electronics

Designing circuits using THERMOELECTRIC COOLERS See p 54

SIMULATING NERVES

 with four-layer diodes, $p 51$

All units individually checked and adjusted, in transistor circuit illustrated, to parameters in table.
to parameters in table.

DEFINITIONS
Amplitude: Intersection of leading pulse edge with smooth curve approximating lop of pulse. Pulse width: Microseconds between 50% amplitude points on leading and trailing pulse edges. Rise Time: Microseconds required to increase from 10% to 90% amplitude.
Overshoot: Percentage by which first excursion of puise exceeds 100% amplitude. Droop: Percentage reduction from 100% am. plitude a specified time after 100% amplitude point.
Backswing: Negative swing after trailing edge as percentage of 100% amplitude.

- MIL type TP6RX4410CZ - METAL CASED
- Manufactured \& Guaranteed to MIL-T-21038
- 5/16" Dia. x $3 / 16^{\prime \prime}$ Ht.; Wt. $1 / 20$ oz.
- Ratio 4:4:1
- Anchored leads, withstands 10 lb . pull test
- Printed circuit use, plastic insulated leads
- Can be suspended by leads or clip mounted

	APPROX. DCR, OHMS			BLOCKING OSCILLATOR PULSE					COUPLING CIRCUIT CHARACTERISTICS						
Type No.	$\begin{aligned} & 1-B r n \\ & 2-R d \end{aligned}$	$\begin{aligned} & 3-0 \mathrm{rg} \\ & 4 \cdot \mathrm{Yel} \end{aligned}$	$\begin{aligned} & \text { 5-Grn } \\ & \text { 6-Blu } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \mu \text { Sec. } \end{aligned}$	Rise Time	\% Over Shoot	Droop \%	\% Back Swing	P Width $\mu \mathrm{Sec} \text {. }$	Volt Out	Rise Time	\% Over Shoot	$\begin{aligned} & \text { Droop } \\ & \% \end{aligned}$	Back Swing	$\begin{gathered} \text { Imp. } \\ \text { in, out, } \end{gathered}$
PIP-1	. 18	. 20	. 07	. 05	. 02	0	0	37	. 05	9	. 018	0	0	12	50
PIP-2	. 47	. 56	. 17	. 1	. 025	0	0	25	. 1	8	. 02	0	0	5	50
PIP-3	1.01	1.25	. 37	. 2	. 030	2	0	15	. 2	7	. 035	0	0	5	100
PIP-4	1.5	1.85	. 54	. 5	. 05	0	0	15	. 5	7	. 06	0	0	0	100
PIP-5	2.45	3.1	. 9	1	. 08	0	0	14	1	6.8	. 15	0	0	5	100
PIP-6	3.0	3.7	1.1	2	. 10	0	0	15	2	6.6	. 18	0	2	10	100
PIP-7	4.9	6.05	1.8	3	. 20	0	0	14	3	6.8	. 20	0	2	10	100
PIP. 8	8.0	9.7	2.9	5	. 30	0	0	3	5	7.9	. 22	0	13	25	200
PIP-9	13.1	15.9	4.7	10	. 35	0	5	12	10	6.5	. 4	0	15	20	200
PIP-100	Transistor pulse transformer kit, consisting of PIP-1 thru PIP-9 in plastic case.														

AND CUSTOM BUILT UNITS TO YOUR SPECS.
Write for catalog for full details on these and 1000 other stock items

UNITED TRANSFORMER CORP.

150 Varick street, new york 13, N. Y.
PACIFIC MFG. DIVISION: 4008 W. JEFFERSON BLVD., LOS ANGELES 16, CALIF. EXPORT DIVISION: 13 EAST 40th STREET, NEW YORK 16, N. Y.

Cables: "ARLAB"

W. W. MacDONALD, Editor
d. M. CARROLL, Managing Editor SENIOR EDITORS: Samuel Weber, George W. Sideris. ASSOCIATE EDITORS: Michael F. Tomaino, Sylvester P. Carter, William P. O'Brien, John F. Mason, William E, Bushor, Thomas Emma, Sy Vogel, Leslie Solomon, M. M. Perugini, George J. Flynn, Michael F. Wolff, Laurence D. Shergalis,
ASSISTANT EDITORS: Nilo Lindgren, Stanley Froud, Stephen B. Gray, Roy J. Bruun, George V. Novoiny, Leon H. Dulberger.
REGIONAL EDITORS: Harold C. Hood (Pacific Coast, Los Angeles), Thomas Maguire (New England, Boston), Clefus M. Wiley (Midwest, Chicago). ART DIRECTOR: Harry Phillips; Howard R. Berry. PRODUCTION EDITOR: John C. Wright, Jr. EDITORIAL ASSISTANTS: Gloria J. Meurer, Bernice Duffy, Lorraine Rossi, Virginia T. Bastian, Lynn Emery, Florence Hajaistron, Laura W. Smith, Bette H. Snyder, Rasemary Abbruzzese, Judy Haskins.

JAMES GIRDWOOD, Publisher

Tubes are tested at 1,800 per hour, fast enough to alert production supervisors at Raytheon to trouble. See p 82

COVER
ION AND PLASMA ENGINES Readied for Space Tests. Operating principles of two new flyable models

Stereo Color Television May Guide Moon Robot. Rocket Society conventioneers get preview of electronic eyes for moon rovers

Telephone Satellite Will Take Awhile. So say speakers at international space communications symposium in Paris

Engineers See New Instruments. Report on private roadshow
Data Reduction System Goes Up in Blimp. Navy equips airship as flying wind tunnel to test scale models of aircraft

SIMULATING NERVE NETWORKS With Four-Layer Diodes.
The neuristor: an electronic neuron.
A. J. Cote, Jr.

THERMOELECTRIC ELEMENTS Provide Circuit Cooling. Below-ambient chamber stabilizes circuits. M. Nagata and Z. Abe 54

How Ultrasonics Measures Flow Velocity of Rivers. Technique cancels temperature and foreign-matter effects. H. F. Messias

Transistors Drive Half-Megacycle Cold-Cathode Scaler. Pulse of 100 volts drives counting tubes at 500,000 pulses per second. M. Birk, H. Brafman and J. Sokolowski

FAST PULSE RESPONSE DESIGNED Into Video Amplifiers. Amplifier with $12-\mathrm{db}$ gain uses 1-Gc transistors, has 2-nsec risetime. P. J. Beneteau and J. A. MacIntosh

Generating Tangential Sweep Waveforms for Infrared Mapping. Used in cathode-ray-tube display. J. L. Woika

REFERENCE SHEET: Irradiation Susceptibility. Determining possibility of interference. F. Kugler and A. R. Kall

Crosstalk	4
Comment	7
Electronics Newsletter	9
Washington Outlook	14
Financial	20
Meetings Ahead	38
Research and Development	74

Crosstalk
Electronics Newsletter 9Financial20
74
Components and Materials 78
Production Techniques 82
New on the Market 86
Literature of the Week 96
People and Plants 98
Index to Advertisers 109

New Copper-Clad Reliability

In March, 1961, CDF Grade 614, glass-epoxy laminate, was announced . . . and met with almost overnight acceptance. Particular electronics and electrical manufacturers wasted no time in specifying this premium performance material with zero burnout and minimum "haloing."

By June, 1961, CDF Grade 614 had become the new standard of comparison for applications in critical ground and air-borne circuitry. Designers like its specifications, production men like the way it handles, management likes its reasonable price.

Now, CDF Grade 614 Copper-Clad is setting a new pace among particular producers of printed circuits . . . offering a new high in reliability for high packaging densities . . . and offering researchers a new tool in the investigation of molecular and submicro-circuitry.

You can take advantage of 614 Copper-Clad's unique features right now . . . in research, development or production operations. Continental-Diamond Fibre Corporation, Newark, Delaware. A Subsidiary of the Burió Company.

As succeeding generations of missiles penetrate the curtain of space that separates Earth from other planets, the importance of electronic guidance, control and airborne telemetry systems becomes obvious. For, without new engineering design techniques to provide reliable communication and control, the most advanced missile is but a bird in a gilded and very expensive cage.

As typical examples of what can be accomplished to insure maximum performance in missile telemetering, communication, data processing and other applications, Burnell \& Co. has developed two new filters-a miniature 3 kc crystal filter and, employing modern synthesis techniques, a miniature 500 kc LC toroidal filter possessing low transient distortion characteristics.
copyriaht bubneal \& co., inc. 1961

TECHNICAL DATA 3 kc Crystal Filter
Attenuation- 3 db B/W-2 cps Shape Factor-30/3-5:1 Impedance- 500 K in and out Temp. Coeff.-. $021 \mathrm{cps}{ }^{\circ} \mathrm{C}$ Size- $3^{1 / 2} \times 2^{5 / 46} \times 1^{1 / 1 / 4}$
Insertion Loss- $31 / 2 \mathrm{db}$
Also available in any impedance from 500 ohms to 500 K

TECHNICAL DATA 500 kc LC Toroidal Filter
Attenuation-B/W 40 kc at 3 db -200 kc at 50 db
Impedance- 50 ohms in and out Insertion Loss- 4.5 db
Over and undershoot-
(for a step modulated
500 kc carrier) -less than 1%
Size- $7 / 8 \times 3 \times 11 / 2$
Other Burnell filters are available in frequencies up to 30 mcs ovel a wide range of impedances.

Write for new catalog.

Published weekly, with Electronics Buyers' Guide and Reference issue, as part of the subscription, by MrGraw-Hill Publishing Company, Inc. Founder: James H. McGraw (1860-1948).

Title (®) registered U.S. Patent Office; Copyrighted (1) 1961, McGraw-Hill Publishing Company, Inc. All rights reserved, including the right to reproduce the contents of this publication. in whole or in part.

Executive, editorial, circulation and advertising offices McGraw-Hill Building, 330 West 42 nd Street. New York 36, N. Y. Telephone Longacre 4.3000. Teletype TWX N.Y. 1-1636. Cable McGrowhill, N. Y. PRINTED IN ALBANY, N. Y.; second class postage paid.

OFFICERS OF THE PUBLICATIONS DIVISION: Nelson L. Bond, President; Shetton Fisher, Wallace F. Traendly, Senior Vice Presidents; John R. Callaham, Vice President and Editorial Director; Joseph H. Allon, Vice President and Director of Advertising Sales; A. R. Venezian, Vice President and CircuIation Coordinator; Daniel F. Crowley, Vice President and Controller.

OFFICERS OF THE CORPORATION: Donald C. MrGraw, President; Hugh J. Kelly, Harry L. Waddell, Executive Vice Presidents; L. Keith Goodrich, Executive Vice President and Treasurer; John J. Cooke, Vice President and Secretary.

Subscriptions are solicited only from those actively engaged in the field of the publication. Position and company connection must be indicated on orders. Subscription rates: United States and Possessions, \$6.00 one year; $\$ 9.00$ two years; $\$ 12.00$ three years. Canada, $\$ 10.00$ one year. All other countries $\$ 20.00$ one year. Single Copies, United States and Possessions and Canada 75; ; Buyers' Guide $\$ 3.00$; Single copies all other countries $\$ 1.50$; Buyers' Guide $\$ 10.00$.
the publisher, upon written reQUEST FROM ANY SUBSCRIBER TO OUR NEW YORK OFFICE, AGREES TO REFUND THAT PART OF THE SUBSCRIPTION PRICE APPLYING TO COPIES NOT YET MAILED.

Subscribers: Please address all correspondence, change of address notices, subscription orders or complaints to Fulfillment Manager, Electronics, at above address. Change of address notices should provide old as well as new address, including postal zone number if any. If possible, atfach address label from recent issue. Allow one month for change to become effective.

Postmaster: Please send form 3579 to Fulfiliment Manager, Electronics, 330 West 42nd Street, New York 36, New York.

Audited Paid Circulation

Antimissile Kill Systems

PROTECTION of American cities from nuclear tipped ICBMs calls for more than antimissile-missiles.

Thinking now has advanced beyond the amorphous concept of a force field, the popular science fiction gambit. For example, the idea of a lasergenerated infrared beam providing the core of an antimissile kill system is now being espoused by reputable scientists.

The laser, noted for its ability to produce coherent light of narrow spectral width, low divergence and high in-

Lasers such as this Minneapolis. Honeywell unit are being developed in laboratories across the nation tensity, can perhaps be adapted to this new need. Experiments have demonstrated that lasers with simple lenses can burn holes in steel.

Laser beams have produced temperatures of 8,000 degrees centigrade in fractions of a millisecond when focused in a carbon plate. High power lasers had been operated with cooling systems that allow pulse firing rates of several per second.
One can conceive of orbiting satellite systems equipped with laser kill equipments and controlled by acquisition radar, course tracking microwave radar, and fine tracking and focusing optical radar.

Alternately, a laser system might be mounted inside an antimissile missile, and launched when needed. Or, since most of the attenuation in the atmosphere is produced in the first several miles above earth, a high power laser located on a mountain top might deliver enough power to destroy attacking missiles.

Actual destruction of missiles could perhaps be accomplished by punching holes in their skins, and allowing resulting vibration to shake the vehicles apart.

Coming In Our October 20 Issue

OPTICS. Time was when optical science concerned itself chiefly with phenomena observed when visible light interacted with matter. This classical definition has long been discarded. Optics has been freed from the artificial boundaries of visible light. It now encompasses the entire electromagnetic spectrum. Among branches of electronics that are
dependent in no small measure on electron optics are such fastdeveloping fields as masers and lasers, microwave, fiber optics, infrared, plasma physics, ion and plasma engines-and a host of others. In our next issue, R. M. Benrey, of MIT, discusses optical techniques that are of fundamental interest to electronics engineers.

New from Sprague!

Sprague Surface Precision Alloy Transistors are especially designed for low-level chopper applications. Their specifications have been tailored to meet your actual circuit requirements. Compare these standard Sprague units with ordinary alloy devices for the following haracteristics:

\author{

- Low Offsef Voltage
 - Low Output Capacitance
 - Low $\mathrm{I}_{\text {cво }}$
 - High Frequency Response
 - Matched Pairs Available
}

TYPE	$\underset{\text { (Volts) }}{\mathrm{Min}^{\mathrm{BV}} \mathrm{CBO}^{2}}$	Max. Ісво ($\mu \mathrm{a}$)	Max. $V_{\text {EC }}$ (mv)	Min. $\mathrm{hfe}_{\text {e }}$	Max. Cob (pf)	Min. f_{T} (mc)
2N2162	30	. 01	2	20 at 1 kc	10	14
2N2163	15	. 01	2	20 at 1 kc	10	14
2N2164	12	. 02	1.5	25 at 1 kc	10	24
2N2165	30	. 02	3	2.5 at 4 mc	10	10
2N2166	15	. 02	3	2.5 at 4 mc	10	10
2N2167	12	. 02	2.5	4 at 4 mc	10	16

For application engineering assistance without obligation, urite Transistor Division, Product Marketing Section, Sprague Electric Co., Concord, N. H.

For complete technical data, write Technical Literature Section, Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

SPRAGUE COMPONENTS
TRANSISTORS
CAPACITORS
MAGNETIC COMPONENTS
RESISTORS

INTERFERENCE FILTERS PULSE TRANSFORMERS piezoelectric ceramics PULSE-FORMING NETWORKS
high temperature magnet wire CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES FUNCTIONAL DIGITAL CIRCUITS
the mark of reliability

... PARTICULARLY THE DECISION-MAKERS IN THE ELECTRONIC INDUSTRY. In no other industry are processing problems more complex, quality standards more demanding. Production chemicals must meet your specifications, must be shipped on timc.

SAME DAY SHIPMENT OF HIGHEST PURITY ELECTRONIC CHEMICALS. The J. T. Baker electronic chemicals offer you the highest standards of purity and most precise labeling in the industry. J. T. Baker ships more than 90% of all orders the same day they're received. We keep our inventories high so you can keep yours low.

ACTUAL LOT ANALYSIS ON LABEL. Every 'Baker Analyzed' Reagent is labeled with an Actual Lot Analysis that defines purity to the decimal, more than 300 also with an Actual Lot Assay.

Highest purity... most precise labeling...same-day shipment. Surely three good reasons to discuss your requirements with J. T. Baker Co., Phillipsburg, N. J. See list of electronic chemicals on opposite page.

J. T. Baker
 ELECTRONIC CHEMICALS

Acetic Acid, Glacial Acetone
Aluminum Nitrate Aluminum Sulfate Ammonium Carbonate Ammonium Chloride Ammonium Hydroxide Ammonium Phosphate Antimony Trioxide Barium Acetate Barium Carbonate Barium Fluoride Barium Nitrate Benzene Boric Acid
Cadmium Chloride Cadmium Nitrate Cadmium Sulfate Calcium Carbonate Calcium Chloride Calcium Fluoride Calcium Nitrate Calcium Phosphate Carbon Tetrachloride Cobalt Carbonate Cobalt Oxide Cobalt Nitrate Ether, Anhydrous Hydrochloric Acid Hydrofluoric Acid Hydrogen Peroxide, 30% and 3% Solution Lithium Carbonate Lithium Chloride Lithium Nitrate Lithium Sulfate

Magnesium Carbonate Magnesium Chloride Magnesium Oxide Manganese Dioxide Manganese Nitrate Manganese Sesquioxide Manganous Carbonate Methanol
Nickel Carbonate Nickel Oxide, Black Nickel Oxide, Green Nickelous Chloride Nickelous Nitrate Nickelous Sulfate Nitric Acid
Petroleum Ether Potassium Dichromate Potassium Hydroxide iso-Propyl Alcohol Radio Mixture No. 3 Silicic Acid Sodium Carbonate Sodium Chloride Sodium Hydroxide Sodium Phosphate Dibasic Strontium Carbonate Strontium Nitrate Sulfuric Acid
Tolvene
Trichloroethylene Triple Carbonate Xylene
Zinc Chloride
Zinc Nitrate
Zinc Oxide

IMPORTANT GUIDE TO J. T. BAKER ELECTRONIC CHEMICALS for semiconductors, vacuum fubes, ferrites, thermistors, etc. Also includes specification sheets that define high standards precisely. Write Baker for your free copy.

J. T. Baker Chemical Co.
Phillipsburg. New Jersey

COMMENT

Patent Royalties and Fees

Two items relative to patent legislation in the August 25 issue bear further comment.

First, Mr. I. Zakarias' suggestion relative to legislation (Comment, p 6), which would empower the Commissioner of Patents to collect royalties from all user companies for the inventor, provides an answer for a long-existing problem, buttressed by Mr. Zakarias' further suggestion that this program should be fully independent of evaluation by private industry.

That the costs of such programs should not be burdensome to private industry, is well illustrated by my experience as an independent inventor. For some 150 patents in radio and electro-musical electronics, my average royalty, based on the manufacturer's selling price to the trade, exclusive of cabinetry, was less than one-half per cent.

Second, in regard to Patent Office Proposes Higher Fees, Time Payment, (Electronics Newsletter, p 11): While these and prior proposals "for shortening processing time" in the Patent Office might relieve the ever-mounting work load on the examing staff, it would surely make good the death knell of the independent inventor, so long proclaimed by those who seek to corral all inventive talent in their own laboratories, on an assign-everything contract basis. Since about one-half of our patent output now originates outside of these laboratories, and since our really important inventions still, as in the past, originate in these outsiders, such proposals could only decimate. them. Rarely men of ample means, they could never afford the mounting fees which the Commissioner proposes, to keep their patents alive. Like ripe apples these would fall, royalty-free, into the laps of waiting industries.

Benjamin F. Miessner Miessner Inventions, Inc. Miami Shores, Fla.

Rectification Efficiency

The article Replacing Sine Wave Sources With Solid-State Inverters (June 30, p 80), is in error regarding the efficiency of rectification of
a sine wave source.
The theoretical maximum rectification efficiency, that is, the ratio of d-c power out to total power in, is 100 percent for a full-wave sinusoidal single-phase rectifier, not 81.2 percent as quoted. But otherwise, no power is wasted in rectifying a sine wave with a perfect rectifier. Efficiencies close to 100 percent can be achieved in practice.
S. Pinnell

Pylon Electronic

Development Company
Montreal, Quebec

Medical Electronics

The author of your series on medical electronics ought to receive an M.D. Or maybe an M.E.D.

Sorry to find a fault, but there's a mistake in the second paragraph of Part V (July 21, p 63), about our developing, 30 years ago, devices that apply vibrations to the skin to permit the deaf to hear by their sense of touch. Would that we had developed vibration devices thirty years ago, but the referenced paper was authored by Robert H . Gault, Professor of Psychology, Northwestern University, (then) on leave with the National Research Council. None of our staff scientists had to do with the development. Your 1957 Franklin Institute entry on page 65 , concerning the tonal braille system, is correct and represents our first and to date only activity in the tactile prosthesis field.
E. H. Nelson

The Franklin Institute Philadelphia

Formed CRT Gun

We were pleased to see the section on General Dynamics Electronics new formed crt gun in Technical Preview of 1961 WESCON (August 11, p 141). We are the manufacturers of that gun, made of molded Mykroy, glass-bonded mica, with inserts and copper metallizing.

This application is an example of stability despite environment, including permanently precise dimensions, with metal-clad Mkyroy insulators. In addition, we perform no assembly operation on the gun halves; the inserts are molded in.
F. M. Grafton

Electronic Mechanics Inc.
Clifton, New Jersey

Shallcross

Some of the toughest performance specs we've seen in 12 years of delay line engineering are crammed into the $1 / 2^{\prime \prime} \times 2^{\prime \prime} \times 6^{\prime \prime}$ case of this lumped constant line. Used by a data processing equipment manufacturer, the unit requires uncommon care in component selection and in circuit layout to achieve the desired 50 to 1 delay-to-rise-time ratio in the space allowed.

Special cores and toroidal winding techniques promote maximum Q , and, when coupled with custom miniature capacitors, desired LC characteristics are obtained within the specified space. An ingenious termination further reduces distortion at tapped outputs and appreciably enhances the pulse time characteristic.

Even if your delay line requirements are not so critical, this same Shallcross ingenuity may pay big dividends in reducing size, cost, or circuit complexity for you. Why not outline your needs to us?

DELAY LINES

VARIABLE DELAY

Continuously adjustable delays from 0 to 0.5μ sec with 0.005μ sec resolution are attainable in this typical Shallcross unit. Maximum rise time is 0.06 $\mu \mathrm{sec}$ at maximum delay.

DISTRIBUTED CONSTANT

LUMPED CONSTANT
Shalleross' family of distributed constant and lumped constant lines utilize the latest refinements in inductors, capacitors, winding, trimming and packaging techniques.

STEPPING ACCURATELY

Typical of longer Shallcross delay lines, this variable lumped constant unit provides a total delay of 24.65 $\mu \mathrm{sec}$ in 15 steps calibrated to $0.05 \mu \mathrm{sec}$ accuracy. Delay-to-rise-time is $100: 1$ -and in a hermetically-sealed package measuring only $2^{\prime \prime} \times 4^{\prime \prime} \times 71 / 4^{\prime \prime}$.

Of course variations can be made for your requirements - in impedance, taps, rise time, attenuation and so forth. These are regular occurrences with the many hundred designs produced by Shallcross delay line specialists.

Blast Spotters: Seismic, Pressure, Radar

Rapidity with which the Atomic Energy Commission has been issuing its almost daily reports on USSR A-bomb tests indicate the extensiveness of the network of monitoring stations around the iron curtain.

AEC, Department of Defense and Weather Bureau are main participants in the monitoring program. None of these agencies will comment on methods or organization used in gathering Soviet test data. But here is how it is probably done:

A world-wide system of seismic stations detects shock waves. Directions recorded by a few stations locate the explosion by trianculation.

The explosion creates low-frequency radio waves and tremendous pressure variances. The magnitude of the pressure drop or the frequency of the electromagnetic radiation is used in calculating the size of the blast.

IIigh-flying planes may also be used to scoop up radioactive samples after an explosion, and collect additional data.

R\&D Information Retrieval Too Scanty, Says Senate

SENATE REPORT issued last week said costly and avoidable duplication in electronic research for defense has slowed the space science program. It blamed poor government facilities for exchange of information among electronic researchers.

A statement signed by Sen. Hubert Humphrey (D-MIinn.), chairman of a special government operations subcommittee, said "the waste may add up to $\$ 200$ million out of $\$ 2$ billion currently expended for this type of work each year".

The report said space science has been slowed by absence of a reliable, comprehensive system for centrally indexed, broadly and promptly disseminated data on current and completed R\&D contracts and subcontracts".

3.060-Mile Microwave Net To Span Mid-East

TURKEY, IRAN AND PAKISTAN will be linked in 30 months by 92 microwave relay stations between the capitals of the three nations. The 3,060 -mile route crosses some of the wildest terrain in the world.

The route lies along a major
earthquake fault in East Turkey, tremor areas in Iran and near a local earthquake fault in Pakistan. It passes through areas of migrating sand in Iran and Pakistan and through unstable bottom land in the Indus River basin. Some relay sites will be snowbound in winter, at altitudes of 10,000 feet. Others will be located in deserts.

A $\$ 16.4$ million contract for the network has been awarded RCA by the International Cooperation Administration. The system will be called the Cento (Central Treaty Organization) Telecommunications Network and is part of the U. S. Mutual Security program.

Microwave Techniques May Extend Ultrasonic Range

MICROWAVE ULTRASONICS, neutron radiography and color x-radiography were discussed during the Second Symposium on Physics and Nondestructive Testing last week at Argonne National Laboratory, near Chicago.

Methods of extending ultrasonic frequencies into microwave regions were illustrated by Hans E. Bommel, of UCLA. Application is highfrequency sound wave detection of crystal defects. Deforming impurities become comparable in size to a wavelength. Bommel discussed
using reentrant microwave cavities to help raise frequency above 10 Gc .

He also described the interaction of acoustic wavelengths in solids with the paramagnetic spin system of thin film transducers. Deposition by evaporation of thin film transducers eliminates coupling problems, he pointed out. But a disadrantage of use of such transducers at microwave frequencies is that a magnetic field of around 7,000 gauss is needed.

New Probe Makes Heart Surgery Less Dangerous

heart surgery sometimes ends in death for the patient because the surgeon inadvertently damages the nerve which controls the heartbeat.

At the annual meeting of the American College of Surgeons last week in Chicago, Dr. William Bernhard, of Children's Hospital and Harvard, described a probe which he developed with Albert Grass, president of Grass Instruments. Pencil-sized, the probe lightly contacts the heart's interior. Dial settings and audio signals locate the nerve and its major branches.

Three Boston physicians reported that external electric shocks will restore to normal speed dangerously rapid heartbeats. Shocks of 250 and 350 volts, brought down one patient's heartbeat from 190 and 200 beats a minute on two occasions.

Experiments at Augusta, Ga., Medical College, showed electrical anesthesia permits pain-free surgery. It worked with all but three of 60 experimental dogs. Some dogs remained awake, but were insensitive to pain. Current is applied through electrodes.

Inertial System Guides Jet-Powered Flying Spy

SD-5, AN UNMANNED, jet-powered drone made its first flight last week with an inertial guidance system. It flew from the Army's test station at Yuma, Ariz., to Fort Huachuca, the southern border of the electronic proving ground near the Mexican border. Landing, with
parachutes, was made on command from the ground.

In the test flight, the drone automatically took photographs every 30 seconds. When fully developed, it will transmit data gathered by radar, infrared and classified means, as well as cameras. In combat, it would land at a preselected site.

Drones normally employ radio guidance. Inertial guidance frees SD-5 from ground control and prevents enemy countermeasures from putting it off-course.

The AN/USD-5 system is being developed by Fairchild Stratos Corp. with guidance and sensory systems under direction of Fairchild Electronic Systems division. Minneapolis-Honeywell is furnishing the inertial system. Army Signal R\&D Laboratory has overall technical direction.

Terrier, Tartar, Mauler Contracts Are Awarded

general dynamics / pomona has been awarded two missile contracts. Navy is paying $\$ 25$ million for additional production of Terrier and Tartar antiaircraft guided missiles. An Army contract of $\$ 13$ million provides for continued development of the Mauler weapons system. Mauler is a mobile battlefield weapon for defense against aircraft and short-range missiles. General Dynamics, in turn, stepped up orders for Terrier and Tartar components. Belock Instrument got a subcontract for more than $\$ 800,000$ last week.

Probe Magnetic Effects On Cells and Psychoses

BIOLOGICAL EFFECTS of magnetic fields, a fairly new area of research called biomagnetics, will be discussed at the Air Force-sponsored International Conference on High Magnetic Fields, at MIT Nov. 1-4. One session will cover cellular and subcellular responses to magnetic fields and another sesssion, effects on organisms. Data will be submitted on exposure of terminal cancer patients to increased magnetic fields.

Also on the agenda is a study of the relation between natural magnetic field intensity and incidence of psychotic disturbances in humans. This study correlates changes in the geomagnetic environment, such as magnetic disturbances resulting from solar flares, with the number of psychiatric admissions to a veterans hospital.

NASA Changes Booster For 1962 Venus Flight

atlas-agena b rocket, instead of Centaur, will be used by NASA to launch its Mariner space probe on a flight to Venus in mid-1962. NASA said the switch is being made because a greater number of AtlasAgena B's will have been fired. The flight will test basic equipment for later interplanetary flights. Instruments to measure magnetic fields in space, solar and extra-solar radiation, micrometeoroids and Venus' surface temperature will be carried in the $400-\mathrm{lb}$ probe.

\$65 Million in F-M Sets Ordered by Signal Corps

army signal Supply Agency has awarded Avco Corporation's electronics and ordnance division a $\$ 65.8$ million contract for AN/VRC12 radio communications unit. The new contract follows $\$ 35$ million in earlier orders. The unit is a lightweight, medium-powered f-m transceiver with 920 channels. It is designed to operate in vehicles and can communicate with other tactical f-m sets, including man-pack, airborne and ground radios.

Non-Conducting Coating Is High-Temperature Shield

SILICON NITRIDE, applied as a thin, adherent, nonporous film to electronic equipment and metals, protects metal surfaces at temperatures above 600 C . It retains its nonconducting properties to 600 C . Findings were reported by C. E. Geesner and C. R. Barnes at the Air Force Symposium on Science and Engineering in San Francisco last week.

In Brief . . .

animal nutritionists in Canada let a computer figure out the best diet for pigs. New rations cost $\$ 75$ a ton instead of $\$ 99$ and are 10 percent more efficient.
avien, inc., has a $\$ 58,000$ Air Force contract to study use of array type antennas for missile tracking and telementry to 30 Gc . Company's basic design is series of discs on an axial rod.
machlett labs has agreed verbally to buy CBS Electronics' 160,000-sq-ft plant in Danvers, Mass., for tube production

MINNEAPOLIS - HONEYWELL'S new high-density magnetic tape systems for computers can pack 1,112 decimal digits per inch on tape and handle data at rate of 133,000 digits per second, company says.
collins radio has four more Navy contracts, totaling $\$ 2$ million, mostly for airborne radio transceivers.

Boeing is buying $\$ 600,000$ in Pacific Semiconductor diodes for Minuteman ground equipment.

GULTON industries has delivered 148 sonar telephone systems to Navy as part of a $\$ 400,000$ order.

MICROWAVE relay links for Sweden's air defense net will be supplied by Raytheon. Part of production will be done by Selenia, Raytheon's Italian affiliate.

IFF RADAR equipment designed by Wilcox Electric Co. will be used in France's Mirage IIIC fighters. Le Materiel Telephonique, ITT's subsidiary in France, will produce equipment under license.

ARGONNE National Laboratory next year will build a $\$ 6.9$ million center for research in high energy physics.

USSR PLANS to install closed circuit tv instrument monitors in every major power station in and around Moscow, by 1965.
soviet scientists claim they have compiled a "map" of radiation zones in outer space, as preliminary to manned cosmic flight.

ee Add this to the list of other things you didn't know about Borg-Warner

 Controls 99
FACT FILE

BORG-WARNER CONTROLS TRANSDUCERS \& ACGELEROMETERS

...PROVEN RELIABILIty

underseas, underground and outer space!

Borg-Warner Controls' complete line of pressure transducers and accelerometers includes both variable reluctance and vibrat-ing-wire types. For magnetic tape recording, FM/FM telemetering links, jet engine testing, underwater measurement, underground nuclear test monitoring, yaw control, rocket engine pressure measurement and a variety of other military, commercial and

CENTAUR space vehicle

relies on accelerometers by Borg-Warner Controls for critical measurements!
Instruments designed and built by BorgWarner Controls are used for measurement and control of flight parameters on some of the most advanced missile and space programs. An accelerometer for the new Centaur Space Booster is shown being installed at Convair (Astronautics) Division of General - Dynamics Corporation.

For Engineering Aid... or Data Sheets-Contact:

BORG-WARNER CONTROLS
 division of borg. warner corporation

P. O. Box 1679

Santa Ana, California
Phone KImberly 5-5581 Teletype S Ana 5291

AUTOMATION...in RFI MEASUREMENT

Autoscan with the

STODDART NM-62A

(AN/URM-138)
The Stoddart NM-62A with AUTOSCAN cuts your measurement time. The operator can analyze and correlate data while the NM-62A automatically scans frequency range of 1 to 10 gc. Additional information, such as the amplitude, visual and aural characteristics of the signal can also be simultaneously recorded.
The NM-62A is the ONLY RFI Measuring Equipment operating within the 1 to 10 gc range, designed under contract to the Bureau of Ships, to meet the approval and requirements of ALL government services and industry.
For completely Automatic Spectrum Signatures, the NM-62A incorporates:

- X.Y OUTPUT - for accurate recording of amplitude vs frequency of incoming signals
- AUTOSCAN (Automatic Frequency Scanning) over the entire range 1 to 10 gc with variable speed forward/reverse motor drive system
- AUTOMATIC BANDSWITCHING - 1 knob changes output, input and voltage connections with NO TUNING HEADS to change
OPERATING SPECYFICATIONS INCLUDE:

Sensitivity:
Bandwidths:
VSWR:
Oscillator Radiation:
Case Shielding:
Outputs:

2 to 4 microvolts with 500 kc bandwidth; 6 to 12 microvolts with 5 mc bandwidth
$500 \mathrm{kc} ; 5 \mathrm{mc}$
1.5 to 1 with 50 ohms input impedance

18 micromicrowatts
90 db
Remote Meter, Headphones, Video, 60 mc IF, Recorder, FM and, of course $\quad X-Y$ Output

FOR SALE NOW
Send for complete information

That's a strong statement to make. Yet if you've used an old-fashioned voltmeter, you may have been disappointed . . . the mechanical stepping switches . . . the marginal reliability . . . the great amount of time required between successive readings . . . the inconvenient operating techniques.
Let's take a look at the new Franklin Model 550. First off, here's a fast-reading digital voltmeter that's 100\% electronic... and a voltmeter that's as easy to use as any moving-pointer voltmeter. More important, the Model 550 is one of the most stable and reliable instruments you'll ever use. That's because the Model 550 utilizes techniques and materials never before available to the digital voltmeter manufacturer.

For example, it utilizes the new Burroughs Corp. ©Beam-X Switching Tubes plus the new Burroughs Corp. Long-Life ${ }^{\circledR}$ Nixie Indicators. This means one-quarter the number of parts of previous counters and a service life that is well over 50,000 hours. But there's more.

The use of up-to-date components in an advanced circuit design means freedom from instability owing to normal changes in circuit parameters. It means an order of

You can't know what a digital voltmeter is ... unless you've used a FRANKLIN MODEL 550

reliability and ruggedness never before possible.

Finally, there's no denying it, you can buy a less expensive digital voltmeter than the Franklin Model 550. On the other hand, if you need a substantial digital voltmeter . . . a digital voltmeter that must stand up under day-in and day-out abuse . . . then you'll do well to consider the superior performance of a Franklin Model 550.

Bulletin 311 contains a complete description, illustrations of the individual plug-in components, comparative data, specifications, and other useful data. Ask for it.

Franklin Model 550 Digital Voltmeter; $\pm .0001$ to $\pm 1200 \mathrm{~V} \mathrm{dc} ; \pm 1$ count accuracy: effectively infinite input impedance; automatic polarity indication; all-electronic, modular, plug-in construction.

[^0]

Wide-band sweep generator $\$ 1260.00$
Center frequency: VHF, 0.5 to 400 mc ; UHF, 275 to 1000 mc . Sweep widths from 100 kc up to 400 mc . Flatness: $\pm 0.5 \mathrm{db}$ over widest sweep.

Ultra-flat sweep generator $\$ 795.00$

Featuring $\pm 5 / 100 \mathrm{db}$ flatness; plug-in oscillator heads*; variable sweep rates from $1 / \mathrm{min}$. to $60 / \mathrm{sec}$.; all electronic sweep fundamental frequencies; sweep width min. of 1% to 120% of C.F. *Heads available within the spectrum 2 to 265 mc. Narrow band heads on request.

For applications bulletin and complete cafalog lincluding wide-band comparators, precision affenvators and accessories), wrife:

Industrial Products Division, Dept.ITE-II6
The Jerrold Building, Philadelphia 32, Pa.
Jerroid Electronics (Canada) Lid., Toronto
Export Representative: Rocke International, N. Y. I6, N. Y.

WASHINGTON OUTLOOK

ION ENGINES currently under development include three funded by National Aeronautics and Space Administration. In addition to Hughes' engine (see p 28), NASA's Lewis Research Center is developing an engine using mercury as source material. Plasmadyne Corp. is working on an are jet engine. Air Force is funding development of a cesium engine at Elec-tro-Optical Systems, Inc.

Present plans call for flight testing all four engines by late 1962. RCA is building a flight vehicle to test two engines at a time. Boosted by a Scout rocket (at right, a Scout-6 in its gantry at Wallops Station), the engines will be sent on a 5,000 -mile-high, one-hour, ballistic flight that will allow the engines to operate in space environment. NASA will use the engines to alter the
 spin rate of the flight vehicle.

Batteries will power initial tests. By 1965, NASA wants to flight test ion engines with a Snap-8 30 -Kw power source under development with AEC. By 1966-67, NASA expects to send an ion engine on an actual flight mission. Boosted by an AtlasCentaur rocket, a $60-\mathrm{Kw}$ Snap-8 reactor will power an ion engine flight to Venus or Mars.

THERMOELECTRIC and thermionic systems for auxiliary space power will ultimately be used in combination rather than compete with each other, Office of Naval Research scientist Paul H. Egli told the Twelfth International Astronautical Congress in Washington, D. C., early this month. Thermoelectricity shows greatest promise with temperatures of $1,200 \mathrm{C}$ and below while the thermionic process of electron emission is more promising in the $1,000 \mathrm{C}$ to $2,000 \mathrm{C}$ temperature range.

For short space missions requiring large amounts of power (100 to $10,000 \mathrm{Kw}$), Egli said thermionic emissions should be tried immediately, that it should be perfected for long-life use within the next few years. Thermionic generators have already been operated at 10 to 15 percent overall efficiencies in laboratory experiments, with efficiencies up to 25 percent expected in the next few years. New plasmas and design configurations are expected to ease the critical material problems now holding back progress in thermionics, Egli told the international symposium.

INTERAGENCY Committee on Oceanography, taking a new look at government's 10 -year program, finds progress slow in many key areas. More feasibility studies of instrumentation are needed, for example. Cost estimates covering next 10 years are now over $\$ 50$ million for basic facilities, instead of $\$ 16.5$ million.

All 5 MIL Tantalum Foil Capacitor Sizes From [HMMITIT

meet MIL-C-3965B -all values in stock

Plain and Etched

Whether you need immediate delivery from stock on prototypes, or production quantities of tantalum foil capacitors, Ohmite can handle your requirements.
Tan-O-Mite ${ }^{*}$ Series TF foil capacitors now include all five MIL sizes in both plain and etched types, polar and nonpolar units, insulated and uninsulated cases-all in ratings to 150 VDC. Capacitance values for plain foil units range to 400 mfds ; etched foil units, 580 mfds .
Write for Specification Bulletin 152G which lists 200 stock values, including all MIL values, and shows a handy scale for conversion between "equivalent series resistance," "power factor," and "dissipation factor."

Rheostats

Power Resistors Precision Resistors Variable Transformers
Tantalum Capacitors
Tap Switches
Relays
R.F. Chokes

Germanium Diodes
Micromodules
OHMITE MANUFACTURING COMPANY
3610 Howard Street, Skokie, Illinois

The drawing shows the unique construction of the Isoformer (isolation transformer). This is the key element in new Elcor isolated power supplies... called ISOPLYS.

Significant features of the Isoformer are: (A) Tape-wound magnetic core (B) Shielded primary winding (C) Shielded secondary winding separated from core by air gap.

Results? Distributed capacitance between ground and shield of secondary winding is reduced to the order of $\mathbf{1 5}$ to $\mathbf{4 0} \mathbf{~ p f}$, depending on transformer power rating. And in spite of the air gap there is good magnetic coupling between primary and secondary winding. Efficiency is of the order of 90%. When used in D-C power supply, such as the Isoply, rectifiers are enclosed in same shield as secondary winding. With Isoplys you can now create simpler, less costly, and in many cases, better performing circuit designs in applications never before possible.

Subsidiary of Welex Electronics Corporation
Sales / R\&D Laboratory / Manufacturing
1225 W. Broad Street / Falls Church, Virginia
JEfferson 2-8850

Start your panel design with the

Reliability, Styling and Flexibility of

MICRO SWITCH lighted push-button switches

The flexibility of micro switch "Series 2" lighted push-button switches enables you to precisely tailor your control panel to your requirements. Hundreds of switch and indicator combinations can be assembled by simply snapping together the correct modular parts. Their clean, modern styling complements your panel design without dominating it. Most important, any of the 18 switch units you select has micro switch reliability. That's why these "Series 2 " switches serve on some of the most crucially important control panels in the world. Write for the colorful Catalog 67, or see the Yellow Pages for the nearby micro switch Branch Office.

MICRO SWITCH . . . FREEPORT, ILLINOIS
A division of Honeywell

In Canada: Honeywell Controls, Limited, Toronto 17, Ontario

Save 50% on space. Indicator and switching unit are combined in one device to save panel space.

It's a snap! Modular parts snap together and then snap into panel slots without tools.

Eighteen different switching units are available to match virtually all circuitry requirements.

Hundreds of switch and indicator combinations

... with MICRO SWITCH reliability

The functional color combinations on "Series 2" switches can be split laterally or longitudinally. Up to four colors can be used behind each display screen. Projected color makes it possible for the display screen to change color to indicate a change in the circuit.
Available switching units include hermetically sealed units, small but rugged long-life types and space-saving subminiature assemblies. Momen-tary-contact or alternate-action units are available in a choice of circuitry to exactly match requirements. Insist on micro switch reliability by specifying "Series 2" push-button switches for your panel. You may obtain prompt engineering help by simply checking the Yellow Pages for the micro switch Branch Office. Send for Catalog 67.

Silver, in many forms and alloys, is a necessity in the electronics and electrical industries. To meet this need on a high quality level, Handy \& Harman manufactures powder, flake, paint, paste, sheet, strip, wire, etc., for printed circuits, wiring, resistors, condensers, thermistors, contacts, printed terminal strips on glass, ceramics, plastic laminates, etc.
Another "At Your Service" Division of the Handy \& Harman Silver Supermarket is our Research and Engineering Department. Always ready to help you with any problem or project you may have involving silver for any application.

VISIT OUR BOOK DEPARTMENT

We have five Technical Bulletins giving engineering data on the properties and forms of Handy \& Harman Silver Alloys. We would like you to have any or all of those that
particularly interest you. Your request, by number, will receive prompt attention.

[^1]

A COMPLETE LINE OF DEPENDABLE ENCAPSULATED RESISTORS

Permaseal resistors are designed for extreme siability and long life in military and commercial applications requiring highly accurate resistance values in small physical sizes. To achieve this, winding forms, resistance wire and embedding materials are carefully matched. The completed resistors are then aged by a special Sprague process for long-term stability.

They're plastic embedded for mechanical protection and humidity resistance, meeting exacting requirements of MIL-R-93B and MIL-R-9444A (USAF).

Permaseal Resistors are available in close resistance tolerances down to 0.05%. Permanent identification marking is available to withstand all environmental conditions. Write For Engineering Bulletins 7500 and 7501 to: Technical Literature Section, Sprague Electric Company, 35 Marshall Street, North Adams, Mass.

Two Dozen Companies Merge

MORE THAN two dozen electronics manufacturers have completed acquisitions of other companies during the last month. Among these are:
hewlett - Packard, Palo Alto, Calif., acquired Sanborn Co., Waltham, Mass., as a wholly-owned subsidiary. Sanborn, to operate as a separate corporation under its own name, will give $H-P$ a base for development of electromedical equipment.
maxson electronics, New York City, bought Hopkins Engineering, San Fernando, Calif., for an undisclosed amount of stock. Hopkins is a components manufacturer.
texas research and electronics, Dallas, has obtained Eastman Products, Plano, Texas, and its subsidiary in Louisville, Ky., for $\$ 1.7$ million. Eastman, an electronic hardware manufacturer, will function as a division and retain its name.

JErrold electronics, Philadelphia, bought Technical Appliance Corp., Sherburne, N. Y., for $\$ 2.7$ million. TACO makes antennas for consumer, microwave, space and missile markets. No management changes are contemplated at this time. Jerrold acquired HarmonKardon in February.
general railway signal, Rochester, N. Y., has purchased Budelman Electronics Corp., Stamford, Conn., a communications equipment manufacturer. Budelman, with annual sales over $\$ 1$ million, will operate as a wholly-owned subsidiary with no changes in management. GRS obtained a controlling interest in Cardion Electronics, Westbury, N. Y., earlier this year.
barnes engineering co., Stamford, Conn., has agreed to acquire Connecticut Instrument Corp., Wilton, Conn. Barnes plans to use its new subsidiary as the nucleus of an expansion program in analytical instrumentation.
tamar electronics, Gardena, Calif., has acquired two Daystrom companies: Daystrom Wiancko Engineering, a transducer and readout device manufacturer, and Daystrom Pacific, which manufactures gyroscopes.
laboratory for electronics, Boston, plans to acquire Tracerlab, Inc., Waltham, Mass. Stockholders are to vote Oct. 27. LFE says proxies voting more than two-thirds in favor of the merger have been received.
burnell \& Co., Pelham, N. Y., has acquired 80 percent of the common stock of GLP Electronics, Bristol, Conn. GLP, which makes tantalum and aluminum capacitors, will operate as a subsidiary.

DYNAMIC ELECTRONICS, INC., has been formed by the combination of two New York companies. They are TKM Electric, Rochester, which makes permanent magnet generators, and Drake Manufacturing Co., Friendship, which produces generator castings and related equipment. Dynamic is now negotiating with a third company.

TRANSISTOR APPLICATIONS, INC., Boston. Mass., now owns New England Transformer Co., Somerville, Mass., and its affiliate, Transformer Model Shop, Inc., through a stock transfer. Combined sales of more than $\$ 1$ million are anticipated this year.
benson-lehner, Los Angeles data processing equipment manufacturer has announced approval by California authorities for spinning off its wholly-owned subsidiary, Documentation, Inc. B-L shareholders will receive one share of the newly independent company for each share the ${ }^{-}$hold. DI is located in Washington, D. C., and specializes in research.
centralab, Milwaukee, Wisc., division of Globe-Union has announced acquisition of Wilrite Products,

in Month

Inc., Cleveland, O. The Ohio company makes specialized resistors. Its present annual sales are in the $\$ 500,000$ area. The acquisition involves some 5,000 shares of GlobeUnion stock.

COMPONENTS CORP. OF AMERICA, Mt. Carmel, Ill. has acquired the assets of United Aircraft Supply Corp., Chicago, for an undisclosed amount of cash. It will operate as a whollyowned subsidiary with no changes in management. The move is expected to give Components a greater scope in production and distribution of components.

DEFENSE CONTRACTING

DEFENSE INDUSTRY SYSTEMS
FOURTH QUARTER, FISCAL 1961

Aircraft systems
Missile \& space systems
Vehicles, ordnance, vessels Mgmt, mntnce, svces Electronic warfare Communications Navigation systems Research programs Data processing Meteorology
$\$ 1,642,410,000$ 1,147,020,000 $884,172,000$ 431,486,000 261,790,000 201,379,000 165,364,000 88,825,000 42,886,000 3,795,000
The above figures represent prime military systema awarts. They are recorded exclusively for ELECTRONICS by Frost \& Sullivan, Inc., New York. defense market speciallists

25 MOST ACTIVE STOCKS

WEEK ENDING SEPT. 29, 1961 SHARES (IN 100 's) HIGH LOW CLOSE

Transitron	1,668	191/4	167\%	184/4
Sperry Rand	1,542	241/2	2336	24
Gen Tel \& Elec	1,131	257/8	251/4	251/2
Gen Electric	996	751/4	701/2	75
Texas Instruments	965	1181/2	1031/4	1153/4
Aveo	962	$23^{3} 8$	2236	223/4
Ampex	891	191/2	171/8	191/2
Gen Dynamics	742	29	$27 / 2$	281/2
Avnet Elec	683	273/3	241/8	26
Standard Kollsman	655	$361 / 4$	341/4	$351 / 4$
Westinghouse Elec	589	453/3	431/8	45
Magnavox	564	$363 / 4$	3312	343\%
Universal Controls	521	100/4	$93 / 4$	97/8
U S Industries	513	15\%	141/4	155/8
1 1 \& T	490	551/4	521/4	543\%
Zenith Radio	472	1763/4	1671/2	1731/2
Raytheon	462	$371 / 4$	347/8	363/8
Gen Inst Corp	446	301/8	28	29
Litton Ind	414	148	138	1395/8
RCA	410	547/8	$523 / 4$	545/8
Lockheed Aircraft	405	453翏	42\%	435/8
Martin $\mathrm{Co}^{\text {O}}$	404	$341 / 2$	325/8	325\%
Elec \& Mus Indus	394	51/8	47/8	5
Hewlett-Packard	390	291/2	26	2833/4
Ling-Temeo Vaught	388	281/2	261/8	28

The above figures represent sales of electronics scocks on the New York and American Stock Exchanges, Listings are prepared exclusively tor Electronics by Ira Haupt \& Co., investment bankers.

Taylor glass-base laminates pop right out as design

 materials in many applications

There are good reasons for investigating Taylor glass-base laminated plastics as high-strength-to-weight materials in your design. They offer light weight, corrosion resistance, electrical and thermal insulation, and ease of fabrication.

For example, glass-fabric-base laminates have the highest mechanical strength of all laminated plastic materials. They have been successfully used in the fabrication of critical parts, including aircraft parts and bases for printed circuits. They are most valuable where extremely low moisture absorption, increased heat resistance and superior electrical properties are required.

Taylor Fibre produces a number

of different glass-base grades in sheet, rod and tubular form, and copper-clad. Those with phenolic resin are recommended for mechanical and electrical applications requiring heat resistance. Those with melamine are characterized by their excellent resistance to arcing and tracking in electrical applications. They also have good resistance to flame, heat and moderate concentrations of alkalis and most solvents. Those with silicone exhibit very high heat resistance, combined with good mechanical and electrical properties. They also have highest are resistance. Those with epoxy offer extremely high mechanical strength, excellent chemical resistance, low moisture absorption, and high strength retention at elevated temperatures.

Technical data about these and other Taylor laminated plastics are available. Ask for your copy of the Taylor Laminated Plastics Selection Guide. Taylor Fibre Co., Norristown 40, Pa .

G-E LEXAN ${ }^{\ominus}$ POLYCARBONATE RESIN GOOD DIELECTRIC-AND MUCH MORE!

STABLE ELECTRICALS. Binding posts made of LEXAN resin retain electricals even under moist, hot conditions. They do not loosen, are molded in six attractive LEXAN colors for coding. Other features are: low loss and power factor, low dielectric constant, high voltage insulation, non-sink surfaces.
(Superior Electric)

DIMENSIONAL STABILITY. Maximum allowable change in this 5 -inch aircraft instrument part is only 5 mils over a temperature range of -65° to $300^{\circ} \mathrm{F}$! And it must maintain this tolerance under high humidity. Part is injection molded of LEXAN resin as half spheres which are solvent cemented, latheturned and painted. (Lear, Inc.)

HEAT RESISTANCE. Beautiful handles of LEXAN polycarbonate resin are used in rugged service on U.L. approved soldering irons. They resist the impact, heat and abrasion of daily bench work. The hard, glossy handles are light in weight. Molded in three pastel colors, they provide toughness and sales appeal.
(Ungar Electric Tools)

TOUGHNESS. Press-fitted into metal gear used in an electric drill, bushing of LEXAN polycarbonate resin provides safety from electric shock . . . helps eliminate need for additional grounding. Strength and creep resistance of LEXAN resin enables bushing to withstand torque and load requirements of drill.
(Millers Falls Co.)

TRANSPARENCY of LEXAN resin is important in chart guide for recorder. LEXAN resin is the only transparent plastic able to withstand heat generated by internal lights. It is distortion free at temperatures up to $270^{\circ} \mathrm{F}$ and self. extinguishing. Its extremely high impact strength eliminates cracking of guides.
(The Foxboro Co.)

ARE YOU LOOKING FOR A PLASTIC THAT CAN REALLY TAKE IT?

To demonstrate the toughness of LEXAN resin, salesmen will sometimes slam and hammer a product made of the material. LEXAN has the highest impact strength of any plastic - amounting to 12-16 footpounds per inch of notch - and it usually emerges unscathed from encounters with such "merchandising stresses". It is a high-performance material, likewise, with regard to high-temperature behavior and dimensional stability.

Its many other advantages make it a priority material for thorough investigation by all designers, engineers and molders. We will be pleased to supply you with information on the properties, processing and end-uses of LEXAN resin. Don't hesitate to write to us. General Electric, Chemical Materials Department, Section E-51, Pittsfield, Mass.

LEXAN ${ }^{\circ}$
Polycarbonate Resin
GENERAL
ELECTRIC

> nearly everybody
> in electronic
> laboratories reads
> Video Instrument catalogs...
> get yours!

When your mind gets back to amplifiers, remember that Video Instruments now provides four types of laboratory and field tested solid state amplifiers-chopper stabilized, sub-miniature airborne, galvanometer driver, and "pure" direct coupled. Complete specifications are available in Vi's latest catalog - and, as a reward for promptness, we will also send you a technical discussion of common mode rejection. Write Video Instruments - then get back to work.
VIDEO INSTRUMENTS COMPANY, INC. 3002 Pennsylvania Avenue, Santa Monica, California Ee

sensitive \mid accurate \mid reliable

- Provided with internal calibration voltages.
- Provided with a 12.5 cm linear scale with anti-parallax mirror reading.
- Protected against overloads.
- For all normal mains supplies (110-245 V, $40 \mathrm{c} / \mathrm{s}-100 \mathrm{c} / \mathrm{s}$).
- Suitable for use under tropical conditions.

PHILIPS

Sold and serviced by Philips Organizations all over the world Further information will gladly be supplied by: N.V. Philips' Gloeilampenfabrieken, EMA-Department, Eindhoven, the Netherlands For Canada: Philips Electronics Ind. Ltd., 116 Vanderhoof Ave., Toronto 17, Ont.

Broadband Millivoltmeter, type GM 6012
Frequency range: $.2 \mathrm{c} / \mathrm{s}=1 \mathrm{Mc} / \mathrm{s}$
Measuring range: 1 mV (f s.d.) - 300 V in 12 steps
dB scale: -80 dB up to $+52 \mathrm{~dB}(0 \mathrm{~dB}=1 \mathrm{~mW}$ into $600 \Omega)$.
Input impedance: $4 \mathrm{M} \Omega$ in parallel with $20 \mu \mu \mathrm{~F}$ (up to 3 V) $10 \mathrm{M} \Omega$ in parallel with $10 \mu \mu \mathrm{~F}$ (in the other ranges).
Overall accuracy with respect to full scale:
within $\pm 2.5 \%, 5 \mathrm{c} / \mathrm{s}-100 \mathrm{kc} / \mathrm{s}$
within $\pm 5 \% ; 2 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$
Pre-deflection: < $100 \mu \mathrm{~V}$

High Frequency Millivoltmeter, type GM 6014 without pre-attenuator
with
pre-attenuator
Frequency range: $1 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} \quad 10 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$
Meosuring range: 1 mV (fs.d)
100 mV (f.s.d.)
300 mV in 6 steps
-30 V in 6 steps
-40 dB up to +32 dB
$50 \mathrm{M} \Omega$
$10 \mathrm{M} \Omega$
$2 M \Omega$
Input capacitance: $7 \mu \mu \mathrm{~F} \quad 2 \mu \mu \mathrm{~F}$
Pre-deflection: Compensated by electrical zero setting Variations of the frequency characteristic:
$<5 \%$ over the whole range, with respect to the response at the frequency of the salibration voltages.
Overall accuracy: $<3 \%$ with respect to full scale and with reference to the frequency characteristic.

DC Microvoltmeter, type GM 6020

Input I
Measuring range: $100 \mu \vee$ (f.s.d.)
10 V in 11 steps
Input impedance: 1 MS ($\pm 1.5 \%$)
in parallel with
$20 \mu \mu \mathrm{~F}$

Input 11
10 mV (f.s.d.) 1000 V in 11 steps $100 \mathrm{M} \Omega(\pm 1.5 \%$) in parallel with $10 \mu \mu \mathrm{~F}$

Overall accuracy with respect to full scale: 3\%
Pre-deflection: < $5 \mu \mathrm{~V}$
Drift: $<1 \mu \mathrm{~V}$ per hour after 1 hour of warming-up Automatic polarity indication doubles the effective scale length with respect to centre-zero instruments. DC currents may be measured directly with this instrument due to the high accuracy of the input resistance: Measuring range: $100 \mu \mu \mathrm{~A}$ (f.s.d.) $-10 \mu \mathrm{~A}$ Accuracy: < 3.5\%

3
GM 6014

instrumments: ص\|?

IT GLOWS when the FUSE BLOWS!

NEW INDICATING 3AG FUSE POSTS

EXAMINE THESE FEATURES

1 Now patented knob design to assure high degree of illumination for instant blown fuse indication.
(2) Positive finger grip for knob extraction.
(3) Quick service bayonet lock.
(4) Constant tension beryllium copper coil \& leaf spring for positive contact \& lower millivalt drop.
(5) Optional-at extra costneoprene "o"ring to assure splash-proof feature.
(6) Naw high degree vacuum neon lamp for greater brifliance \& visibility.
$(7$ Impact black phenolic material in accardance with MIL-M-14E type CFE.
(8) One piece brass hol tin dipped non-lurning bottom terminal.
(9) Double flats on body to parmit mounting versatility.

SPECIFICATIONS:

PHYSICAL CHARACTERISTICS-Overall length $23 / 8^{\prime \prime}$ with fuse inserted * Front of panel length ${ }^{13} 16^{\prime \prime}$ - Back of panel length $19 / 10^{\prime \prime}$ - Panel area front ${ }^{15}{ }^{\text {is " }}$ dia. - Panel area back ${ }^{13}$ ' $_{6}$ " dia. - Mounting hole size (D hole) $5 / 8^{\prime \prime}$ dia. flat at one side.
TERMINAL-Side-one piece, .025 brass-electro-tin plated • Bot-tom-one piece, lead free brass, hot tin dipped.
KNOB-High temperature styrene (amber with incandescent bulbs $-21 / 2$ thru 32 volts-and clear with high degree vacuum neon bulbs- 90 thru 250 volts) - Extractor Method-Bayonet, spring grip in cap.
HARDWARE-Hexagon nut-steel, zinc cronak or zinc iridite finish - Interlock lock washer-steel, cadmium plated • Oil resistant rubber washer.
MILITARY SPECIFICATIONS-MIL-M-14E type CFG. Fungus treatment available upon request per Jan-T-152 \& Jan-C-173.
TORQUE-Unit will withstand 15 inch lbs. mounting torque.

DES PLAINES, ILLINOIS

HIGH VOLTAGE $\rightarrow 0 M=\square$
 SUPPLIES
 INSULATION TESTERS PULSE
 MODULATORS
 1,000 to 350,000 Volt Power Supplies Regulated or Unregulated

With extensive experience in the use of high voltage techniques Kir.ovolt corp. brings to bear the very latest existing knowledge in the design and development of power supplies for specific applications.
Kilovolt corp. is prepared to recommend the standard unit best adapted to your need or custom design and construct an especially suited power source or pulse modulator.
Long used in a wide range of industry Kılovolt CORP. equipment enjoys an exceptional record of trouble-free performance under the most severe conditions. All units are engineered to provide the maximum protection to the operator and the equipment.

We'll be happy to help work out your high voltage power and pulse modulator

CIRCLE 200 ON READER SERVICE CARD

CIRCLE 212 ON READER SERVICE CARD
CIRCLE 27 ON READER SERVICE CARD \rightarrow

SIIVER ANNIVERSARY

OFFNER DIRECT-WRITING OSCILLOGRAPHS

The most versatile and sensitive direct-writing unit available!

Ink, heat, electric recording media!
Handles all your recording requirements.

This one high-speed direct writing assembly handles all your recording requirements. You change only the input coupler for thermocouples, strain gages, servo monitors; for industrial, scientific, and medical applications.
is From one microvolt, d-c to over 200 cps .
it Ink, heat, electric recording media-easily convertible.
Write for complete details.

16 pages of facts, figures, and specifications on the Off. ner Type R Dyno. graph.

Write for your copy.

Beckman ${ }^{\text {B OFFNER DIVISION }}$

of Beckman Instruments, Inc.

Ion and Plasma Engines Readied for

By WILLIAM E. BUSHOR, Associate Editor

electrical propulsion engine designers have nearly bridged the gap between theory-an idea proposed in 1929 -and practice. Two new engines, each a flyable prototype model, were demonstrated within the past few weeks. Both power plants have passed vacuum chamber tests and will be further evaluated in rocket and space environments during flights scheduled for 1962. One is a plasma engine (Electronics, p 4 and p 29, Sept. 1, 1961) developed by Republic Aviation, the other is a Hughes Aircraft ion engine.

Although these electrical engines operate on fundamentally different principles, each is designed to propel or control satellites, interplanetary space vehicles and deep-space probes. Typical applications will be where low-thrust must be maintained over long travel times and where low fuel weight or economy in fuel consumption are important.

Republic's XE-1 pulsed plasma engine, developed for the Office of Naval Research and the Air Force's

Office of Scientific Research, operates as it would in an actual spaceship or satellite. This was accomplished by designing a completely self-contained system carrying its own power source-a 28 -v battery which is rechargeable by solar cells.
Thrust is produced by electromagnetically pinching an ionized inert gas and discharging it into space. As shown in the figure, the gas pressure is reduced by a pneumatic regulator system. Four pulses of low-pressure gas are supplied to the exhaust nozzle at rates up to 10 pulses a second by a control valve that is actuated by a transistor timer. To facilitate ground testing, a photocell-activated en-gine-control module turns the engine on and off remotely.

Ionization potential is developed from the $28-\mathrm{v}$ battery by a transistor a-c-to-d-c converter-charger that builds the capacitor bank up to 3,000 volts by constant-current charging. When this voltage is applied across the nozzle electrodes, the four discrete pulses introduced by the control valve are accelerated as a group by electromagnetic
pinching. Upon reaching a velocity up to $100,000 \mathrm{mph}$, the gas pulses are exhausted as a single discharge from the nozzle. This applies an impulse to the engine in a direction opposite to the gas flow. One four-pulse discharge occurs during each two-second period, producing $0.01-\mathrm{lb}$ thrust at $10^{-5} \mathrm{~mm} \mathrm{Hg}$.

Although the thrust figure is low, the high exhaust velocity gives a correspondingly high specific impulse of 3,000 seconds that will result in a vehicle speed of 75,000 mph . Overall efficiency of electrical input (1 Kw) to output thrust (0.01 lb) is over 50 percent. A twopound nitrogen fuel bottle is expected to give two years operation.

Auxiliary cooling equipment is not necessary because relatively cool temperatures of 200 to 300 F are produced at engine walls. Thrust level can be controlled by varying pulse rate. Specific impulse can be changed by altering fuel flow rate. Instantaneous starting or stopping of the engine is possible because each pinch is a separate operation and is dependent only on whether or not the capacitor bank is charged. Flight tests are sched-

Technician makes final instrumentation adjustment before test run of Republic Aviation's pulse plasma engine. Capacitor bank surrounds exhaust port at right. Photocell units for remote on-off engine control are just above technician's hand. Practically no erosion of primary components was reported

Space Tests

uled for June, 1962 at Wright Field. Hughes' ion engine, developed for the National Aeronautics and Space Administration, has been designed for operation with a separate power source. A complete ion propulsion system, which will include a nu-clear-electric power supply (SNAP-8) under development by NASA and the Atomic Energy Commission, might be flight tested as early as 1965.

Thrust is produced by electrostatically accelerating ionized cesium atoms and discharging them into space. A reservoir of cesium fuel supplies a cesium vapor that diffuses through an annular tungsten element heated to $1,800 \mathrm{~F}$. Contact ionization produces cesium ions that are accelerated in a thin, hollow beam, three inches in diameter, by high-voltage electrodes.

Exact determination of ion paths, important in producing optimum electrode configuration, is done with a computer-controlled analog trajectory tracer designed to simulate electrical conditions in the engine. This technique keeps erosion of accelerator electrodes low enough to make long space trips practical.

As the high velocity ions exhaust from the engine, electrons are injected into the ion beam to offset

Operator checks performance of Hughes Aircraft's ion engine during test simulating space conditions. Engine has undergone a total of 40 hours testing with 4.6 hours its longest run
the space charge created by the flow of positive cesium ions. Hughes has attempted to solve the problem of space-charge accumulation by placing electron emitter and auxiliary electrodes immediately behind the exit electrode of the acceleration chamber. This forms a self-adjusting reservoir of electrons which intimately mixes the electrons and positive cesium ions to maintain a charge neutrality throughout the
cross-section of the ion beam.
At present the prototype gives only about two millipounds thrust. However, Hughes feels this figure can be raised to 10 millipounds by the time the first battery-powered space test is made at Wallops Island in October, 1962. Systems using clusters of engines with several concentric beams are being designed which are expected to deliver 0.2 - to $0.4-\mathrm{lb}$ thrust.

Pulse plasma engine demonstrated by Republic Aviation converts 1 Kw of input power to 0.01 pound of thrust. Plenum chamber keeps pressure of nitrogen constant as gas is drawn off in pulses by electronically actuated control valve. Temperature of gas ejected by exhaust nozzle is $200,000 \mathrm{~F}$

STEREO COLOR TV System May Guide

ROBOT VEHICLE for exploration of the moon's surface was demonstrated by Airborne Instruments Laboratory at the American Rocket Society convention held this week in New York City. Among design problems of such vehicles is selection of a tv system to transmit visual data.

Sensitivities in the image-orthicon range would be required in lunar areas illuminated by starlight, which is dimmer than earthlight. These tubes need protection for general operation on the moon -when they will also be exposed to sunlight and earthlight.

AIL may use a Stereotronics Corporation approach. A set of lenses, laterally separated at normal eye distance, forms two adjacent images on the conventional monocular screen. These dual images are transmitted as a single frame. The monocular scene consists of two identical images. but with the left image on the right of the stereo screen. A polarized screen is placed against each image. The observer wears stereo glasses so that stereo relief is obtained.

A two-color set of filters placed

Scan conversion-technique proposed for ground equipment
on the stereo adapter at the camera causes monochromatic gray scale pictures to be transmitted. The half-frames would appear on the monitor as two similar images with different gray scales. But color is reintroduced with similar filters at the viewing apparatus.

The filters permit a conventional black and white tv system to transmit more useful information.

Also under study are scan-conversion techniques for video display. Preliminary studies have

Moon Prospector at Coliseum

Sperry Rand's exhibit at the ARS show in New York's Coliseum features scale models of a Prospector moon rover (foreground) and an Apollo-type manned spacecraft, on a simulation of the moon's surface
shown advantages in slow scan speeds for lunar video transmission, but earth equipment must supply picture enhancement.

A scheme typical of most scanconversion systems is being evaluated. Storage tubes (single-gun or double-gun) are used as shown in the block diagram to convert the transmission from one frame to 60 frames for viewing. The video is amplified and presented to a storage tube upon command from the master timer. The timing sequence is derived from the horizontal and vertical sync pulses received with the video or telemetry. The timer also controls the mode switching of all storage tubes.

The video is stripped of sync pulses, which are fed to the master timer, then sent to storage tube 1 . Receipt of a signal from the timer places tube 1 in the write mode by setting the bias levels on the electrodes and placing a signal on aND gates associated with the write sweep. This permits the write sweep waveform to be placed on the deflection plates of storage tube 1 .

When tube 1 is set in the write mode, tube 2 is set in the read mode. Sweep waveforms and bias conditions are set up, and the output video amplifier is switched to tube 2. This permits the video from tube 2 to be placed on the display. Tube 3 is set in the erase mode for 49 milliseconds and then switched

Moon Robot

Stereoscopic and two-color tv system proposed for moon robot
into prime.
Erasing is performed by writing a d-c level into the tube. The time for this operation depends on the number of storage elements in the tube. A tube with 1,000 -line resolution capability has about 8×10^{5} storage elements. Since erase time is less than 0.05 microsecond per

CIRCLE 31 ON READER SERVICE CARD \rightarrow

REALLY STACKED

In more ways than one. Stacked reels, a 3 -stacked recording head, and an economy of size which would enable you to stack more than forty of these miniature tape recorders into a cubic foot of space. Using less than 1 watt of power, the Precision Model PS-303M records an hour of voice frequency data on a single reel of tape. It operates quietly, weighs just a few ounces, incorporates an 8 -transistor, 2-diode electronics circuit. - The space-saving reel design is the same used in PI instrumentation magnetic tape recorders. It is one of the many advanced features which enable all PI instruments to offer full-size performance in a fraction of the space. Write for our new shortform catalog for details.

PRECISION INSTRUMENT COMPANY IOll Commercial Street. San Carlos. California Phone LYtell l-4441 TWX: SCAR BEL 30
Representatives in principal cities throughout the world

For simple or complex constructions, Royal has the know-how and capacity to fill your multi-conductor cable requirements. Royal Multi-Conductor Cables are designed, made, and quality-controlled to give you the cable characteristics you want most on the job easy workability, foot-after-foot quality, topmost dependability. Send us your cable specifications ... or ask to have our representative call.

ROYAL ELECTRIC CORPORATION
 301 Saratoga Avenue
 PAWTUCKET, RHODE ISLAND
 In Canada: Royal Electric Company (Quebec) Lid., Pointe-Claire, Quebec

storage element, the total erase time for the tube is less than 40 milliseconds. Priming consists of uniformly charging the surface of the tube.

An individual tube is erased and primed. The write sweep generator is then started for one second and the incoming signal is stored on the tube. The tube is then switched to the read mode and the video directed to the operator's display.

The timing sequence enables the operator to receive a complete picture at all times. New information is presented each second. A problem with this technique is the time delay introduced by scan conversion. This information is stored on the tube for one second before readout begins. Each succeeding line is stored for shorter time until the entire frame is complete. The frame is then presented to the operator. With a wipe display, new information is presented as soon as received, but the display appears to unroll before the operator. In a two-gun storage tube reading and writing can be done simultaneously.

Other items of electronic interest at the convention include GM's projected electrical power unit for space travel, B. F. Goodrich's model ion engine, Republic's new plasma pinch engine for attitude control, Marquardt exhibit of electrical propulsion and Sundstrand's scale model of a solar power system.

Lunar Rover Tester

Variety of possible moon vehicle models are tested at General Motors

This small coil of niobium-zirconium alloy wire produces a fux density of 43,000 gauss at -450 F , Westinghouse Electric reports

Telephone Satellite Will Take Awhile to Design

PARIS--Space communications symposium held here recently saw delegates of 16 nations outline some hard core problems. The meeting was sponsored by the International Scientific Radio Union.

While all agreed that next year will see a considerable amount of hardware lofted into space, the general feeling is that most of it will be research and data gathering equipment rather than operating communications gear. One British delegate estimated that some $\$ 1.5$ billion will be needed to pave the way for an operating global system with 8,000-10,000 telephone circuits.

Leonard Jaffe, NASA communications chief, said that satellites for specific scientific missions have performed well, but demonstrate an urgent need for additional research and development aimed at systems with adequate life spans for commercial feasibility. The magnitude of these problems will be determined by six NASA projects planned for 1962.

At the symposium, British scientists presented a general catalog of research needed to bring communications satellites nearer to optimum form. Further information on satellite environment, radiation intensities in the Van Allen belt and the effect of micrometeorites on satellite performance are needed, they said, before decisions can be made on orbits and equipment for long life communications satellites.

Other problem areas discussed included radio wave propagation at 1-10 Gc, electronically - steered ground antennas and less complex, wider bandwidth amplifiers.

Engineers See Instruments In Seven-Company Show

several instruments were shown for the first time at the second annual Electronic Instrument Manufacturers' Exhibit, a roadshow for an engineering audience which is touring the East Coast. General Radio, Lambda Electronics, NonLinear Systems, Panoramic Electronics, Sensitive Research, Tektronix and Trio Labs are participating.

An automatic frequency response plotter for checking bandpass of uhf filters was shown by General Radio. Sine-wave signals swept from 450-1,050 Mc are fed from a uhf oscillator through an amplitude regulator where the signal is con-stant-amplitude modulated at 1 Kc . The resulting square wave is fed to the filter whose output signal is applied to a strip-chart recorder. Because the recorder's paper-drive mechanism is chain-coupled to the uhf oscillator's frequency-control shaft, the output curve is a direct function of frequency.

Sensitive Research introduced a pocket sized $(9 \times 44 \times 13 / 4$ inches) d-c potentiometer that weighs three pounds, has a 0 to $5.099-v$ range variable in 1 -millivolt steps and is accurate to within 0.05 percent. A plug-in unit of the same size and shape extends the range to 500 v . The instrument is battery-operated and contains a transistor galvanometer.

Tektronix demonstrated a dualtrace sampling oscilloscope that presents digital radout and analog displays simultaneously. The instrument will measure rise times as small as 0.4 nanosecond between selected amplitude percentage points on any pulse.

Non-Linear Systems exhibited a transistor analog-to-digital converter that will provide 15,000 readings a second in binary decimal code. An accuracy of 0.01 percent is maintained by using successive approximation circuits.

UNIDAP FM Data Systems provide capabilities never available before!

Based on unique DCS Frequency Translation!

- Permits magnetic recording and playback of multichannel, constant-bandwidth, time-correlated research data.
- Unique frequency translation and multiplexing techniques permit optimum use of recorder bandwidth capabilities.
- Physically and electrically interchangeable modules make custom system assembly casy
- Compatible with existing DCS analog and digital equipments.

UNIDAP-a new concept... complete systems-engineered modular capability for acquisition, storage and playback of multichannel static and dynamic research data! Completely transistorized! Operator can modify system characteristics to adapt to the recorded data. Entire system automatically compensated to eliminate effects of wow and flutter. Modules can be interconnected at will using program boards. System can be expanded to meet future requirements and adapt to improved recorder capabilities.

Three systems are available immediately; others will follow:
макк $1 . .$. . All standard IRIG channels are available. Also, center frequencies to 1 mc with deviations to 40%.
mark 500 . . . Simultaneous continuous FM magnetic recording of 1 to 10 channels of 500 cps intelligence data plus reference frequency on single tape track of 50 kc bandwidth recording capability.
иark 2000 .. Similar to Mark 500 . Records 1 to 10 channels of 2000 cps on 200 kc bandwidth track.

- All above are nominal 1\% accuracy systems, subject to terminal equipment employed. - Full range of accessory calibration and test equipment available.
If you're concerned with magnetically recorded data for any purpose, you'll want to know more about UNIDAP's unique capabilities, For more information, address: Dept. E-1-7.

Instrumentation for Research:
Ground and Air
Analog and Digital Data Components and Systems

DATA-CONTROL SYSTEMS, INC.
Los Angeles * Palo Alto • Wash., D. C. Cape Canaveral
Home Office: E. Liberty St., Danbury, Conn. - Ploneer 3-9241

UNDERWATER CAMERA
Automatic-cycling, battery. powered camera for use to ultimate depths or $37,500 \mathrm{ft}$. Data chamber records depth, ime, location, date, ship with each ex. posure.

LIGHT SOURCE

Battery-powered, 100 watt. second source for photographic exploration, tracking of submerged submarines, etc. Cycling time: 12 seconds approx. Effective to $37,500 \mathrm{ft}$.

Completely automatic, bat. tery-powered pinger permits positioning of oceanographic equipment at precisely measured distances from bottom.

Two 35 mm . cameras, 100 watt-second light source, sonar pinger in a single, integrated unit. Up to 500 pairs of stereo photographs per lowering.

SONAR THUMPER
High-energy sound generator for marine geological surveys and under. water sound transmission studies. Emits up to 2 high-intensity thumps per second. Echoes indicate depth and bottom structure.

Underwater recorders and compasses.. custom-designed housings for oceano graphic equipment. EG\&G is ready to furnish both personnel and equipment for deep sea photography and seismic surveys on a con tract basis.

Full information on all products and services available on request.

162 BROOKLINE AVENUE, BOSTON 15, MASS.

Data Reduction System Goes up in Blimp

NAVY'S NEED for airborne test of vertical and short take-off aircraft has resulted in a flying wind tunnel. An analog computing system will be carried on an already checked out airship.

The aircraft under test is attached to a twenty foot extension tube below the airship. Tests of powered or unpowered aircraft at speeds of zero to 60 knots yield information on lift. drag and pitching moments by strain gauge

Data handling is performed in the air by a system employing three solid-state computers of desk-top size. The method avoids landing to process information on ground equipment. The computers, as well as a scanner, analog-to-digital converter, plotting boards and digital printer, are supplied by Electronic Associates, Inc., Long Branch, N. J.

The project is a joint effort of the Subsonic Aerodynamics Lab of Princeton Univ. and the R\&D department of the Naval Air Station at Lakehurst, N. J.

French Tv Manufacturers See Record Sales in '61

PARIS-Reports from the just-concluded radio-tv salon have French receiver manufacturers predicting a record year ahead. At the annual Parisian trade event, manufacturers forecast rises of 12 to 15 percent in sales over 1960. Last year $2,214,000$ radios and 655,000 tv sets were turned out in France at a sales figure of some $\$ 300$ million.

Of the two consumer areas, manufacturers say the tv market has the best prospects because it is far from saturated. France has 40 tv sets for every 1,000 inhabitants compared with 80 for West Germany, 200 for Great Britain and 310 for the U. S.

Another favorable prospect is the intention of the DeGaulle government to set up a second television network. Although no date has been named, the technical characteristics have been spelled out. The new system will be in the uhf band and have 625 -line resolution.

Setmakers have responded by producing receivers with both 625

Flying wind tunnel allows Navy to test aircraft suspended below airship's cab.
and 819 -line sweep circuits plus provision for uhf adaption. All 1962 French tv receivers are being made with uhf positions on the channel selector switch although few contain uhf tuners. Because of the possible time lag of more than 18 months, manufacturers are recommending that purchasers wait for further developments before ordering sets with uhf tuners.

Present prices for tv receivers in France have not risen significantly over last year despite these dual design features. At the low end of the price scale for a 19 -in set, list runs to $\$ 210$. For a $23-\mathrm{in}$. set, the list is $\$ 325$.

Push-Pull Loudspeaker Needs No Transformer

SERIES of subminiature push-pull voice coil loudspeakers, for use in miniature radio and audio equipment, has been developed by Pioneer Electric, of Japan. With the voice coil connected in place of a conventional push-pull output transformer, the speakers take less space than the former combination. Ranging in diameter from two to four inches, the speakers have impedances between 10 and 130 ohms.

MOVING

AIR
IS
CHILD'S
PLAY

CONTROLLING IT TAKES
 AN
 EXPERT

In years of specializing in air moving and cooling, at times we have been undersold, outmaneuvered and outtalked. But we've seldom been outdesigned or outperformed. Sooner or later most air moving problems come to Torrington. Brochure 102 proves why it should be sooner. TORRINGTON
MANUFACTURING CDMPANY TORRINGTON! CONNECTICUT

We're living in a needing, buying, growing America-a time for new and improved products and services - the creation of new jobs. More than ever, a businessman with an idea, with the urge for something better will move ahead with our expanding economy.

But after the idea, what follows can be a costly period of research and development. Not necessarily - if you use the immense 9 -billion-dollar fund of research and patent information that's available at your U.S. Department of Commerce. Think of the saving - in time and money.

For example: there are reports on extensive research by your Government in new products and processes. A trans.

Iation of data on inventions and discoveries abroad-information on over 3 million patents - a fortune in patents owned by your Government. All this is yours - for your use and your benefit.

Take advantage of the many ways in which your business can grow. In developing new products and services. In the lucrative foreign markets. In new U.S. markets. In attracting new industry to your local community. Just phone or write the U.S. Department of Commerce Office of Field Services in your city, or Washington 25, D.C. Your U.S. Department of Commerce is always ready to help you grow with America!

Highly complex shapes,

internal and external, formed in one operation to close tolerances in RLSDMAB' CERAMICS

NEW SHAPES NOW PRACTICAL
Technical ceramic parts formerly impossible or available only by expensive machining and grinding are now practical and can be produced in volume to close tolerances and with great uniformity. They include complex and compound curves, thin walls and other difficult design features. This injection molding process is particularly suited to volume production which readily permits amortization of initial tooling costs.

MATERIALS

AlSiMag 614 (High Alumina) and AlSiMag 704 (Porous and Leachable)
have found widest use. Other AlSiMag ceramic compositions are available. See Property Chart, sent on request.

APPLICATIONS

include but are not limited to:
Electronic and Electrical, such as conical micro-wave tube windows, envelopes, complex internal insulators, cups, encapsulating devices, semi-conductor assembly boats and plugs.
High Temperature, Mechanical and Heat Shock uses such as welding nozzles.
Precision Investment Casting cores of great dimensional accuracy.

Guides for wire and textile machinery. The use of these AlSiMag ceramics is indicated when high frequencies, high temperatures, heat shock, chemical attack or mechanical wear are involved.

EXPERIENCE

More than two years of steadily increased production from this equipment has given us practical experience which enables us to promptly and accurately answer most inquiries involving complex and difficult shapes. Send blue prints or sketches. Chances are that your "impossible" designs are now practical in AlSiMag ceramics.

CHATTANOOGA 5. TENN. SOTK YEAR OF CERAMIC LEADERSHIF̄̆
have you trled BIRD?

READ fF WATTS DIRECLIX

To oday everyone who measures RF power in coaxial systems wants the answer in watts. The BIRD Model 43 THRULINE reads watts!

Connect the Model 43 between transmitter and antenna or load. The meter reads RF power directly. Measure forward or reflected power instantly.

No calibration charts. No adjustments. No calculations. No auxiliary power.

Plug-in elements are used to cover 2 to 1000 mc , and powers to 1000 watts.

BIRD Quick-Change (QC) Connectors eliminate adapters. Any standard series of coaxial line fittings may be accommodated.

Write, TWX or call us for complete specifications on the Model 43 and other BIRD products.

Price:

Instrument only $\$ 95.00$ each
Plug-in elements \$30.00 each FOB, Factory

writing \& speech, Engineering, PGEWS of IRE; Kellogg Center, Mich. State Univ., East Lansing, Mich., Oct. 16-17.
vacuum science and Technology, American Vacuum Society; Sheraton Park Hotel, Washington, D. C., Oct. 16-19.
quality control, American Society for, Chase-Park Plaza Hotel, St. Louis, Mo., Oct. 19-20.
reliability, Electronics, IRE; N. Y. Coll. of Eng., Univ. Heights, N. Y. C., Oct. 20.
telluric and geomagnetic Field Variations, URSI, Univ. of Texas, ONR; Student Union Bldg. Austin, Texas, Oct. 20-21.
aEronautical \& NAVIGATIONAL Elec., East Coast Conference, PGANE of IRE; Lord Baltimore Hotel, Baltimore, Md., Oct. 23-25.

URSI-IRE, Fall Meeting, URSI, PGAP of IRE; Univ. of Texas Student Union Bldg., Austin, Texas, Oct. 23-25.

QUality control, American Society, ASQC; Sheraton Hotel, Philadelphia, Oct. 24-25.
nUClear propulsion, Aero-Space, PGNS of IRE; Hotel Riviera, Las Vegas, Nev., Oct. 24-26.
industrial electronics Exposition, Electronic Representatives, Inc., Detroit Artillery Armory, Detroit, Oct. 24-26.
reliability assurance Techniques for Semiconductor Specifications, AIA, ASQC, EIA, IRC, JEDEC; Dept. of Interior Auditorium, Wash., D. C., Oct. 25-26.

NEREM, Northeast Research \& Engineering Meeting, Commonwealth Armory and Somerset Hotel, Boston, Nov. 14-16.

IRE INTERNATIONAL CONVENTION, Coliseum \& Waldorf Astoria Hotel, New York City, Mar. 26-29. 1962.

E-200 HIGH TEMPERATURE CAPACITORS

 Operable to $\mathbf{+ 2 0 0 ^ { \circ }}$.The Bendix ${ }^{8}$ E-200 series of lightweight, small size capacitors is designed for installations requiring a high degree of component reliability at operating temperatures as high as $200^{\circ} \mathrm{C}$.
High temperature capability and mica-like electrical characteristics enable the E-200 series to withstand extremely high orders of AC in small envelope size at all ambients under $200^{\circ} \mathrm{C}$.
The new series is designed and manufactured
to a Bendix specification which is patterned after the high reliability specification MIL-C14157B, proposed.

Hermetically sealed in tubular or rectangular housings, these capacitors offer superior resistance to mechanical and climatic environments.
E-200 CHARACTERISTICS: - Wound mica papers • Solid impregnants - Exceptional stability - High insulation resistance \cdot Radiation resistance • Outstanding dependability

DRAWING BOARD

N NEWS No.
......... 3
Published by Chart-Pak,Inc.,originator of the tape method of drafting

PRINTED-CIRCUIT DRAFTSMEN GET "INSTANT" SYMBOLS WITH CHART.PAK

It's a lot less work to make fast, accurate master drawings with Chart-Pak printed circuit symbols and tapes.

Chart-Pak offers circles, ovals, fillets and a variety of common shapes die-cut out of pressure-sensitive black crepe paper - available on handy backing rolls. You just press them down!

Chart-Pak circuit symbols are low in cost; accurate; reproducible; easily "correctable". Available in popular decimal sizes.

Conductor Paths"Tape" On-A Yard at a Time!

Draftsmen put down conductor paths in seconds, with Chart-Pak circuit tapes ... Lines have unusual uniformity (width held within $.002^{\prime \prime}$.) Chart-Pak's precisionslit tapes come in sizes down to $1 / \mathrm{ar}^{\prime \prime}$. . . in all-black or white-backed type (handy for registering circuits back-to-back.)

Chart-Pak Grids Pin-Point Location within .002"
Precise printed-circuit drawings are a foregone conclusion when they're "taped-up" with Chart-Pak, on a Chart-Pak Precision Grid. The distance between any two lines is guaranteed accurate within $.005^{\prime \prime}$.
The sheet, tough, stable DuPont "Mylar" $(\oplus$, is a pleasure to work on - can be used over and over again.

161 River Road, Leeds, Mass Dealers in principal cities in U. S. and Canada

CIRCLE 40 ON READER SERVICE CARD
Is your advertising selling the same four key buyers your salesmen call on? Competition demands it! Only advertising in electronics reaches and sells the electronics man wherever he is: in Research,

TODAY YOU MUST SELL ALL FOUR!

Design, Production, and Management. Put your advertising where it works hardest...
in electronics
first choice FOR

.01\% accuracy

hermetically sealed

SOUTHERN ELECTRONICS hermetically sealed precision adjustable capacitors are finding many applications in analog computers, network tuning circuits, differential analyzers and similar electronic circuitry that requires the utmost in accuracy and reliability.
SEC has pioneered in the design and manufacture of hermetically sealed adjustable capacitors, and this experience has resulted in a $.01 \%$ accuracy standard, and a degree of in-circuit-reliability not previously available at any price. SEC adjustable capacitors incorporate features proven to be years ahead of any comparable product now available.

GENERAL SPECIFICATIONS
Available from .01 mfd . to 10 mfd . Accuracy: . 01%
Long Term Stability: 0.03\%
Temperature Coefficient: -100 PPM per ${ }^{\circ} \mathrm{C}$ Temperature Range: $-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$ Write today for complete specifications and general catalog.
rioneers in custom precision capacitor engincering
SOUTHERN: ELECTRONICS: Couparation

150 WEST CYPRESS AVENUE BURBANK, CALIFORNIA

CIRCLE 211 ON READER SERVICE CARD

Proved in over 2,000,000 installations of ultra-critical military and rugged commercial uses. The industry's standard for reliable, high performance, and unparalleled adaptability to beyond-theusual functions. Wire-wound.Limited or continuous rotation. Up to 100 K ohms. Special units with $\pm 1 \%$ resistance tolerance. 3 or 5 watts at $40^{\circ} \mathrm{C}$. In single or ganged assemblies up to 20 independent units. Manufactured in accordance with applicable sections of MIL-R-19, MIL-R-12934, MIL-R-19518 and NAS-710.
write for complete technical details...,

Unusual, two-direction switch with spring-loaded center return.

ClAROSTAT MFG. CO., INC. DOVER, NEW HAMPSHIRE

For Long Life and Power Economy

The new CLARE Type LF, magnetic latching subminiature relay offers designers simplified circuitry in small space by providing latching effect without transistors. Magnetic latching results in power economy.

The Type LF is available with either 2-coil or 1-coil configuration. The 2-coil relay allows complete control of the latching operation within the relay and provides an extremely compact operating unit. The 1-coil relay is somewhat more sensitive; it is adaptable to existing circuits where outside control is provided. (See opposite page for specifications and circuit diagrams.) The Type LF provides the same wide range of mounting arrangements and terminals as the CLARE Type F relay.

Fonk NONEWAMCHING oparation

CLARE Type F Subminiaturo
Crystal Can Relay
The CLARE Type F relay is extremely fast and more than moderately sensitive. It is built to withstand temperature extremes, heavy shock and extreme vibration. Contacts, rated at 3 amperes, are excellent for low-level circuit operations. Send for Design Manual 203.

PHYSICAL FEATURES

Life Expectancy

Wet Circuit:
3.0 amperes, 28 VDC resistive $-100,000$ operations
2.0 amperes, 28 VDC resistive $-250,000$ operations 1.0 ampere, 28 VDC resistive $-1,000,000$ operations 1.0 ampere, 28 VDC inductive (100 millihenry) $-100,000$ operations
1.0 ampere, 115 VAC resistive- 100,000 operations

Dry Circuit:
$1,000,000$ miss free operations when subject to conventional dry circuit requirements.
Temperature $-+125^{\circ} \mathrm{C}$ to $-65^{\circ} \mathrm{C}$
Shock-100g's for $1 / 2$ sine wave 11 ± 1 MS pulse
Linear Acceleration-100g's minimum
Vibration-. $250^{\prime \prime}$ DA or 30 g 's, 5-2000 cps.
Humidity \& Salt Spray-MIL-R-5757D
Enclosures: Tinned brass cover with fungus-resistant finish. Hermetically sealed and filled with dry nitrogen at atmospheric pressure,
Contact Arrangement-2PDT latching
Terminals-Plug-in ($3 / 16^{\prime \prime}$ straight), solder hook, $3^{\prime \prime}$ straight
Wiring-Two coils (as shown on drawing above)
One coil (as shown on drawing above)
Weights-. 54 oz , for plug-in .62 oz . for 2 studs, $3^{\prime \prime}$ leads

ELECTRICAL FEATURES

Operate Time-Two coil: When applying-for a minimum of 5 milliseconds-a voltage of at least two times the must operate voltage, the operate time including bounce will not exceed 5 milliseconds. One Coil: operate time will not exceed 8 milliseconds.
Sensitivity-Two coil, approximately 150 milliwatts One coil, approximately 75 milliwatts

Dielectric Strength

Sea level: 1000 volts rms-all terminals to case
1000 volts rms-between contact sets
600 volts rms-between open contacts of a set $70,000 \mathrm{ft}$: $\quad 350$ volts $\mathrm{rms}-a l l$ terminals to case
Insulation Resistance-1000 megohms minimum at $+125^{\circ} \mathrm{C}$ between any two terminals and between all terminals and case.
Maximum Interelectrode Capacitance-

ose	ds
Open contacts to case	2.0 picofarads
Between contacts of a sel	2.0 picofarads
Between adjacent conta	3.5 picofara

Maximum Coil Dissipation

Two Coil: .50 watts at $+125^{\circ} \mathrm{C}$
.75 watts at $+25^{\circ} \mathrm{C}$
One Coil: 1.25 watts at $+125^{\circ} \mathrm{C}$
2.0 watts at $+25^{\circ} \mathrm{C}$

Standard Adjustment-Relay will operate and hold when the must operate voltage is applied

Contact Resistance:

Maximum: 50 milliohms at 6 volts, 100 milliamperes.
Typical: 25 milliohms at 6 volts, 100 milliamperes.

For coil and mounting data on CLARE Type LF relay send for CPC-12. Address: C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinois, In Canada: C. P. Clare Canada Ltd., 840 Caledonia Road, Toronto 19, Ontario. Cable Address: CLARELAY.
C. P. CLARE \& CO. Relays and related control components
 per MIL-E-5272 and MIL-S-3786

COMPLETELY NEW - A real midget - genuine Grayhill quality. Conservatively rated to break one ampere at 115 VAC, resistive circuit, and to carry 5 amperes - life expectancy 100,000 cycles. Single deck, single pole, shorting or non-shorting, totally enclosed - provided with 2 to 6 positions (stop standard on 2 to 5 positions) and 6 positions normally supplied as continuous rotation. The Series 45 incorporates 60° indexing with a stop strength of 10 pound inches, and a rotational torque of approximately 12 ounce inches.

Complete specifications and prices available on request.

[^2]

ELECTRODYNAMIC INSTRUMENT CORPORATION
Subsidiary of Reed Roller Bit Company
JA 6-3761 • 1841 Old Spanish Trail • Houston 25, Texas
CIRCLE 201 ON reader service card

TEMP-PLATE ${ }^{\circledR}$ TEMPERATURE INDICATING STICKER

Temp-Plates detect overheating of electronic components, vital airborne parts, industrial equipment, in a positive, direct manner. Simple, easy to use, irreversible, Temp-Plate is the thin little tab that sticks to the component, turns black when the temperature reaches any desired value between 100° and $1100^{\circ} \mathrm{F}$. Impervious to ambient atmosphere and production line handling, Temp-Plate is accurate to $\pm 1 \%$, provides for absolute indication of heat damage. Write now for literature.
TEMP.PLATE/Pyrodyne,Inc.
$\frac{11973 \text { San Vicente Blvd. }}{\text { Los Angeles 49, California }}$

Actual Size

Motorola's new 3-amp power transistor series, the $2 \mathrm{~N} 2137-46$, offers $\mathrm{I}_{\text {Сво }}$ (at 2 volts) of only $50 \mu \mathrm{~A}$ instead of the usual $200 \mu \mathrm{~A}$. Also the thermal resistance of the new small junction devices has been reduced to $1.2^{\circ} \mathrm{C} / \mathrm{W}$ instead of the usual values of 1.5 to $2.5^{\circ} \mathrm{C} / \mathrm{W}$ previously associated with such units. This results in a power dissipation rating of 62.5 watts at $25^{\circ} \mathrm{C}$ instead of the 35 watts you may be getting out of your present devices.

These new Motorola units are ideal as drivers for such types as the 2 N 2082 as illustrated in the accompanying circuit diagram. They are also superior in such applications as the direct-coupled amplifier circuit shown above.

The new devices are more completely specified... are available in " A " versions with complete life test data under Motorola's exclusive Meg-A-Life program ... and they are available now at lower prices than comparable old-type units.

For complete specifications on the standard 2N2137-46 series, or the " A " versions available under the Meg-ALife program, contact your Motorola district office, or call or write: Motorola Semiconductor Products Inc., Technical Information Department, 5005 East McDowell Road, Phoenix 8, Arizona.

MOTOROLA DISTRICT OFFICES:
Belmont, Mass. / Burlingame, Calif. / Chicago / Clifton، N. J. / Dallas Dayton / Detroit / Glenside, Pa. / Hollywood / Minneapolis / Orlando. Fla. / Phoenix / Silver Spring, Md. / Syracuse / Toronto, Canada.

Pick the device for your application from this new 2N2137-46 Series Box Selection Chart.

	hfe @ 2 V and lc of 0.5A/2.0A	
	$30.60 / 15 \mathrm{~min}$	50-100/25 min
BVces 90 V BVcBo 90 V BVceo 65 V BVe日o 45 V	2N2141	2N2146
BVees 75 V BVcbo 75 V BVceo 60 V BVebo 40 V	2N2140	2N2145
BVces 60 V BVcbo 60V BVceo 45V BVe8o 30V	2N2139	2N2144
$\begin{aligned} & \text { BVces } 45 \mathrm{~V} \\ & \text { BVcbo } 45 \mathrm{~V} \\ & \text { BVceo } 30 \mathrm{~V} \\ & \text { BVebo } 25 \mathrm{~V} \end{aligned}$	2N2138	2N2143
BVces 30V BVcво 30 V BVceo 20V BVebo 15 V	2N2137	2N2142

BASIC CIRCUIT

A

Gamewell made a special rotary switch for over 10 million revolutions.

The customer's special application called for a guaranteed useful life of 10 million revolutions ...tests proved the unit easily exceeded it. Other requirements met by this precision 3 inch unit include make-beforebreak operation on 80 segments, and critical 5° dwell length. Here's another example of how Gamewell's YES service Your $\mathbf{E n g i n e e r e d}^{\text {Specials }}$ service - is continually meeting special "pot" and rotary switch needs. We can help with your requirements, too.
Write for details.

* ${ }^{\text {your }}$

Cngineered

Specials service

BLISS

THE GAMEWELL COMPANY, POTENTIOMETER DIVISION 1415 CHESTNUT STREET, NEWTON UPPER FALLS 64 , MASS. A SUBSIDIARY OF E. W. BLISS COMPANY. CIRCLE 208 ON READER SERVICE CARD

There's business out there.

You're looking at more than a horizon. It's a future, yours and America's. Out there is Europe and Latin America and Asia and Africa. But in 1960, of all U.S. manufacturers, less than 5% saw these foreign shores for what they are worth: a 19-billion•dollar export market, a vast source of foreign trade.

Move in for your share. Build your business and help keep America growing. Extra production creates more jobs, helps balance the outflow of gold, and wins new friends abroad with U.S.-made products.

Even if you've never sold overseas, you have a rare op-
portunity to start - now. Your U.S. Department of Commerce will help with counsel by experts on what, where and how to sell- with data on credits, payments and financing. A package of invaluable know.how is yours for the asking.

Now's the time to discover the many ways in which your business can grow. In the lucrative export markets. In new U.S. markets. In developing new products. In attracting new industry to your community. Just write or phone the U.S. Department of Commerce Office of Field Services in your city, or Washington 25, D. C. They are ready to help you grow with America!

High Speed • High Resolution
High Sensitivity Spectrum Analysis
with Rayspan

SPECTRUM ANALYZER

Raytheon Rayspan Spectrum Analyzers, through a unique application of multiple filters, can analyze entire spectrums as wide as 33 kc at scanning rates as high as 200 times per second with excellent resolution and a dynamic range of 40 db . Frequencies as low as 8 cps can be identified. Resolution for two equal-amplitude signals is approximately 0.7% or 3% of the analysis band depending on the Rayspan model employed.

Any model can be adapted for use with high speed, helix recorders to provide permanent records of frequency versus real time. A built-in timing pulse generator allows scan-by-scan synchronization of Rayspan with an oscilloscope.
For complete technical data please write to: Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

RAYTHEON COMPANY

INDUSTRIAL COMPONENTS DIVISION

When you need POWER... choose NEW NICAD Nickel Cadmium Rechargeable Batteries

SEALED CELLS
Hermetically sealed and rechargealle, Nicad batteries are small in size, require no maintenance, operate in any position. They make practical the battery operation of many types of equipment not previously suited to dry, mercury, or lead acid types.
VENTED CELLS
High surge power cells, in sintered or pocket plate types, are capalle of sustained voltage at high discharge rates over a wide temperature range. They have extremely long life
little or no maintenance. For more of the I'OWER story, write

SEALED CELLS

NICAD BATTERY DIVISION
GOULD=NATIONAB
BATTERIES, INC. E-1411 First National Bank Bldg., St. Paul 1, Minn.

CIRCLE 203 ON READER SERVICE CARD

The PERFECT PAIR

 for making faster whiteprints in your own office

This is our NEW Automatic Developer The Rotolite Thermomatic - WITH HEAT

$$
\begin{aligned}
& \text { Rotolite Expeediter, the printer-The least expensive whiteprinter in } \\
& \text { the world and prices include standard tube -type developer. Finger tip } \\
& \text { speed control, dry paper.vapor develoner. Fostact diaper }
\end{aligned}
$$ speed control, dry paper.vapor developer. Fastest diazo lamp on the

market. Models start at $\$ 12950$ market. Models start at $\$ 129.50$
Reloper. It's heated!' The developer-A new continuous ammonia deas well as blue and sepia. Heat develops faster, gives true black-line and more even development. One trouble free filling per day. No clogging or leading. No Venting.

W'est-Cap Capacitors are available in a wide range of capacities-in glass-to-metal, hermetuses NATVAR ically scaled, tubular and bathtub types, made to MIIL Specs such as MILL-C-19978 (Ships) and MIL-C-26086/3 (USAF). Nalvar StyroHex is used as the dielectric.

San Fernando Electric Manufacturing Co., San Fernando. California and their subsidiary, Caribe Capacitors, Inc., Cataño, Puerto Rico, manufacture West-Cap capacitors for use in timing circuits, filter network components, test equipment and secondary standards of capacitance, and other critical circuits for computers and certain weapons programs where stability and close tolerances are essential.

Natvar Styroflex is used as the dielectric, first because of its excellent dielectric properties, and second, because its complete flexibility makes it easy to handle, and its consistent uniformity makes it possible to manufacture to extremely close tolerances.

Natvar Styroflex Film is made in thicknesses from $0.00025^{\prime \prime}$ to $.0060^{\prime \prime}$, and in widths from $1 / 8^{\prime \prime}$ to $10^{\prime \prime}$ depending on thicknesses and manufacturing requirements.

Styroflex is the registered trade
name for Natvar's biaxially oriented flexible polystyrene film.

than conventional communications- addapted

Philco communications transistors FOR EVERY FREQUENCY:

transisfors:

2N1788
2N1789
2N1790
2N1866
2N499
2N502A R.F. Amplifier and oscillator. 12 db gain at 200 mc .6 db noise figure at 200 mc .30 volt rating. 75 mw power dissipation. Meets all requirements of MIL-S-19500/112 (SIG C).
2N1158A Medium power oscillator. 35 mw output at 200 mc , and 50 mw at 100 mc . Meets all requirements of MIL-S-19500/113 (SIG C).
VHF A 2 N1742
2 N 1743
VHF Mixer
VHF Mixer
2N1744
Oscillator

T2028
Amplifier
T2029
Mixer
T2030
Oscillator
T2351

APPLICATION
UHF AMPLIFIER
RAOAR I.F.
high voltage vioeo amplifier
VHF VIDEO AMPLIFIER

2N1745 I.F. applications from 30 to 60 mc . 21 db min. gain at 45 mc , Typical noise figure under 4 db at 45 mc .

VHF and UHF. 16 db min. gain at 200 mc .4 .5 db max. noise figure at 200 mc .16 db min. conversion gain. 9 db max. conversion noise figure at 200 mc .6 db typical noise figure at 450 mc .13 db typical gain at 450 mc . Typical noise figure under 3 db at 60 mc .

UHF amplifier, oscillator, and mixer service. 8 db min. gain at 1 kmc .8 .5 db typical noise figure at 1 kmc . Coaxial package impedance-matched for 50 ohm insertion.
2N1494 Wideband video amplifier service to 20 mc .400 mw rating. 220 me min. ft.
2N1748A Wideband video amplifier service to $10 \mathrm{mc} .100 \mathrm{mc} \min . \mathrm{fr} .50$ to 150 hfe .25 volt rating.
T2352 Low level wideband video amplifier service to 100 mc .300 mc min. fr. Controlled 20 to 60 hfe .
FUTURE TYPES FOR FUTURE DESIGNS:

NEW CAPABILITY
Maximum Noise Figure of 5 db @ 420 mc Maximum Noise Figure of $3 \mathrm{db} @ 60 \mathrm{mc}$ Delivers 120 volts of video in wideband amplification to 5 mc
A solid-state video amplifier for wideband systems to 200 mc

14 db min. gain at 200 mc .14 db min. conversion gain at 200 mc . 5 db max. noise figure at 200 mc .12 db max. conversion noise figure at 200 mc . 1.5 mw guaranteed oscillator output in singletuned oscillator.
\qquad

1. MORE dh PER DOLLAR...

2. INDUSTRY'S LOWEST NOISE FIGURES ..

3. INDUSTRY'S MOST USABLE A.G.C. CHARACTERISTICS...
4. ONLY COMMUNICATIONS TRANSISTORS SPECIFIED to GUARANTEE PERFORMANCE IN PRACTICAL CIRCUITS...

5. ONLY PHILCO GUARANTEES BANDWIDTH SPECIFICATIONS...

6. all transistor elements are isolated from case...

7. PROVEN MADT* RELIABILITY.

*Micro-Alloy Diffused-base Transistor.

For every communications transistor requirementboth today's and tomorrow's-consult Philco. For further information and application assistance, write Dept. E101361.

Philco

Communications Transistors are immediately available in quantities 1-999 from your Philco Industrial Semiconductor Distributor

LANSDALE DIVISION, LANSDALE, PENNSYLVANIA

Ten-section neuristor model with adjustable parameters

Simulating Nerve Networks WITH FOUR-LAYER DIODES

The neuristor, an electronic model of the neuron's axon, is a lumpedelement circuit with pnpn diodes in an active transmission line configuration.

Possible applications are in data processing.

By A. J. COTE, Jr.,
Applied Physics Lab.,
Johns Hopkins Univ., Silver Springs, Md.

IN RECENT YEARS, there has been increasing activity directed toward the development of machines to emulate the performance of nature's biological systems. ${ }^{1,2,3}$ Success in this endeavor will lead to significant increases in the data processing capabilities of machines and eventually to the long-heralded intelligent machine.

A basic element that processes and transmits data within the nervous system is the neuron, and many models have been proposed to simulate various aspects of its performance ${ }^{5,0}$ One of the more promising models is the neuristor proposed by H. D. Crane of Stanford ${ }^{-, s}$ and a similar device conceived by J. Nagumo of the University of Tokyo. ${ }^{\text {B }}$ These devices are active transmission lines which propagate a pulse without attenuation, in much the same way that a neuron's axon performs the same function. Crane has shown that ar-
rays of neuristors can serve as the only elements required in the synthesis of any digital logic function. With appropriate modifications, the neuristor can also probably serve as a more complete neuron model.

The neuristor as proposed by Crane would be a wire-like structure fabricated with appropriately distributed materials and immersed in a distributed power supply. The wire would maintain a standby charge distribution until triggered, at which time it would break down temporarily in the vicinity of the trigger point. The breakdown at this localized point would then spread outward in both directions along the wire, resulting in a propagating breakdown analogous to the burning of a chemical fuse. However, whereas the fuse does not recover, the neuristor does. The recovery of the wire is referred to as the refractory phase of the process and during this time the dis-

FIG. 1-Illustration of neuristor line propagation shows state of neuristor after triggering (A) as a function of time. Line segment D is in discharge state, segment R is recovering back to the initial state. Arrows indicate the direction of propagation of the discharge and recovery regions. Since the line cannot be triggered readily while in recovery state, two pulses traveling in opposite directions (B) collide and vanish at the point of collision. In a trigger junction (C), a pulse entering at 1 moves to the right and triggers similar pulses at the junction, which propagate toward 2 and 3. Since the pulse is being regenerated contimully as it propagates, there is no change in pulse level at the junction. In a refractor junction (D), a pulse entering at 1 propagates to the right and leaves at 2 without energizing the line between 3 and 4. Similarly, a pulse entering at 3 leaves at 4 without triggering a pulse on $1-2$. However, when a pulse passes the junction on either line, it temporarily alters the conditions on the other line such that a pulse entering the second line during this refactory period cannot be propagated past the junction and hence dies out. Neuristor configuration of a short-circuit stable active element is shown in static characteristic (E), basic circuit (F), basic section (G), and complete line (H)
charge is not as easily triggered. The operation may be visualized with the aid of Fig. 1A.
The refractory period is responsible for a significant feature of a neuristor's behavior. Two pulses, simultaneously traveling in opposite directions on the same line will destroy each other at the point of collision as shown in Fig. 1B. This is because the triggering process necessary for propagation is inhibited at those points in a line that are undergoing the recovery process.

As a result of these characteristics, pulses can be propagated between neuristors by the two types of junctions, trigger and refractory
as shown, in Fig. 1C and 1D.
At the time this article was prepared, the only examples of a distributed neuristors appear to be the axon of a neuron or an iron wire immersed in concentrated nitric acid." When suitably triggered, both the axon and the iron wire exhibit the propagation of a discharge region; however, only the neuron offers any evidence to suggest that the refractory junction might exist.

A lumped-element neuristor can be formed from an appropriately coupled cascaded string of monostable trigger circuits. Each circuit contains three ingredients: an energy source, an energy stor-
age mechanism and a negative immittance. In principle, the negative immittance can be either openor short-circuit stable and the type selected will then dictate the type of source and storage element required. This discussion is restricted to a neuristor employing a short-circuit stable active element (the pnpn diode, capacitive storage, and a current supply).

Returning to the scs (shortcircuit stable) neuristor model, the active elements are biased to obtain monostable operation using a biasing network that has a bilaterally symmetrical structure (Fig. 1E to 1H).

The sequence of operations when
a diode is triggered can be explained with the aid of Fig. 2A and 2 B . The operating point of all diodes is initially at A. Assume a particular diode in the line is energized. Triggering takes place during phase 1. During phase 2, the bias on the diodes on each side of that diode being triggered, is being altered in the direction required to cause triggering. Line parameters must be selected to insure that sufficient triggering level at the adjacent diodes is achieved during this phase. Phase 3 represents the termination of the original diode's active operation and during the refractory period of phase 4 , the diode is more difficult to trigger.

Typical waveforms on the neuris-
tor are given in Fig. 2C to 2E, and Fig. 2F illustrates the method of interconnecting two neuristors to obtain either the T (trigger) or R (refractory) junctions. To evaluate the influence of some of the parameters on neuristor performance, a ten-diode model (photo) was constructed with provisions for varying the values of R and β (of Fig. 1H).

A diode at one end of the line was triggered, and the time required for the pulse to travel down the line was monitored for several values of β. Velocities of propagation between 2 and $20 \mu \mathrm{sec}$ per section (one diode per section) were obtained for values of β between 4 and 100 , respectively. This line
did not support propagation for values of β less than or equal to unity; however, a line with a slightly higher value of $C \quad(6,800$ pf) did operate with $\beta=1$.

The time required for the line to recover after passage of a pulse places a limitation on the minimum spacing that can be permitted between two successive pulses transmitted down the line. This minimum spacing varied between 1 and 6 msec for β between 4 and 100 , respectively. If closer spacings are attempted (by increasing the level at the trigger point) the second pulse will not propagate.

This work was supported by the Naval Bureau of Weapons, under Contract NOrd 7386.

REFERENCES

(1) M. Minsky, A Selected DescriptorIndex Bibliography to the Literature on Artificial Machines, IRE Trans on Iuman Factors in Electronics. HFE2, p 39, Mar. 1961.
(2) Bionics Symposium, Wright Air Development Division, USAF, WADD Tech. Report 60-600, Mar. 1961. (Avallable through Offlce of Technical Services, U. S. Dept. of Commerce, Washington 25, D. C.)
(3) M. C. Yovits and S. Cameron, editors, "Self Organizing Systems," Pergamon Press, (1960)
(4) T. H. Bullock, Neuron Doctrine and Electrophysiology, Science. 129, 3355, p 997, Apr. 17, 1959.
(5) U. F. Franck, Models for Biological Excitation Processes, "Progress in Biophysics and Biophysical Chenistyy." 6, p 172 , Pergamon Press, 1956
(6) A. Corneretta, Electronics Learns From Biology, Elec Design, p 38, Sept. 14, 1960.
(7) H. D. Crane, The Neuristor, IRE Trans on Electronic Coniputers, EC-9, p 370 . Sept. 1960 .
(8) H. D. Crane, The Neuristor, 1961 International Solid-State Circuits Conference Digest of Technical Papers. Feb. 1961.
(9) J. Nagumo, An Active Line Using Esaki Diodes, Report of the Professional Group On Non-Linear Circuit Theory of the Institute of Electrical Communication Engineers of Japan Feb. 7, 1961.

FIG. 2-Operating sequence demonstrated by static characteristic (A) and by diode current waveform (B). Neuristor waveforms at locations given in Fig. 1H show current and voltage at one point on line (C), same with expanded time scale (D), and time delay between alternate diodes (E). Direction of propagation is from diode 1 toward diode 3. Horizontal scale is $50 \mu \mathrm{sec} / \mathrm{div}$ for first waveform, $2 \mu \mathrm{sec} / \mathrm{div}$ for last two, vertical scale is $200 \mathrm{ma} / \mathrm{div}$ or $20 \mathrm{v} / \mathrm{div}$. In the neuristor junction (F), when diodes connected to opposite sides of the power supply are coupled, in the C to A connection, a trigger junction is obtained, and when diodes connected to the same side of the power supply are coupled, in the C to B connection, the refractory junction is obtained

THERMOELECTRIC ELEMENTS

Temperature chamber with radiating fins and cold junction for transistors

FIG. 1-Control loop of constant-temperature chamber (A). Oltimizing conling current (B). Sensing bridge, error and cooling current amplitions (C)

Constant temperature chamber
sensitive direct-coupled circuits.

PRECISION in circuits using semiconductors, is often limited by changes in device characteristics with temperature. For example, in direct-coupled transistor circuits, variation of $\beta, I_{c o}$, and $V_{b r}$ with temperature changes the operating point of the transistors and make the circuit unstable; the logarithmic increase in $I_{c o}$ with increase in temperature is an especially troublesome factor.

A small, lower-than-ambient, constant temperature chamber ${ }^{1}$ using a five-element thermoelectric converter was constructed for the purpose of improving zero stability; that is, to minimize drift of sensitive direct-coupled transistor amplifiers. By reducing circuit operating temperature below normal ambients, and by holding it constant. excellent stability was obtained.

The block diagram of the temperature control system is shown in Fig. 1A. Temperature inside the chamber is sensed by a thermistor bridge, bridge output voltage is compared with a reference temperature setting voltage. The difference voltage is amplified and fed to a current control circuit, which controls d-c currents of several amperes. This current operates a thermoelectric converter which cools the chamber and holds it at the desired reference temperature. The advantage of using a thermoelectric converter is that the temperature inside the chamber can be set below as well as above ambient.

The following conditions obtain for the constant-temperature chamber shown in the photograph. The amount of heat leaking into the chamber is given by $L=N l+l$, where N is the number of thermoelectric elements, l is heat leak per
operates below ambient, provides a favorable stabilizing environment for

Noise and drift of semiconductor circuits are reduced

element, and l^{\prime} is the heat entering through the chamber walls. The heat Q generated inside the chamber is assumed constant. The heat sink is large enough that the temperature T_{s} of the high temperature contact is essentially equal to the temperature of the surrounding air. Electrical resistance is $R=N r+$ r^{\prime}, where r is the resistance of the semiconductor portions of each thermoelectric element and r^{\prime} is contact and other resistance associated with the thermoelectric element circuit.

Then the temperature of the cold junction in degrees K is

$$
\begin{equation*}
T_{j}=\frac{Q+L T_{a}+\frac{1}{3} R I^{2}}{2 N_{\eta} I+L} \tag{1}
\end{equation*}
$$

The term 2η is the thermoelectric power per thermoelectric junction, and I is the current through the thermoelectric converters. Equation 1 is plotted in Fig. 1B. If $N l$ $\gg l^{\prime}, N r \gg r^{\prime}, Q \ll T_{a} L$, and if the Peltier coefficient $\pi=\eta T$, can be assumed to be constant, then at $I=I_{\text {op }} \approx 2 \pi / r$, where $I_{\text {op }}$ is the optimum current through the thermoelectric converter when maximum cooling is required, a maximum temperature difference below ambient of $\left(\Delta T_{s}\right)_{\max } \approx 2 \pi^{2} / r l$ can be obtained. Therefore the gain of the thermoelectric converter is

$$
\begin{aligned}
A_{p}=\Delta T_{j} / \Delta I & =(2 N \pi-R I) / L \\
& =(2 \pi-r I) / l
\end{aligned}
$$

To make A_{p} large, it is necessary to make L and R-or l and r as small as possible. Converter gain A_{p} is a linear function of I, and at $I=0, A$ becomes $2 \pi / l$. For typical values: $2 \pi / l\left(=2 \eta T_{s}\right)=0.1 v$, $r=0.01 \mathrm{ohm}$, and $l=0.01 \mathrm{w}$ per $\operatorname{deg} \mathrm{C} ; I_{o p} \approx 10 \mathrm{amp}$ and A_{p} at I $=0$ is 10 deg. C per amp.

If C, is the heat capacity of the cold junction plate attached to the
thermoelectric converter, and C_{p} is the heat capacity of the thermoelectric converter, then the thermal time constant, for $N=1$, is

$$
\begin{equation*}
\tau \approx \frac{C_{i}+C_{p} / 2}{2 \eta I+l} \approx \frac{C_{p}}{2 l} \tag{3}
\end{equation*}
$$

Typical values are $C_{3}=0.08$ joule per degree, $C_{p}=0.8$ joule per degree, and $\eta=170 \mu \mathrm{v}$ per degree. Therefore, at $I=5 \mathrm{a}$, the thermal time constant is 41 seconds.

It is desired that A_{p} be large, and $I_{\text {op }}$ and τ be small. The measured values for the experimental apparatus were: $A_{p}=1.5$ to $7 C$ per a (depending on I) ; $I_{o p}=10$ a; and $\tau=50$ seconds. The photograph shows the thermoelectric element and the cold-junction plate. The cold junction plate, which is made of copper, can hold up to eight transistors of various types of cases.

Temperature is sensed by a thermistor bridge with a transfer-

FIG. 2-Chamber temperature as a function of line voltage (A), and of ambient temperature (B). Drift of chamber temperature for a one-hour-period (C)
function gain $G_{b} \cong 10 \mu$ a per deg C. The first stage of the error amplifier uses differentially-connected 2SA15 transistors. Since the average change of $I_{c b}$ of the 2SA15 transistors in the 30 to 40 C temperature range is only 0.1μ per deg C , and since most of the charge is cancelled by the differential circuit, the error from this cause is small. The current control circuit uses two 5-amp 2SB85 transistors in parallel.

To obtain good control, it is important that $G_{b} \times A_{c} \times A_{p} \gg$ 1: using the values given above, an error amplifier gain $A_{\text {e }}$ of 83 to 97 db is necessary. The error amplifier and control current circuits are shown in Fig. 1C.

The effects on chamber temperature of changes in the a-c power supply voltage, ambient temperature, and long-time drift are shown in Fig. 2.

The equivalent input drift of a one-stage HJ17D grounded-emitter direct-coupled amplifier with absolutely no temperature compensation when operated in the constanttemperature chamber at 18 C , was much less than $0.1 \mu \mathrm{a}$ or $100 \mu \mathrm{v}$, for a period of several hours. Causes of the drift include changes in $I_{\text {co }}$, $V_{b c}, \beta$, and changes in the voltage of the batteries, which were located outside the chamber at an ambient of 25 C , \pm several degrees C .

Other applications of the chamber include measurement of the temperature characteristics of vhf transistors and Zener diodes.

The authors acknowledge the contributions of K . Taniguchi, T, Hirai, T. Fujita, and Y. Baba of Hitachi Central Research Labs.

REFERENCE

1. M. Nafrata and Z. Abe, A Low-Temperature Constant-Temperature Chamber for IIse With Electronic Circuits, Paper No. 1633. Joint Annual Convention of Elec. Eng'g Socleties of Japan, 1960.

Instrument comprises two send-receive pairs of transducers, one pair on opposite bank of the river and somewhat downstream from the other. Flow velocity of stream causes prf's of upstream and downstream transmitting transducers to differ. Computing circuits come up with the average river flow velocity over the paths between transducer pairs

By HAROLD F. MESSIAS
Marine Sonar Dept., Raytheon, Portsmouth, R. I.

RIVER DISCHARGE is the amount of water flowing through a cross section of the river in a given amount of time. The average flow velocity through the cross section, multiplied by the cross-sectional area, is the amount of river discharge in cubic ft per sec. To achieve accuracy, river-flow velocity must be accurately measured over long periods of time.

Design of the ultrasonic flowvelocity meter described in this article is based on the characteristics of acoustic energy propagated through a river. When propagated through water, acoustic energy travels at a velocity dependent upon water temperature, foreignmatter content, and the water velocity in the direction of propagation. The measurement technique that is used eliminates temperature and foreign-matter content as velocity-measurement factors.

Propagated in the downstream direction of a river, the velocity of acoustic energy is equal to the velocity of acoustic energy in the river with no flow plus the velocity of river flow; propagated upstream, the velocity of acoustic energy is equal to the velocity of acoustic energy with no flow minus the velocity of river flow. If these measurements are made simultaneously over the same water path, and half the difference between them computed, average velocity of river flow will be determined. Thus, any variation in velocity of acoustic energy caused by temperature changes or foreign matter
content of the water is cancelled in computation.

The installation (Fig. 1) consists of a transmitting transducer and a receiving transducer mounted upstream near one river bank, and a transmitting transducer and receiving transducer mounted downstream near the other river bank. A pulse is transmitted from the upstream transmitting transducer and is received at the downstream receiving transducer. When the pulse is received downstream it keys the upstream transducer to send a second pulse. Hence, a pulse train is established with a pulse repetition frequency (prf) determined by the time necessary for the acoustic energy to travel down the river. Similarly, a pulse is transmitted from the downstream transmitting transducer and is received at the upstream receiving transducer. The received pulse keys the downstream transmitter to send a second pulse and a pulse train is established with a prf determined by the time necessary for the acoustic energy to travel up the river.

The time for a pulse to travel downstream is given by,

$$
\begin{equation*}
t_{d}=d /\left(v_{0}+v_{w} \cos \theta\right) \tag{1}
\end{equation*}
$$

The time for a pulse to travel upstream is given by,

$$
\begin{equation*}
t_{w}=d /\left(v_{0}-v_{x} \cos \theta\right) \tag{2}
\end{equation*}
$$

Where $t_{d}=$ time for pulse to travel downstream, $t_{u}=$ time for pulse to travel upstream, $d=$ direct path length between transducers, $v_{0}=$ velocity of sound in water, $v_{w}=$ velocity of river flow, and $\theta=$ angle between line of river flow and direct path of transducers. If Eq. 1 and 2 are solved simultaneously for v_{w}, the result is
$v_{s o} \approx(d / \cos \theta)\left[\left(t_{u}-t_{d}\right) / 2 t_{d} t_{u}\right]$

Let $f_{d}=1 / t_{d}=$ downstream prf and $f_{w}=1 / t_{w}=$ upstream prf; then
$v_{\mathrm{w}}=(d / \cos \theta)\left[\left(f_{d}-f_{u}\right) / 2\right]$
Figure 2 shows how the velocity meter converts the difference between the sampled prf's into an indication of v_{w}. Since there are two independent transmission loops, there are two transmitters, two receivers, two prf multipliers, two motor-drive amplifiers, and two synchronous motors. Only one of the two channels is shown completely since both are identical except for a few differences in component values required for the $85-\mathrm{Kc}$ and $135-\mathrm{Kc}$ carrier frequencies.

The transmitter (Fig. 3A) is a pulsed oscillator operating at either 85 Kc or 135 Kc , followed by a push-pull driver amplifier and a push-pull power amplifier. The power amplifier is coupled to the output by step down transformer T_{1}. This transformer matches the output impedance of the transmitter tubes to the 72 -ohm impedance of the transducer. The transmitter provides 30 w for the transducer. The driver is a conventional medium gain push-pull amplifier which isolates the power-amplifier stage from the oscillator. Oscillator $V_{2 B}$ acts as a Hartley oscillator with its resonant circuit shunted by $V_{2 A}$ which acts as a cathode follower. The oscillator is cut off if current is flowing in $V_{\Delta A}$, but starts oscillating when $V_{2 A}$ is cut off. In normal operation, the oscillator is shut off until a 1 -msec negative pulse is applied to the grid of $V_{2 A}$. This cuts off $V_{2 A}$ and allows the oscillator to operate for a 1 -msec period. The required 1 -msec pulse is obtained from the

Flow Velocity of Rivers

triggered one-shot multivibrator, V_{1}. Multivibrator V_{1} is triggered by V_{ar} a free-running multivibrator. The input trigger for the free-running multivibrator is a negative pulse from the receiver output. Range switch S_{1} is used so that V_{0} can be triggered by receiver pulses, which vary in repetition rates from 24 pps to 3.4 pps . The upstream and downstream transmitters are identical, except for the values of the resonantcircuit components in the oscillator stages.
The receiver (Fig. 3B) is a trf receiver operating at either 135 Kc or 85 Kc . Receiver input impedance is 72 ohms. A signal is fed from the receiving transducer to the grid of the V_{1}. The output of V_{t} is coupled through the $135-\mathrm{Kc}$ filter to V_{o}. (The downstream receiver uses an $85-\mathrm{Kc}$ filter.) The output of the second amplifier tube is coupled through another $135-\mathrm{Kc}$ filter, to V_{3}. This tube is coupled through a modified i-f transformer, T_{1}, to a rectifier bridge. The detected pulse is amplified in direct-coupled amplifier V, and differentiated at the output of this tube. The differentiated pulse triggers one-shot multivibrator V_{s}. The output of V_{5} triggers the transmitter and the prf multiplier in the computing circuitry. The one-shot multivibrator increases the sensitivity of the receiver since it responds only to the leading edge of the detected pulse and is not affected by distortion occurring after the leading edge or for the period of the oneshot output. Receiver gain is controlled by applying a negative grid bias to amplifier tubes V_{1}, V_{2} and V_{s}. These tubes are variable-mu pentodes whose gain decreases with a more negative grid bias. Gain control R_{r} directly controls the grid bias and overall gain of the receiver.

The output of the receiver in each channel is sent to a prf multiplier that multiplies the prf by a factor of either 4 or 8 (Fig. 2). The multiplication is necessary since the synchronous motors operate best between 35 and 85 cps . The prf

Examining a recording of river-flow velocity

FIG. 1-Each upstream and downstream unit of flow-velocity measuring system has a transmitting and a receiving transducer

FIG. 2-Detailed diagram of flow-velocity measuring system does not show receiver, transmitter and prf multiplier blocks of other channel
multiplication is based on the functioning of V_{1}, a controlled multivibrator oscillator (Fig. 3C). The frequency of this free-running multivibrator can be varied from approximately 40 to 180 cps by varying control voltage $V_{\text {. . which }}$ is as a bias voltage to the multivibrator. The multiplier feedback circuit acts to control this voltage so as to make the multivibrator frequency an exact multiple, 8 or 16 , of the input pulse rate. The multivibrator has a free-running rate higher than any expected input pulse repetition rate since the feedback control acts only in the direction, that reduces the multivibrator frequency to an exact multiple, 8 or 16 , of the input pulse rate. The prf multiplier operates in the following sequence. A negative input pulse from the receiver triggers multivibrator V_{1} and resets dividers V_{\geq}to V_{s} and V_{8}. The plate of $V_{n A}$ is now at a low voltage since $V_{a B}$ now conducts. The multivibrator runs at its free rate and the flip-flop dividers count the output pulses. When the count of 16 (with S, connected to plate of $V_{s B}$) is reached, $V_{n \mu}$ is triggered and its plate rises in voltage. When the next input pulse is received, the dividers are reset and the plate of $V_{n B}$ is returned to its original low voltage. Thus, the waveshape at this plate is a square positive pulse lasting from the time the dividers reach 16 until the next reset pulse triggers the circuit. This pulse width represents the time by which the multivibrator is running faster than 16 times the input frequency. The square pulse is passed into a width detecting circuit (D_{1}, D_{2} and C_{1}). Capacitor C_{1} is charged to a positive voltage proportional to the width of the square pulse. The voltage across C_{1} is applied, through $V_{\text {is }}$ and through gain control R_{1}, to the base of Q_{1}. Transistor Q_{1} is a phase inverting d-c amplifier to supply the control voltage $V_{\text {r }}$, which is inversely proportional to the square-wave width. Control voltage V_{c} acts to reduce the frequency of multivibrator V_{1} if the square wave pulses are of large width. The frequency is reduced until the square-wave pulse width is just large enough to maintain V_{c} at an equilibrium value. When this occurs, V_{1} runs at 16 times
the input pulse frequency. Operation with a multiplication ratio of 4 times is similar to that for 8 times except that S_{1} connects $V_{\text {© }}$ to the third divider output instead of the fourth. The output frequency should be between 35 and 85 cps for best operation. The output of the prf multiplier is a symmetrical square wave and is sent to the motor drive amplifier. Since the controlled multivibrator produces $0.1-\mathrm{msec}$ pulses, it is necessary to obtain the symmetrical square wave output from the output of the first divider (V_{s}) through cathode follower $V_{i A}$.

The dual-channel motor-drive amplifiers (Fig. 2) receives the output signals from the prf multipliers; the amplified signals drive the two synchronous motors. The input signal in each channel is coupled through a cathode follower to a gain control potentiometer. From the gain control, each square wave signal goes through a bandpass filter and becomes sinusoidal. This signal is coupled through a grounded-grid driver amplifier to the power amplifier. The power amplifier stage in each channel drives a synchronous motor.

The synchronous differential unit is a self contained unit made up of two synchronous motors and a differential gear assembly. The speeds of the two motors are different because their input frequencies differ. The output shaft speed of the unit is equal to one half the difference in speeds of the two motors, and is connected to the shaft of the control transmitter, which drives the control transformer in the follow-up servo.

The follow up servo drives a precision d-c tachometer at a speed proportional to one half the difference between the speeds, and hence the frequencies, of the two synchronous motors. The tachometer output is fed to a potentiometer equipped with a direct reading dial which is used to set up calibration for river angle and transducer separation. Output from the range and angle adjustment is coupled to the meter movement through a long R-C time constant to give a long response time to the meter circuit. This slow response smooths out the jitter and
variation introduced at the synchronous differential shaft. Balanced cathode follower circuits are used as outputs to the internal meter, calibrated in feet per second, and to the external meter or strip recorder.

The upstream and downstream transducer units differ only in their use; they are identical and are interchangeable. Each unit consists of two tranducers; the $135-\mathrm{Kc}$ transducer and the $85-\mathrm{Kc}$ transducer. Two different pulse carrier frequencies of 135 Kc and 85 Kc are used to avoid cross-talk between the upstream and downstream pulse trains. Both the $135-\mathrm{Kc}$ and $85-\mathrm{Kc}$ transducers can receive or transmit acoustic energy through water over a relatively broad frequency band (17-Kc) with narrow beam width (12 deg.) characteristics. The transducers have a barium-titanate ceramic disk as the energy receiving or transmitting element. At the prototype installation the transducer units were mounted a few feet from either river bank with a direct path distance between transducers of 625 feet. The angle between line of river flow and direct path of transducers was 45 degrees. Present design limits dictate that the transducer units be placed between 250 to 1,000 feet apart, and that the angle between the line of river flow and direct path of transducers be between 30 and 60 degrees.

The prototype acoustic flow velocity meter was installed in the Sacramento River at Sacramento, Calif. Specifications required an accuracy of 0.1 ft per sec. A correlation between the average velocity in the river at a section measured by the current meter method and the flow velocity measurement obtained with the acoustic flowmeter is being attempted by the U. S. Geological Survey. From the results obtained to date from the Survey it is felt that a direct relationship between the average velocity obtained with a (conventional) current-meter method and that obtained with the acoustic flowmeter exists.

Since water velocity is not the same at each point in the cross sectional area, the acoustic flowmeter cannot be calibrated out of the water. It is necessary to obtain an
average flow velocity for a section since the velocity varies both from river bed to surface and from one bank of the river to the other. The procedure used with a current meter to determine an average velocity is to measure the velocity at different depths along several verticals across the river and from these obtain an average. The accuracy of the measurement increases as the number of verticals across the river increases. The acoustic flow velocity meter computes the average velocity for all points in a line of sight between the transducers and is thus an approximation to an infinite number of verticals across a section of the river. Since the line of sight is only in one horizontal plane, an average velocity at only one depth is obtained. It is felt that a direct correlation between the average velocity obtained at one depth and the average velocity for the entire section can be made. If a direct correlation is made, the range and angle adjustment potentiometer (Fig. 2) can be set to make the meter read directly the average velocity of the river.

Present indications are that the average velocity measured at the depth of the transducers is directly related to the average velocity of the section. The results recorded on a 10 inch strip recorder showed that the acoustic flowmeter correctly indicated the expected trends in average river flow velocity for a section. Maximum river velocities were in the order of 2.8 ft per sec.

The prototype acoustic flow meter was built for the U.S. Dept. of the Interior, Geological Survey, under Contract No. 14-08-001-5426. The program's success was largely due to Hal Wires of the U.S. Geological Survey and representatives of Submarine Signal Operations; Raytheon Company, George Miller, Paul Frelich, Norman Serotta, Charles Walker and Thomas Stoupis contributed valuable work.

BIBLIOGRAPHY

G. E. Miller, W. F. Richardson and N. Serotta, The Measurement of River Flow by the Use of Underwater Sound, Paper Presented to the I.R.E., March 1960 .

Wayland Laboratory, Raytheon Company, "Instructions for Acoustic Flowmeter".
U. S. Department of the Interior, Geological Survey Water-Supply Paper 888, "Stream-Gaging Procedure", 1943.

FIG. 3-Repetition rate of transmitter (A) is controlled by the input from receiver (B) on the opposite bank of the river. Flip-flops of prf multiplier (C) are commercially available packages

Circuit diagram of cold-cathode scaler shows input channel and the first three of seven

transIstors drive Half-Megacycle

Pulse of 100 volts amplitude and 1 microsec width triggers cold-cathode counting tubes. Counting rate for scaler is 500,000 pulses a second

By M. BIRK, H. BRAFMAN and J. SOKOLOWSKI, The Weizmann Institute of Science. Rehovoth. Israel

Adjusting and calibrating scaler prior to counting

fast-counting stages. Circuit has been constructed on three plug-in printed boards

Cold-Cathode Scaler

THIS SCALER is intended for counting pulses of nuclear radiation detectors. It uses seven fast gas-filled decade counter tubes ${ }^{1}$ driven by transistors. The instrument incorporates an input channel capable of accepting positive or negative pulses ranging from 0.1 to 100 volts, an amplitude discriminator and coincidence-anticoincidence gating.

Transistors Q_{1} and Q_{2} form an input amplifier that accepts positive as well as negative pulses and has good nonoverloading characteristics. The amplifier has both d-c and a-c current feedback through the loop from the emitter of Q_{4} to the base of Q_{1}, stabilizing the d-c operating point and the a-c gain. Switch S_{1} sets the gain at $1,1 / 10$ or $1 / 100$.

Transistors Q_{1}, Q_{5} and Q_{B} form a high-speed, low-hysteresis discriminator. The discriminator is a transistor version similar to the one described by Farley ${ }^{2}$. It is an a-c coupled trigger with diodes D_{1} and D_{2} between collectors. Normally, Q_{0} and D_{1} are conducting, while Q_{1} and D_{2} are cutoff. A negative pulse at the base of Q_{4} causes it to conduct. Regeneration takes place when Q_{4} has drawn enough current to cutoff D_{1}. The circuit reaches its second stable point as soon as D_{2} conducts. To minimize hysteresis, the dynamic resistance at the collector of Q_{s} should be large compared to that at the collector of Q_{1}.

The discrimination, ranging from 0.1 to 1.1 volts, is set by potentiometers R_{1} and R_{2}.

Transistor Q_{i} is both buffer and differentiator while Q_{8} is an electronic switch serving as a coincidence, stop or anticoincidence gate. The emitter of Q_{8} is grounded through S_{4} to provide remote stop operation.
The incoming pulses are amplified and shaped by Q_{9}, Q_{10} and Q_{11}. In the absence of a pulse, Q_{n} is cutoff to prevent the scaler from accidentally counting when S_{3} is switched. Output of Q_{11} is applied to Q_{12}. Transistor Q_{12} acts as a blocking oscillator, generating a 10 -volt pulse at its output winding. Pulse width is 0.2 microsec.

At a double-pulse resolution of 1 microsec, tube V_{1} requires an input pulse in excess of 100 volts and 0.5 microsecond duration. Because the tube represents a capacitive loading of 36 pf , input requirements are a crucial design point. To meet the drive requirements, blocking oscillator Q_{13}, having a maximum repetition rate of 1 Mc , is used. Ideally, a high collector voltage should be used here to reduce loading effect by requiring a -minimum transformer step-up ratio. However, lack of inexpensive fast switching transistors having a high $V_{c b}$ breakdown voltage resulted in using a 2 N 247 . Even in the ideal case, regeneration would be poor due to capacitive loading. To reduce this loading effect, the cathodes of V, (except one for resetting) are returned to the base of the blocking oscillator transistor rather than to ground. This inserts the tube cathode-to-
grid capacitance in a positive feedback path.

The second counting stage is driven by a 2 SB 68 (equivalent to 2N398), in a grounded-base configuration. The 2SB68, capable of a swing of 105 volts, is driven by grounded-emitter stage Q_{15} that provides both current gain and phase inversion. The following five stages are EZ10A tubes each driven by a single grounded emitter 2SB68.

Reset is accomplished by returning the normally grounded zero cathodes to a negative potential. The diode in the reset circuit is a make-before-break contact. The back-biased diode at the zero cathode clearly defines the pulse transmitted to the following stage.

Double-pulse resolution of the scaler was found to be 1 microsecond. A maximum permissible counting rate of 500,000 pulses per second is imposed by the allowed power dissipation of the blocking oscillator Q_{18}. A 1-microsecond, 50volt pulse applied to the input of the scaler at the scaler's most sensitive setting blocks the instrument for 2 microsecond only.

The authors thank A. Jacob for the layout design and the construction. This work was supported in part by the B. de Rothchild Foundation for the Advancement of Science in Israel.

REFERENCES

(1) K. Apel and P. Berweger, ElectronICS, Fels, 19, 1960 .
$\begin{array}{lll}(2) & \text { F. S. M. Farley, Rev Sci Inst 29, } \\ 59 & 1958 \text {. }\end{array}$ 595, 1958.

Getting Fast Pulse Response

With Video Amplifiers

Design procedure uses 1-Gc transistors to build amplifier with
2-nsec risetime, 12 db gain and reduced d-c power consumption

FIG. 1-Video amplifier. 1nput and output impedance is 50 ohms

FIG. 2-Pulse response of amplifier in Fig. 1. Input pulse obtained from a Lumatron sampling oscilloscope pulse generator (A); output with compensation adjusted for slight under and overshoot (B); delay characteristic (C)

FIG. 3-Frequency response of amplifier from 0.1 Kc to $1 \mathrm{Gc},(\mathrm{A})$; risetime improvement, (B)

By PAUL J. BENETEAU JOHN A. MacINTOSH, Fairchild Semiconductor Corp., Mountain View, California

DISTRIBUTED AMPLIFIER techniques and feedback techniques are two methods commonly used for obtaining the wide bandwidths and extremely fast pulse response required for video amplifiers.

Distributed amplifiers ${ }^{1}$ have the advantage of furnishing high power output, since the load current, being additive, comes from several transistors simultaneously. However, they have poor gain-bandwidth products, and where the output power is unimportant, these amplifiers can be considered quite inefficient. Feedback techniques were discussed by Reddi ${ }^{2}$. After appraising two-transistor amplifiers using various feedback techniques, he concluded that for low source and low load impedances, the optimum configuration for a low out-put-power amplifier consists of an input transistor with emitter compensation, followed by an output transistor with R-L feedback applied between collector and base.

Interesting possibilities for improvement present themselves with the introduction of new fast devices. Several promising transistors have recently been introduced, one example is the 2 N 917 , a 1 -Kmc silicon device with properties suitable for use in fast amplifiers. To inrestigate the gainbandwidth products available using Reddi's design methods, a $12-\mathrm{db} 2$ nanosecond amplifier designed for pulse, rather than r-f response, was
built and tested. A description of this amplifier and a discussion of its performance follows.

The following specifications were used to design this video amplifier: Risetime for pulse response with no overshoot, 2 nanoseconds. Service impedance $R_{s}=R_{r}=50$ ohms. Transistor parameters pertinent to Reference 2 for the 2N917:
$V_{c s}=6$ volts, $C_{r}=0.5 \mathrm{pf}, f_{t}=$ $880 \mathrm{Mc}, C_{\mathrm{bc}}=1.2 \mathrm{pf}, \beta_{\mathrm{o}}=40, I_{B}=$ $3 \mathrm{ma}, r_{b}^{\prime}=100 \mathrm{ohms}, r^{\prime}=26.6 /$ $3 \mathrm{ma}=8.9 \mathrm{ohms}, r^{\prime \prime}{ }^{\prime}=4.5$ ohms.

Reddi's design procedure was then followed; over-all risetime being 2 nanoseconds, each stage had to be 0.707×2 or 1.41 nanoseconds.

A risetime improvement factor η of 1.8 was arrived at through the trial and error methods described in reference 2 and use of the graph in Fig. 3B. Then the uncompensated risetime $t_{r}=1.41 \times 1.8=$ 2.54 nsec .

The amplifier schematic is shown in Figure 1. It consists of a first stage with emitter peaking followed by a second stage with R-L collec-tor-base feedback. Biasing is of the breakdown-diode variety ${ }^{3}$. This biasing has the important advantage of removing the usual difficulty of obtaining good emitter bypassing without any deterioration in d-c operating point stability. The choice of R-C product in the collector and coupling circuits determines the low-frequency response. With the comparatively small capacitors used the lower $3-\mathrm{db}$ response point of the amplifier is about 350 cps . The decoupling of the ± 12-volt power supplies is con-
ventional and is required to insure stability.

The pulse response of the amplifier is presented in Figures 2A and 2B. Figure 2A shows the input pulse obtained from a sampling oscilloscope pulse generator and Fig. 2B shows the output of the amplifier with the compensation adjusted for slight amounts of undershoot and overshoot. The risetime is about 2 nanoseconds. The delay characteristic in Fig. 2C shows a delay time of about 4 nanoseconds. The frequency response of the amplifier is shown in Figure 3A, and is within $\pm 3 \mathrm{db}$ from 340 cps to 170 Mc. Considerably better r-f response could be obtained; but at the cost of pulse overshoot. For example, if an amplifier were to be designed for a wide-band r-f preamplifier, presumably different values of compensation would be used.

A two-transistor, 2-nanosecond pulse amplifier with 12 db gain has been presented. This relatively low-power amplifier is suitable, economical and reliable where output swings of more than a few tenths of a volt are not required.

REFERENCES

(1) P. J. Beneteau and L. Blaser The Design of Distributed Amplifiers Using Silicon Double-Diffused Transistors, solid Fairchild Publication TP-13.
(2) G. Reddi, Transistor Pulse Amplifiers. Semicondictor Iroducts Aug 1961, and $/$ or Fairchild Publication APP-32.
(3) V. H. Grinich and J. Kabell, Zener Diode Circuits for Stable Transistor Biasing, Semiconductor Products May and June 1961, and/or Fairchild Publication TP-8.

Geometry of slant-range correction, referred to in the theory discussion

Generating Tangential

Eight-transistor circuit generates an approximation of the

By JOHN L. WOIKA, Senior Engineer, HRB-Singer, Inc., State College. Pa.

GENERATION of cathode-ray-tube sweep voltages whose waveforms differ from a linear ramp function generally requires many filters or nonlinear circuit elements to modify the ramp function. Such modification circuits are usually inflexible and unwieldly to such an extent that adjustments to a given waveform are difficult. This circuit affords simple and direct adjustment of positive-slope waveshapes formed by straight-line segments.

This system was used in generating a straight-line approximation
of the tangent function for the sweep waveform in a cathode ray tube display of the video signal from an airborne rotating scanner. Between minus 45 deg and plus 45 deg, the tangent function may be approximated with less than 2 percent error by three straight-line segments; one line through the origin extending to plus and minus 28 deg, the others extending outward from that point. The tangential sweep waveform approximation will then consist of a threesegment ramp function in which the two end segments will have
identical slopes greater than that of center section (see waveform).

A block diagram is shown in Figure 1. As in conventional sawtooth generators, a positive step is applied to a resistant-capacitance network to charge the capacitor through a high-impedance path, the voltage across the capacitor providing the sweep waveform. The rate of change of the capacitor voltage, and therefore the slope of the sweep waveform, is proportional to the capacitor charging current. Two parallel constant-current sources supply effectively all this

FIG. 1-Block diagram of tangential waveform generator

FIG. 2-Circuit of tangential waveform generator

Sweeps for Infrared Mapping

tangent function for the slant-range correction of video signal from an airborne scanner

charge current, so that by controlling the output of the current sources, the sweep waveform slope is adjusted. One of these current sources may be gated off, so that, while this source is supplying no charge current, the rate of change of capacitor voltage is decreased, and hence the sweep-signal slope is reduced. By adjusting the position and width of the current source turn-off pulse with respect to the step function input, the re-duced-slope center section of the tangent approximation may be positioned.

The ramp multivibrator and timing multivibrator $M V 1$ are triggered simultaneously. A positive pulse from $M V 1$ is differentiated to obtain a negative spike at its trailing edge. This negative spike triggers the timing multivibrator $M V$ 2, whose positive output pulse is the gate pulse for the gated current source. The width of the output of multivibrator $M V$ 1, therefore, positions the start of the center segment of the tangent function and the width of the $M V 2$
output determines its duration.
The tangential sweep generator circuit is shown in Fig. 2. Transistors $Q_{\overline{7}}$ and Q_{8} form the parallel current sources to charge C_{1}. Transistor Q_{s}, in the grounded-base configuration, provides a nearly ideal constant current source, its collector current virtually unaffected by variations in collector voltage. Since its base voltage is fixed, the collector current of Q_{B} is determined only by the emitter supply voltage E_{2} as

$$
\begin{aligned}
I_{C} \doteq I_{E} & \doteq \frac{E_{2}-E_{B}}{R_{E}} \\
& \doteq \frac{E_{2}-E_{S}}{R_{1}}
\end{aligned}
$$

\doteq a constant (assuming collector voltage $<E_{s}$ and $E_{2}>E_{S}$)
Voltage across C_{1} (the sweep waveform) is then

$$
e_{c}=\frac{1}{C} \int i_{r} d t
$$

and the slope of the sweep waveform is

$$
d e / d t=\frac{1}{C} I_{C}
$$

and will remain constant as long as Q_{8} provides all the charge current i_{c}.

Transistor Q_{T} does not provide the nearly ideal constant-current characteristics of the groundedbase configuration of Q_{B}, but still exhibits excellent current source characteristics. Emitter degeneration introduced by R_{2} in the emitter lead makes this circuit an even better current source than the com-mon-emitter configuration whose V-I curves normally display fairly good constant characteristics. In the absence of a gate pulse, collector current of Q_{7} is determined by its emitter supply voltage E_{1}, and like Q_{8}, is fairly independent of collector voltage changes. In this situation, both transistors are supplying a constant charge current to capacitor C_{1} and a linear ramp function is developed across C_{1}.

A positive pulse applied to the base of Q_{z}, however, abruptly backbiases the base-emitter diode to turn the transistor off and interrupt charging current from that transistor. Now charging current

THEORY OF THE TANGENTIAL SWEEP WAVEFORM

The scanning system consists of a single detector element and scanning mirror, so that an element of the scanned area may be considered as the projected area of the detector surface, moving along a given line of scan perpendicular to the line of aircraft fight. For an aircraft at altitude h, and assuming a fat earth, the distance along the earth from a point directly under the aircraft to the area element will be

$$
x=h \tan \alpha
$$

where a is the angle between vertical and a line drawn directly to the area element from the aircraft. The velocity of the area element along a scan line will then be

$$
d x / d t=\omega h \sec ^{2}
$$

where ω is angular velocity of the scanner (a constant).
If the spot on a cathode-ray tube is intensity modulated according to the infrared radiation from an area element, then to obtain an accurate map of this radiation on a flat photographic film, the velocity of the spot across the tube face should correspond to the velocity of the area element along the line of scan. Position of the electron beam (or spot) in the cathode-ray tube it determined by the unbalance of current
through the horizontal deflection coils in the yoke, hence the velocity of the spot is determined by the rate of change of current unbalance. For a linear sweep

$$
I=a t
$$

where I represents the difference of currents through the deflection coils, the rate of change of current is, of course, a constant a. Since the velocity of the scanned area element is not a constant, however, a linear scan device cannot present an accurate display of the scanned area. The most noticeable effect is in long targets positioned diagonally with respect to the line of flight. Straight edges will appear curved, becoming more distorted toward the edges of the constant however, a linear scan device cannot present an ac-display. A straight road, for instance, diagonally across the fight path will appear S-shaped.

If the sueep waveform is
$I=b \tan \theta$
then the rate of change of current is $d I / d t=c b \sec ^{2} \theta$
and the velocity of the spot is of the same form as that of the area element. This sweep waveform tends to eliminate the edge distortion.
is due almost entirely to Q_{n} and the ramp slope accordingly becomes less. When $Q_{\bar{T}}$ is reactivated, its current is abruptly restored to its original level and the ramp slope reverts to the slope it had before charging current from Q_{7} was interrupted.

Some charging current is drawn from the ramp multivibrator through D_{1}, but since it is drawn through the high back-impedance of the diode, its current is negligible with respect to that from the current sources. Slopes of the tangent
function are therefore determined entirely by the two emitter supplies E_{1} and E_{2}. Since Q_{B} supplies current for the entire duration of the sweep, adjustment of E_{z} will change the slope of all three segments. Transistor Q_{7}, however, supplies charge current for only the end segments, so an adjustment of E_{1} will change only the slope of those segments.

The three final waveform adjustments are R_{5}, which determines the width of output from $M V 1$ and thus positions the start of the

Function generator waveform, with vertical scale of $1 \mathrm{v} / \mathrm{cm}$, horizontal scale of $0.8 \mathrm{msec} / \mathrm{cm}$
center segment of the tangent approximation, R, to control the width of output from $M V 2$ and control the duration of the center segment, and R_{5} to adjust the duration of the entire sweep waveform.

In this application, where the sweep was approximately six milliseconds long, there was no noticeable deviation from linearity in any section of the waveform. The waveform photo shows the tangential waveform obtained with this circuit, with the difference in slopes exaggerated.

This gated current source principle could easily be applied to more complex waveforms by more current sources with gates. Then combinations of the current sources could be set up by timing the multivibrators to approximate any positive slope waveform. Waveforms with negative slopes or a combination of positive and negative slopes may be obtained by using a similar technique with complementary transistors and negative supplies to generate a negative ramp function and adding it or, with further gating, portions of it to the posi-tive-slope ramp.

A compelling challenge - to assist the orthopedically handicapped in performing the simple and rewarding manual functions that lead to richer, more useful lives.
Working with orthotic and prosthetic specialists in hospitals and medical schools, Fairchild Research and Development personnel have done considerable experimentation in this field with strain gauges, special assemblies and Micrologic components. Using these elements as sensing, logic, control, and feedback building blocks, it is thought that human mechanisms for commanding and verifying body motions may be closely approximated.
Problems are myriad. The challenge great. The rewards immeasurable. We believe it a worthy goal to unlock doors in the Human Horizon. If you would like to share in a challenge such as this, and yours is a relevant background, we would like very much to hear from you.

HUMAN HORIZONS

Irradiation Susceptibility Nomograph

By FRED KUGLER ALBERT R. KALL,
 Ark Electronics Corp.. Willow Grove, Pa.

THIS NOMOGRAPH determines in-terference-susceptibility in complex electronic systems. Its use is demonstrated in a problem in which a high-power pulsed radar and a receiving system are located near each other. The receiver is in a shielded building. The problem is: will the net radar field incident upon the receiving source exceed the threshold levels at which the latter will malfunction?

If the radar ground-level field intensity near the building is known, start at B_{1} on the nomograph for field intensity measured in electric-field intensity (v per m peak), or at B_{2} (smaller nomograph) for field intensity measured in power density (w per sq cm average). This level should represent the max-max level: (a) with the radar antenna moving in its normal design function (rotating for a search radar, nodding for a height finder radar) and with angles of declination or azimuth representing maximum effect in the direction of the building, and (b) with the radar antenna fixed at the maximum effective position, measure the level all over the area, covering at least the area near two walls of the building. The maximum intensity under all conditions is used for entry in line 9 or 15 .

If the ground level has not been measured and is not known, start at point A, line 1. Enter at the known radar peak power point. Enter antenna gain, line 2. This is a design parameter for the radar. The gain figure is in db relative to an isotropic radiator. If the db gain figure for the antenna is in db referred to
a dipole antenna, add 1.64 db and enter the sum figure into the nomograph. Draw a line through the points on lines 1 and 2 , intersecting 3.

Enter line 4, slant-line distance in feet, between (a) the radar antenna and (b) the building housing the receiver source. For (a) use the approximate focal point of the antenna paraboloid. For (b) use either the side or roof of the building (if the distance is large compared with dimensions of the building) or the center of the receiving source (if the distance is of the same order as the building dimensions). Slantline distance is the hypotenuse of the right angle triangle whose sides are the elevation of the radar antenna and the horizontal distance. Draw a line from the point on line 3 through the point on line 4 to line 5 , intercepting on line 5 a power density level in w per sq m (peak).

The procedure thus far applies the following formula, which gives the power density along the main radar beam for the far field (Fraunhofer region) $P_{d}=$ $P, G / 4 \pi D^{2}$ w $/ \mathrm{m}^{2}$ (peak) where P_{I} is radar transmitter power, G is gain (a number or ratio), and D is distance in meters.
A convenient formula, used in the nomograph, is $P_{d}=0.855$ $P_{i} G / D^{2} \mathrm{w} / \mathrm{m}^{2}$ with D in feet.

Obtain the Fresnel field correction factor. The Fresnel region radiation intensity represents the non-uniphase combination of all the individual radiating elements of the antenna aperture and the influence of the intervening terrain. If terrain is disregarded and freespace radiation is assumed, only the physical size of the antenna must be considered and a correction factor established for application to the level obtained from far field considerations. With the ground and terrain neglected this factor is always

TABLE I-Typical Fresnel Region Correction Factors (db)

	Distance	Antenna Aperture Dimensions (in wavelengths) Horizontal/Vertical									
		10		20		30		40		50	
	$100 \mathrm{ft}=40 \lambda$	1	1.5	6	9	9.5	15	12	16	14	18
	$200 \mathrm{ft}=80 \lambda$	0	0.5	3	6.5	6.5	9.5	9	12	11	16
	$500 \mathrm{ft}=200 \lambda$	0	0	0.5	1	2.5	5	5	8	7	11
		10		20		30		40		50	
	Distance										
	$100 \mathrm{ft}=600 \lambda$	0	0	0	0	0.5	0.5	1	2	2	4.5
	$200) \mathrm{ft}=1200 \lambda$	0	0	0	0	0	0	0.5	1	0.5	2
	$500 \mathrm{ft}=3000 \lambda$	0	0	0	0	0	0	0	0	0	0.5

The Fresnel region correction factor is the sum of two factors for horizontal and vertical aperture dimensions. Values are based on cosine illumination of aperture in vertical aperture dimensions, values are based on cosine illumination of aperture in for antennas with uniform phase distribution

TYPICAL SPECIFICATIONS - HIGH POWER LOADS							
Band	UHF	s	s	X	X	x	x
Model No.	LUH1	LSH1	$\mathrm{L}_{\mathrm{c}} \mathrm{SHI}$	LXH1	LXH7	LXH11	LXH12
Freq. (kMc)	.325-. 475	2.6-3.1	2.9-3.1	7.0-10.0	7.0-10.0	9.0-12.4	7.0-10.0
Av. Power	60 kW	25 kW	500 W	5 kW	600 W	5 kW	5 kW
Max, VSWR	1.10/1	1.10/1	1.10/1	1.10/1	1.10/1	1.10/1	1.10/1
Waveguide	WR 1800	RG75/U	RG96/U	RG51/U	RG51/U	RG52/U	RG51/U
Flange	Alum CPR-1800	UG584/U	UG45/U	UG51/U	UG51/U	UG39/4	UG51/U
Cooling	Liquid	Liquid	Liquid	Liquid	Alr	Liquld	Llquid
Length	90	36	8\%6	9	6\%	93/4	715/16
Width	14	515/86	1"	1\%	3\%	1\%	1\%
Height	241/2	5\%6	21/8	15/16	21/2	11/16	$1 K_{6}$
Approx. Wt. (lbs.)	200	35	1.5	4.05	1	5	4

Raytheon introduces compact dry loads for high power at UHF, S and X bands

New design techniques offer high-power load capabilities in compact lightweight units
Utilizing new design techniques, these Raytheon high-power loads are designed to meet a wide variety of system and laboratury requirements at minimum cosis. The new dry loads offer reliability and compactness at high power levels previously only associated with water loads.
The models listed at right are available from stock. In addition, with new standardized designs Raytheon can give fast delivery of units matching custom needs. Write today for details on this or other Raytheon developments in microwave devices. Special Microwave Devices Operation, Raytheon Company, Waltham Industrial Park, Waltham 54, Massachusetts.

less than unity, and usually lies between 0.01 and 1 (corresponding to the range -20 to 0 db). The far field region prevails for distances greater than $2 L^{2 / \lambda}$ where L is the maximum antenna aperture and λ is the wavelength, both in the same units. The Fresnel region prevails for distances less than $2 L^{2} / \lambda$.

Table I shows correction factors for the antenna aperture horizontal and vertical dimensions, at two frequencies and at three distances. Other values can be interpolated.

With the Fresnel region correction determined, enter it on line 6 and draw a line from the point on line 5 through the factor on line 6 to intersect line 7. The point on this line is now the main beam power density in w per sq m (peak). The right hand legend on this line is peak
electric field intensity E in v / m (peak) calculated from $P_{d}=$ E^{2} / Z o where $Z_{\text {o }}$ is the impedance of free space, 120π or 377 ohms. Use of this expression is predicated on linear polarization of the wave near the field intensity receiving antenna.

From line 7 the nomograph branches into two legs: one, from lines 7 to 11 carries on in units of electric field intensity (peak), while the other, lines $7^{\prime \prime}$ to 17 (separate chart), continues in units of power density (peak and average). Use the one that corresponds to the measured data and the problem requirements. The analysis continues with the electric field case, then with the power density case.

Field intensities along the radar main beam have been considered. To obtain the field intensity near ground level, at the building wall or at a point cor-
responding to the center of the receiving source, information must be obtained on the db-down criterion for the radar antenna and the colocated situation on that base.

For an excellently colocated site, the side lobe in the direction of the building typically may be some $25-35 \mathrm{db}$ down from the main beam; for a poorly colocated site, 5-15 db down. Enter the proper db-down number on line 8. Draw a line through the points on line 7 and line 8 , intersecting line 9 . This gives the ground field intensity level, before accounting for the effect of the shielding in the building walls. Note that this level represents the starting point B_{1} if the level had previously been measured.

In line 10 enter the shielding effectiveness of the building. Typical values for on-site single-
et the date you need any standard type coaxial cable on the job, and Chester will meet it... with from-stock shipments of one of the country's most complete lines of coaxial cable.

With Chester cable you can make a quick selection of exactly the right cable for each specific application. From micro-waves to missles ... in conformance with military or commercial specifications ... for military or commercial applications...there's a Chester cable tailored to your design and requirement

For special cable problems, you can depend on Chester to custom-engineer the correct cable to meet your specifications. Select the type conductor, insulation, jacket, and armor which your requirements demand. But, be sure you select Chester for the cable "jobtailored" for you.

NEW,
Chester's fact-pached coaxial cable selection guide. Write for your free copy.

shield construction incorporated within the building walls are summarized in Table II.

Draw a line through the points entered on lines 9 and 10 , intersecting line 11. This is the electric field intensity, in v / m (peak), impinging on the receiving source.

This final level should be compared with the threshold susceptibility status of the receiving units to determine if there could be any malfunctioning due to the radar field on the receiving source.

For the power density case, return to line 7^{\prime} on the separate chart. This is the main beam power in w / m^{2} (pk) with Fresnel field correction. In line 12, enter the duty cycle factor of the radar defined by: nomograph duty cycle factor $\times 10^{6}=$ $10 \% /$ pulse width $\mu \mathrm{s}$) \times pulse repetition rate (pps)], the factor 10^{6} being applied to produce easily handled numbers.

Draw a line through the points on lines 7^{\prime} and 12, intersecting line 13 . This is the main beam power level of radiated power density in units of w per sq cm (average), as would be measured by a bolometer.

Enter the db-down criterion in line 14 and draw a line through the points on lines 13 and 14 , intersecting line 15 . This represents point B_{z}.
Enter the figure for building shielding effectiveness in line 16 , and draw a line through the points on lines 15 and 16, ending finally on line 17 at a point representing the power density, in $\mu \mathrm{w}$ per sq cm (average), impinging on the receiving source.

This final level should be compared with the present threshold susceptibility status of the receiving unit. If the level derived from the nomograph exceeds the threshold susceptibility level there is a probability that the receiver will malfunction in the given environmental conditions.
A typical example is shown by light lines: peak radar power $=6.5$ megawatts (radar frequency, 400 Mc) ; antenna gain $=37 \mathrm{db}$; slant line distance $=$

TABLE II-Typical Shielding Effectiveness in Db (Five-Sided Shield)

Freq (Mc)	Scam-Soldered Copper Screen	Spol-Soldered Copper Sereen	Galvanized Exp. Metal Lath	Six-Sided Shield
400	$20-35$	$15-30$	$10-25$	Add 20
1,000	$25-35$	$20-30$	$20-30$	Add 15
3,000	$30-40$	$25-35$	$10-20$	Add 10

[^3]150 feet; Fresnel region correction $=-15 \mathrm{db}$; db-down criterion, 30 db ; ground environment level outside the building $=115 \mathrm{v} / \mathrm{m}$ (pk), obtained from nomograph; building shielding $=30 \mathrm{db}$; and electric field intensity inside building $=3.6$ v / m (pk), from nomograph.

If the receiving source threshold susceptibility level is $10 \mathrm{v} / \mathrm{m}$ (peak) at 400 Mc , there should be no receiver malfunctioning.

This work was conducted by Ark Electronics Corp., (formerly Ark Engineering Co.) under subcontract to the Burroughs Corp., Paoli, Pa., Prime U. S. Air Force contractor.

BIBLIOGRAPHY

E. Jacobs, Fresnel Region Patterns and Gain Corrections of Large Rectangular Antennas, Proc 5 th Conf. on RI Reduction and Electronic CompatiRility. Oct. 1959.

These standard Tarzian tube replacement rectifiers are directly interchangeable with over 95% of all popular vacuum tube rectifiers. Although they are generally smaller and more compact than the tubes they replace, their dc current ratings are as much as three times as high.
In addition, they offer the inherent advantages of solid state rectification:

1. Greater electrical stability
2. Compact, rugged construction
3. Instant operation; no warmup; no filament supply

4 Cooler operation
For applications requiring high efficiency, wide temperature range, and long-period, maintenancefree operation, these compact units are unmatched. They are available in production quantities, at realistic prices. Special designs and modifications engineered on request. Special tube replacement units designed by Tarzian engineers include rectifiers with peak inverse voltages to 19,000 .
Write for specifications and prices of tube replacement silicon rectifiers. Application engineering service is available on request.

SARKES TARZIAN, INC.

Resonator Is Developed for Millimeter Waves

MILLIMETER wave resonator can be used with associated equipment for highly accurate measurements of millimeter wavelengths. This type cavity is also suitable for materials study and for use in masers. The resonator was developed by the Na tional Bureau of Standards' Boulder Laboratories.

Millimeter waves are useful for studying molecules and atoms, electron density of heavily ionized gases and properties of superconducting materials. A better understanding of these frequencies could also lead to new devices. However, the short wavelengths are difficult to handle and there had been no efficient way to generate or resonate millimeter waves.

A conventional cavity resonator, which is about a half wavelength long, would be difficult to build for millimeter waves. Surface irregularities must be only a small fraction of a wavelength, which would be a few millionths of an inch for millimeter waves. At the same time, a resonant cavity to study electrons, atoms and molecules must be big enough to allow sufficient interaction between them and the electric field inside the cavity.
The new resonator, which treats millimeter waves like light, has two perforated end plates and no sides. The ends are made of polished brass or silver sheets usually six to twelve inches square. In one case, perforated sheets of polished brass $\frac{12}{2}$ inch thick and twelve inches square were used having a reflectivity of about 99.9 percent. Plates made of perforated films of silver deposited on glass have been used, and silver-on-quartz optical flats will be tried.

Sheet size, and size and spacing of holes are calculated for the frequency involved. The holes act as transformers to couple millimeter waves into and out of the cavity while maintaining a high Q inside the cavity. Effectiveness of the holes depends on their diameter and spacing, which vary with frequency. In an interferometer for $6-\mathrm{mm}$ wavelengths using perforated silver films, holes are 0.0236 inch in diameter and 0.057 inch between centers.

The plates, one fixed and one movable, are placed parallel to each other and millimeter waves are beamed at the fixed plate. A small amount of the energy passes through the small holes so that it strikes and is reflected by the second plate with little energy passing through the holes in the second plate. The waves captured inside the cavity are reflected back and forth by the highly polished surfaces. By adjusting the movable plate for proper spacing, the cavity resonates and transmission through it is maximum. An entire series of standing waves is created inside the cavity, one between each pair of holes at opposite ends.

The plates control millimeter waves like semiopaque mirrors control light waves. The polished plates tend to reflect the waves back and forth with almost no loss of energy through the open sides. The absence of sides permits size adjustments for a wide range of frequencies. Since the cavity is large compared to a wavelength, it is precise and easy to use.

Maximum output occurs each time plate spacing is increased exactly one-half wavelength. Plate spacing is usually about six inches but can be two to three feet, depending on plate size and frequency. The sharp maxima at each half wavelength permit spacing to be measured very precisely.

The device was tested as the resonant cavity of a millimeterwave Fabry-Pcrot interferometer, which provides a transmitting horn with plastic lenses to feed millimeter waves into the cavity, a receiving horn to pick up waves leaving it and instrumentation to record output variations. With it, millimeter wavelengths have been measured to accuracies exceeding 0.04 percent. This approach provides the sharpest response ever obtained with such an instrument in radio or optics and is more accurate than other wave-meters.

Almost no energy is lost in the cavity, giving it a quite high Q, which has been difficult to obtain at millimeter wavelengths. For waves about 6 mm long, Q was
about 100,000 (10 to 50 times theoretical Q of conventional cavities). Since these cavities build up a millimeter signal from electron streams, they can be used in relatively high-powered generators. They also become more efficient at shorter wavelengths.
Such cavities are relatively easy to make and are not limited in shape. A gold-plated silver spherical (biconical) cavity with two perforated sides has been operated by focusing energy to the center. It was designed primarily to test the spherical concept. The first sphere is four inches in diameter and operated successfully at 8 mm . This type of perforated cavity should be valuable for electronic power generation at millimeter and submillimeter wavelengths and might enable design of a resonator for two-level and three-level solid-state masers.

Bandwidth permits operation over a wide frequency range, making the cavities applicable to materials study and for masers. In the $6-\mathrm{mm}$ interferometer being used to study materials like plastics, a sheet of the material is placed in the center parallel to the plates. Since radio waves must be reflected through the material, cavity length must be changed for resonance by an amount that is a measure of dielectric constant of the material.

Another Fabry-Perot interferometer (3.4 mm wavelength) is being used in a maser. (See electronics, p 45, March 17.) This device is initially being used to study hydrogen-cyanide molecules. The Bureau is also constructing a Michelson-type interferometer that will use millimeter waves to determine the velocity of light.

Electron Filter Lens Has Longer Focal Length

electron filter lens design is suitable for use as a monochromator, an electron beam analyzer or a beam-blanking element in a highspeed cathode ray tube. It has a longer focal length and increased aperture, and at 5 Kev primary en-

THE NEW HONEYWELL IRON VANE AC

Here are the AC counterparts of Honeywell's popular DC panel meters. Iron Vane AC Meters are perfectly matched to the DC range and are available in both the Medalist and "standard" case styles. This means a minimum of trouble and expense in mounting. And you are assured of harmonious styling in every detail.
Iron Vane AC Meters are designed for a wide variety of commercial applications - including portable equipment, testers, power supplies, generator equipment and medical equipment. The improved moving iron mechanism features magnetic damping, impregnated field coils, and selected fixed and moving iron material to provide long, trouble-free operation.

52S-AC 21/2"

These meters are available in a wide selection of case styles and colors. Dials can be custom designed with your company name, trade-mark or other data. For full information, contact our representative in your area - he's listed in your classified telephone directory. Or us: Precision Meter Division, Minneapolis-Honeywell Regulator Co., Manchester, N.H., U.S.A. In Canada, Honeywell Controls Limited, Toronto 17, Ontario and around the world: HONEYWELL INTERNATIONAL Sales and service offices in all principal cities of the world.

Honeywell H. Precision Meters

Sperry extends 30-day delivery to cover ECM and augmenter TWT's operating in L, S, and X bands

In a dramatic extension of its capability for delivering high-performance microwave tubes on short notice, Sperry Electronic Tube Division has added three system-proved traveling wave tubes to the list of those available in 30 days. Included in the move are tubes operating in L, S, and X bands. They cover a frequency range 1.1 to 11.0 kMc .

APPLICATION FLEXIBILITY

The tubes in this series are particularly suited to application in augmenters and ECM equipment. The inherent broadband characteristic and unusual ruggedness of these PPM focused tubes makes them unusually versatile in airborne applications. A full course of MIL and environment tests, as well as considerable in-sys-

A typical saturated power versus frequency curve for an L band Sperry TWT.
tem experience have verified these characteristics.

INCREASED POWER POSSIBLE

Although these tubes nominally operate in the 1-2 watt power output range, optimum tuning can increase power to as much as 5 watts. A highmu control grid adds to the versatility

Drive characteristics at mid-band for a typical Sperry ECM/augmenter TWT.
of these tubes by allowing remote switching, modulation control and gain adjustment.

SYSTEM DESIGN SIMPLIFIED

Use of these Sperry tubes greatly simplifies system design problems. Low voltage and high gain reduce power supply requirements. Application is further simplified, since ambient cooling is sufficient in most applications and the tubes may be mounted in any position.
For FREE technical information on these Sperry Traveling Wave Tubes, write to Section 302, Sperry Electronic Tube Division, Gainesville, Florida.

The L-Band tube is priced at $\$ 1,900$., the S-Band tube at $\$ 2,195$., and the X-Band at $\$ 2,540$.

For application assistance and quotation, consult your nearest Cain \& Co. representative. His address and phone number appear on the opposite page.

Inquire about Sperry Tubes from these convenient Cain \& Company offices

REGIONAL OFFICES

Burbank, California 2615 W. Magnolia Blvd. VI 9-6781

Great Neck, Long Island, N. Y.

260 Northern Boulevard HN 6.0600

Chicago 45, Illinois
3508 Devon Avenue
OR 6-9500
St. Petersburg, Florida 410 - 150th Avenue Madeira Beach Prof.BIdg. 391-0151

DISTRICT OFFICES

Boston, Massachusetts
Phone VO 2-5330
Philadelphia, Pennsylvania
Phone VI 8 -1700
Washington, D. C.
Phone EX 3.7587
Dayton, Ohio
Phone RO 7-8661
Dallas, Texas
Phone BL 5-2050
Albuquerque, New Mexico Phone 268-5300

San Francisco, California
Phone YO 8-0995
San Diego, California
Phone HU 8-0665
Seattle, Washington
Phone MA 3-3303

DIVISION

[^4]

One short-focus lens retards electrons to saddle point while second symmetrically placed lens accelerates them to their original energy
ergy, it maintains an energy resolution less than the thermionic spread of the initial beam.

The lens was designed and assembled at the National Bureau of Standards to be used as an electron monochromator. An electron filter lens is an electrostatic lens designed so that electrons having energies above some critical value are transmitted. Electrons with energies below the critical value are rejected. The critical value is associated with the potential of an electric potential barrier.

Filter lenses have been used to increase contrast of diffraction diagrams and electron micrographs by rejecting the inelastically scattered background. Recently these lenses have been used for ion energy analysis.
For the electron monochromator, the initial beam and the final filtered beam had to be essentially collimated. A very long focal length, preferably infinite, was therefore desirable.

In the plane containing the saddle point (where negative potential is greatest in transmitted beam path), the reduction of energy of the electrons leads to sharply curved paths, high angular divergences, and thus short focal lengths. Using a classic lens for this purpose would require a short focus lens to recollimate the beam. However, the electric or magnetic fields of the short focus lens, which usually extend far beyond the focal plane of the lens, would interfere with the filter lens field. Although a long focus recollimating lens does not cause this difficulty, it would
lead to an undesirably large beam diameter.

An intermediate lens in the saddle plane solved the problem of recollimating the beam. The large divergence in this plane therefore has no effect on the final design.

Intermediate imaging is obtained with a filter lens consisting of two short-focus lenses positioned symmetrically about the saddle lens. One lens forms a small image of the entrance aperture to this plane and retards the electrons to the saddle point, as shown in the figure. The second lens forms an image of the saddle plane at the exit aperture and accelerates the electrons to their original energy. The filter lens thus operates as two electron immersion lenses placed back to back.

The two stages of the filter lens can be designed using data for lenses used in emission microscopy, which provided a starting point for designing a series of lenses. By giving the greatest attention to the most promising design, a lens resulted that can be used at energies up to 40 Kev . In conjunction with a multiplier phototube, it becomes a high resolution electron analyzer.

Earlier lenses were designed for specific applications so that different importance was attached to particular characteristics. Therefore, data about these characteristics is incomplete. Comparison of the filter lens with the most complete set of data available on an earlier lens indicates that the new lens will tolerate much wider beams, or conversely more misalignment, for equal sharpness of cutoff. Range cannot be compared directly because even the largest aperture of the new lens is satisfactory for as great an image range as that for which comparative data is available.

When set at 1 volt from cutoff, measured spatial resolution of the lens is 50 microns, which is sufficient for most purposes.

Output of the lens is a well collimated beam about 1 mm in diameter, which cuts off without significant change in size. This electrode configuration can therefore be useful as a beam-blanking element in a high-speed crt. In this application, the very low drive requirements and distance from the cathode are advantageous.

How Dangerous are Beryllia Ceramics?

By C. E. WINDECKER,
Vice President, and Chairman, Safety Committee, National Beryllia Corp., Haskell, N. J.

ALTHOUGH BERYLLIUM OXIDE is widely used in electronics, circuit engineers who would like to take advantage of the material's unique properties, are hampered by fear of material's toxicity on the part of plant management, safety departments, and others. Beryllium oxide ceramics have the remarkable property of conducting heat like a metal while exhibiting the high resistivity and low dielectric loss characteristic of a pure oxide. Strength is high, density is low, melting point is extremely high, neutron capture cross-section is low, and in general beryllium oxide is being found an excellent material for such applications as heat sinks, micromodule wafers, microwave windows, coil forms, tube envelopes and thermocouple insulation. (ELECTronics, p. 109, May 20, 1960 ; p 76, July $14,1961$.

Concern arises from the fact that in certain circumstances, beryllium and beryllium oxide can cause serious illness and have been responsible for some fatalities. This leads one large firm which uses beryllia shapes in units it manufactures to write a separate beryllia purchase order for each unit, often writing several in one day, to avoid keeping beryllia in stock. Other firms refuse to allow beryllia in their plants despite applications that admittedly need it. Actually, such extreme measures are unjustified.

The question is not how dangerous is beryllia, but how likely is it that someone will be exposed to its danger? The answer, for most applications, is highly unlikely. Beryllia might be compared with iodine. If mishandled, either can be fatal. But this is unlikely.

To be dangerous, beryllia must enter the respiratory system. Skin reactions associated with compounds encountered in refining and other chemical processing are not
a problem in ordinary use of the ceramics. Considerable hazard must be contended with by those who process beryllium ores and alloys. Less, but substantial, hazard is faced by those who produce beryllia ceramics. Still less, but nonetheless definite, hazard must be considered when beryllium or beryllia is machined or metallized. But in the handling of hard-fired beryllium oxide ceramic objects in and out of stock and in assembly, there is no hazard and no special precautions are required.

To enter the respiratory system beryllium compounds must be in the form of airborne particles. This can happen if beryllia is heated above about $1,850 \mathrm{~F}$ in the presence of water vapor, or if small-enough particles are mechanically produced from the solid. In ordinary uses of beryllia, these heating conditions can hardly occur accidentally and are rarely produced deliberately. If such heating is necessary, as in metallizing or in experiments with high-temperature thermocouple insulation, it is naturally done by trained personnel. Conventional brazing, in a dry atmosphere at safe temperatures, does not represent a hazard.

Thus the only hazard the electronics user of beryllia ceramics must be concerned with is mechanical production of fine dust particles. Such particles are difficult to produce. Beryllia, as hard-fired by National Beryllia Corporation, ranks just below the diamond in hardness at 9 on the Mohs scale. The ceramic is ultrasonically cleaned at the factory so the products are free of dust when shipped. The abrasion encountered in transit, in handling in and out of containers and bins, and in assembly operations will not produce dust.

Breakage is infrequent; if it does occur particles produced are too large to become airborne. Normal plant housekeeping should take care of pieces which traffic might grind into potentially-dangerous amounts of dust. It is usually recommended that such pieces be returned to the

Technician at National Beryllia Corp. checks dimensions of beryllia ceramic micromodule wafer on optical comparator. No hoods, protective coating, masks or other protection is necessary in ordinary handling and assembly of such beryllia ceramic objects
ceramic supplier by volume users of beryllia, so that they will not accumulate in the user's disposal system.

Machining, metallizing, or both, of beryllia remain the only sources of real hazard. Hazard is easily avoided by doing neither. Most users of beryllia heat sinks and other shapes buy them off-the-shelf or have them machined and metallized to specification by the ceramic supplier who has the equipment and experience to do this work efficiently and safely. If machining is necessary, dust created must not be allowed to escape into the plant atmosphere even in small amounts. Criteria of the Atomic Energy Commission are: average inplant concentration over an 8 -hour day should not exceed 2 micrograms per cubic meter of air, and momentary exposure should not exceed 25 mi crograms/cu meter. Experience over the past 12 years, where these limits have been observed, has been most satisfactory. There has been no new incidence of the beryllium disease.
In machining of beryllium metal, an industrial vacuum cleaner of suitable capacity is considered adequate if its intake is positioned

Addendum for the 1961-62 electronics BUYERS' GUIDE and Reference Issue

PRODUCT LISTINGS

ANADEX INSTRUMENTS, INC.
14734 Arminta St., Van Nuys, Cal. ADV. PG. 435
CONVERTERS-frequency to D C

Manson Laboratories, Inc.
375 Fairfield Ave., Stamford, Conn
AMPLIFIERS-Microwave
BLOWERS \& FANS
COMMUNICATION SYSTEMS
CONVERTERS-Signal
COUNTERS-Electronic GENERATORS-Finey
GENERATORS-Sowe
GENERATORS-Signal
LOADS-Dummy
MARKERS-Frequency, Microwave
MODULATORS
OSCILLATORS-Microwave

OSCILLATORS—R-F
OVENS-Crystal POWER SUPPLIES RECEIVERS-Radio Communication STANDARDS
SIANDARDS
TESTERS—Insulation
TESTERS—Insulo
TRANSFORMERS - Iron Core \&
Ferrite Core, Special TRANSMITIERS - Radio Communication

Transformers, Inc.
200 Stage Rd.. Vestal, N. Y.
AMPLIFIERS-Magnefic
BRIDGES
CALIBRATORS-Meter
COILS
COMPARATORS
CONVERTERS-Power
DEMONSTRATORS-Electronic
Circuif
FILTERS

NETWORKS
POTENTIOMETERS—Precision RESISTORS-Wire-Wound Fixed
STANDARDS
TRANSFORMERS--Iron Core, A-F
TRANSFORMERS—Iron Core,
Power
IRANSFORMERS-Iron Core \& Ferrite Core, Special

Change of Address

SOLA ELECTRIC CO.
1717 Busse Rd., Elk Grove Village, III. Adv. Pgs. 189-192
POWER SUPPLIES
REGULATORS-Volfage
TRANSFORMERS—Iron Core, Power

MANUFACTURERS INDEX

MANSON LABORATORIES, INC.
375 Fairfield Ave.,
Stamford, Conn........ DA 5-1391
SOLA ELECTRIC CO.
1717 Busse Rd.
Elk Grove Village, III. HE 9-2800
TRANSFORMERS, INC.
200 Stage Rd.
Vestal, N. Y.........PI B-3311

> Correction for Manufacturer's Representative

George Stevens Mfg. Co
6022 N . Rogers Ave.
Chicago 46, III.
New York Territory: Allied Winding Equip. Co., 2 Avenue J, Brooklyn 30, N. Y.........CL 2-8150

STREAMLINED in 1961 . . . the current electronics BUYERS' GUIDE contains more product listings, more buying information than ever before . . . STREAMLINED for the greater benefit of the user.

Aeme Flectric CUSTOM BUILT POWER SUPPLIES

These units are engineered to provide specified electrical characteristics in a practical physical design and to perform properly under a wide range of environmental conditions.

Our facilities can accommodate continuous production quantities as well as small lots.

ABOVE - STATIC POWER
RECTIFIER
Output: $500 \mathrm{KW}, 500$ volts DC 1000 amperes
Input: 13,800 volts, 33 amp . 3 phase, 60 cycle

ABOVE - 6 CIRCUIT POWER SUPPLY
Output: 4 circuits, 45 amp ,
65 volt DC
2 circuits, 1.8 amp , 65 volt DC
Input: 460 volts, 3 phase, 60 cycle

RIGHT - MODULE ANALYZER
Output: $-6.5+6.5-13$
$+13-19.5+48$
+48 volts DC
Input: 115 volts, single
phase, 60 cycle

Our vast store of engineering experience is available to assist you in developing a practical solution to your problem.

ACME ELECTRIC CORPORATION

3110 Water St
Cuba, N.Y.
In Canada: Acme Electric Corp. Ltd., 50 Northline Rd., Toronto, Ont.

We at Lapp are mighty proud of our record in the field of tower insulators. Over 30 years ago, the first insulated broadcasting tower was erected-on Lapp insulators. Since then, most of the large radio towers in the world have been insulated and supported by Lapp insulators. Single base insulator units for structures of this type have been design-tested to over $3,500,000$ pounds.

A thorough knowledge of the properties of porcelain, of insulator mechanics and electrical qualities has been responsible for Lapp's success in becoming such an important source of radio insulators. Write for description and specification data on units for any antenna structure insulating requirement. Lapp Insulator Co., Inc., Radio Specialties Division, 184 Sumner Street, LeRoy, N. Y.

properly to provide air velocities of $500 \mathrm{ft} / \mathrm{min}$ at the work. Highspeed operations such as sawing and grinding requires more care, and this is the only type of machining that can be done on materials as hard as beryllia. Such processes can throw particles beyond the range of a simple vacuum intake so the only safe procedure is to totally enclose most or all of each machine tool. Such enclosures must be maintained under negative pressure by individual exhaust blowers or an exhaust system, and air filtered before leaving the system.

The elaborateness of the air cleaning system depends on the amount of machining a shop does. Beryllia processors, who have large shops with consequent high dust loading, require air-cleaning efficiency above 99.5 per cent. Shops not processing large quantities of beryllia will find 98 or 99 per cent efficiency less expensive and entirely adequate from the safety standpoint.

Since metallizing of beryllia ceramic surfaces involves temperatures above the potential danger point and is a wet process, particles can be produced. The rate is very low but accumulation within the furnace must be considered. Furnaces should be equipped with filtered exhaust systems capable of maintaining substantial positive inrush of air through access openings.

When contamination is entirely confined within enclosures and exhaust systems, the general environment in the plant is safe, and special precautions are not required. National Beryllia Corp. operates a large beryllia processing, machining, and metallizing facility without such production impediments, and has never had a slightest hint of beryllia-caused illness. They are plainly not required, therefore, of a beryllia user who merely does a little machining or metallizing.

Care should be taken when filters are changed or when machine enclosures or furnaces are opened for maintenance or alteration. It need not be elaborate. Workmen should wear laboratory smocks or similar garments over their regular clothes, and wear respirators, when working on contaminated equipment and filters. With reasonable care they will not bring dust out into the
room; if they should, a vacuum cleaner in dry areas or a good mopping in wet, should be sufficient for safety.
Disposal of contaminated filters, hand towels, mops, and similar waste should not utilize conventional trash removal nor incineration. The type of service which handles radioactive waste, now widely available, should be utilized and the wastes should be sealed in containers for storage and transfer. Fiber or metal drums, taped shut, would be adequate.
The above discussion refers entirely to hard-fired beryllium oxide objects, and all ceramics supplied by National Beryllia are of this type unless otherwise specified. A certain type of thermocouple, howaver, is insulated with beryllia beads deliberately made friable. After being sealed in the protective sheath the entire assembly is swaged or drawn, thus crushing the beads, to reduce diameter and improve resistance to vibration and shock. These friable beads must be handled by the thermocouple manufacturer as well as the beryllia fabricator under hoods with filtered exhaust systems creating positive air inrush through access openings.

The finished thermocouple is safe because the sheath is sealed. Even if the sheath were somehow breached by accident, the beryllia inside is not in the form of a loose powder, but is highly compacted. So dust would not be released in the atmosphere. If pieces were somehow broken out, dust could be produced from them by abrasion or crushing, so particles should be disposed of.

A plant deciding to do machine or metallize beryllia should monitor its air as a check on its enclosures and exhaust provisions. Equipment for this purpose is widely available, as is laboratory service for analysis of air sampler filters.

Thus there is no real impediment to machining and metallizing beryllia. Nevertheless, most users of beryllia components prefer to avoid the installation of enclosures and exhaust systems, and disposal problems, and do so by having any needed machining and metallizing done to specification by their beryllia source.

MAN of STATURE

In Communication Components

Since he's composed 100 of ADC plugs, jacks, jack panels, patch cords and terminal blocks naturally he's the ultimate in reliability. He cuts quite a broad swath in his chosen field too. Anywhere audio signals are switched or distributed you'll find more components of this type with his brand than any other. He offers the widest choice of types and models and speedy delivery from stock.

The Most Complete

 Line of MIL JacksHe's big with the military too! As might be expected of a recognized leader in longframe jacks he offers the largest number of types manufactured to the requirements of

ADC STOCKING DISTRIBUTORS
Chicago
Newark Electronics
Inglewood, Ca Newark Electronics Corporation
Los Angeles
Henry Radio, Inc.
Montreal
Payette Radio, Ltd. New York City
Harvey Radio Company, Inc Electronics, Inc Philadelphia Philadelphia Philadelphia Electronics, Inc.
Toronto Toronto Electro-Sonic Supply Co., Ltd. Washington, D. C. Electronic Wholesalers, Inc.

WRITE FOR COMMUNICATION COMPONENTS BROCHURE

ADC PRODUCTS

A Division of Magnetic Controls Company 2838 13th Ave. South - Minneapolis 7, Minnesota
TRANSFORMERS - REACTORS - FILTERS - PLUGS and JACKS • JACK PANELS

Tube clamp and tube tapper module, left. Back view of part of the automatic tester, right. Tubes are tested at 1,800 per hour, assuring uniform lests and giving quick feedback to production

Automatic Tube Tester

ELECTRON TUBES are tested automatically on a machine designed by company engineers at Raytheon Company, Newton, Mass.

One operator loads the seven-ton machine with tubes and another worker packs tested tubes. The machine performs twenty static and dynamic electrical tests, at a rate of 1,800 tubes per hour. After loading, the tubes index single file to the preheat section where operating conditions are simulated. Then the tests shown in the table are performed automatically.

Field rejects have greatly decreased since the machine was placed in operation and a higher quality assurance factor and repeatability of performance have been obtained. The ability of the machine to subject all tubes to exactly the same test conditions has upped acceptance. The human fatigue factor, with its consequent lowering of quality assurance, is not a problem.

After preheat cycles, the tubes are indexed for each of the twenty parameters tests. If a tube is within preset limits, it proceeds to the next test position; if it is outside limits, it is ejected into bins, as shown in the picture on the cover.

Counters indicate the number of rejects for each position, and also count total input and total output. Testing speed is such that process engineering can be alerted if tubes coming through production are not up to standard. Quick corrective action is possible and scrap is less.

The automatic test set is calibrated daily, as well as prior to changeover to a different tube type. A sample of 25 tubes considered acceptable is checked five times each day. Quality control x and 1 graphs are plotted hourly for up to 20 reject items and for acceptable tubes, to ensure product quality. A quality assurance sample is selected at the completion of each lot and submitted to tightened inspection per MIL Std 105B. A feature soon to be added is an adapter for testing flying lead and other type tubes.
Tests that follow can be conducted in any sequence:

1. Shorts (tap test)
2. Filament current
3. Continuity (tap test)
4. Plate current cutoff
5. Plate current, high
6. Plate current, low
7. Plate current difference (activity test)
8. Transconductance or voltage gain, high
9. Transconductance or voltage gain, low
10. Grid No. 2 current
11. Heater-cathode leakage (positive filament)
12. Heater-cathode leakage (negative filament)
13. Cathode emission
14. Grid No. 1 current
15. Audio and r-f noise (tap test)
16. Insulation
17. Insulation
18. Pulse emission
19. Spare
20. Spare
21. Good tube ejection station

Self-Programmed Circuit Checkout

brooks research inc., East Rochester, N. Y., has developed a SelfProgramming Automatic Circuit Evaluator (SPACE IV System) for production testing computer and missile electronics. The first of the units-which will provide reliable automatic continuity testing at large man-hour savings has been delivered to General Electric's

Now! Get premium features in a DVM priced at only $\$ 940$

Cubic Corporation announces the V-45 -the first low-cost digital voltmeter with premium features. Now industrial users can buy a top-quality, precision four-digit instrument at a price they can justify - only $\$ 940$. Here are the premium features you get in a V-45:
Floating Input: Both sides of the input may be floated above or below ground. The floating input circuit provides more than 80 db rejection to $60-\mathrm{cps}$ common-mode signals. A grounded input is also supplied.
Extended Range: A 10% extension is incorporated in each of the V-45's three ranges. Voltages up to 10.999 may be read on the 10 -volt range; voltages up to 109.99 may be read on the 100 -volt
range; and voltages up to 1099.9 may be read on the 1000 -volt range. Therefore, the operator need not constantly shift back and forth between ranges when reading close to the normal upper limit of a range.
Transistorized Logic and Drive Circuit: The V-45 DVM uses construction techniques representing the latest state-of-the-art, with all-transistorized circuitry driving reliable stepping switches.

Cubic manufactures a complete line of quality digital instruments, including a-c and d-c voltmeters, ohmmeters, ratiometers, scanners and printer controls. Write for literature to Dept. E-110, Industrial Division, Cubic Corporation, San Diego 11, California.

SPECIFICATIONS

MODEL V-45 DIGITAL VOLTMETER
Input impedance: 10 megohms at balance.
Ranges: Manually selected,
10% extended range
Low ± 0.000 to $\pm 10.999 \mathrm{vdc}$
Low ± 0.000 to $\pm 10.999 \mathrm{vdc}$
High ± 000.0 to $\pm 1099.9 \mathrm{vdc}$
Sensitivity: 1 millivolt
Sensitivity Control: Continuously varSensitivity Control: Continuously var-
iable from 1 digit to standby lockout. iable from : Input: 105-125 vac, 50-60 cps, Power Input: $105-125$ vac, $50-60 \mathrm{cps}$,
25 watts standhy, 30 watts operating. Dimensions: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $14^{\prime \prime}$ Dimensions: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $14^{\prime \prime}$
deep, rack or bench mounting with deep, rack or bench mounting with
dust-proof switch and bridge section. Average Balancing Time: Less than 2 sec.

cubic
CORPORATION

MU\& tí \&ayEf* Clad Metals Combine The Exact Operating Properties I Must Have.

This design engineer has just realized a fact we wish more people would discover. MULtiLAYER CLAD METALS PROVIDE MORE COMBINATIONS OF OPERATING CHARACTERISTICS THAN ANY SINGLE MATERIAL OR ALLOY.

If you need a spring with high conductivity, superior elastic properties. high temperature strength and easy weldability, no single spring alloy can satisfy all the requirements. MULtil AYER clad spring metals can!

If a tube for chemical processing must have a clean, corrosion resistant, stainless steel surface, high thermo conductivity, plus high forming ductility for flaring and bending; no
*Trademark of Metals \& Controls Inc.

Why didn't I think of that?

single material can satisfy all these requirements. MULtiLAYER clad tubing can!

Therefore, why compromise? Why be limited to only partial reliability in your components when, with MULtiLAYER clad metals, you can get maximum satisfaction?

You specify the engineering properties you need . . . we'll put the metals together for you - and even make the components in many cases. Find out about this modern design material. Call us or write for our illustrated brochure GP-1.

For materials and components come to Metals \& Controls

METALS \& CONTROLS INC.
1310 FOREST ST.
A ATYLEBORO. MASS.
ACORPORATE DRUMENTS
INCORPORATED

Ordnance Department at Pittsfield, Mass., where it will be used to test wire wrap assemblies of the Polaris weapons system. The test system can handle up to 10,000 terminations, and will complete a test in less than 90 minutes. If done manually, the operation would require $500,000,000$ separate tests, and would take approximately six manmonths.
The system is punch-tape programmed in ordinary use but is also self-programming when an unknown wiring assembly is to be tested. The system can also test

Automatic continuity tester checks wire-wrap assemblies for Polaris
high potential leakage of wiring harnesses for aircraft and missiles and cables between silos on hardened missile sites.

Aluminum Foil for Reflector

Aluminum foil bubble, formed at $400 F$ by compressed air, is placed on mold, in an carly step in making the antenna reflector

Foil reflector surface, 0.002 inch thick, is made ready
aluminum foil is being used in the manufacture of reflectors for antennas.

The antenna for the Bell Automatic Landing System operates at such high frequencies that the reflecting surface could not be made of glamour cloth, a material often used for antenna reflectors. The spray metal technique, used when a metal surface is required, was not entirely satisfactory with respect to conductivity and adhesion. In this technique metal is sprayed onto a mold, then built up with plastic backing.

Preformed honeycomb is placed on the plastic covered foil, providing the structure with strength and rigidity

Completed structure is a highly accurate parabolic reflector

An alternative method using aluminum foil has been developed by Dalmo Victor Co., Belmont, California. The method produces an accurate parabolic reflector that can be used at high frequencies.

The foil for the reflector surface, 0.002 inch thick, is clamped between rings and heated to 400 F . Compressed air is used to force the foil into a bubble, and the bubble is then stretch-formed over a mold. Plastic is applied over the back of the bubble and cured. Then a preformed aluminum honeycomb structure is added as shown above.

MULHi LavaF*

Welded Assemblies Eliminate RNVETS \& BUTTONS

Take a strip of spring steel, clad an overlay of copper to it, weld and coin a precious metal ball at the exact contact point. The result . . . a MULtiLAYER relay part with operating qualities impossible to obtain through the use of any single alloy or plated material. When blanked and cut off, this part gives you maximum reliability, peak performance without compromise, occupies a minimum of space and costs a fraction of parts made by conventional methods. Especially when produced in quantity by our time-proven direct cladding methods, four-slide presses and custom designed welding equipment.

Similar parts from wire, inlay and overlay strip, and other MULtiLAYER clad metals produce the same benefits. Our field engineers in your territory will help you apply this modern design material to your products. Write, call, or wire Marketing Manager, Precision Electrical Parts Dept.

METALS \& CONTROLS INC.
1310 Forest St., Attleboro, Mass.
A corporate division of

New On The Market

Miniature Thermal Wire Stripper
 VARIABLE HEAT CONTROL

WESTERN ELECTRONIC PRODUCTS Co., 2420 N. Lake Ave., Altadena, Calif. Model G-1 Tiny-Therm is designed for stripping insulation from small-gage wire in restricted space. It strips Teflon and other high-temperature insulation as well as lower-melting materials such as vinyl, polyethylene, and the like. It
is recommended for use on wire gages from No. 16 to No. 40 or smaller without any adjustment. Pincers-type heated filaments permit grasping the wire to sever insulation and then pulling to remove insulation.

CIRCLE 301 ON READER SERVICE CARD

Infrared Detector

THERMOELECTRICALLY COOLED

RADIATION ELECTRONICS CO., 5600 Jarvis Ave., Chicago 48, Ill. An efficient, low current thermoelectric (Peltier) cooler has been coupled to a photoconductive indium anti-
monide (InSb) element to provide high detectivity in the 1 to 6 micron spectral region without complex gas or liquid cooling systems. Operating temperature is
approximately -78 C . Unit offers performance compatible with military and industrial environments and applications.

CIRCLE 302 ON READER SERVICE CARD

Laser Material
 NEW OUTPUT WAVELENGTH

semi-elements inc., Saxonburg Blvd., Saxonburg, Pa. Barium fluoride doped with uranium has an output wavelength of 26,000 angstroms which makes it an excellent infrared laser material. The crystals are priced at $\$ 150$ per inch of length in 1 in. diameters and are available up to $1 \frac{12}{2} \mathrm{in}$. to $1 \frac{3}{3} \mathrm{in}$. in length. Fabricated, finished and ready to use laser crystals are priced at $\$ 595$.

CIRCLE 303 ON READER SERVICE CARD

UHF Capacitors

BY-PASS \& COUPLING
ERIE RESISTOR CORP., 644 W. 12th St., Erie, Pa., has developed uhf by-pass and coupling capacitors with short lead lengths and low inductance to be used with ceramic and glass seal concentric ring termination vacuum tubes. The custom-designed units have working voltages varying from 350 vdcw to 500 vdew. Nominal capacitance range is 100 pf to $5,000 \mathrm{pf}$.

CIRCLE 304 ON READER SERVICE CARD

Magnetic Switches
 LONG LIFE UNITS

hamlin, inc., Lake Mills, Wisc. The DRG-DT and DRG-DTH series provide a thoroughly reli-

Big volume of engineering prints? Put Ozalid's new Printmaster 900 to work. This new, heavy-duty whiteprinter is a workhorse for capacity, a thoroughbred for quality, a favorite for economy.
Fast! Top speeds up to 75 feet per minute. Versatile... processes any dry diazo material up to $42^{\prime \prime}$ wide without sticking. Develops both sides in one pass! Unique...new, sleeveless, scratch-proof developing and simplified control make it top performer in its price class.
Here, in truth, is a new concept in whiteprinting. New ideas, new designs from the leader in the industry that spell new efficiency, reliability, economy in engineering reproduction.
The coupon will bring you the facts on Ozalid's new "900". Facts that may save you thousands yearly. Mail it today.

OZALID ${ }^{\text {® }}$
Dlvision of General Anlline \& Film Corporation, Johnson City, New York REMEMBER. FOR PEAK EFFICIENCY. ALL OLALID WHITEPRINTERS WORK BEST WITH OLALID SEMSITILED MATERIALS

able source of a normally closed reed switch without requiring biasing the switch with magnets and remove the potential source of troublesome problems, such as shielding, loss of strength, etc. Eliminating biasing magnets also
reduces the space requirements for compact component assemblies. Contact arrangement: spdt-form C. Contact resistance: 25 to 40 milliohms.

CIRCLE 305 ON READER SERVICE CARD

Variable Coil Forms COMPLETELY SHIELDED

micro metals, 72 E. Montecito Ave., Sierra Madre, Calif., has developed L52 coil forms. Their efficient use of space and the ease with which they can be assembled make them ideal for many p-c applications. They are available from stock in
four grades of iron powder for use from 50 Kc to 150 Mc . Assemblies are $17 / 32 \mathrm{in}$. sq by $\frac{1}{2} \mathrm{in}$. high and are available with a is in. sq can. Winding space is 0.437 in . diameter by 0.200 in. long.

CIRCLE 306 ON READER SERVICE CARD

Irvington 11, N. J. Header design has a 6 deg tapered edge to provide a tight fit and prevent liquid encapsulant from leaking out of the case.

CIRCLE 308 ON READER SERVICE CARD

Lever Switch

ILLUMINATED

sWitchcraft, inc., 5555 N. Elston Ave., Chicago 30, Ill. An illuminated lever switch, the Lever-Lite, is designed to color code switching positions and functions. One switch replaces an ordinary switch and up to three indicator lamps. Control panel costs and space requirements can be cut by at least 40 percent. It is available in 2 and 3 position,
non-locking and locking types. Mounts on $5_{8}^{5} \mathrm{in}$. centers in panels up to $\frac{3}{3}$ in. thick.

CIRCLE 309 ON READER SERVICE CARD

Ruby Rod
SAPPHIRE OVERLAY
valpey crystal corp., 1244 Highland St., Holliston, Mass., announces a ruby rod with sapphire overlay, exhibiting improved characteristics which are expected to put the ruby optical maser another step closer to continuous wave operation. The rod offers increased capture cross section for greater efficiency. It also has increased conduction cooling area, providing more cooling of the rod to allow operation at lower threshold levels.

CIRCLE 310 ON READER SERVICE CARD

Ceramic Tube VOLTAGE-REGULATOR

general electric co., Schenectady 5, N. Y., has a ceramic voltageregulator tube with vibration-proof mounting that maintains stable voltage throughout its entire ambient temperature range of -65 to 400 C. Voltage is held constant to within $\pm 2 \mathrm{v}$. Type ZR-7501 operates at a design point of 103 v over a current range of 5 to 100 ma . Its d-c starting voltage is 150 v max.

CIRCLE 311 ON READER SERVICE CARD

Amplifier Klystron

eitel-mccullough, inc., San Carlos, Calif. The X-841, designed to

BROADBAND SECONDARY PHASE STANDARD

FEATURES . . .

- Phase Angle Continuously Variable from 0° to 360°
- 20 cps to 20 kc Range of Operation
- Good Inherent Stability
- Quick, Easy Operation with a Minimum Number of Controls

DESCRIPTION . .

Type 709-A, when supplied by an external sinewave oscillator supplies two sinusoidal voltage signals whose phase relationship can be varied smoothly from 0° to 360°. The frequency of the external oscillator can be 20 cps to 20 kc . The type 709-A is used to calibrate phase meters and other phase measuring instruments that operate at audio frequencies.

SPECIFICATIONS . . .

Frequency Range: 20 cps to 20 kc Accuracy of Phase Angle:
$\pm 1^{\circ}$ from 20 cps to 10 kc
$\pm 3^{\circ}$ from 10 kc to 20 kc
Output Voltage Range: 0.5 to 5 volts (rms)
Output Impedance: Low (from cathode follower)
Power Supply: 105-125 volts, $50-60$ cycle electronic-regulated, self-contained supply requiring approximately 100 watts
For full details on specifications, wire or call . . .
TECHNOLOGY INSTRUMENT CORP. OFACTON

FORMERLY ACTON
LABORATORIES, INC
533 MAIN STREET, ACTON, MASS.
CIRCLE 205 ON READER SERVICE CARD October 13, 1961

Packed into this Struthers-Dunn FC-215 DP-DT relay is reliability heretofore unattained in a tiny sealed can unit for heavy duty power service under critical ground and air uses up to $125^{\circ} \mathrm{C}$.

Designed to meet or exceed MIL-R-5757D, MIL-R-6106C and the superseded MIL-R-25018 requirements. Assembled under rigid environmental conditions. Laboratory checked and quality controlled throughout.

Contacts rated for 10 ampere DC operation. Standard coils rated 26.5 volts DC nominal with 400 ohms coil resistance. Others available. Hook or wire lead terminals available on 0.2 grid-spaced headers.

Write for Dunco Data Bulletin FC-215 to Struthers-Dunn, Inc., Pitman, N. J.

All-welded Internal Construction

 . . . assures reliable operation under 30G vibration to 2000 cycles and 50G shock. STRUTHERS-DUNN

PIONEERS OF SPACE AGE RELAY DEPENDABILITY

[^5]
calculated ${ }^{\text {Wi }}$

For all your a-c and d-c power supply requirements or special engineering, contact your nearest SOLA representative:

CALIFORNIA, San Francisco; Sola Electric Co., Three W. 37 Ave., San Mateo, Flreside 1-6538 - Los Angeles; Sola Electric Co., 2907 West Vernon Avenue, Axminster 2.0166
COLORADO, Denver; Slaybaugh \& Thompson 100 W. 13th Avenue; AComa 2.5826
florida, Winter Park; James Millar Assoc.. P. O. Box 1603; Mldway 7.7407
gEORGIA, Allanta; James Millar Assoc., 1036 Peachtree Street N. E., TRinity 6.0919 INDIANA, Indianapolis; R. O. Whitesell \& Assoc.. 6620 E. Washington Street; FLeetwood 9.5374
IOWA, Des Moines: McDowell-Redlingshafer Sales Co., 3615 Olive St.: JEfferson 3.3277 KENTUCKY, Louisville: R. O. Whitesell \& Assoc., 400° N. 38 Street; SPring 6-2024
MASSACHUSETTS, Newton; Sola Electric Co., 272 Centre Street; Blgelow 4-3354
MICHIGAN, Detroit; R. C. Merchant \& Co., Inc., 18411 W. McNichols Rd.; KEnwood 5-6000 MINNESOTA, Minneapolis; Heimann Co., 1711 Hawthorne Avenue; FEderal 2.5457
MISSOURI, Kansas City; McDowell-Redling. shafer Sales Co.. 1103 E. Armour; WEstport 1.5622
-St. Louis; McDowell-Redlingshafer Sales Co., 3615 Olive Street; JEfferson 3-3277
NEW JERSEY, Little Ferry; Sola Electric Co., 84 Industrial Avenue; HUbbard 9.1060
NEW YORK, Buffalo; R. W. Mitscher Co., 487 Ellicot Square Building; TL 4-2517
NORTH CAROLINA, Charlotte; Ranson, Wallace \& Co., 1161/2 E. 4th St.; EDison 4-4244 OHIO, Cleveiand; Sola Electric Co.. 14235 Detroit Avenue; LAkewood 1-8038
PENNSYLVANIA, Philadelphia; Sola Electric Co., (Philadelphia answering service WAlnut 2.5340): or 210 North 6 Street, Camden 2, N. J.: EMerson 5-7744

- Pittsburgh; R. G. Sidnell \& Co., 675 Princeton Bivd.: CHurchill 2.1476
TEXAS, Dallas; Robert E. Nesbitt Co., 1925 Cedar Springs: Riverside 7-4145
WASHINGTON, Seattle: Northwestern Agencies. Inc., 4130 First Ave. So.; MAine 3.8882 WASHINGTON, D. C.; Sola Electric Co., contact 8719 Colesville Rd., Silver Spring. Md.; JUniper 5-0331

CIRCLE 206 ON READER SERVICE CARD
provide pulse-power of 1.25 megawatt in long-range radar systems, has operated successfully at 2.5 megawatt peak power at 6 percent duty.

CIRCLE 312 ON READER SERVICE CARD

Power Supplies HEAVY DUTY

atlas transformer co., 1839 Moore St., San Diego 1, Calif. The P-132 series of heavy duty 28 v d-c regulated power supplies are designed for relay control circuitry. They are available in various current ratings: $25 \mathrm{amp}, 50 \mathrm{amp}$ or 100 amp.

CIRCLE 313 on reader service card

Detector-Preamplifier

INFRARED
MINNEAPOLIS-HONEYWELL REGULATor co., 1915 Armacost Ave., Los Angeles 25, Calif., announces a photo-electro-magnetic InSb IR detector combined with integrallymounted very low noise preamplifier. It features in one rugged uncooled unit: high responsivity, long wavelength detectivity (7μ), frequency response of 300 cps to 20 Kc, 30 mw power consumption, and compactness (5.7 oz)

CIRCLE 314 ON READER SERVICE CARD

Breadboarding Kit

PRECISION METAL PRODUCTS CO., 41 Elm St., Stoneham, Mass. Construction set enables designer to com-

MAJOR ADVANCE IN THE SCIENCE OF ELECTRON BEAM DEFLECTION! SPOT RECOVERY

Fastest! to $1 \mu \mathrm{~s}$

 SPOT SIZE Smallest - by 25\% SPOT SWEEPStraightest.

* DEFLECTRONS for DISPLAYS

Where ordinary precision yokes FAIL to meet your requirements.
Write for NEW "DEFLECTRON" Data and Standard Yoke Catalog.

Main Plant: MAHWAH, N. J. DAvis 7.1123
PACIFIC DIV.- UPLAND, CALIF. YUkon 2-0215
CENTRAL DIV.- LANESBORO, PA. ULYsses 3-3500

Over 100 standard types . . . many specials . . . produced for oscilloscopes and critical display instrumentation. 1 to 10 guns; square, round, or rectangular faces; high resolution; spiral band for radar, fire control, counter-measures, guidance-where quality control counts most. Submit your application details for an engineering review.
plete prototypes without using any power tools except a soldering iron.

CIRCLE 315 ON READER SERVICE CARD

Cast Epoxy Rod FOR WINDING FORMS

BOONTON MOLDING CORP., Boonton, N. J., can supply cast epoxy rod formulated to meet the most rigid specifications when used for precision wirewound resistors under MIL-R-93B. The BMC 2000 series is available in standard colors and diameters. Material is distinguished by its high volume resistivity at high temperatures- 0.19 $\times 10^{18}$ at 180 C , and also by its high heat distortion- 133 C at 264 psi .

CIRCLE 316 ON READER SERVICE CARD

Transducer

allegany instrument co., 1091 Wills Mountain, Cumberland, Md. Model 342 precise universal force transducer meets the requirements of rocket and missile testing.

CIRCLE 317 ON READER SERVICE CARD

Bar Solder

CUTS REJECTS

alpha metals, inc., 56 Water St., Jersey City 4, N. J., announces a bar solder that has been effective in cutting p-c joint rejects from 8 in 400 to 1 in 5,000 . The oxidefree Alpha Vaculoy bar solder (shown at right) cuts dross, increases bath life, reduces inherent inclusions, improves wetting and produces brighter joints. It comes in standard 1 lb bars, or 9 lb ingots for automatic soldering machines.

CIRCLE 318 ON READER SERVICE CARD

PRODUCT BRIEFS

THERMISTOR MOUNTS broadband. General Microwave Corp., 47 Gazza Blvd., Farmingdale, N. Y. (319)

MAGNETIC COMPUTER TAPE heavy duty. Computron, Inc., 122 Calvary St., Waltham, Mass. (320)

ULTRASONIC CLEANER pint-sized, low cost. Ultrasonic Industries, Inc., Ames Court, Fingineer's Hill, Plainview, N. Y. (321)

SILICON COMPUTER DIODES high speed switching. Microwave Associates, Inc., South Ave., Burlington, Mass. (322)

TV MONITOR transistorized, dual display. RMS Associates, Inc., 805 Mamaroneck Ave., Mamaroneck, N. Y. (323)

TORQUE RECORDER automatic. Bald-win-Lima-Hamilton Corp., 42-4th Ave., Waltham 54, Mass. (324)
d-c ammeter, clip-on type. HewlettPackard Co., 1501 Page Mill Road, Palo Alto, Calif. (325)

CIRCUIT TEMPLATE with semiconductor symbols. Quintec Instrument Co., Box 85, Altadena, Cal. (326)

BINARY COUNTER MODULES semiminiature. Walkirt Co., 141 W. Hazel St., Inglewood, Calif. (327)

Parametric amplifier small lightweight. Lel Inc., Akron St., Copiague, L. I., N. Y. (328)
time delay relay solid state. Guardian Electric Mfg. Co. of California, Inc., 5575 Camille Ave., Culver City, Calif. (329)
digital voltmeter with four digits plus sign. Telecomputing Corp., 9229 Sunset Blvd., Los Angeles 46, Calif. (330)

Static frequency changer 10 Kva, 3 phase. American Electronics, Inc., 1598 E. Ross Ave., Fullerton, Calif. (331)

PRESSURE TRANSDUCER high frequency response. Taber Instrument Corp., 107 Goundry St., North Tonawanda, N. Y. (332)

ANTENNA MOUNT low weight. Temec, Inc., 7833 Haskell Ave., Van Nuys, Calif. (333)

CAMBION® Standard Wound Chokes give long lasting new strength to your inductance factor! And with good reason. These durable components are always quality-controlled, tested and guaranteed - and meet, and even exceed, applicable MIL SPECS.

Both the No. 2950 and the No. 2960 exemplify the troublefree reliability of the whole broad line of CAMBION chokes. They're epoxy-encapsulated and provide a secure seal against moisture as well as solid protection against mechanical breakage. Definite advancements over the old-style alkyd varieties, these rugged chokes are temperature-cycled from $-50^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \ldots$ repeatedly cycled in sodium chloride solution... rechecked electrically and physically . . . tested for terminal twist and drill . . and checked for dielectric strength at simulated altitudes up to 80,000 feet. They're color-coded for preferential values.

Choke No. 2950 offers an inductance range from $1.1 \mu \mathrm{~h}$ to $120.0 \mu \mathrm{~h}$ and conforms to MS-91189, while choke No. 2960 has an inductance range from $0.15 \mu \mathrm{~h}$ to $27.0 \mu \mathrm{~h}$ and meets MIL-C-15305B (Grade 1).
The broad CAMBION line includes plugs and jacks, solder terminals, insulated terminals, terminal boards, capacitors, shielded coils, coil forms, panel hardware, digital computer components, and they're all guaranteed. For a catalog, for design assistance or for both, write to Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Massachusetts.

Rectifier circuits . . . full-wave bridge and half-wave . . . use highest quaiity miniature silicon diodes. Note potted construction.

For reliable switching

 . . . try "Diamond H" Series RA and SA relays with a-c coilsThese relays for 400 cps and 60 cps operation are identical in size and weight to Hart's widely specified Series R and Sd -c relays and meet the same specifications*. They provide the same shock resistance (to 50 G), the same vibration resistance (to $20 \mathrm{G}-2000 \mathrm{cps}$), and the same performance under temperatures ranging from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Contact ratings from dry circuit to $10 \mathrm{amps}, 115$ volts a-c resistive and 30 volts d-c resistive.

The "Diamond H" line includes hundreds of standard models and special variations are possible. Ask for literature and specification list.
*Like the R and S scries, they meet the requirements of MIL.R.5757C. Models are also available to fill the requirements of MIL-1.6181.

MANUFACTURING COMPANY 202 Bartholomew Avenue Hartford 2, Conn. Phone Jackson 5-3491

Literature of the Week

Chassis slides Leichner Mfg. Co., 1510 N. Neil St., Champaign, Ill. Bulletin describes Chassi-Slides for use with any standard rack or cabinet. (334)
c-c Tv Fairbanks, Morse \& Co., 100 Electra Lane, Yonkers, N. Y., has published a brochure entitled "Closed Circuit TV-New Eyes For Science and Industry." (335)

PNPN device Tung-Sol Electric Inc., 1 Summer Ave., Newark, 4, N. J., has released a brochure on the Dynaquad-a four layer semiconductor. (336)

SEMICONDUCTOR PACKAGE Corning Glass Works, Corning, N. Y. Bulletin describes a microminiature semiconductor package made of glass. (337)

PULSE COMPRESSION NETWORKS Ortho Industries Inc., 7 Paterson St., Paterson 1, N. J. Catalog page describes pulse compression networks (Chirp radar). (338)
polymers Marbon Chemical Division of Borg-Warner Corp., Washington, W. Va. Catalog covers nine major grades of Cycolac brand polymers. (339)

CORONA TESTING Associated Research, Inc., 3777 W. Belmont Ave., Chicago 18, Ill. Bulletin contains data on corona test sets, detectors and pickup networks. (340)

POWER SUPPLIES Valor Instruments, Inc., 13214 Crenshaw Blvd., Gardena, Calif. A catalog describes a line of high efficiency d-c power supplies. (341)
computing system Bendix Computer Division, 5630 Arbor Vitae St., Los Angeles 45, Calif., has available a six-page brochure on the G-20 high-speed computing system. (342)

SEmiconductor manufacture Sylvania Electric Products Inc., 1100 Main St., Buffalo 9, N. Y. A booklet describes the manufacture of semiconductor devices. (343)
insulation material JohnsManville, 22 E. 40th St., New York 16, N. Y. Bulletin EL-65A describes a high dielectric sealing compound. (344)
polycarbonate resin General Electric Co., Pittsfield, Mass. Brochure discusses the advantages of Lexan polycarbonate resin for components. (345)
stress - strain gage Baldwin-Lima-Hamilton Corp., Waltham, Mass. Product data sheet describes a bonded-resistance foil-type stressstrain gage. (346)

MICROMINIATURE CONNECTORS COntinental Connectors Corp., Woodside 77 , N. Y. Six-page brochure covers the series MM22 precision microminiature connectors. (347)
impulse transmitters Landis \& Gyr, Inc., 45 W. 45th St., New York 36, N. Y. Folder describes five different basic Sodeco impulse transmitters. (348)

RETENTION/COOLING DEvices The Birtcher Corp./Industrial Division, 745 S. Monterey Pass Rd., Monterey Park, Calif. Catalog lists a line of retention/cooling devices for tubes, transistors and components. (349)
instrumentation C. L. Berger \& Sons, Inc., 37 Williams St., Boston, Mass. Booklet discusses the availability of facilities for the production of critical elements of instrumentation. (350)

рното-optics Consolidated Systems Corp., 1725 South Peck Road, Monrovia, Calif. Brochure describes the facilities and products of the company's Photo-Optical division. (351)
transistors Texas Instruments Inc., P. O. Box 5012. Dallas 22, Texas, offers 10 transistor product data sheets to bring TI technical literature files up to date. (352)
reinforced plastic Taylor Fibre Co., Norristown, Pa. Properties for an asbestos-base reinforced plastic are given in bulletin 8.5. (353)
microwave Chambers Emerson \& Cuming, Inc., Canton, Mass., offers a standard microwave chambers catalog and price list. (354)
pulse instrumentation Servo Corp. of America, 111 New South Road, Hicksville, L. I., N. Y., offers a short form catalog on E-P line of pulse instrumentation. (355)

Standard DC Torquers available in
 the widest range
 of sizes and capacities

Silent, gearless, Inland DC pancake torque motors have high torque-to-inertia ratios and excellent linearity throughout the torque range. They provide an exceptional degree of accuracy for direct-drive servo positioning, while eliminating problems of backlash, windup, and compliance.
Inland's complete line of DC torquers serves in such varied applications as: missile and aircraft stable platforms, radar tracking antenna, space vehicle reaction wheel drive, rate table drives, rotary solenoids for missile arming systems, and special machine tool applications-just to name a few.

For systems duty with Inland torque motors, a line of rotary and solid state amplifiers is also avail-
able. All Inland products are backed by extensive experience . . . thorough quality control, reliability, and field testing . . . successful performance in practically every major missile and space vehicle program. For details, complete specifications, and illustrated brochure, write Department- 1210

Standard Model Specification Range from smallest to largest torque motors*		
FRAME SIZE	1.3 INCHES	36.0 INCHES
Peak torque, lb.ft.	0.1	3000
Volts at peak torque, stalled at $25^{\circ} \mathrm{C}$	48	246
Amps at peak torque	1.21	30
Sensitivity, Ib.ft./amp	. 09	100
Temperature rise per watt, ultimate, ${ }^{\circ} \mathrm{C}$	13.4	0.04
Total friction, lb.ft.	0.003	18
Ripple torque, pound-feet		
At low torque levels	0	0
At peak torque	0.1	trace
Weight, ibs.	0.313	1200
-Numerous sizes available in between. Non-Sten ments in these ranges end larger.	dize cositioded	ser specififr reavire.

PEOPLE AND PLANTS

Craig: growth potential counts

WHEN an electronics consultant with 35 years experience chooses a full-time corporate home, he selects (if he's like Palmer Hunt Craig) a medium-sized firm with strong growth potential.

Craig recently joined Airpax Electronics Inc. (1960 sales, $\$ 4.1$ million) on a full time basis, after serving as consultant to several firms including Airpax. Holder of more than 40 patents on his electrical and electronic inventions, he is director of research at the Airpax headquarters in Fort Lauderdale, and a right-hand aide to Her bert A. Cook, the firm's president.

Craig believes that full electronic potential is just beginning to unfold. His current process of insecticide detoxification illustrates the point. Basically a chemical engineering process for reducing toxicity without dilution, its key rests with electronics.

An electronic meter, invented by Craig, precisely monitors the percentage of oxidation taking place within the process, permitting continual and controlled manufacture of powerful insecticides safe to human beings. Other Craig inventions include an ultraviolet lamp, a
photoelectric tube called Photodyne, a means for cooling glass-walled bodies, and a television system.

Palmer Craig may be best known for supervising development of the proximity fuse of World War II.

He has also devoted a large part of his career to teaching. For five years before the war, he taught hundreds of engineers attending the University of Florida. They benefited from Craig's triple preparedness (Ph.D., University of Cincinnati, 1926) in physics, electrical engineering and mathematics. Following the war, at the University of Miami, he served as professor of engineering and director of the university's electronics research.

More recently, Craig completed an educational-political mission under the auspices of the U.S. Department of State. As a member of the Technical Cooperation Mission, and the leader of the American Delegation to the Indian Science Congress, he lectured at Indian universities over a two-year period. He was received during this experience by Prime Minister Nehru, and by the president and the vice president of India.

Despite his long experience in
business, including consulting work for the Peninsular Telephone Co., Tampa; the Clark Controller Co., Cleveland; and the Roller-Smith Co., Bethlehem, Pa., Palmer Craig retains an absorbing interest in the welfare and development of students. Asked in a recent interview what he considered science's primary responsibility today, he immediately answered, "Youth." He added, "You know, young people in science today have a far greater task at hand than any of us who started in the twenties ever had."

GPE Elects Taylor As Board Member
election of Philip B. Taylor, formerly Assistant Secretary of the Air Force for Materiel, to the board of directors of General Precision Equipment Corp. is announced.

Prior to taking his government post in 1959, Taylor was a management consultant specializing in the engineering and construction fields.

GPE is a manufacturer of electronic equipment whose products are used on space vehicles, satellites, missiles and aircraft.

Sylvania Appoints Carl Faflick
appointment of Carl E. Faflick as senior staff specialist-systems for Sylvania Electronic Systems, a division of Sylvania Electric Products

AC engineers are presently developing an improved Bombing Navigational System (BNS) that will enable the B-52C\&D to fly lowlevel, high-speed bombing missions-regardless of terrain. The Air Force has assigned AC the responsibility for Systems Integration of the B-52C \& D BNS. This responsibility will include program and engineering integration, and coordination of the associate contractors involved in the production phase.

radar systems engineers are charting

$A C$ is seeking qualified men with radar experience to work on this important program. If you have radar systems experience and a BS or MS in Electrical Engineering, Mechanical Engineering or Physics please contact Mr. G. F. Raasch, Director of Scientific and Professional Employment, Dept. 5753, 7929S.Howell, Milwaukee 1, Wisc.

An Equal Opportunity Employer

AChiever Inertial Guidance Systems for Titan II, Thor and Mace.
Bombing Navigation Systems for B-52C\&D and B-47.
AChieverfone mobile radiotelephones.

AC SPARK PLUG THE ELECTRONICS DIVISION OF GENERAL MOTORS MILWAUKEE LOS ANGELES BOSTON

Manufacture of long-life, Hansen SYNCHRON Timing Motors is quality-controlled throughout, to make them the best synchronous motors for indus. trial and commercial applications. Skilled, experienced workers assemble Hansen SYNCHRON motors to rigid standards. Each motor undergoes 51 separate tests and inspections before shipment, insuring users of the ultimate in silent, continuous, synchronous power for specific timing applications. Operating efficiently in any position, self-starting, self-lubricating Hansen SYNCHRON Timing Motors deliver from 8 to 30 in ./oz. guaranteed torque; at remperatures from - 40 F to +140 F ; in speeds from 600 rpm down to $1 / 2 \mathrm{rph}$; clockwise or counterclockwise rotation. Over 200 types of output available.

The efforts of Hansen engineers have been concentrated in just one area for over 50 years -..creating and applying synchronous power units to timing applications. Use this experience to solve your specific timing problems. Contact your nearest Hansen representative, of write direct.

HANSEN REPRESENTATIVES:
THE FROMM COMPANY
5150 W. Madisan, Chicaga, Illinais
H. C. JOHNSON AGENCIES, INC. Rochester, N. Y. - Buffolo, N. Y. Syracuse, N. Y. - Binghomtan, N. Y. Schenectady, N. Y
ELECTRIC MOTOR ENGINEERING, INC. Los Angeles, Calif. (OLive 1-3220) | Oakiond, Colif.
| WINsLOW ELECTRIC CO.
New York, N. Y. - Chester, Conn.
Philadelphia, Penn. Clevelond, Ohio
** average figure for Hansen SYNCHRON Morors for Mansen | designed for shorter life - others for | years longer.
1

Inc., Waltham, Mass., has been announced. He was previously manager of the microwave and antenna laboratory at Sylvania's Waltham Laboratories.

George Dacey Joins
Sandia Corporation
GEORGE C. DACEY recently became vice president, research at Sandia Corp., Albuquerque, N. M. He was formerly director of solid state electronics research at Bell Telephone Laboratories in Murray Hill, N. J.

Sandia Corp. is a wholly-owned subsidiary of Western Electric Co.

Wilcox Electric

Names Bullock

cOL. e. t. Bullock, U. S. Army (Ret.), has joined the Wilcox Electric Co., Inc., Kansas City, Mo., as director of military program planning.

Bullock's professional service encompasses 35 years of military and industrial experience. He has been affiliated with Southern Bell Telephone \& Telegraph Co., and prior to coming to Wilcox, with the Cook Electric Co., Chicago, Ill.

CEC Announces
 Three Promotions

THREE major promotions within the Data Recording division

Model PC
*

Precision DC measuring potentiometer with self-contained galvanometer and battery operated standardization circuit. Direct "in line" readout. Additional voltage and current ranges can be obtained by using it in combination with the Model PCS, a switch controlled, .05\% accurate "plug in" unit of the same size.

Additional Specifications

ACCURACY: $\pm .05 \%$ of reading or $\pm .5 \mathrm{mv}$., whichever is greater.
RANGES: $0-5.100 \mathrm{v}$; when used with PC-S, 0-500 v. and $0-1 \mathrm{amp}$.
RESOLUTION: Continuous. 1 mv. divisions on slide wire.
SENSITIVITY: Infinite resistance at null. When used with PC-S, 2,000 ! $/ \mathrm{V}$.
SIZE: $9^{\prime \prime} \times 4 \frac{1}{4} 4^{\prime \prime} \times 13 / 4^{\prime \prime}$. WEIGHT: 3 lbs.
PRICE: Model PC, $\$ 450.00$; Model PC-S, \$175.00.
*Copyright U.S.A Patent Applied for

SENSITIVE RESEARCH

INSTRUMENT CORPORATION NEW ROCHELLE, N.Y
of Consolidated Electrodynamics Corp. have been announced by Henry S. Black, division general manager.
John J. Smith and Edgar E. Hotchkin were appointed assistant directors of engineering and Lewis B. Browder was named manager of advanced development. All three men will report to Herbert I, Chambers, director of engineering for the division.

Metex Electronics Appoints Cohen
metex electronics corp., Clark, N. J., manufacturer of r-f engineered shielding, announces the appointment of Albert H. Cohen as vice president and chief operating officer.

Before coming to Metex, Cohen spent a year in charge of analysis and research of electronic and electrical materials at General Cable Corp. Later with Metal Textile Corp., a General Cable division, he was appointed product manager in charge of sales, development and engineering on various mesh products and r-f shielding materials.

Honeywell Division
Hires Maislinger
JOHN MAISLINGER has been appointed chief development engineer

- Made to meet or exceed MIL-C-14409A specifications
- Ideal as retrofit to standard trimmers
- Available in standard capacitance ranges

ATLEE TRIMMER CAPACITOR

 FEATURES- High Q factor
- Ease of electrical tuning due to true tuning linearity
- Guaranteed retrace accuracy
- Ability to withstand severe shock and vibration
- Feather touch precision tuning

Our engineering department is available to assist you with your special requirements.

Use the POLAROID ${ }^{\circledR}$ 10,000 SPEED Land Film

in the new BEATTIE-COLEMAN MARK II OSCILLOTRON

Here's the most versatile oscilloscope camera ever made. Especially designed for new 10,000 speed Polaroid Land Type 410 film that records pulses of extremely short duration. Prints in 10 secs. Easily change ratios from $1: 1$ to 1:0.5 without extra lenses. External focusing. Flat field lens. Electric shutter eliminates cable release. Direct viewing port or hood. Records up to 13 traces on one frame. Dark slide on Polaroid Land Camera back. Records written data on film. Fits any 5 " 'scope. Attractively priced. Send for catalogs on all B-C Oscillotron models now.
"Polaroid" ${ }^{(8)}$ by Polaroid Corporation

1000 N. OLIVE ST., ANAHEIM, CALIFORNIA
for Minneapolis-Honeywell's Precision Meter division.

He had previously been chief engineer for International Instruments, Inc., West Haven, Conn.

In his new position, Maislinger will be responsible for the development of new or improved meters and indicating instruments for aircraft, industrial and other applications.

Schuller Advances At CBS Laboratories

MAX J. SCHULLER has been promoted to manager of the semiconductor device development section, solid state physics branch, CBS Laboratories, Stamford, Conn.

Schuller joined CBS Laboratories a year ago. Prior to that he was associated with the U. S. Army Signal Research and Development Laboratory, Fort Monmouth, N. J., where he specialized in semiconductor device design and circuit theory.

Air Reduction Sales Promotes Rendos
J. J. RENDOS has been appointed assistant manager of Air Reduction Sales Company's Cryogenic Engineering department in Plainfield, N. J. He will assist W. B. Moen, department manager, in operations covering the design and

construction of major air separation and other related cryogenic facilities.

Prior to this appointment, Rendos was supervisor of process and equipment design.

Fred Carlson

Takes New Post

FRED CARLSON recently moved up from test engineer to senior reliability engineer for the reliability engineering department at International Resistance Co.'s St. Petersburg, Fla., division.

St. Petersburg produces a wide line of precision potentiometers, including subminiature, metal-clad, multiturn, single-turn, hermetically sealed and other types.

PEOPLE IN BRIEF

Robert T. Adams, formerly with ITT Federal Laboratories, has joined the scientific staff of Sichak Associates. K. O. William Sandberg leaves Norton Laboratories, Inc., to become assistant to the $v-p$ and manager of the Aero-space-Rockets Div. of Bell Aerosystems Co. James W. Hart, exMotorola, named manager of the microwave division of Mark Products. Mille Stand, previously with the Venture Corp., appointed director of research at Sealectro Corp. J. V. Naish, formerly with General Dynamics, elected a director of McDonnell Aircraft. Sidney Stark promoted to director, advanced systems, at MartinOrlando. R. M. Knoop transfers from P. R. Mallory \& Co. Inc. to works manager of Mallory Ca pacitor Co. Luis E. Benitez advances to asst. $g-m$ at the ordnance operation of Avco Corp.'s Electronics and Ordnance div. Rod E. Packer, until recently with General Dynamics, is now a member of the technical staff of RamoWooldridge. William S. Dennis, Jr., of Consolidated Electrodynamics Corp., takes new post as manager of quality control engineering for the data recorders division. Don M. Marshall, former vice president of the Jerome Murray Corp., is chosen as president and chief executive officer of Bogue Electric Mfg. Co.

Mechanical construction meets military specifications
Write for complete technical bulletin Other models avallable.
 antenna products 1135 No. 22nd St. Lincoln, Nebr. CIRCLE 209 ON READER SERVICE CARD

LEGAL NOTICE

STATEAENT IREQVILED IBY THE A(T OF AICI'ST 24. 1912, AS MMENJIS HI THE MTS OF
 lnoo (7t stat. 20x) sllowivi THF: OWさERSHIP. MNS゙MEMENT AND
('IBCIJ.JT10)
Of ELAE 'TRONICS, published weekly at Allany. New Pork for October 1, 1961

The names and addresses of the pubblsher, editor. manaking editot, and bushums manager are: Publisherd by Mrciraw-Hili Jublishing, Company, ine: N30 Wrus
 Managing "ditor: M. Marmol. 3301 West 42 nd si.

(1) West tant s... 1 . 1 .
2. The owner is Mesinu-Hill Imhlishing Compans: ne. 330 West $42 n d$ sit, New Yorls $3 i$, N. Yo stockholders holding 10^{\prime} or more of struk are: Donald Mectraw, Jr, \& Harold W. Median, Jr. Trustets undes indentute of Trust mb James H. Medran. dated lat 21

 Meloren, sati Dremse St., la, ololla, Palitornia: bouglaws
 co. Wellingon fitine, Inc.. ('sasmont, Delaware.
3. The known bondholders, mortgagees, and other seurity holders ouning or holding 1 purcent or more of total umount of bonds. mortikages, or other securities

Para
Faragraphs 2 and 3 include, in cases where the tockhoklar or security holder appears upan the hooks of The company as trustec or in athy other filduelary relation, the name of the pervion of corporation tor whom such trustew is arting: also the statomente in the ewo parakraphs show the aftiant finl! kimulthe and hellef as to holders and security holders who do not appear upon the books of the company as trusteem, hold atock and securitles in a capacity other than that of a hona flde owner. publication sold or disi ributed, throukh the mails or otherwise, to paid sulsicribers durink the 12 month

MCGRMW-HILL, PUBLIKHING COMPANY, INC.
By JOHN J. COOKE, Vime I'resident \& Secretary. siworn to and sulweriberl betore me this 18 th day of September. 1961. JANFT I. HARTWICK. (My commission expires March 30, 1963)

Check these advantages in resistance temperature measurement applications:

- Suppresses large lead resistance changes (up to 5 ohms)
- Suppresses variable lead resistances at null and when unbalanced
- Suppresses unequal lead resistances
- Trims out calibration differences
- Multiple temperature ranges
- Standardized 10 mv . DC output
- Full line of auxiliary equipment

This precision-made, plug-in unit permits convenient change of full-scale temperature and corrects known calibration errors of sensor. Basic 10 -channel unit provides 10 temperature ranges for each of 10 sensors.

Write for Bulletin 86012

ROSEMOUNT
ENGINEERING COMPANY
4900 West 78ih Street, Minneapolis 24, Minnesora

OPPORTUNITIES

electronics WEEKLY QUALIFICATION FORM FOR POSITIONS AVAILABLE

ATTENTION:
 ENGINEERS, SCIENTISTS, PHYSICISTS

This Qualification Form is designed to help you advance in the electronics industry. It is unique and compact. Designed with the assistance of professional personnel management, it isolates specific experience in electronics and deals only in essential background information.
The advertisers listed here are seeking professional experience. Fill in the Qualification Form below.

STRICTLY CONFIDENTIAL

Your Qualification form will be handled as "Strictly Confidential" by - ELECTRONICS. Our processing system is such that your form will be - forwarded within 24 hours to the proper executives in the companies you select. You will be contacted at your home by the interested companies.

WHAT TO DO

1. Review the positions in the advertisements.
2. Select those for which you qualify.
3. Notice the key numbers.
4. Circle the corresponding key number below the Qualification Form.
5. Fill out the form completely. Please print clearly.
6. Mail to: D. Hawksby, Classified Advertising Div., ELECTRONICS, Box 12, New York 36, N. Y. (No charge, of course).

electronics WEEKLY QUALIFICATION FORM FOR POSITIONS AVAILABLE
 Personal Background

NAME

CITY.
ZONE. STATE.
hOME TELEPHONE.

1061
FIELDS OF EXPERIENCE (Please Check)

CATEGORY OF SPECIALIZATION
Please indicate number of months experience on proper lines.

Technical	Supervisory Experience Experience
(Months)	(Months)

RESEARCH (pure,
fundamental, basic)

RESEARCH

(Applied)
SYSTEMS
(New Concepts)
DEVELOPMENT
(Model)
DESIGN
(Product)
MANUFACTURING
(Preduct)
FIELD
(Service)
SALES
(Proposals \& Products)Abrospace
Antennas
ASW
Circuits
Communleations
Compenonts
Computers
ECM
Electron Tubas
Engineering Writing
CIRCLE KEY NUMBERS OF ABOVE COMPANIES' POSITIONS THAT INTEREST YOU

MOTOROLA in PHOENIX needs RELLABILITY SPECIALISTS

Motorola's R\&D Engineering Reliability Group has immediate openings for engineers with experience in transistor circuit design, production follow-up, and application of probability and statistics to circuit design, together with the additional qualifications described for the specific positions below:

Reliability Engineer who has assisted design engineers on circuit redundancy and statistical tolerancing techniques; has done equipment reliability predictions; has provided reliability education for design engineers; has good writing and super visory abilities.

Transistor Reliability Engineer who has planned and supervised environmental and life testing of transistors; has written transistor test reports; has prepared procure ment specifications and drawings has advised circuit designers on applications.

Write, sending complete resume, to Phil Nienstedt, Dept. 1005.

MOTOROLA
P. O. Box 1417 Scottsdale, Arizona

An Equal Opportunity Employer

PH.D. ELECTRONIC ENGINEERS

Positions ovoiloble in reseorch and development projects involving

Spoce Instrumentation

- Tronsistor Circuitry

Pulse Circuitry
Dolo Acquisition Systems
Wide Bond Telemetry Systems

- Servo Control Systems

Extensive loborotory, model shop ond tube development focilities ovoiloble.

LAWRENCE RADIATION LABORATORY

UNIVERSITY OF CALIFORNIA
Active in most phoses of the Alomi Energy Program
Including

- Nucleor Romjet Propulsion

Controlled Fusion

- Applicotions of Nucleor Explosions

Write: G. F. Ronkin University of Colifornio Lowrence Rodiotion Loborotory Box 808F, Livermore, Colif (Son Froncisco 8oy Areo)
U.S. Citizenship Required An equol opportunity employer

OPPORTUNITIES WITH IBM'S COMPONENTS DIVISION

IBM's newly-formed Components Division has immediate openings for experienced engineers, mathematicians, physical scientists, metallurgists, chemists and technicians qualified and interested in the following fields . . .

SOLID STATE DEVICES: Utilization of the methods and techniques of basic research to develop solid state semiconductor devices and integrated circuits devices for use in the improvement of computer reliability, flexibility, speed, capacity, etc. Included is exploration into novel Semiconductor phenomena and their potential application to devices.

DEVICE ANALYSIS: Evaluation and analysis of semiconductor materials and devices utilizing various advanced methods, procedures and techniques.

COMPONENTS MECHANICAL ENGINEERING: Analysis, design and fabrication of manual and automated equipment for development and production operations in the semiconductor and magnetic device fields.

COMPONENTS ELECTRICAL ENGINEERING: Analysis design, fabrication and maintenance of measurement and test equipment for solid state components and integrated circuits. These will include the most advanced automated device testing and data handling techniques.

COMPONENTS APPLICATIONS ENGINEERING: Specification and characterization of semiconductor devices for use in advanced computer applications.

SEMICONDUCTOR MATERIALS TECHNOLOGY: Exploration of problems in crystal growth, impurity diffusion, vapor growth processes, crystal processing and photoconductor studies.

TECHNICIANS: Two-year technical school or equivalent experience. Openings in all above areas.

Assignments are in Poughkeepsie, N. Y., a pleasant non-metropolitan environment just 80 miles from New York City. Liberal IBM benefits to include relocation apply. All qualified applicants will be considered for employment without regard to race, creed, color or national origin.

Please call (collect)
Globe 4-1000
Poughkeepsie, N. Y.
Extension 4823R

Or write, outlining
background and interests,
to .
H. J. Cooke, Dept. 554K2

IBM Development Laboratory
Box 390
Poughkeepsie, N. Y.

ANTENNA PEDESTAL SCR 584-MP 61B

Full azimuth and elevation sweeps 360 degrees in azimuth. 210 degrees in elevation. Accurate
to 1 mil. or better over system. Complete for full to 1 mil. or better over system. Complete for full tracking response. Angle acceleration rate: AZ, 9 degrees per second squared EL, 4 degrees per second squared. Angle slewing rate: AZ 20 degrees per sec. EL. 10 degrees per sec. Con mount up to a 20 ff . dish. Angle tracking rate: 10 de grees per sec. Includes pedestal drives, selsyns, potentiomefers, drive motors, control amplidynes. Excellent condifion. Quantity in stock for immediate shipment. Ideal for missile \& satellite tracking, antenna pattern ranges, radar systems, radio astronomy, any project requiring accurate response in elevation and azimuth Complete description in McGraw-Hill Radiation Laboratory Series, Volume 1, page 284 and page 209 , and Volume 26, page 233.

MIT MODEL 9 PULSER
 1 MEGAWATT-HARD TUBE

Output pulse power 25 KV at 40 anip. Max duty rition 25 to 2 mierosec. Input 115 volts 60 cycio AC. Includes power supply in separste cabinet and driver. Fulls kuaranteed as new eondition. Full Desc. MIT. Rad. Lab. series "Pulse Gen-
erators.

MIT MODEL 3 PULSER

Out out: $14 \mathrm{kw}(12 \mathrm{kr}$ at 12 amn). Wury ratio: 001
max. Pulse duation: 51 and 2 micro sec. Input: 115 r 400 to 2000 cps and 2 avde. $\$ 325 \mathrm{ea}$. Full desc

AN/TPS-10D HEIGHT FINDER
270 KW X-Band. 60 \& 120 mile ranges to 60.000 frete. Complete.

500 KW PULSER

5 C 22 Hydrogen Thyratron Modulator. 22 KV at 28 Amps. W/HY \& Fill subplifs. 3 pulse length red 2500 pos. 115 V 80cy $\mathbf{A C}$ input.

60 MC I.F. STRIP

-95 DBM sensitirlty, 130 IMB gain. $1 \mathrm{MC} \&{ }_{2} 5 \mathrm{MC}$ band widths. MIg. Texas Instruments, $\$ 125$ each tubes.

```
AN/TPS-1D RADAR
$00kw, 1220.1359mecs. 160 nautigal mile search
mocd, 5J26 magnetron. Like new, Complete sys-
icN|yme
```


Obilyreen
 can deliver Amphenol Bendix Cannon CONNECTORS FITTINGS \& CLAMPS

We stock more than $5,000,000$ MS/AN In PRODUCTION QUANTITIES . . we sell BELOW "O.E.M." PRICE . .and offer IMMEDIATE "OFF-THE-SHELF" DELIVERY! FREE Send for lofest brochure and list price chart WILGREEN INDUSTRIES, Inc.
102 Warren Street, New York 7, N WOrth 4-2490-1-2 Wire: FXK CIRCLE 461 ON READER SERVICE CARD

SMALL AD but BIG STOCK af chaice test equipment and surplus electronics Higher Quality-Lower Costs Get aur advice on your problem
ENGINEERING ASSOCIATES 434 Patlerson Road - Dayton 19, Ohio

CIRCLE 462 ON READER SERVICE CARD

225 KW X-BAND RF

4J50 Magnetron RF Generator with dummy load \&

WESTINGHOUSE 3CM RADAR

Complete X band system oper. $\{$ romn 115 v 60 cy
ar with to kw nower output 2555 magnetron ar with 40 kw power output 2555 magnetron. Ranges $0-1.5, ~ 9, ~$
lation wareguide. An
40
milles. Includes installation wareguide. An ideal system for lab school,
demonstration or shlpboard. $\$ 1800$. New with spares.

10 CM. WEATHER RADAR SYSTEM

IS . Navy Ravtem. 275 KW peak output S bunc Rotating yoke Plan position Indicator. Maznetion wepplied for any s band frequency sperified, inel Weather Band. 4, 20 and 80 nille range. 360 degree 1 azimuth sean. Sensitue reve using 2 K 2 R inim an tion thoks and Installation drawinhs, (an be supplied to operate from 32vile or 115 volts. Price 8055 . Idea or weather work. Has picked up clouds at 50 miles. Weipht 488 lbs

IOKW 3 CM. X BAND RADAR

omplete 18F hear including transmitter, receiver modulator. (ses $2 J 42$ magnetron. Fully describer Yol. II, pDs $171-185$ sins complete 625 and radar system also avail. inclu. 360-deg antenna Pr'I. smp pur supply, similar io $\$ 17.000$ weather radar now In use by alrlines, $\$ 750$ complete.

AN/APS-15B 3 CM RADAR

Airborne radar. 40 kw output using 725 A magnetron fodel 3 palser. 30 in. parabola stabilized antenna

SCR 584 RADARS

AUTOMATIC TRACKING RADAR

Our 584 s in like new condition. ready to go, and in derk for immerliate delivery. Ideal for research and balloon tracking. weather forecasting. antiaircrafi defense tactical air gupport. Write us. Fullu Inese MIT
286.

RADIO RESEARGH THSTRUMENT CO.
 FIFTH AV NEW YORK JUDSON 6-4691

CIRCLE 460 ON READER SERVICE CARD

BC-221 Frequency Meters

For checking CB transmitter frequencies to FCC specs. of 0.005%. Like new condition with crystal and original calibration books for a low price. Supply limited...... $\$ 69.50$ TS-173 90-450 MC. AC Power Supply... $\$ 169.50$ AN/APR-4 MC Receiver with 5 tuning units. Direct reading dials. Wide and narrow band width 30 MC I.F. Amp. Output meter for measuring signal strength. Pulse analyzer and 60-2000 Cy power. Excellent condition. 4 tuning units, 38 -2200 MC......... $\$ 259.50$ 5 tuning units, $38-4000 \mathrm{MC}$. RT-100A/APS-19 "X" Band Transceiver. Complete with $2 J 55$ \& magnet, $3 B 26,2$ K25, $5956 /$ E36, 6AG7, 14-6AK5, 6AL5, 2D21, 6SN7, WL 1023 \& 6C4-25 tubes in all-plus 4-1N23B \& 3 fans $27.5 v D C$. Excellent condition. Ship. Wt.

Write for Bargain Flyer

R W Electronics

2430 5. Michigan Chicago, Ill. CA 5-1281

CIRCLE 463 ON READER SERVICE CARD

FREE, . GASALOA BARTY ELECTRONICS TWX• NY 1-3731

New Jersey Highway Authority
 12 broad street

RED BANK, NEW JERSEY
NOTICE IS HEREBY GIVEN THAT sealed bids will be received by the New Jersey Highway Authority for

GARDEN STATE PARKWAY

The New Jersey Highway Authority offers for public sale the following VHF radio equipment
(4) 180 ft . steel triangular, rabricated (Stainless,
lighting kit.
(1) 180 tt . steel triangular, fabricated (Stainless, lig) self-supporting tower equipped (itt. (1) Ito ft. steel triangular, fabricated (Stainless. (1) 161 ft . steel triangular, fab
(7) Combination stations, $150-170 \mathrm{mc}$, GE SC21I, 50 -watt cabinet mounted.
tran. GE Modeł 4ETIEI
(7) Cabinat mounted line control units for base
(1) Control cquipment consisting of amplifier cab. inet. relay cabinet, rectiffer cabinet and desk

Bidg for the ahove will be received in the purchasing Intision. 12 Broad Street. Red Bank, New Jergey on October 30, 1961 at ten o'clork (10:00
A. M. Daylight Saving Time and will be ovened immediately thereafter.
Bid forms specifications and Terms and Condilons are on the in the l'urchasing Wivision, New
Jersey Mighyay Authority. 12 ISroad Street, Red Bank, New Jersey and mas he obtained during the hours 0:00 A.M. and 4:00 P.

EMPLOYMENT OPPORTUNITIES
(Continued from preceding page)

WANTED

Electrical, Mechanical or Chemical Engineering Graduates
to be trained as Sales Engineers for Cleveland, New York, Chicago, and Richmond, Virginia. We also have an opening for man with technical background for inside office work at Los Angeles. Prefer men between 25 and 32 years of age who have had industrial process experience. Successful applicants will be given a three-month factory course starting Feb. ruary 1, 1962.

Write Harry E. Beane, Vice President
THE BRISTOL COMPANY
Waterbury 20, Connecticut

SECTION HEAD	
chnical leadership and supervision of instruments	
ment of instrumentation systems, monitoring sys.	
tents. displays, and catiration systems. 3 years of	
2 South	Sta

POSITION VACANT

Sales Engineer/Manager with exp. in electronic instrument. delay lines. Excel. opportunity with well known Mig. Ad-Yu Elec. tronics Lab., Passaic. N. J.

MANUFACTURERS' REPRESENTATIVES

in the electronic industry

42A White St., N. Y. 13, N. Y. WAlker 5-9257

Acoustical Components

of Superior
 Quality

JAPAN PIEZO supplies 80% of Japan's crystal product requirements. Here are a few examples of our capabilities.

STEREO CARTRIDGE Crystal-"PIEZO" Y-130 X'TAL STEREO CARTRIDGE At $20^{\circ} \mathrm{C}$, response: 50 to 10.000 c / s with a separation of 16.5 db . 0.6 V output of $50 \mathrm{~mm} / \mathrm{sec}$. Tracking force: $6 \pm 1 \mathrm{gm}$. Compliance: $1.5 \times 10^{-6} \mathrm{~cm} /$ dyne. Termination: $1 \mathrm{M} \Omega+150 \mathrm{pF}$.

MICROPHONE

Crystal-X-29

 At $20^{\circ} \mathrm{C}, 1 \mathrm{KC} / \mathrm{s}$, Sensitivity is $-58 \pm 5 \mathrm{db}$. Impedence: $100 \mathrm{~K} \Omega$. Capacitance: 1,500 pF.

PHONOGRAPH MOTOR-DC PM-31-1
9V. 2.500 RPM: No-load current, 35 mA ; load current, 80 mA . Starting torque, $13 \mathrm{~g}-\mathrm{cm}$; load torque, $5 \mathrm{~g}-\mathrm{m}$. Size: $2.4 \mathrm{~cm} \times 4.6 \mathrm{~cm}$. Weight: 100 gm .

Write for detailed catalog to:

JAPAN PIEZO ELECTRIC CO., LTD.

Kami-renjaku, Mitaka, Tokyo, Japan

The INDEX to the editorial articles in electronics magazine, previously published annually in a December issue, now appears ONLY in the EBG. Another original EBG idea that saves time and trouble for users! Keep your EBG copy on your desk!

EXTRA!

Also in the EBG are condensed ABSTRACTS of all the edi-
torial feature articles which have appeared to date in 1961. torial feature articles which have appeared to date in 1961. Another reason why EBG is used more by all four - men in research, design, production and management.

McGraw-Hill Publication, 330 West 42nd St., New York 36, N. Y.

CIRCLE 213 ON READER SERVICE CARD

SE.ARCHLIGHT SECTION

CET IT from GOODIFART:

CIRCLE 467 ON READER SERVICE CARD

ELECTRONIC SALE

CSSO \#8-KELLY AFB SEALED BID SALE 62-19 PHONE WALNUT 3-5411 EXT 61103 Inspection from 10 October thru 1 November 1961
BID OPENING-2 November 1961

PROPERTY LOCATED AT:

KELLY AFB, SAN ANTONIO, TEXAS: Generator Sets, Mine Dector Sets, Azimuth Indicators, Electric Motors, Testers, Instruments and Laboratory Equipment, Connectors, Antennas and many other electrical and electronic items. FORT SAM HOUSTON, SAN ANTONIO, TEXAS: Transformers and Circuit Breakers. BERGSTROM AFB, AUSTIN, TEXAS: Generator, Switches and Transformers. ATLANTIC RESERVE FLEET, ORANGE, TEXAS: Instruments and Laboratory Equipment。 Electronic Tubes, Transformers, Navigafional Equipment, NAVAL AIR STATION CORPUS CHRISTI TEXAS Connectors, Relays, Electric Wire Power and Connectors, Relays, Electric Wire, Power and ers, Communicafions Équipment, Control Panels Navigational Instruments, Iransformers, Com: passes and other miscellaneous electronic items LAUGHLIN AFB DEL RIO, TEXAS: Transformers Generators, Instruments and Laboratory Equip. ment and Test Equipment.

CIRCLE 468 ON READER SERVICE CARD

INDEX TO ADVERTISERS

Audited Paid Circulation

- Baker Chamienl Co., J. T..............6, 7

Beattle-Coleman Inc. 102
Beckman Instruments, Inc.
27
undix Corporation, Scintilla jlvision

- Bird Electronir Corporation............ 38
ling Warner Controls, Thorg warner Corp.
- Burnell \& Co., Ine.

Cambringe Thermionic Corp..

- Celco-Constantine Engineering Laboratories

95

- Chart-Pak, Ine
- Chester Cable Corp

Clare \& Con.. C. 「.
...

- Clare \& Contat Mife. Co., Ine

號
Continental-Diamond Fibre Subsidiary ol the Budd Company

- Cubic Corp. 8

Data-Control systems, Inc. 33

- Daven Company. The............3rd Cover
- DeMarney-Honardi 109
- Edgerton, Germeshansen \& Grier, Inc. 34 Elcor. Inc
Electrodynamic Instrument Corporation Electronic Tube Corporation........... 92
- Fairchild Semieonductor Corp.......... $\quad \mathbf{6 7}$
Franklin Electrontes Inc.............. 13

Gamewell Co., The

- General Electric

Chemidal Materials Dept

- Gooldm National Batteries Inc
-Gravilill, Inc.
- Hancly \& Ifarman
- Japan Piezo Electric Co. Ltd......... . 108

Jervold Electronics Corp.
14

- Kilovolt Corp.

McGraw-Hill Iionk Co................... 110 - Mierowitth. Div. of Honevwell.....17, 18

- Minneapolin-fioneywell

Precialon Mrter Division 75
Motorola Somiconductor Products Ine. 45

- Mucon Cerp. 26
- Natvar Corporation 49
 Film Corp.
- Philen Cormeration 50 Philips Glocilampenfabrieken. N. V..24. 25 Precision 1nstrument Co................. 3 Pyrodyne Inc. 44
- Ratio Corporation of America... 4 th Cover
- Rastheon Company

48, 69
Rosemount Engíneering Co. . 103
Rotolite Corp
48

- Roval Electric Corp........................ . . 32

Sarkes Tarzian Inc
73

- Sensitive Resparch Instrument Corp... 101 Shalleross Mft. Co.......................... 8
- sola belectric co.
.90. 91
- Southern Electronics Corp............. 40 Sperry Electronic Tube Div. Sperry Rand Corp.76, 77 Sprague Flectrle Co
- Stevens-irnolli, 1ne.

20
16
Rain Co., Ine...... Struthers-Dunn 89

- See Advertisement in the July 20, 1961 issue of Electronics Buyers' Guide for complete line of products or services.

-gas filled for
 sustained accuracy

Accuracy is so high these instruments may be used as secondary standards. Units are unaffected by changes in humidity, altitude or barometric pressure. Only 12 sizes serve from 2.6 KMC to 140 KMC . You save budget money on the number of sizes needed. Literature on request.

DEMORNAY BONARDI

DE MORNAY-BONARDI

780 south arroyo parkway - pasadena, callf.

CIRCLE 210 ON READER SERVICE CARD

ACADEMICIAN V. I. SMIRNOV'S IINEAR ALGEBRA AND GROUP THEORY

Just Ont. Offors a selaction of material from Prof. Vladimir I. Sinirnos's encyolopedic sixvolume "Coursa of IIigher Mathematies" emplasizing those topies of greatest inportanee in applied mathematies and theoretical physics. Rer., adpt., and ed, by R. A, SHverman. 400 pp., $\$ 12.50$

PRINCIPLES OF APPLIED ELECTRONICS

Just Ont. Provides an extensive integrated look it the principles froverning operation of racuum, gas. and semiconductor devires. Princliles are viewed in the light of their practical application to various types of eleetronic clreuits. By R. S. Curson, Ind. Tecli. Col. $530 \mathrm{pp} ., 350$ ilitw., $\$ 9.93$

COMPUTER CONTROL SYSTEMS TECHNOLOGY
Just Out. I'rovides an owerall picture of the field of eomputer control systems teelinology and its more important applieations. Contributions made by a number of outstanting men in the eontrol and compitior field. Ed. by C. T. Leondes, UCLA. 62t pp., $3: 8$ illus.,
$\$ 10.00$

SUCCESSFUL COMMUNICATION

IN SCIENCE AND INDUSTRY
Just Ont. ('overs reading. enehnical writing and suraking, as skills essential for effective communication in seipence and industry. Clear. eoncise trentment, plus a large number of timely examples and questions help makr this hook ideal for self study. Br R. L. Zetler, Cnis. of South Flu.. and w. G Crouch, [^niv. of Pitt. 320 pp., illas., \$7.95

PLANNING A COMPUTER SYSTEM

Describes all stages taking phace in the planniny of a real digital computer-the IBM in30. Written by the rarlote systems deslewers involved in the aetual task. Ed, Iy Wermer Huehionlz, Systems Consuit., EdBM, 256 pp ., illus.. In Press

10 DAYS' FREE EXAMINATION

McGRAW.HILL BOOK CO.. INC., Dept. L-10.13 327 W. +1 st St. N . Y. C. 36

Send me trokis) checked lielow for 111 days' ex-
amination on auptoral. in to days 1 will remit for
broki(s) I kecp. plus fert cents jor alellowry cost-:
and return unisanted lyenk (s) pontanifl. Whe pavi
dellisery costs if cou remit with this coupon-same
dellisery mats if
retnon privitege.)
retinen privilppe
CDummer of al-Elec. Equip. Dsgn. and Constr.,
Surhholz-Planning a Comp. Systrm, In Press
Silverman-Linear Alg, and Gp. Theory, \$12.50
Cratoman- Prin. of Andied Elec. Theory.
Leondes Comp. Ctri. Sys. Tech... \$1fion
Zetler and crouch-Suc. Comm. in sci, and
(PRINT).. $\$ 7.95$
Name
Address
City
Zone
State.
Company
Position
For price and terms outside
Write McGraw-Hill $\operatorname{Int}^{\prime} 1$. .
N.
Y.
L-10-13

Enginpering issociates 106
Esquire Personnel 106
-Goodheart Co., R. E. 108
IBM Development Lahoratory 105
Kelly AFB 108
Lawrence Radiation Lab.
Tniversity of California.......... 105
Lifschultz Fast Freight................... 108
Motorola Military Electronic Div. 105
New Jersey Highway Authority........ 106

- Radio Research Instrument Co. 106
- R W Electronies. 100
- Universal Relay Corp. 107
- Western Engineers 107
- Wilgreen Industries Inc. 106

MANUFACTURERS REPRESENTATIVES
MacDonald Inc. Samuel K................. . 106

CLASSIFIED ADVERTISING
F. J. Eberle, Business Mgr.

EMPLOYMENT
 OPPORTUNITIES 105, 106
 SPECIAL SERVICES 108

NOTICES
LEGAL 103
EQUIPMENT
(Used or Surplus New)
For Sale 106-108

- See Advertisement in the July 20, 1961 issue of Electronics Buyers' Guide for complete line of products or services.

This index and our Reader Service Numbers are pub-
lished as a service. Every precaution is taken to make them accurate, but ELECTRONICS assumes no responsibilities for errors or omissions.
electronics

Audited Paid Circulation

JAMES T. HAUPTLI
Advertising Sales Manager

R. S. QUINT, Assistant Publisher Buyers' Guide and Business Manager; FRED STEWART, Promotion Manager; B. ANELLO. Marketing Service Manager; RICHARD J. TOMLINSON, Production Manager; GEORGE E. POMEROY, Classified Manager; HUGH J. QUINN, Circulation Manager.

ADVERTISING REPRESENTATIVES: NEW YORK (36) Donald H. Miller, Henry M. Shaw, George F. Werner, Robert M. Denmead, 500 Fifth Avenue, OXford 5-5959; BOSTON (16) William S. Hodgkinson, Donald R. Furth, McGraw-Hill Building, Copley Square, Congress 2-1160; PITTSBURGH (22) David M. Watson, Four Gateway Center, Express 1-1314; PHILADELPHIA (3) Warren H. Gardner, William J. Boyle, 6 Penn Conter Plaza, LOcust 8-4330;

CHICAGO (11) Harvey W. Wernecke, Martin J. Gallay, 645 North Michigan Avenue, Mohawk 4-5800; CLEVELAND (13) P. T. Fegley, 55 Public Square, Superior 1-7000; SAN FRANCISCO (11) T. H. Carmody, R. C. Alcorn, 255 California Street, Douglas $2-4600$; LOS ANGELES (17) Marshall Freeman, Peter S. Carberry, 1125 W. 6th St., Huntley 2-5450; DENVER (2) J. W. Patien, Tower Building, 1700 Broadway, Alpine 5-2981; ATLANTA (9) M. H. Miller, 1375 Peachtree St. N.E., Trinity 5.0523; HOUSTON (25) Joseph C. Page, Jr., Prudential Bldg., Holcombe Blvd., Jackson 6-1281; DALLAS (1) Frank Le Beau, The Vaughn Bldg., 1712 Commerce St., Riverside 7-9721: LONDON W1, Dennis McDonald, 34 Dover St., FRANKFURT/Main, Stanley R, Kimes, 85 Westendstrasse; GENEVA, Michael R. Zeynel, 2 Place du Port.

Available Immediately from Distributors!

87 adjustable stop switches replace 2,001 standard types!

ロaven revolutionizes switch availability by putting the equivalent of 2,001 standard types on your local selected distributor's shelf, ready for immediate delivery. That's 97% of all your switch needs brought right to your door, usually within 24 hours.
Daven does it by designing the characteristics of 2,001 switches into 87 easy-to-stock, easy-to-use adjustable stop switches. The result: instant availability and maximum flexibility (you can change the number of switch positions at any time). The cost is the same, or less, than its standard counterpart.

Daven adjustable stop switches are built in square configuration, in $13 / 4^{\prime \prime}$ and $21 / 4^{\prime \prime}$ sizes. Like all Daven switches, their metal parts are fabricated from corrosion-resistant materials . . . plastics are heavily filled with non-organic fibres and are capable of withstanding high temperatures . . . switch contacts and rotor arms are solid silver alloy. Daven's patented knee action, tamper-proof rotor is standard. All applicable paragraphs of MIL-S-3786 and MIL-E-5272 are met and exceeded.
For your new switch catalog, with details on the new adjustable stop switches and a complete Replacement List, write today!

10 RCA Diffused-Junction rectifiers with integral voltage-equalizing networks

offer outputs up to 825 ma DC for military and industrial applications

Here's important new flexibility for your critical high-voltage rectifier applications-RCA's broad line of encapsulated, insulated multi-cell rectifiers. Check the benefits these rectifiers can bring to your designs :

- Integral voltage equalization-Resistor-capacitor equalization network across each internal rectifier cell equalizes voltage distribution under both transient and steady-state conditions.
- Ratings you can use with confidence-RCA rectifiers are designed to provide top performance at maximum published ratings. Conservative RCA ratings provide built-in safety factor.
- High output current:
- 550 to 825 ma at $60^{\circ} \mathrm{C}$. Single-phase, half-wave circuit.
-Up to 2.2 amps - 6 rectifiers in 3 -phase full-wave bridge circuit.
-Up to 1.65 amps.-4 rectifiers in single-phase full-wave bridge circuit.
- High efficiency and excellent regulation-Each diffused-junction cell has only 0.6 -volt maximum voltage drop (full cycle average).
- Wide operating and storage temperature range. $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
- Compact Size- $23 / 8$ to $51 / 2$ cubic inches.
- Unique case design-allows rugged mounting; provides extra long corona path for added safety.
- Designed to meet military mechanical and environmental test specifications.

HALF-WAVE RECTIFIER SERVICE

Absolute-Maximum Ralings for Supply Frequency of 60 cps ,
Single-Phase Operation, and uith Resistive or Inductive Load.

	$\begin{aligned} & \overline{0} \\ & \text { 룽 } \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \text { 2 } \end{aligned}$	$\begin{aligned} & \text { 끋 } \\ & \text { 정 } \end{aligned}$	$\begin{aligned} & \text { ti } \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	을	흔	들	$\begin{aligned} & \stackrel{0}{\square} \\ & \stackrel{y}{4} \end{aligned}$	$\stackrel{\text { \% }}{\substack{8 \\ 0}}$	응
Peak Inverse Volts.	1200	2000	3000	4000	5000	6000	7000	8000	9000	10000
RMS Supply volts	840	1400	2100	2800	3500	4200	4900	5600	6300	7000
DC Blocking Volts	1200	2000	3000	4000	5000	6000	7000	8000	9000	10000
Average Forward Milliamperes: At 60 C ambient temperature.	825	825	715	605	605	550	550	550	550	550
At $100^{\circ} \mathrm{C}$ ambient temperature .	320	320	275	235	235	210	210	210	210	210
Peak Recurrent Amperes.	\checkmark - $5 \longrightarrow$									
Peak Surge Amperes: (One-half cycle, sine wave)										
Ambient Temperature Range: Operating and storage	$-6510+125^{\circ} \mathrm{C}$									

- "CR"-Series types may be used in series up to 20,000 PIV without added voltage equalization.
Custom designs are available for higher voltages, higher temperature, oil submersion, special packaging requirements.
Call your RCA REPRESENTATIVE today for full particulars on these 10 new rectifiers. For additional technical information, write RCA Semiconductor and Materials Division, Commercial Engineering, Section J-19-NN-2, Somerville, N. J.

AVAILABLE THROUGH
 YOUR RCA DISTRIBUTOR

The Most Trusted Name in Electronics

radio corporation of america

[^6]
[^0]: Beam-X and Nixie are trademarks of the Burroughs Corp.

[^1]: Fine Silver Bulletin A-1
 Silver-Copper Alloys Bulletin A-2
 Silver-Magnesium-Nickel Bulletin A-3
 Silver Conductive Coatings Bulletin A-4
 Silver Powder and Flake
 Bulletin A-5

[^2]: -•PIONEERS IN MINIATURIZATION••

[^3]: * If shield is a six-sided structure. add to the value selected from the five-sided ranges the increment listed in the right-hand column

[^4]: SPERRY RAND CORPORATION

[^5]: Sales Engineering Offices in: Atlanta - Boston - Buffalo - Chariotte - Chicago - Cincinnati - Cleveland - Dallas Dayton - Denver - Detroit - High Point - Kansas City - Los Angeles - Montreal - New York - Orlando Pittsburgh - St. Louis - San Carlos - Seattle - Toronto - Export: Langguth-Olson Co., New York

[^6]:

 GOV'T: Doyton, Ohio, 224 N. Wilkinson St., BA 6.2366 . Woshington, D. C., $1725^{\circ}{ }^{\text {WK" St., N.W., FEderol } 7.8500 .}$

