transistorized VoltmeterRationeter - This all-transistorized instrument is the fastest, most versatile, true 5 -digit voltmeter with the Factual Fifth Figure, full 5-digit resolution of 0.001% . measures DC voltage from ± 0.0001 to ± 999.99. DC voltage ratio from $\pm 00.001 \%$ to $\pm 99.999 \%$... with accessories, measures AC voltage, low-level DC ... features No-Needless-Nines logic, plugin oil hath stepping switches... output for data logging.
$\$ 3,750$
V34A Transistorized Voltmeter Ratiometer-4-digit quality and performance companion to V35A
$\$ 3,150$
NLS offers a complete line of digital voltmeters...both by purpose and by price. In addition to these premium instruments, six low-cost models in the Industrial Series are offered by NLS, pioncer of low-cost DVMs. To see any NLS instrument in action or receive more information, write NLS or contact any NLS office or representative.
non-linear systems, inc. DEL MAR, CALIFORNIA

Dataspeed, ligh-speed paper tape transmission system by $A T \& T$, sends 750 bits a second over regular telephone lines. Photo shows teletypewriter with tape reader and much attachments (left), Dataspeed tape punch or receiver (center), and tape reader or transmitter.

Data System Uses Regular Phone Lines

AN ASSORTMENT of equipment using solid-state circuits unveiled recently by the Bell System will make telephone lines more useful for businessmen and engineers.

Dataspeed, a high-speed teletypewriter tape transmission system, exceeds present equipment speeds by a factor of ten. This means a 5,000 -word message can be sent using regular telephone lines in about five minutes instead of fifty, with a proportionate cost saving. The system uses five-level punched paper tape, will be available late this year.

Data-Phone uses telephone lines to link data-processing equipment at speeds up to 1,600 words per minute. It will handle any type of data in any machine language, including handwriting and diagrams.

The digital information is converted to audio frequencies for tele-phone-line transmission and reconverted at the receiving end.

The equipment comes in four sizes, according to information handling capacity and speed. Series 100 is suitable for banks or airline ticket offices, with two-way communication. Series 200 , with $1,600 \mathrm{wpm}$, will fit the speed of most
business data processing systems now in use. Series 400, with a relatively slow (20 wpm) speed is designed for one-way data gathering systems such as branch inventories, saies orders or payrolls. Series 600 is suitable for transmitting handwritten messages or drawings. using devices such as Comptometer's Electrowriter.

For the general telephone user there are three automatic dialing systems that speed up calling oftendialed numbers and reduce dialing errors. A card dialer, built integrally with a telephone set, has plastic cards, prepunched by the user for different numbers and kept in a small file. Inserting a card and pressing a button initiates the dialing process.

Dialaphone, a telephone attachment, uses a paper tape loop, again prepunched by the user, that will hold 850 different numbers. The user selects the name of the person and presses a button; the number is dialed automatically.
Rapidial, a third system, operates the same way but uses magnetic tape that can be preprogrammed, altered of erased. Its capacity is 290 telephone numbers.

Model	Meter	Description	Price
301-1 AC TRVM	$31 / 2^{\prime \prime}$		
302-1 AC TRVM	$31 / 2^{\prime \prime}$	zero-left, from 10MV range zero-center, phase sensitive, from $\pm 10 \mathrm{MV}$	$\$ 250.00$
303-1 AC TRVM	$21 / 2^{\prime \prime}$	50% less panel area than Model 301-1	275.00
304-1 AC TRVM	$21 / 2^{\prime \prime}$	zero-center, phase sensitive, from $\pm 10 \mathrm{MV}$	300.00
305-1 DC TRVM	$31 / 2^{\prime \prime}$	zero-center, no zero-set, $\pm 100 \mathrm{MV}$ range	225.00
305-2 DC TRVM	$31 / 2^{\prime \prime}$	zero-left version of $305-1$, 250 MV range	225.00

Note: Due to heavy demand, present delivery of most models is $6-8$ weeks. For complete titerature, write to Dept. E-5.
© 1960. Trio Laboratories, Ine.

May 22-24: Communications Symposium, (GLOBECOM V), PGCS of IRE, AIEE; Sherman Hotel, Chicago.
May 22-24: National Telemetering Conf., PGSET of IRE, AIEE, IAS, ARS, ISA ; Sheraton Towers Hotel, Chicago.
May 22-24: Electronic Parts Distributors Show, Electronic Industry Show Corp.; Conrad Hilton Hotel, Chicago.
May 23-25: Large Capacity Memory Techniques for Computing Systems, Office of Naval Research; Dept. of Interior Auditorium, Wash., D. C.
May 31-June 2: Frequency Control Symposium, U.S.A. Signal R\&D Lab.; Shelbourne Hotel, Atlantic City, N. J.

May 31-June 2: Radar Symposium, Univ. of Michigan Inst. of Science \& Technology; Ann Arbor, Mich.

June 6-8: Instrument-Automation Conf. \& Exhibit, ISA; Royal York Hotel, Toronto, Ontario, Canada.

June 8-9: National Electrical Manufacturers Assoc., NEMA; Biltmore Hotel, Los Angeles.
June 12-17: Components \& Materials Conf., Institution of Electrical Engineers; London.

June 14-15: Product Engineering \& Production, PGPEP of IRE; Sheraton Hotel, Philadelphia.

June 15-16: Broadcast and Television Receivers, PGBTR of IRE, and Chicago Section; O'Hare Inn, Des Plaines, Ill.

Aug. 22-25: WESCON, L.A. \& S.F. Sections of IRE, WCEMA; Cow Palace, San Francisco.
Sept. 11-15: Instrument Automation Conf. and Exhibit, ISA; Sports Arena, Los Angeles.
Oct. 9-11: National Electronics Conf., IRE, AIEE, EIA, SMPTE; Intl. Amphitheatre, Chicago.

Nov. 14-16: Northeast Research \& Engineering Meeting, NEREM; Commonwealth Armory and Somerset Hotel, Boston.

THIS remarkable plastic may trigger a new (or cost-saving) design idea for you

National Vulcanized Fibre is unique. It's a tough, cellulosic plastic-not mere paper or fiberboard. Vulcanized Fibre possesses an unusual combination of mechanical, electrical and thermal properties. For example.

It weighs one-half as much as aluminum, yet is one of the strongest materials known per unit of weight. It's tough, durable and cushions the shock of repeated blows.

Vulcanized Fibre has superior arc-resistance. It comes in standard and special grades, including a fire-resistant grade called "Pyronil." It can be machined, formed or deep-drawn into intricate shapes, and can be combined with other materials . . . aluminum, rubber, "Mylar," copper, laminated plastic, plywood, to name a few.

You can polish it, paint it, lacquer it, emboss it. And regardless of the finish, it resists oils, gasoline, fungi, most solvents. Most surprising is its low cost.

Find out for yourself why National Vulcanized Fibre is "the plastic with a million uses." There's a free sample kit
waiting for you at a nearby NVF sales office. Check Sweet's Product Design File 2b/Na for the one nearest you. Or write directly to Dept. P Wilmington, Delaware.

> 116 Choices: One Source This is the latest count of the different plastics and grades NVF can offer in your search for the one best material. Add to this total the one special grade that can be developed from scratch to meet your particular need. This full range of materials is backed by complete engineering services.. from application assistance up to and including the delivery of 100% usable, precision-fabricated parts. . in any quantity, on time!
> Call the NVF Sales Office near you. It's a direct line to single-source help on your current materials problem.

NVF

NATIONAL VULCANIZED FIBRE COMPANY WILMINGTON 9 G. DELAWARE In Canada: national fibre company of canada, LTO., Toronto 3, Ontario

3 thermoplastics . . . nylon, Delrin ${ }^{(1)}$, Penton ${ }^{(1)}$

FROM A SINGLE FIXED PAD to a 12-POSITION AUTOMATIC STEP ATTENUATOR...ewnire can meet YOUR COAXIAL ATTENUATOR NEEDS... RATINGS FROM 1-50 WATTS...FOR OPERATION FROM DC $T 010$ KMC

- Low VSWR • Excellent accuracy • Optimum reliability
- High stability deposited carbon elements
- Rugged construction
- Conservative power ratings for $C W$ and pulse operation

edFor further technical information, send for Catalog 614 to:

In the design of the highly sophisticated circuitry for this advanced recorder, engineers at Ampex selected AllenBradley quality electronic components to meet the critical requirements for reliability, long life, and quiet operation. For example, the use of Allen-Bradley potentiometers - with their exclusive solid, hot molded resistance element-assures smooth control at all times. There are never any abrupt changes in resistance during adjustment as in wire-wound resistors. Also the "noise" factor is extremely low initially, and it decreases with use.

Allen-Bradley composition fixed resistors-also made by an exclusive hot molding process-are fantastically uniform. Their electrical characteristics are so consistent from resistor to resistor that performance over long periods of time can be accurately predicted. And catastrophic failure is unheard of-when you use Allen-Bradley composition resistors.

For the ultimate in reliability and performance, insist on Allen-Bradley quality electronic components. Send for Publication 6024 today.
Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis. In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

Portion of one of 14° CRT monitors, each containing 8 A-B Type G Potentiometers.

A-B QUALITY ELECTRONIC COMPONENTS USED IN AMPEX WIDE-RANGE RECORDER

Adjustable Fixed Resistors

Type G Potentiometers

Type J
Potentiometers

ALLEN-BRADLEY

QUALITY ELECTRONIC COMPONENTS

Most companies think there's only one way to design a klystron.

But Eimac knows there are three.

Some rf ranges and requirements call for an internal cavity klystron. Others, an external one. For still others, a combined internal-and-external cavity is best. That's why Eimac designs klystrons all three ways. (And why it has more high power klystrons operating throughout the free world than all other makers combined.) Fact is, that's how Eimac designs every tube: to meet your specific needs. For data on Eimac klystrons shown above $14 \mathrm{KP} 40,000 \mathrm{SQ}$, internal cavity; $4 \mathrm{~K} 50,000 \mathrm{LQ}$, external cavity; $5 \mathrm{~K} 210,000 \mathrm{LQ}$, combined internal. and-external cavity) contact your Eimac representative or write: Power Klystron Division, Eitel-McCullough. Inc., San Carlos. Calif.

ENGLISH ELECTRIC CANADA

 USES NATVAR

TO TAPE

 STATOR COILS

This unit, one of four built by English Electric for export to Europe, is a 4500 HP. 6000 V, 3-phase. 50 cy. synchronous motor stator. Coil ends are taped with Natvar Teraglas, a new flexible insulating material comprising a base fabric woven from polyester (polyethylene terephthalate or "Dacron") warp yarns. and continuous filament glass filler yarns. coated with an improved varnish possessing exceptional dielectric strength under elongation.

English Electric Canada, Toronto, Ontario, Division of John Inglis Co. Ltd. manufacture electrical motors, controls, transformers and switchgear. for use in important installalions throughout the world.
They have found that Teraglas offers several distinct advantages over the thirsty cotton base tapes formerly used. At no advance in material cost, Teraglas is more readily applied to coils; the higher dielectric strength of Teraglas results in a better insulated coil; and better heat resistance provides a greater safety factor against high operating temperatures due to overloading.
If you are presently using conventional materials. it will pay you to consider the ease of use and extra protection of Teraglas. It is made in four standard thicknesses, $.008^{\prime \prime}, .010^{\prime \prime}, .012^{\prime \prime}$ and $.015^{\prime \prime}$, available in sheets. rolls or tapes in black and yellow.

Teraglas U.S. Pat. Of. (Natvar Corp.)

Natvar Products

- Varnished cambric-sheet and lape
- Varnished canvas and duck-sheet and tape
- Varnished silk and special rayonsheet and tape
- Varnished papers-rope and kraffsheet and lape
- Varnished, silicone varnished and silicone rubber coated Fiberglas*sheat and tape
- Slot cell combinations, Aboglas ${ }^{\circ}$
- Taraglase
- Isoglas ${ }^{\circ}$ sheet and tape
- Isolastane sheet, tape, tubing and sleeving
- Vinyl coated and silicone rubber coated Fiberglas lubing and sleoving
- Extruded vinyl fubing and tape
- Styrofex ${ }^{*}$ fexible polystyrene tape
- Extruded identification markers - TM (Reg. U.S. Pot. Off.) OCF Corp.

We will be vary happy to supply information on any of our producta on request.

Keeping tabs on the nickels, dimes, quarters that go into hundreds of vending machinesthat's what Veeder-Root electrical and mechan ical counters' do with unfailing accuracy.

Special instrument counters play an important role on aerial cameras for many jobs such as locating plant sites, mineral prospecting and for general reconnaissance.

In making tin cans, and in packaging them, Veeder-Root electronic counters with photo electric input record production at speeds up to 300,000 units per minute.

Regulate, Actuate, Correlate with Veeder-Root Counters! Here's a fast, low-cost way for you to record facts....coordinate operations... automate your plant machinery. Whether you include these versatile counters in your new

Veeder-Root counting controls for industry, defense and space exploration

Radar and missile-tracking systems rely on the positive precision of Veeder-Root instru. ment counters for instant read-out of range and azimuth or coordinate position.

Veeder-Root indicating and remote digital read-out counters help maintain inventory control of packaged and fluid goods, recording usage, balance on hand, re-ordering points.

Watchman for water. Another job for VeederRoot counters. Installed on modern meters, these mechanical counters gauge flow... prevent waste of industry's precious raw material.
designs or add them to your present production line you increase equipment value and performance. Send for details on the latest developments. Write Veeder-Root Inc., Hartford 2, Connecticut. count on Veeder-Root

ANNOUNGING
 ANACONDA ML

FILM-COATED MAGNET WIRE FOR 220 C

Affords continuous high-temperature operation up to 250 C-resists heat shock up to 425 C

The exceptional heat stability of Anaconda ML Magnet Wire makes it ideal for electrical equipment operating at continuous high temperatures up to 250 C -such as high. temperature motors, relays and dry-type transformers. This same heat-resistant characteristic also makes ML Magnet Wire a valuable tool in miniaturization and in reducing the size of larger equipment.
Tremendous overload resistance (as demonstrated by ther-mo-plastic flow above 500 C and heat shock resistance over 400 C) makes ML Magnet Wire particularly suitable for portable tool armatures and other applications where "stall" conditions or unusual overloads may be experienced.
Essentially zero weight loss to $\mathbf{2 0 0}$ C makes it. possible to use ML Magnet Wire for relays that will operate at femperatures up to 250 C with low space factor and comparatively low cost. Using ML Magnet Wire in sealed relays practically eliminates contact contamination due to "outgassing" of wire insulation.
Other ML Magnet Wire advantages: high burn-out resistance and cut-through level; dry dielectric strength over $3,000 \mathrm{~V} / \mathrm{Mil}$; excellent flexibility; good windability and scrape resistance.

ML Magnet Wire is coated with a solution of ML Polymer,

 a new chemical development by duPont that represents atremendous improvement in heat resistance over organic coatings. ML Magnet Wire can be used as a replacement for most film-coated magnet wires, except solderable types, and many glass and glass Dacron wires. Where the positive inorganic spacing of glass is required, the combination of ML film and glass serving offers outstanding properties. ML Magnet Wire's combination of high temperature rating, excellent winding characteristics and space factor permits its use in many applications which formerly required the use of much more expensive combinations of ceramics and fluorocarbons.
ML Magnet Wire is available in all sizes of round, square and rectangular. Film additions are single, heavy, triple or quadruple thicknesses, all conforming with NEMA specifications. ML also meets all requirements of Spec. MIL-W583B for Class 180 Types H, H2, H3, and H4, and Class 200 Types K, K2, K3, and K4. For prices, technical data and applications engineering information, contact Department EFL-1-E, Anaconda Wire and Cable Company, 25 Broadway, New York 4, New York.

ANACOONDA
FOR ML MAGNET WIRE

Transitron

augmenting the industry's broadest line
 With the addition of the 50 -Amp Silicon
 TSW31S SERIES (TG-18 package)...

Controlled Rectifier, Transitron now offers the industry the broadest line of Controlled Rectifiers available on the market today.
Research and development efforts during the past year have already produced an impressive array of types which include the following series:

TCR251 SERIES (TO-5 package).........operating current range to 200 mA 2N1595 SERIES (TO-5 package)...........operating current range to 1 amp 2N1600 SERIES ($7 / 16^{\prime \prime}$ hex packe.....operating current range to 1 amp TCR505 SERIES ($7 / 16^{\prime \prime}$ hex package)... operating current range to 3 amps TCR510 SERIES ($11 / 16^{\prime \prime}$ hex package)...operating current range to 5 amps TCR520 SERIES ($11 / 16^{\prime \prime}$ hex package) operating current range to 10 amps

NOW AVAILABLE - NEW 50-AMP CONTROLLED RECTIFIER
 The latest addition to the Transitron line

 - the 50 Amp Silicon Controlled Rectifier signed to three-terminal, four-layer device dewigned to control very large load currents with small gate current signals. A mechanthe new Con and electrically stable device, the new Controlled Rectifier is provided in and is hermetically stud-mounted package power handling ablly sealed. Wherever high $50-$ Amp Silicon Controlled Rectifier will find wide application ranging from frequency changing to welding control.$$
\text { For information on any or all of Transitron'cs } 50 \mathrm{~mA} \text { to turn on } 50 \text { Amp }
$$

$\frac{\text { Type }}{\text { TCR4050 }}$	Min. Peak Reverse Volt. and Min. Forward Breakover Volt. (volts)	Max. Average Forward Current al $90^{\circ} \mathrm{C}$ case (amps)	Package Configuration
TCR4050	400 300	50 50	
TCR2050 TCR1050	200 100	50 50	11/18" hex
TCR550	100 50	50 50	$11 / 10^{\circ}$ hex $11 / 10^{*}$ hex

call or write today for Bulletin TE-1356.

WHY BIAS CONTROLLED RECTIFIERS?

THE

 BIASING OF SILICON CONTROLLED RECTIFIERS ANDSWITCHES

Pioneering in new application techniques, Transitron applica tion engineers have assembled inform, Transitron applicastrates how "gate biasing" will impormation which demonof the SCR. This informative bookrove the circuit reliability of Silicon Controlled Rectifiers and Switches "The Biasing vidually with each of Transitron's Conitches," deals indiSwitches. It is an indispensable aid to thed Rectifiers and seeking longer life and greater stability in highes te engineer applications... It's yours for the asking.

 14,336,000

Setting A New High Standard Of Performance!

* Life tests have proved that El-Menco Mylar-Paper Dipped Capacitors - tested at $105^{\circ} \mathrm{C}$ with rated voltage applied have yielded a failure rate of only 1 per $1,433,600$ unit-hours for 1.0 MFD. Since the number of unit-hours of these capacitors is inversely proportional to the capacitance, 0.1 MFD El-Menco Mylar-Paper Dipped Capacitors will yield ONLY 1 FAILURE IN 14,336,000 UNIT-HOURS.
CAPACITANCE AND VOLTACE CHART - Five case sizes in working voltages and ranges:

200 WVEC -	.018 to .5 MFD
400 WVDC	.0032 to .33 MFD
600 WVDC -	.0018 to .25 MFD
1000 WVDC -	.001 to .1 MFD
1600 WVDC -	.001 to .05 MFD

SPECIFICATIONS

TOLERANCES: 10% and 20%. Closer tolerances available on request.

- INSWLATION: Durez phenolic, epoxy vacuum impregnated.
- LEADS: No. 20 B \& S (.032") annealed copper clad steel wire crimped leads for printed circuit application.
- DIELECTRIC STRENGTH: 2 or $21 / 2$ fimes rated voltage, depending upon working voltage.
- INSULÁTION RESISTANCE AT $25^{\circ} \mathrm{C}$: For .O5MFD or less, 100,000 megohms minimum. Greater than .05MFD, 5000 megohm-microtarads.
- INSULATION RESISTANCE AT $105^{\circ} \mathrm{C}$: For .05MFD or less, 1400 megohms minimum. Greater than O5MFD, 70 megohm-microfarads.
- power factor at $25^{\circ} \mathrm{C}: 1.0 \%$ maximum af 1 KC
These capacitors will exceed all the electrical requirements of E. I. A. specification RS-164 and Military specifications MIL-C.91B and MIL-C.25C. Write for Technical Brochure

MINIMUM LIFE EXPECTANCY FOR **1.0 MFD *MYLAR-PAPER DIPPED CAPACITORS AS A FUNCTION OF VOLTAGE \& TEMPERATURE

[^0]
WATCH THIS SPAGE

In a moment a new satellite will streak into view. Bell Laboratories may help guide it into orbit, for few are so eminently qualified in the science of missile guidance. Bell Laboratories' Command Guidance System has guided such trailblazers as Tiros and Echo into precise orbits. The same system will guide more new satellites into predetermined orbits as Bell Laboratories continues pioneering in outer space to improve communications on earth.

BELL TELEPHONE LABORATORIES
World center of communications research and development

New MADT \& Epitaxial Planar

CBS Electronics 0pens ${ }^{\$ 5}$ Million Engineering and Production Facility

Diffusion Furnaces shown here process thin epitaxial layers of high-resistivity material for CBS planar transistors.

In modern architecture, form follows function.

This concept is dramatically demonstrated by the new CBS Lowell Progress Center which specializes in semiconductors for computer circuitry. This most modern engineering and production facility is designed to advance immediate and long-range developments in solid state technology and processes.

The Lowell Progress Center is currently supplying industry with a broad line of rugged and reliable semiconductors: *MADT, *MAT and *SBT switching transistors-PNP and NPN germanium high-power transistors-gold-bonded and point-contact diodes. An advanced line of CBS epitaxialplanar silicon transistors will soon be available in production quantities.

Close cooperation between CBS Electronics and CBS Laboratories is helping to shape the future of solidstate technology through the CBS microelectronics program. Under way for the past two years, this program concentrates on basic approaches to thin-film deposition on inert substrates. It stresses also the development of microminiature devices featuring increased packing densities and reduced power levels for use in compact computers.

Learn about present and future semiconductor advances coming from the Lowell Progress Center. Investigate how the broad capabilities of CBS Electronics can help you achieve your solid-state objectives. Write today to CBS Electronics, Semiconductor Operations, Lowell, Massachusetts.

Semiconductor Progress Center

Lowell Progress Center concentrates on the engineering and production of CBS semiconductors for computer circuitry. Functional design gives the 200,000 square feet of plant space built-in flexibility to help in achieving highest standards of quality and reliability. Close cooperation with CBS Laboratories promises new and exciting solid-state developments for the futere.

Mass Production of MADT high-speed switching transistors is accomplished on the most up-to-date equip. ment in the semiconductor industry. Exceptional reliability and uniformity are assured by automatic in-line production permitting 100% inprocess quality control of each transistor.
$\xrightarrow{\rightarrow}$

semiconductors

More Reliable Products through Advanced Engineering
CBS ELECTRONICS, Semiconductor Operations, Lowell, Massachusetts
A Division of Columbia Broadcasting System, Inc. - Semiconductors • tubes • audio components • microelectronics Sales Offices: Lowell, Mass., 900 Chelmsford St.. GLenview 2-8961 • Newark. N. J.. 231 Johnson Ave., TAlbert 4-2450 • Melrose Park, III., 1990 N. Mannheim Rd.. EStebrook 9-2100 - Los Angeles. Calif., 2120 S. Garfield Ave., RAymond 3-9081 - Toronto, Ont., Canadian General Electric Co., Lid., LEnnox 4-6311.

Two 4-Bit Transfer Gates (Actual Size)

Three Binary Circuits with Set-Reset Gates (Actual Size)

Five $4-$ Input NOR Gates (Actual Size)

An example of Intermountain Solid State Circuit design capability...

HIGH RELIABILITY SOLID STATE PRINTED CIRCUIT CARDS

CURTISS-WRIGHT

CORPORATION
Electronics Division Inter Mountain Branch
5400 Acoma Road, S. E. P.O. Box 8324
Albuquerque, New Mexico
Telephone: Amherst 8-2474

For circuits, instruments and systems ... the Intermountain Branch of the Curtiss-Wright Electronics Division will utilize its highly developed solid state circuit design techniques to design and process Standard or High Density Miniaturized Solid State Printed Circuit Cards, comparable to the high quality units shown above. Proven reliable in operational Intermountain instruments and systems, these precision built Solid State printed circuit cards can be tailored to your specifications and requirements - meet exacting standards of quality, reliability and performance over a wide range of operating conditions. Write today for information or a quotation on your Solid State Printed Circuit requirements.

EXPOSED.... a reliable square trimmer design set it...forget it

Superior shock and vibration characteristics ... made possible by an exclusive selflocking, anti-backlash gear. Once you set IRC's new $1 \underline{\underline{\prime}}$ " square Circuitrim, forget it. The square trimmer remains at its set position even under conditions as severe as MIL-E-5279A, Procedure 1 vibration and MIL Standard 202 Method 202 shock test.
Superior humidity characteristics . . . pressure seals around leads and the drive screw make a lasting moisture barrier. Potting compound won't get in, silicone lubricant can't ooze out, even at the temperature extremes of dip soldering.
Superior mechanical design... fewer parts and inherently less noise. Rotation stops and slip clutch keep wiper from
traveling off end of winding and prevent mechanical abuse. 10 ohms to 50 K ohms, 1 watt. Teflon leads standard; printed circuit terminals a vailable.

A NEW TRIMMER WITH INCREASEO RELIABILITY ACHIEVED THROUGH SIMPLIFIED DESIGN.
Possesses the same quality electrical assembly as the $1 / 2^{\prime \prime}$ square Circuitrim. This unique design has eliminated the complex mechanical linkage used for adjustment, thereby giving a quality reliable trimmer for your highly competitive applications. 10 ohms to 50 K ohms, 1 watt. $1 / 2^{\prime \prime}$ diameter.
Write for technical bulletins. International Resistance Company, 401 North Broad Street, Philadelphia 8, Pa.

from the Cesium atom...

THE ATOMICHRON*

Universal Time, denoted A-1, was established by the United States Naval Observatory through the use of National's Atomichron* National Company has applied the internal resonance of the cesium atom in producing a device which is the world's first truly primary standard of time and frequency.

D.C POWER

GILIGON CONTROLLED REGTIFIER REGULATED

WHAT TI's $50-100 h_{\text {FE }} @$

IN AMPLIFIER CIRCUITS

In a common emitter amplifier, with emitter feedback, high-beta transistors offer the following advantages:

1. Comparing high and low beta transistors in an identical operating circuit with typical beta spreads of 2 to 1 , the use of high-beta transistors provides reduced loading on the bias network thereby reducing the shift in the DC operating point.
2. The voltage gain of the circuit is: $A_{v}=-\frac{i_{2} R_{L}}{E_{I N}}$

dependent on beta as beta is increased: $A_{v} \cong-\frac{R_{\mathrm{t}}}{\mathbf{r}_{\mathrm{r}}+\mathrm{R}_{\mathrm{E}}}$.
3. The input impedance, $R_{1 \mathrm{~s}}$, excluding the bias network is $R_{1 N}=\frac{E_{1 N}}{i_{\mathrm{L}}} \cong \mathrm{r}_{\mathrm{b}}+\left(\mathrm{r}_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}\right)(1+\beta)$. Thus, the input impedance is much higher if high-beta transistors are utilized.

IN SWITCHING CIRCUITS

Higher $h_{\text {Fe }}$ offers the following switching circuit advantages:

1. Less power required from the driver circuit. Eliminates one driver circuit stage or gives a much greater design margin.
2. Shorter rise time if high h_{pe} unit is substituted for low $h_{\text {FE }}$ in identical circuits.

TEXAS INSTRUMENTS 2N1980

Now get maximum circuit economy with Texas Instruments 2N1980 series high-beta germanium power transistors. Increased power gain gives you: fewer components for same circuit results; or equal components for better circuit results - either way, your circuits give increased performance at less cost.
With TI 2N1980, 2N1981, 2N1982 high-beta power transistors you get more power gain than any standard TO-36 device available today. You also get industry's lowest profile TO-36 package for more compact designs. TI's exclusive 2 N 1980 series manufacturing process assures you constant-predictable - guaranteed high beta performance.
Call your local TI Sales Engineer or TI Distributor today for immediate price and technical information... including applications assistance.

> Send today for your personal copy of the new TI 2N1980 Application Note, "Circulation Stabilization Using High Beta Transistors."

5 amps CAN DO FOR YOU

IN SQUARE CORE OSCILLATORS

The starting bias depends on the voltage divider R_{1} and R_{2}. With a typical V_{B} of 0.4 volts to start oscillations, appreciable power is lost in R_{2} when R_{1} is small. For low beta transistors R_{1} must be small to provide enough feedback current to guarantee collector saturation. This results in high bias power loss in R_{2}. By using high-beta transistors, R_{1} and R_{2} may be increased in value resulting in lower signal and bias power losses.
The peak collector current (shown in the above figure) in a square core oscillator can vary with a change of V_{be}. For a given spread
of transistors, V_{BE} can vary as much as 1.0 volt. High beta transistors may be used to reduce the effect of changes in $V_{b e}$ on peak collector current. The maximum current spike for a given spread of transistors occurs in the highest beta units under conditions of peak base current.
Peak base current and peak collector current vary inversely with V_{be}. Therefore, by using high-beta transistors, R_{1} and the base winding voltage may be increased, minimizing the effects of V_{b}.

GERMANIUM POWER SERIES

Immediate Circuit Improvement . . . with TI 2N1980 Series

	ICBO	VCE(sat) @ 5 amp	hFE @ 5 amp	BVCBO	BVCEO	IC
2N1980	$6 \mathrm{ma} @ 50 \mathrm{~V}$	0.5 V	$50-100$	50	30	15 A
2N1981	$6 \mathrm{ma} @ 70 \mathrm{~V}$	0.5 V	$50-100$	70	40	15 A
2N1982	$6 \mathrm{ma} @ 90 \mathrm{~V}$	0.5 V	$50-100$	90	50	15 A

Texas Instruments

PUNCH

COMPLICATED

PATTERNS

FAST WITH STRIPPIT FABRICATORS

SUPER 30. Handles flat or formed workpieces $60^{\prime \prime}$ wide... any length. Both the Super 30 and the 15 A punch round and shaped holes up to $31 / 2^{\prime \prime}$ diameter, to $1 / 4^{\prime \prime}$ thick material...notch 90° corners-rectangular, radii, vee and special shape edge notches -up to $1 / 8^{\prime \prime}$ capacity... nibble straight line or contour shear up to $38^{\prime \prime}$ diameter circle, at 165 strokes a minute in $1 / 8^{\prime \prime}$ material.

STRIPPIT DUPLICATOR

For low cost production runs on the Super 30 or 15 A , the STRIPPIT Duplicator functions like a pantograph to reproduce any hole pattern from a drilled or punched template. No custom dies needed to turn out precision sheet metal parts.

NEW 15A. Designed for workpieces up to $30^{\prime \prime}$ wide... any length...the new 15A Fabricator offers all the speed and accuracy of the Super 30 . Each machine, with its own universal tool holder, makes it possible to interchange standard and special tools in seconds to minimize down-time. Flat punched parts produced require no deburring. Multi-stop micrometric gaging system positions work rapidly to exact layout specifications.

wales STRIPPITinc.
225 Buell Road - Akron, New York 225 Buell Road Akron, New York "cspres

[^1]
NEWEST in the most extensive line in the industry

825 SERIES ACTUAL SIZE
Rated at 600 VDCW, 1500 VDCT, these units are well within MIL specifications for change in capacity under temperature and vibration extremes. Available in NPO, N300, N500 and N650 temperature coefficients in all standard capacity ranges.

TEMPERATURE CHARACTERISTIC		CAPACITANCE RANGE (MMF)	
CRL	$\stackrel{\text { MIL }}{\text { LETTER }}$	CRL	$\begin{gathered} \text { MIL } \\ \text { NUMBER } \end{gathered}$
NPO	A	1.5-7	070
N300	B	3-12	120
N500	C	3-13	130
N650	D	5.20	200
		4.5-25	250
		4.30	300
		7.45	450

MICRO-MINIATURE ACTUAL SIZE
Rated at 100 VDCW, 250 VDCT, this unit measures only $0.201^{\prime \prime}$ in diameter and can be supplied on a ceramic base plate, to your specifications, as small as $0.25^{\prime \prime}$ square, plus leads or mounting. It is available in the following ranges: 1.5 to $5 \mathrm{mmf}, 3$ to 10 mmf , and 7.5 to 25 mmf .

For detailed information on these and many other trimmer and special ceramic capacitors, write for Engineering Bulletin Group "C."

CANNON PLUGS...AVALLABLE

To meet the ever expanding demands of electronic technology, Cannon maintains 9 strategically located plants in 6 countrieshas sales engineering representatives in 18 more! Whatever your requirements in plugs, wherever you are, delivery is never more than a few hours away. This is a continuation of our plan to give you Cannon service... Cannon quality-anywhere in the world. Another reason why you should consult the world's most

THROUGHOUT THE WORLD

experienced plug manufacturer; why you should consult Cannon for all your plug requirements.

The Cannon Plug Guide "CPG-4," containing valuable information on our products, may be obtained by writing to:

[^2]
Sarkes Tarzian

SERIES F

Silicon Rectifiers

THERE'S EVEN MORE TO THIS...

This small " F " unit contains the oversize junction that is characteristic of all Tarzian silicon rectifiers. The result is big performance; specifically, lower temperature rise, longer life, increased reliability, and the capacity to handle inrush currents well above normal circuit requirements.

Furthermore, present production of Series F units is at the rate of tens of thousands per day. Production of these units to date is in the millions. Performance testing and life testing go on continuously, of course. The experience of users is not only favorable, but extremely large. And prices are realistic, to say the least.

In short, we don't know of anybody who makes more of these, or who makes them better, or who makes them at less cost. Do they meet your requirements? Write for the facts you need for decision. Application engineering service is also available without cost or obligation.

Where highest quality is in volume production

SARKES TARZIAN, INC.

Shielded Power Supply Cables-Rubber

Plastic Microphone Cables

Shielded interconnecting Cables

Duplex Connector Extension Cords

Low Impedance Lines

Cathode Ray Tube Lead
 Miniaturited Cables
 Grid Wires

Unpaired Intercom Cables

Mr. Design Engineer... BELDEN Has It

Every electronic and electrical wire you need-from the finest drawn magnet wire to the most complex multiconductor cable.

There is a Belden wire or cable in every insulation and shielding to meet your design and application requirements. Here is just part of this complete line. Available from stock.

One Wire Source for Everything Electronic and Electrical

- electronic wire • magnet wire - lead wire - power supply cords - cord sets portable cordage

Portable Cordage

Strain Gauge Cables

Call System Cables

Sound \& Alarm System Cables

When the equipment you manufacture requires miniaturized film capacitors with highest reliability and extended life, specify Pyrmy-Film capacitors with fortified film dielectrics. Made to meet the most critical standards, these capacitors will match the strictest demands of your quality control.

Pyramid Pyrmy-Film capacitors maintain high insulation resistance and extreme moisture resistance when operating at wide temperature ranges. Because these capacitors fit into the smallest
spaces, design engineers can successfully incorporate them into tiny circuit models. Order Pyramid Pyrmy-Film capacitors and confirm these advantages.

For full details call or urite for Enginecring Bulletin MY.3A

PYRAMID ELECTRIC DARLINGTON

Export: Morhan Exporting Co., 485 Broadway, N. Y.13, N. Y.

"][n LESS THAП TWO YEARS, OLR SCIERTISTS DEVELOPED AП ITGEDIOUS TEW ELECTRONIC WARFARE DEVICE THAT WILL..."

...that will be obsolete before it is operational, thanks to an accelerated R \& D technique called QRC*. In a maximum of nine months, Hallicrafters QRC* counters a technological advance by a potential enemy before it can become a tactical threat. To maintain our Electronic Warfare Lead, more of this type of accelerated action is required every day. Look to Hallicrafters QRC* when the need is urgent.

*Quick Reaction Capability

ENGINEERS-JOIN FORCES TO
increase our electronic warfare lead
Hallicrafters QRC facility, developed in closest cooperation with the Air force, offers unusual challenges for accomplishment and growth opportunity.
Located in Chicago-dynamic center of electronics cultural, recreation and educational activities. You will enjoy the finest living in America. Send resume in confidence to Bill Kelly, Director of Engineering Placement, Military Electronics Division, The Hallerafters Company, 4401 West fifth Avenue, Chicago 24, Illinois.

FOR COMPLETE DETAILS ON QRC*, CONTACT: hallicrafters

Urgent problems are solved
reliably through
Urgent problems are solved
reliably through
 *

Robert W. Mark Professional Building 225 N. Washington St. Rome. New
FF 6 -5880
W. Ray Self 912 Bob Wallace Ave., S.W. Huntsville, Alabama JE 6-5412

Box 435 .
Box 435 New Jersey Lincroft. New Jersey
SHadyside 7.2369 (Red Bank, N. J.)

Earl L. Giffin Box 568 . Far Mills Branch Dayton 9, Ohio AXminster 8-5239

Merle J. Long 513 E. Manchester Blvd Suite $z 201$ Inglewood. California ORchard 2-6861
Thomas H. Pretorius 7558 S.E. 15th Street Oklahoma City, Oklahoma PErshing 7-2456

With

 tools these hands make

3 -second connections

Make expensive hands more profitable. Put your electrical connections on a 3 -second production schedule with Gardner-Denver "Wire-Wrap"' tools. That's all the time it takes to make a permanent electrical connection using the solderless wrapping method, and absence of heat means greater reliability of your component.

Proof of superiority? Over a billion permanent, solderless wrapped connections with no reported failure. And only Gardner-Denver offers a complete line of equipment for making such connections-including custom-designed, automatic "Wire-Wrap" machines to solve special problems in multiple operations. Write for bulletins.

EQUIPMENT TODAY FOR THE CHALLENGE OF TOMORROW

GFRDDER - DENYER

Gardner-Denver Company, Quincy, Illinois-Offices in principal U.S., Canadian and Mexican cities In Canada: Gardner-Denver Company (Canada) Ltd., 14 Curity Avenue, Toronto 16, Ontario

International: Gardner-Denver International Division 233 Broadway, New York 7, N.Y.

2

Aclual Size

SILICON SEMI-CONDUCTORS are used throughout the circuits to provide high reliability performance over a wide range of environmental conditions.

A FULL 2 WATTS OF RF OUTPUT is achieved through use of a unique circuit design.

CRYSTAL CONTROLLED FREQUENCY STABILITY is $.01 \%$ or better over a wide temperature range.

MODULAR PACKAGE DESIGN affords versatility for customer-designed systems . . . and conformity with the complete Dorsett-built line of "Twenty" series telemetering components and systems.

For your telemetry requirements, contact Dorsett. Your inquiries or specifications will receive a prompt reply.

DORSETT ELECTRONICS, INC.

The Sangamo 460-Series is not just another tape transport. but a magnetic tape recorder/reproducer so compact that it can contain a complete 14 track record-reproduce system in one standard $19^{\prime \prime}$ w. x $71^{\prime \prime}$ h. cabinet. All its read, write, speed control, and power supply circuits are transistorized and grouped into modules on individual, plug-in circuit boards. It is designed for reel-to-reel or loop operation in direct analog, FM, PDM, and PCM modes.

In the 460 -Series transport. record and reproduce circuit boards are located directly above the control panel at eye level to permit easy access for signal level adjustment and monitoring without interfering with system operation. All DC power for the transport and record-reproduce electronics is provided by a modular sub-assembly mounted at the bottom of the cabinet. The complete power supply is mounted on drawer slides.

$>$
Magnetic tape instrumentation system accuracies heretofore considered unattainable have been achieved by Sangamo as a result of reduced instantaneous and long-term recordplayback speed deviations. The 460-Series Recorder/Reproducer accomplishes this by combining a very low inertia DC capstan drive with a high-response, tape-speed, servo control system.

A unique vacuum tension/cleaning pad located immediately in front of the recording or reproducing head provides gentle, but firm and precise, tape tension. The head in turn is mounted almost in contact with the drive capstan. This arrangement results in a very short span of tape that requires controlled positioning. The combination of these features results in minimum skew, less flutter, and fewer dropouts.

For the name of the technically qualified Sangamo Representative nearest you, and for complete details on the Sangamo 460-Series system, please write for Bulletin 3400 .

$10 \mu \mathrm{~s}$ pulse separated from 4μ s pulse by $1.2 \mu \mathrm{~s}$ space. Trace A: $100 \cdot \mathrm{kc}$
system input. Trace $\mathrm{B}: 100-\mathrm{kc}$ output. Trace $\mathrm{C}: \mathrm{CM}-100$ output. Sweep
Rate: $10 \mu \mathrm{~s} / \mathrm{cm}$. Vertical Deflection: $5 \mathrm{v} / \mathrm{cm}$.
Pulses recorded on any standard $100-\mathrm{kc}$ system reveal previously undisclosed data when played back on the Mincom Series $\mathrm{CM}-100$ Video Instrumentation Recorder/Reproducer. At 60 ips, a prerecorded tape from a standard $100-\mathrm{kc}$ recorder will present on the $\mathrm{CM}-100$ an improved frequency response of $200-220 \mathrm{kc} \pm 4 \mathrm{db}$ with a practical limit of 250 kc . CM• 100 's superior playback heads and phase-compensating electronics produce better rise time, correcting for phase shift and overshoot. This recovery of hidden data is only one of the advantages of the CM.100, a 7 or 14 -track 1 -megacycle system which is now performing predetection recording/reproducing on an operational basis - in FM, FM/FM modulation, PCM and PCM/FM. Write for specifications.
... Where research is the key to tomorrow
MINCOM

R how to cure traveling wave tube headaches

If you have TWT headaches-finding a microwave amplifier now -which produces high gain and wide band width with high average and peak powers-Hughes may have just the prescription for you Hughes TWT's provide all these desirable features with built-in long life, ruggedness and dependability. They fully exploit the advantages of permanent magnet periodic focusing in both glass and metalceramic structures, and many are available in either gridded or ungridded versions.

typical twt's available now:

311H 2.0-4.0 KMC Gridded 1 KW minimum peak power output, 1% duty, 36 db small signal gain © 85 mw input. Weight 13 lbs. Length $17 \cdot 7 / 16^{\prime \prime}$.

312H 2.0-4.0 KMC Gridded 1 KW minimum peak power output, $1 / 2 \%$ duty, 36 db small signal gain © © 50 mw input. Weight: 11 lbs. Length: $15 \cdot 3 / 8^{*}$.

304H 2.0-4.0 KMC Ungridded, 1 KW minimum peak power out. put, 1% duty, 37 db small signal gain (e) 1 mw input. Weight: 12 . $1 / 2$ lbs. Length: $17-31 / 32^{\prime \prime}$.

307H 8.5-9.5 KMC 50 KW minimum peak power output (500 watt average), metalceramic construction, 54 db saturation gain, 1% maximum duty cycle, beam voltage $=38 \mathrm{kv}$. Wt. 21 lbs . Length: 24^{n}.

Hughes also has a complete line of K_{U}-band backward-wave oscillators for commercial and military applications. Write or telephone today for full information or a catalogue concerning the broad line of Hughes TWT's available in L. S, C \& X bands.

Hughes Microwave Tube Division, P. O. Box 90427, Los Angeles 45, California.

The antenna completely packed and ready for transit.
The antenna assembled but not erected.
The antenna partially erected.
 pedestals for el-az tracking. For full information, write:
for answers to problems in the design, fabrication and installation of antenna systems, ask asi!

The Untouchables

Specify Crucible Charges of Deposited Hyper-Pure Silicon

Free brochure - "Hyper-Pure Silicon for Semiconductor Devices." Write Dept. 3517.

Pre-packaged single piece crucible charges . . . in sizes and weights to meet the exact requirements of your Czochralski crystal growing equipment . . . are now available from Dow Corning.

Accurately Pre-weighed, these single piece crucible charges assure easy handling . . . smallest surface area . . . highest purity . . . an exceptionally clean melt and a savings in crucible costs.

High Quality is inherent in Dow Corning crucible charges. The deposited polycrystalline silicon in these charges has never touched a mold. Result - highest purity.

This High Purity means consistently higher quality crystals - simplifies doping procedures - increases device yield. Typical resistivity of N-type crystals grown from Dow Corning prepackaged crucible charges is greater than 100. ohms centimeter for 80% of the crystal; maximum boron content, 0.3 parts per billion atoms; maximum donor impurity, 2.0 parts per billion.
Now You Specify the Weight and Diameter, up to 38 mm (about $11 / 2^{\prime \prime}$), best suited for each crucible of your Czochralski crystal growing machines. Your crucible charges will be supplied in the appropriate length to provide the exact weight you require in just one piece.

Protective Packaging guards initial deposited purity right through crucible charging. Charges are individually wrapped in special cellophane, and sealed in airtight polyethylene envelopes to assure untouchable purity.

Whatever your need - deposited silicon crucible charges; polycrystalline rod or chunk; high resistivity P-type single crystal rod; single crystal rod doped to your specifications - Dow Corning should lead your list of sources.

HYPER-PURE SILICON DIVISION Address:

HEMLOCK, MICHIGAN

x

A MAJOR BREAKTHROUGH - ALL-GLASS MICROMINIATURE COMPUTER DIODES FOR NANOSECOND SWITCHING. HIGHEST RELLABILITY• LOWEST LEAKAGE • HERMETIC SEAL

 सicho glass silicon mesa computer diodes provide optimum miniaturization and highest reliability. Direct fusion of hard-glass to junction, and use of bonded contacts produces mechanically rugged diodes with exceptionally stable electrical characteristics. Excellent reverse current characteristics are combined with switching speeds of typically 2 nanoseconds. Higher allowable junction temperature of $200^{\circ} \mathrm{C}$ -true hermetic seal (kovar to hard-glass) - and solid mass-of-glass construction, recommend these diodes for all military-severe applications.

*Available also in .090" with slightly less power dissipation.
all ficto glass diodes meet environmental requirements of mils 19500 b

TYPE	$\begin{aligned} & \text { FORWARD } \\ & \text { CURRENT } \\ & \text { @ } 1 \vee D C(\mathrm{~mA}) \end{aligned}$	BREAKDOWN VOLTAGE @100 1 (volts)	$\underset{\substack{(\text { max. }) \\(\mu \mu f)}}{\text { CAPACITANCE }}$	REVERSE CURRENT$25^{\circ} \mathrm{C} \quad 150^{\circ} \mathrm{C}$		REVERSE RECOVERY max. (nanosec.	POWER DISSIPATION (mW)
MA-4303	10.0	50.0	1.5 @-6v	. 025 @ - 40v	25.0 @ - 40v	4.0	125
MA-4304	10.0	50.0	1.5 @-6v	. 025 @ - 40v	25.0 @ - 40v	4.0	200
MA. 4305	10.0	50.0	1.5 @-6v	. 025 @ - 20v	25.0@-20v	4.0	125
MA-4306	10.0	50.0	1.5 @-6v	. 025 @ - 20v	25.0@ - 20v	4.0	200
MA-4307	30.0	100.0	2.0 @ Ov	. 050 @ - 75v	50.0 @ - 75v	4.0	125
MA-4308	30.0	100.0	2.0 @ Ov	. 050 @ - 75v	50.0@ - 75v	4.0	200

MICROWAVE ASSOCIATES, INC.
SEMICONDUCTOR DIVISION
Burlington, Massachusetts, BRowning 2.3000 Western Union FAX . TWX Burlington, Mass. 942

[^3]

with specified extra wide safety margins

Standard or custom systems, incorporating RCA ferrite and semiconductor devices, are designed, built, and tested bymemory-circuit specialists-at RCA's newly expanded memory products operation in Needham, Mass.

Here is the new answer to memory-system design and production, offering new latitude to the computer engineer, new solutions to your system production problems -complete RCA Memory Systems. Designed and produced by RCA from ferrite cores to entire packaged systems, these precision units are pre-tested to broad operating limits and are delivered ready for immediate use in computer designs.

Here are some of the outstanding features of complete RCA Memory Systems:

- Specified Wider Margins of Operations ..Up to 8 percent...to cope with broad variations in power levels.
- Custom Design Service...RCA's engineering staff will custom-design a memory system to your specifications.
- Superior Reliability... Components and circuits proved by the long, dependable service of over 100 systems now in use.
- Complete Information Retention...even in case of full power loss.
- Wide Temperature Range... $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. For Systems Engineering Service-Call your RCA Office. For technical information write RCA Semiconductor and Materials Division, Commercial Engineering,
Section E-19-NN-3, Somerville, N. J.

Recent rca memory system shipment	
Capacity	4096 words, 18 bits per word.
Speed	Complete Read-Write cycle time of 5 usec.
Modes of Operation	Read-Regenerate/Read-Modify/Write. Only.
Reliability	Acceptance tests made with all power supply voltages varied both plus and minus 5 percent from their nominal values while the system is being temperature cycled.
Standard rca memory srstems	
Capacity Speed	512 to 4096 Words; 6 to 32 blts per word.
	12 usec.
Modes of Operation	Read-Regenerate/Read-Modify/WriteOnly.
Reliability	Acceptance tests made with all power supply voltages varied both plus and values while the system is being tem. perature cycled.

SHIPMEN

speed Complete Read-Write cycle time of 5 Read-Regenerate/Read-Modify/Write. Operation Only. Acceptance tests made with all power minus 5 percent from their nominal perature cycled.
STANDARD RCA MEMORY SYSTEMS
Capacity 512 to 4096 words; 6 to 32 blts per word. 12 usec.

Reliability Acceptance tests made with all power supply voltages varied both plus and minus 8 percent from ineir nom inal
values while the system is being tem. perature cycled.

The Most Trusted Name in Electronics radio corporation of america

With Midland type NB Miniature 1.8% wide band pass 10.7 MC crystal filters

The Types NB-1 and NB-1B are four-crystal networks contained in a hermetically sealed package with a volume less than 1 cu . in. and 2.5 cu . in. respectively. The center frequency of both types is $10.7 \mathrm{MC} \pm 3 \mathrm{KC}$ with a 6 db bandwidth of $200 \mathrm{KC}+10 \mathrm{KC}$, - O KC and an ultimate minimum rejection of 100 db . Singly used they exhibit a maximum $60 \mathrm{db} / 6 \mathrm{db}$ bandwidth ratio of 2.25:1. Because they are small in size, two of the same type can be used in cascade with an active network between filters to produce an $80 \mathrm{db} / 6 \mathrm{db}$ bandwidth ratio of better than 1.7:1, with an ultimate rejection of over 120 db . Small quantities for engineering evaluation are available immediately from stock. Midland invites consultation at any time for potential crystal filter users.

CRYSTAL FILTER SPECIFICATIONS	
TYPE NB-1	TYPE NB-1B
Center Frequency 10.7MC \pm 3KC	10.7MC $\pm 3 \mathrm{KC}$
Bandwidth @ 6dh. 200KC + 10KC, - 0 KC	200KC + 10KC. - 0 KC
Bandwidth @ 60db 450KC Max.	450KC Max.
Bandwidth Ratie 2.25:1 Max.	2.25:1 Max.
Ultimate Rejection SOdb Min.	100db Min.
Insertion Loss 12db Max.	*ddt Max.
Required Source/Load Resistance. . 50 ohms $\pm \mathbf{5 \%}$	50 ohms $\pm 5 \%$
Inhand Ripple idh Max.	${ }^{*} \mathrm{~T} .5 \mathrm{dbl}$ Max.
Inband Ripple at Temperature Extremes 1.5db Max.	-2.0db Max.
Opmating Temperature $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
Sheck 100 g	1008
Vibration 15 \& to 2KC	15 g to 2KC

*The Type NB-1B can also be provided with an insertion loss of 12db max. inband ripple of . 5 db max.: and inband ripple at temperature extremes

get the size, specs and mobility you need with

2 Channels . . . $35^{\prime \prime}$ high mobile cart . . . choice of 4 plug.in preamps

Interchangeable plug-in " 850 " type preamplifiers in Carrier, DC Coupling, Phase Sensitive Demodulator and Low Level types, for inputs ranging from microvolts to hundreds of volts . . . internal MOPA available when carrier or chopper excitation is required . . . heated stylus, rectangular coordinate recording on 50 mm wide channels . . . transis. torized circuits . . . frequency response to 125 cps within 3 db , at 10 mm peak-to-peak. Model 297 can also be used in optional portable case or rack mounted in $101 / 2^{\prime \prime}$ of panel space.

Two 50 mm wide channels . . . separate floating input DC amplifiers. . . . 4 chart speeds . . . mv or volt inputs

Operate this 1 -cubic-foot recorder vertically, horizontally, or tilted at a 20° angle on carrying handle. Inputs are floating and guarded . . . 12 sensitivities from $0.5 \mathrm{mv} / \mathrm{mm}$ to $20 \mathrm{v} / \mathrm{cm}$. response $D C$ to 125 cps within 3 db , at 10 div peak-to-peak . . . max. nonlinearity 0.25 mm . . . common mode rejection 140 db min. DC . . . built-in 10 mv calibration signal and electrical limiting . . . internal 1 sec . timer. monitor output connectors for each channel. Galvanometers are rugged, low impedance type with velocity feedback damping; most circuitry for each channel is mounted on a single, easily serv. iced card.

1 Channel . . . 20 lbs., briefcase size ... $10 \mathrm{mv} / \mathrm{div}$ DC Model 10 uv rms/div AC strain gage Model

Extremely compact, highly versatile recorders for general purpose DC inputs (Model 299) and AC strain gage recording (Model 301). Two chart speeds: 5 and $50 \mathrm{~mm} / \mathrm{sec}$...inkless, rectangular coordinate recording . . . response from DC to 100 cps within 3 db , at 10 div peak-to-peak ...gain stability better than 1% to $50^{\circ} \mathrm{C}$ and for line voltage variation from 103 to 127 volts. Model 299 has balanced to ground input, 10 switch \cdot selected sensitivities, calibrated zero suppression. Model 301 has wide sensitivity ranges, can be used with strain gages and inductive transducers, provides excitation voltage of approximately 4.5 volts rms at 2400 cps , and has uncalibrated zero suppression.

For complete details contact your nearest Sanborn Sales-Engineering representative. Sales representatives are located in major cities throughout the United States, Canada and foreign countries.

175 Wyman Street, Waltham 54, Massachusetts
for greater performance reliabilityevery single Westinghouse rectifier is 100% power tested

Complete medium power line includes 34 silicon rectifier types ranging from 6 amps to 35 amps , from 50 to 600 PIV. For complete reliability make sure the semiconductors you buy are fully power-tested. You can be sure . . . if it's Westinghouse. For full details on West. inghouse 100\% power testing, write for booklet, "New Dimensions in Semiconductor Reliability," Westing. house Electric Corp., Semiconductor Department, Youngwood, Penna. sc-1037

Westinghouse

For "off the shelf" delivery, order from these Westinghouse Distributors:

EASTERN

ack semiconductor, inc.
CAMERADHO Birmingham 5, Ala./FA $2-0588$
camerado
Birmingham 5, Ala./FA $2-0588$
Pittsburgh, Pa/EX 1.4000
CRAMER ELECTRONICS, INC
ELECTRONIC WHOLESALERS, INC ELECTRONIC WHOLESALERS, INC
GENERAL RADIO SUPPLY CO. INC CENESEC RADIO CABTE CO, N. J./WO 4.8560 genesee radio parts co.
Kann-ellert electronics ing. N. Y./DE 9661 MILGRAY ELECTRONICS Baltimore, Md./TU 9.4242 milgray electronics
RADIO \& ELECTRONIC PARTS CORP Y./RE $2-4400$ SCHWERER ELECTRONICS Cleveland。Ohio/UT 1.6060 schweber electronics Long Island, N. Y./P1
Silver Spsing, Md./JU
5.7023

MIDWESTERN

ELECTRONIC COMPONENTS FOR INOUSTRY CO HALLMARK INSTRUMEnTs LO. Lovis, Mo./WO 2-9917 Hallo Oallas. Texas/RI 7-9385 INTER-STATE RADHO \& SUPPLY CO.

Oenver 4, Colo./TA 5-8257 RAOIO OISTRIBUTING CO Houston. Texas/CA 4-2663 SEMICONOUCTOR SPECIALISTS

S. STERLING CO.

 UNITED RADIO, INC. WESTERNELMAR ELECTRONICS hamilton electro sales

BEST SHORT WAVE LENGTH RESPONSE

SCOTCH ${ }^{\circledR}$ BRAND High Resolution Tapes
offer superior high frequency results

In instrumentation Tapes, a good bit may well depend on the character of the magnetic coatingand the uniformity with which it is applied. At short wave lengths, the head responds only to the flux nearest it-thus, the thinner the coating, the more it concentrates flux in that narrow region next to the gap where the head can use it best.
"Scotch" brand High Resolution Tapes 457, 458 and 459 testify to the great skill "Scotch" brand experts have in laying down a thin uniform coating that results in intimate head-to-tape contact, as shown in the diagram. This famous trio of tapes reproduces the critical short wave lengths, offers the superior response and resolution that lets you pack more information to the inch.
Much of their fine performance at high frequencies rests with the famed "Scotch" brand high potency oxides and their higher magnetic retentivity. At optimum bias settings, the coating is about 50% more sensitive to short wave lengths than ordinary coatings.
These tapes give you three great bases on which to build toward miniaturization. No. 458 , with a 1.5 mil polyester base, offers
 standard recording time and maximum strength. No. 459, with a 1.0 mil polyester base, gives 50% extra recording time. No. 457, with a .65 mil base of tensilized polyester, delivers twice the standard recording time. One of the key factors in the consistent performance of the "Scotch" brand High Resolution Tapes is their uniformity-from reel to reel and within the reel. All three tapes offer a uniformity in magnetic coating and base that goes far to eliminate errors in performance.
In producing uniform tapes for all applications, nothing replaces the years of experience offered by the "SCOTCh" bRand research and manufacturing team-the same team responsible for most tape advances. So check the entire "Scotch" brand line: Heavy Duty Tapes 497, 498 and 499 outwear ordinary tapes 15 times, even under adverse operating conditions. High Output Tape 428 offers top output at low frequencies. Sandwich Tapes 488 and 489 wear 30 times as long as ordinary tapes, cut head wear and oxide ruboff. And more reels of Standard Tapes 408 and 403 have been sold than any other kind.
Your nearby 3M Representative serves as a convenient source of information in all major cities. Contact him or write Magnetic Products Div., 3M Company, Dept. MCS-51, St. Paul 6, Minn. (c) 19613 M co.
"SCOTCH" is a registered trademark of 3M Company, St. Paul 6, Minnesota. Export: 99 nrik Avenue, New York, N.Y. In Canada: London, Onlario.

SCOÖ'̈̈'M brand magnetic tape

FOR INSTRUMENTATION

best buy in cooling

$\mathbf{N} E W$ in everything but price.
$\mathbf{N} E \mathbf{W}$ molded-in "bus-bar" motor leads assure maximum electrical and mechanical strength. Universal-type solder terminals.
$\mathbf{N} E \mathbf{W}$ ultra-long-life bearing, precisely aligned for smooth, vibration-free operation.
\mathbf{N} EW high-impact-strength material in new structural design for maximum resistance to shock and vibration.
\mathbf{N} EW "Free-Flow" grille design assuring maximum air flow with minimum noise.
$\mathbf{N} E \mathbf{W}$ motor windings for extra long life.
NOW, all the qualities that made the Rotron Muffin Fan the best buy in cooling devices have been improved for still better performance and value. The new Rotron Gold Seal Muffin Fan is a precision air-moving device packing a capacity of 100 cfm free delivery in only $4-11 / 16^{\prime \prime}$ square $\times 1 \frac{1}{2 \prime \prime}$ deep.

Assure the dependability of your equipment through dependable cooling with the new Gold Seal Muffin Fan . . . costing less than $\$ 8.00$ each in quantity! Available in July!

introduces the E-beam mark V electron beam evaporator

The Mark V Electron Beam Evaporator is a reasonably priced, highly flexible unit for producing thin metallic and non- metallic films by vapor deposition through electron bombardment heating.

Completely self-contained and free of any radiation hazard, it is an invaluable research and development or limitedproduction tool for thin-film applications, including micro-miniaturized electronic circuitry, optical filters, semiconductors, magnetic tapes, and countless other components.

Vacuum system, electron gun, power supply and controls are conveniently arranged for maximum accessibility and simplicity of operation and maintenance.

Only cooling water, electrical power, and low pressure air are needed to make the unit completely operative.
Flexibility is built in: modular design allows for interchangeable chambers, permitting the Mark V to be converted into a welder or a melter by substituting a modified chamber.

For complete information on the Mark V evaporator, the Mark VI welder, and Alloyd's engineering and custom services in electron beam applications, just write:

Mark VI Electron Beam Welder - for clean, crackfree welds in even the most refractory and reactive metals by electron bom. bardment. High vacuum eliminates contamination. Ultra-narrow heating zone permits optimum control and precision in handling very thin pieces or welding thin-to-thick sections.

AMEBA - Alloyd Modular Electron Beam Apparatus is part of an advanced, complete facility for thin film evaporation, welding, brazing, melting, and zone refining maintained by Alloyd to meet custom requirements. We also offer engineering, consulting, and lesearch and development services in system design and development. Ask us for complete information.

SPECTROL SOLVES EQUATIONS LIKE THIS...

to design non-linear potentiometers -faster, more accurately

he above equation is the mathematical expression for the non-linear function required of a precision pot to relate voltage ratio $\frac{e_{0}}{E_{1}}$ to potentiometer shaft
position 0 .

This is a typical non-linear problem applicd to Spectrol's new IBM 1620 digital computer...equipment which eliminates days of design time, provides errorfree results and makes it possible for Spectrol to issue quotations a day or two after receiving your request. For the past three years Spectrol-and only Spectrolhas used this technique.
Basically, it works this way: Computer input data is in the form of programmed equations or tabulated \mathbf{X} and Y coordinates. Previously programmed tapes with general equations for non-linear applications (on file at Spectrol) operate on the data, to compute output in terms of winding equipment settings, cam angles

ELECTRONICS CORPORATION 1704 South Del Mar Ave. • San Gabriel, Calif. - ATIantic 7.9761 Adams Court - Plainview, L. I., New York - WElls 8.4000 TORONTO, ONTARIO. CANADA

Quicker than you can say...'modular plug-in construction'

over 33 standard pulse instruments... 200 standard pulse and digital modules... at big savings in dollars

Is your problem generating fast-rise pulses, pulse pairs, pulse trains, gates, time delays, digital words, programmed current pulses, PPM and PCM codes...? For test...system...general...very specific applications? Or all of these? Then Servo's Electro-Pulse line is the right line for you.

Start with 33 cataloged instruments. Modify with 200 standard pulse and digital circuit modules (both tube and transistor types). Here's unmatched versatility and
flexibility for the rapid, economical fabrication of any type of pulse equipment you may need.

Back all these savings and convenience factors with established Servo Corp. quality and reliability... with advanced pulse techniques and circuitry proved in major missile programs. It pays to go E-P.

Write for detailed catalog. Or, your local E-P/Servo representative will be glad to call.

Electro-Pulse Products SERVO CORPORATION OF AMERICA

111 New South Road • Hicksville, L.l., N.Y. • WElls 8-9700

- Single Pulse Generators
- Double Pulse Generators
- Word Generators
- Pulse Train and Pulse Code Generators
- Time Delay and Gate Generators
- Current Generators and Core Testers
- Modules

Single Pulse Generator

Pulse Code Generator

SUPERIOR IN EVERY DETAIL

THIS IS CON OHEX

Different? Yes. And better, too. "ConheX" sub-miniature r.f. connectors are now in use in the most critical electronic assemblies, and specified by the most discriminating manufacturers of equipment. The many obvious advantages of the "ConheX" design result in easier assembly, greater dependability, and better electrical characteristics. Now "ConheX" is available in two basic styles-Clamp-On for limited runs and easy field replacement, and Crimp-On, designed to save time and money in large production runs. Write for Complete catalog...

MAKES "CONHEX" SUB-MINIATURE RF CONNECTORS
SEALECTRO CORPORATION, 139 HOYT STREET, MAMARONECK, N. Y. British Branch: Sealectro Corporation, Hersham Factory Estate, Lyon Road, Walton-on-Thames, Surrey, England.

MOUNTIMC AND HOUBING DIMENGIONS TO ORDER. Here are a fow fypleat conflguratoms obtainable in aluminum, stalitess staci, beryllum or zarconium alloye.

A WIDE VARIETY OF BORES AND STACK HEIGHTS, widths and diameters available from existing laminations. Below are some examples. Let us know your needs.

Sending and receiving equipment form a data link
that can carry information at rates greater than 300,000 bits per second.

Photos are for r-f BW of 220 Kc , scan time of 0.5 sec; transmitter and receiver frames coincide

Transmitting Facsimile Messages Over Meteor-Burst Paths

By BENEDICT F. GEDAMINSKI WILLIAM G. GRIFFIN, Jr..
Electronics Research Dictorate. Air Force Cambridge Research Laboratories, Bedford, Mass.

THE METEORFAX SYSTEM transmits pictures up to distances of about 1,000 miles over meteor trails. These trails are formed in the E region by the multitude of tiny meteors that enter the atmosphere daily and burn up, leaving in their wake ionization columns. Capable of reflecting vhf signals, the ionization columns are random with respect to time, orientation and location. Thus, special techniques are required for a forward-scatter meteor-burst communication link. The communication circuit is momentarily closed when a favorably oriented meteor trail is formed and the signal at the receiver exceeds a predetermined threshold level. Hence, storage devices and appropriate circuits are needed to hold and then quickly release information when a closed path is recognized simultaneously by the sender and receiver.

Prior techniques ${ }^{1}$ have used magnetic or tape storage devices to store teletypewriter, digital and
voice signals. However, studies at AFCRL showed that it would be feasible to transmit high-information graphics over meteor trails with available transmitter powers during the short lifetimes of the meteor signals; these lifetimes range from 0.1 to 1.0 second. The system uses a high-speed electronic facsimile, to transmit in real time directly from printed page or photograph.

Instrumentation was developed ${ }^{2}$ and the relationships of bandwidth, system gain, duty cycle and picture quality evaluated on an experimental link operated between NBS station WWI at Longbranch. Illinois and the RCA station at Riverhead. New York (see photos).

Meteor-trail signals have been classified as either underdense or overdense, depending on the initial electron densities in the trail and the concomitant scattering mechanism. Signals reflected from underdense trails, which have initial electron densities of less than 10^{14} electrons per meter, exhibit a sharp signal rise followed by an exponential decay; underdense trails have highly directional characteristics. Although the trail electrons
are considered to be independent scatterers. the trail behaves somewhat as a metallic reflector when the initial densities exceed 10^{14} electrons per meter; such signals are identified as overdense. This type of signal rises to full amplitude more slowly and remains near peak amplitude for a much longer period before falling off sharply. These signals are more frequently distorted by atmospheric winds, which produce random strong fading of the signal, increase of single-trail multipath and loss in signal directivity.

Design of facsimile systems transmitting over meteor trails involves considerations such as the power available at the receiver from a forward-scattered signal, the meteor-burst detection rate at a specified receiver-threshold level, and the signal-duration distribution at this level. These factors contribute to establishment of the duty cycle - percentage of on-time which determines the average information rate of the circuit.

Duty cycle of the propagation medium is about ${ }^{1}$.

$$
\begin{align*}
& D C \cong K_{1}\left(P_{t} / B W L\right)^{1 / 2} \\
& \times \lambda^{2.35}\left(I^{1 / 2} \sec ^{2} \phi\right) \sec ^{3 / 2} \phi \tag{1}
\end{align*}
$$

FIG 1-Power as a function of distance, frequency and duty cycle (A). Siynal duration distributions (B)

FIG. 2—Transmitter circuit blocks of (A) control fying-spot scanner (not shown), and reccive, amplify and transmit signal from scamer. Expansion of (B), which is frame interval, into single-line interval is shoun in (C)

FIG. B-Common volumes shared by transmitting and receiving antennas and relative gains of inese voiumes (A). Recciving station antenna (B)
where $P_{1}=$ transmitted power, $B W$ $=$ bandwidth, $L=$ power threshold level above cosmic noise, ($P^{1} \sec ^{2} \phi$) $=$ probability duration factor, $2 \phi=$ forward scattering angle, $\lambda=$ wavelength, and $D C=$ duty cycle.

Available experimental data from National Bureau of Standards and Stanford meteor-burst circuits were applied to Eq. 1 to obtain an estimate of the power requirements for the meteorfax system as a function of $D C$ distance and bandwidth. The experimental data showed that power-bandwidth products of 1 watt/cps were not unreasonable over long paths. Results are shown in Fig. 1A where the value and relative contribution of each parameter to the power available at the receiver is illustrated.

A complete picture per burst requirement was initially set up and picture information was experimentally varied within a preselected fixed frame time. The selection of a frame time was contingent on the usable meteor signal durations to be expected over a path. Meteorsignal durations are influenced by wavelengths, scatter angles. meteor size and diffusion coefficients, thus making it difficult to determine, both theoretically and experimentally, the signal-duration distribution of all usable meteor signals. However, it was shown ${ }^{3}$ that for the underdense trails, the signal-duration distribution is independent of the receiver decision level and is

$$
\begin{equation*}
P\left(t>t_{n}\right)=\exp \left(-m K_{2} T_{n}\right) \tag{2}
\end{equation*}
$$

where: $P\left(t>t_{0}\right)$ is the probability of obtaining time t greater than time t_{o}, which is of arbitrary duration; K_{z} is a function of wavelength. scattering angle and diffusion coefficient; m is an exponent expressing amplitude echo rate above an arbitrary peak amplitude. The theoretical and observed signalduration distributions are shown in Fig. 1B. On the basis of the anticipated signal durations, a picture scanning time of 0.5 sec was chosen. A $0.6-\mathrm{sec}$ experimental median on high power tests provided an appreciable percentage of time when a complete picture could be transmitted and received in a single burst.

A slowed-down television-scanning approach was used in the frame-per-burst system. This allelectronic system transmitted, in
the brief duration of a meteor signal, picture intelligence at rates higher than conventional facsimile. At the transmitting station (Fig. 2 A) the subject copy on $35-\mathrm{mm}$ strip film was repeatedly scanned at 2 cps by a flying-spot scanner, and the resulting picture continuously transmitted over the air. No vertical sync pulses were transmitted. The vertical scan voltage was generated from a capacitor whose charge-discharge cycle was controlled by a limit switch actuated by a motor.

An improvement in picture quality was made by using stable frequency standards at each terminal to generate synchronized line sweeps. Picture legibility was improved by a more precise timing of the horizontal sweeps; picture quality could be maintained even when the signal-to-noise ratio was too marginal to recover transmitted sync. Maintaining horizontal sweeps during momentary fades of the signal below threshold allowed quick recovery of the text in relation to the rest of the picture. A 67-elment-per-inch vertical and horizontal resolution was used with three sizes (widths) of letters or lines so that the information rate becomes proportional to the scanned area with constant resolution and scanning time. This provided a variety of picture information rates within the $0.5-\mathrm{sec}$ frametime to establish experimentally the me-teor-trail-bandwidth capabilities.

The picture-modulated light from the flying-spot scanner goes to a multiplier phototube that produces an electrical output. This output is amplified, limited and combined with the blanking and sync pulses to form the composite viden of Fig. 2 B and 2 C . The composite signal after frequency limiting by the lowpass filter, which determines the upper picture frequency, frequency modulates the transmitter with three discrete levels of frequency shift corresponding to white level, black level and horizontal sync pulse level. The use of $f-m$ eliminates the amplitude-variation effects of the meteor signal on picture quality. A grid reactance modulator (Fig. 2A) controls a Collins 70E-15 variable frequency oscillator whose fre-quency-multiplied output of 49.72 Mc is the carrier frequency. This output goes to the intermediate
power amplifier, which drives a Collins 205G-1 having a 20 Kw peak envelope power output.

The signal was radiated at Longbranch, Illinois from a rhombic antenna 536.7 feet long in each leg, with half side angles of 80.25 deg . Antenna height above ground placed the main lobe in the vertical plane at 4.6 degrees. Gain of the antenna was 18 db above a half-wave dipole. Antenna beam width was 6 deg at the half-power points. The azimithal direction was 75 deg and 11 minutes, thus placing the beam 6.2 deg north of the great-circle path to Riverhead, N. Y.

Transmissions were generally made in the morning because the meteor rate is higher during the morning hours. The common antenna volumes shown in Fig. 3A were produced with a similar antenna (Fig. 3B) at Riverhead oriented to Longbranch, Ill.

The one-way facsimile transmissions from Longbranch were monitored at the Riverhead station (Fig. 4A) by a fixed-tuned singleconversion superheterodyne receiver (Fig. 4B). The first oscillator is crystal controlled and the i-f is 13 Mc. The i-f amplifiers had 27, 55, 110 and 220 Kc bandwidths to test the capabilities of the meteor propagation circuit to carry pictures at various information rates. Receiver noise figure was about 4 db . The picture was retrieved from the f-m components of the signal while the simultaneous recovery of the a-m components provided the means to trigger the picture-recording camera, and concurrently to describe on strip charts the amplitude-time characteristics of the meteor-burst signal.

The picture-recording mechanism at Riverhead was cocked in anticipation of an acceptable meteorburst signal from Longbranch by holding the crt blanked and the camera shutter open, both under the control of the facsimile recorder and camera control unit (Fig. 4C). This unit evaluated the signal output from the receiver and the transmitted horizontal sync preventing false triggering by random and ambiguous signals, static crashes and interfering stations. The abovethreshold signal must be accompanied by over-the-air sync before the recording mechanism is actuated. Recognition produces a pulse which

(A)

FIG. 4-Among circuit blocks comprising receiving system (A) are: vhf receiver (B) and facsimile recorder and camera control (C)

(B)

(C)
unblanks the crt and starts the vertical scan. The received picture copy was randomly framed since no frame synchronization was attempted. Horizontal-line sweeps of $200,300,400$ or 600 cps to match the transmitter sweeps were derived from a local stable frequency standard. The relative phase between the transmitter and receiver line sweeps was manually adjusted and synchronized by using a dualbeam scope to monitor a line of incoming video and the local line sweep generated by the frequency standard.
Video picture information intensity modulated the crt, with line-byline scanning performed in 0.5 sec . The picture was reconstructed on film in either a fast-print camera for quick inspection and equipment adjustment or in the $34-\mathrm{mm}$ automatic camera. The record mechanism and shutter remained open for 0.5 sec under the control of a relay
system. At the end of that time the shutter closed, the electronics reset, the film advanced, the automatic camera shutter reopened and everything again was ready for another meteor burst signal at the end of a 1.5 -sec recycle period.

Meteor-bursts are detected at a random rate influenced by time of day, season and the geographical location of the terminals on the earth's surface. Therefore, meteorburst propagation is an on-off intermittent circuit requiring that an average percentage of useful on time or duty cycle over some period of time be established, depending to a degree on the number and average duration of signal bursts observed over a path.
The average information passed over a discontinuous circuit, such as meteor burst, is the instantaneous rate times the path duty cycle. By assuming the instantaneous rate is proportional to bandwidth

$$
I_{A V} \propto B W \times D C
$$

There is no simple approximation to a complicated $D C-B W$ relationship for optimum information transfer. However, for a qualitative approach some value is obtained by a further simplification of Eq. 1 to

$$
\begin{equation*}
D C \propto L^{-s} P_{t} f^{N-B} \tag{4}
\end{equation*}
$$

where $f=$ frequency, and M, N and B are experimentally determined.

Empirical measurements of duty cycle, favoring early morning rates, as a function of threshold power level were made on this circuit at threshold ranges of -75 dbm to -85 dbm and from -85 dbm to -95 dbm . Exponent M was evaluated as a slope of the duty cycle versus threshold curve. Average half hour values versus time of day obtained are shown in Fig. 5A. A median range from 0.5 to 0.85 was established from a cumulative distribu-
tion of the exponent M taken with a combination of transmitted power and threshold values.

Exponent M then can be used to anticipate the direction that system bandwidth must go to maximize information transfer. From Eq. 3 and 4

$$
\begin{equation*}
I_{1 H} \propto 1 h^{\prime \prime} \tag{.i}
\end{equation*}
$$

for constant signal-to-noise ratio. Thus information rate is influenced by the slope of the duty cycle versus threshold curve.

As bandwidth is raised to increase the instantaneous rate, the threshold level is also raised to maintain a constant signal to noise ratio. Where the slope of M in Eq. 5 is greater than unity, the information rate decreases. Under these circumstances. the average information rate would be higher by trading off bandwidth for duty cycle ; that is, going to a narrow-band system. However. if the slope is less than unity, a gain in path information can be made by operating a wide-band system because duty cycle decreases slower than bandwidth noise and the increase in threshold level.

Wide-band operations and high instaneous picture rates were justified over the Longbranch-Riverhead circuit to obtain maximum information transfer over a period of time. This advantage was most pronounced in the early morning hours. using a combination of high transmitter power and low receiverthreshold settings; M was less than unity 97 percent of the time in the early morning. In other combinations of power and threshold, wide band ($M<1$) operations was favored somewhat over 50 percent of the time.

To make a further comparison of the system's information rate, a facsimile bit rate was established for $110-\mathrm{Kc}$ and $220-\mathrm{Kc}$ bandwidth transmission. Three sizes of letters and lines were transmitted in each test bandwidth, with each line or letter size corresponding to a different bit rate. The intermediatesize letters corresponded to 96.9 thousand bits per second in the 110 Kc bandwidth and 218 thousand bits per second in the $220-\mathrm{Kc}$ bandwidth transmissions. These are the bit rates used in the following estimates of the propagation circuit performance. The received infor-
mation (bit) rates were estimated orer half-hour operating periods. A percentage of the 0.5 -sec frametime was assigned to each frame in proportion to the readable text that was without error. A summation of values for the individual frames provided the total operating time. All test transmission data. which was taken at threshold values from -81 dbm to -92 dbm , was normalized to a -88 dbm threshold and a value of 0.75 was assigned to exponent M in Eq. 4.

On this basis an average of 1,000 bits-per-second received over this circuit represents sufficient information to keep twenty-two 60 -wpm printers running continuously. Theoretically, a decrease in threshold should increase the average information rate. For example, the estimated bits-per-second would be increased by a factor of 3.8 if a -96 dbm threshold is assumed with 0.75 retained for M. Then, the minimum information rate for the $220-\mathrm{Kc}$ bandwidth with 18 Kw of transmitter power would be sufficient to keep about 33 printers operating continuously under the worst conditions of evening operation. when meteor activity is lowest and with antennas oriented for best operation at other times of dav.

An evaluation of the power exponent N (Fig. 5B) was made by directly measuring the duty cycle at threshold levels of $-95 \mathrm{dbm},-85$ dbm and -75 dbm , with transmitter powers of about 18 Kw and 2.5 Kw alternated at half-hour intervals. The morning median values ranged from 0.8 at threshold of -95 dbm and 1.2 at 85 dbm . The values were higher than a theoretical value of

0.5 under idealized conditions. However, no other experimental data was arailable to compare the results. No evaluation of exponent B was attempted,

The feasibility of sending pictures over ionized meteor trails was firmly established. The results exceeded the program objectives and saturated the top limit of the capability of the experimental equipment. System frequency response and horizontal-sweep stability limited the maximum picture information to approximately 200,000 bits per sec. Howerer, picture rates in excess of 300,000 bits per sec were achieved by operating the equipment at optimum adjustment above the theoretical limit. Average in-formation-handling capability for this circuit. over half-hour periods. was 2.300 bits per sec on 220 Kc bandwidth and 1,400 bits per sec 110 Kc bandwidth. The meteor propagation medium may not be the limiting factor in achieving higher transmission rates. Single burst multipath time delays measured on this circuit. up to the equipment resolution, was about $1.5 \mu \mathrm{sec}$. Distances up to about 1,000 miles appear feasible with more sophisticated devices.

Philip Newman and Joseph Casey conceived the Meteorfax technique.

REFERENCES

(1) A. M. ['eterson. .t al.. Applied Research on Meteor-limst Communications, Stanford Research Institute under A F (R L , Contract AF19(104)-1517. (2) W. II. Bliss, K. J. Wagner, Jr.. and (y, S. Wickizer, An Investigation of the Etility of Facsimile on a MeteorBmast Circuit, Radio Corporation of
America innder Americ:a under AFClRI, Contracts AF19(604)-1522 and AF19(604)-4102. (3) H. J. Wirth and T. J. Kears Suty tered Echoes from Metenr Trails Mhi Nall Cour Rec. Palt I, p 127 , 1!! S .

FIG. 5-Averages of M, the threshold exponent (A). Exponent N was evaluated from such data as in (B), which shows duty cycle as function of transmitter power

Step-by-Step Design Techniques for

> Thin-film passive networks and interconnections can reduce size and weight of electronic assemblies without appreciably increasing costs. Results of a study program are described

By W. N. CARROLL,
F. F. JENNY,

Federal Systems Division.
International Business Machines Corp., Kingston. New York

THE LONG-RANGE objective of this thin-film network program is a circuit fabrication method, which with interconnection techniques, will enable the reduction in size of electronic equipment by several orders of magnitude. Before this long-range objective could be achieved, it was necessary to determine the feasibility of multilayered thin-film circuits and to fabricate a range of circuit functions and analyze their performance. Using these films in a multilayered configuration would make possible reductions in size and weight. However, the number of layers that could be used, the materials employed and the methods of fabrication had to be determined. To determine operational performance, a range of circuit functions employing multilayered films to form the passive element networks were fabricated and compared to circuits fabricated by conventional component techniques.

Six different circuit functions, encompassing a range of switching and communication applications, were selected for fabrication and evaluation. The topological layout of each circuit was designed to fit within a substrate area of $0.3 \times$ 0.3 inch and to be compatible with the electrical characteristics of the films. The or not circuit consisted of two grounded-emitter transistors having a common collector load resistor. The TRL (transistor-resistor logic) circuit provided for a fan in and fan out of 3 . The astable multivibrator was designed for
$500-\mathrm{Kc}$ operation and 10 -volt signal swings. The audio amplifier required an $0.11-\mu \mathrm{f}$ input capacitor to obtain a lower cut-off frequency of 500 cps. The i-f amplifier was designed for 4.5 Mc and r-f amplifier for 18 Mc .

Glass 0.020 in. thick was used as the substrate material on which the passive elements and interconnections were deposited. Aluminum was chosen for conductors, nichrome for resistors and silicon monoxide for dielectrics and insulation material. The aluminum conductors were deposited to a thickness of $5,000 \AA$ and a minimum line width of 0.015 in . to obtain conductors having essentially the resistance per inch of bulk aluminum.
To obtain resistive films with good stability, nichrome was deposited to a maximum of 200 ohms per square. The tolerance limitations of masks limited the minimum line widths to 10 mils. At 200 ohms per square, the thickness of the resistor films was $150 \AA$ and 5 watts per square inch was allowed for power dissipation. Interlayer shorts were minimized by depositing silicon monoxide to a thickness at $10,000 \AA$. Although the dielectric constant of silicon monoxide varies slightly with deposition pressures and operating frequencies, an average dielectric constant of 6 was suitable for the design of capacitors. With 10,000 \AA of silicon monoxide as a dielectric, capacitances of 33,000 pf per square inch were attained. This value was sufficient to design, within the 0.3×0.3 inch substrate area, capacitances up to $2,000 \mathrm{pf}$. To avoid paralleling many layers for capacitor values over $2,000 \mathrm{pf}$, cerium fluoride was used as the dielectric. Experimental data ob-
tained from an advanced thin-film component development program indicated that dielectric constants of 200 or more could be attained with cerium fluoride when deposited under optimized conditions.

As an example of the method used in circuit fabrication, the topological layout of the free-running multivibrator is shown in Fig. 1. This figtre also contains the schematic and shows the position of the circuit on the substrate. During this program, an overall 0.6×0.6 inch glass substrate was used. However, all passive elements were deposited within the 0.3×0.3 inch area. Each 0.6×0.6 inch substrate was optically checked for flaws or scratches and processed through several cleaning stages to remove dust, dirt and grease.

The evaporation process was initiated by depositing, $500 \AA$ of chrome through an interconnection mask onto the substrate to obtain good adhesion of the films to the glass. This film was further built up to $5,000 \AA$ by evaporating aluminum on top of the chrome. The aluminum, in a vacuum of approximately $6 \times 10^{-8} \mathrm{~mm}$ of mercury, was allowed to achieve a rate of $75 \AA$ per second before the shutter was opened and the evaporant began to deposit on the substrate. At this rate, $5,000 \AA$ was deposited on the substrate in approximately $1 \frac{1}{2}$ minutes. During this process, the substrate was held at 150 C .
The first circuit layer was a silicon monoxide undercoat which was placed over the area where the circuit was to be fabricated to smooth out the substrate and reduce the possibility of interlayer shorts in the succeeding layers. The silicon monoxide was evaporated from a crucible by a resistance heater un-

Multilayer Thin-Film Networks

FIG. 1-Topological layout of a multilayer thin-film, frec-running multivibrator showing method of fabrication
der a pressure of $5 \times 10^{-6} \mathrm{~mm}$ of mercury. The substrate was maintained at 300 C and a rate of $50 \AA$ per second was obtained before the shutter was opened. Approximately 3.3 minutes were required to deposit 10,000 Å.

The rate of evaporation was determined by monitoring the change in frequency of a crystal placed in the stream of the evaporant. Prior calibration experiments had established the change in frequency of the crystal required for the thickness desired.

The second step was to place the material on the substrate for the first evaporation of resistors. The mask was positioned and the nichrome was sublimated from a 60 mil, $80-20$-percent nickel-chromium wire at a rate of $\frac{1}{2} \AA$ per second at a pressure of $4 \times 10^{-9} \mathrm{~mm}$ of Hg . The evaporant is deposited on the circuit being fabricated and on a monitor slide adjacent to it. An ohmmeter connected across the monitor indicated when the design value of 200 ohms per square was obtained. The nichrome material was evaporated in a vacuum of $4 \times$ $10^{-9} \mathrm{~mm}$ of Hg . During this step the substrate was maintained at 300 C. Approximately 4 minutes
were required to obtain the desired 200 ohms per square. The resistor being deposited in this step was one of the $15,000-\mathrm{ohm}$ timing resistors and dissipated 12.5 mw in operation. The physical dimensions of the resistors were dictated by the ohms per square and the power dissipation. To stabilize the resistors, they were given a vacuum anneal at 300 C for 1 hour.

The third layer was aluminum which connected the resistor, provided the connection points and also provided the lower plate of C_{1}, one of the timing capacitors.

The fourth layer was silicon monoxide and it provided the layer-to-layer insulation and the dielectric for timing capacitor C_{1}.

The fifth step was to deposit nichrome to form the two 1,000 ohm collector resistors.
The sixth layer, aluminum, was evaporated to connect the resistor and provide the necessary layer-tolayer connections. It also formed the top plate for capacitor C_{1} and the lower plate for timing capacitor C_{n}. The seventh layer, silicon monoxide. was deposited to insulate and provide the dielectric of capacitor C.

The eighth step was the evapora-
tion of nichrome for the other timing resistor, followed by the ninth layer, an aluminum evaporation to connect the resistor and complete capacitance $C_{\text {w }}$. The tenth circuit layer was an overcoat evaporation of silicon monoxide.

A total of eleven layers, ten circuit layers and an interconnection layer, was used for this circuit and the maximum build up of films was $50,000 \AA$. In the 18 layer or NOT circuit, a maximum of 100,000 \AA Å was achieved.

Four different systems were considered to fabricate the experimental models. The system used to fabricate the majority of the circuits used three separate evaporators, one for each of the materials. Since each evaporator deposited only one material, it was optimized for that material. The substrates were manually changed from one evaporator to the other until the circuit was completed. Eight substrates were handled in each evaporator, and only one evaporation was performed for each pumpdown.

Before the circuits could be tested, they were placed in a holder and had wire leads thermocompression bonded to the film-inter-
connection tabs. This method of connecting to evaporate thin films was found to be superior to soldering, conducting adhesive pastes or pressure contacts. Experiments showed that ohmic contacts were obtained with thermocompression bonds. The bonds were made by applying approximately 180 grams pressure at a temperature of 200 C to an 8 mil radius chisel. The wire bonded was 3 mil gold. Transistors and diodes were affixed to the film networks in the same manner. The units used were uncased 2N706 silicon transistors and PD101 silicon microdiodes. The units were glued on top of the film area and their wires were thermocompression bonded to the film interconnection tab. While extensive research is being conducted to develop active elements more compatible with the film fabrication process, the aims of this program of evaluating multilayered thin films could be achieved by using the uncased transistors.

A detailed investigation into the problem of the inductors required for the i-f and r-f amplifiers evaluated several different film inductor configurations, and it was concluded that a flat square spiral would have the fewest circuit and fabrication problems.
This film inductor required 46 turns of 2 -mil copper conductor spaced on 4 mil centers, and produced an inductance of $10 \mu \mathrm{~h}$. While this configuration could yield inductances of 5 to $20 \mu \mathrm{~h}$, a d-c resistance of the order of 20 ohms reduced the Q to low values. In addition, it was necessary to use an $0.6-\mathrm{in}$. square area for the component. Considerably improved performance was attained with bobbinwound, air-core microinductors. These chip inductors mounted in an $0.1 \times 0.1-\mathrm{in}$. area, and exhibited inductances of $15 \mu \mathrm{~h}$ with a Q of approximately 20 at 2 Mc. This investigation revealed that at the present microminiature inductors could best be attained through conventional techniques.

Miniaturizing electronic functions necessitated thermal studies. Studies of the thermal problems associated with miniaturizing electronic functions determined the temperature distribution and heat transfer paths within the circuits as the result of the heat dissipated
by resistors and transistors. The circuit layouts were evaluated by a numerical relaxation method based on the calculus of finite differences. The solution for the steady-state temperature within the substrate assumes constant heat flow with time. An IBM 704 data processing system was used to solve a group of simultaneous equations in matrix form, which described the heat flow balance at each point in the substrate. Figure 2 shows the results of the relaxation method applied to the or circuit which dissipated 87 mw . The isothermal lines plotted for each 2 F increment indicated that the single substrate having the or-NOT circuit did not exceed a 65 F rise over ambient. With an ambient of 140 F , the maximum film temperature of 205 F was well below the 257 F limit determined by the semiconductors.

FIG 2-Isothermal distribution for an OR circuit assuming a still air ambient of 140 F

These studies also proved that film-to-film thermal gradients were so small that the high heat dissipating resistors could be placed on any layer without affecting the overall package temperature.

The electrical performance of each of the six multilayered circuit types fabricated was carefully analyzed. A minimum of five operational circuits of each type were evaluated. The TRL-NOR circuit exhibited operational performance equivalent to a similar circuit built with conventional components. Initially, the five other circuit types had some departures from conventional circuit performances. The
initial or NOT circuits had distortion in the output waveforms, and had a maximum operating frequency less than the design limit of 1 Mc . Increasing the insulating layers from $10,000 \AA$ to $30,000 \AA$ reduced the feedback capacitance causing this effect, and enabled the circuit to meet the design goals.

The i-f and r-f amplifiers were found to contain feedback paths that produced sustained oscillations. By eliminating the feedback path, the film circuits were found to operate similarly to conventionalcomponent versions. The audio amplifier's lower cutoff frequency was higher than the design goals. It was found that the value of the input capacitor was lower than the design value of $0.11 \mu \mathrm{f}$. Cerium fluoride rather than silicon monoxide was used for the dielectric of this component in an attempt to obtain the desired capacitance. While experimental data obtained in the laboratory had indicated that dielectric constants as high as 250 could be attained with cerium fluoride, the vacuum systems used in this circuit feasibility study were not optimized for this material; hence much lower values were obtained. For the same area capacitor, an order of magnitude increase over silicon monoxide was attained.

The astable multivibrator is described in detail to present a clearer picture of the analysis performed on each film circuit. This circuit had a design frequency between 400 and 600 Kc , depending on component tolerances. However, the actual frequency of thin-film versions of the multivibrator was between 0.75 and 1.5 Mc .

An analysis of the film-circuit layout established that interlayer feedback from the collector resistor of one stage to the base resistor of the same stage shunted each deposited base timing resistor with a resistance and capacitance distributed network. This resulted in lower effective timing resistance, thus reducing the time constant of the circuit and increasing the pulse repetition rate. The value of the timing capacitor for each stage of the multivibrator was not altered by the component placement of the films. Interlayer feedback was responsible in this case, and in all other instances where deviations in circuit performance had been ob-
served. This feedback is a direct function of the component placement in the circuit layout. To predict the performance of the multilayered film circuits before fabrication, it was necessary to simulate the feedback paths within the film network. The three-dimensional nature of the films complicated any attempt to synthesize an exact equivalent of the film circuit. However, a layer-by-layer physical inspection of the topological design was used to determine an approximate equivalent for each circuit. Only feedback paths that primarily affected circuit operations were included in these representations. Conventional-component models of these approximated circuits were fabricated and dynamically compared to the corresponding filmcircuit version.

Figure 3 shows the approximate equivalent circuit derived from the film layout of the multivibrator. This schematic shows the network of feedback paths connecting the collector and base resistors of each transistor. Figure 4A and B shows the waveforms obtained from the film circuit and the approximated equivalent circuit. The identically shaped waveforms and operating frequency prove the validity of the circuit simulation. By using the approximate equivalent circuit to simulate the film version, the performance can be predicted before the circuit fabrication.

From the experience in the fabrication of the six circuit types, an optimized version of the identical multivibrator was designed. This design considered the film structure as an integrated circuit network to achieve the desired output function. To establish the reproducibility of the process, a series of 160 starts was made of this circuit. No departures from anticipated circuit performance were expected since the approximate equivalent circuit, derived from the new film layout, indicated that the performance goals would be achieved. The circuits would exhibit symmetrical operation in the 400 to 600 Kc range if the component design tolerances were held to within +10 percent. Figure 4 C and D shows the output waveforms of one of these circuits compared to a conventional component version of the multivibrator.

A 90 -percent yield of operational circuits was obtained and the data showed that the passive elements could be held at ± 10-percent.

Several hundred circuits using nichrome resistors and aluminum conductors have been subjected to environmental tests. These tests include temperature, humidity, temperature cycling and load life and were designed to determine the limits to which film networks could be stressed without using protective coatings. The tests showed that when humidity was kept below 50 percent, the circuit components were stable within 1 percent over wide variations in temperature and power dissipations. The temperature range was between -55 and +100 C , while the power dissipation was varied from 0 to 200 percent of rated power. Originally, film samples containing nichrome resistors and aluminum conductors subjected to 1,000 -hour combinations of power, high temperature $(80 \mathrm{C})$ and high humidity (95 percent), exhibited some film deterioration due to electrolysis. However. other metallic film combinations such as $\mathrm{NiCr} / \mathrm{CrAu}$ have been developed and exhibit high stability and immunity to corrosion.

The use of these newer materials along with a protective coating will enhance the use of thin films in the production of reliable electronic systems.

During the fabrication of the multivibrators, eight circuits were produced simultaneously within an area of $15 \mathrm{sq} \mathrm{in}$. resistor distribution over the deposition area revealed that a maximum of ± 6-percent deviation in resistor value was maintained for each evaporation. A closer examination of the masks used in the fabrication indicated that ± 2 percent of this deviation was a result of mask tolerances. These results indicate that with only minor 1 m provements to the fabrication process, simultaneous deposition of as many as fifty or more circuits can be successfully achieved on a single substrate.

This article was derived partly from studies and research performed with United States Army Signal Corps and United States Air Force support. The authors acknowledge the assistance of their colleagues.

FlG. 3-Approximate equivalent circuit of an astable multivibrator

(A)

(B)

(C)

(D)

FIG. 4-Collector waveform for film astable multivibrator (A) and conventional component equivalent (B). Optimized circuit waveform (C) with conventional equivalent (D)

Simplified hybrid-pi equivalent (A) of basic video amplifier. (B). Equivalent input circuit (C) and input circuit with generator resistance (D)

Emitter Peaking

Emitter peaking improves response, linearity and stability of transistor video amplifier as well as minimizing effects of varying or different transistor internal parameters. Design equations for

this circuit are presented

By JOHN B. FISHER.
Semiconductor and Material Sivision. RCA, Somerville, N. J.

DESIGN of transistor commonemitter video amplifiers is complicated by the low input impedance of transistors and the frequency dependence of this imped rce. The response of a typical high-frequency transistor amplifier is more dependent upon input parameters than output; therefore, any peaking or high-frequency compensation should be concerned with the base-to-emitter circuit rather than the collector circuit.

Emitter peaking improves the response of the input network as well as the linearity and stability of the amplifier. It also minimizes the effects of varying or different transistor internal parameters on the characteristics of the circuit. Although the improvement in response is accompanied by an almost proportional loss in gain, the loss is not serious because of the high gain or transconductance inherent in the transistor.

The following analysis is based
on the familiar hybrid-pi ${ }^{1}$ equivalent network shown in Fig. 1A and applies to the amplifier shown in Fig. 1B. The analysis consists of calculation of an equivalent input network, calculation of an output network and combination of these two calculations to provide useful design equations.

If it is assumed that the equivalent base resistance r_{m} shown in Fig. 1A is part of the generator impedance, the input circuit can be represented by the equivalent ciranit shown in Fig. 1C. At low frequencies, neglecting C_{e}, the input impedance appears as a parallel total input resistance $R_{1 \text { in }}$ and equivalent input capacitance C_{i} having the values

$$
\begin{aligned}
& C_{i}=C_{\mathrm{in}} /\left(1+g_{m} R_{c}\right) \\
& R_{\mathrm{in}}=R_{b^{\prime} e}\left(1+g_{m} R_{c}\right)
\end{aligned}
$$

The value of $C_{1 \mathrm{n}}$ is given by

$$
r_{\mathrm{i} \mid 1}=C_{b^{\prime} c}+C_{b^{c} c}!_{m} R_{L}
$$

To determine the time constant and loss of the input network, the effects of $r_{m, \ldots}$ and the generator resistance must be included as shown in Fig. 1D. Equivalent input resistance R_{1} is the parallel combination
of R_{in} and $R_{g}+r_{b b^{\prime}}$ as
$R_{i}=\left[R_{\text {in }}\left(r_{b b^{\prime}}+R_{0}\right)\right] /\left[R_{\text {in }}+r_{b b^{\prime}}+R_{g}\right]$
where R_{g} is the internal resistance of the signal source. If emitter capacitance C_{0} is neglected, the input time constant is

$$
T_{\mathrm{in}}=R_{i} C_{i}
$$

There is a small signal loss ($A_{1, n}$) in the input network as a result of $r_{b,}$

$$
A_{b, b}=R_{\text {in }} /\left(R_{\text {in }}+r_{b, k}\right)
$$

Analysis of the collector at low frequency involves the parameters shown in Fig. 1C. Output voltage $V_{\text {out }}$ is

$$
V_{\text {out }}=g_{m} V_{b_{0 e}} R_{L}
$$

Input voltage $V_{\text {In }}$ is

$$
V_{\text {in }}=V_{b^{\prime} e}+g_{m} V_{b^{\prime} e} R_{e}
$$

Internal gain from base to collector $A_{b, r}$ may be computed as

$$
\begin{aligned}
& A_{b^{\prime} r}=V_{\text {out }} / V_{\text {in }}= \\
& \quad\left(g_{m} V_{b^{\prime} e} R_{L}\right) /\left(V_{b^{\prime} e}+g_{m} V_{b^{\prime} e} R_{c}\right)= \\
& \left(g_{m} R_{L}\right) /\left(1+g_{m} R_{f}\right)
\end{aligned}
$$

Total gain A is

$$
\begin{aligned}
& A=A_{b b^{\prime}} A_{b^{\prime} e}=\left[R_{i}\left(R_{i}+r_{b b^{\prime}}\right) \mid\right. \\
& \left.\left[g_{m} R_{L} /\left(1+g_{m} R_{e}\right)\right]=g_{m} R_{L} R_{b^{\prime} e}\right] \\
& {\left[R_{1, e}\left(1+g_{m} R_{e}\right)+r_{b b^{\prime}}\right]}
\end{aligned}
$$

The value of g_{m} at 25 C is appros-

Improves Video Amplifier Response

imately $g_{m}=0.38 I_{c}$ (in ma). Time constant of the collector is defined as $T_{\text {out }}=R_{L} C_{0}$ where $C_{0}=C_{\text {ob }}+$ $C_{\text {wiring }}+C_{\text {bonj. }}$

This time constant may be improved by shunt or series inductance peaking. More complex peaking generally will not produce an appreciable improvement in the response of the entire amplifier because the peak network imposes bandwidth restrictions.

Shunt peaking may be used with an allowable overshoot of 2.5 percent. Bandwidth improvement of 1.7 may be realized in the collector with the output time constant reduced by a factor of $1.7 \mathrm{as}^{8}$

$$
T_{\text {out }}=R_{L} C_{0} \cdot 1.7
$$

For such shunt peaking of an amplifier, a small inductor L, is placed in series with the collector load resistance R_{L}. This inductor has the value ${ }^{\text {s }}$

$$
L=m R_{L^{2}} C_{o}
$$

where m is 0.4 for a bandwidth improvement of 1.7 and an overshoot of 2.5 percent. If $r_{1,0}$. is neglected, the low-frequency voltage gain of the amplifier A^{\prime} is given by

$$
A^{\prime}=g_{m} R_{L} /\left(1+g_{m} R_{e}\right)
$$

The gain of the amplifier is reduced by the factor ($1+g_{m} R_{r}$) compared to that of an equivalent amplifier having either no emitter resistance or a well-bypassed emitter resistance. Because the time constant or bandwidth is improved by exactly the same ratio, the gainbandwidth product remains constant.
The emitter resistance and capacitance perform to some extent as a frequency-compensated attenuator to the signal being amplified. The flattest response is achieved when the emitter-circuit time constant T equals the time constant of its parameters

$$
R_{e} C_{\epsilon}=\left[\left(T_{\mathrm{in}}\right)^{2}+\left(T_{\text {out }}\right)^{2}\right]^{1 / 2}=T_{\epsilon}
$$

The upper cutoff frequency of the amplifier $f_{s \text { do }}$ for the maximally flat condition is given by

$$
f_{3 d b}=1 / 2 \pi T_{e}
$$

If some overshoot or undershoot is desired or can be tolerated, an approximate expression for the upper cutoff frequency may be used

$$
f_{z+h}=1 /\left[2 \pi T_{e} C_{e} \mid\left(C_{e}+\Delta C\right)\right]
$$

Over a small range ΔC is the amount of capacitance added to or subtracted from the capacitance across the emitter resistance. The 10 -percent to 90 -percent rise time T_{r} is then approximately

$$
T_{r}=2.2 T
$$

The gain-bandwidth product remains approximately the same for small changes in R_{e} or R_{L} as long as the emitter current is constant. For example, the germanium driftfield transistor 2N384 provides a gain-bandwidth product of approximately 200 Mc at an emitter current of 5 ma , whereas the 2 N 1491 silicon-mesa type transistor has a gain-bandwidth product greater than 500 Mc at an emitter current of 25 ma .

As an example of design procedure, assume a pulse amplifier similar to that shown in Fig. 1B required to have the following characteristics: voltage gain A of 20 , input impedance $R_{\text {in }}$ is from a 75ohm cable, load capacitance $C_{\text {tond }}$ of 10 pf and a maximum temperature $T_{\text {max }}$ of 75 C .

Free-air dissipation P_{c} of the 2N1491 is 0.25 watt at an ambient temperature of 75 C . Assuming $V_{\text {re }}$ of 28 volts and maximum dissipation capabilities
$I_{c}=P_{c} /\left(\Gamma_{c c}^{c} / 2\right)=(0.25) /(28 / 2)=$ 17.8 ma
$R_{L}=\left(V_{\text {ce }} / 2\right) / I_{c}=785 \mathrm{ohms}(750 \mathrm{ohms}$ is used)

The gain of the amplifier is
$A=\left(g_{n 1} R_{L} R_{b, c}\right) /$
where $A=20, r_{h b^{\prime}}=30 \mathrm{ohms}, R_{b^{\prime} \cdot \mathrm{c}}$
$=60$ ohms and $g_{m}=0.38 I_{c}=$ (0.038) (17.8) $=0.675 \mathrm{mho}$.

Substituting these values in the gain equation yields a value of approximately 33 ohms for R_{s}.
$C_{\text {in }}=C_{b b^{\prime}}+C_{b^{\prime} \mathrm{c}} g_{m} R_{L}=$
$450+2(0.675)(750)=1,462 \mathrm{pf}$
$R_{\text {in }}=R_{b^{\prime},}\left(1+g_{m} R_{f}\right)=$
$60[1+(0.675)(33)]=1,396 \mathrm{ohms}$
$R_{i}=\left[R_{\text {in }}\left(r_{b b^{\prime}}+R_{o}\right)\right] /\left[R_{\text {in }}+r_{b b^{\prime}}+R_{g}\right]=$
$\left.\left[1,396(30+7)^{5}\right)\right] / 1,396+30+7 \overline{0}=$ 97.6 ohms.
$T_{\mathrm{in}}=R_{i} C_{i}=R_{i} C_{\mathrm{in}} /\left(1+g_{m} R_{e}\right)=$ 6.15 nanoseconds

Output capacitative loading $C_{\text {out }}$ is given by

$$
\begin{aligned}
& C_{\text {out }}=C_{\text {ob }}+C_{\text {wiring }}+C_{\text {load }}= \\
& 5+3+10=18 \mathrm{pf}
\end{aligned}
$$

Assume the $R_{e} C_{e}$ product equal to the $R_{L} C_{L}$ product. The output time constant $T_{\text {out }}$ with shunt peaking is then given by

$$
T_{\text {out }}=R_{L} C_{\text {out }} / 1.7=
$$

(750) $(18)\left(10^{-12}\right) / 1.7=$
7.95 nanoseconds

The value of C_{e} may be determined as

$$
\begin{gathered}
R_{e} C_{e}=\left(T_{\text {in }}^{2}+T_{\text {out }}^{2}\right)^{1 / 2}= \\
\quad\left[(6.15)^{2}+(7.95)^{2}\right]^{2 / 2}=10 \text { nanoseconds } \\
\quad C_{e}=T_{e} / R_{e}=10 / 33=303 \mathrm{pf} .
\end{gathered}
$$

Upper cutoff frequency is given by

$$
f_{3 d b}=1 / 2 \pi 10 \times 10^{-9}=15.9 \mathrm{Mc}
$$

The gain-bandwidth product of the amplifier is 15.9×20 or 318 . This product remains approximately the same at this emitter current for small changes in R_{c} or R_{L} and may be used as a guide for amplifiers requiring a different gain or bandwidth from that shown in the example.

The author thanks R. Minton, H. Lee, W. Williams and C. F. Wheatley for their technical assistance.

REFERENCES

(1) Study of PNP Alloy Junction Transistor From DC Through Medium Frequencies, RCA Reviev, XV , 4, p 552 , Dec. 1954.
(2) J. Millman and H. Taub, "Pulse and Digital Circuits" p 7 s , MeGraw-Hill Book (omulany Inc., New York, 1956 .
(3) T. L. Martin, "Blectronic Circuits", p 127, Prentice-Hall, Inc., New York, 1956.

Voltage-Variable Capacitors

Series-resonant circuits using voltage-variable capacitors can be
 interconnected to form a square-wave oscillator with a controllable frequency

range between 15 cps and 1.5 Kc ; r-f energy is used as the power source

By JULIO LOPEZ, S.J. JULIUS BROWN
Electrical Engineering Department, St. Louis University, St. Louis, Missouri

Among recent electronic devices using semiconductor material is the voltage variable capacitance diode. This semiconductor is a unidirectional element and has a volt-age-variable junction capacitance. For a-c voltage components that are small in comparison with the reversed bias voltage across the junction, the diode operates as a variable capacitor and the magnitude of its capacitance is a function of the d-c reverse bias voltage ${ }^{1}$.

In the circuit of Fig. 1A, assume a signal input of amplitude E across matching impedance R_{m}. The positive half cycle of the signal will flow through diode C_{r} charging $\operatorname{tank} R C$. Due to diode action, the negative half cycle cannot flow. If R is sufficiently large so that time constant $R C$ is large with respect to the period of the input signal, the charge on C will remain almost constant and there will be a d-c voltage output $V_{\text {out }}$. This d-c output voltage appears across diode C_{r} as a reverse bias voltage that determines the capacitance of C_{r}.

As the amplitude of the input signal is increased, voltage $V_{n n t}$ increases and the value of C_{r} varies. Characteristic curves show that the capacitance value of C. decreases with an increasing reversed bias voltage ${ }^{2}$. For a certain value of input voltage, C_{r} will be such that the series elements L and C_{r} will have a resonant frequency equal to the input signal frequency. At this point $V_{o u}$ will be maximum.

When the natural frequency of the tuned circuit is below the input frequency, and the input voltage is
small in amplitude, the small self bias causes a large capacitance value and an under-resonant series circuit.

As the input signal is increased in magnitude, the circuit resonant frequency value approaches that of the input and a regenerative effect of increasing bias causes a switching action at the output voltage $V_{\text {оит }}{ }^{3}$. Thus, $V_{\text {оut }}$ reaches a maximum value and a large reverse bias voltage is established across diode C_{r}. Since the magnitude of the bias voltage is large compared with the magnitude of the a-c voltage component across the C_{r}, variation in the actual capacitance C_{r} will be so small it can be considered constant.

Rectification of this small a-c component will compensate the d-c losses of C discharging through R and a constant d-c voltage will exist across the tank $R C$.

If the bias voltage can be changed in magnitude (decreasing the input amplitude so that there is not sufficient compensation for d-c losses of the tank), then $V_{\text {nut }}$ will decrease in magnitude and C_{r} will increase its value.

Continuing decrease of the input signal magnitude, a second critical value of C_{r} is reached at which a negative regenerative action starts and the output voltage is switched to a low-voltage level. Therefore, the circuit has two stable states.

It is possible to set input amplitude E so that there is no actual

OUTPUT SIGNAL LEVELS

	State 1	State 2
	0.95 v rms	1.10 v rms
$V_{i n}$	$0.14 \mathrm{v} \mathrm{d-c}$	$16.50 \mathrm{v} \mathrm{d-c}$
V_{1}	0.14	
V_{2}	$16.50 \mathrm{vd-c}$	$0.14 \mathrm{vd-c}$

compensation for the d-c losses of the tank circuit and there is an internal triggering down to the low level. This corresponds to the quasistable operation.

If fast changes of bias voltage can be produced across the diode, then the output level can be made to jump from one to the other output level of voltage, and oscillations will occur across the tank.

The series circuit can be tuned to a given input frequency by varying inductance L. The higher the Q of the circuit, the larger the output voltage jumps will be. For Q's below a certain value no sudden level changes will occur.

Two series-resonant circuits can be connected in parallel across the output of an r-f generator with a common matching impedance Z (see Fig. 1B). The two circuits are identical in that the nominal values of the circuit components are the same. It is possible to tune both circuits for resonance at the common input frequency value.

As the input voltage is increased across impedance Z, the d-c output voltages across tanks $R_{1} C_{1}$ and $R_{\because 2} C_{e}$ will increase until the component values of one of the series circuits will be such that regenerative action will occur and the voltage across that branch (for example V_{1} across $R_{1} C_{1}$) will jump to its upper level, while V_{2} will remain at its low level4.

If a perturbation can be produced in V_{1}, the effective value of $C_{n 1}$ will change. Thus, this series circuit will no longer be at resonance, its impedance will increase and the current through the other branch will increase varying the value of $C_{r 2}$ and forcing the second series circuit into resonance. The output voltage values will be inter-

Make a Relaxation Oscillator

FIG. 1-Single series-resonant circuit (A) can be modified to a doublebranch circuit (B) capable of acting as a relaxation oscillator

FIG. 2 -Waveshape of relaxation oscillator corresponding to output voltage V_{2}

FIG. 3-Waveshape: $V_{1}=3.6 v$ d-c, $f=71 \mathrm{cps}, C_{\mathrm{s}}=0.3 \mu \mathrm{f}$ and $R_{\mathrm{s}}=$ 150,000 ohms
changed with V_{2} at the upper level and V_{1} at the lower level. The circuit then has two stable states and can be triggered from one to the other.

With input frequency of 4 Mc , Z of 600 ohms, L_{1} and $L_{ \pm}$adjustable high Q coils of 42 to $100 \mu \mathrm{~h}$ inductance, $C_{\mathrm{r} 1}$ and C_{vg} of 22 pf at -4 v d-c (PC-113-22), $C_{\text {, }}$ and C_{2} of 300 pf mica capacitors and R_{1} and R_{2} of 1 megohm, and setting inductors L_{1} and L_{2} at $80 \mu \mathrm{~h}$, the input amplitude was varied until the largest possible difference was obtained between the two output levels. The table shows the results.

Variation in input amplitude is
due to slight differences between L_{1} and L_{2}. The two series circuits should not be identical for optimum operation in this mode.

Relaxation oscillations are characterized by a sudden change. or relaxation, from one state of operation to another. When both states of operation are states of equilibriun the operation is known as a bistable mode. If one of the states is a stable equilibrium for only a certain period of time determined by coupling time-constants and bias so that the circuit switches itself back to the initial state, the operation is known as a quasistable mode.

In an RLC circuit, with a small L or a large C, especially if one of the elements is nonlinear or even discontinuous, nonlinear oscillations are possible ${ }^{\text {T }}$.

If the two series resonant branches of Fig. 1B are interconnected with the parallel combination of $R_{3} C_{3}$, the circuit forms a relaxation oscillator when operated under the proper conditions.

Assume that branch $1\left(L_{1} C_{r 1} R_{1}\right.$ C_{1}) is tuned to resonance at the input frequency of the rf generator and that branch $2\left(L_{z} C_{r v} R\right.$: C_{a}) is slightly unbalanced or untuned with respect to the input frequency. Under these conditions the circuit will tend to switch back to the situation where V_{1} is at its high output level once a perturbation has taken place and a momentary change of states has occurred.

When interconnection tank $R_{3} C_{3}$ is introduced into the quasistable trigger-pair circuit, the two output voltages tend to balance.

A potential difference will appear across C_{3} and C_{5}, with a larger voltage on C_{2} since C_{3} has a larger: capacitance (within a range of 1 $\mu \mathrm{f}$ to $0.01 \mu \mathrm{f}$). The larger potential across C_{0} becomes a reverse bias for $C_{r 2}$. When V_{g} has reached a threshold value, a disturbance occurs that switches branch 2 into resonance. As a consequence. V, reaches a high output level with the interconnection of $R_{3} C_{3}$.

At the same time, high level V_{2} is proportionally divided between C_{3} and C_{1}, increasing V_{1} and if the input amplitude is sufficiently large, output V, will also reach a high level. Branch 1 is tuned to resonance for the input frequency while branch 2 is untuned. The high output level of V, will be larger than the high output level of V_{2} and a new potential difference will exist across C_{3}. Figure 2 shows output voltage $V_{\text {.. }}$. High level of branch $2\left(a_{2}\right)$ is an unstable state as it corresponds to the quasistable situation. Therefore, branch 2 will try to move out of it as C_{2} discharges. This is delayed by discharge of C_{3} across the paral-
lel combination of R_{s} and $R_{1} R_{z}$ in series.

At a certain value of V_{s}, point b_{z} in Fig. 2, the output voltage of branch 2 is switched to its low level output c_{2}. Since C_{3} cannot discharge instantaneously and the voltage at point $A_{\text {: }}$ of the circuit (Fig. 1B) has decreased instantaneously, it is necessary for the voltage at point A_{1} to decrease by the same amount. Consequently $\quad V_{1}$ is practically switched to its low level at the same time that V_{z} drops. Now branch 1 is in a quasistable state.

The discharge of C_{3} continues during the low-level period and the voltage across C : increases. At the same time, since the input amplitude has not been varied and is large, branch currents flow thus increasing the reverse bias of the diodes exponentially from c_{n} to d_{v}.

At d_{s}, the critical bias voltage is reached for $C_{r 2}$ and V is switched to its high level. Thus V_{1} is also switched to its high output level and a complete cycle of relaxation is obtained. Since the changes of state must occur at the same time for both output voltages, due to the location of $C_{:}$in the circuit, both oscillations are in phase.

Slight changes in the amplitude and frequency of the input voltage varies the amplitude of output voltage $V_{\text {: }}$ without affecting the relaxation oscillations. An optimum value of $V_{,}$can be found where the voltages of branch 1 are precisely those nceded for no overdriven operation, and V_{1} is close in shape to a square wave. For Fig. 1B, Z is 630 ohms, $f_{\text {in }}$ is $2.9 \mathrm{Mc}, V_{\text {tn }}$ is 1.35 v rms, L_{1} is $141 \mu \mathrm{~h}, L_{2}$ is $131 \mu \mathrm{~h}, C_{v 1}$ and $C_{\text {re }}$ are both 22 pf diodes, C_{1} and C_{2} are $240 \mathrm{pf}, R_{1}$ and R_{2} are 750,000 ohms, C_{3} is a capacitor decade between 0.01 and $1 \mu \mathrm{f}$ and R_{3} is a variable resistance between 15,000 ohms and 10 megohms. The square wave is shown in Fig. 3.

The d-c levels of both outputs were measured with a vtvm and were found to be 13.25 v for V_{1} and 12.25 v for V_{3}. Graphical measurements lead to the approximate values of 15.5 v d-c and 11.90 v d-c for V_{1} high and low values respectively and 14.75 to $14.25 \mathrm{v} \mathrm{d}-\mathrm{c}$ and 10.65 to 11.15 v d-c for V_{s} high and low values respectively.

Current was difficult to measure directly since insertion of a microammeter tends to stop oscillation. However, $40 \mu \mathrm{a}$ is a good approxi-
mation. If both bra.luhes of Fig. 1B are operated separately as series-resonant circuits for the same input frequency and the d-c output voltage is plotted against the rms input amplitude, jumps of $7 \mathrm{v} \mathrm{d}-\mathrm{c}$ and 5.5 v d-c will be obtained for V_{1} and V_{2} respectively.
The jumps of relaxation oscillations are only 3.6 d -c volts in amplitude. The jumps of branch 2 are smaller than the jumps of branch 1 because branch 2 is untuned for the input frequency, a forced condition to operate the whole circuit as a quasistable oscillator. Less change in bias is needed to trigger the circuit of branch 2 and hence it is this circuit that first moves out of one of the end states. The amplitude of the jump in the oscillator circuit is the same for both branches; however, since branch 2 jumps first or starts the jump first, the relaxation oscillations can be considered to be driven by the operation of branch 2. The amplitude of the oscillations will not be larger than the amplitude of the jump given by the static curve of branch 2 when operated as a single series resonant circuit.

In all cases, the jump from low to high level is a clean line indicating that the switching is obtained without any ringing and at a speed of approximately 300μ sec. A thicker switching line indicates

FIG. 4-With V_{1} and V_{9} at $6 v d-c$, top shows $f=130 \mathrm{cps}$ and $C_{s}=$ $0.1 \mu \mathrm{f}$. Bottom shows $f=140 \mathrm{cps}$ with $C_{3}=0.08 \mu f$
the presence of ringing. This ringing limits the range of the relaxation oscillations as the values of the $R_{3} C_{3} \operatorname{tank}$ are varied. For the experimental values given for the circuit of Fig. 1B, the range of the square wave oscillations were found to be 50 cps to 1 Kc .

The series combination of R_{1} and R_{2} in parallel with C_{3} could constitute the interconnection tank $R_{3} C_{3}$. Therefore, R_{3} is not essential for oscillations and may be removed from the circuit of Fig. 1B. If branch 2 is detuned to a greater degree, the output waveforms can be changed in shape. When the detuning is too large, branch 2 will not have sudden jumps. Nevertheless, if a voltage variable-capacitance diode with a steeper capaci-tance-versus-bias slope is used in branch 2, it is possible to obtain a considerable change in current, although not a sudden one because this branch is never at resonance. The circuit is operated with branch 1 as a quasistable circuit and branch 2 with a ramp output.

For the circuit of Fig. 1B, with $R_{\text {: }}$ removed and $f_{\mathrm{in}}=3 \pm 0.02 \mathrm{Mc}$, $V_{1 \mathrm{n}}=1.6 \mathrm{v} \mathrm{rms}, L_{1}=139 \mu \mathrm{~h}, L_{2}=$ $36.5 \mu \mathrm{~h}$ and $C_{\mathrm{r}: 2}=47 \mathrm{pf}$ at $-4 \mathrm{v} \mathrm{d}-\mathrm{c}$, the waveforms shown in Fig. 4 are generated at V_{1} and V_{s}.

From the values of C_{3} shown in Fig. 4, note that the output frequency is inversely proportional to the time constant of tank $C_{3}-\left(R_{1}\right.$ $+R_{\Downarrow}$). Varying C_{3} causes the output frequency to range from 15 cps to 1.5 Kc . The measured d-c levels are 14 v and 7 v for V_{1} and V_{z} respectively. Circuit current is approximately 22μ a.

The authors thank Pacific Semiconductors Inc. for semiconductor diodes and technical data charts.

REFERENCES

(1) L. J. Giacoletto, Variable-Capacitance Germanium Diode for UHF. RCA Review, p 68, March, 1956.
(2) Technical Data 10100-5, Pacific Semiconductors, Inc., 1960.
(3) E. O. Keizer, A Carrier-Encrgizen Bistable Circuit Using Variable-Capacitance Diodes, RCA Rcvicu, l tri. Dec. 1957.
(4) C. F. Spitzer, The Ferroresonant Trigger pair, Trans AIEF, Communications and Electronics, 26, p 10\%, Sept. 195. E. Gremer, The Ferroelectric IRe-
C. sonant Trimger Pair. Troms AIEE. Communications and Electronics, 2f. p 104. Sept, 1956 .
(5) A. A. Andronow and C. E. Chaikin, Theory of Oscillations. Aloscow $1!3 \overline{7}$. Translation: Princeton Úni. Press. p 138. 1949 .
(6) W. L. Hughes, Nonlinear Electrical Networks, The Ronald Tress Company, New York, p 243. 1960 .
J. J. Stoker, Nonlinear Vibrations, "Pure and Applied Mathematics." II. Interscience Publishers, Inc, New York, p 137, 1950.

FIG. 1-Constant voltage transformer feeds rectifiers and shunt regulutor. Sensing circuit feeds back correcting signal, causing transformer to collapse to hold desired out mut

Transformer and Shunt Transistors Regulate D-C Power Supply

Constant voltage transformer and shunt-transistor regulator control a d-c power supply. Feedback-sensitive circuit uses Kener diode as reference

By J. T. KEEFE,
Sola Electric Co.. Chicago. Ill.
CONSTANT vOLTAGE ferroresonant transformers can be used in d-c power supplies to provide a high degree of regulation. When used with silicon rectifiers and high capacitance, etched foil, telephonegrade electrolytics, a circuit is available suitable for many applications. Transformers are designed to deliver only about 150 percent of rated current, thus protecting the rectifiers against in-
itial charging surges and the load from short circuit.

However, the series impedance of the power supply, while low, causes a regulation problem when load current is high, as it can be in circuits using many transistors. A shunt regulating circuit, which is a-c in principle and depends on the leakage reactance of the constant voltage transformer, has been developed to produce well-regulated d-c at high efficiency. Operation of the constant voltage ferroresonant transformer is explained in the edi-

The photograph shows a typical shunt-regulated supply

torial box; the feedback controlled, shunt regulating circuit is shown in Fig. 1.

Figure 1 shows a ferroresonant supply using full wave centertapped rectifier, choke-input pisection filter, shunt transistors and sensing circuit. The power supply without shunt regulator is adjusted to a nominal output voltage that is always above rated voltage under the worst conditions of line, load, ripple and temperature.

The shunt transistors produce regulation by increasing the voltage drop through the leakage reactance of the constant voltage transformer (CV). Current through the shunt circuit adds to the load current so that the total keeps the output of the CV (after filtering) at rated output voltage. Resistor R_{1}, in series with each power transistor, dissipates the additional watts beyond the capability of the transistor. If the watts to be dissipated exceeds the rating of one transistor-resistor, parallel elements are added.

Transistor Q_{1} is controlled by Q_{2} and Q_{3}, which are driven by the voltage sensing circuit. A tempera-ture-compensated Zener diode cir-
cuit, adjusted to give rated output from the supply, is used in the voltage sensor. When output is too high, the voltage difference is amplified and applied to the base of Q_{3}, turning on Q_{2} and in turn, Q_{1}.

Current flow through Q_{1} continues until the output voltage has dropped to the reference level, at which point all transistors turn off. Since there always tends to be a voltage difference, the action repeats continuously at a high rate (approximately 1 Kc) and is more analogous to a switching circuit than to an amplifier. Because the transistor circuit responds almost instantly, $120-\mathrm{cps}$ ripple is also attenuated and is lower than in the basic supply.

The shunt regulated circuit gives high performance at relatively low cost and minimum complexity. Regulation obtained from the CV costs less than a transistor circuit that would give the same results. However, as the power rating of the supply decreases, the CV eventually will not pay its way, and it is better to use an all-transistor supply. The cutoff point is probably between 20 and 30 watts.

The circuit has other advantages besides simplicity. It is inherently short-circuit proof due to the collapsing action of the CV transformer. In addition, no load current flows through the regulating transistors, thus they are unaffected by overloads or short circuits.

The regulating circuit is relatively fail-safe. For an open, the transistors would draw only leakage current but the CV transformer would still be effective. For a short, the output would collapse,

FIG. 2-Shunt regulator (A) and typical series regulator (B)
as with an external short. In no event would the load be subjected to a sudden substantial increase in voltage due to failure in the regulating circuit.

Figure 2A shows the shunt system of fixed series element and variable shunt element. Current
through the variable element is adjusted so that the voltage drop across the series element varies enough to keep the output constant. In an a-c circuit, the elements can be impedances or resistances; in a d-c circuit, they can only be resistances.

The shunt principle is little used in d-c regulators because the fixed series element represents a continuous watts loss. In the d-c series regulator (Fig. 2B), the series resistance also dissipates some wattage but, since it varies only enough to provide regulation, the over-all power dissipation is less and the series system is more efficient.

In the design presented in this article, the parallel element is in effect a variable resistor but the series element is the leakage reactance of the CV transformer. Thus, effective regulation is obtained without incurring excessive dissipation.

The circuit shown in Fig. 1 uses three transistors in shunt and has rated output of $6 \mathrm{v} \mathrm{d-c}$ at 20 a . The primary of the CV typically is triple rated for $115 / 208 / 230 \mathrm{va}$ ac,

OPERATION OF CONSTANT-VOLTAGE TRANSFORME

FIG. B-Sensing circuit uses Zener diode as reference, develops error signal to control output of supply

FIG. 4-Wavcform from constant voltage transformer.
causes the base current of Q_{3} (Fig. 1) to increase, turning Q_{3}, Q_{2} and Q_{1} towards on. Thus the shunt current through Q_{s} increases, causing output voltage to decrease. This decreases the error voltage and causes the base voltage on $Q_{\overline{5}}$ to increase. Transistors Q_{s} and Q_{1} now turn towards on and Q_{s}, Q_{2} and Q_{1} towards off, reducing the shunt current. Thus the system maintains voltage equilibrium at the value determined by, but not equal to, the Zener diode voltage.

In a conventional transformer (A), primary voltage E_{n} sets up magnetizing current I_{r}. The flux set up by I_{p}, shown by arrows, is constant is long as E_{j} is constant.

A magnetization curve for typical transformer grade steel is shown at (B). In the area to the left at the knee of the flux changes in direct proportion to the magnetizing force. To the right of the knee, increase in magnetizing force has little effect on increasing flux.

In conventional transformers, rated input voltage occurs at a point such as $E_{p,}$. If the voltage is then increased to $E_{p,}$, the magnetizing foree and fux increase, inducing E : proportionally. Hence, for operation below the knee, output voltage is input voltage multiplied by the turns ratio, or E, $=$ $\left(N_{2} / N_{t}\right) E_{p}$.

With a magnetic shunt and a capacitor, show'n in (C), current Ic flows in the capacitor and the secondary winding. Part of the fux produced by Is flows in the shunt and does not link the primary. Thus, total flux under the sccondary winding is higher than primary flux and is above the knee,
corresponding to $E_{l,}$. As a result, variation in $E_{p^{\prime}}{ }^{\prime}$ moduces negligible change in the total secondary fur.

Since secondary fure is now relatively independent of mimary coltage, secondary voltage is relatively constcut. A compensating winding on the primeryl leg, comnected in series opposition to the secondary, reduces variations further, as shown at (D). By proportioning, net output voltage is made nearly constant. Action of the comprnsating voltage for varying load and fixed input voltage, at (E), indicates the secondary voltage phase shift with incerasing resistive load. The phase of the compensating voltage is unaffected and hence E_{r} progressively subtracts less, tending to compensate for load regulation efficet. At fixed load and varying inmet voltage the change in magnitude of E, provides the major compensating action although some phase shift still results. l'ector relationships are shown at (F) for a Bn-percent change in input voltage.

Capacitor curvent I_{r} has been shown to keep secondary flux relatively fixed for varying inputs. With a load, cur-
rent in secondary is the sum of the load and capacitor current. If load current is resistive (unity power. factor (pf)) there is a decreased secondary flux density and consequent lowering of output voltage. The poor load regulation can be partly corrected for by the contpensating winding.

If load current is partly inductive (lagging pf), the effect of the capacitor in direetly attemuated and ostipw voltage will change with pf. This effect cun often be compensated for on a-c applications.

If lond current becomes too great, the effect of the capacitor is lost. Secondary flux now opposes primary fux, demagnetiaing the secondary core leg. The output voltage collapses abruptly and limits the short-circuit current to 150 to 200 percent of full load.

Becallse the flua under the secondary minding is above the knee of the magnetization curve, output roltage. as shoun in the oscillogram, Fig. 4. is not a true sine wave. This is an advantage in power supply applications, since it reduces the peak inverse voltage that the rectifying element must withstand

Vibrating Wire Probe Maps

Small single-loop probe vibrating at 14 Kc measures magnetic flux in small fields with 1-percent short-term accuracy

FIG. 1-Sketch shows original fuxmeter arrangement with 14-Ke magnetostrictive drive

FIG. 2-Detail of modified pickup shows how pickup wires are attached to coupling glass rod, (A); laboratory setup used to check fidelity is shown in (B)

USES OF MAGNETIC MATERIALS in control and detection devices have greatly increased the need for micromeasurement of magnetic fields. Magnetic field plotting and microuniformity measurements have been conducted with rotating coil instruments, Hall generator devices and quartz crystal magnetometers.

The usefulness of each type of fluxmeter is determined by the thickness of the probe and its effective area. The thickness determines the minimum area for which accurate measurements can be
made. Since the probe responds to the average of the flux densities within the sampling area, valid data can be obtained only when the flux density is uniform or when the gradient is known. The latter case does not occur frequently and will be ignored.

Let the sample magnetic field be nonuniform. The variation in flux density between any two points on a contour of this configuration is a function of the distance and the gradient between the points. When the distance between the points is decreased, the variation in flux
density is decreased. The difference in flux density is decreased and becomes zero when the points share a location on the contour.

Useful data for field plotting or uniformity studies may be obtained for any external magnetic field if the sampling area is small enough. This assumes that the sensitivity of the measuring equipment is consistent with the magnitude of the magnetic field.

The equipment to be described has a sensitvity of 0.004 mv per gauss, a sampling area of $6.25 \times$ 10^{-6} square inch, and an equivalent noise level of 10 gauss. The sampling area is generated by $\frac{1}{10}$ inch length wire as it is vibrated ± 0.0005 inch in a direction perpendicular to its length.

The vibration originates in a magnetostrictive transducer that operates at approximately 14 Kc . This 14 -Kc vibration is transmitted to the pickup wire through a coupling bar. The pickup wire is cemented to a glass probe, cemented, in turn, to a bar of nonmagnetic stainless steel. The coupling bar is brazed to a magnetostrictive transducer. A sketch of this assembly is shown in Fig. 1.

The probe is designed to minimize extraneous pickup voltages. The vibration, which is necessary for producing the pickup voltage, is effectively isolated from all parts of the electrical circuit except the pickup turn. The isolation is accomplished by short, flexible electrical connection between the ribrating wire and the stationary brush wires. A sketch of the pickoff technique is shown in Fig. 2A. The base is a glass rod.

The pickup wire must be fastened to the probe base at a location that experiences maximum longitudinal motion. The effective length of the pickup turn is determined by the distance between the brush wire contacts. Contact between the pickup turn and the brush wire is made with an alloy of gallium and indium; this technique

Magnetic Flux Fields

By R. J. RADUS,
Westinghouse Electric Corp.,
East Pittsburgh. Pennsylvania

provides good electrical contact with a frictionless mechanical coupling. The elimination of the transfer of mechanical energy from the pickup wire to the brush keeps vibration out of the brush wires.
The voltage induced in the pickup wire is sinusoidal, at the same frequency as the vibration. An oscilloscope trace of the output voltage is shown. The top trace is at 5,000 gauss, the center at 2.500 gauss and the bottom at zero.

Proper adjustment of the galliumindium contact will use a minimum quantity of the alloy. The distance between the pickup and brush wires should be kept to a minimum but they should not touch.

Several methods for checking the fidelity were tried. The more definitive data were obtained from a laboratory setup of the type shown in Fig. 2B. The core for this electromagnet was a single ring lamination with i.d. $=8$ in., o.d. $=10$ in. and 0.025 in . thick. The gap is $\frac{5}{18}$ in. long and the pole faces are pointed as shown. A plot of the output voltage against relative position of the pickup wire is shown in Fig. 3B. The symmetry about the peak ordinate indicates that only minor, if any, voltages are produced by the brush wires. There was no perceptible change in
either the sinusoidal waveshape or phase during this test.

A more positive check of the fidelity using this ring sample will result if more precision is used in alignment between the pickup wire and the magnetic contour lines generated by the pole tips of the ring sample. The pole tips should trace parallel lines, lines that are parallel with the direction of vibration of the pickup wire.
A nominal accuracy for the equipment is ± 3 percent. This includes variations in supply voltage and frequency, the nonlinearity of the step-up transformer and the accuracy of the indicating instrument. A Tektronix oscilloscope type 535 with a type-D preamp measured peak values of the output voltage. The rms value of the output voltage was measured with a Ballantine 320 electronic voltmeter. A plot of these two measurements against the excitation mmf of an electromagnet, Fig. 3A, shows that both outputs are linearly related to the flux density in the air gap of the electromagnet. This assumes that the air gap flux is a linear function of the excitation mmf. Since curves that are linearly related to some reference are also linearly related to each other, the form factor of the wave

Fhumeter probe in a field of 5,000 gauss (top), 2,500 gauss (center) and zero gauss (bottom)
is constant. Hence, the shape of the wave may be assumed constant and the indicating instrument can be calibrated to read peak, average or rms values.

Additional sources of error include variations in signal-to-noise ratio, variations in wave shape, and variations in effective length of pickup turn that result from changes in the geometry of the gal-lium-indium contacts. The measuring accuracy for general application is expected to be within ± 3 percent, and for short-term measurements within ± 1 percent.

FIG. 3-Output of the vibrating wire fuxmeter is plotted against flux density (A); results of fidelity measurement using a setup of Fig. $2 B$ are plotted as contour of fux density in (B)

Coupling capacitor circuit (A) places input waveform so that positive-voltage area equals negative-voltage area, whether wave is symmetrical (B) or asymmetrical (C); circuit shunted by diode (D) clamps input wave (E); reversing the diode has a negative-clamp effect (F). Adjustable clamp circuit (G) can be used to position any waveform between two extremes (H). It also serves as proportional rectifier, if output is taken from point A or B (I)

Adjustable Clamp Circuit

SHIFTS A-C SIGNAL LEVEL

By H. O. HOADLEY,
Kodak Research Laboratories, Rochester, N. Y.

IF AN A-C SIGNAL is applied to a coupling capacitor loaded by a resistor (A), charge current flows from the second plate of the capacitor during positive excursions of the signal, and into the second plate during the negative excursions. The d-c level of the second plate of the capacitor must be such that the net change in charge is zero for a cycle. If the signal waveform is symmetrical, it must have equal positive and negative voltages (B) ; and if the signal is asymmetrical, it is shifted by an amount which makes areas under positive and negative parts of the signal equal (C).

In a conventional clamping circuit, the load resistor is shunted by a diode (D). This allows a heavy charging current to flow into the capacitor during the negative excursions of the signal, but becomes
a high resistance during the positive excursions, so that discharge current can flow only through the resistor. The capacitor then takes on a net charge, and the d-c level of the signal is shifted positive (E).

If the diode is connected with the opposite polarity, the positive peaks of the signal are clamped to ground (F).

This description includes several assumptions, such as that the r-c time constant of the capacitor and resistor is much greater than the period of the signal ${ }^{1}$.

The d-c level of a signal may be shifted anywhere between the two limits of the full clamping circuits by a circuit with an adjustable ratio of the resistive loads for the positive and negative parts of the signal. A circuit is shown in (G). When the potentiometer is in its full clockwise position, the circuit is a full negative clamp (F). When the potentiometer is fully clockwise, the circuit is a full positive clamp (E). At midpoint, the loads
for the positive and negative parts are equal, and the circuit is equivalent to (A).

For an intermediate setting, the signal takes up the corresponding intermediate level relative to ground. A symmetrical signal may be shifted by any desired ratio (H). An asymmetrical signal may be shifted to make the positive and negative peaks equal.
At points A and B of the adjustable clamp circuit (G) appear the rectified fractions of the signal that are negative and positive from ground (I). The circuit can also be considered as a proportional rectifier. For a constant-amplitude signal, it resembles a conventional clipping circuit, ${ }^{2}$ however, the rectified fractions of the signal remain in constant proportion to the input signal.

REFERENCES

(1) J. Millman and H. Taub "Pulse and Digital Circuits." McGraw-Hill Book (2) New York, Section $4-5, p$ p $119,1956$.

Broad-Based Research Produces Space Items

VARIABLE-BANDWITH communications system, plasma devices and thin-film elements are examples of development projects at a new research complex. The electronics laboratory, one of seven widely diversified facilities of the Paul Moore Research \& Development Center, is responsible for the communications equipment. This flexible system is important for the Courier satellite program and for communications with moon bases.

The space-associated laboratory facilities also permit research in guidance and control systems, reentry simulation, material development, nuclear radiation, fluid systems, and space environment and life sciences. These Republic Aviation facilities including the electronics laboratory are supported by separately located transonic, supersonic and hypersonic wind tunnels. Efforts in any or all of the self-sustaining laboratories can be integrated into major space-related systems development.

The variable-bandwith communications system in Fig. 1 modifies performance in accordance with current propagation conditions. A design objective of the equipment is to maintain communications during fades. However when reception is good, the high signal-to-noise ratio is unnecessary. By trading receiver gain for bandwidth at these times, more information can be transmitted. In addition to the

FIG. 1-Communications system selects optimum bandwidth in accordance with propagation conditions

other applications, this principle is valuable for radar and electronic countermeasures systems.

Plasmas, which normally have an adverse effect on propagation, can also aid signal transmission under certain conditions. In one experiment at the new installation, r-f was fed into d-c ionized fluorescent tubes. The tubes, with an electrically rather than a thermally created plasma, radiated the r-f signal like an antenna. This phenomenum could be significant if the re-entry plasma sheath from missiles could be made to act as an antenna.

Frequencies lower than plasma frequency that will propagate through the ionized sheath are being sought in other experiments. These windows have been created previously using magnetic fields.

Experiments at frequencies from 5.4 to 11 Gc were performed with the equipment in Fig. 2. Reflections in the system were tuned to minimum with the fluorescent light extinguished. With power switched on, the load was again matched. The difference in attenuation of the transmitted energy at different frequencies is shown in the figure. For future studies, a tube for generating an air plasma is planned having a size and shape more suitable for microwave experiments.

FIG. 3-T'est arrangement uses microwaves to determine velocity history of shock tube piston

FIG. 2-Microwave frequencies propagated through fluorescent light with setup at top were attenuated as shou'n in plot

Microwave reflection techniques are being used for instrumentation of shock tube diagnositics. Microwaves reflected from the piston face in Fig. 3 can be used to determine complete velocity history of the piston. In preliminary experiments with a 14 -mm shock tube, c-w microwave energy was used.

Output from a reflex klystron was directed through a rectangular-tocircular waveguide transition and a small circular hole plugged with teflon into the terminal end of the shock tube. The shock tube acted as a lossy waveguide and the piston as a movable short. Amplitude and relative phase is determined by comparing transmitted and reflected energy using a detector. This data was used to calculate piston position and velocity.

In the guidance and control systems laboratory, new techniques are being explored for possible use in detection, guidance and control of space vehicles. Active thin-film elements have been developed that operate at room temperature. Fabrication techniques are being investigated for microminiaturizing of such switching and storage devices as digital-to-binary converters and magnetic memory elements. In a laser project, the laboratory hopes to develop a compact high-intensity

makes power supply news for ' 61

with a design for general purpose, continuous duty applications:

MODEL	DC OUTPUT RANGE VOLTS AMPS		RIPPLE $\%$ rms			D^{\prime}	PRICE
PR 15-10M	0.15	0.10	4	$31 / 2$	19	137/8	\$345.00
PR 38-5M	0.38	0.5	2	31/2	19	137/8	\$325.00
PR 80-2.5M	0.80	0.2.5	1.5	$31 / 2$	19	137/8	\$325.00
PR 155-1M	0.155	0.1	1	$31 / 2$	19	137/8	\$325.00
PR 310-0.6M	0.310	0.0.6	0.5	$31 / 2$	19	137/8	\$345.00
PR 15-30M	0.15	0.30	4	7	19	137/8	495
PR 38.15M	0.38	0.15	2	7	19	137\%	\$475.00
PR 80.8M	0.80	0.8	1.5	7	19	137/8	\$450.00
PR 155-4M	0.155	0.4	1	7	19	137\%	\$430.00
PR 310-2M	0.310	0.2	0.5	7	19	137/8	\$430.0

REGULATION:

LINE: $\pm 1 \%$ for $115 \pm 10 \mathrm{v}$ ac line change at any output voltage within specified range.
LOAD - at maximum output voltage:
Less than 2% output voltage change for $50-100 \%$ load change (3% for PR $15-10 \mathrm{M}$ and PR $15-30 \mathrm{M}$). Less than 4% output voltage change for $25-100 \%$ load change (6% for PR $15-10 \mathrm{M}$ and PR $15-30 \mathrm{M}$).
(See Graph below for typical load characteristics)

PR GROUP FEATURES:

"FLUX-O-TRAN"
CONSTANT VOLTAGE TRANSFORMER:
Delivers regulated square-wave voltage to rectifier, improving rectifier utilization, and reducing output ripple.

ADJUSTABLE WIDE-RANGE OUTPUT:

Continuously variable voltage control permits output settings from 0 to maximum rating.
OVERLOAD PROTECTION:
Special "Flux-O-Tran" transformer and DC overload circuit breaker allow output to be shorted without damage to unit. Ideal for lighting lamps and charging capacitive loads.
SILICON RECTIFIERS:
Reliable, efficient, full-wave rectification.

CAPACITIVE FILTERING:

Provides excellent ripple reduction and minimizes transient response characteristics.
NO VOLTAGE OVERSHOOT:
No output voltage overshoot from turn-on, turn-off or power failure.

NEW 32 PAGE POWER SUPPLY CATALOG!

 Featuring:- 11 Kepco design groups including new "SM", "HB", and "PR" models.
- Separate listing and description of programmable current/voltage regulated models.
- Special nomograph of voltage drop vs. wire size and supply current.
- Dual index to all models:
by DESIGN GROUP (inside front cover); by OUTPUT VOLTAGE (inside rear cover).

Transistors, tubes and electronic equipment get there fast, safe and sound on Air France! Swift, frequent service throughout the week to The Common Market, The Outer Seven, Mexico, almost anywhere in the world. Service from New York, Los Angeles, Chicago, Montreal, Anchorage, and every flight carries 10,000 pounds! Cargo compartments are pressurized and temperaturecontrolled. Save on crating, shipping weight. New low insurance costs, too! Air France speeds cargo to more cities in more countries than any other airline. Specify Air France to your Cargo Agent!

coherent light source as a solution to some weapons systems problems.

Other projects include investigations of intermetallic compounds, cermets, structural plastics, pure crystal samples and operation of electronic equipment in the presence of nuclear radiation.

Low-Energy Technique Can Produce Neutrons

NEUTRONS are being produced in an energy range previously unobtainable with low-energy accelerators. The technique provides a laboratory source of neutrons that formerly were produced only with more costly high-energy accelerators. The process is also of interest in furthering knowledge of theoretical nuclear physics.

The method was described to the American Physical Society in a paper by William Imhof of the Missile and Space division of Lockheed. While performing studies for the Atomic Energy Commission, Lockheed physicists discovered how to produce neutrons in the range of 8 to 11 Mev using conventional lowenergy generators.

The technique involves bombarding a radioactive target (carbon ${ }^{14}$) with deutrons. These heavy hydrogen particles are accelerated with a conventional $3-\mathrm{Mev}$ Van de Graaff generator. When a deutron collides with the target, the proton is stripped from the deutron leaving only the neutron. In this reaction, the neutron receives nearly 8 mil lion volts of energy more than that of the incoming deutron.

Usefulness of the reaction as a source of neutrons was evaluated by measuring that rate at which neutrons were produced when the deutrons were accelerated at different energies. The neutrons were monitored with a plastic scintillator, and the light emitted when a neutron was detected was recorded with a multiplier phototube.

The reaction also produces lower energy neutrons in the target. It was therefore necessary to determine speed of each neutron counted to determine its energy. Time-offlight for the neutrons to travel a known distance was measured. This approach permitted separate measurement of the yield of neu-
trons produced in the radioactive carbon target having different energies.

The C^{24} stripping reaction also provides clues about the internal forces of the nucleus. The distance from the C^{14} nucleus at which proton stripping occurs is related to the angle at which the neutron is likely to recoil. Thus measuring neutron intensity at different angles to the deutron beam provided data about the position at which stripping occurs.

These measurements revealed how often the final nucleus is left in an excited state, providing evidence of the nature of the forces inside the nucleus.

Remote Input-Output
 Device for Computers

DEVELOPMENT of an interrogator will enable direct communication with a remotely located computer. Detailed information can be sent and received by a device that looks like an electric typewriter with a small viewing screen.

The unit, called the 2502 Interrogator, was developed by Information Products Corp. Data can be sent and received over direct wires or, with the firm's communications switching centers, over ordinary telephone lines.

The system designed for operation by clerical personnel is expected to increase efficiency of routine operations such as credit checking, insurance investigation, banking, production and inventory control. Data appears on the crit a few seconds after interrogation.

The keyboard contains 40 standard alpha-numeric keys with special keys for transmit, clear and reset. Any 6- or 7 -bit code can be used, with a bit rate of 1 Mc . Characters are transmitted at a rate of 15,800 per second.

The crt display is 3 by 8 inches. It is positioned at an angle of 30 degrees from the plane of the base so that it can be viewed from either a sitting or standing position. It accommodates 10 lines of data with up to 72 characters per line.

The interrogator also can add, modify or update data stored in the computer. The information is entered by the keyboard with verification provided by the display.

in telemetry systems management

The ascendant position of Vitro Electronics in telemetry systems management and products stems from the facilities, experience, and talent it takes to produce on time. Vitro telemetry capability is demonstrated daily down the AMR and PMR ranges. Management versatility is reflected in our ground, mobile, shipboard, airborne, and space operations around the globe. - This specialty of Vitro's trusted electronic competence is founded on long and familiar experience in the functions of telemetry conception, design, engineering, procurement, production, testing, and installation. Where the utmost in exacting telemetry systems performance is demanded - Vitro is at work.
Outstanding opportunities for telemetry systems, RF and advanced development engineers.
$\sqrt{\text { TFTV }}$ ELECTRONICS $S_{\text {a onsion of utro corpobation of anerica }}$
producers of NTPMS-CIAREE Equipment
919 Jesup-blair drive, silver spring, marylano/2301 pontius avenue, los angeles b4, california
See VITRO exhibits at National Telemetering Conference, Booths TH81, TH82, Sheraton Towers, Chicago ... and at AFCEA Show, Booths 71, 72, Sheraton Park Hotel, Washington, D. C.

Polarized electrolytic construction (left) obtains capacitors with volumetric efficiencies up to 20,000 microfarad volts per c_{11} in. Same line is planned to offer efficiencies up to 120,000 microfarad volts per cui in. Flat, uniform shapes with puralled leads consolidate space on circuit board (center) where flat capacitors are compared to same number of larger cquivalonts. Technician (right) checks new units still seated in epoary mold

Packing Microfarads in Limited Space

UNTIL RECENTLY, capacitor size has not kept pace with the pico developments of associated semiconductor components like the diode, and the small resistors and transistors. The problem involved in shrinking capacitors is how to pack a reliable unit of the highest volumetric efficiency into the least area. And circuit designers concerned with saving space are now asking how many microfarad volts can be packed
into a specified size.
In the past, miniature-circuit designers have found it necessary to include large cylindrical capacitors in an otherwise tiny circuit. And the capacitor has loomed in size in comparison with its associated components. Consequently the capacitor has been a limiting factor in the over-all Lilliputian design of complete systems.

Research on this problem at RCA

Volumetric efficiencie's of RCA's new line of solid tantalum capacitors (cases A, B, C, D) compared to tantalum units having similar electrical characteristics. Highest rating given in each case size. Comparative units have insulating sleeves. The A cases, type CTA-2, are now available
has resulted in the development of a new line of solid tantalum capacitors, now scheduled for commercial production ${ }^{1}$.

Featuring flat, rectangular cases with parallel leads (see diagram), twenty-four of these capacitors can be mounted and stacked on a printed circuit board in an area the size of a postage stamp. These small units mark RCA's entry into the semiconductor passive component field, and are expected to find wide use in space vehicles, computers, data processing systems, communications and airborne equipment.

Computer designers, in particular, are showing interest in the hexahedral units for printed modules, since many thousands of these units, used in an average computer, can save a lot of space.

The accompanying graph gives the volumetric efficiencies of the new capacitors compared to conventional units having the same electrical characteristics. The flat capacitors have been planned in four case sizes, differing only in their electrical characteristics and thickness.

Case A is now commercially available. The B case will be ready this summer. Capacitors in the A case pack 94 microfarad volts, and the B cases obtain efficiencies of 470 microfarad volts. In laying out the circuit, it will be easy to stack

P\&B compact 4PDT power relay switches one H.P. per moveable arm

Save panel space! This new 4 -pole relay is only $3 / 6^{\prime \prime}$ wider than our PR Series, America's most popular 2-pole power relay! Yet, it is engineered for reliable heavy-duty switching . . . and you can confidently expect 10 million mechanical operations.
PM Series relays are rated at 16 amperes (or 1 H.P.) at 115 volts, $50 / 60$ cycles resistive ... and special relays can be supplied for loads up to 25 amperes, at 220 volts, $50 / 60$ cycles resistive. Heavy screw terminats are arranged for fast, easy hook up. An adapter plate is available for mounting PM relays in the same location used for 2 -pole relays.
For full information, write today or call your nearest $\mathrm{P} \& B$ representative.

PR Series

MR Series

AB Series

A whole family of power relays for a wide range of applications carry the $P \& B$ symbol of quality. Call $P \& B$ first for all your power relay requirements.

PM ENGINEERING DATA

GENERAL:

Description: Heavy-duty $A C$ power relay. Insulating Material: Molded phenolic.
Insulation Resistance: 100 megohms minimum.
Mechanical Life: 10 million operotions minimum.
Contact Life: 100,000 operations minimun of roted lood. Breakdown Voltage: 2,000 volts rms minimum between oll elements and ground.
Ambient Temperature: $-55^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Weight: Approximotely 14 ozs.
Pult-In: 78\% of nominol voltage.
Terminals: Heovy-duty screw type with No. 8-32 BH screw.

CONTACTS:

Arrangements: 4PDT or 4PST-normally open.
Material: $1 / 4^{\text {" }}$ dia. silver-cadmiun-oxide.
Rating: 16 amps (t, 115 volts, 50/60 cps resistive. 8 amps (1 i 220 volts, $50 / 60 \mathrm{cps}$ resistive.
1 H.P. per moveable, 115 or 220 volts $A C$ single phase.
25 omps (") 220 volts, $50 / 60 \mathrm{cps}$ resistive ovailable on speciol order.

COILS:

Voltage: 6 to 230 volts AC 50/60 cycles.
Power: 14 volt-amps overage af nominal voltoge. Duty: Continuous.

To keep pace with Ohio's dynamic growth, the state's eight investor-owned electric power companies will spend three billion dollars in the coming decade to double capacity. As much new generating capacity will be provided in the next ten years as was built in the past seventy-five.

If you are seeking a plant site, these facts are important for two reasons. First, this is solid indication of the confidence electric utilities have in Ohio's future growth. Second, you can be sure there will be plentiful, dependable electric power for your industry. Today, Ohio's generating capacity is 10.6 million kilowatts, and this state is the number one user of electric power in the nation.

Additional information detailing vital plant site factors is yours for the asking. Send the coupon below on your letterhead for two new booklets of solid facts: Statistical Abstract of Ohio: 1960 and Ohio, The Growth State.

Koder M. Collison, Director
State of Ohio, Department of Industrial and Economic Development 700 Bryden Road Columbus 15, Ohio
Please send: \square Statistical Abstract of Ohio: 1960
\square Ohio, The Growth State brochure

the different types because of their uniform sizes.

Construction is shown in the diagram. The capacitors are precision molded in epichlorohydrin bisphenol A to improve mechanical strength, eliminate need for insulating sleeves, and provide protection from adverse environmental conditions. The encapsulant has been run through moisture cycling tests three times, to make sure that this material meets moisture requirements. Two parallel, soldercoated leads are spaced $0.200-\mathrm{in}$. apart to facilitate mounting on printed circuit boards.

The encapsulant was especially formulated for low water vapor transmission rate.

In the manufacturing process, high purity, capacitor grade, powdered tantalum is pressed into square, flat pellets. These pellets are sintered in a high-vacuum furnace at around 2000 C to form a rigid, porous structure having a high surface-to-volume ratio and a continuity of electrical contact with an attached tantalum lead. This is the slug or anode.

The anode is immersed in an electrolytic or conductive bath and is made anodic in a d-c circuit, and d-c potential is applied. The d-c voltage determines the thickness of the tantalum oxide film formed on the surface of the tantalum anode by oxidation. The oxide films formed are from 200 to 2,000 Angstrom units thick. This thin-film anode holds the key to obtaining high capacitance.

A semiconductive solid electrolyte, manganese dioxide, is then deposited as a protective oxidizing layer over the entire surface of the formed dielectric. This material is completely free of moisture and is the prime reason for these capacitors being called solid types.

A layer of finely divided carbon is deposited on the surface of the electrolyte to provide a low resistance contact, and a metallic cathode envelope is added to allow attachment of the final cathode lead.

As seen in the diagram, the final external leads are connected to the capacitor terminals, and the structure is encased in its rigid, thermosetting encapsulant.

Life tests of over 2,000 hours have been made on the A and B units. These units, now in produc-
tion, meet the d-c leakage, dissipation, and life tests of MIL-C$26655 / 2$. Operating temperature range is from 55 C to 125 C . The d-c leakage current is a maximum of 0.02 microampere per microfarad volt or $1 \mu \mathrm{a}$, whichever is greater at 25 C , measured in accordance with the spec. Dissipation factor is 6 percent maximum at 25 C measured at a frequency of 120 cps by a polarized bridge.

Starting this month, RCA is setting up an integrated system of tooling for the manufacture of the capacitors which will reduce the number of hand operations required to a minimum. This production technique will give higher y ield, increase reliability and bring the cost down.

It is interesting to note that the transistor, formerly one of the smallest electronic components in microcircuit design, is now getting to be one of the largest components in miniature circuits.

REFERENCE

(1) IFarold Velie, Product Planning diministrator, Nicroelectronics I)ept. I?CA Semiconductor and Materials Division, Somerville, New Jersey.

Firm Meets Demand For High-Purity Metals

PRODUCTION of nine high purity metals-antimony, arsenic, bismuth, cadmium, gold, indium, selenium, silver and tellurium-has been increased and put on a commercial scale, American Smelting and Refining Company (Asarco) announced last week. This means that these metals, refined by a complex series of processes to more than 99.999 percent of purity, will now be available as off-the-shelf items to meet increasing industry needs. Until now they have been available only in laboratory quantities.

The decision to scale up production is a result of immediate demand by the electronics industry and for thermoelectric devices which are now starting to go into commercial production. Use of thermoelectric cooling devices for defense and consumer applications is expected to increase sharply.

In the high purity field, Asarco also produces copper, lead, sulphur, thallium and zinc for industrial research and development purposes.

semiconductor products news

Which switch switches which?

Hopelessly confused trying to determine switching speeds using your own conditions, currents and voltages when you look at a spec sheet that gives you $\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{r}}$ t_{s}, and t_{f} at only one current and one voltage? (Or are you just hopelessly confused by the question?) You have our sympathy, because if you change just one condition ($\mathrm{I}_{\mathrm{B} 1}, \mathrm{I}_{\mathrm{B} 2}, \mathrm{I}_{\mathrm{Cs}}, \mathrm{V}_{\mathrm{BE}}$ (off) or V_{CC}), you can't be sure of your switching time.
Know why we brought up the subject? You're right, General Electric has done something about it! The new specification sheets for the 2N396A PNP high frequency alloy and 2N1289 Meltback transistors are now available with flexible switching time specifications for application to their drive conditions. This gives you a system which indicates switching speed over the principle range of application. The new 2N396A spec sheet, for example, permits calculation of typical and maximum delay, rise, storage and fall time for any $V_{c r}$ from 3 to 18 volts and any $I_{c s}$ from 3 to 100 ma . All you need is your slide rule.

If you'd like a couple of copies of the new spec sheets, drop us a line at Section 25E97. (Or ask your friendly G-E Semiconductor Products District Sales Manager.)

Just a reminder: GE's improved 2N497A, 498A, and 2N656A, 657A are the industry's most thoroughly characterized and tested medium power silicon Mesa transistors. With peak pulse power of 20 watts, 5 watts dissipation at $25^{\circ} \mathrm{C}$ case temp., saturation resistance of 10 ohms (max.) and input impedance of 200 ohms (max.), you've got yourselt some transistor. And the standard types are blood brothers.

Algebraically speaking...

The boys in the back room have come up with an idea for a Reliability Index (RI) to provide you with important assurance of stable life performance. It is now in use on the specification sheets for our new PNP low frequency 2N1924, 1925, 1926 transistors. A factor of 3.0 or greater for RI indicates excellent extended life performance, as you will plainly see when you first peruse said spec sheets.
But how do we determine the RI? First, compute the percentage shift in forward current gain of each unit in each lot during life test. Then determine the 10th, 50th and 90th percentiles in a distribution of the individual percent shifts. Add the magnitude of the 50 th percentile to the magnitude of the algebraic difference between the 90th and 10 th percentiles, AND THEN multiply the reciprocal by 100 .

Expressed algebraically:

$$
R I_{1}=\frac{100}{\left|\alpha_{50}\right|+\left|\alpha_{90}-\alpha_{10}\right|}
$$

WHERE α_{50}, α_{30}, and α_{10} are the particular percentile values of a distribution of i AND

(wait, wait . . . there's more)
WHERE $h_{\mathrm{FEFI}^{\prime}}$ is the final and $\mathrm{h}_{\mathrm{FE}_{11}}$ the initial value of forward current gain of the ith transistor.

Expressed in English: RI_{1} includes in one number the shift in median and the change in dispersion of $h_{\text {Fin }}$ as a function of time.

So you ask a silly question . . .

The important point is that the RI indicates excellent life performance. These PNP lows, incidentally, also boast of a 100% hermeticity test and military environmental specifications.

TD also means touchdown

and our germanium tunnel diodes have scored a big one. Absolutely no indication of degradation of characteristics during 1,000 hours of life test! Take a peek at the chart below for the evidence in black and white. We have some new application notes for you, too. Write to Section ご, EH .

Semiconductor Produets Department, Electronics Park, Syracuse, New York. In Canada: Canadian General Electric, 189 Dufferin St., Toronto, Ont. Export: International General Electric, 150 E. 42nd St., N.Y. N.Y.

Tcflon blocks enable two molds produced from the same pattern to produce 12 different modules (left). Plugs stopper pour holes after foam is poured, core pieces mold

access holes for adjusting screws. Modules with a more intricate shape were made with the mold at right. The plaster pattern, center, can be made with the mold

Versatile Molds Encapsulate with Foam

By JOHN J. TALLENT,
General Electric Co..
Light Military Electronics Dept., Utica. N.Y.
mODULES ENCAPSULATED in resinous foams are widely used in airborne and space electronics. They come in many shapes, from simple cubes to intricate, unsymmetrical forms. The spaces into which they must fit precisely are becoming smaller and smaller as missiles become more sophisticated.

Good design dictates that all edges and corners be rounded to prevent chipping of the edges or cuts in wire insulation and for appearance. To achieve odd configurations or radii by machining is timeconsuming and costly. It is much

FIG. 1-Molding fixture is adjustable

Basic mold for cube module. Threaded studs fit in the side grooves. One plate is aluminum and the other molded epory
quicker to incorporate the shape into a pattern and mold. The moldmaking technique described is very useful for making engineering prototypes and one-of-a-kind modules.

Aluminum-filled epoxy resins provide good patterns and easilymade, economical molds. The resins have high heat resistance (400 to 500 F), low shrinkage (0.001 inch per inch), are tough, have excellent heat transfer, high impact strength, are non-irritating, nonhygroseopic and can be easily machined. Changes or corrections in the pattern or mold can be made with aluminum-filled epoxy paste.

Molds of the type shown can be made with little investment in equipment. Only a drill press, band saw, lathe and oven are required. A five-gallon paint spray tank (for use as a pressure tank), i? belt or
disc sander, sheet metal shear and punches, and a vacuum chamber or oven are helpful but not indispensable.

If the pattern is intricate or has thin sections, it should be made of the same resin as the mold. If it has few contours or if only one mold is needed, molding plaster can be used. Since plaster is low in cost, it may be precast in blocks of various sizes ready to make into patterns. Flexible plastic trays or even cardboard boxes can be used for casting. A bubble-free, hard, dense block is obtained if the plaster is mixed to a thin, watery consistency, poured, placed in a pressure tank at 80 psi until the plaster has set and then dried thoroughly. Patterns may also be made from precast resin blocks, or cast as needed, using the same basic techniques.

Patterns are made approximately one-quarter inch higher, one-sixteenth inch wider and the same length as the specified finished dimensions. After the pattern is cut and finished, it is sprayed with a high-temperature mold release or with a thin film of RTV silicone rubber, available in aerosol cans.

The mold fixture shown in Fig. 1 can be adjusted to accommodate a range of pattern sizes. One or two

PORTABLE KLYSTRON POWER SUPPLY 809-A

featuring: - New compact size: $8^{\prime \prime} \times 12^{\prime \prime} \times 15^{\prime \prime}$ - New low in reflector voltage ripple: less than 1 mv rms - New planetary gears to give finer adjustment of reflector voltage - New design including internal blower, built-in cabinet tilt stand, PRD expansion coil cord with polarized ac plug - Direct reading of beam voltage or current on front panel meter.

Regulated beam voltage 250 to 600 volts; regulated reflector voltage 0 to -900 volts; 6.3 volt ac filament supply. Reflector voltage available either unmodulated or intermally modulated by square wave or sawtooth. Send for data! PRD ELECTRONICS, INC.: 202 Tillary St., Brooklyn 1, New York, ULster 2-6800; 1608 Centincla Ave., Inglewood, California, ORegon 8-9048. A Subsidiary of Hamis-Intertype Corporation. comeongrom

Should auld acouaintance be forgot?

Except for depressions, floods and famines, the sales of one of our real old-timers have been booming every year since its introduction in 1944. The whole thing got started when we were requested to build a precision DC relay for floating mines that would surely work after it and the mine had been dropped out of an airplane. We tried, and the relay worked - until the mine went off. After the smoke cleared, and small, long-lived rectifiers and diodes came along, an $A C$ version was hatched. Seventeen years later, it's no surprise (to us, at least) that 34 standard variations have successfully found their way into customers' circuits.

This acme of perfection, reliability and joy to the Management's heart is the Series 5, which is used in either $A C$ or $D C$ circuits to provide: release and operate points very close together; break delay; constant operate voltage despite wide temperature variation; dual coils for differential operation; or meter protection from DC voltage
or current overloads. The " 5 " can operate on as little as 1 mw ., contacts will switch up to 3 amps (depending on sensitivity), and available enclosures range from none to hermetically sealed.

The Series 5 relay is now widely used in burglar alarms, coin-operated arcade games, temperature monitoring controls with Sigma Magnetic Amplifier Relays, boiler water -salinity controls, battery chargers and R/C models, as well as in G.I. equipment. The reasons are probably (1) its combination of high sensitivity and stability in hard-knock applications, (2) the "special" characteristics you can get, usually at non-special prices, and (3) the fact that the relay works the way the specs say it does.

This has been No. 113 in an endless series of messages designed to focus public attention on Sigma's sincere desire to sell relays.

At the DESJGN ENGJJEERJJNG SHOTW
Sigma products on display at Boolb 211 Miay 22.25 Cobo Hall, Detroit

SIGMA INSTRUMENTS, INC.
62 Pearl Street, So. Braintree 85, Mass.
fixtures should take care of all normal requirements. If the outside of the resin mold is held to standard lengths and widths, core pieces can be positioned and held to the walls with double-backed adhesive tape. These core pieces form slots or grooves for threaded rods whose wing nuts hold the mold and the top and bottom plates together.

Interchangeable Teflon inserts mold right or left-hand modules. The large knobs do not have to be screwed on. Held at a slight angle, they pass freely over the thread and are locked or unlocked with a short turn

This mold would be hard to machine, but was easily made from a pattern. Note the cored slots around the edges

Header boards made this module difficult to encapsulate. Correct positioning required lacing and tieing in the mold

Identification numbers are embossed on aluminum-backed adhesive tapes, with a reverse embossing wheel. The tape is stuck on the inner walls so numbers will be depressed into the mold and read correctly.

The pattern is placed in the fixture and preheated in an oven to 125 F (the oven used is cam-programmed for various temperatures and times and shuts off automatically, to facilitate curing). Surfaces are coated with a high-temperature mold release. The aluminum-filled

FIG. 2-Slitting returns mold to specified width
epoxy resin (preheated to 140 F) is mixed with the catalyst, and poured around the pattern to a height of one-sixteenth inch above the required dimension.

After the resin has cured and cooled, the mold is removed. Some 95 percent of the molds have been made with straight walls without draft, but have released from the fixtures without trouble. Holes are drilled to locate the dowels which align the mold halves. The mold is split with a one-sixteenth-inch splitting saw, as in Fig. 2. When the mold is joined together, the width is the specified dimension. The mold is assembled with the threaded rods and is machined to the correct thickness. Top and bottom plates or covers complete the molds.

This basically simple procedure can, with a little skill and ingenuity, produce many forms of encapsulation molds. A sampling of different molds made at General Electric LMED is given by the photographs.

Hardboard Blocks Cut Crystal Dicing Costs

HARDBOARD SQUARES are used as disposable semiconductor dicing blocks by Clevite Transistor Products, Waltham, Mass. The blocks are made of quarter-inch tempered Masonite sanded to a thickness of 0.23 inch ± 0.005. Crystals are fixed to the blocks with hot wax. Cutting wheel wear and block cost are reported to be less than with ceramic blocks formerly used. Blocks are supplied by Masonite Fabricators, Elizabeth, N. J.

Why CONTINENTAL makes "a big production" out of miniaturized connectors

Military and commercial connector requirements in missiles, aircraft, computers, and communication applications demand ever-increasing attention to miniaturization. As the connector becomes smaller, the challenge to retain absolute reliability grows greater.

To make sure every connector-no matter how smallis produced to exact specifications, Continental Connector maintains an impressive assortment of specially designed, "tailored-to-the-job" production equipment. Among these units are the semi-automatic bend and " V " machines (shown above), hydraulic crimping machines, contact sizing machines and automatic contact gaugers. That's why we are fully prepared to make "a big production" job out of the smallest miniature electronic connector.

Consult Continental Connector about your particular design problem - you will find it profitable to do so. A condensed catalog of our complete line is available free on request. Write to:

Electronic Sales Division

DeJUR-AMSCO CORPORATION
Northern Boulevard at 45th Street, Long Island City 1, N. Y. Exclusive Sales Agent

MODELS $1 / 2$ SIZE

MICRO-MINIATURE

SUB-MINIATURE

miniature

PRINTED CIRCUIT

RIGHT ANGLE PIN \& SOCKET

CENTER
SCREWLOCK

New On The Market

Microcircuit Production ASSEMBLY AND TEST

EQUIPMENT will assemble and test microcircuits up to 1.25 inches square. A positively controlled heat column holds the blank circuit. Two turret-head indexing tool mounts each carry four tools. Both tool mounts and the microscope mount can be controlled for gross positioning by a joy-stick. Positioning to millionths of an inch is accom-

Automatic Frequency Meter 3 TO 50 GC

SERIES AFM frequency meter is fully automatic and can be used with commonly available microwave instruments. The indicator is an aircraft-type, dual-meter movement with one pointer position a function of frequency and power level while the other pointer position is a function of power level.

Minimum r-f power is 1.0 mw avg; accuracy is 0.1 percent; resetability is 10 Mc at $9,300 \mathrm{Mc}$. Price is $\$ 92$, from Somerset Radiation Lab., Inc., 192 Central Ave., Stirling, N. J., with delivery in 30 days.

CIRCLE 302 ON READER SERVICE CARD
plished with two micropositioners. A stereo-zoom microscope is optional equipment. A wide variety of microcircuit tooling is available. Manufacturer is Kulicke and Soffa Co., 1234 Callowhill St., Phila 23, Pa., and delivery on the model 410 is 90 days.

CIRCLE 301 ON READER SERVICE CARD

Power Supply FOR OPTICAL MASERS

MODEL 275 optical maser power supply is designed for research. The 5,000 -volt supply furnishes energy to 20,000 joules, from 1,000 to 5,000 v. Separate stabilized voltage supply triggers the flash-lamp source.

Ruby maser mounting accessories for various lengths and diameters

of crystals are available. Maximum peak light output can be obtained
from type FT-524 or FT-623 flash tubes. Manufacturer is Electro Powerpacs, Inc., 5 Hadley St., Cambridge 40, Mass.

CIRCLE 303 ON READER SERVICE CARD

Power Transistors high voltage

series of four high-voltage inter-mediate-power transistors is announced by Transitron Electronic Corp., 168 Albion St., Wakefield, Mass.

The silicon diffused mesa transistors have 150 and $200-\mathrm{v}$ max

rating, and sustaining voltages of 125 and 140 v. Maximum power dissipation at 25 C case temperature is 40 watts, 20 watts at 100 C . Operating current range is 50 ma to 2 amp . Delivery is three weeks, prices from $\$ 52$ to $\$ 66$.

CIRCLE 304 ON READER SERVICE CARD

Pulse Modulator 64 MW PEAK POWER

PULSE modulator is designed to test super-power klystrons, microwave devices, continuous duty radar transmitters and similar equipment. Peak power is 64 Mw continuous. Continuous adjustable pulse range is 75 Kv to 250 Kv , with pulse current of 260 amp at 250 Kv . Pulse length, at 96 percent of peak voltage, is plus or minus $2.75 \mu \mathrm{sec}$. Frequency is 30 to 360 pulses per

HIGHLIGHTS OF MIL-R-19365C. This revised specification covers power-type, wire-wound, adjustable resistors from 1 to 15,000 ohms inclusive. Resistance tolerance is specified as $\pm 5 \%$ for all eight power ratings which are listed at right. The maximum continuous operating temperature is $350^{\circ} \mathrm{C}$ (Char. V).

MIL-R-19365C resistors are the tubular type with singlelayer windings and lug-type terminals-two fixed and one adjustable.

Ohmite can supply all eight adjustable resistors to meet every requircment of MIL-R-19365C. Higher resistances using smaller wire sizes are available, also, to meet the performance requirements of this new MIL specification.

Write for Military Catalog 50B-the "Easy Way" to Order MIL Resistors.

OHMITE MANUFACTURING COMPANY 3610 Howard Street, Skokie, Illinois
Rheostats Power Resistors Precision Resistors Variable Transformers Tantalum Capacitors Tap Switches Relays R.F. Chokes Germanium Diodes Micromodules

STANDARD MIL-R-19365C ADJUSTABLE RESISTORS

STYLE	WATTS	DIMENSIONS		OHMS	
		LENGTH	DIA.	MIN.	MAX. ${ }^{\text {- }}$
RX29	11	13/4*	7/6"	1	470
RX32	17	2"	\%/16"	1	910
RX33	26	3"	\%/6"	1	1,500
RX35	55	4"	2\%/8"	1	3,600
RX36	78	4"	15/16"	1	5,100
RX37	113	$6{ }^{\prime \prime}$	15/16"	1	8,200
RX38	159	8*	15/16"	1	11,000
RX47	210	101/2"	15/6"	1	15,000

-0.004" Diameter wire.

Offering you complete availability of these MIL resistors so quickly is another indication of Ohmite's ability and desire to give industry the finest, most advanced resistance products with the best of service.
second. Pulse height deviates from flatness ± 2 percent. Maximum time jitter, with respect to synchronizing pulses, is $0.05 \mu \mathrm{sec}$. The PM87 supply is manufactured by Ling

Electronics Div., Ling-Temco Corp., 1515 South Manchester Ave., Anaheim, Calif.

CIRCLE 305 ON READER SERVICE CARD

Desk-Size Computer 8,192 12-BIT WORDS

computer is packaged in an office desk, is priced at $\$ 90,000$ or leased at $\$ 2,250$ per month from Control Data Corp., 501 Park Ave., Minneapolis 15, Minn.

Basic $160-\mathrm{A}$ computer has magnetic core memory of 8,192 12-bit computer words, buffered input and output, program interrupt, and a

Photoelectric Keyboard BINARY ENCODING

photoelectric binary-encoding keyboard has been announced by Invac Corp., 14 Huron Dr., Natick, Mass. Alphanumeric keyboard uses photoelectric encoding to generate 5, 6, 7 or 8 bit binary codes. Encoding matrices, contacts and switches are not used. The K-144 complete with amplifiers sells for $\$ 550$.

Ten data channels are available.
circle 307 on reader service card
list of 91 instructions. The memory can be expanded in modules up to 32,768 words. Applications include data processing, engineering problem solving, off-line data conversion, real-time data acquisition/data reduction, and industrial control. Programming aids are available.
circle 306 on reader service card

Automatic Cable Tester digital readout

aUtomation dynamics corp., 255 County Road, Tenafly, N. J. Model 50 quickly, accurately and automatically examines each wire individually for faults. Leakage and short

circuits between conductors resulting from defective insulators, im-
properly connected wires, cold solder joints or damaged wires are located. Deviations of resistance to 0.1 ohm for continuity and leakage up to 100 megohms are detected. Accepted or rejected wire is identified through a clear digital readout.

CIRCLE 308 ON READER SERVICE CARD

Miniature Toroid 0.01 TO 500 MILLIHENRY

model TAS- 125 toroid can be used from 0.5 to 20 Kc ; it is available with inductance from 0.01 to 500 mh. The uncased unit has Q's to 60 , is $\frac{3}{8}$ in. o-d by 4 in. high. Units are available from stock, modified versions in two to three weeks. Prices upon request, from Torotron Corp., 256 East 3rd St., Mount Vernon, N. Y.

CIRCLE 309 ON READER SERVICE CARD

Small Switch
 SNAP-ACTION

CHERRY ELECTRICAL PRODUCTS CORP., 1650 W. Deerfield Road, Highland Park, Ill. The E33-00A series feature standard mounting dimensions, terminal variations of screw, quick connect or solder lug, and case molded hinged pivot roller and roller leaf actuators. Flat switch case of $13^{3} z^{3}$ by ${ }_{8}$ by $3^{3} \mathrm{in}$. permits individual or gang assembly use for multiple cam operation. The Rock-Wipe contact action provides for accurate repeatability and precise tolerance adherence.

CIRCLE 310 ON READER SERVICE CARD

Transducer ELECTRO-HUMIDITY TYPE

phys-chemical research corp., 40 E. 12th St., New York 3, N. Y. Electro-humidity transducer is an electric hygrometric circuit element which senses changes in rela-

Highly Reliable HITACHI "SEMI-CONDUCTORS"

Now available in production volume:
 BENDIX AUTOSYN ${ }^{\circ}$ SYNCHROS AND SYSTEMS with 30-SECOND ACCURACY

The Bendix two-speed Autosyn synchro was developed to meet the need for accurate data transmission with maximum system simplicity. Two electrical outputs are produced from the Autosyn single shaft, eliminating both inaccuracies of twospeed gearing and the installation and maintenance costs of an additional unit.

Autosyn units can be supplied
with leads or terminal boards. Units can be used back-to-back or can be coupled with mechanical two-speed transmitters or control transformers. They measure only $2.34^{\prime \prime}$ in length by $1.75^{\prime \prime}$ in diameter.
Other features: Accuracy unaffected by thermal or mechanical stress-Adaptability to gyro pick-off-Elimination of gear error of mechanical two-speed systemHigh signal-to-null ratio.

Write for details.

Shaft rotation
EXAMPLES OF APPLICATIONS: Fire Control Systems-Navigation Computers-Inertial Guidance Systems-Radar Antenna Tracking

Eclipse-Pioneer Division
 Teterboro, N. J.

 Export Sales \& Service: Bendix International, 205 E. 42 nd St., New York 17, N. Y.
tive humidity by changes in ohmic resistance. The transducer is a processed plastic wafer-a chemically treated styrene copolymerwhich has an electrically conducting surface layer that is integral with the nonconducting substrate. Changes in relative humidity cause the surface resistivity to vary.

CIRCLE 311 ON READER SERVICE CARD

Pulse Generators CLOCK TYPE

texas instruments inc., P. O. Box 6027, Houston 6, Texas, announces clock pulse generators that include repetition rates of $3-25 \mathrm{Mc}$ and $25-100 \mathrm{Mc}$; rise/fall times of less than $4 \mu \mathrm{sec}$; a pulse width of less than $8 \mu \mathrm{sec}$ at one-half pulse height; $0-4 \mathrm{v}$ amplitude, continuously variable; and output impedance of 93 ohms.

CIRCLE 312 ON READER SERVICE CARD

Cryogenic Thermometer

malaker laboratories, inc., Mountainside, N. J. Electronic cryogenic thermometer measures temperatures in the range of 0.3 to 25 Kelvin.

CIRCLE 313 ON READER SERVICE CARD

Attenuator

D-C TO 3,000 MC
ROHDE \& SCHWARZ, 111 Lexington Ave., Passaic, N. J. Type DPU precision attenuator covers the range from d-c to $3,000 \mathrm{Mc}$, with attenuation settings between 0 and 99 db
in steps of 1 db . A 10 db attenuation pad, an outside accessory, extends the range to 109 db . Electrical length of the attenuator is practically constant and corrections are given for both electrical length and propagation time for each attenuator position.

CIRCLE 314 ON READER SERVICE CARD

Cable Analyzer

micro balancing, inc., 191 Herricks Rd., Garden City Park, N. Y. Cable analyzer, transistorized and portable, double-tests 75 circuits in two seconds.

CIRCLE 315 ON READER SERVICE CARD

Spectrum Analyzer
 WIDE BAND

POLARAD ELECTRONICS CORP., 43-20 34th St., Long Island City 1, N. Y. Model WSA spectrum analyzer has a display of up to $4,000 \mathrm{Mc}$. It covers the frequency range from 10 Mc to $40,000 \mathrm{Mc}$ in 20 bands which are contained in one unit. The wide band display can be used to simplify field intensity measurements by displaying the entire range of each frequency band, for testing r-f transmitters and signal generators for "holes" throughout their tuning range, and other applications.

CIRCLE 316 ON READER SERVICE CARD

Miniature Chopper ${ }^{2}$ LOW-NOISE

james electronics inc., 4050 No. Rockwell, Chicago 18, Ill., announces low-noise dpdt miniature choppers for microvolt instrumentation applications. Nine pin plug-
in and flange mount models are available. Frequency response is $1-500 \mathrm{cps}$ at microvolt levels. Prices range from $\$ 30$ to $\$ 45$.

CIRCLE 317 ON READER SERVICE CARD

Stepping Motor
 FOR SPACE AGE USE

lytle corp., 1404 San Mateo S.E., Albuquerque, N. M. Inertial guidance, telemetry, industrial control, and research have need for a stepping motor possessing the characteristics of the Digistep motor. It is a reliable method of digital to analog conversion when used to drive a potentiometer or tape capstan. Key features are $500 / \mathrm{sec}$ stepping rate and reliable stepping with as much as 50 percent variation in voltage level.

CIRCLE 318 ON READER SERVICE CARD

Wire Tester

MARATHON SPECIALTY STEELS, INC., 375 Park Ave., New York 22, N. Y. Equipment for the ultrasonic testing of wire detects inclusions and cracks running in any direction at drawing speeds of up to 200 ft per minute.

CIRCLE 319 ON READER SERVICE CARD

S-Band Isolators
 ULTRAMINIATURE

melabs, 3300 Hillview Ave., Palo Alto, Calif. Model X-173 isolators are extremely useful in missile and satellite applications and in replacing resistive pads. Model X-173A, covering 2.6 to 3.3 Gc , has an isolation greater than 10 db with 18 db at band center. Model X-173B,

ENGINEERING REPORT

ON OTHER BENDIX COMPONENT PACKAGES

NEW 2-SPEED "PANCAKE" SYNCHRO TRANSMITTER

Resists stresses and temperafure exfremes

This compact, two-speed "pancake" synchro transmitter consistently exhibits an accuracy within thirty seconds of arc under dimensional stresses and wide temperature variations. The same order of accuracy is maintained when the transmitter is used back-to-back with a conventional two-speed control transformer. The synchros are operable from $-55^{\circ} \mathrm{C}$. to $+200^{\circ} \mathrm{C}$. They are logical replacements for existing mechanical two-speed transmitters. Their bantam weight (5 oz .) and small size (2.685" O.D. x 1.002" I.D. x $0.562^{\prime \prime}$ thick) suits them ideally to vertical gyro gimbals and other assemblies where size and weight are critical factors. Write for complete information.

Manufacturers of

GYROS - ROTATING COMPONENTS RADAR DEVICES • INSTRUMENTATION PACKAGED COMPONENTS
Eclipse-Pioneer Division

HERE IS WHY IT CAN BE DONE - Vacuum capacitors, due to their high strength vacuum dielectric are much smaller physically than air dielectric capacitors. For a given voltage rating they therefore inherently have a lower minimum capacity and a higher maximum to minimum ratio of capacitance change. Ratios actually as high as 180 to 1 . Small size also makes for less self inductance and shorter lead lengths which reduces circuit stray inductance and capacitance. All of this, plus the convenience of using small component parts, greatly simplifies circuit design, especially in equipment requiring wide frequency coverage.
In addition, vacuum capacitors enjoy unusually high radio frequency current ratings because of the extremely low dielectric loss and heat sink effect of the all copper construction.
Jennings Vacuum Capacitors are standard components in most of the high powered transmitters and electronic heating equipment being built today. They are used as grid bypass capacitors and to bypass low inductance high current filaments; as pulse shaping capacitors in the output of magnetrons; and in tank circuits and harmonic filters.
We would be pleased to send you more detailed catalog literature on request.

* Example shown: UCSL 20 to 2000 mmfd, peak test voltage -3 kv , current rating - 42 amps rms.

Reliability means Vacuum/Vacuum means
2.7 to 2.9 Gc , has an isolation greater than 14 db . Isolation of model X-173C (2.95 to 3.25 Gc) is also greater than 14 db .

CIRCLE 320 ON READER SERVICE CARD

Thermostats

Stevens manufacturing co., INC., P. O. Box 1007, Mansfield, Ohio. Polypropylene boot enclosure, filled with epoxy resin, protects against moisture, fumes and dust.

CIRCLE 321 ON READER SERVICE CARD

Reflex Klystron

ELECTRICALLY TUNABLE
metcom, inc., 76 Lafayette St., Salem, Mass. The MXK-23 is an electrically tunable reflex klystron with a tuning range greater than 400 Mc . It is for use in the X -band region, in radar equipment and test equipment, as local oscillator or as wide band sweep oscillator. It differs from standard tunable klystrons in that it is tuned in the conventional mechanical manner and is electrically tuned for 400 Mc from any mechanical setting.

CIRCLE 322 ON READER SERVICE CARD

Grid Board Kit EASY TO USE

CORNING ELECTRONIC COMPONENTS, Bradford, Pa., offers a kit that
combines all materials to make high quality prototype printed circuits. Using the kit's copper-clad Fotoceram grid boards, resist materials to lay out circuit patterns, and etching materials to etch away copper beyond the circuit runs, a designer can produce a printed circuit on glass-ceramic substrate in 15 minutes, without leaving his desk.

CIRCLE 323 ON READER SERVICE CARD

Mobile Supports

tektronix, inc., P. O. Box 500 , Beaverton, Ore. Scope-Mobile carts for Tektronix oscilloscopes or auxiliary equipment feature an adjustable tray which can be tiltlocked in nine positions.

CIRCLE 324 ON READER SERVICE CARD

Noise Generator
 PRECISION UNIT

elgenco, INC., 1555 - 14th St., Santa Monica, Calif. Model 301 noise generator makes available a random voltage source with an ultrastable spectral density of approximately $4.0 \mathrm{v}^{2} / \mathrm{cps}$ controlled to $\pm 0.1 \mathrm{db}$ from 0 to 40 cps and a Gaussian amplitude distribution with an accuracy of better than 1 percent. Primary source of noise is a xenon-filled thyratron connected in a diode configuration and operated in a magnetic field.

CIRCLE 325 ON READER SERVICE CARD

Indicator Lights
 TRANSISTOR CONTROLLED

TRANSISTOR ELECTRONICS CORP., 3357 Republic Ave., Minneapolis 26, Minn. Miniature indicator lights which combine a momentary action push button switch with transistor circuitry and complete neon indicator in a single unit are features of the Tec-Lite TBL series Button-Lite. Series was designed to solve space and circuitry prob-

SHRINKS SKIN-TIGHT... THEN STOPS!

NEW

 ALPHLEX ${ }^{\circledR}$

TUBING

WITH CONTROLLED SHRINKAGE

WHAT IT IS: An IRRADIATED POLYOLEFIN INSULATION that is simple to use and shrinks when heated $\left(275^{\circ} \mathrm{F}\right)$ to form a permanent, durable, tight-fitting mechanical bond. This new versatile tubing is supplied in expanded form and shrinks to the exact configuration of the object to be covered WITHIN 7 SECONDS of application of heat, and WILL WITHSTAND CONTINUOUSLY TEMPERATURES OF $135^{\circ} \mathrm{C}$. WITHOUT FURTHER SHRINKAGE.
WHERE TO USE: Invaluable in laboratory, prototype, or production use wherever a tight, moisture and chemical resistant, electrically insulated covering is required. Use for insulating, jacketing, splicing, encapsulating, cable marking, weatherproofing, harnessing, and the insulation of connectors and other components.
HOW TO USE: The use of a hot air gun is recommended; however, excellent results may be obtained by oven heating, radiant heat, soldering iron, burner, or dipping
in hot fluids.

CONNECTOR INSULATION - ALPHLEX SHRINKABLE TUBING encapsulates both connector and wire to form a tight, moisture-proof, insulated connec. tion. It is excellent for weatherproofing in-line connectors.

SLEEVES - Forms a heat.resistant insu. lation over wire and crimped terminals. Acts as a strain relief to protect crimped or soldered points when wire is flexed.

BONOS - Provides a tight concentric flexible insulation that is heat. and chemical-resistant. Especially suitable to completely jacket the termination between multi-pin connectors and cables.

TERMINALS - Marked or color-coded SHRINKABLE TUBING sleeves simplify identification of cables and provide excellent insulation. Write for descriptive catalog \#ST. 275.

ALPHA WIRE CORPORATION
Subsidiary of LORAL Electronics Corporation 200 Varick Street, New York 14, N.Y.
Pacific Division: 1871 So. Orange Dr., Los Angeles 19, Calif.

Time-tested Standard of the Resistor Industry!

Specify EVANOHM for exceptional stability over wide temperature ranges. This WBD precision resistance alloy provides high specific resistance, low temperature coefficient and low thermal EMF to copper. It is especially recommended for high reliability applications ...resistors, precision instruments, missiles and critical equipment. Available in bare wire, enameled or insulated.
fine wire alloys in a full range of resistivities

ALLOY	Nominal Composition	Resistivity (ohms/cmf)	T.C. of Resistance (ohms/ohm/ ${ }^{\circ} \mathrm{C}$. $20-100^{\circ} \mathrm{C}$)	Specific Gravity gms/cc
Evanohm ${ }^{\text {a }}$	$\begin{aligned} & 75 \mathrm{Ni}-20 \mathrm{Cr} \\ & 2.5 \mathrm{Al}-2.5 \mathrm{Cu} \end{aligned}$	800	$\left(-65^{\circ} .000005 \dagger \text { to } 125^{\circ} \mathrm{C.}\right)$	8.10
Tophet A (${ }^{\text {P }}$	$80 \mathrm{Ni}-20 \mathrm{Cr}$	650	. 000085	8.412
Tophet ${ }^{\text {C }}$ C	61 Ni 15 Cr -bal. Fe	675	. 00013	8.247
Cupron (${ }^{\text {(Constantan) }}$	55-Cu-45 Ni	294	$\pm .000020$	8.90
Balco ${ }^{\text {d }}$	70 Ni 30 Fe	120	. 0045	8.46
Ballast* (Pure Nickel)	99.7 Ni	48	. 0060	8.90
30,60,90,180 Alloys	Cu-Ni	30-180	$.00130-.00018$	8.90

Callor write for EVANOHM brochure to-
WILBUR B. DRIVER COMPANY
NEWARK 4, NEW JERSEY - Telephone: HUmboldt 2.5550
lems in computers, data processing and industrial control systems.

CIRCLE 326 ON READER SERVICE CARD

Power Tetrode COMPACT TUBE
penta laboratories, inc., 312 N. Nopal St., Santa Barbara, Calif. The PL-4-65A, a 65 -w power tetrode is suitable for use as an r-f amplifier and oscillator and as an a-f power amplifier and modulator. Its small size and quick heating filament make it useful for mobile communications applications. It can be operated with full input at frequencies up to 150 Mc .

CIRCLE 327 ON READER SERVICE CARD

Modular Units

MOLEX PRODUCTS CO., 9515 Southview Ave., Brookfield, Ill. Modular plug and receptacle offer multiple circuit connections from 3 to 60 circuits, priced as low as $.014 \phi$ per circuit.

CIRCLE 328 ON READER SERVICE CARD

Trimmer Pot SUBMINIATURE SIZE

atohm electronics, 7648 San Fernando Road, Sun Valley, Calif. Combining subminiature size with an expanded resistance range to 100,000 ohms, type W5 trimmer po-

ENGINEERED COMPONENTS

for the Electronics Industry

As close al hand as your nearest authorized Garlock distributor CHEMELEC* Insulators, Subminiature Tube and Transistor Sockets, Connectors,

Availability as well as reliability are two reasons why it is smart to specify Garlock when buying components.
Through a new organization of authorized distributors, Garlock now offers immediate delivery of CHEMELEC Stand-off and Feed-Thru Insulators, Subminiature Tube and Transistor Sockets, Connectors, and other standard components.
As near as the telephone, your authorized Garlock Electronic Products Distributor offers prompt, courteous service. Call him at the nearest of these locations:

CALIF.
NEWARK ELECTRONICS CO
4747 W. Century Blvd.
Inglewood, Calif
SCHAD ELECTRONICS
499 S. Market SL
San Jose, Calif.
WESCO ELECTRONICS
1715 E. Colorado Blvd.
Pasadena, Calif.
COLORADO
INTER-STATE RADIO \&
SUPPLY CORP.
1200 Stout Stree
Denver, Colorado
ILLINOIS
NEWARK ELECTRONICS CO
223 West Madison St.
Chicago 6, Illinois
MARYLAND
ELECTRONIC ENTERPRISES,
INC.
4902 Snader Avenue
Baltimore 15, Md

MASS.
DE MAMBRO RADIO SUPPLY CO. INC. 1095 Commonwealth Ave. Boston 15, Mass.

NEW YORK
ELECTRONIC CENTER INC. 160 5th Avenue New York 10, New York
HARRISON RADIO CORP.
225 Greenwich St.
New York 7. New York

ONTARIO

LAKE ENGINEERING CO. LTO. 767 Warden Ave. Scarborough, Ontario, Canada

N. CAROLINA

DALTON-HEGE, INC.
Winston-Salem, N.

Take advantage of on-the-spot avail-ability-specify these skillfully engineered Garlock electronic components: Reliable under the most severe conditions, they are ideal for high temperature, high voltage, high frequency service on missile guidance, fire control, tracking, and radar systems. Garlock has the technical personnel and modern facilities to produce components of all materials-Teflon \dagger TFE and FEP, Nylon, Delrin \dagger, C.T.F.E. \ddagger -and a range of sizes, designs, and tolerances to fit your exact needs. At your disposal, too, for development of new electronic products, Garlock maintains complete electrical, chemical and physical laboratories staffed by topflight engineers.

Remember, too, the newest of the Garlock electronic products-Flexible Printed Circuitry of Teflon FEP. For complete details on what Garlock has to offer, write for Catalogs AD-169, 171, and 188. Garlock Electronic Products, Garlock Inc., Camden 1, New Jersey.

G

Canadian Div.: Garlock of Canada Ltd. Plastics Div.: United States Gasket Company
Order from the Garlock 2,000 . . . two thousand different styles of Packings, Gaskets, Seals, Molded and Extruded Rubber, Plastic Products.

Measuring perpendicular accelerations?

Look forward to spectacular performance from this tiny strain gage accelerometer! It's CEC's Type 4-202, the smallest temperature compensated instrument on the market.

Designed to measure accelerations perpendicular to mounting surfaces, it is available in a range of $\pm 5 \mathrm{~g}$ to $\pm 500 \mathrm{~g}$.

These performance characteristics prove the $4-202$ superior to any other linear unbonded strain gage bi-directional accelerometer: unusually low cross axis response . . . unusually high resonant frequency ... extremely little damping change over a temperature range of $-65^{\circ} \mathrm{F}$. to $+250^{\circ} \mathrm{F}$.

For complete information, call your nearest CEC sales and service office or write for Bulletin CEC 4202-X9.
testing applications such as thermometer calibration and the like. CIRCLE 332 ON READER SERVICE CARD

Computer Relay HIGH SPEED

JAMES ELECTRONICS INC., 4050 N. Rockwell St., Chicago 18, Ill., announces selies of high speed computer relays for transistor circuits. Driving voltage is a nominal 20 v . Units will operate in less than 750 μ sec and have polarized driving systems with center tapped driving coils. Switching circuits are for dry to 10 v levels with 100 million operations reliability. Prices range from $\$ 25$ to $\$ 35$.

CIRCLE 333 ON READER SERVICE CARD

Baking Ovens

F. J. stokes CORP., 5500 Tabor Rd., Philadelphia 20, I'a. Designed for processing semiconductor devices, the orens maintain 350 C concurrently with a vacuum of $10^{-\infty} \mathrm{mm}$ Hg .

CIRCLE 334 ON READER SERVICE CARD

Pressure Transducer FOR AIRBORNE USE

CONSOLIDATED ELECTRODYNAMICS CORP., 360 Sierra Madre Villa, Pas-

Measuring parallel accelerations?

Count on sensational performance from the newest addition to CEC's family of strain gage accelerometers! Type 4-203 packs all the superior performance characteristics of earlier models into just one cubic inch and less than three ounces.

Available in ranges from $\pm 5 \mathrm{~g}$ to $\pm 500 \mathrm{~g}$, the $4-203$ operates in a temperature range of $-65^{\circ} \mathrm{F}$. to $+250^{\circ} \mathrm{F}$.

In accurately measuring accelerations parallel to mounting surfaces, this miniature instrument performs with the lowest cross axis response... the smallest damping change with temperature ... and the highest resonant frequency of any comparable instrument available.

For complete information, call your nearest CEC sales and service office or write for Bulletin CEC 4203-X4.

Sensitive Relays at Sensible Prices

Price Electric Series 1000 Relays Now Feature . . .

Sensitive Operation - Solder or Printed Circuit Terminals Open or Hermetically Sealed Styles - Low Cost
These versatile sensitive relays are designed for applications where available coil power is limited. They retain all the basic features, such as: small size, light weight and low cost, that make the Series 1000 General-Purpose Relays pace setters in their field.

Typical Applications

Remote TV tuning, control circuits for commercial appliances (including piate-circuit applications), auto headlight dimming, etc.

General Characteristics

Standard Operating Current:
1 to 7 milliamps DC at 20 milliwatt sensitivity
Maximum Coil Resistance: 16,000 olms
Sensitivity:
20 milliwatts at standard contact rating; 75 milliwatts at maximum contact rating. Maximum coil power dissipation 1.5 watts.
Contact Combination: SPDT
Contact Ratings:
Standard 1 amp; optional ratings, with special construction, to 3 amps . Ratings apply to resistive loads to 26.5 VDC or 115 VAC .
Mechanical Life Expectancy:
$30,000,000$ operations minimum.
Dielectric Strength: 500 VRMS minimum.

For Additional Information, contact:

PRICE ELECTRIC CORPORATION

306 Church Street • Frederick, Maryland

MOnument 3-5141 • TWX: Fred 565-U
adena, Calif. Type 4-329 utilizes a rated electrical excitation of 20 v d-c or a-c rms with a carrier frequency in the $0-20 \mathrm{Kc}$ range. Sensitivity is $50 \mathrm{mv} \pm 0.25 \mathrm{mv}$ through a 50,000 ohm load at rated excitation and 70 F . Input impedance is 700 ohms min; output impedance, 350 ohms ± 10 percent at 77 F .

CIRCLE 335 ON READER SERVICE CARD

Crystal Mixers
570-630 MEGACYCLES
APPLIED MICROWAVE ELECTRONICS, 114 W. 25th St., Baltimore 18, Md. Model CM6 coaxial crystal diode mixers are particularly suitable for applications where maximum performance is desired over a reasonable bandwidth. Input is type N ; vswr (signal and l-o) 1.5:1 max; adjustable l-o coupling. Unit price is $\$ 390$.

CIRCLE 336 ON READER SERVICE CARD

Resistors

flotm co., 360 N. Michigan Ave., Chicago 1, Ill. Deposited-film resistor prices range from $\frac{1}{2}$ cent for $\frac{1}{8} \mathrm{w}$ to 3 cents for 4 w units in production quantities.

CIRCLE 337 ON READER SERVICE CARD

Delay Lines

DISTRIBUTED CONSTANT
RICHARD D. BREW AND CO., INC., 90 Airport Road, Concord, N. H. Distributed constant delay lines have an impedance of 500 ohms. They

He's not on your payroll . . . he takes up no desk space in your office . . . and he doesn't hang around the water-cooler talking to your secretaries. But this man works for you - and for every other advertiser.

What does he do? He helps to safeguard your advertising investments in print media -by providing audited circulation facts and figures on 2,900 publication members of the Audit Bureau of Circulations*. Assuring an accurate accounting, he tells you how many people purchased the publication . . . where they live . . . how much they paid . . . and the answers to many other questions about the publications and your markets.

He gives you factual marketing information as the basis for your advertising investments. He walks into every ABC -member publication's office and audits its circulation - just as carefully and as objectively as a financial auditor might check your books.
When he is finished, the guesswork is gone! He gives you facts - no opinions, pleasant statistics, maybe projections, or fancy figures - just plain old fashioned circulation facts.

Who is he?
He is the ABC auditor - and he works for you!

A McGRAW-HILL PUBLICATION • 330 W. 42nd ST. • NEW YORK 36, N. Y. ©fil

* Through the reports issued by the Audit Bureau of Circulations, this publication, along with other publisher members of $A B C$, voluntarily and regularly give the buyers of advertising more verified factual information than is available for any other media at any time.

GUDEBROD

ELECTRONICS DIVISION
225 West 34th Street New York 1, New York

the lacing tape with a NON-SKID tread

You can't see it, but it's there! Gudelace is built to grip-Gudebrod fills flat braided nylon with just the right amount of wax to produce a non-skid surface. Gudelace construction means no slips-so no tight pulls to cause strangulation and cold flow.

But Gudelace is soft and flat-stress is distributed evenly over the full width of the tape. No worry about cut thru or harshness to injure insulation . . . or fingers.

Specify Gudelace for real economy-faster lacing with fewer rejects.

Write for free Data Book. It shows how Gudelace and other Gudebrod lacing materials fit your requirements.

BROS. SILK CO., INC.

 }
 \section*{MEIALS Sor EIECTRONIC APPILCAIION
 \section*{MEIALS Sor EIECTRONIC APPILCAIION rolled UITRA THIII rolled UITRA THIII by OUR SPECIAL ROLLING by OUR SPECIAL ROLLING TECHNIQUE TECHNIQUE

 $181 / 8 \frac{1}{1}$ MOLYBDENUM}

 $181 / 8 \frac{1}{1}$ MOLYBDENUM}
eXECUTIVE OFFICES 12 South 12th Street Philadelphia 7, Pa. CIRCLE 200 ON READER SERVICE CARD

TOLERANCES CLOSER THAN COMMERCIAL STANDARDS
Note: for highly engineered applications-strips of TUNGSTEN and some other metals can be supplied

rolled down to . 0003 thickness

- Finish: Roll Finish-Black or Cleaned
- Ribbons may be supplied in Mg. weights if required

Developed and Manufactured by

[^4]are encased in an epoxy tube $13 / 32$ in. in diameter. Delay time ranges from 0.05 to $1.0 \mu \mathrm{sec}$. Maximum rise time for delays below $0.03 \mu \mathrm{sec}$ is $50 \mu \mathrm{sec}$; for delay from $0.3 \mu \mathrm{sec}$ to $0.75 \mu \mathrm{sec}, 80 \mu \mathrm{sec}$; for delays between 0.8 to $1.0 \mu \mathrm{sec}$, rise time is $120 \mu \mathrm{sec}$.

CIRCLE 338 ON READER SERVICE CARD

Waveguide Adapter

general rf fittings, inc., 702 Beacon St., Boston 15, Mass. Units adapt coaxial cable to waveguide. Models range from 3.2 to 10.8 Gc ; impedance is 50 ohms.

CIRCLE 339 ON READER SERVICE CARD

Silicon Rectifiers
NEED NO HEAT SINK
electronic devices, inc., New Rochelle, N. Y., offers a line of silicon rectifiers rated for 1 ma continuous duty from 400 to 1,000 piv. They are available in a silver-flashed metal and epoxy package or in a hermetically-sealed, flangeless glass to silver-flashed metal package. They can be supplied with singleended leads for use in p-c boards or with standard axial type leads. Case measures i in. by is in.

CIRCLE 340 ON READER SERVICE CARD

Pulse Generator
\& SYNCHRONIZER
PHOTRONICS CORP., 134-08 36th Road, Flushing 54, N. Y. Triggering system designed for synchroni-

Get the technical facts in electronics, the magazine that features the latest engineering developments and technically interprets markets, business statistics, trends. Special issues on Electronic Markets and other reports you'll want to file and keep. Mail the reader service card (postpaid) and start your own subscription to electronics, the magazine that helps you to know and therefore to grow! Rates: three years for $\$ 12$, one year for $\$ 6$; Canadian, one year for $\$ 10$; foreign, one year for $\$ 20$. Annual electronics Buyers' Guide (single issue price $\$ 3$) included with every subscription.
subscribe today to electronics

Ampliad Rasearch inco

LOW NOISE

 AMPLIFIERS NOISE FIGURES
LESS THAN

1 DB at 30 MC 3 DB at $\mathbf{3 0 0} \mathbf{~ M C}$

No Blowers

No Critical Alignment

Amplifier Model UH-2(A)SP is available at any preset frequency between 30 and 300 MC. This amplifier is a two tube unit with broadband response, high gain, and low noise figure. The unit requires no additional air cooling supply, as natural ventilation is used. The amplifier and its power supply are assembled on a $19^{\prime \prime} \mathrm{L} \times 33^{1 / 2^{\prime \prime}} \mathrm{H}$ panel suitable for rack mounting. Small size and low weight are featured in the rugged amplifier chassis.
Specifications of the amplifier are given below.

```
SPECIFICATIONS-MODEL UH-2(A)SP AMPLIFIERS
Frequency range: Center frequency between 30 MC and 300 MC
Up to \(10 \%\) of center frequency
Greater than 20 DB (function of freq. and BW)
\(<1\) DB at 30 MC to \(<3 \mathrm{DB}\) at 300 MC (function of freq. and BW)
```


50 ohms

```
Output impedance: 50 ohms
Connectors: input Type BNC, or N
\[
\text { output Type BNC, or } \mathrm{N}
\]
power 2 prong motor base receptacle
Power requirements: 115 VAC, \(60 \mathrm{cps}, 25 \mathrm{~W}\)
Dimensions: \(\quad 19^{\prime \prime} L \times 31 / 2^{\prime \prime} \mathrm{H} \times{611 / 2^{\prime \prime} \mathrm{D}}^{\prime}\)
Weight: \(12^{3 / 4}\) lbs.
Finish: Gray enamel panel
```

For additional information write
Ampliad Research ince.
76 South Bayles Avenue, Port Washington, N. Y.

Choose the right Temp-R-Tape for your job from a variety of types which combine some form of Teflon*, Fiberglas or Silicone Rubber backing with a silicone polymer adhesive. Temp-R-Tapes are all pressure-sensitive, even those which are thermal curing, and adhere securely to most materials, including Teflon, at extremely high temperatures. Each of these versatile tapes possess a superior combination of electrical, mechanical and physical properties suitable for a variety of applications where high dielectric strength, thermal stability, moisture resistance, durability, low coefficient of friction, non-stick properties, non-corrosiveness, non-aging characteristics or fuel resistance may be required.

TYPICAL USES:

ELECTRICAL - slot lining; interlayer and interphase insulation; harness bundling; splicing; wrapping for microwave components, transformer coils, capacitors and high voltage cables.
MECHANICAL - facings for film guides in electronic instruments, heat sealing bars, chutes, guide rails, and for protection for metals and other materials being chemically cleaned or coated.

AVAILABLE FROM STOCK:

$1 / 4^{\prime \prime}$ to $2^{\prime \prime}$ widths, 18 yd . and 36 yd . rolls and $12^{\prime \prime}$ width on liner by lineal yard. Special roll widths slit to order. Temp-R-Tape is sold nationally through distributors.
FREE SAMPLE and folder - write, phone or use inquiry service.
ELECTRICAL AND INDUSTRIAL SPECIALTY TAPES
zing a number of cameras or for use in telemetering, fire control, precision computer time programming, automatic control, and aircraft and ship navigation. Accuracy is 1 part in 100,000 . Output pulses from 8 or more per sec up to 1 pulse every 8 sec with individual system synchronization adjustable by delay up to 10 millisec.
CIRCLE 341 ON READER SERVICE CARD

Variable Transformer

20-AMPERE UNIT
ohmite mFg. co., 3665 Howard St., Skokie, Ill. The VT20 is a 20 ampere variable transformer. Heavy radiator and base plates facilitate heat dissipation, and radiator plate is counterbalanced to compensate for weight of brush assembly. Shaft can be extended from either side of the unit as required for panel or horizontal surface mounting.

CIRCLE 342 ON READER SERVICE CARD

Transformer Kit

microtran co., inc., 145 E. Mineola Ave., Valley Stream, N. Y. Kit of nine subminature transistor transformers saves time in optimizing breadboard circuitry.

CIRCLE 343 ON READER SERVICE CARD

Subminiature Tubes
FRAME GRID
raytheon co., 55 Chapel St., Newton 58, Mass. Type CK7994 and CK7995 frame grid subminiature

A NEW SERVICE NOTICE TO READERS FREE REPRINT OF THE MONTH

Each month the editors of electronics are selecting a significant article and offering it in reprint form -FREE-to readers.

The May free reprint is an article from the May 5th issue. It is a two page article by Fred W. KearDigital Control Uses Unijunction Transistors.

The bistable characteristic of the unijunction transistor makes it a useful control device for digital circuits, replacing many components used in conventional transistor switching circuits, reducing packaging size and lessen. ing maintenance problems. This article discusses the use of unijunction transistors in readout and control circuits.

Order your free copy now by checking the appropriate box on the Reader Service Card in this issue.
electronics

From Japan
One of the world's largest outputs of polystyrene capacitors

Fuji's modern component factory turns out 5 million polystyrene capacitors a month. Half are exported to the U.S. and Europe, and Japanese electronics claims the rest. A good share goes to Fuji's three systems plants as components for radio and carrier transmission systems, computers and automatic controls. Fuji components are systemproved.
U.S. distribution for polystyrene capacitors, mylar* capacitors, miniature relays, and all Fuji components is smoothly handled. The skills of Fuji's 10,000 employees and the experience of a 26year systems background are quickly available to you through Nissho Corporation offices in New York, Chicago, San Francisco, and Los Angeles. Complete specifications are availuble on request. *Registered DuPont Trade Mark.

Represented by:
The Nissho American Cordoration
Hew York 5, 80 Pine St., WH 3.7840 Chicago 3, 140 S. Dearborn St., CE 6.1950
The Missho Pacific Corporation
San Francisco 4, 120 Montgomery St., YU 2.7901 Los Angeles 14, 649 S. Olive St., MA 7.7691

CIRCLE 203 ON READER SERVICE CARD

NEW IDEAS FOR SALE!

Words and pictures tell you about the top new product ideas each week in "On the Market". Who makes 'em and what they'll do for you. Easy way to keep in touch with the latest and best.

A nother reason why it will pay you to sub-
FIND WHAT scribe to electronics (or renew your subscription) right now. Fill in the box on Reader Service Card. Easy to use. Postage free.

Why Varian's

G-10 Potentiometer Recorder is the

PRACTICAL RECORDING CHOICE

This recorder has gained an enviable reputation over the years for performing reliably in every recording chore within its capabilities. It owes nothing to styling but the dictates of practicality and delivers performance to match -10 to 100 mv d.c. full scale; sixteen chart speeds from $1^{\prime \prime} / \mathrm{hr}$. to $16^{\prime \prime} /$ min.; 1% accuracy and $\frac{1}{4} \%$-of-span seńsitivity; 1 or $2 \frac{1}{2}$ second full scale balance time; economical $5^{\prime \prime}$ charts with a flat platen for easy note-making. Prices - from $\$ 385.00$. Fast delivery; parts and service - world-wide.
Consider the rightness of the G-10 - a potentiometer recorder that has stood the test of time, use and acceptance.

nMR \& EPR SPECTROMETERS, MAGNETS, FLUXMETERS, GRAPHIC RECORDERS, MAGNETOMETERS, MICROWAVE TUBES, microwave srstem components, high vacuum equipment, linear accelerators, research and development services
tubes feature a low feed-back capacitance, high transconductance-to-plate current ratio, low noise and low interelectrode capacitance. Both rated for high temperature environments up to 220 C , the tubes are enclosed in T-3 button envelopes with nominal o-d of 0.375 by 1.25 in.

CIRCLE 344 ON READER SERVICE CARD

Electronic Counters

RIDGEFIELD INSTRUMENT GROUP, division of Schlumberger Corp., Ridgefield, Conn. Instruments feature counting rates to 1 Mc and a preset count detection capability to 250 Kc .

CIRCLE 345 on reader service card

A-C/D-C Supply PORTABLE UNIT

EDER ENGINEERING CO., INC., 1568 S. First St., Milwaukee 4, Wisc. High current for portable work is available from model 4372 power supply. It offers simple dial selection of desired output voltages from 0 to $125 \mathrm{~d}-\mathrm{c}$ or to 0 to $140 \mathrm{a}-\mathrm{c}$ at 2.5 or 3.0 amp respectively. The bridge rectifier is overload-protected against burnout. Price is $\$ 49.50$.

CIRCLE 346 ON READER SERVICE CARD

Linear Amplifier WITH ANALYZER

HAMNER ELECTRONICS CO., INC., P. O. Box 531, Princeton, N. J. The N-328 amplifier with pulse-height analyzer features ultra-high speed, non-overload characteristics plus optional pickoff for 40 nsec range
coincidence. It has a gain of 7000 , double delay-line pulse shaping and a choice of integral or differential discriminators.

CIRCLE 347 ON READER SERVICE CARD

AFC Unit
 FOR KLYSTRON L-O

Lel, INC., 75 Akron St., Copiague, N. Y. Designed to control the frequency of a klystron local oscillator in pulse radar systems, the 1 F 42 afc unit, available at 30 or 60 Mc center frequencies, utilizes a diodephantastron control circuit and has a sensitivity of 40 v per Mc.

CIRCLE 348 ON READER SERVICE CARD

Variable Capacitors

hammarlund manufacturing co., inc., 460 W. 34th St., New York 1, N. Y. Forty-two variable capacitors which meet MIL-C-92, have working voltages of 500,600 , or 700 with capacitances from 4.0 to $143 \mu \mu \mathrm{f}$.

CIRCLE 349 ON READER SERVICE CARD

Crystal Filters

MANY APPLICATIONS
COLLins radio Co., 19700 San Joaquin Road, Newport, Calif., announces crystal filters for a broad range of applications in ssb, telemetering, missile guidance, radar and navigation equipment and other communication and electronics uses. Filters over the 10 Kc to 30 Mc range are now being produced in quantities. One of the units is a 5 Mc filter in a thumb-size $3 / 8$

MORE THAN

450 Styles of Quality RPC Resistors!

MANY TO CRITICAL MILITARY SPEC.*

rpc-America's largest manufacturer of resistors-uses test equipment and standards for checking and calibrating that are matched only by a few outstanding laboratories.

Resistance values from .05 ohms to 100 teraohms-low coefficientsunsurpassed performance-small or large quantities-prompt delivery these are some of the reasons why rpc maintains customer loyalty.
Our knowledgeable engineering department is available for consultation without obligation. Chances are we can recommend the "just right" resistor for your problem.. Write for free catalog.

PRECISION WIRE WOUND

 CARBON FILMMETAL FILM RESISTANCE NETWORKS
*Conformance to MIL-R-93A; MIL-R-9444; MIL-R-14293A; MIL-R-10683A; MIL-R-10509C

Jest Equipment
Audio Oscillators
Distortion Meters Audio Frequency Meters
R-F Signal Generators Grid Dip Meters Components
Filiers-Low \& High Frequency Low Pass High Pass Band Pass Band Rejection
Toroidal Coils
1-F and R.F Transformer Assemblies
T-R Switches
R-F Filament Chokes
Audib Phase Shift Networks
Band Switching Pi. Networks Cyclometer-type Counters
Oscillator Coils
R-F and Audio -F Chok

Chokes
Air Wound Inductors.
Transmitting Condensers (Variable Air)
Frequency Multipliers Band Switching Turrets
Rotary Coils
Antenna Tuning Networks Baluns

Special Equipment
Mobile Radio Teletype
Equipment
AM•SSB Transmitters and Receivers

- Coils

. . . B\&W's specialized facilities and experience in design, engineering and production are ready to solve your unique problems in these fields. You are assured immediate action and short delivery on special components, assemblies and equipment.
We invite you to ask for bulletins or better yet, drop us specs covering your specific

Beaver \& Canal - Bristol, Penna. CIRCLE 204 ON READER SERVICE CARD

cu in. case, less than half the package size previously available.

CIRCLE 350 ON READER SERVICE CARD

Demagnetizer

FOR RECORDING TAPE
AMPLIFIER CORP. OF AMERICA, 398 Broadway, New York 13, N. Y. Demagnetizer for bulk sound recording tape serves dual purpose: completely erases tape on the reel, without rewinding; demagnetizes record-playback and erase heads. Even on severely overloaded tape, the background noise level is lowered 3 to 6 db below that of virgin, unused tape. Price of either of two models of the Magneraser is $\$ 18$.

CIRCLE 351 ON READER SERVICE CARD

Time Code Generator

epsco-west, 240 East Palais Rd., Anaheim, Calif. Generates up to three time code formats of any family of time codes. Stability is 1 part in 10^{*} per day.

CIRCLE 352 ON READER SERVICE CARD

Specification Tester FOR TRANSISTORS

PHILCO CORP., Lansdale Div., Lansdale, Pa. Designed to rapidly test large quantities of transistors to a single, programmed specification, the versatile automatic specifica-

electronic and electromechanical engineers in anique role

The engineers and scientists of Aerospace Corporation are in the forefront of a rapidly advancing state-of-the-art in sensing and information systems. Their unique role: a critical civilian link uniting government and the scientific-industrial team responsible for development of space systems and advanced ballistic missiles. In providing scientific and technical leadership to every element of this team, they are engaged in a broad spectrum of activities, from formulation of new concepts to technical review and supervision of hardware development by industry. Specific areas of interest include inertial and radio guidance, automatic control, communications, instrumentation, space- and ground-based computing, telemetering, tracking, auxiliary power, infrared, television, optics, and photography. Now more men of superior ability are needed; highly motivated engineers and scientists with demonstrated achievement, maturity, and judgment, beyond the norm. Such men are urged to write Mr. George Herndon, Aerospace Corporation, Room 110, P. O. Box 95081, Los Angeles 45, California. technology for the United States Government.

AEROSPACE CORPORATION

Now-faster service on complete line of top quality Hipersil ${ }^{\circledR}$ cores

Eight stocking locations for Hipersil cores give fastest possible service: Greenville, Pa.; Boston; Chicago; Cleveland; Dallas; Hillside, N.J.; Los Angeles; Minneapolis. Line includes new EIA, RS-217 sizes.

- Type C: 12, 4, 2 and 1 mil sizes, in single- and 3 -phase, fraction of ounce to 300 pounds.
- Ring Cores: Untreated, edge bonded, impregnated and epoxy resin-coated Polyclad.
- Special Cores: To any specification and shape requirements.
Top quality: Performance of Hipersil cores in "iron-core" components is guaranteed to meet or exceed specifications.
Write Westinghouse Electric Corporation, P.O. Box 868, Pittsburgh 30, Pa., for new catalog. You can be sure...if it's

tion tester (VAST I) is capable of 20-parameter go-no-go testing of 3,600 transistors per hr. The equipment accommodates three operators, though more than two will seldom be required.

CIRCLE 353 ON READER SERVICE CARD

Coaxial Connector SEVEN-PIN

VIKING industries, inc., 21343 Roscoe Blvd., Canoga Park, Calif. Seven-pin coaxial connector meets MIL-C-26500 (USAF). It features individual coaxial, snap-in contacts that can be removed from the connector with an extraction tool. The contacts utilize a clamping mechanism to retain both the coaxial cable jacketing and the braid. Contact material is copper alloy, rhodium plated. Inner insulation of the coax contact is Teflon.

CIRCLE 354 ON READER SERVICE CARD

Sweep Generators

telonic industries, inc., Beech Grove, Ind. R-f sweep and signal generators provide up to 4 w power. User can select four different modes of operation.

CIRCLE 355 ON READER SERVICE CARD

Polarized Connectors
 TNC AND TM

general rf fittings, inc., 702 Beacon St., Boston 15, Mass. Polarized TNC and TM connectors are designed for use in systems where it is desired to eliminate the possibility of connecting mismatching cables. This is achieved by reversing the interior components of standard connectors thus making it

BF SERIES BATTERY HOLDER

Literally, BF Series Battery Holders are powerhouses . . . designed for use as highly stable, panel mounted cell sources of power. They will accommodate batteries and cells up to $13 / 8^{\prime \prime}$ diameter and lengths from $1194^{\prime \prime}$ to $73 / 6^{\prime \prime}$, enabling use of different battery combinations to obtain wide selection of voltages. Batteries are exchanged simply by unscrewing holder cap. Designed for mounting up to a $1 \mathrm{~s} / \mathrm{s}^{\prime \prime}$ diameter hole and $3 / 8^{\prime \prime}$ panel thickness.
Inquiries for special battery holder lengths are invited. Complete data available on request.

300 SERIES: - Designed to accommodate batteries up to "1/16" diameter and lengths 1.300 to 5.850 .

400 SERIES: - Accommodates batteries $1^{\prime \prime}$ to $11 / 8^{\prime \prime}$ diameter and lengths from $111 / 16^{\prime \prime}$ to $6^{3} 16^{\prime \prime}$.

500 SERIES:-Accommodates batteries ranging from $13 / 16^{\prime \prime}$ to $13 / /^{\prime \prime}$ diameter and lengths from 23_{10} " to $7 Y_{16 "}$.

CIRCLE 205 ON READER SERVICE CARD
impossible to mate with a standard component. Neither exterior nor electrical characteristics change.

CIRCLE 356 ON READER SERVICE CARD

Cross Patch Cords

herman h. Smith inc., 2326 Nostrand Ave., Brooklyn 10, N. Y. Cords allow several connections from one terminal, and interconnect an unlimited number of multiple circuits.

CIRCLE 357 ON READER SERVICE CARD

Power Supply

TRANSISTORIZED
SPECTROMAGNETIC INDUSTRIES, P. O. Box 3306, Hayward, Calif. Model TC200-5 transistorized currentregulated power supply converts $110 \mathrm{v}, 60 \mathrm{cps}$, single phase a-c to 200 v d-c with maximum current of 5,10 , or 15 amp . Precision controls give coarse and fine continuous adjustment from zero current to maximum, with regulation held to 0.1 percent.

CIRCLE 358 ON READER SERVICE CARD

Resistor

```
& WATT UNIT
```

daystrom, inc., Weston Instruments Division, Newark, N. J., has added to its line of precision metal film resistors a $\frac{1}{8}$ w model Vamistor. It features Vamalloy, a low temper-

(1) SILICON

(3) CERAMICS

(2) FERRITES

(4) ALUMINUM DXIDE

ULTRASONIC MACHINING: 1. dicing silicon wafers; 2, cutting ferrite cores; 3. cutting holes and slots in ceramic tube spacers; 4 . drilling holes in aluminum oxides.

Low-cost, high-speed PRECIIION MACHINING of hard or brittle materials with ULTRASONICS

The delicate cutting operations shown above were all performed with Impact Grinders-Raytheon's ultrasonic machines that drill, slice, engrave, trepan or shape hard and brittle materials.
Design, materials and production engineers who have tried this remark. able technique agree that it is the optimum method for machining such materials as silicon, germanium, ferrites, ceramics, carbides and glass.
In impact grinding the tool is made to vibrate ultrasonically as abrasives are introduced between tool and workpiece.
Find out how one of these cost-saving, high-production-rate units can solve your machining problem.

SENO FOR BROCHURE No. 2-300 today. Address Ray-2-300 today. Address Ray-
theon Company, Production Equipment Operations, Com. Equipment Operations, commercial Apparatus \& Systems Division, Yechnical In54, Massachusetts.

MODEL 2-332 Raytheon Impact Grinder

RAYTHEON

RAYTHEON COMPANY

Measures Footage in Stock

Measures Footage used

Measures Footage Needed

Sequential marking, available only on Hickory Brand Coaxial Cable, lets you accurately measure the footage you need, the footage you use and the footage you have left... and guarantees the footage you get! Saves time and cable!

Every two feet, numbers are permanently stamped in sequence on Hickory Brand Coaxial Cable ... means better inventory control, eliminates waste in estimating installation requirements.

The conductor insulation and dielectric material used on Hickory Brand RF Cables is polyethylene, making these cables especially adaptable to applications requiring high, very high and ultra-high frequencies.

For economy and efficiency, order Hickory Brand!

Write for complete information on the full line of

HICKORY BRAND Electronic Wires and Cables

SUPERIOR CABLE CORPORATION, Hickory, North Carolina
ature coefficient alloy, deposited and fixed to the inside glazed surface of a ceramic tube and helically grooved for resistance value. Firebonded silver conducting bands and epoxy resin encapsulation are added to make a resistor which is compact, highly accurate, and virtually impervious to weather.

CIRCLE 359 ON READER SERVICE CARD

Recorder Control

CAHN INSTRUMENT CO., 14511 Paramount Blvd., Paramount, Calif. Recorder control converts any fixedspan recorder to a universal multirange recorder, with 15 voltage ranges and 15 current ranges.

CIRCLE 360 ON READER SERVICE CARD

Bandpass Filter LIGHTWEIGHT UNIT

RANTEC CORP., Calabasas, Calif. Model FS-205 is for the $2,200 \mathrm{Mc}$ to $2,300 \mathrm{Mc}$ band. It is designed for rugged missile and satellite environments up to 20 g 's from 25 to $3,000 \mathrm{cps}$. Insertion loss 0.25 db in passband and 50 db in stopband. Vswr is less than 1.2:1 and filter can handle 15 w of power c -w at any altitude without corona.

CIRCLE 361 ON READER SERVICE CARD

Precision Resistor
 WIRE WOUND

rotOHMeters, inc., 46 Prospect St., Yonkers, N. Y. The Rotohmeter is a two terminal wire wound resistor with adjustment feature by which the user himself makes final adjustment to a desired resistance then seals the unit with epoxy or other sealant.

CIRCLE 362 ON READER SERVICE CARD

For original use . . . For incorporation into laboratory equipment . . . In 55 - to 400 -cycle systems. The Trans Electronics Model RS305A Power Supply provides voltage regulation of $.05 \%$ load and $.05 \%$ line over the entire 225 - to 325 -volt range. Operating current range 0.50 ma , continuous duty, with filament output of 6.3 volts CT AC @ 3 amps. Units feature low ripple and noise (5 mv peak to peak); fast recovery time (25 to 50 microseconds). Three versions of Model RS305A offer, respectively, modular construction in package $5 x$ $41 / 8 \times 61 / 2$ inches; rack-mounting; and rack-mounted models with $31 / 4$-inch meters, in case with $31 / 2$-inch panel height. Input is $105-125$ volts AC.

SPECIFICATIONS

model*	voltage range	$\begin{gathered} \text { current } \\ \text { ma } \end{gathered}$	filament volts/amps	price
$\begin{aligned} & \text { RS-110 } \\ & \text { RR-110 } \\ & \text { RM-110 } \end{aligned}$	0.100	6-100	6.3/3	$\begin{array}{r} \$ 108.00 \\ 133.00 \\ 169.00 \end{array}$
$\begin{aligned} & \text { RS- } 205 \\ & \text { RR-205 } \\ & \text { RM-205 } \end{aligned}$	150-225	0.50	6.3/3	$\begin{array}{r} 55.50 \\ 80.00 \\ 115.00 \end{array}$
$\begin{aligned} & \text { RS-217A } \\ & \text { RR-217A } \\ & \text { RM-217A } \end{aligned}$	150-225	0.175	6.3/8	$\begin{array}{r} 87.50 \\ 112.50 \\ 147.50 \\ \hline \end{array}$
$\begin{aligned} & \text { RS. } 305 \\ & \text { RR-305 } \\ & \text { RM }-305 \end{aligned}$	225-325	0.50	6.3/3	$\begin{array}{r} 55.50 \\ 80.00 \\ 115.00 \\ \hline \end{array}$
$\begin{aligned} & \text { RS-317 } \\ & \text { RR-317 } \\ & \text { RM- } 317 \end{aligned}$	225-325	0.175	6.3/8	$\begin{array}{r} 87.50 \\ 112.50 \\ 147.50 \end{array}$
RR-450 RM-450 DUAL TRACKING	$\begin{aligned} & +300-400 \\ & -300-400 \end{aligned}$	0-50	$\begin{aligned} & 6.3 / 2 \\ & 6.3 / 1.5 \end{aligned}$ $6.3 / 1.5$	$\begin{aligned} & 155.50 \\ & 196.00 \end{aligned}$
RR-473 RM-473 DUAL TRACKING	$\begin{aligned} & +300-400 \\ & -300-400 \end{aligned}$	0.25	6.3/2 6.3/1.5 6.3/1.5	$\begin{aligned} & 140.00 \\ & 175.00 \end{aligned}$
$\begin{aligned} & \text { RS-505 } \\ & \text { RR-505 } \\ & \text { RM- } 505 \end{aligned}$	300-5002	0.50	6.3/3	$\begin{array}{r} 81.50 \\ 106.50 \\ 141.50 \\ \hline \end{array}$
$\begin{aligned} & \text { RR-303 } \\ & \text { RS-303 } \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0.500 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 6.3 / 15 \\ & 6.3 / 15 \end{aligned}$	$\begin{aligned} & 320.00 \\ & 360.00 \end{aligned}$
$\begin{aligned} & \text { RR-550 } \\ & \text { RM-550 } \\ & \hline \end{aligned}$	$\begin{aligned} & 300-500 \\ & 300-500 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.500 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 6.3 / 15 \\ & 6.3 / 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 310.00 \\ & 350.00 \\ & \hline \end{aligned}$

TRANS ELECTRONICS, Inc.

DI amond 0-3333

. . . AND GENERAL ELECTRIC WILL HELP YOU CHOOSE THE EXACT IRON YOU NEED

Whatever your soldering requirements may be-from complex miniature electronic sub-assemblies to heavy-duty industrial uses-one of the high-speed soldering irons in General Electric's complete line will do the job. The G-E irons shown above include (left to right):
MINIATURE for production-line soldering of sub-miniature assemblies.
MIDGET for pinpoint soldering of hard-to-reach joints.
EXTRA HEAVY-DUTY for industrial high-wattage soldering. LIGHTWEIGHT for soldering of most electronic components. INDUSTRIAL for general industrial soft-solder applications.

For expert assistance in choosing the exact iron you need, contact your General Electric distributor or local G-E Apparatus Sales Office; or write Section 758-03, General Electric Co., Schenectady 5, N. Y.

Progress /s Our Most Important Product GENERAL ELECTRIC

Engineers! Designers! THERE IS NO SUBSTITUTE FOR RELIARILITY! Specify-
 PERFORMANCE PROVEN "MAG MOD"

MAGNETIC MODULATORS

Miniaturized design permits engineers to employ these new components in transis. torized printed circuit assemblies and wafer type structures. All models offer maximum reliability, fully ruggedized construction and conform to MIL.T-27A specifications.

- COMPLETE RELIABILITY
- INFINITE LIFE
- faster response time
- NEGLIGIBLE HYSTERESIS
- EXTREME STABILITY (Ambient Temp. Range from -75° to $+135^{\circ} \mathrm{C}$)
- COMPACT SIZE
- LIGHTWEIGHT

Typical circuit applications for Magnetic Modulators are algebraic addition, subtraction, multiplying, raising to a power, controlling amplifier gains, mechanical chopper replacement in DC to fundamental frequency conversion, filtering and low signal level amplification.

GENERAL

 MAGNETICS•INC135 BLOOMFIELD AVENUE BLOOMFIELD, NEW JERSEY

CIRCLE 208 ON READER SERVICE CARD

NEW TRANSISTORIZED POWER SUPPLIES MORE VERSATILITY PER DOLLAR

MERCURY SERIES

- Automatic Overvoltage Protection
- Automatic Adjustable Short Circuit Protection
- Complete Range Remote Programming
- Turn-on/Turn-off Transient Elimination
- Constant Voltage/Constant Current

Model	Volts	Amps	Price
M15.10	0.15	$0-10$	$\$ 460$
M36-2.5	$0-36$	$0-2.5$	365
M36-5	0.36	0.5	395
M60-2.5	0.60	0.2 .5	450
M160.1	$0-160$	$0-1$	485

DYNAMIC REGULATION: 0.05% or 15 mv RIPPLE: 1 mv RMS max RESPONSE TIME: Better than $50 \mu \mathrm{sec}$

Basic regulated power supply oniy. Optional extra: meters, overvoltage protection, remote programming, adprotection, remote programming, adstant current.

TRYGON
ELECTRONICS INC.
111 PLEASANT AVE., ROOSEVELT, L. I., N. Y. • FReeport 8-2800

NEW BOOKS

Analogue Computation

By STANLEY FIFER
McGraw-Hill Book Co., Inc., New York, 1961, 1331 p, \$39.50 (4 vol)
although certainly of value to anyone in any way connected with the analog computing field, this set will be invaluable as a reference book and guide to those working in computer laboratories. It consolidates much information formerly available only in various papers and reports, as well as putting together in one well-indexed set information which previously could be gathered only from many different volumes.

These volumes present every aspect of analog computation: programming and check-out procedures, components and component design, error analysis, techniques for generating functions of two variables, methods of handling many types of mathematical configurations such as systems of linear algebraic equations, noise generation and the adjoint method of noise analysis, and solutions of partial differential equations. Although these volumes are oriented toward the use of a general purpose d-c computer, all other types of analog computers are discussed and, where possible, the merit of the application of the different types of computers to each problem is presented.

The chapters are arranged in such a way as to make this set valuable as a text book. Each chapter has an introduction, a summary, a set of sample problems and a very complete list of references. The illustrations and schematics are plentiful and concise. The level of mathematics and physics required is such that it would be most useful in graduate work.

Two chapters, containing the equations and computer set-ups for the dynamics of flight and flutter, will be of special interest to those who are not directly concerned with operation of a computer but who must set up the mathematical equations from physical situations.LEONORE R. BUSHOR, Computer Consultant, West Islip, N. Y.

Dictionary of Automation, Computers, Control and Measuring

By W.E. CLASON

Elsevier Publishing Co., Amsterdam, The Netherlands (D. Van Nostrand Co., Inc., Princeton, N. J., Distributors), 1961, $856 p, \$ 27.50$.

THIS latest in the Elsevier series of multilingual dictionaries gives 3,390 words and phrases in English and the equivalents in French, Spanish, Italian, Dutch and German. When the British term differs from the American, both are given. Each term is defined in English and classified in one of a dozen categories, including machine translation and information theory. For each language other than English, there is an alphabetic list of terms, referring to the corresponding numbers in the basic table.

A valuable tool for the technical translator and for those who read foreign journals, this dictionary would be of even more interest if Russian were one of the six languages presented. However, Rus* sian supplements have been published for several other Elsevier dictionaries, so it may be only a matter of time until it is done for this volume.

Although some terms in common use are not included, the omissions are more than made up for by the technical excellence and careful preparation of this handsome vol-ume.-SBG

THUMBNAIL REVIEWS

[^5]

Specifically designed to deliver an analog output voltage which is the continuous product of two variable input voltages. One of these is an excita. tion voltage which varies over a pre-determined range; in this case, 0 to 1 VRMS 400 cycles per second. The other signal is a DC current which varies between 0 and $\pm 400 \mu \mathrm{a}$. The output voltage is 400 cycles AC, and is always in phase or 180° out of phase with the variable excitation or fixed reference, i.e., in phase when the variable amplitude DC signal is positive, and 180° out of phase when the DC signal is negative.

TYPE MCM 515-1 SHOWN ACTUAL SIZE. COMPLETELY RUGGEDIZED, VIRTUALLY SHOCK AND VIBRATION PROOF. WEIGHS ONLY ONE OZ.

THERE IS NO SUBSTITUTE FOR RELIABILITY!

Specify "MAG MOD" miniature components for infinite life, faster response time, negligible hysteresis and extreme stability. Call or write for new Brochure 102 on "MAG MOD" Miniaturized Mag. netic Modulators and Magnetic Multiplying Modulators.

General Magnetics•Inc

 \rightarrow GM, 135 BLOOMFIELD AVENUE BLOOMFIELD, NEW JERSEY Telephone: Pilgrim 8-2400CIRCLE 209 ON READER SERVICE CARD $\frac{\text { YOUR ARRAY }}{}$

New techniques now make possible! Sockets for rapid testing of solder-terminal components, such as relays, transformers, capacitors, etc., furnished by EECO to your requirements at standard socket prices! Dual, isolated cohtacts for each terminal on header eliminate solder joints or clip leads. AS Series adapter sockets, $\$ 15.00+.50$ per pin in lots of 1-4. Substantial price breaks on quantity orders. More than 50 standard configurations available for immediate delivery.
SEND FOR CATALOG AS-1

Automation Division
Electronic Engineering Company of California
1601 East Chestnut Avenue - Santa Ana, Calif. - Kimberly 7.5501 - TWX: S ANA 5263

Four ways to reduce metallic whiskers Troublesome whiskers tend to grow from surfaces of electrical and electronic components in close proximity.

Example of metallic whisker growth on angle bracket

By bridging gaps between contact points, the whiskers cause shorts. As a result of research fostered by telephone companies and the tin industry, it has been determined that whisker growth can be reduced in any of four ways:

- Tin coatings can be increased to an ideal thickness of .005 in .
- Components can be flow-melted
- Components can be hot tin dipped rather than electrolytically coated
- Lower ambient temperatures can be used to inhibit whisker growth

Superior solderability

 can be obtained with a hot dipped or electroplated coating of .0003 in. This thickness is least influenced by factors of basis metal, undercoat layers and after-treat-ment-according to solderability studies of various coatings of tin, alloys of tin with lead, zinc, cadmium, and cadmium and silver.
FREE Brochure

16 interesting pages of information about the in US industry Write today for your copy.

The Malayan Tin Bureau Dept. S.64E, 2000 K St., N.W., Washington 6, D.C.

Princeton, N. J., 356 p, \$9. A practical introduction to transistor circuit design which is aimed at junior- and senior-level engineering students, this book deals in detail with the customary transistor physics and the basic equivalent circuits: the current-generator tee, the hybrid, and the hybrid-pi. Subsequent chapters stress actual design of different types of transistor amplifiers, receiver and transmitter circuits, and pulse circuits.

Professional Engineers Examination Questions and Answers. By W. S. LaLonde, Jr., McGraw-Hill Book Co., New York, N. Y., 589 p, \$7.50. This volume offers a complete review course dealing with basic fundamentals and business economics as well as the major engineering subjects covered by state licensing examinations. The question and answer approach, dealing separately with each particular subject, allows the reader a method of educating through self checking. An excellent book for engineers wishing to brush up on little used areas.

Ceramics. By P. William Lee, Reinhold Publishing Corp., New York, $1961,210 \mathrm{p}, \$ 5.95$. This book surveys the basic materials used in all forms of ceramics, glass and cermets, and reviews ceramics chemistry, production methods, applications and developments. While it may satisfy persons seeking a general understanding of ceramics technology, its information on insulations, dielectrics, ferrites and transducer materials is sketchy and would be of little value to specialists in these fields.

Stereo 1881. By John Sunier, Gernsback Library, New York, N. Y. $160 \mathrm{p}, \$ 2.95$. Relatively non-technical, this book is designed to acquaint audiophiles with the history and development of stereophonic sound from its earliest beginnings to the present day. Discusses stereo sound, old and new developments of stereo tapes and disks, and the various techniques used for experimental broadcasting.

NOTE: Our review of Welsby's the theory and design of inductance corls (p 164, Apr. 28, 1961) gave the publisher as MacDonald of London and the price as $\$ 4.20$. While this information is correct for editions distributed in England, the sole U. S. publisher is John Wiley \& Sons, Inc., who are distributing the book at a price of $\$ 6$.

XENON FLASH TUBES
As the world's leading designer since the 1930 's, EGe i has delines of flash tubes and equip. ment for applications incluaing: oeep-ocean photography, satel. ite tracking, test instrumentareadout cloud chamber study Laser stimulation, flash catalysis etc.
FX-1 2000 hcps per flash, lengths to $42^{\prime \prime}$. FX-6A internally triggered, up to 1 -billion flashes.
FX-27 subminiature size, internally triggered. FX-29 high-energy tube max. input of 635 w .s. Model 100, standard tube for Laser stimulators.

LASER STIMULATORS

These low cost, basic research toals provide highly efficient light sources with minimum tical coupling between tube and crystal increases efficiency . EG\&G Model 100 Xenon Hash. tube outperforms spiral tubes by 10:1. System consists of power supply capacitor bank and Laser flashhead. Flashhead available with 4, pacitor banks available.

Microflash
NICROSCOPE FLASH
ILLUMINATOR
Model LS- 15 produces short du* ration, high intensity flashes for extreme close-up photography. Cooiness of light permits live microscopy, e.g. photography of out heat damage. Flash dura. tion: 150 microseconds at 100 watt-seconds.

OOUBLE FLASH for short duration, double-exposure shadow or surathouette photography at ac-curately-timed intervals from 0 tuNficroseconds.
SUNFLASH approximates sunlight with slight filtering. Flash duration: $1 / 250$ second to $1 / 10$ of peak light; 10,000 watt seconds per flash.
seconds. MK VI SENSITOMETER ensures
Uniformity of repeated exposure to within 5%. Light closely approximates daylight.
RAPATRONIC CAMERA - mag-neto-optic shutter permits 0.8 microsecond exposures of selfluminous events.

CUSTOM-BUILT PULSE CIRCUITS ANO FLASH MACHINES
Experience and facilities give EG\&Gunique capabilities for de equipment to suit the needs of particular applications.
Full information on all products and services available on request.

162 BROOKLINE AVENUE, BOSTON 15, MASS Milli-mike@ Oscilloscopes, Hydrogen Thyratrons, Hydrogen Diodes. Triggered Spark Gaps, Xenon Flash Tubes, Flash Machines \& Circuits, Lase Stimulators, Oceanographic Equipment, Trans formers, Project Management, Systems Éngineer ing, Research \& Development.

Literature

 of the WeekWIRE DISPENSERS Products for Industry, Inc., 1704 Summer St., Stamford, Conn. Data sheet describes plastic dispensers for handling pre-cut wire used in harnesses, control panels and assemblies.

CIRCLE 363 ON READER SERVICE CARD

POTENTIOMETER Reon Resistor Corp., 155 Saw Mill River Rd., Yonkers, N. Y. Bulletin covers a composition variable resistor that is rated at 3 w for standard applications and 2 w for military specifications.

CIRCLE 364 ON READER SERVICE CARD

CROSSBAR James Cunningham, Son \& Co., Inc., 33 Litchfield St., Rochester 8, N. Y. "High Performance Crossbars" reviews six basic crossbar types, performance data, actuation and control, and applications.

CIRCLE 365 ON READER SERVICE CARD

FACILITIES BROCHURE Loral Electronics Corp., 825 Bronx River Ave., New York 72, N. Y. Sixteen page brochure outlines the company's capabilities for defense electronics.

CIRCLE 366 ON READER SERVICE CARD

SIZE 5 COMPONENTS General Precision, Kearfott Div., Little Falls, N. J. Miniature servo system components are covered in a 4 -page catalog.

CIRCLE 367 ON READER SERVICE CARD
SOLDER FOIL Accurate Specialties Co., Inc., 345 Lodi St., Hackensack, N. J. Data sheet gives solder foil specifications and lists standard alloys available as foil.

CIRCLE 368 ON READER SERVICE CARD
THERMOSTATS Stevens Manufacturing Co., Inc., P. O. Box 1007, Mansfield, Ohio. Brochure on thermostats covers both hermetically sealed and semienclosed styles.

CIRCLE 369 ON READER SERVICE CARD
TRANSISTOR RELAYS Bergen Laboratories Inc., 60 Spruce St.,

- Top accuracy of 1% over entire meter scale from 1 mv to 250 v and over the band of 20 cps to 20 kc . Better than 2% to 1,000 volts and for the wider band of 10 cps to 250 kc .
- High input impedance: 2 megohms shunted by 15 pF , except 25 pF on lowest voltage range.
- Long life: Several thousands of hours of operation without servicing or recalibration.
- Does not require stabilized input voltage. Less than $1 / 2 \%$ change in indication with power supply change from 105 v to 125 v .
- Five inch, mirror-backed, easy-to-read meter. Only two scales with mirror between. One is 1 to 10 for volts, and the second is 0 to 20 for decibels.
Also available in 19 inch relay rack Model $300 \mathrm{G}-\mathrm{S} 2$ at $\$ 325$.

[^6]
Completely Redesigned

by
ANELEX
... of course

Data processing systems builders* . . . and users expect this from Anelex. And for good reason. Most new developments associated with high speed line printing for EDP systems . . . even to high speed printing using machine-recognizable characters . . . have orginated with Anelex.
The highly specialized skills acquired by Anelex engineers in the creative development of advanced systems enables them to best design mechanical, electro-mechanical and electronic out-put equipment. In all probability the techniques required for your particular system have already been accomplished. This group, with their extensive knowledge and experience, is available for a discussion of your requirements.
*Anelex High Speed Printers are snpplied as standard equipment by 22 major computer and systems builders.

Paterson 1, N. J. Specifications and applications are given for two precision transistor relays and a transistor isolation amplifier in a 4-page brochure.

CIRCLE 370 ON READER SERVICE CARD
POWER SUPPLIES Valor Instruments, Inc., 13214 Crenshaw Blvd., Gardena, Calif. A 16-page catalog describes a line of compact, highly regulated d-c power supplies with 80 percent efficiency.

CIRCLE 371 ON READER SERVICE CARD
CAPACITORS General Electric Co., Schenectady 5, N. Y. Bulletin gives specifications on fixed plasticdielectric tubular capacitors designed for filter bypass or blocking purposes in missiles, computers, etc.

CIRCLE 372 ON READER SERVICE CARD

TRANSFORMERS PCA Electronics Inc., 16799 Schoenborn St., Sepulveda, Calif. Eight-page catalog features the company's line of datapulse transformers.

CIRCLE 373 ON READER SERVICE CARD

CALIBRATION SERVICE Endevco Corp., Customer Service Dept., 161 East California Blvd., Pasadena, Calif. Brochure describes a calibration service which offers shock calibration to $15,000 \mathrm{~g}$.

CIRCLE 374 ON READER SERVICE CARD

PLASTICS Synthane Corp., Oaks, Pa. Brochure covers copperclad laminated plastics conforming to MIL-P-13949B.

CIRCLE 375 ON READER SERVICE CARD
RECEIVER MIXER HewlettPackard Co., 1501 Page Mill Rd., Palo Alto, Calif. Application note tells how to adapt an X-band or H-band crystal detection mount for use as a mixer for a laboratory receiver.

CIRCLE 230 ON READER SERVICE CARD
TAPE PREPARATION McDonnell Electronic Equipment Div., Box 516, St. Louis 66, Mo. Bulletin describes punched tape preparation equipment for automatic checkout and machine control requirements.

CIRCLE 231 ON READER SERVICE CARD
ELECTRON TUBES Machlett Laboratories Inc., Springdale,

NEW DESIGN DATA

 ON MAGNETIC AMPLIFIERS-latest ARNOLD folder enables you to design and build a unit to your exact needs.

Armed with the data in this folder, you can create an optimum design for a 12 -watt magnetic amplifier ... get the closest possible control over its design and construction ... for control of servo motors, regulated power supplies, etc.
You build the amplifier around its basic component - the saturable reactor, Twenty-four ARNOLD saturable reactors are described in the folder. There's full information as to what associated components are necessary, and how to use the components in a proper magnetic amplifier circuit.
In buying just the saturable reactor, you get far more latitude than in buying a whole black box. And you won't have to prepare comprehensive specs., or depend on an outside source for the complicated designs.

Write for new Arnold ('atalog. It's yours for the asking.

ARNOLD MAGNETICS CORP.

6050 W. Jefferson Blvd., Los Angeles 16, Calif. VErmont 7.5313
CIRCLE 211 ON READER SERVICE CARD

it's read more

by all 4!
electronics magazine gives you the latest engineering developments. Government trends, military applications, and markets are technically interpreted. Get it first with your own subscription. Mail the reader selvice card (postpaid) to electronics, the magazine that helps you to know and grow! Rates: three years for $\$ 12$, one year for $\$ 6$; Canadian, one year for $\$ 10$; foreign, one year for $\$ 20$. Annual electronics BUYERS' GUIDE (single issue price $\$ 3.00$) included with every subscription,
subscribe today to electronics

Dependable Push Button Switches by Grayhill

- Snap Action
- Silent Action
- Double Pole
- Solderless
- Lighted
- Push-Pull
- Single Pole/Double Throw
-Ratings from 1/10 ampere to 10 amperesfor commercial or military applications-custom engineered models for special applications. These top quality Push Button Switches are available with a wide variety of accessories, such as decorative mounting nuts, range of colored button caps, lockwashers, etc.

Special return springs, contacts and other variations of the standard model are available on special order.

RyYLON BROADBAND VERTICAL RADIATORS

A multi-frequency service radiator requiring no matching equipment

advantages

- Extremely constant input impedance over a wide frequency range.
- Power handling capacity to 150 kw . or more.
- Radiation performance equal to, or better than a conventional radiator without the need of impedance matching equipment.

WIND TURBINE COMPANY WEST CHESTER, PA.

Phone: OWen 6.3110
TRYLON TOWER AND ANTENNA SYSTEMS

- RESEARCH	- MANUFACTURE
- DEVELOPMENT	

Write, wire or phone for information or application to your requirements.
CIRCLE 213 ON READER SERVICE CARD
Did you know that your 1960 electronics BUYERS' GUIDE includes . . . Missiles in Production - p. R5, List of Military Procurement Locations and Personnel p. R7, Characteristics of Plastics - p. R34, Characteristics of Laminates - p. R36, Wire, Tape and Foam Specifications-p. R38, Symbols Dictionary-p. R42, List of Industry Organizations, Services and Standards p. R47, Military Standards - p. R50, Military Nomen-clature-p. R53.

The only directory in the electronics industry with a Reference Section. It contains Market Data, Materials for Components, Specifications and Services, Design

Data.
 First choice of all 4!

electronics BUYERS' GUIDE and REFERENCE ISSUE

Conn. Catalog provides a reference guide to types and condensed data on the company's tubes, including vapor-cooled triodes, hard-pulse tube modulators and the uhf planar group.

CIRCLE 232 ON READER SERVICE CARD
POWER SUPPLIES Technipower Inc., 18 Marshall St., South Norwalk, Conn. Bulletin covers miniature solid state d-c power supplies, including rack mounted versions with optional meters.

CIRCLE 233 ON READER SERVICE CARD
DELAY LINES Ad-Yu Electronics Lab., 249 Terhune Ave., Passaic, N. J. Two data sheets describe High-Z miniature delay lines with linear phase response and models which feature a rise time less than 3.5 percent of total possible delay. CIRCLE 234 ON READER SERVICE CARD

MICROWAVE EQUIPMENT Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md. Catalog reviews the company's products, featuring their line of coaxial attenuators and terminations.

CIRCLE 235 ON READER SERVICE CARD

PRINTED CIRCUIT CLEANER National Ultrasonic Corp., Nutley, N. J. Data sheet covers a cleaning system which combines Freon agents with ultrasonic energy.

CIRCLE 236 ON READER SERVICE CARD

TV TRANSLATORS Electronics, Missiles \& Communications, Inc., 262 E. Third St., Mt. Vernon, N. Y., has available a planning package for vhf tv rebroadcast translators.

CIRCLE 237 ON READER SERVICE CARD

ELECTRON TUBES Raytheon Co., Industrial Components Div., Newton, Mass. Twelve-page booklet covers industrial and military filamentary subminiature electron tube characteristics.

CIRCLE 238 ON READER SERVICE CARD

RECORDERS Curtiss Wright Corp., Princeton, N. J. Data sheet describes rectilinear recorders featuring 2 to 6 channels.

CIRCLE 239 ON READER SERVICE CARD

MICRO MANIPULATORS Brinkmann Instruments, Inc., 115 Cutter

Mill Rd., Great Neck, L. I., N. Y. Prochure covers manipulators with three dimensional movements for the positioning of micro tools.

CIRCLE 240 ON READER SERVICE CARD
ALLOYS Semi-Alloys Inc., 550 S. Fulton Ave., Mt. Vernon, N. Y. Four data sheets deal with the melting points of four basic alloys, aluminum, gold, indium and silver, for use in the semiconductor industry.

CIRCLE 241 on reader service card
COOLING UNITS Wakefield Engineering, Inc., Wakefield, Mass. Booklet describes several models of Delta natural convection cooling units.

CIRCLE 242 ON READER SERVICE CARD

READOUT CELLS Hoffman Electronics Corp., 1001 N. Arden Dr., El Monte, Calif. Data sheet supplies engineering information on silicon solar readout cells which are basically light-to-electricity converters.

CIRCLE 243 ON READER SERVICE CARD

INDUCTIVE DEVICES Vanguard Electronics Co., 3384 Motor Ave., Los Angeles 34, Calif., has published a catalog presenting specifications and dimensional diagrams for inductive devices.

CIRCLE 244 ON READER SERVICE CARD

SERVOMOTOR GENERATOR Beckman Instruments Inc., Helipot Div., 2500 Fullerton Rd., Fullerton, Calif. A servomotor generator, wound for $115 \mathrm{v}, 400$ cycle excitation is described in a single data sheet.

CIRCLE 245 ON READER SERVICE CARD

COMPUTER
RESOLVERS Theta Instrument Corp., 520 Victor St., Saddle Brook, N. J., "Primer for Computing Resolvers" covers properties such as function and axis error and techniques of measurement.

CIRCLE 246 ON READER SERVICE CARD

MOTORS Bodine Electric Co., 2500 W. Bradley Place, Chicago 18, Ill. The construction and operation of several instrument motor models is discussed in a 28 -page brochure. Please request copies on company letterheads.

OUTSTANDING? тие tmp-2A

 "UNIVERSAL" TELEMETRY RECEIVER is the best of its kind because ...NOW IN USE AT THE
ATLANTIC MISSILE
RANGE
AND
WALLOPS
ISLAND MISSILE RANGE

It has been designed to meet the requirements of the IRIG recommendations.
It is economical because of its modular construction.
It utilizes plug-in IF amplifiers of various bandwidths, FM or phasc-lock demodulators and Predetection recording converters, making it readily adaptable for use in any known telemetry system.
It is crystal controlled or continuously tunable, with built in VFO.

Complete specificotions ovailoble on request.

See the DEI TMR-2A at the National Telemetering Conference, Booth TH60, Sheraton Towers, Chicago ... and at the MIL-E-CON Show, Booth 111, Shoreham Hotel, Wash., D. C.

Defense Electronics, Inc.

Serving

Government and Industry

WASHINGTON - ROCKVILLE INDUSTRIAL PARK S451.B RANDOLPH RD., ROCKVILLE, MARYLAND WHitehall 6.2600

Fairchild Adds to Mt. View Plant

FAIRCHILD SEMICONDUCTOR CORP. has begun construction on a new $40,000 \mathrm{sq} \mathrm{ft}$ addition (wing at right in sketch) to its transistor manufacturing and headquarters facility in Mountain View, Calif. Robert N. Noyce, vice president and general manager, said the addition would cost more than $\$ 500,000$.

Scheduled for completion this fall, the new structure will bring Fairchild's total office and manufacturing space at 454 Whisman Road to $108,000 \mathrm{sq} \mathrm{ft}$.

Julius Blank, Fairchild's manager of facilities, said the original building was completed in August 1959 and cost approximately $\$ 1$ million. The company also has 56,000 sq ft of other plant space in the Mountain View-Palo Alto area and

Infrared Industries

To Double Capacity

INFRARED INDUSTRIES, INC., has started construction of a $15,000 \mathrm{sq}$ ft addition to its plant on Route 128, Waltham, Mass., which will double present plant capacity.

The new building, representing an investment of approximately $\$ 250,000$, will provide additional laboratory facilities for expanded production and engineering programs in the company's Photoconductor Division, according to William E. Standring, general manager.

Approximately 50 new positions will be created following completion of the new facility on June 15, Standring said.
a 55,000 sq ft diode plant in San Rafael.

Noyce said the expansion was necessary because the firm had doubled its share of the semiconductor market last year and plans to double its product line this year.

In addition to manufacturing high-performance silicon transistors and diodes, the company has recently introduced a line of electronic building blocks called Micrologic elements for computers. It has also entered the industrial transistor market and the transistor test equipment market and now has a work force of 1,550 .

Fairchild is a wholly owned subsidiary of Fairchild Camera \& Instrument Corp. of Syosett, L. I., N. Y.

G-D/Electronics
 Promotes Jacque

APPOINTMENT of Raymond F. Jacque as manager of quality assurance in the military products division of General Dynamics/Electronics, Rochester, N. Y., is an-
nounced. Prior to this assignment he was assistant manager of quality control in the division for seven years.

Giannini Tabs Two For Promotion

PROMOTION of two men to positions of division management was recently announced by Neil Curry, manager of Giannini Controls Corp.'s servo component division.

Russell Reid, former contracts administrator, becomes operations manager. Neil Saldinger, former project engineer, moves up to assistant chief engineer.

Copolymer Corporation

Elects Carpenter
COPOLYMER CORP., Los Angeles, Calif., reinforced plastics firm, recently elected Carey Carpenter executive vice president.

Active in reinforced plastics since 1953, Copolymer will broaden its research and development effort under the former Swedlow Inc. technical manager to bid for an increased part in the field of ablative and structural missile and space components.

Adler Electronics Fills New Posts

GORDON S. JONES has been appointed manufacturing engineering supervisor in the operations division of Adler Electronics, New Rochelle, N. Y. He was formerly with DuMont Laboratories, Clifton, N. J. Also announced was the promotion of Lester Kowalsky to group

Recording 1200 Megawatt Impulse Measurements

with Tektronix Camera and Surge-Testing Oscilloscope . . . in Monitoring Flash X-Ray System

New Flash X-Ray System manufactured by FIELD EMISSION CORPORATION utilizes an x-ray tube with a newlydeveloped T-F emission cathode-which increases the current density by a factor of one million over that of a thermal emitter.

Applying square-wave pulse techniques to this high-current T-F emission tube enables the x-ray system to provide stopmotion pictures of high-speed events at velocities up to 30,000 feet per second.

In testing this new x -ray system, the Tektronix Type 507 Oscilloscope monitors the square-wave output from the 1200 Megawatt Pulser to the x-ray tube. The Tektronix C-12 Camera conveniently records critical timing and amplitude measurements of pulses up to 600 kilovolts at 2000 amperes, 0.2 microsecond duration.

Type 507 Oscilloscope

Tektronix CRT-new 5 -inch CRT at $24-\mathrm{KV}$ accelerating potential provides bright trace on $6-\mathrm{cm}$ by $10-\mathrm{cm}$ viewing area.
Vertical Sensitivity-50 v/cm to $500 \mathrm{v} / \mathrm{cm}$.
Risetime-10 nanoseconcis.
Sweep Range-20 $\mathrm{nsec} / \mathrm{cm}$ to $50 \mu \mathrm{sec} / \mathrm{cm}$.
Single Sweeps-RESET button arms the sweep circuit for trig. gering internally, manually, or by an external signal.
Internal Time Markers.
High-Voltage Trip Pulse.
Electronically-Regulated Power Supplies.
Type 507 Oscilloscope
Includes Scope-Mobile and separate Power Supply.
(prices f.o.b. factory)

Tektronix, Inc.

P. O. Box 500

For your own high-voltage and high-current applications, consider a C-12 Camera on a Type 507 Oscilloscope. Together, these Tektronix Instruments enable you to obtain and keep an accurate waveform record of power-surge measurements-such as high-voltage breakdown tests of power transformers, insulators, allied components . . . pinch-effect studies . . . other experiments in plasma research.

Check these great new entries in the race for space at Hallamore Booth E-8, Sheraton Towers, Chicago, May 22, 23, 24. A. Rocket-Borne, Slow Scan Space Television System with 500 line resolution at 75 KC transmission bandwidth for use with telemetry transmitter and receiver. Camera, less lens and connectors is $8^{\prime \prime}$ long by $2^{1 / 2 "}$ " dia. Control unit is $3^{3 / 4}{ }^{\prime \prime} \times 5^{\prime \prime} \times 7^{\prime \prime}$. Normal weight 6 lbs. B. Phase Lock Subcarrier Discriminator, Model 0447, "lifts the signal out of the noise." Three are mounted in Module shown, with Hallamore Power Supply and Meter Panel, to provide three-channel FM-FM data-recovery system in only $83 / 4$ inches of rack space. C. Solid State Phase Lock Receiver, Model 0460, $5^{\prime \prime} \times 5.5^{\prime \prime} \times 15^{\prime \prime}$, for airborne or ground use in satellite tracking, air search and rescue and survivable communication links. Weight is less than 10 lbs . D. Solid State Voltage Controlled Oscillator, Model 0395, with self-contained power supply. Normal input voltage ranges: $0-5$ volts or ± 2.5 volts... with Millivolt Amplifier, Model 0493: 0-10/200 or $\pm 5 / 100$ millivolts. E. Halbe, All Transistor Airborne Rocket Beacon for nose cone recovery, telemetry, radiosonde. Dia. $3^{\prime \prime}$, height $2^{\prime \prime}$, weight (incl. batteries) less than 1 lb ., operating life 30 hours. If you can't make the show, please write Hallamore Electronics Division of The Siegler Corporation, 714 North Brookhurst Street, Anaheim, California, Dir. Dial 714-PR 4-1010 TWX AH-5279.
leader, manufacturing engineering. He was formerly a senior mechanical engineer.

The Adler operations division is responsible for the production of communications systems and equipment for the military and industrial markets.

El-Tronics Appoints Melvin Salveson

el-tronics, inc., Warren, Pa., has named Melvin E. Salveson as president of its Alwac Division, at Hawthorne, Calif. This division manufactures digital computers for scientific calculations.

Salveson was systems research manager and consultant in operations research for the General Electric Co. for several years, and has headed up his own consultant firm since 1957.

Burnell Names Lurie Chief Engineer

WILLIAM B. LURIE, former senior project engineer and program director of General Precision Laboratories, Inc., has joined Burnell \& Co., Inc., Pelham, N. Y., manufacturer of electronic filters and delay lines, as chief engineer. He will be in charge of design and engineering administration, and will also coordinate engineering and re-

SEBUO IR Report

Achromat Lenses Extended to 1-14 Micron Range

Computer Program Optimizes
Design, Speeds Fabrication of
Lenses to User Specifications

SERvocon ${ }^{(1)}$ achromat lenses providing high resolution in the infrared spectrum are now available for selected wavelength bands in the broad 0.7-14 micron range.

Servo Corporation has instituted a new Computer Program to optimize achromatic lens design to user specifications. The computer program supplements existing facilities for design, fabrication and testing of infrared optical components and systems.

In addition to SERvofrax ${ }^{\text {(}}$ (arsenic trisulfide glass), and conventional types of optical glass, optical components are being fabricated of lithium fluoride, calcium fluoride, silicon, germanium, and other IR transmitting materials.

From a simple infrared lens, to a complex infrared system ... look to a Servo solution

Infrared Optics
Standard and special optical shapes available in all sizes and transmitting materials. Infrared wavelengths from less than 1 to more than 20 microns. Excellent refractive and reflective optics for research, laboratory, industrial, and military use.

IR detectors and associ-
 ated circuitry
 Uniformly sensitive thermistor detectors for fast, accurate, remote detection of radiation

 from visible through far infrared. Wide variety of time constants, capsule configurations, and window materials. SERVOTHERM ${ }^{\otimes}$ circuitry exploits speed, sensitivity, wide range, low noise, compactness, and flexibility of heat detector cells.
Submit your problem for recommended solution

Call or write requesting further information...or assistance of a Servo applications engineer.

'way ahead in infrared
 SERYO CORPORATION of america

111 Haw South Road • Hicksville, Long island, N. Y. - WE 8.9700 CIRCLE 214 ON READER SERVICE CARD May 19, 1961
search of the company's subsidiaries and its Guillemin Research Laboratory.

Hennessey Joins Dalmo Victor

FRANK HENNESSEY, radar antemma design engineer, has joined Dalmo Victor Co., division of Textron Inc., Belmont, Calif., as a senior engineer. He will serve as group leader of the microwave antenna research group.

Hennessey previously was associated with Lockheed Missile Systems Division as a research scientist on antennas for space vehicle applications.

Philco Names D. G. Fink V-P for Research

DONALD G. FINK has been appointed vice president for research of Philco Corp., Philadelphia, Pa. He was formerly director of research and general manager of the research division.

Before joining Philco in 1952, Fink was editor of Electronics.

Sheingold Accepts Government Post

LEONARD S. SHEINGOLD, director of the Applied Research Laboratory

12-FRAME MOTOR GOVERNS TO CLOSE TOLERANCE

—combines $1 / 75$ H.P. motor, governor, gear train and noise filter, in a compact package.

This ELECTRO-ACTUATORS MOTOR can be governed to $\pm 1 / 2 \%$, at speeds up to 18,500 R.P.M. Only $11 / 4^{\prime \prime}$ in diameter, unit is built to meet environmental specifications of MIL-M-8609 (ASG). Unit is available in both PM and reversible series.

Long, trouble-free life - 1000 hours without maintenance.

Simplified construction -motor and brake assembly are combined with the brush holder, which reduces assembly costs, hence lowers prices.
Designed to customer specifications can be equipped with various combinations of governors, gear reduction units, brakes, etc. to meet exact speed and torque requirements.

Write for bulletin 102.

ELECTRO-ACTUATORS

a division of Omega Precision, Inc.
757 N. Coney Avenue, Azusa, Calif. CUmberland 3.9485

PRECISION BUILT CHASSIS SLIDES

These quality ball bearing slides provide the highest service ability under any conditions. Two types 16 styles and sizes available. Some for industrial and military applications, others for commercial use.

CUSTOM DESIGNED HANDLES

29 styles and sizes available. Some are sleel, others are brass and many are cast aluminum. Beautifully made with durable attractive finish. Designed for rugged applications.

For complete information see your Bud Distributor or write for Bulletin S-6060.
BUD RADIO, INC.
Cleveland 3, Ohio

CIRCLE 215 ON READER SERVICE CARD

of Sylvania Electric Products Inc., Waltham, Mass., has been named chief scientist of the U. S. Air Force. He succeeds Alesander H. Flax, who will return to his former position as vice president and technical advisor of Cornell Aeronautical Laboratory at Syracuse, N. Y.

As chief scientist, Sheingold will have responsibility for providing technical advice on Air Force plans, programs and requirements. Appointment of a chief scientist is made for a one-year period.

Daystrom-Pacific
Names V-P \& G-M
kennetil m. Miller, formerly vice president of Motorola Aviation Electronics, has been named vice president and general manager of Daystrom-Pacific, Los Angeles, Calif., a division of Daystrom, Inc.

Miller previously served as general manager and earlier as chief engineer of the Lear Cal Division of Lear, Inc.

Goodyear Aircraft Hires Frank Fehn

frank p. feifn has joined Goodyear Aircraft Corp., Akron, O., as a senior development engineer in the firm's guidance and computer engineering department. Prior to his association with the company, he

Just Published

ANTENNA ENGINEERING HANDBOOK

Prepared by a Staff of Specialists Edited by HENRY JASIK
President. Jusik Laboratories, Inc. A vast amount of information relating to antennas and antenna design is brought to you in this prastical Handbook. From basic fundamentals hook offers design applicatons, the book offers the kind of detalled working in todia's complex field of antemnal engineering. important datennal engineering. many types of commercial antennats, and a number of developments in the field of military applications are included. This atuthoritative guide includes material on long wire, slot, loop, helical, horn, reflector, and scanning antennas. Engineering applications of receising, transmitting, radar, airctaft, ${ }^{\circ} \mathrm{H} F$ and "H1" communications antennas are fully covered. Treated, too, are such important advances as frequency independent antennas, surface-wมe antennas, scanning antennas, "adio telesope antennas. and others. Transmission lines, impedance matching and broadbanding, radome problems, propagation prolllems, and other special topies round out the comprehensive coverage of the llandbook. 1013 1p.. 993
illus. d charts. se?.00

ELECTRONIC PACKAGING WITH RESINS

Just Published. A practical euicle to embedment-parckaging materials and technigues for engineering and manufacturing electronic parkages. ully describes casting. pottins. 1 m prementing. and encipsulating com and polesters polvosulfides . . methanes and polvsulfies foams flame-retardant compounds . and more. Isy C. 1. Marper, Westinahoust Elere (onro. 33: pp., ? 04 illus. null tables. sil.00

NUCLEAR PULSE SPECTROMETRY

Just l'ubliwhed. Gives clear, concise txplanations of electronic sustems, circuits, and methods used in counter and ionization chamber devices. Treats nuclear radiation detectors pulse amplifiers. pulseheight and pulse-time distribution analyers, coincidence swstems, data storage devices. multi-rlimensional instruments and other topics. Inrlata, etc 3 y diagrams. engineering lata, etc. By K. Chast. Instromen

HPEs, shamhat

```
McGraw.Hill Book Co., Dept. L-5.19
    Send me book:s) checked belon for 10 days' exam
    inatimes on approval. In 10 dats I will remit for
    book(s) 1 keep plus few rents for delivery costs, ind
    venur! mbwanted hook!s) postplid. (We pay delivery
    rost if yom remit with this rougmo-*ame relurn
    rimlege.)
    \Pi. lasili- Antenma Engrg. Handbook - $2%.00
    C Iarmet- Electronic Pkg. with Resins- $11.00
        \square Chase -Nuclear Pulse Spect.- $8.50
    Sime
Address
    City
                            Zone ....State
(company
    pontion
    For price and terms outside U.S
    write McGraw.Hill IntI., N,Y.C. }3
                            L.5.19
```

had spent nine years with the E. W. Bliss Co. of Canton, O., as a senior electronic specialist and assistant chief engineer.

Allegri-Tech Opens West Coast Facility

allegri-tech, inc., Nutley, N. J., has announced the opening of a new $20,000 \mathrm{sq} \mathrm{ft}$ plant in Burlingame, Calif.

Company manufactures printed circuit configurations and modules used in military applications such as the ground support equipment of Polaris and Nike-Zeus and the reconnaissance satellites.

PEOPLE IN BRIEF

Victor Met transfers from General Electric to Kane Engineering Labs as manager of the waveguide components research and development group. Thomas D. Kegelman promoted to chief of the television and infrared group of United Aircraft Corp.'s Norden Div. Norman E. Wunderlich named staff consultant of Intercontinental Electronics Corp. William C. Hennings and Hugh L. Gottfried of Melabs move up to manager of the space systems branch and manager of the reconnaissance systems branch, respectively. William O. Puro leaves Melpar to join Emertron Inc. as director of microware development. Joseph J. Houghton, formerly president of Electrodynamic Instrument Corp., chosen director of engineering and manufacturing by Infotronics Inc. Ben Wright advances at Kaar Engineering Corp. to chief engineer. Herbert Rosenberg transfers from Space Technology Labs to Marshall Labs as manager of the digital circuits dept. Leon Davidson promoted to manager of the programming section of Teleregister Corp.'s engineering dept. Samuel Todd Huey, previously with RCA, joins the engineering staff of Lynch Communication Svstems. George F. Houlroyd of FotoVideo Electronics moves up to vice-president of manufacturing. John J. Davis leaves Summers Gyroscope to join Rutherford Electronics as project engineer.

MIDGET TAP SWITCH has giant range

 TYPE 3A

Only $1^{\prime \prime}$ in diameter . . . weighs 30 grams ... as many as 8 decks and up to 12 positions per deck. These are among the features of Tech Labs' new all-molded miniature Type 3 A tap switch.
Designed for a wide range of milltary and commercial applications, this single-hole mounted switch has adjustable stops if fewer than 12 positions, single pole, or 6 positions, double pole, are required. "Shorting" and "non-shorting" types are available and the switch can be furnished solenoid-operated and hermetically sealed.

SPECIFICATIONS

Size: 1" diameter, $11 / 4^{\prime \prime}$ with terminals. First deck, $1-1 / 16^{\prime \prime}$ long. Each additional deck, $1 / 2^{\prime \prime}$ long.
Weight: First deck, 30 grams. 10 grams for each additional deck.

Rating: 1200 volts rms, 2000 VDC, 5 amps (carrying) 115 V .
Insulating resistance: 100 megohms minimum at 500 volts DC.
Life: 1.5-2 million revolutions.
Contact resistance:
(standard) 6.10 milliohms.
(silver) $\quad 3.5$ milliohms.
Temperature range: $-65^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
Mounting: Single-hole.
Meets MIL-S. 3786 and MIL-E-5272C

Write for details and prices.

electronics
 WEEKLY QUALIFICATION FORM FOR POSITIONS AVAILABLE

ATTENTION:
 ENGINEERS, SCIENTISTS, PHYSICISTS

This Qualification Form is designed to help you advance in the electronics industry. It is unique and compact. Designed with the assistance of professional personnel management, it isolates specific experience in electronics and deals only in essential background information.
The adveritises hised heree are seceking porfessionol experience. eill in tho ouvifaction form bolow.

STRICTLY CONFIDENTIAL

Your Qualification form will be handled as "Strictly Confidential" by ELECTRONICS. Our processing system is such that your form will be forwarded within 24 hours to the proper executives in the companies you select. You will be contacted at your home by the interested companies.

WHAT TO DO

1. Review the positions in the advertisements.
2. Select those for which you qualify.
3. Notice the key numbers.
4. Circle the corresponding key number below the Qualification Form.
5. Fill out the form completely. Please print clearly.
6. Mail to: D. Hawksby, Classified Advertising Div., ELECTRONICS, Box 12, New York 36, N. Y. (No charge, of course).

COMPANY	See Page	KEY \#
BENNETT ASSOCIATES Philadelphia, Pa .	140*	1
ERIE ELECTRONICS DIV. Erie Resistor Corp. Erie, Pa.	162	2
ESQUIRE PERSONNEL Chicago, Illinois	140*	3
general electric Heavy Military Electronics Dept. Syracuse, New York	161	4
JET PROPULSION LABORATORY Pasadena, California	50*	5
KOLLSMAN INSTRUMENT CORP. Elmhurst, New York	140*	6
LOCKHEED CALIFORNIA DIV. Burbank, California	55*	7
McGRAW-HILL PUBLISHING CO., INC. New York, New York	162	8
MITRE CORPORATION Bedford, Mass.	163	9
P.6669	162	10
P-6688	162	11

* These advertisements appeared in the 5/12/61 issue.

electronics weekly qualification form for positions available

Personal Background
NAME
HOME ADDRESS.
CITY. \qquad ZONE STATE. hOME TELEPHONE. HOME TELEPHONE...Aerospace
Antennas

Fire Control
 Radar
 Human Factors
 Infrared
 Instrumentation
 Medicine
 MicrowaveNavigationOperations Research
ECM
Electron Tubes
Engineering WritlngRadio-TV
 \square Solid StateTelemetry

 Other

5191 PROFESSIONAL DEGREE(S). MAJOR(S) UNIVERSITY
DATE(S)

Educałion

CATEGORY OF SPECIALIZATION Please indicate number of months		
	Technical Experience (Months)	Supervisory Experience (Months)
RESEARCH (pure, fundamental, basic)	((
RESEARCH (Applied)	$\cdots \cdots$	$\cdots 0000$
SYSTEMS (New Concepts)	010 0 0 0:0	\bigcirc
DEVELOPMENT (Model)	-*...0	000000
DESIGN (Product)	-..0.*	$\cdots 0 \cdot 0 \cdot$
MANUFACTURING (Product)	-•...*	
FIELD (Service)	-.....
sales (Proposals \& Products)

CIRCLE KEY NUMBERS OF ABOVE COMPANIES' POSITIONS THAT INTEREST YOU

Engineers

T: George B. Callengadministration

SUBIELI: Man Manpower Requirement
project \qquad and consulting specialists

 requirements andysis for proper
adequate and system evaluation. To sum up: Project mave nave thnical technologies members must havs all tochnorsult-
preadn to in which we are actst have techies. ing specian thinese tech wJ
depth win
circuit-theory \& design - radar theory - communications theory computer programming \& utilization are invited to forward their resumes to: George Callender, Division 69-WT

HEAVY MILITARY ELECTRONICS DEPARTMENT
GENERAL ELECTRIC
Court Street, Syracuse, New York
All qualified applicants will receive consideration for employment without regard to race, creed, color or national origin.

for One Qualified SCIENIIST on ENGINERR

$\$ 25,000$ starting salary

with the opportunity for additional remuneration (stock options, etc.)
If you have a doctorate in science, electronic engineering or physics you may qualify for this important opening:

CHIEF ENGINEER-MILITARY ELECTRONICS

Requires inspired technical leadership for a large group of professionals engaged in military electronics research and development. Areas include:

Communication Systems Reconnaissance Systems Radar Systems Antenna Systems Computer Systems

You must have engineering-administrative abilities and have had papers published in recognized technical publications. Other indications of professional achievement including patents, etc. will be considered. This firm is acknowledged for its many outstanding advancements in the fast-moving electronics field. The man selected for this position will be presented with an unusual opportunity for professional achievement.

> Please write for full details and send complete resume to P6669 ELECTRONICS
> Class. Adv. Div., P. O. Box 12, N. Y. 36, N. Y.

CIRCLE 379 ON READER SERVICE CARD

ME's, CHEM E's, EE's, plus CIVILS

When you think of INTEREST think of your job

When you think of GROWTH think of your job
When you think of CHALLENGE
think of your job
When you think of your job,

think of McGRAW-HILL

An engineer-editor on a top magazine gocs hand-in-hand with interest, growth and challenge. In such a position, you meet and mingle with the top brains in your field. You'll be "in the know" about new developments by getting the facts and evaluating them for other engineers. You'll see your work in print. If you like engineering but crave work that is imaginative, timely and exciting, you may be one of the engineer-editors we are looking for.
If you want growth, interest and a challenge in a job, ask for additional information by writing to:

Mr. Jack Coyne-Room 506
McGraw-Hill Publishing Company
330 West 42nd Street
New York 36, New York

SEMICONDUCTOR DEVICE SPECIALIST
MICROCIRCUITRY DEVELOPMENT ENGINEER
\$12,000-\$15,000
Solid State Physic Lab of major precision instrument manufacturer seeks technical doers in semiconductor device development and microcircuitry design. Will develop their own sections under laboratory director. M.S. with several years experience. 27-45 years. Must be able to take analytical approach to technical problem solving. West Coast location in congenial, productive, well-equipped and well-staffed lab. Reply to ELECTRONICS Box \# . State briefly experience, education and age.

> P-6688. Electronics

255 California St., San Francisco 11, Calif.
CIRCLE 381 ON READER SERVICE CARD

ELECTRONIC COMPONENT DEVELOPMENT ENGINEER

Experienced in the design and development of Capacitors and/or Resistors for Commercial and Military applications. Ideal opportunity for ambitious man to develop to limit of his ability. SalaryOpen. Location-Erie, Pa. Call or send resume to: Chief Engineer

Erie Electronics Division
ERIE RESISTOR CORPORATION
645 West 12th St., Erie, Pa. (GL 6-8592)
CIRCLE 382 ON READER SERVICE CARD

PERSONNEL MANAGERS

Looking for

EXPERIENCED ENGINEERS . . .
TECHNICAL PERSONNEL?
Write for a free copy of:

"HOW TO ATTRACT ENGINEERS"

This file-size booklet is designed for personnel people faced with the problem of recruiting engineers and technical people.
The top-flight engineers and technical personnel you want are at a premium. . as this twenty page booklet points out. How you can reach and influence these men is the story told.
This booklet describes the McGraw-Hill publications best suited to reach the specific type of engineer you want. . how you can make contact. . . channel and concentrate your employment adverising to iust the men with hints to consider and pitfalls to avoid when hints to consider and pitfalis to avoid when "Employment Opportunity" advertisement . ..

Write for your free copy 10 . . .
B. A. Feher

Classified Advertising Division
McGraw-Hill Publishing Co., Inc.
Post Office Box 12
New York 36, New York

HEXSEALS are modular external seals. They fit onto switches, potentiometers, circuit breakers and lighted push. buttons.

We also make:
 - SEELSKREWS ${ }^{\text {² }}$ - SEELBOLTS* - SEELRIVITS*
 SELFSEALING HARDWARE - SEELTHREDS*

APM PRODUCTS MEET ALL APPLICABLE MIL SPECS.

Our list of modular seals is just too long for this ad. Let us send you our Catalog No. 359B.
*Trade Mark
Write or call:
MISS RIVA SOLINS
(APM A■ D Ma Corp.
41 Honeck Street, Englewood, N. J. LOwell 9-5700

INDEX TO ADVERTISERS

Audited Paid Circulation

APM Corp.	164
Aerospace Corporation.	139
Air France.	108
Allen-Bradley Co.	
Alloyd Electronics Corp.	80
*Alpha Wire Corp.	125
American Machinery \& loundry Co. Potter \& Bromfield Div.	111
Anaconda Wire \& Cable Co.	12
Anelex Corporation	148
* Antenna Systems. Inc	68
*Applied Research. Inc.	3
*Arnold Engineering Co., The	3
* Arnold Magnetics Corp.	151
* Ballantine Laboratories, Inc..	147
Barker \& Williamson, Inc	138
Belden Manufacturing Co	59
Bell Telephone Laboratories	45
* Bendix Corporation Eclipse Pioneer Division. . . . 122,	123
Bourns, Inc.	23
Brush Instruments. Div. of Clevite Corp..	17
Bud Radio, Inc.	158
CBS Electronics.............. 46 ,	47
Cannon Electric Co.. 56.	57
* Celco-Constantine Engineering Laboratories	165
*Centralah, The Electronics Div of Globe-Union Inc	55
\% Chester Cable Corp.	16
Christie Flectric Corp.	51
\%Clarostat Mfg. Co., Inc	10
*Clifton Precision Products Co., Inc..	84
Connecticut Hard Rubber Co.	134
Consolidated Electrodynamics Corp. 128.	129
*Constantine Engineering Laboratories	165
Continental Connector Corp..	117
* Cross Co.. H.	132
Cubic Corp.	
* Curtiss-Wright Corp..	

Defense Electronics, Inc........... 153
DeJur-Amsco Corporation........ 117
Dorsett Electronics, Inc.......... 63
Dow Corning Corp. 69
Driver Co., Wilbur B. 126

[^7]Electro Motive Mfg. Co., Inc........ 44
ectronic Engineering Co.Electronic Instrument Co.. Inc.
(EICO) 66
Empire Devices, Inc. 36
"Fairchild Semiconductor Corp. 10.5
Fuji Tsoshinki Seizo K.K. 135
Gardner-Denver Company 62
Garlock Electronics Apparatus Sales Dept. 143
Semiconductor Pdts. Dept........ 113
General Magnetics. Inc.........144, 145
General Radio Co........... 2 nd Cover
Grayhill, Inc. 151
Gudehrod Bros. Silk Co., Inc. 132
Hallamore is 5
Hallicrafters Company 61
Heiland Division. Minneapolis-Honey- well 7
Hewlett-Packard Company 8.9
Hitachi, Lid. 121
*Hughes Aircraft Co 67
International Resistance Co. 49

* Jennings Radio Manufacturing Corp. . 124
${ }^{*}$ Kepco, Inc.. 107
Kintel, A division of Cohu Elec- tronics Inc...............3rd Cover
Lockheed Electronics Co........ T0, 71
Malayan Tin Burean. 140
Manarlock Mills. 133
Massa, A Div. of Cohu Electronics.
Inc. 31

[^8]

- eliminates the old bugaboo of cable entanglement which damages tubes and components in lower chassis each time the one above is withdrawn for service and returned to position. Our new Cable Retractor's double action maintains constant tension and correct suspension of cable at all times-permits ample cable length for full extension and tilting of chassis without hazard of snagging.
For use with all types of chassis or drawer slides, adiustable to fit varying chassis lengths, simple to install, inexpensive, proven thoroughly reliable in operation.
Mounts on rear support rails on standard $13 / 4^{\prime \prime}$ hole increments. Cadmium plated CRS. Write for Bulletin CR-100E

ORegon 8.7827
 Western Devices, Inc. 600 W. FLORENCE AVE, INGLEWOOD 1, CALIF. CIRCLE 217 ON READER SERVICE CARD

Tough competition and smart selling demand that the electronics man be reached and sold wherever you find him: Research, Design, Production, and Management. Only electronics is edited to interest and influence all four key buyers. Put your advertising where it works hardest.....

in electronics

*Radio Corporation of America. . .ith Cover $\begin{array}{r}73 \\ \hline\end{array}$ RCA Service Co... 30 *Raytheon Company. 1.11 Resistance Products Co.......... 137 Rotron Manufacturing Co., Inc.,... 79

Tech Laboratories, Inc... 15̄9 Tektronix, Ine... 155
Texas Instruments. Incorporated
Semiconductor-Components Divi-emiconductor-Components Divi-
sion 53
Tinnerman Products. Inc...........
Trans Electronics, Inc.. 14

* See Advertisement in the July 20, 1960 issue of Electronics Buyers' Guide for complete line of products or services.

a spot is a spot is a high resolution Spot with
CELCO YOKES
- Celco Yokes
keep spots smallest
- celco yókes
keep spots roundest
- Célco yókes
keep spots sharpest

Use a CELCO DEFLLECTION YOKE for your high resolution applications.

Main Plant: MaHwaH, N. J. Davis 7.1123

- Pacific Oivision - Cucamonga, Calif. - Yukon 2-2688

With everybody watching each other along the DEW line and the Iron Curtain these days, electronies has replaced binoculars.
What's happening in the giant markets
or missile controls, radar and communi-
What's happening in the giant markets
for missile controls, radar and communications equipment?
electronics tells how things are going, keeps you informed of developments as they occur. This is a good time to sub-
scribe or renew your subscription. Just they occur. This is a good time to sub-
scribe or renew your subscription. Just fill in box on Reader Service Card. Easy to use. Postage free.

FIND WHAT YOU NEED IN... electronics

*Transitron Electionic Corp........ 43
*Trio Laboratories. Inc... 34
Trygon Electronics Inc............ 144
United Electro Dynamics, Inc....... 15
U.S. Stoneware. 29
*Varian Associates 136
*Veeder-Root. Inc. 40. 41
Vitro Electronics 109
Wales Strippit Inc.. 54
*Western Devices. Inc. 165
*Westinghousc Electric 146
Wind Turbine Company 152
Professional Services 163

* See Advertisement in the July 20, 1960 issue of Electronics Buyers' Guide for complete line of products or services.

CLASSIFIED ADVERTISING
F. J. Eberle, Business Mgr.
EMPLOYMENT
OPPORTUNITIES161-163
EQUIPMENT 163
Erie Electronics Div. Erie Resistor Corp 162
General Electric. 161
Lifschultz Fast Freight. 163
McGraw-Hill Publishing Co 162
Mitre Corporation 163

This index and our Reader Service Numbers aro pub.
lished as a service. Every precaution is taken to make them accurate, but ELECTRONICS assumes no re. sponsibilities for errors or omissions.

ATLANTA M. Miller; HOUSTON Joseph A. Page; DALLAS Robert T. Wood, Frank leBeav; LONDON Edward E. Schirmer; FRANKFURT Stanley R. Kimes; GENEVA Michael R. Zeynel.

BRANCH OFFICES: National Press Bldg., Wash. ington 4, D.C.; McGraw-Hill Bldg., Copley Square, Boston 16; Four Gateway Center, Pittsburgh 22; Six Penn Center Plaza, Philadelphia 3; 645 North Michigan Avenue, Chicago 11; 55 Public Square, Cleveland 13; 255 California Street, San Francisco 11; 1125 West Sixth St., Los Angeles 17; 1740 Broadway, Denver 2; 1301 Rhodes.Haverty Bldg., Atlanta 3; 901 Vaughn Bidg., Dallas 1; Prudential Bldg., Holcombe Blvd., Housiton 25; McGraw-Hill Publishing Co., Lid., 34 Dover Street, London, England; 85 Westendstrasse, Frankfurt/Main; 2 Place de Port, Geneva.

ADVERTISING REPRESENTATIVES: NEW YORK Donald H. Miller, Henry M. Shaw, George F. Werner; BOSTON William S. Hodgkinson, Donald R. Furth; PItTSBURGH David M. Watson; PHILADELPHIA Warren H. Gardner, William J. Boyle; CHICAGO Harvey W. Wernecke, Martin J. Gallay; CLEVELAND P. T. Fegley; SAN FRANCISCO T. H. Carmody, R. C. Alcorn; LOS ANGELES D. A. McMillan, Marshall Freeman; DENVER J. Patten;
R. S. QUINT, Assistant Publisher Buyers' Guide and Business Manager; FRED STEWART, Promotion Manager; B. ANELLO, Marketing Service Manager; RICHARD J. TOMLINSON, Production Manager; GEORGE E. POMEROY, Classified Manager; HUGH J. QUINN, Cireulation Manager.

kin tel's Model 121A/A non-inverting DC amplifier has fixed gains of $0,+1,+10,+20,+30,+50,+100$, $+200,+300,+500$, and +1000 . A variable gain control adjusts any fixed gain from x 1 to x 2.2 . A gain calibration control gives $\pm 2.5 \%$ adjustment for each gain other than +1 .
With this new instrument, you can amplify accurately all low-level signals from DC to beyond 200 kc for the reliable measurement of strain, temperature, flow, vibration, displacement, or other physical phenomena. The $121 \mathrm{~A} / \mathrm{A}$ has the same dimensions, fits the same cabinets and modules as other KIN TEL DC amplifiers. For more information on this new, more usable DC amplifier, write to KIN TEL. Engineering representatives in all major cities.

ADDITIONAL SPECIFICATION NOTES:

The Model 121A/A is a non-inverting (positive input produces a positive output), wideband, DC amplifier. Amplification is accurate within 0.1% for all gains other than +1 (gain accuracy is 0.2% at +1), linear within 0.005% for outputs up to ± 15 volts DC with load impedances of 200 ohms or more. The amplifier provides up to $100 \mathrm{ma}-$ $\pm D C$ or peak AC - into loads of 100 ohms or less. Input impedance is greater than 10 megohms; output impedance is less than 0.3 ohm. Frequency response is flat within 0.25% to 2 kc , within 4% to 10 kc , within 3 db to 200 kc . Drift is less than $\pm 2.0 \mu$ volts equivalent input for over 40 hours at +1000 gain. Amplifier recovers from 100% overload in 0.4 second, is undamaged by sustained, direct short across output terminals. Price $\$ 1000$.

11Here's RCA's brand-new idea in rectifier case design -four new silicon rectifiers in hermetically sealed flangeless metal packages. These four new types now make silicon rectifiers as easy to handle and mount as other standard tubular components. They are designed to outperform plastic-packaged rectifiers and meet the stringent heat and humidity requirements of today's industrial and commercial applications.
Using a unique combination of a silicon diffused-junction and a new ease, these units can be operated at temperatures up to $75^{\circ} \mathrm{C}$ without derating. They are designed and priced to bring you econony and performance plus easy handling and assembly
Sample these new RCA SILICON RECTIFIERS yourself and put them 10 work in your product. Call your RCA representative today at the Field Office near you. For additional technical information, write RCA Semiconductor and Materials Division. Commercial Engincering, Section E-19-NN-3, Somerville, N. J.

Available Through Your RCA Distributor

The Most Trusted Name in Electronics radio corporation of america

RCA "TO-1" SILICON RECTIFIERS					
Type	Max Ratings PIV	Max Ratings Forward Current * @ $75^{\circ} \mathrm{C}$	Max Ratings Recurrent Peak Current $@ 75 \mathrm{C}$	Max. Instantaneous Forward Vollage Drop@ 05 DC amp. @ $25^{\circ} \mathrm{C}$	Max. Reverse Current © 25 C and rated PIV
1N3193	200	750 ma	6 amp	1.2 v	$10 \mu \%$
1N3194	400 V	750 ma	6 amp.	$1.2 v$	$10 \mu \alpha$
1N3195	600 v	750 ma	6 amp .	1.2 v	$10 \mu \alpha$
1N3196	800%	500 ma	5 amp.	$1.2 v$	$10 \mu \pi$

Resistive ot inductios load
RCA SEMICONDUCTOR \& MATERIALS DIVISION FIELD OFFICES.
EAST: 744 Broad Street, Newark, N. J., HUmboldt 5-3900 • 731 James
Street, Room 402, Syracuse 3. New York, GRanite 4-5591. NORTHEAST:
64 "A" Street, Needham Heights 94, Mass., Hlllcrest 4-7200 . EAST
CENTRAL: 714 New Center Bldg., Detroit 2, Mich., TRinity 5.5600.
CENTRAL: Suite 1154, Merchandise Mart Plaza, Chicago, III., WHitehall
4-2900 - P. O. Box 8406 . St. Louis Park Branch, Minneapolis, Minn., FEd-
eral 9-1249 • WEST: 6355 E. Washington Blvd., Los Angeles, Calif., RAy-
mond 3-8361 - 1838 El Camino Real, Burlingame, Calif., OXford 7-1620.
SOUTH: Calmar Building, 1520 Edgewater Drive, Suite I, Orlando, Florida,
GArden 4-4768. SOUTHWEST: 7905 Empire Freeway, Dallas 7. Texas,
FLeetwood 7-8167 • GOV'T.: 224 N. Wilkinson St.. Dayton, O., BAldwin
6-2366 • 1725 "K" St., N.W., Washington, D.C., FEderal 7-8500.

Technological Leadershio in Silicon Rectifiers

[^0]: *Registered Trade Mark of DuPont Co

 Manufacturers of el-Mance Capaciters
 WILLIMANTIC CONNECTICUT

 - molded mica - mica trimmer - dipped mica silvered mica films
 - tubular paper mylar-paper dipped o ceramic feed-thrus a ceramic discs Arco Electronics, Inc., Community Drive, Great Neck, L.I., Now York Exclusive Supplier To Jobbers and Distributors in the U.S. and Canoda

 WEST COAST MANUFACTURERS CONTACTR
 COLLNS ELECTRONIC SALES, INC., S35 MJDDLEFELO WOAD. PALO ALTO, CALIFOANA

[^1]: In Canada: Strippit Tool \& Machine Company, Brampton, Ont.; In Continental Europe: Raskin, S. A. Lausanne, Suitzerland; In the British Isles: E. H. Jones (Machine Tools) Lid., Hove, Sussex, England.

[^2]: CANNON ELECTRIC COMPANY, 3208 Humboldt Street, Los Angeles 31, Calif.

[^3]: EXPORT SALES: MICROWAVE INTERNATIONAL CORP., 36 W. 44 TH ST., N.Y.C., N.Y., U.S.A. CABLE: MICROKEN

[^4]: H.CROSS CO

 3229 BERGENUNE AVE., UNION CITY, NEW JERSEY
 Tele: Union City, N. J.: UN. 3-1134
 N. Y. C., N. Y.: BR 9.4425

[^5]: Transistor Circuit Analysis and Design. By Franklin C. Fitchen, D. Van Nostrand Company Inc.,

[^6]: CHECK WITH BALLANTINE FIRST FOR LABDRATORY AC VACUUM TUBE VDLTMETERS, REGARDLESS OF YOUR REQUIREMENTS FOR AMPLITUDE, FREQUENCY, OR WAVEFORM. WE HAVE A LARGE LINE, WITH ADOITIONS EACH YEAR. ALSD AC/DC AND DC/AC INVERTERS, CALIBRATORS, CALIBRATED WIDE BAND AF AMPLIFIER, DIRECT.READING CAPACITANCE METER, OTHER ACCESSORIES. ASK ABDUT DUR LABDRATORY VDLTAGE STANDARDS TD 1.000 Mc .

[^7]: *Eastern Air Devices, Inc...... 18
 \& Edgerton, Germeshausen \& Grier, Inc. 146
 *Eitel-McCullough, Inc.............. 38

[^8]: * See Advertisement in the July 20, 1960 issue of Electronics Buyers' Guide for complete line of products or services.

