

\square

\square
\qquad

"M" TYPE TOROIDS Minimum sice
UTC Permalloy Dust Toroids have been the standard of the indusiry for over 15 years. The MQ series of coils provide the highest Q factor in their class (see curves below), with miniaturized dimensions. All units are hermetically sealed to MIL-T-27 Specificalions.

The stability is excellent. For the MQE-7 the finductance change is less than 1% for voltages from .1 to 3 volts, The MQA- 13 change is less than 1% for applied voltages from . 1 to 20 volts. The MQB-5 change is less ttian 1% for applied voltages from 1 to 50 volts. $D C$ is permissible through the coil (values listed below). Inductance is virteally independent of frequency temperalure and vibration.

Hum pickup is extremely low due to the foroidal winding structure, with windings uniformly spread over the core. The case is of high permeability, affording additional shielding such that close spacing of units can be effected, the coupling altenuation being approximately 80 DB.

Other values of inductance than those listed are available on special order at the prite of the nex- higher listed value.

Abstract

ADJUSTMENT PROCEDURES FOR COLOR TV PRODUCTION-Using color bar generotor signal for over-all quality check it composite test station near end of tv receiver production line in Metuchen, N. J. plant of Westinghouse television und Radio Division. Photo by Syd Karsen (see p 140).

COVER

Figures of the Month 4
Industry Refort 5
New Electronic Drafting Tools and Techniques. by James R. McDermott 20
Series Heater Strings for TV Receivers by Frank Roberts 126
Component Design Trends-New Variable Copacitors Extend Tuning Range............... by Frank Rockett 130
Digital Servamechanism Controls Shaft Position .by L. T. Thomasson 134
Adjustment Procedures for Color TV Production by Charles T. McClane 140
Transistor Pcwer Supply for Geiger Counters by Alan R. Pearlman 144
RPM Indicator Provides Expanded Scale. by A. J. Strassmon 146
Radar Duplexer Uses Dual T-R Tube by Horold Heins 149
Continuous Film Scanner for Monochrome and Color by E. H. Traub and J. F. Fisher 152
Single-Channel System of Frequency Diversity by Dean D. Howard 158
Ceramic Tube Mount for Automotic Assembly by Robert N. Polmer 162
Pulse Distribction in TV Network Origination by J. S. Auld and A. Gallonio 166
Moving-Target Detector by J. L. McLucas and R. D. Laughlin 169
Bias Supplies for Direct-Coupled Circuits by John H. Reaves 172
Designing Wide-Range Tuning Circuits. by R. W. Johnson 174
Thermistor Nomograph (Reference Sheet). by Victor W. Bolis 178

W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, John M. Carroll, Associate Editors; William P. O'Brien, William G. Arnold, David A. Findlay, Haig A. Manoogian, Edmund B. Palmquist, Assistant Editors; Marilyn Wood, Gloria J. Filippone, Mary A. Sullivan, Ardene Schilp, Editorial Assistants; Keith Henney, Consulting Editor; Gladys T. Montgamery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant
H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; Frank H. Ward, Business Manager; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; Charles Wardner, James T. Mauptli, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcarn, San Francisco; Carl W. Dysinger, Los Angeles; Wm. D. Lonier, Atlanta

HIGH CURRENT REGULATED DC SUPPLY

We have been repeatedly advised of the need for a laboratory power supply with current capacity of up to one-half ampere. During the design of the unit it appeared desirable that it should embody characteristics making it suitable for pulse work.
The result is our new Model 600B which we believe merits your attention by its reduced ripple, its internal impedance specifications, and its incorporation of type 5651 tubes to increase long-term stability of output voltage.

Look at these specifications

Output voltage	0.600 VDC
Output current	$0-500 \mathrm{Ma}$
Regulation accuracy	$\pm 0.25 \%$ $\pm 0.5 \%$ below 100 VDC
	3 maximum
Ripple (mV.RMS)	0.150 VDC
Bias supply	
Maximum bias circuit impedance	50000 ohms
Internal impedance, maximum	2.0 ohms
Input range	
AC voltage unregulated	

internal impedance

The internal impedance of 2.0 ohms is determined by making measurements in accordance with I.R.E. specifications for the measurement of power supply inrernal impedance (cf. The Proceedings of the I.R.E., January, 1951). However, this can be expressed in a slightly different manner. The 2.0 ohms impedance applies for frequencies above 20 cycles. Typical measurements indicate that at 10 kc impedance is 0.5 ohms in series with 18 microhenries, and at 20 kc it is 0.5 ohms in series with 8 microhenries. recovery time
Typical measurements indicate a recovery time of 1 millisecond when a load of $1 / 2$ ampere is applied. It is approximately 0.5 milliseconds when load is decreased from full to no load, and is in the order of 0.2 milliseconds when load is decreased from full to $1 / 10$ load. REGULATION ACCURACY
The regulation accuracy applies where
there is load change from zero to full at a fixed input voltage within the rating, or against an input change between 105 and 125 volts at a fixed load within rating. This accuracy applies down to 30 VDC. Below 10 volts the changes due to circuit instability are greater than those due to line or load conditions.
BIAS SUPPLY
The bias supply accuracy is $\pm 0.5 \%$ at maximum output voltage and from 0.5 ma.
tube complement
OD3 (2), 5651 (3), 5R4 (3), 6L6 (7), 6BQ6 (1), 6SL7 (1), 5Y3 (1). MECHANICAL SPECIFICATIONS
The instrument is $17^{\prime \prime}$ long, 101/2" high, and $147 / 8$ " deep. Net weight is 85 pounds. The unit is self-contained, but a panel is available; its dimensions are $19^{\prime \prime}$ long by $121 / 4^{\prime \prime}$ high.
price
$\$ 395.00$ f.o.b. Stamford, Conn.

Other B Supplies are available in the standard Sorensen line, as well as Nobatrons* (low-voltage, high-current reg. ulated DC sources), AC reg. ularors, frequency changers, and other power regulating and orher power regulating
equipment. Write for the new equipment. Write for the new general catalog to Sorensen 8
Co., Inc., 375 Fairfield Ave., Co., Inc., 375 Fairfield Ave.,
Stamford, Conn. In Europe. please correspond directly with Sorensen A.G., Gartenstrasse 26, Zurich 2, Switzerland.

SORENSEN

SWITCH TO ANY FREQUENCY

ON OUR

NEW

DECADE OSCILLATOR

Not only can you select any frequency between $1 \mathrm{c} / \mathrm{s}$ and $111 \mathrm{kc} / \mathrm{s}$ simply by setting to the required value on four rotary switches, but you can repeat this setting - precisely - as often as you wish.
The frequency accuracy at any setting is $\pm 0.2 \% \pm 0.5 \mathrm{c} / \mathrm{s}$, improving between $20 \mathrm{c} / \mathrm{s}$ and $50 \mathrm{kc} / \mathrm{s}$ to $\pm 0.1 \%, \pm 0.25 \mathrm{c} / \mathrm{s}$. Moreover, if the oscillator is standardized at any frequency between $1 \mathrm{kc} / \mathrm{s}$ and $10 \mathrm{kc} / \mathrm{s}$ an even higher accuracy can be obtained over a range of $\pm 500 \mathrm{c} / \mathrm{s}$ from the selected value, thus enabling the instrument to be used as a variable frequency sub-standard.

BRIEF SPECIFICATION

D-650 MUIRHEAD-WIGAN DECADE OSCILLATOR

FREQUENCY RANGE - $1-11,110 \mathrm{c} / \mathrm{s}$ and $10-111,100 \mathrm{c} / \mathrm{s}$ FREQUENCY ACCURACY - - $\pm 0.2 \%$ or $\pm 0.5 \mathrm{c} / \mathrm{s}$ HOURLY STABILITY - $\pm 0.02 \%$ MAXIMUM OUTPUT 2 W into 8,000 ohms above $20 \mathrm{c} / \mathrm{s}$
harmonic content HUM LEVEL POWER SUPPLY DIMENSIONS 50 mW into 8.000 ohms below $20 \mathrm{c} / \mathrm{s}$ WEGHT.

MUIRHEAD

MAKERS OF HIGH GRADE

WRITE UNDER YOUR BUSINESS LETTERHEAD FOR DESCRIPTIVE BROCHURE
 PRECISION ELECTRICAL INSTRUMENTS

FIGURES OF THE MONTH

RECEIVING TUBE SALES

(Source: RETMA)	May
Receiv. tubes, total units	$35,267,7$
Receiv. tubes, value. . $\$ 21,065,607$ Pic. tubes, total units. 579,3 Picture tubes, value... $\$ 12,124,0$ SEMICONDUCTOR SALES	

(Source: RETMA) May'53 $\left.\begin{array}{l}\text { Germanium Diodes } \\ \text { Silicon Diodes }\end{array}\right\} \ldots . . .1,466,362$

Apr. '54
May '54 994,949-r 1,001,905

INDUSTRIAL TUBE SALES	- Quarterly Figures _		
	Yeor Ago	Previous Quorter	Lotest Quarter
(Source: NEMA)	1st'53	4th '53	1st '54
Vacuum (non-receiving)	\$10,400,000	\$9,467,331	58,971,335
Gas or vapor	\$3,300,000	\$4,854,222	\$4,589,239
Phototubes	\$700,000	\$405,000	\$405,000*
Magnetrons and velocity modulation tubes ..	\$10,500,000	\$13,073,095	\$16,135,274
Gaps and T/R boxes...	\$1,700,000	\$2,707,730	\$1,517,426
	* 4th quarter 1953		

COMMUNICATION AUTHORIZATIONS

(Source: FCC)	May ${ }^{\text {¢ } 53 ~}$	Apr. '54	May '54
Aeronautical	42,213	42,998	41,374
Marine	40,076	45,132	45,762
Police, fire, etc.	13,238	15,241	15,438
Industrial	16,850	21,029	21,313
Land Transportation	5,830	6,829	6,887
Amateur	111,011	120,581	122,283
Citizens Radio	2,124	5,664	5,706
Disaster	189	271	283
Experimental	439	550	567
Common carrier	1,193	1,549	1,613

EMPLOYMENT AND PAYROLLS

(Source: Bur. Labor Statistics)	Apr. '53	Mar. '54	Apr. '54	
Prod. workers, comm. equip.	433,800	$361,900-\mathrm{r}$	354,100	
Av. wkly. earnings, comm....	$\$ 66.67$	$\$ 76.55$	$\$ 66.86$	
Av. wkly. earnings, radio...	$\$ 64.24$	$\$ 6.59-r$	$\$ 65.91$	
Av. wkly. hours, comm.....	40.9	39.5	39.1	
Av. wkly. hours, radio....	40.4	39.4	$-r$	39.0

STOCK PRICE AVERAGES

(Source: Standard and Poor's)	June '53	May'54	June '54
Radio-TV \& Electronics	271.5	305.3	308.7
Radio Broadcasters ...	266.0	322.1	325.9
p-provisional; r-revised			

FIGURES OF THE YEAR

Television set production	1953 Total
	$7,214,787$
Radien	$13,368,556$
Television set sales	$6,375,279$
Radio set sales (except auto)	$7,064,485$
Receiving tube sales	$437,091,555$
Cathode-ray tube sales	$7,582,835$

INDUSTRY REPORT

electronics—August - 1954

Silicon Diode Handles 1,200 Watts

New semiconductor device envisioned as replacement for scarce selenium units

Power output of more than 1,200 watts is clained for a silicon rectifier recently announced by Westinghouse.

The new semiconductor device will function efficiently at ambient temperatures as high as 392 F . Efficiency of close to 98 percent is claimed. Although not commercially available at present, Westinghouse indicates that it could accept orders.

- Applications-Outstanding virtue of the new rectifier is its power-handling ability. Previous silicon diodes could handle only a fraction of a watt. Important also is its resistance to temperature, which fits it particularly well for aircraft and guided-missile applications.

The unit is described as a junction diode atout half the size of a cigarette pack. Engineers indicate that the silicon is being "grown" and that supply sources are adequate.

- Selenium Substitute-Development of a successful silicon power rectifier would do much to dispel fears of a selenium shortage should defense production go to much higher levels. (See "Planners Fear Selenium Shortage," Electronics, p 8, May 1954.)

An acute shortage of selenium might see silicon rectifiers used also in products for the civilian market such as radio and television sets, computers and industrial equipment.

PHOSPHOR-COATED fcceplates for CBS-Hytron picture tubes are exposed to light in photographic printing process as large screen ...

Color Tubes Get on Assembly Line

MASS PRODUCTION of picture tubes for color television has been started at the CBS-Hytron plant in Newburyport, Mass. Present production rate of 150 tubes per day is expected to be stepped up to over 400 per day by the end of September.

The new 19 -inch tube, which will have a manufacturer's price of $\$ 175$, has been adopted for portions of the 1954 tv set output of Capehart-Farnsworth, CBS-Columbia, Westinghouse, Motorola, Pa-cific-Mercury and Warwick Mfg. Co. The latter two companies are suppliers to Sears-Roebuck.

Construction of the new tube uses the photographic process to place the color dot pattern directly on the face of the tube. The tubes own shadow mask is used as the negative for printing the pattern,
thus simplifying the problem of obtaining proper registration of the dot structure with the tube's mask.
A new plant is under construction at Kalamazoo, Michigan for black and white picture-tube manufacture. The production line is designed for quick changeover to color tubes when demand reaches a level where this plant's output will be required.

Du Mont recently demonstrated a 19 -inch color picture tube of similar construction.

RCA has announced it will show a 21 -inch color tube in September. It will contain a curved mask and have the phosphor dots on the face plate, unlike the older 15 -inch tube. Introductory price to equipment manufacturers will be $\$ 175$.

A 21-inch rectangular tube
has been demonstrated in an experimental Zenith set. The tube is the product of the experimental color production line of Zenith's Rauland tube division.

Tubes Aid Allergies

Electronic in their high-voltage power supplies, two electrostatic air cleaners have hit the home equipment field.

- Market-It is estimated that 10 percent of all people suffer from an allergy condition and that 2.5 percent of these or 6 million people have allergies caused by air-borne particles. Some 800,000 people are bed-ridden as a result.

Heretofore, electrostatic air cleaners have been of the large type such as those used in Madison Square Garden, in pharmaceutical manufacturing houses and other large buildings. Few maintenance problems are expected with the new units and those that do occur may be taken care of by a radio-tv serviceman.

One unit, built by Raytheon, weighs 60 pounds and is 30 inches high, 15 inches wide and deep. The other unit is built by the Radex Corp., weighs 30 pounds and measures 25 inches high by 16 inches wide by 13 inches deep.

- Works-The Raytheon unit uses approximately the same amount of current as a 40 -watt electric light bulb. Air is drawn into the machine by a fan and is ionized by a nonuniform electrostatic field. Ions accumulate on dust particles charging them. The charged particles are then acted upon by the uniform electrostatic field between closely spaced collector plates and are deposited on electrodes of opposite polarity.

The Radex air cleaner uses a fan to pull the air through a mechanical filter. Particles which filter through this barrier pass through a series of eight electrostatic plates which are charged to high voltage. Charged particles are attracted to and held by oppositely charged plates. A germicidal plate coating is designed to destroy virus, fungi and bacteria.

TV Set Output Changes Patterns

Despite similarities in each years' production trends, new twists color the picture

Vagaries of the tv set business are indicated in the Federal Reserve Board's revised output index for the product.

- Trend-As shown in the chart, the ups and downs of the business in the past four years have followed a fairly consistent course and the seasonal pattern of the field seems well defined in general. Yet, as can be seen, each year has had important variations and even summer slumps have been different.

For example, in 1952, the sizable output dip that would be expected in June actually cut only slightly into May production. FRB figures, which are based on RETMA production estimates, also show that in March of this year, contrary to past trends, the output index for tv sets went up more substantially than it had in the past three years even though the total reached was far below that for the month in 1953.

Last year the index actually dropped in March. In April of this year, it dropped only 29 points compared to 97 points last year and for May, tv set production fell by 61,321 units, much less than the decline of 141,998 units in

April. According to RETMA, the May drop was caused by the usual seasonal downward trend coupled with labor difficulty in the plant of at least one large set producer.

- Rise-The traditional upswing in tv set output that usually occurs in the last five months of the year has also varied considerably. For example, in 1951, instead of the usual sharp increase in August, output actually decreased in that month for the first time in the four-year period. In 1950, output decreased in September, contrary to past performances. Last year the continued sharp drop through November and December was unlike previous experience.

Oil Forces Interest In Radiolocation

NEED for better air navigation systems and requirements of undersea oil drilling regularly bring to public view the work of engineers in the field of radiolocation.

Latest summary of electronic air navigation systems (which are also useful for surface travel) to be printed soon is entitled "Electronic Systems of Air Navigation" and will be available from Office of Technical Services, Department of Commerce. Summaries of unclassified

S

The Answer to Efficient Power at 1000 to 4000 Megacycles

Still more reasons why it pays to SPECIFY SYLVANIA

For complete information concerning Sylvania Rocket Tubes or other electronic tubes write to Sylvania, Dept. 4E-1608.

Syivania Electric Products Inc.
 1740 Broadway, New York 19, N. Y

[^0]systems include standard loran, low and medium-frequency nondirectional beacons, Consol, Navarho, Decca, Gee, the four-course radio range, vhf omnidirectional range (VOR) and distance measuring equipment (DME).

- L-F Development-Chief difficulty with existing unclassified systems is that, for the most part, they either operate on the higher frequencies, with resultant limited range, or else they fail to employ the lower frequencies assigned by international agreement for ulti-
mate long-distance systems.
Just as a war emergency sped the development of radar and loran, the push for undersea oil reserves makes it interesting to develop long-wave radiolocation systems that can be used in the Gulf of Mexico. Because of the interest of Hastings Instrument Co. (Raydist) and Seismograph Service Corp. (Lorac), FCC has proposed that the bands 10 to 14 kc and 90 to 110 kc now assigned to radio navigation service be opened to development of radiopositioning equipment. Comments pro and con have been made.

BROOKLYN DODGERS use a scape ta measure fast ball speed as

Oscilloscope Business Steps Up

Volume has doubled since 1950 as applications in business and industry increased
Scope manufacturers seem to agree that their business has risen steadily in the past few years despite some disagreement on the level of the volume. Estimates range from 15,000 to 50,000 units sold in 1953.

The upward trend of the business is indicated in the chart by the unit sales of oscilloscope c-r tubes for new equipment which includes camera, pickup and other tubes. It is estimated that oscil-
loscope unit volume represents about 40 to 50 percent of initial equipment c-r tube volume shown.

- Companies-There are about 55 manufacturers of oscilloscopes in the U.S. making scopes ranging from multiple channel types to portable and portable projection models. It is estimated that about 10 companies account for the bulk of the business. Kit manufacturers do a large unit volume in the field, an estimated 20,000 units a year. One kit firm is estimated to produce 1,000 units monthly.

In terms of dollar volume, it is

the factory-made sets that cash in. This is indicated by the range of scope prices. Kits with 5 -inch tubes are sold for as little as $\$ 45$ to $\$ 50$. On the other hand, lowpriced factory built oscilloscopes sell at around $\$ 140$ to $\$ 150$ and go on up to several thousand dollars.

- Market-Kit manufacturers find a sizeable market for their product in the school or technical institute field in addition to the service field. The low price of kits and the fact that they allow students to learn by doing has made the market important.

Factory-made oscilloscopes find their main market in industry. The electronics field itself represents a major market and the automotive industry is becoming increasingly important. The government is also a large customer for the instruments. About 30 percent of the output of one large scope maker goes to the military.

- Future-One manufacturer is developing special designs, expected to be ready next year, for greater use in the automotive field. Applications in the computer field are also increasing along with those in medical electronics.

Printed circuits are being used for certain circuits and may become a permanent part of oscilloscope production techniques.

Wireless Transistor Microphone Bows

STEP toward removing some of the restrictions that conventional microphones using cables and booms have placed on tv performers and directors was taken recently when
(Continued on page 10)

only

Sprague makes them all!

YOU CAN CHOOSE FROM 5 DIFFERENT STYLES OF tantalex* Capacitors

Looking for tantalum electrolytic capacitors? You'll save time and trouble by checking Sprague's complete selection first. Sprague makes more types of tantalum capacitors than any other manufacturer.
Sprague Tantalex capacitors provide maximum capacitance in minimum space . . . exhibit no shelf aging under long testing periods ... have extremely low leakage current. And most important, they give unusually stable performance, be ause they're made with tantalum, the most stable of all anodic film-forming materials.
There's a complete range of sizes and ratings available in Tantalex capacitors ... from the ultra-miniature 10 mf , 4 volt unit in a case only $1 /{ }^{\prime \prime \prime}$ in diameter by $518^{\prime \prime}$ long . . . to the $7 \mathrm{mf}, 630$ volt unit in a case $1^{1 /} /{ }^{\prime \prime}$ in diameter by $2^{10} / 22^{\prime \prime}$ long. As for case styles, Sprague makes them all, foom tiny tubular and cup units to the large cylindrical types. For complete details relating to your miniaturization or high temperature problems, write Sprague Electric Co., 35 Marshall St., North Adams, Mass.

Sprague, on request, will provide you with complete application engineering service for eptimum results in the use of tantalum capacitors.

NEE!
 TYPE 101 D for low-cest
 rransistor circuiery

Especially usaful for Alter, coupling, and bypass applications in fransistor electronics, these foil rype miniature Tantalex capacitors were intended for use in hearing oids, pockef radios, and similar uses. Operating temperature range is -20 to $+65^{\circ} \mathrm{C}$. Request Engineering Bulletin 353.

NEW! TYPE 1020 for $-55^{\circ} \mathrm{Cro}+85^{\circ} \mathrm{C}$ operation for milfeary use

Here are tubular sopacitors hermetically sealed in cases of silver plated sopper. Intended for applications from 3 to 150 vale, their small capacitance drop-off at extremely low temperatures, extremely low leakage current, and low power factor are of particular interest. Request Engineering Bulletin 351 .

NEWI

TYPE 103D ultra-miniature capacifors for transistor circuitry
Only $1 /{ }^{\prime \prime}$ in diameter, and from $3 / /^{\prime \prime}$ to $1 / 2^{\prime \prime}$ in length, these are the smallest electrolytics made. Providing relatively large values of capacitance in the very minimum of space in bypass, coupling, and Alter applications, they are ideally suited for transistor hearing aids and military amplifiers in which small size is all-important.
Request Engineering Bulletin 352.

NEW! TYPE 1040 miniature "cup" capacifor for military use

These low-voltage units consist of a sintered porous tantalum enode housed in a miniature silver thimble, which serves as both cathode and container for the electrolyte. Volume is less than $1 / 10$ cubic inch; operating femperafure range -55 to $+85^{\circ} \mathrm{C}$, and up to $100^{\circ} \mathrm{C}$ with a voltage derating of 15%. Request Engineering Bullefin 354.

TYPE 100D for -55 to $+125^{\circ} \mathrm{C}$ operation for military use

These hermetically sealed capacitors cre available in voltage ratings up to 630 volts af $85^{\circ} \mathrm{C}$ or 560 volts at $125^{\circ} \mathrm{C}$. They are of the sintered porous tantalum anode type, with internal construction to withstand high 8 shock, severe vibration, and the mab cycling. Request Engineering Bulletin 350A.

NBC engineers demonstrated an experimental wireless microphone. The entire assembly of microphone, transmitter with battery and loop antenna weighs less than eight ounces and can be hidden in a performer's clothing.

- Unit-The transmitter, when design is finalized, will be little larger than a pack of king-sized cigarettes with dimensions of by 2 by 3 inches. Eight transistors are used in the unit. It is powered by an alkaline-cell battery which is expected to furnish five hours of continuous transmission. The unit develops approximately 50 milliwatts of power at about 530 kc of which less than

100 micro microwatts is radiated.

- Signal-The transmitter's signal is picked up by a loop of wire encircling the work area. The range of reception has not yet been fully determined, but tests have shown coverage of an area of $5,000 \mathrm{sq}$. ft.

According to NBC engineers, the system is not vulnerable to most sources of interference but in areas where interference may be a problem, an increase in received signal can be achieved by reducing the area covered by the receiving loop, thereby improving the signal to noise ratio. Because of the low power and frequency used by the unit, it does not require an FCC license.

Military Purchases Show Upturn

DOWNWARD TREND in government buying oppears to be checked, as ...

End-of-fiscal-year boom fails to materialize but monthly buying is higher

Government purchases of electronic equipment during the second quarter of 1954 are up sharply over first quarter totals but still much lower than for corresponding months last year. A general downward trend in electronic purchases appears to have leveled off, however.

Figures shown in the curve are
taken from the consolidated synopsis of contract a wards issued daily by the Department of Commerce and includes only formally advertised and unclassified contracts of $\$ 25,000$ and over. Only contracts for electronic equipment and components are included. This excludes, for example, electronic gear supplied as part of military aircraft.

- Trend-The trend is more important than the actual totals.

This trend is established by
averaging out sharp peaks that arise from an apparent tendency of procurement officers to concentrate their buying around the beginning and end of the federal fiscal year in July.

The sharp increase noted in 1952 and 53 did not materialize at the end of the 1954 fiscal year although daily buying during the first days of July was averaging $\$ 3.6$ million. A breakdown of the midsummer boom in 1952 shows large expenditures for services, facilities and materials for research, design and manufacturing of items such as transistors, hydrogen thyratrons, miniaturized components and reliable tubes that are unlikely to be repeated.

- Future - By 1960, electronics purchases will constitute 10 to 15 percent of all defense spending according to Don Mitchell, Sylvania's board chairman. Annual outlay for electronics will then be about $\$ 3.8$ billion. Mitchell pegs present spending at $\$ 2.8$ billionagainst a 1951 figure of $\$ 1.5$ billion. Predictions on future defense spending assume no all-out war meanwhile.

Analog Computer Men See Rising Market

Industrial firms, government and colleges buy machines; computation centers appear

Business in the analog computer field is by no means as big as in the digital field but it is nonetheless sizable and growing rapidly. Annual sales are running more than $\$ 8$ million and manufacturers expect them to double by 1955.

About $\$ 40$ million worth of analog computers are in use. Customers include manufacturers of aircraft, jet engines, automobiles, cameras, chemicals, petroleum products and even digital computers as well as defense agencies, colleges and universities.

- Analog vs Digital-The analog computer is a kind of calculus
(Continued on page 12)

Page-full of ideas for you

on Sintered Maqnets

"MAGNETIC MATERIALS CATALOG"
Write for your copy
Contains handy data on various types of Alnico Magnets, partial lists of stock items, and information on other permanent magnet materials. Also includes valuable technical data on Arnold tapewound cores, powder cores, and types "C" and "E" split cores in various tape gauges and core sizes.

ADDRESS DEPT. E-8

"OFF-THE-SHELF" ITEMS or SPECIAL SHAPES to suit your needs

Magnets of sintered Alnico offer endless opportunities to designers who need their useful combination of self-contained power and small bulk. A wide range of sintered Alnico shapes are carried in stock for quick shipment. Special shapes to meet an individual design need can be developed, where the quantity required is large enough to justify the rooling costs. Arnold sintered permanent magnets are fully quality-controlled and accurately held to specified tolerances. We'll welcome your inquiries.
wad 5280

The Arnold Engineering Company

Subsidiary of allegheny ludlum steel corporation General Office \& Plant: Marengo, Illinois OISTRICT SALES OFFICES . . . New York: 350 Fifth Ave.
Los Angeles: 3450 Wilshirs Blvd.
Boston: 200 terkeley St.

INDUSTRY REPORT-Continued

machine whose elementary prototype is the slide rule as opposed to the digital computer which is an arithmetic machine whose elementary prototype is the abacus or simple adding machine.

A king-size analog computer costs about $\$ 500,000$ and can fill more than two dozen standard equipment racks. Many such units are installed at establishments connected with the guided-missiles program. An average-size computer may cost about $\$ 70,000$, fill eight equipment racks and use nearly 1,000 electron tubes. A small or poor man's computer can be contained in a desk-size console and costs about $\$ 15,000$.

- Applications-The analog computer's prime function is solving differential equations encountered in problems of dynamic analysis. This means studying systems with several variables each of which varies in some particular way with time. Even the poor man's computer can usually solve differential equations of the tenth degree.

Computer's generally use d-c amplifiers for addition, subtraction, differentiation and integration and servomechanisms for multiplication and division. Electronic circuits can also be used for multiplication.

- Manufacturers-Three manufacturers are producing precision computers with accuracies of from 0.01 to 0.1 percent. Three others are building machines whose accuracy is 10 percent or more. Two analog computation centers are now open to businessmen and manufacturers for the civilian market. Many computers at colleges, government labs and in defense plants are available to government agencies and their contractors.

At the $7,000-\mathrm{sq} \mathrm{ft}^{\text {center }}$ run by Engineering Associates in Princeton, N. J. a medium-sized computer can be rented for $\$ 90$ an hour; half the machine can be had for $\$ 55$. Take-home problem boards are provided so that a problem can be set up before the customer comes to the center.

TOTALITY, seen at an altitude of 13,000 feet during the American AirlinesHayden Planitorium Eclipse Expedition, shows the sun's outer shell of gas as ...

Electronics Covers The Eclipse

Commercial television, radio telescopes and photoelectric eyes watch the event

ImPORTANT part that electronics plays in the field of astronomy was pointed up during the solar eclipse on June 30. The event was shown on television and, in various locations throughout the world, electronic gear aided scientists in recording the eclipse.

- Where-In Minnesota, balloons carried electronic gear aloft to measure cosmic rays. Television cameras there were trained on the eclipse using a specially designed ground-glass plate attached to the University of Minnesota's 10.5inch telescope.

The U. S. Airforce Cambridge Research Center, in cooperation with other agencies, had personnel and equipment at 15 observation sites in Canada, Labrador, Greenland, Iceland, Faeroe Islands, Sweden and Iran. Electronic scientists and technicians were among the personnel covering the event. Nearly 600 individual pieces of scientific equipment ranging from telescopes to audio equipment were used by Air Force ob-
servation teams alone.

- Eyes-At the four major Air Force observation sites, in Quebec, Greenland, Labrador and Iran, the minimum light intensity observation method was used. The method utilizes a highly sensitive photoelectric cell to make a graphic record of the changes of intensity during the eclipse. The method was especially useful in Iran where clouds obscured the eclipse. The photometer linked to an oscillograph operated satisfactorily to record the event.

Radio telescopes also were trained on the eclipse. Two in use were operated by French Astrophysical groups and by the Royal Observatory of Belgium.

- Computers-According to the Air Force, electronic computers will probably be used to calculate observation results. However, such results will not be forthcoming for several months.

Pre-eclipse calculations were made at computer centers in the U. S. The instruments have been used for some time for astronomical calculations by various observatories.
(Continued on page 14)

MINIATURE RADIO TU日ES

FOR VACUUM

largest producer of EXHAUST MACHINES

MINIATURE radio tuges

covers the most complete range of products to be vacuumized...

Kahle makes exhaust machines to vacuumize lamps smaller than a grain of rice for use in cystoscopes-and for eight feet long fluorescent lamps
Kahle makes exheust machinery that is stationary, automatic and combination (machines that exhaust and seal in one operation, machines that exhaust, vacuum metallize and mercury feed simultaneously, etc.). Kahle machinery will fit into any operation whethe - small scale or demanding outputs up to 2001 units each hour!

Among various items for which Kahle has made exhaust machinery are LAMPS gas-filled, miniature, photo.flash, incandescent, Huorescent and special lamps
ELECTRON TUEES sub-miniature, miniature, cathode-ray, stand ard. nower, X-ray

MERCURY SWITCHES INSTRUMENTS

VACUUM BOTTLES TRANSISTORS

Regcrdless of what product is to be exhausted, write $K A H L E$, largest exclusive manufacturer of custom macnines for the glass, lamp and electronics industries.

ENGINEERING COMPANY

TRANSMITTING TUBES

CATHODE RAY TUBES

OWER TUBES

POWER TUBES

INSTRUMENTS
1310 SEVENTH STREET • NORTH BERGEN. N.J.

STACKING elements simplifies ossembly so

Ceramic Tube Fits Automation

Experimental units first use will be for the military but tube holds commercial promise

Adaptable to assembly by automation, a new electron tube features a ceramic envelope and mount instead of the usual glass and mica. The design has been developed by Sylvania under contract with Navy's Bureau of Ships. (See p 162, this issue).

More compact than the conventional tube, it is said to have a higher degree of stability under temperature extremes, shock and vibration, and also to be capable of automatic production.

- Assemble-The tube elements are stacked one atop the other in the assembly process. The unusual ruggedness is attained in part by the use of ceramic spacers instead of mica. The complete mount of the tube is assembled on two small pins. First, a plate, then a spacer ceramic, a grid, a spacer ceramic, a cathode, a spacer ceramic and so no until the top is reached.

The ceramic tube can be directly strapped to equipment chassis or it can be socketed. The new tube is not interchangeable with the glass tube now used in electronic equipment, except in rare cases where a stacked tube may be tailored to a particular use. Since the tube design has not been frozen, equipment has not been redesigned yet to make use of it. However, much preliminary work has been done.

- Cost-Unofficial government opinion is that for approximately the next ten years the new tube will be more expensive than glass because of the special manufacturing facilities required and because the ceramic material for envelops is more expensive than glass.

The lesser cost of putting together the tube by automatic means will not offset these other cost factors for some time. It will take a number of years to amortize the cost of equipment.

- Advantages-The stacked tube can operate at a much higher temperature than a glass tube, it is more rugged, more uniform from tube to tube and capable of being manufactured by automatic means.
The disadvantages are higher cost, factory renovation necessary for equipment, new physical configurations calling for a different type of equipment packaging and somewhat lower cathode efficiency.

Theater-Sound Market Rapidly Expands

Stereophonic-sound motion pic-

 tures open new field for theater equipment salesWith the advent of numerous wide-screen film processes and their accompanying stereophonic sound systems, a nationwide market has been created for new sound equipment sales.

A stereophonic sound system
costs approximately $\$ 3,500$ (including installation) compared to $\$ 1,200$ to $\$ 1,800$ for a regular sound system for an average theater with a seating capacity of 600 . To date, approximately 4,000 theaters have been equipped for $3-\mathrm{D}$ sound.

Installations are currently being made at a rate of 75 to 100 theaters per week. There are about 18,000 indoor and 4,000 drive-in theaters in the United States, and, at the present rate of installations, the market shouldn't be saturated until 1957.

Stereophonic equipment is being supplied by at least six manufacturers. These companies manufacture either the magnetic sound heads and amplifiers used alone, or complete packages including loud speakers and other accessories.

Financial Roundup

Profit reports and security transactions reported in the past month by companies in the electronics field show the continued activity of the industry on the financial front.

The following firms reported net profits for fiscal periods indicated ending in 1954 compared to the period ending in 1953:

	Net Profit	
Company	1954	1953
AT\&T 4 m	\$109,986,629	8100,764,949
Avco 6 m	2.827.894	3,315,897
Daystrom 12 m	1,459.000	7
Raytheon 12 m	3,523,316	
Remington Rand 12 m .	12,257,778	14,150,8

- Securities - Daystrom authorized an increase in its authorized capital stock from 1.25 to 2.2 million shares consisting of 200,000 shares of cumulative preferred stock without par value and 2 million shares of common stock with par value of $\$ 10$ per share. Also authorized was the issuance of convertible securities at the discretion of the board of directors.

The new stock authorized will be used to increase the firm's financial potential, allow for further expansion and provide additional working capital. According to the company, while no
(Continued on page 16)

the NEW miniature ...ALL-METL same \mathbf{B} mour

 UNITS SHOWN ACTUAL SIZE

These new isolators are the latest addition to the famous Barry ALL-METL line.
They are specifically designed to help you meet miniaturization demands under toughest environmental conditions.

$$
\begin{aligned}
& \text { Temperature range - from }-60^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
& \text { Weight - only } 1 / 2 \text { ounce per unit isolator } \\
& \text { Height-only } 11_{4}^{\prime \prime} \text { free, } 25 / 32^{\prime \prime} \text { bottomed } \\
& \text { Load ratings - } 0.1 \text { to } 3.0 \text { lbs. per unit isolator } \\
& \text { Performance - meet all relevant requirements of } \\
& \text { JAN.C-172A/ML.C-172B } \\
& \text { Ruggedized - to meet shock tests under specifications AN-E-19, } \\
& \quad \text { MIL•E-5272, MIL-T-5422B, and MLL.C-172B. } \\
& \text { Mounting styles - available in plate and cup types, as } \\
& \text { illustrated, for 2-hole or 4-hole mounting. }
\end{aligned}
$$

For complete information, ask for your free copy of the new Barry Product Bulletin 542, containing full installation and performance data. And for greatest benefits with these new isolators, let our Field Engineering Service help in the early stages of your equipment design.

SALES REPRESENTATIVES IN ALL PRINCIPAL CITIES
British Licensee: Cementation(Muffelite), Lid., London, England
specific project has crystalized, it plans to continue its program of expansion and development with emphasis on electronics. The company recently acquired Weston Instrument stock and now has voting rights to about 189,000 of the 428,221 Weston shares outstanding.

General Electric registered with SEC covering 4.2 million shares of its $\$ 5$ par common stock to be offered to key employees who may from time to time hold options granted under GE's stock option plan.

Gray Manufacturing registered with SEC covering 58,119 shares of its capital stock, $\$ 5$ par, to be offered to stockholders on the basis of one new share for each four held. Net proceeds are to be added to the general treasury fund for general corporate purposes.

IT\&T's International Standard Electric Corp. plans the sale abroad of $\$ 17.5$ million of unsecured debentures for public distribution in Switzerland. International Standard will apply the net proceeds against its current debt to the parent company with a resulting increase in the working capital of IT\&T.

Sprague Electric has raised $\$ 3,607,500$ for working capital by selling a block of 48,100 shares of its common stock, par $\$ 2.50$, privately to 12 buyers at a price of $\$ 75$ per share.

Telecomputing Corp. offered 95,000 shares of capital stock, par $\$ 1$, at $\$ 13.25$ per share. Principle purpose of the offering is to provide funds for the manufacture of its recorder and further development and production of the firm's automatic business controls project. The company also contemplates construction of a new $\$ 350,000$ plant.

Total of 16,000 shares of Texas Instrument common stock, par $\$ 1$, was offered at the market price. Net proceeds will go to selling stockholders.

Ultrasonic Corp. registered with SEC covering 200,000 shares of common stock, par \$5. Proceeds will be used to finance new business the firm has on hand.

Replacement Sales Keep Gaining

Growth in quantity and age of equipment has steadily increased renewal business

Renewal parts and equipment sales are continuing to gain.

- Tubes-Although renewal tube sales both for c-r tubes and receiving tubes are not nearly as large as new equipment business for both types, they have represented from 20 to 30 percent of total sales for the past few years, as is shown in the chart.
- Sizes-Renewal sales for picture tubes show that in the first quarter of this year approximately 44 percent of total renewal sales were for the 19 to 21 -inch tubes and 42 percent for the 16 to 18 -inch type. Tubes 15 inches and smaller accounted for 11 percent and those over 21 inches accounted for the remaining 2 percent.

In contrast, in the first quarter of 1953,31 percent of total renewal sales were accounted for by 19 through 21 -inch tubes while 58 percent were represented in the 16 to 18-inch classification.

For the yearly comparison, 51 percent of total c-r tube renewal sales in 1953 were for the 16 to 18 inch tubes and 33 percent represented sales of 19 to 21 inch.

In 1952, 26 percent of total renewal sales of c-r tubes was in the 16 to 18 -inch size and only 8 percent was represented by 19 to 21 -inch tubes.

- Future-In pointing out opportunities in television and radio servicing, RETMA estimates the servicemen's billings for components and accessories reached nearly $\$ 400$ million dollars in 1953. Billings of about $\$ 500$ million for this year, nearly $\$ 600$ million in 1955 , over $\$ 900$ million in 1956 and nearly 1.1 billion in 1961 were foreseen.

The serviceman's bill for replacement tubes, both receiving and picture was estimated at over $\$ 200$ million in 1953; $\$ 300$ million in 1954; nearly $\$ 400$ million in 1956 and over $\$ 500$ million in 1961.

Other estimates of the replacement business have painted an equally rosy picture for parts and tube manufacturers. One of the largest tube companies estimates that manufacturers sales of replacement tubes and parts totaled $\$ 630$ million in 1953 and that they will increase by approximately $\$ 200 \mathrm{mil}$ lion this year. In 1960 to 1962 the company sees replacement tube and parts sales of $\$ 2.2$ billion quadrupling present volume and exceeding new equipment dollar volume.

Electronics Employment Increase Due in August

Unemployment in the communications equipment field is set for a sharp decrease this month if past hiring trends of the industry hold true for this year. With inventor-
(Continued on page 18)
 with High Power-Handling Capacity for control of industrial processes.

The application of proportional-control servomechanisms to voltage regulator design has resulted in a unique, highly-efficient instrument which should prove of considerable value to those requiring constant a-c line vcltage.

This Regulator consists essentially of a Variac ${ }^{\circledR}$ continuously-adjustable autotransformer, a servo-
mechanism sensing circuit which samples the output voltage, and a servo-motor which varies the Variac to correct for input line-voltage changes. This instrument is rugged, requires minimum mainienance, the G-R trademark guarantees it's been engineered and built right.

Features you gef with the

"SPEED This instrument does things in fractions of a second - response is 10 volts per second
HIGH ACCURACY Output held constant to within $\pm 0.25 \%$ of voltage selected
$\pm 10 \%$ SELECTION IV OUTPUT VOLTAGE Output may be se: for any desired value from 104 to 127 volts
CORRECTS LINE VOLTAGE FLUCTUATIONS OVER WIDE RANGE $\pm 0 \%$ of selected output voltage, $\pm 20 \%$ or $\pm 40 \%$ at reduced accuracy and fower rating
HIGH POWER Handles 50-amps (6 KVA) EXCELLENT TRANSENT RESPONSE Adjustments permit setting response characteristic desired - adjustable for no overshoot (see oscillograms)

115-volt, 60-cycle Automatic Voltage Regulator

Oscillograms illustrate high-speed response of typical G.R. Automatic Voltage Regulator. Illustrated at top, is sudden 1% change in 60 -cycle voltage input to Regulator. Bottom oscillogram shows instrument correcting for this change in 8 cycles (0.13 seconds)

ADDS NO HARMONIC DISTORTION Unlike most saturable-core reactors
SUPPUES ANY LOAD No restrictions on power factor
EFFICIENCY Better than 98%
VOLTAGE CORRECTION INDICATED Panel dial provides continuous indication USEFUL FOR CONTROL OF THREE-PHASE POWER three of these instruments in conjunction will control both amplitude and phase of three-phase systems
WEIGHT 55 lbs DIMENSIONS $19^{\prime \prime} \times 7^{\prime \prime} \times 127_{8 "}$
Type 1570-A Automatic Voltage Regulator
. . supplied in either $115 \cdot \mathrm{v}$ or $230 \cdot \mathrm{v}$ model
Type 1570-ALM (115y)
Type 1570 -AHM (230v) Table-Top $\$ 470$.
Type 1570 -ALR (115 v) Relay-Rack $\$ 465$.
Type 1570 -AHR (230v)

[^1]modulation metres motor controls nuth ofiectons oscilearors oscillatons
parts a acerssoniks polamincopes polamscopes pulse geminatons putsi geminato e-i-c standalid
shgal gemerators
sound a vibatiom meters shonscopis
in a BROADCASt mowitors U.m. mianuring iquipmint UNIT MSTREMENTS valuacs
V.t votrmities

Gavi amaitzits Wave furtas

ies for many companies now in lower positions and with the fall selling season approaching an employment increase is due.

- Decline-As expected, the sharp employment drop in the past months of the year, as shown in the chart, has coincided with production declines in the industry. Radio and tv set production were off over 30 percent for the first four months compared to the period last year and the Electronics output index was down 45 points from last year's level. Pro-duction-worker employment in April was nearly 80,000 below April of 1953 and total employment in communications equipment was down 73,000 . Workforce figures for May, June and July are expected to show further employment declines because of the industry's seasonal nature.
- Revision-As shown in the chart, level of employment for the industry is higher beginning in January of 1954 compared to last year. The increase is due to an adjustment in the reference point or benchmark that has been made by the Bureau of Labor Statistics and other government bureaus that are responsible for the figures and not to increased employment. Without such periodic adjustments employment estimates tend toward understatement according to BLS, which becomes larger as the distance from earlier bench marks increases. In the case of communications equipment, the reference point has been changed from the first quarter of 1951 to
the first quarter of 1953. The change has raised the level of employment estimated for the industry. For example, with the 1951 reference point an estimate of 488,000 was made of all employees for January 1954. With the adjusted benchmark, total employment for the industry is estimated at 514,000 , an increase of 26,000 . For production workers in January the estimate was raised from 352,000 to 372,000 , an increase of 20,000.
- Where-Despite the ups and downs of employment in the industry, within each year, the electronic work-force is continuing to grow in size. In 1951, an average
of 405,800 workers were employed during the year. In 1952, the annual employment average increased to 474,200 . Last year it reached 559,700 .

Indication of the size of the firms that have been responsible for the growth in the industry's employment between 1951 and 1953 is shown in the following percentage increases in total employees for electronic firms of various sizes. For firms in the 0 to 99 employees class the increase was 71.4 percent; 100 to $249,52.9$ percent; 250 to $499,31.8$ percent; 500 and over, 33.2 percent. For the industry as a whole, the percentage increase in employment in the period was 37.4 percent.

Plants Expand for Defense in 1954

Company	
AMF	
Baldwin Piano	
Bendix Aviation	
Bird Electronics	
Boesch Mfy.	
Central Sales \& Mifg	
Collins Radio. . . .	
Control Instrument	
Dumont-Airplane \& Marine Instruments	
Eitel-McCullough	
Electronic Associates	
Electronic Associates	
Gaertner Radio. .	
GE	
Gibbs Mfg	
Hughes Tool	
IBM	
Land-Air	
Land-Air	
Litton Industrics	
W. L. Maxson.	
Motorola	
North Amer, Av. North Electric Mfg.	
Potter Company	
Potter \& Brumfield	
Premier Instrument	
Sperry Corp.	
Western Ele	
Western Elect	
Western Electric	
Western Electric	

Electronic manufacturers who have been granted accelerated tax amortization certificates in the first six months of this year for plant expansions are shown above.

- Aim-Main purpose of the government's fast amortization pro-
gram is to expand private industry productive capacity to meet mobilization goals.
Under the program, a firm applies for a certificate of necessity for accelerated tax amortization which allows depreciation for tax purposes of new facilities for as short a time as five years. The dollar value given of the new or expanded facilities refers to the
(Continued on page 20)

ATHED GERMANIUM and SILICON JUNCTION DIODES

precision produced to RAYTHEON standards of stability and uniform excellence of performance

RAYTHEON JUNCTION SILICON DIODES

providing extreme stability, wide temperafure range, high back resistance (100 megohms or more), and high ratio of back to forward resistance.

Type	Ninimum Forward Carrent at +1 Volt (ma.)	Maximum Reverse Current at -10 Volts at Voltage Shown ($\mu \mathrm{a}$.) μ a. volts			Maximum Avg. Rectified Current (ma.)	Maximum Peak Rectified Current (ma.)	Peak Inverse Voltage (volts)	Max. Avg. Power Dissipation (mw.)
CK735	5	0.01	-	-	30	150	15	125
CK736	3	0.1	. 5	-50	20	150	70	100
CK738	1	0.1	1.0	-100	20	150	125	100
CK746	2**	2.0	50	-50	15	125	60	100

RAYTHEON JUNCTION GERMANIUM DIODES
providing extreme stability, fast switching (CK741 and CK747), high forward current and high ratio of back to forward resistance.

Type	Minimum Forward Current at +1 Volt (ma.)	Maximum Reverse Current at -10 Volts at Voltage Shown $(\mu \mathrm{a})$. $\mu \mathrm{a} . \quad$ volts			Maximum Avg. Rectified Current (ma.)	Maximum Peak Rectified Current (ma.)	Peak Inverse Voltage (volts)	Max. Avg. Power Dissipation (mw.)
CK739	100*	2	20	-50	125	300	60	125
CK740	100*	2	-	-	150	300	15	150
CK741	300	-	500	-8	100	350	8	50
CK742	100	5	20	-100	50	300	125	50
CK745	15	$20 \mathrm{at}-20$ volts	100	-100	40	100	125	40
CK747	100	-	100	-20	100	300	40	100

(RAYTHEOM

- Measured at 0.8 valt maximum. ©Measured at 1.5 volts maximum.

All of the above ratings are at ${ }^{2} 5^{\circ} \mathrm{C}$

Excolltence in Elechronics
RAYTHEON MANUFACTURFNG COMPANY

For Applicalion Info-mation Call: Bosion, Sigelow 4-7'500 Chicago, NARionol 2-2770 New York, PLaza 9.3900 Los Angeles, Richmondr7-4321

face value of the certificate. Of this amount, which is the estimated cost of the facility stripped of extraneous items such as the cost of land, only a certain percentage determined by the Office of Defense Mobilization may be depreciated at the rapid rate. So far the percentage for all amounts certified has averaged 60 percent.

- Portion-The percentage authorized for actual amortization depends among other factors on the type of facility, the amount of expansion required for the emergency, the probable usefulness of the plant for other than defense purposes after the emergency and the degree of financial aid necessary as an incentive to encourage the expansion.

Congress Eyes Guided

Missile Production

House Armed Service Committee has asked Defense Secretary Charles Wilson for a complete review of the billion dollar per year U.S. guided missile program and set a deadline of January 1, 1955 for its submission.

The Defense Department may appoint a new guided missiles chief to review and report the status of development and production of the items to the congress. K. T. Keller, president of Chrysler was previously the U.S. missiles chief.

- Confusion-The House committee told Wilson that testimony from the three military services had been confusing and conflicting and that it was difficult for the committee to know just what was actually going on. Secretary Wilson told the committee that he would certainly comply with its request but that he personally thought the entire program was "proceeding nicely."

To the Air Force, guided missiles are pilotless bombers, but the Army and Navy consider them natural extensions of artillery.

Fire Wardens Adopt Electronics

Mobile radio, television and microwave all play roles in protecting natural resources

Forest conservation services are constantly finding new applications for electronic equipment in their effort to protect the country's natural resources.

Very-high-frequency radio forms the backbone of forest communications. In 1953 there were 2,425 licensed stations with 18,600 authorized transmitters. Most of the sets were licensed to state and local governments although a few were licensed to private organizations for use in privately owned forest areas.

Also active in use of radio is the U. S. Forest Service, which maintains a radio laboratory at the U. S. Department of Agriculture Research Center, Beltsville, Maryland.

In addition to base stations located in fire watchers' towers and at area headquarters, transmitters are mounted in fire-fighting vehicles or carried by hand. Specially designed units are used by smoke jumpers who parachute to the

Rotating camera on top of unattended fire tower scans surrounding area and sends image through Raytheon microwave link to central observing stations

scene of fire-fighting operations.
Now industrial tv is entering the field. The unattended tv units can spot fires 20 miles away and transmit images by microwave link to a central station 50 miles away.

The tv camera, rotating continuously in a plastic dome mounted on top of a forest-fire tower, has been successfully tried by the Louisiana Forestry Commission.

If the system becomes an accepted practice, 3 to 5 cameras will operate in each county of that state and a monitor for each camera will be centrally located where one operator can watch all sets.

- How-Compass markings are engraved on a transparent strip around the dome so that the camera picks up degree readings at the same time that it scans the landscape.

A secondary lens is used to pick up the degree readings unblurred. After a fire is spotted with the longfocus lens, the technician stops the camera by remote control, flips the secondary lens to focus on the compass markings and takes the readings.

By obtaining bearings on a fire from two sets, a technician can locate the exact position of the fire by triangulation.

- Other Systems-Microwave communications systems have been tried experimentally by at least two forest conservation servicesthe Ohio Natural Resources Board and the Arkansas Fish and Game Commission.
(Continued on poge 22)

In Titter Neturotks \& Toroials Your Specialist is "Burnelb"

C. 11 Most useful frequency range lies between 2 KC and 25 KC . Maximum available inductance \& HY for lower end of frequency range.
TC.12 Most useful range between 15KC nd 150 KC maximum inductance 500 MHYS at the lower frequencies.

TC. 13 Most useful frequency range beand 400 KC Available up to 100 ween $40 . \mathrm{C}$ and 400 C . Avalable up MHYS with best optimum characteristics betow 10 MHYS.
TC. 14 Recommended for 200 KC to 1 nueg. acycle. This is best employed at inductances lese than IMHY.

MINIATUIE THO NTLTBRING FILTBRS
In view of the large number of filters that are employed in telensetering equipment, the size of the filters is a major contriburing factor the size of the equipment. As the tard telemetervolume of a set of twenty standic inches, even ing band pass filters is for ground based equipment objectionable. This is particularly led to the develstation. Our cognizance of this opinent of a series of ninarifice of desired necessitates practically no sacrifice of desired attenustion characteristics.
The tremendous advantage of these new filters can be seen from the fact that a set of the same twents filters would have a volume of less than 300 cubic inches representing a reduction by volunie of 80%. Every telemetering filter now being supplied in the standard case is also being supplied in the standard casersion.
available in the new miniaturized version

INTMRSTAGF FILTEIXS

Nens filters desizned These are economical a triode plate or cathode to oferate either fro of a tube. A voltage gain follower to the grid of a of ten or more can be provided of center fre the desired band width. Range of center frequercies available lies between 60 cycles and 50,060 cycles.
Base dimensions: 1-3716 $\times 1.11 / 16$

WE ARE PROUD OF OUR RECORD AS A MOST PROGRESSIVE FIRM IN THE ENGINEERING AND MANUFACTURING OF FILTER NETWORKS AND RELATED COMPONENTS. ENGINEERS AND ENGINEERING BUYERS AUTOMATICALLY THINK OF'BURNELL' IN RELATION TO FILTER DESIGN PROBLEMS AS WELL AS PRODUCTION REQUIREMENTS FOR FILTERS OR TOROIDS.
TO ACHIEVE THIS ENVIABLE POSITION WE CONSTANTLY STRIVE FOR THE DEVELOPMENT OF NEW AND BETTER PRODUCTS THAT WOULD OF NEW AND BETTER PRODUGT'S NEEDS.

LOWER STDE BAND FIGTERS

Shortly after these side band Gilters were introduced to the communications industry by Burnell \& Company, a new interest trpes of side reception arose. Although othertured for some band filters have been mas limited because of extremely time, their use was aminited availity, and excessive high cost, linited ang to overcome all of these volume. In attempting to overcome concentradisadvantages, our enent of a set of filters which ted on the devel high quality toroids instead of would emplal elements previously employed in such crystal elements previously employed and filter filters. As the effectiven how close the cut off frequency can be placed to the carrier frequency (and still provide sufficient attenuation) it was necessary first to determine the optit a sharp enough rate of cut off the high Q of the toroids could peropposite side band. It was for this and high enough attenuation 25 kc carrier was made.
reason that a choice of the 25 kc carrier was nade.

R. F. BAND PASS MITETS

quite recently toroidal band pass filters Until quite practicable at frequencies beyond were not range. However, since developing the 1. Fith much higher Q at radio frequencies toroids whe much hainable, we have extended the than hitherto obtainable, high as two and three range of our filters to as of these attenuation megacycles. A number of these attenuation filters have been able to replace types formerly employing expensive crystal elements. An additional important factor is the great reduction in size over R. "Firon slug" coilt.
Write for new and enlarged 16 page catalog 102A

SOME f-m broadcasters fade away but . . .

F-M's "Egg" May
 Prove to Be Golden

Operators see functional music, storecasting \& hi-fi possible sources of profit

LONG the sick man of the broadcasting field, f-m may soon find in multiplexing the revitalization it needs. Multiplexing involves slicing an f-m channel to provide two or more separate channels.

The technique is well understood technically and has recently been under study by the FCC. Indications are that the commissioners will give multiplexing their collective blessing.

- What It Means-With multiplexing, the $\mathrm{f}-\mathrm{m}$ broadcaster can continue to furnish high-quality broadcasting service while simultaneously providing commercial services to subscribers like in storecasting.

Storecasting can be profitable in two ways. The station can lease receivers to the store, then sell time to manufacturers who can present their commercial message right at the point of sale.

Cost of adding single-channel multiplexing equipment will be $\$ 2,500-\$ 3,500$ while a multiplex adapter for an $\mathrm{f}-\mathrm{m}$ receiver will cost about $\$ 100$. A good f-m receiver with multiplex circuits built in will run $\$ 150$.

A new field for $f-m$ may be opened by a manufacturer who announces early availability of a lowcost f-m car radio.

MEETINGS

AUg. 10-13: Associated Police Communication Officers National Conference, William Penn Hotel, Pittsburgh, Pa.
Aug. 24-Sept. 4: National Radio Show of Great Britain, Earls Court, London, England.
AUG. 25-27: 1954 Western Electronic Show \& Convention, Los Angeles, Calif.
SEPT. 1-16: Golden Jubilee Meeting of the International Electrochemical Commission, University of Pennsylvania, Philadelphia, Pa .
Sept. 13-24: 1954: First International Instrument Congress And Exposition, Commercial Museum and Convention Hall, Philadelphia, Pa.
Sept. 8-11: Symposium on Propagation, Standards and Problems of the Ionosphere, Laboratories of the National Bureau of Standards, Boulder Col. sponsored by the NBS Central Radio Propagation Lab.
SEPT. 15-17: Symposium on Information Theory, MIT, Cambridge, Mass., Sponsors, IRE, AIEE, URSI, ONR, ARDC, SCEL
SEpT. 16-18: Joint Electron Tube Engineering Council, General Conference, Chal-fonte-Haddon Hall, Atlantic City, N. J.
SEPT. 1954 : International Scientific Radio Union, Amsterdam, Netherlands.
Sept. 30-Oct. 1: Fifth Annual Meeting of the IRE Professional Group On Vehicular Communications, Rice Hotel, Houston. Texas.
SEPT. 30-OCT. 2, 1954 : Second Annual International Sight and Sound Exposition, Palmer House Hotel, Chicago,. Ill.
Oct. 4-6: National Electronics Conference, Hotel Sherman, Chicago.

Oct. 13-17: 1954 Annual Convention, Audio Engineering Society, Hotel New Yorker, New York, N. Y.
Oct. 14-17: Audio Fair, Hotel New Yorker, New York, N. Y. Oct. 18-20: Radio Fall Meeting, Hotel Syracuse, Syracuse, N. Y.

Oct. 21-23: Eighth New Eng. land Conference of the American Society for Quality Control, Ten Eyck Hotel, Albany, N. Y.

Ост. 26-28: The Second Na tional Conference on Tube Techniques, Western Union Auditorium, New York, N. Y Sponsor, Department of Defense.
Oct. 27-30: Thirtieth Annual Convention, National Association of Educational Broadcasters. Hotel Biltmore, New York, N. Y.
Nov. 4-5: East Coast Conference on Airborne and Navigational Electronics. IRE, Sheraton-Belvedere Hotel, Baltimore, Md.
Nov. 9: First International Automation Exposition, 242nd Coast Artillery Armory, New York, N. Y.
Nov 10-11: Conference on Electronic Instrumentation and Nucleonics in Medicine, Morrison Hotel, Chicago, Ill.
Nov. 12-13: National Symposium on Quality Control Methods In Electronics, IRE and American Society for Quality Control, Hotel Statler, New York, N. Y.
Nov. 18-19: Sixth Annual Electronics Conference, Kansas City IRE, Hotel President, Kansas City, Mo.
Dec. 8-10: Eastern Joint Computer Conference $\&$ Exhibition, Bellevue-Stratford Hotel, Philadelphia, Sponsors, IRE, AIEE, ACM

Industry Shorts

- Foreign shipments of U.S. electronics equipment of $\$ 247.8$ million during calendar year 1953 represent an 18 -percent increase over 1952 exports, according to RETMA.
- Painless ultrasonic dental drill has been developed by Columbia University and will be produced by Cavitron Equipment in New York.
- Photoconductive cell of the lead sulphide type which is highly sensitive to infrared radiations has been developed by Mullard of London.
- More than 200 million $45-\mathrm{rpm}$ records have been sold, 50 percent of all single records sales, and 13 million homes now have turntables capable of playing them, according to RCA.
- Color tv receivers manufactured in the first five months of this year totaled 7,713 , according to RETMA. Of these, 2,982 were turned out in May.
- Volume of business done by mica fabricating industry dropped sharply in November of 1953 and then leveled off at a rate 40 percent lower than the level of the previous two years.

Improve Your Communiextions Service With Hammarlund Salective Calling

ADD PRIVACY • SPEED • QUIETNESS•CONVENIENCE

FOR FIXED STATIONS

 FRC-1

FOR FLEET CONTROL

Speeded operations, better manpower utilization, and elimination of confusion are a few of the advantixges achieved through the selective channeling of voice communications.

Hammarlund has available a wide range of tone-dialing and push-button operated systems for contacting fixed stations, individual mobile units, or fleets.

With the SCTR-25 fixed station equipment, for example, it is possible by means of coded audio frequency tone signals activated by a simple dialing operation, to selectively ring any single station on a system with as many as 126
stations. This is particularly advantageous when many individual telephones are connected to the same speech transmission channel, such as with a long micro-wave radio relay network. The bell at each station operates only when that station is called.

Efficiency is increased for 2 -way radio equipped individual or fleet mobile units when Hammarlund Selective Calling equipment is added, since confusion caused by today's overcrowded radio spectrum and skip-distance signals are eliminated. Each receiver is activated only when it is called.

MB cycling system runs vibration tests automatically

Versatile electronic "brain" for MB Vibration Exciters

saves manpower and manhours - performs a variety of cycled shake-fests unattended!

A vibration test that involves a continuous cycle of changes from 10 to 500 cps along with constant displacement or constant acceleration can now be done with great simplicity, accuracy and minimum supervision. Simply set up the specimen on an MB Shaker-set the controls for the desired actions-and let the cycling system take over.

This electronic unit varies shaker frequency at any sweep speed, and between any two preset frequency limits. It controls the exciter's amplitude or acceleration within $\pm 10 \%$ for a dead mass or resonant type of loading and for cycled tests to satisfy MIL-E-5272 and other specifications.

For maximum flexibility of operation, this cycling system also provides for automatic transfer of constant amplitude to constant " g " at any preselected frequency setting.
The system can be operated manually when desired. It's also protected against control failure or conditions of extreme load resonances through use of an automatic structural strain control.

SHAKE TESTING PAYS

Vibration testing tells how well a product will bear up in service, reveals design faults, determines fatigue strength.
Designed for heavy duty service, MB vibration exciters such as the Model C-5, rated at 750 pounds force, and the Model C-25 rated at 3500 pounds force, deliver maximum performance, pure table motion and dependable operation.
Send for detailed specifications on MB cycling systems. Also for Bulletin which gives data on vibration exciters.

MB MODEL T- 25 MC CONTROL CABINET with automatic cycling system developed to control the action of vibration exciters to a specified cycle of events, and with little or no supervision.
\& a vibration test set up on the Model C-5 MB Vibration Exciter-and also one on Model C-25-two of the models which can be automatically controlled by MB's cycling systems,

[^2]

Ifidland crystals
 PAY OFF IN PERFORMANCE
 Type ML-4 Range

The quality of Midland Crystals - which is another way of saying the completely dependable job they will do for you - is assured by exacting tests and controls through every step of processing. The finest precision equipment and most advanced techniques known to the industry are used by Midland from selection of raw quartz to final sealing of the crystal.

That's a big reason why Midland has climbed to its present position as the world's largest producer of quartz crystals for use in 2 -way communications and other electronic devices.

Midland's engineering staff is ready to help in any project involving the use of crystals.

SEE US AT WESCON!

BOOTH 212, Western Electronic Show \& Convention, August 25-26-27, Pan-Pacific Auditorium, Los Angeles.

MANUFACTURING CO.. INC. 3155 fiberglas Road Kansas City, Kansas
1.0 - 10.0 mc. Sup. plied per mil Type CR-5, CR-6, CR-8, CR10 when specified. Holder is phenolic, gasket sealed. Holder size is $11 / 6 \times \frac{13}{16} \times \frac{10}{7}$ with $.093^{\prime \prime}$ diameter pins $1 / 2^{\prime \prime}$ long spaced $.486^{\prime \prime}$.

Type ML-13
Units of this type are currently undergoing tests on experimental basis. The unit is hermetically sealed. Pin dimensions are the same as our Type ML. 6. Height of can is $11 / 2$ inch.

Type ML-1A Range

 2.0 - 15.0 mc . Sup. plied per mil Type CR-lA when specified. Holder is phenolic, gaskep sealed. Holder size is $11 / 4^{\prime \prime} \times 116^{\prime \prime} \times$ $27 / 64^{\prime \prime}$ with $.125^{\prime \prime}$ diameter pins $5 / \%^{6 \prime}$ long. spaced at $.500^{\prime \prime}$.Type ML-10 Ronge
15.0 - 50.0 mc . Sup. plied per :mil Type CR. 24 when specified. Over-all length is $1.055^{\prime \prime}$. Pin contacts, .062" diameter.

DC FROM AC. In this selenium rectifier for TV use, washers made from Grade 353 give dependable, long-lasting insulation of the current-carrying plates . . . are dimensionally stable . . . provide good mechanical strength at all operating temperatures.

STABLE CONTROL. The rotor spacer in this volume control., punched from Taylor XXXP-301 laminate, keeps the critical electronic circuit insulated from ground regardless of humidity and high temperatures . . . contributes to stability and long life of the component.

TIECHNOLOGICAL advancement in electronics is proceeding at breath-taking speed . . . demanding new and higher standards for insulating materials. To meet these increasingly stringent requirements, Taylor has developed a revolutionary family of hot-punch laminated plastics that offer premium properties without premium prices.

You are invited to investigate these new laminates for applications in products now in the development stage. You'll find their superior combination of electrical, physical and fabricating properties will speed the transition of laboratory ideas into production line realities. Investigate them, too, for use in existing products, as a means of effecting real production savings and performance improvements.

For complete specifications on these new materials, and technical assistance in their application to your products, write or call.... Taylor Fibre Co.

light on the tv picture. This flyback transformer for wellknown television sets is literally surrounded by the new Taylor laminates. The front panel, which must withstand high voltages, is punched from top quality grade XXXP-301 laminate to
assure high insulating properties under humid conditions. The back plate, which has a less demanding electrical job to do but an equally difficult structural responsibility, is punched from economy-priced Grade 354.

properties of new Taylor laminates

These new Taylor laminates are like nothing you've ever used before. They're uniform all the way through ... no surface overlay of resin. They offer you insulation resistance, water absorption, power factor and dimensional stability that meet or exceed the tightest specifications ... plus exceptional ease in punching and staking with no cracking or checking . . . and Taylor's unique method of manufacture assures these characteristics consistently. Four different grades were specifically developed to serve the wide range of requirements of the electronics industry.
XXXP-301-Top Grade Laminate-the ultimate in electrical qualities ... unusually high insulation resistance under all conditions . . . low water absorption . . . excellent punching and staking . . . phenomenal recovery properties . . premium in every way but price.

XXP-351 - a high grade laminate second only to XXXP301 in quality, with closely comparable characteristics at a lower price.
Grade 353-a quality laminate with outstanding electrical and physical properties, priced for economy.
Grade 354-easily fabricated laminate with good stability, low water absorption . . . at an economical price. All grades are available in the big, convenient standard Taylor sheet size of $49^{\prime \prime}$ by $49^{\prime \prime}$.
Branch offices in Atlanta; Boston; Chicago; Cleveland; Dayton; Detroit; Indianapolis; Los Angeles; Milwaukee; New York City; Philadelphia; Rochester; San Francisco; St. Louis; and Tolland, Connecticut. Distributors in Grand Prairie and Houston, Texas; Jacksonville, Florida; New Orleans, Louisiana; and Toronto, Ontario.

Plants in Norristown, Pa. and La Verne, Calif.

Vibration effects can be assessed by assumption, estimation and long calculation. Prototypes can be built on those assumptions, but with many anxious moments awaiting operational test. results results which may mullify months of patient effor, It is much simpler, and certainly more economical, to conduct preliminary tests in the laboratory by creating vibrations under controlled conditions-and so obtain the facts. That is the precise function of Goodmans Shakers. They provide vibratory sinusoidal forces at controlled frequency and amplitude, by which specific vibratory conditions over a wide frequency range can be atceurately simulated, to assess their effects on materials, structures and componeuts.
Applications include fatigue testing, ELECTRICAL COMPONEVT TESTING VALVE MICROPHONY TESTING, TORSIONAL VIBRATION TESTING, FLEXCRE testing of metals and plastics etc., amd mechinical structure TESTING.

The range inctudes models from the $8 / 600$ itlustrated, developing a force of ± 300 ths 10 the midget model with a force of ± 2 liss.

GOODMANS

PERMANENT MAGNET SHAKERS

MAIL THIS COUPON

TO GOODMANS INDUSTRIES LIMITED

AXIOM WORKS, WEMBLEY, MIDDX., ENGLAND
Please mail me your catalogue and technical data sheets in connection with your PERMANENT MAGNET Shakers.

Name
Company

WESTON RUGGEDIZED

INSTRUMENTS ARE AVAILABLE

ve WESTON
 RUGGEDIZED INSTRUMENTS

remain operable and accurate!

There's no guesswork about ruggedizing instruments at weston. Duplicates of all the approved equipment for testing - including the High Shock Hammers . . . the Vibrating and Tumbling equipment . . . the Temperature, and Moisture Cycling cabinets - all are here in the weston test department continually proving the soundness of WESTON's ruggedized design. Thus you can be sure each instrument not only meets the specifications for ruggedized instruments, but will also prove its superior ruggedness in service. weston Ruggedized instruments now are available for A-C and D-C requirements in $21 / 2^{\prime \prime}, 31 / 2^{\prime \prime}$ and $41 / 2^{\prime \prime}$ sizes. Bulletin giving complete information sent on request. WESTON Electrical Instrument Corporation, 614 Frelinghuysen. Ave., Newark 5, N. J. 6917

$$
\begin{aligned}
& \text { FOR A-C AND D-C IN } \\
& 21 / 2^{\prime \prime}, 31 / 2^{\prime \prime}, 41 / 2^{\prime \prime} \text { SIZES. }
\end{aligned}
$$

WESTON

Once again
 we're taking television
 out of the
 knothole class....

From a knothole-to a box seat . . . That was Du Mont's big contribution to black and white television ... Now, again, Du Mont leads the way in practical, big-screen color television.
Out of Du Mont cathode-ray tube research comes the dramatic Chroma-sync Teletron . . . á bigger-screen, shorterlength, lower-cost color picture tube featuring electrostatic "Mono-Convergence".

Featuring
"Mono-Convergence"

ALLEN B. DU MONT LABORATORIES, INC. *TM. Cathoderay Tube Division • 750 Bloomfield Avenue - Clifton, N.J.

SEND FOR 8 PAGE EULLETIN
No Charge At Aby Time for Design Service

Reference Electrodes With Caps of DuPont "Zytel" Resist Nine Months' Boiling in Corrosive Solutions

> Du Pont TEFLON ${ }^{\text {® }}$ suggests new ideas for electronic and electrical designs

Du Pont "Teflon" tetrafluoroethylene resin offers a combination of electrical, thermal and mechanical properties unmatched by cny other single material. It is particularly outstanding for use as electrical insulation at high frequencies and temperatures.
Even a glance at these features of "Teflon" will suggest new and better ways to solve electrical design problems.

Properties of "Teflon":

Excellent Dielectric Characteristics over a wide range of temperatures and frequencies.

Heat Resistance. "Teflon" is capable of continuous service at $500^{\circ} \mathrm{F}$.

Toughness and Strength over a wide range of temperatures, from $-450^{\circ} \mathrm{F}$, to $500^{\circ} \mathrm{F}$.

Chemical Inertness. "Teflon" is inert to all chemicals and solvents, except molten alkali metals and fluorine at elevated temperatures and pressures.

Zero Moisture Absorption by A.S.T.M. test D570-42.

Outdoor Durability. "Teflon" is unaffected by years of outdoor weathering.

Advantages of "Teflon":

"Teflon" can be used as thin, flexible insulation-in many cases where the use of such insulation might have been impossible with other materials.
For many types of electrical and electronic equipment, "Teflon" permits simplified, compact design.

Corrosion-resistance, strength, excellent dielectric qualities of "Zytel" nylon resin give long service life to electrodes

Caps molded of Du Pont "Zytel" are used on reference electrodes made by Leeds and Northrup. Center cap was boiled steadily for nine months with only slight discoloration.

"Teflon"- continued

"Teflon" can be fabricated into component parts, or produced in tape form, or applied as a coating.

The electrical uses of "Teflon" are numerous. Examples include: spacers for coaxial cables; inserts for coaxial connectors; insulation for high-voltage wires and cables; wrapping tape for insulation in motors, generators and conductors.

Send for more information showing how "Teflon" can help improve electrical designs. Fill out and mail the coupon on other side.

Du Pont "Zytel" nylon resin offers many advantages in the electrical design field. Consider, for instance, its outstanding performance as reference electrode cap material.

The Leeds and Northrup Company, of Philadelphia, makes reference electrodes for use with its Speedomax ${ }^{(8)} \mathrm{pH}$ controllers for industrial measurements and its pH indicators for laboratories. Some time ago it was decided to test caps of "Zytel" for these electrodes.

[^3]

Reference Electrodes (Continued)

In one series of tests, electrodes capped with"Zytel" nylon resin were boiled steadily for nine months in solutions with pH varying from 3 to 14. The boiling had absolutely no effect on the "Zytel", except for slight discoloration.
Other tests confirmed the toughness and strength of "Zytel" nylon resin, its stability at high temperatures, and its insulating ability at commercial frequencies.
So Leeds and Northrup adopted caps of "Zytel" for use with both flow-type, and immersion-type electrodes. For the company determined that these caps greatly lengthen the electrodes' service life.
Perhaps "Zytel" can serve you well in your electrical design applications. Find out more about the properties of this unique engineering material. Fill out and mail the coupon below, today.

Investigate Du Pont engineering materials in your product development programs One of the family of these versatile engineering materials is often a key factor in product improvement or new product design.
The wide range of properties available with "Alathon"* polyethylene resin, "Lucite"* acrylic resin, "Teflon"* tetrafluoroethylene resin, and "Zytel" \dagger nylon resin are helping solve industrial design problems.

NEED MORE INFORMATION?

Clip the coupon for additional data on properties and applications of these Du Pont engineering materials.

Shaver parts molded of Du Pont "Zytel" nylon resin cut wear and noise

The rotor of this electric shaver spins 8,500 times a minute. To help provide long, efficient service, four key parts were molded of Du Pont "Zytel" nylon resin-the coil form, oscillator bushing, oscillator insulation and contact lever insulators.

The unique properties of Du Pont "Zytel" meet the varying demands of each of these parts. The flexibility, lightness of weight, strength in thin sections and dielectric properties of "Zytel" provide maximum coil form efficiency. The toughness, abrasion resistance and good bearing characteristics of "Zytel" insure long service life of all moving parts, without lubrication.

This electric shaver utilizes four parts-call form, oscillator bushing, oscillator insulation, and contact lever insulators - molded of versatile Du Pont "Zytel" nyton resin.

Parts molded of Du Pont "Zytel" will operate continuously-and retain their form stability-at temperatures to $250^{\circ} \mathrm{F}$. These parts of resilient "Zytel" help damp noise for quieter shaving operation. These parts are economically mass-produced by rapid injection molding.

Clip the coupon for further information about Du Pont "Zytel" nylon resin and its unusual properties.
E. I. DU PONT DE NEMOURS \& CO. (INC.) Polychemicals Department
Room 228, Du Pont Building, Wilmington 98, Delaware
Please send me more information on the Du Pont engineering materials checked: \square "Zytel": \square "Alathon": \square "Teflon": \square "Lucite". I am interested in evaluating these materials for

NAME

POSITION
COMPANY
STREET
CITY
STATE
TYPE OF BUSINESS
"Alathon" "Lucite". "Teflon" are registered trade-marks of E. 1. du Pont de Nemours \& Co. (Inc.) †"Zytel" is the new irade-mark for Du Pont nylon resin.

Several techniques have been developed for rapid fabrication of Du Pont "Teflon" into various shapes.*
One new extrusion method permits mass production of parts with section thicknesses as low as 5 mils, or as high as $1 / 4$ of an inch. This process is ideal for producing tape, tubing and wire insulation. And it can readily be adapted to the manufacture of monofilament and irregular shapes.

The new process is a simple one, requiring only four easy steps:
(1) A composition of Du Pont "Teflon" is preformed by compression, then placed in a ram-type extruder. The composition consists of a fine powder of "Teflon", suitably lubricated, and if desired, mixed with coloring pigments.
(2) The composition is ram-squeezed through a die to produce the desired shape.
(3) The extrusion aids are removed from the shaped part by volatilization. (4) The part is then sintered and quenched.

Laboratory tests show that, by the above method, $1 / 2^{\prime \prime}$-diameter tubing of "Teflon" can be extruded at 10 feet per minute. Production speed increases as the tubing diameter decreases. Also, a 15 -mil insulation has been extruded on Number 16 AWG copper wire at 12 feet per minute.

Even with such production speeds, shapes of "Teflon" made by the above process have the excellent physical and dielectric strength characteristics for which "Teflon" is noted and which no other material can match.

There are alternate methods of fabricating "Teflon": molding, coining, hobbing and screw-extruding, for example. "Teflon" can also be machined with ease, to tolerance of $\pm .001$ inches.

[^4]
For Designs that Require Adjustable A-C Voltage

$\underset{\substack{\text { Put this symbol }}}{ }$

and a

 POWERSTAT Variable Transformer in your products and you ll get:Cool operation Dower savings. high efficiency Does not have to be tailored to the load Smooth contral-glass smooth commutator surface ...Conservative ratings and easy. simple mounting.In many applications where you might usually use a rheostat, investigate Powerstat variable transformer to do a better job - and you You'll find Powerstats are superior. Their dimensional and physical characteristics make them easier to "design into" a product. Their conservative ratings, smooth operation and long For the best in continuously-adjustable voltage control use variable transformers. For the best in variable transformers always specify powerstats.

can get a Powerstat for as little as $\$ 8.50$. life make them a "plus" feature of value.

the superior electric co.
 208 Clarke Avenue, Bristol, Conn.

- You can choose from o com. plete standard line of Powerstat coriable transformers. Units are offered in manuolly-operated and motor-driven assemblies for 120 , 240 and 480 volt duty in copocities from 150 VA to 100 KVA .

Please send complete literature on Powerstat variable transformers.
\qquad
\square

\qquad

Manufacturers of: Powe-stat Variable Transformers - Stabilize Automatic Voltage Regulators - Volvox A.C Power Supplies - Powerstot light Dimming Equipment - Varicell D. - Power Supplies - Superior 5. Way Binding Posts

-hp-608C VHF Signal Generator

New premium-quality performance

Wide range, direct calibration

Residual FM less than I kc

Drift less than 0.005%

High power output

All types of modulation

Models 608D and 608 C are designed to be the best commercial instruments of their type, and to set new standards of VHF generator convenience, applicability and performance. They are the redesigned and improved successors to over $3,000-h p$ 608A/B VHF generators now in use throughout the world.

The premium quality -hp- 608D

$-h p-608 \mathrm{D}$ is the ultimate in VHF signal generators. It offers the highest stability attained in production equipment of its type. There is almost complete absence of incidental FM or frequency drift. There is a calibrated output from $0.1 \mu \mathrm{v}$ to 0.5 v throughout the frequency range, 10 to 420 mc . A built-in crystal calibrator provides a frequency check accurate within 0.01% every 5 mc throughout range.

These unique advantages are made possible in large part by new master oscillator, intermediate and output amplifier circuit design. Other features to improve stability include a regulated filament supply, a new variable condenser design and a completely new coil turret and circuit housing. The result is the most convenient, accurate and effective instrument available for testing and aligning VHF aircraft communications and other receivers having extreme selectivity.

The all-purpose -hp- 608C

The $-h p-608 \mathrm{C}$ is a high power, stable and accurate VHF signal generator for general laboratory and field use. Employing a master oscillator-power amplifier circuit, $h p-608 \mathrm{C}$ offers 1 v maximum power and a broad frequency coverage of 10 to 480 mc . The instrument provides outstanding convenience for measuring gain, sensitivity, selectivity and image rejection of receivers, IF

HEWLETT-PACKARD

two completely new

amplifiers, broad band amplifiers and other VHF equipment. Its 1 v output is more than sufficient to drive bridges, slotted lines, transmission lines, antennas, filter networks and other circuits.

Outstanding features in both

Both -hp-608D and 608C have broadest possible modulation capabilities. There is AM modulation to 80%, and flat response 20 cps to 1 mc which provides high quality internal and external pulse modulation. RF leakage is negligible, and sensitivity measurements to $0.1 \mu \mathrm{v}$ are possible. Internal impedance is 50 ohms constant, and VSWR is a maximum of 1.2.

Both instruments also feature new mechanical design and quality construction throughout. New aluminum castings and
cabinets reduce weight. Circuitry is particularly clean and accessible. Dial, condenser and turret drives are ball-bearing. Variable condensers are specially manufactured by - $b p$ - and feature electrically welded Invar low temperature steel plates to minimize drift. Sealed transformers are used throughout, and construction is militarized.

Data subject to change without notice. Prices f.o.b. factory WRITE FOR COMPLETE DATA

HEWLETT-PACKARD COMPANY
3099A Page Mill Road - Palo Alto, Californio, U.S.A.
SALES AND ENGINEERING REPRESENTATIVES
throughout the world

-hp- 608D VHF Signal Generator

Frequency Range: 10 to $420 \mathrm{mc}, 5$ bands. Calibration Accuracy: $\pm 1 \%$ full range.
Resettability: Better than $\pm 0.1 \%$ after warm-up.
Crystal Calibrator: Frequency check points every 5 rec through range. Headphone jack for audio frequency output.
Frequency Drift: Less than 0.005% over 15 minute interval after warm-up.
Output Level: $0.1 \mu \mathrm{v}$ to 0.5 v into 50 -ohm load. Attenuator dial calibrated in v and dbm . (0 dbm equals 1 mw in 50 ohms.)
Voltage Accuracy: $\pm 1 \mathrm{db}$ full range.
Generator Impédance: 50 ohms, maximum VS'WR 1.2.
Modulation Percentage: 0 to 80% indicated by meter.

Envelope Distortion: Less than 2.5\% at 30% sine wave modulation.
Internal Modulation: $400 \mathrm{cps} \pm 10 \%$ and $1,000 \mathrm{cps} \pm 10 \%$.
External Modulation: 0 to $80 \%, 20 \mathrm{cps}$ to 100 kc . For RF output above $100 \mathrm{mc}, 0$ to 30% to 1 mc .
External Pulse Modulation: 10 v peak pulse required. Good pulse shape at $1 \mu \mathrm{sec}$.
Residual FM: Less than 1,000 cycles at 30% AM for RF output frequencies above 100 mc . Less than 0.001% below 100 mc .
Leakage: Negligible; permits sensitivity measurements to 0.1 microvolt.
Filament Regulation: Provides highest possible oscillator and amplifier stability for line voltage change.
Power: $115 / 230$ volts $\pm 10 \%, 50 / 1,000$ cps. Approx. 150 watts.

Size: $133 / 8^{\prime \prime}$ wide $\times 16^{\prime \prime}$ high $\times 201 / 2^{\prime \prime}$ deep.
Weight: 70 lbs. Shipping weight. approx. 100 lbs .
Price: $\$ 950.00$.
-hp-608C VHF Signal Generator
Same as -hp-608D, except:
Frequency Range: 10 to $480 \mathrm{mc}, 5$ bands.
Crystal Calibrator: In Model 608D only.
Frequency Drift: Less than 0.05% over 15 minute interval after warm-up.
Output Level: $0.1 \mu \mathrm{v}$ to 1.0 v .
Residual FM: Less than 0.0025% at 30% amplitude modulation for RF output frequencies 21 to 480 mc .
Filament Regulation: In Model 608D only. Price: $\$ 850.00$.

Limit surge voltage peaks?

Automatically compensate for temperature changes?

Reduce contact arcing by as much as 95% ?

Stabilize amplifier gain when supply voltage varies?

Obtain simple, maintenance-free time delays?

Sense and measure temperature changes at low cost?

Would YOUR PRODUCT be more serviceable...less costly to make IF YOU COULD SOLVE THESE?

These are but a few of the jobs handled effectively, dependably by globar ${ }^{\circledR}$ Ceramic Resistors in electrical and electronic circuits. What's your resistance problem? Chances are there's a Globar Resistor, Varistor or Thermistor which can help you solve it. Send circuit details to The Carborundum Company, Dept. E 87-411, Niagara Falls, New York, for expert advice - without obligation.

GIDBRT Ceramic Resistors
 VOLTAGE SENSITIVE - CONVENTIONAL TEMPERATURE SENSITIVE

 *

engineering bulletins - no cost - just specify the type of resistors which interest you: conventional, temperature sensitive, or voltage sensitive.

G.E. CONTINUES INDUSTRY LEAD WITH NEW GOLD BONDED GERMANIUM DIODES

High Forward Current Characteristics High Peak Inverse Voltage High Back To Forward Resistance Ratio High Frequency Response

EXACTING military specifications provided the impetus for G-E's design of these new gold bonded germanium diodes. But, their application is certainly not limited to government use. Each superior characteristic points up a potentially broad market in commercial equipment.
Here, then, you have an indication of General Electric's planned program to supply high quality germanium products for every conceivable user requirement. It will benefit you to examine not only these new units but to become familiar with all of the many diodes, rectifiers and transistors G.E. manufactures. Call us or mail the coupon below for detailed information.

how to make a good product

with the help of Hamilton's COMPLETE

Precision Production Facilities

Developing a new product? Planning to improve an existing one? When your problem involves a complex mechanism, like the onesshown above, or precision components-the complete production facilities that make America's finest watches and produce vital defense material -are available to help solve your problems.

You are invited to investigate this complete source for screws, springs, flat and recessed shapes, jewel bearings, investment castings, pinions, wheels, assemblies, or any other "problem parts" to help improve your products. Send us your prints . . . of course, there's no obligation.

Allied Products Division

better!

heat treating

fabrication

metallurgy physical \& chemical testing

4BQ7A

(Prototype-68Q7A)
Heater Volts 4.2
Heater Current 0.6 A

4BZ7

(Prototype-6BZ7)
Heater Volts 4.2
Heater Current 0.6 A

5AN8
(Protolype-6AN8)
Heater Volts 4.7 Heater Current 0.6 A

5AS8
(Prototype-6AS8)
Heater Volts 4.7
Heater Current 0.6 A

578
(Prototype-6T8)
Heater Volls 4.7 Heater Current 0.6 A

508

(Prototype-6U8)
Heater Volts 4.7 Heater Current 0.6 A
*Using heaters parallel connected

... designed and engineered to highest performance requirements

These are the new Tung-Sol Receiving Tubes for television sets having all of the heaters series-connected across the power line. Thermal characteristics of all the heaters are controlled so that heater voltage surges during the warm-up cycle are minimized, provided of course, that these tubes are used with other types similarly controlled.

Heater ratings are based on 600 milliamperes of current with the heater voltage adjusted for the same power as in the prototype. All other characteristics and ratings are identical to those of the prototype. Use of these tubes provides completely satisfactory receiver characteristics during warm-up.

All of the statistical quality centrol methods which make the performance of Tung-Sol tubes so outstanding, are utilized in the manufacture of these new types. In performance, uniformity and dependability they will be found fully reliable. For more detailed information, write Commercial Engineering Department, Tung-Sol Electric Inc., Newark 4, New Jersey.
Sales Offices: Atlanta, Chicage, Columbus, Culver City (Los Angeles), Dallas, Denver, Detroit, Newark, Philadelphia, Seattle.

Tung-Sol All-Glass Sealed Beam Lamps, Miniature Lamps, Signal Flashers, Picture Tubes, Radio, TV and Special Purpose Electron Tubes and Semiconductor Products.

SERIES STRING TV SETS $6 A U 7$ (Prorotype-12AU7) Hearer Volts 3.15* Hearer Current 0.6 A
 6SN7GTB
 (Prototype \rightarrow SNTGTA)
 Heater Volts 6.3
 Heater Curreqt 0.0 A
 *Using heaters parallel connectod
 12B4A
 (Prowotype-1284)
 Healer Volts 6.3^{*} Heater Current 0.6 A

How you can make sure PARTS COME IN ON TIME

Use American Airines AlRFREIGHT

Covers More Leading Industrial Areas Than Any Other Airline

Your best assurance of swift, sure, safe shipments is American Airlines Airfreight. With fast and frequent service to all twenty-three leading industrial areas, American has space for you at the right places. This means direct one-carrier service, prompt forwarding and dependable on-time deliveries.
It also means you can reduce your inventory requirements; save on warehousing and make quicker design modifications without obsoleting huge stocks of component parts. Because, when suppliers are only hours away by American, you can do business with much less depth in stock. American Airlines, Cargo Sales Division, 100 Park Avenue, New York 17, New York.

AMERICAN AIRFREIGHT ALSO LEADS IN
CAPACITY-American has the greatest cargo capacity of any Airline with the right space at the right places.

SPEED-American's own cargo terminals, special handling techniques provide prompt forwarding, on-time deliveries.

EXPERIENCE-Pioneer in Airfreight, American assures you of expert handling.

Look what's happened to the "cat's whiskers"

A miracle that can hide behind your thumb-nail is the hottest electronics news in years. Modernized descendant of the Twenties' crystal diode with its cat's whisker, the transistor threatens to send many vacuum tubes the way of old head sets.
No matter which ultimately gets the nod-tube or tran-sistor-Superior will be in there pitching. Superior seamless and Lockseam* nickel cathodes, anodes and grid cups are familiar to you in vacuum tubes. Now Superior tubing is going into transistors.
CBS-Hytron, a division of Columbia Broadcasting System,

Inc., uses Superior tubing for the L-shaped bracket that holds the germaniuna crystal in their PT-2A point-contact transistor. For this purpose they purchase tiny tubes$.032^{\prime \prime}$ I.D. x $.003^{\prime \prime}$ wall, $.193^{\prime \prime}$ long, drawn from seamless nickel. Added to the good welding, soldering and formability characteristics of the metal, Superior manufactures the brackets to the close tolerances CBS-Hytron must have. Whether you are for the old or new order in electronics, if you need an idea or an analysis in small tubing, Superior is the first place to look. Superior Tube Company, Electronics Division, 2500 Germantown Ave., Norristown, Pa.

SeamlessNickelAnode.
Flottened one end. ${ }^{.500^{\prime \prime}} \mathbf{W}$ O.D. ${ }^{2}, 025^{\prime \prime}$
 Lockseam" Nickel
Caphade. Raund,
tabbed, single bead,
$.045^{\prime \prime}$ O.D. x. $0021^{\prime \prime}$ Wall. 27 mm long

Disc Cothcde .121" O.D. .312' long.

[^5]
cemerics ferramic' Cores

 Olow available in standard types thatsimplify design and speed delivery!

TABLE OF MAGNETIC PROPERTIES OF FERRAMICS*

PROPEETIES	UNIT	A	B	C	D	E	G	H	H-1	1	J	N	0	0
Initial Perm. a' $1 \mathrm{mc} / \mathrm{sec}$.	-	20	95	250	410	750	410	850	550	900	330	200	1000	125
- Max. Peum.	-	100	183	1100	1030	1710	3300	4300	3800	3000	750	500	2000	400
- Sal. Fluz Dens.	gauss	1500	1900	4200	3100	3800	3200	3400	2300	2000	2900	3000	3600	3300
-Residual Mag.	gauss	1000	830	2700	1320	1950	1050	1470	1500	700	1600	2300	1100	1050
-Coercive Forse	OERSTED	5.0	3.0	2.1	1.0	65	. 25	. 18	. 35	. 30	. 80	. 50	. 35	2.0
Temp Coel. of Initial Perm.	$\% /{ }^{\circ} \mathrm{C}$. 15	. 04	. 40	. 30	. 25	1.3	. 66	. 80	. 30	:22	. 14	. 48	. 10 max
Curie Point	$1{ }^{\circ} \mathrm{C}$	300	260	330	165	160	160	150	125	70	180	290	140	350
Vol, Resistivity		High	Med.	Mec.	High	Med.	High	Med.	Hed.	Med.	High	High	Med.	High
Loss Factor:	$\frac{1}{\mu_{0} 0}$													
At 1 mes/sec.	μ_{0}	. 0005	. 00016	. 00007	. 00005	. 00008	. 60308	. 00030	. 0004	. 0003	000055	. 000035	. 00075	. 000024
Al $5 \mathrm{mes} / \mathrm{sec}$.	-	. 0007	. 0011	. 0006	. 0012	. 0020	. 00075	. 00155	. 1010	. 0050	. 0004	. 00012	.0030	. 00004

The above s-andard items are available in all of the types of Ferramic material shown in the table of properties. Other shapes
and sizes of cores can be made of the above materials to your design. For further details or quotations call, write or wire today.

CERAMICS CORPORATION

General Offices and Plant: KEASBEY, NEW JERSEY
makers of steatite, alumina, zircon, porcelain, solderseal terminals, light duty refractories, chemical sponeware, imperyious graphite \& ferramic maghetic cores

new... precision Continental Connectors*

simplify your connector problems

Printed Circuit Connectors Series P.C-With 6, 10, 15, 18, 22, and 28 contacts in s ingle or double rows

Answers the need for a positive, space-saving connection between printed circuitry and conventional wiring. Permits direct connection to a printed circuit "plug" mounted sub-assembly. By specifying 28 contacts in a double row connector and using both sides of the printed circuit card you have provisión for up to 56 individual connections for \#16 AWG wire.

Series P-C Connectors can be custom built to suit any card thickness, and are available in Mineral filled Melamine, Plaskon Reinforced (glass) Alkyd type 440-A, and Diallyl Phthalate (blue) insulating materials.

Write for Engineering Literature, Series P.C, to Department EPC-8, DeJUR.Amsco Corp., 45.01 Northern Blvd., Long Island City 1, N. Y.

Electronic Sales Division

4.5-01 Northern Blvd., Long Island City 1, N. Y. - world's largest manufacturens of minaturue precision connectons
 of a method of sealing developed by Dewey and Almy researchers over 30 years ago, and successfully used in food container manufacture ever since.
The Darex Flowed-in Gasket Process is more than a sealing compound . . . more than a machine . . . more than an engineering service . . . it's a complete Process! So when you switch to Flowed-in Gaskets, you get all three.
Compounds- Over 800 formulations available to meet most needs. Or Dewey and Almy chemists will develop a "iob-tailored" compound for you.
Machines - To apply the compound, Dewey and Almy designs and builds machines based on more than 30 years' field experience.
Service-Every machine is precisely adjusted to your specifications before it leaves the shop. When it arrives, a Dewey and Almy Engineer is on hand to install and adjust the machine. Then he trains your operators to full proficiency. And whenever you need him, the Dewey and Almy Man is at your service.

D 1
 DEMEY and ALMY Chemical Company

Cambridge 40, Mass.
Offices or subsidiaries in Buenos Aires, Chisago, Copenhagen, London, Melbourne, Milan, Montevideo, Montreal, Naples, Paris, San Leandro (Calif.), Sao Paulo, Tokyo.

Discover what DAREX "Flowed-in" GASKETS can do for YOU

Your continuing effort to improve your products and reduce their maintenance cost may be entirely A Matter Of Control . . . the control of destructive vibration and shock. To help you to accomplish your objectives, Lord Engineering recommends the correct design, selects the most suitable elastomer and metal, and uses precision manufacturing for all Vibration Control Mountings and Bonded Rubber Parts. Your vibration and shock control problems are our business. We welcome the opportunity of

The sensitivity of many commercial and military radio transmitters is protected . . . their accuracy is insured against vibration and shock damage by Lord Vibration Control Mountings. Ask for complete details.
placing our wide experience in many diversified industries at your disposal.

Over 27,000 designs and their variations from which to choose.

LOS ANGELES 28, CALIFORNIA DALLAS, TEXAS PHILADELPHIA 7, PENNSYIVANIA DAYTON 2, OHIO 7046 Hollywood Blvd. 313 Fidelity Union 725 Widener Building 410 West First Street Life Building
DETROIT 2, MICHIGAN NEW YORK 16, NEW YORK CHICAGO 11, ILLINOIS CLEVELAND 15, OHIO 311 Curtis Building 280 Madison Avenue 520 N. Michigan Ave. 811 Hanna Building LORD MANUFACTURJNG COMPANY • ERIE, PA,

Headquarters for VIBRATION COR CONTROL

LIGHT-AS-A-PENCIL G-E MIDGET reduces operator fatigue, has longerlasting Ironclad tip. The Midget solders like a pencil dots an "i."

EXIRA-HEAVY-DUTY G-E IRON with long-life calorized copper tip is ideal for soldering heavy-gage cans and armature windings.

You get lower costs, faster soldering with the complete line of long.life G-E irons

Select a soldering iron from General Electric's complete line for easier, faster, cost-cutting soldering. You can choose from 24 different izons with ratings from 25 to 1250 watts.
Long-life G-E Ironclad Copper Tips last up to ten times as long as ordinary tips. Ironclad tips combine the durability of iron and excellent heat-transfer of copper. For Soldering Small Connections, you'll want to try the G-E Midget iron with easily interchangeable $1 / 4$-in., $1 / 8$-in., and $\frac{3}{16}$-in. Ironclad tips. This $13 / 4$-ounce, 25 -watt iron reduces operazor fatigue, makes pinpoint connections. And because the Calrod* heater is built right into the tip, you get maximum heat transfer, amazing heat recovery for an iron of this size.
For Medium-sized Jobs, try G.E.'s sturdy Lightweight iron. This high-speed iron
for continuous soldering takes plenty of hard use. Because the iron has a thin shank and interchangeable $1 / 4$-in. or $\frac{3}{16}$-in. Ironclad tips, you can solder tight joints without damaging small connections.
For the Bigger Soldering Jobs, General Electric has larger irons ranging from the 75 -watt, $1 / 2$-in. tip unit to the heavyduty 1250-watt, two-inch-copper-tipped model. With a G-E Calrod heater cast into the heating head, you get unusually quick heating and high efficiency.
Contact Your General Electric Sales Office or Distributor to solve your soldering problems. Start cutting costs and increasing production with long-life, highspeed irons from the complete General Electric line. And for more information mail the coupon at right.

Sact. 720-126, General Electric Co., 'Schenectedy 5, N, Y.

Ploase sond me Bulletin GEA.4519D, Industrial Seldering Irons.

Name

Company \qquad
Address \qquad
City \qquad State

GENERAL (9) ELECTRIC

RCA-6383 isdesigned prima ily for transmitter applications inaircraft wherecompactress, light weight, and high power outpuit are important. Although it weighs only 802 . the tube can handle up to 600° watts of plate dissipation. It can be operated with full plate voltage and plate input at frequencies up to 2000 .Mc

Maxt length, only $4 \frac{1}{4}^{\text {n }}$
 RCA.5690, 5691, 5692, 5693

New Flying-Spot Tube for COLOR

RCA-5AUP24 is a 5^{5} cathode.

 ray tube intended for use as the flying-spot scanner in color-video-signal generators. It features a metal-backed phosphor which has a spectral. energy emission characteris. tic with peak in the bluegreen region and with sufficient range to provide usable energy over the visible spec trum required for generating color-TV signals from color transparencies.Max. fength, $127^{7 \prime}$

"Packaged" Magnetron

(Forced-air cooled)

The RCA-4/50 3-centimeter magnetron is intended for use as a pulsed oscillator in radar service. Full anode voltage can be applied di rectly after heater warmup. The RCA-4I50 incorporates a getter to maintain high vacuum and good arc stability during life.

Frequency $9375 \pm 30 \mathrm{Mc}$
For a $1 \mu \mathrm{sec}$. pulse duration and duty cycle of 0.001
Max Peak Input
635 Kw
For technical data, write RCA Commercial Engineering, Section H19R, -Harrison, N. J.

Fealuring two separate indirectly heated cathodes to give you two separate half wave rectifiers in one envelope, the RCA-5690 "Special Red" Tube provides dependable long life and permits simple and economical designs for circuits' such as:

- 'voltage doubler
- reference and signal comparator
- bridge and polyphase circuits
- high-power ohasing and sensing circuits
- full-wave hegative supplies

For industrial and aircraft circuits wherd the accent is on long life and depend ability coupled with maximum safety and minimum maintenance, you can rely on-RCA "Special'Red" Tubes.

The 10,000-hour line -

The Versatile "Special Red"

Rectitier: RCA 5690

\square

\qquad
\square
\square
\square
\qquad
\qquad
\qquad

NEW ESAPT

 \section*{PATENTED "F" CRIMP

 \section*{PATENTED "F" CRIMP

 TAPER

 TAPER PINS PINS FOR WIRING FOR WIRING AN TYPE AN TYPE CONNECTORS CONNECTORS

 IMPROVE Retmblltive

 IMPROVE Retmblltive SaVE TIME REDUCE COST

 SaVE TIME REDUCE COST}

Now AN type connectors can be wired 5 to 10 times faster with even superior performance reliability. There are no cold solder joints, burned insulation, embrittled wire and breakage at solder cups or short circuits due to loose strands and excess solder.

For many years the Aircraft, Electronics and Communication industries have awaited this new and simpler method, since the soldering of wires to conventional AN connector contacts is a slow and painstaking process involving much skill and repeated inspection checks.

With AMP's new Taper Technique, a special AMP Patented "F" Crimp Taper Pin is attached to the wires by high speed automatic machines. This pin is then installed in the connecter with one easy and positive stroke of AMP's new "measured energy" CERTI-LOK insertion tool. The result is uniformly befter connections, produced in much less time with tremendous cost sovings.

Tests prove that AMP Taper Pins provide a greater degree of uniformity than soldered connections. Reliability is actually increased because the possibility of human error in assembly has been greatly reduced.

Leading Connector manufacturers are now supplying AN and other types of multiple contact connectors for use with AMP Taper Pins. Write today for further information.

AMP Trade-Mark Reg. IJ.S. Pol. Off. (C) AMP

KEPGO Votiele Requatio Power supilis

MODE	VOLTS	CURREM	REGULATION	RIPPLE
750	0.800	0.750 Ma	0.5%	10 Mv.
780	0.800	0.1 .5 Amp.	0.5%	10 Mv.
770	0.800	0.2 .25 Amp.	0.5%	10 Mv.
780	0.600	0.3 Amp	0.5%	10 Mv.

DC POWER SUPPLY SPECIFICATIONS

KEPCO Voltage Regulated Power Supplies are conservatively rated. The regulation specified for each unit is available under all line and load conditions within the range of the instrument.
REGULATION: As shown in table for both line fluctuations from 105.125 volts and load variations from minimum to maximum current.
*REGULATION FOR BIAS SUPPLIES: 10 millivolts for line 105.125 volts. $1 / 2 \%$ for load at 150 volts.
\dagger All AC Voltages are unregulated.
maneractiveras or aitciaonc rouipmint - mistarch - otvilicpmint

LABORATORIES
131:38 SANFORD AVENUE • FLUSHING 5S, N. Y. - INDEPENDENCE 1.7000

WORKMANSHIP

Workmanship is of a quality with the highest existing production standards and best instrument electronic practices consistent with the intended use of the item as a continuous duty voltage regulated power supply. Oil filled paper condensers and resistor-board construction are included in the design. FOR NEW POWER SUPPLY CATALOG - WRITE DEPT. No. 789

Now Metcl Lined CAPACITORS

Now you can get ALL Good-All Capacifors

 enclosed in METAL LINED tubes
impregnafed with "Marbelite" plastic

- Practically unaffected by humidity or climatic conditions. - Eliminates troublesome field failures. - Low capacitance change with temperature. Thermo setting, hard-as-marble, "Marbelite"" plastic end-fill provides lite-time sealing - eliminates costly pull-outs. Extremely durable. - So Superior they are being used extensively by leading TV and Radio manufacturers of America.

Use GOOD-ALL METAL LINED CAPACITORS for every Requirement

Type 503ML Enclosed "Marbelite" Capacitor is impregnated and sealed in hard-asrock thermo-setting plastic. $-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ operating temperature. Popular priced.
Type 520ML Enclosed capacitor is impregnated in highest quality capacitor oil. $-50^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature. Designed to meet exacting specifications of ALL TV and Radlo circuits.

GOOD-ALL ELECTRIC MFG. CO.

114 W. FIRST ST., OGALLALA, NEBRASKA - PHONE 112 OR L13-CABLE ADDRESS "GOODALLA"

A new process now coats a microscopic film of rustproof iron phosphate on all Westinghouse Hipersil Cores. This coating will not chip, scratch or flake, nor will it affect core performance.
Rustproofing eliminates all possibility of deterioration. This means you can safely carry samples or a stock of cores in advance of immediate production needs . . . keep your assembly lines flowing smoothly. - This thin coat prevents any loss of the inherently high flux carrying capacity . . . another reason why Hipersil Cores make it unnecessary to design excess

Butt joint section of 5 -mil Hipersil Core, magnified 10 times. Distinct separation between the laminations channels the flux, increases core efficiency.
core material, and, therefore excess size and weight, into your transformer assemblies.

Advancements like this continue to make the Westinghouse Hipersil Core the best on the market today. Because they are 100% active in carrying flux, they solve size, weight and loss problems for you. The simple, two-piece assembly helps cut your transformer fabricating costs. Get a more complete story by writing today for Booklet B-5402. Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.
J. 70694

THERE'S A C-D CERASHic

Consistently Dependable ceramic capacifors

OISC

HIGH VOLTAGE

The only ceramics with the
"MILLION DOLLAT BODY"
Only C-D can give you the "million dollar body", made by the exclusive C-D process in the world's most modern ceramic body plant -C-D's own. This close control under one roof, from raw powder to finished product, results in greater stability and uniformity, extra durability and extended service life - even down to the tiniest disc or tubular. Engineering samples sent on request. A wide range of designs in all capacity and voltage ratings available. We welcome inquiries on special design and application problems. Write to: Cornell-Dubilier Electric Corp., Dept. K-84 South Plainfield, New Jersey.

THERE ARE MORE C.D CAPACITORS IN USE TODAY THAN ANY OTHER MAKE CORNELL Capacitors
inolamatosts.

vibrators

In a quiet room at 8ell Laboratories an engineer scales off the distance between two condenser microphones during a calibrating test. Able to measure air pressure voriations of a few billionths of an atmosphere, such microphones play a crucial role in the scientifie study of telephone instruments.

SOUND STEPS ON THE SCALES

Those small cylinders facing each other are condenser microphones-measuring tools that play a vital part in making your telephone easier to hear and talk through.

They are being calibrated by an engineer at Bell Telephone Laboratories to give extremely accurate information on the kind of sound your telephone company handles. Armed with these vital fundamental data on what sound is, Bell Laboratories scientists
devise the instruments and equipment that transmit it best.

At Western Electric, manufacturing unit of the Bell System, a condenser microphone "listens" as your ear would listen to every telephone before it goes into service. The condenser microphone is but one of many precise tools that Labroratories scientists have developed to make telephone service better and more economical.

Invariably this question is brought up by seasoned buyers Experience has taught them that no amount of good intentions can compensate for inadequate production machinery. To such practical and fore-sighted men, the following facts are presented for consideration:
To meet customer requirements for quality tested AlsiMag ceramics, American Lava Corporation maintains lineups of modern high speed presses which can produce in one three-shiff working day over 9,000,000 uniform, accurate AlSiMag pieces (more than enough, laid end to end, to reach from Philadelphia, Pa., to Washington, D. C.)*
Why risk dole delivery when you can command AlSiMag production facilities read; to serve you?

53 RD YEAR OF CERAMIC LEADERSHIP

AMERICAN LAVA CORPORATION
 ANDINESTANG

CHATTANOOGA 5, TENNESSEE

[^6]
CAPACITORS

THIS 8-MICROFARAD, 4-VOLT UNIT IS NOW AVAILABLE WITH -0% TO $+125 \%$ CAPACITANCE TOLERANCE.

Announcing HIGHER RATINGS for Micro-miniature Tantalytic Capacitors

LARGE CAPACITANCE and small size make Microminiature Tantalytics valuable where space is at a premium. Diameters are .125 inches.

We can now supply up to 20 volts, or, up to 8 microfarads in the $\frac{5}{16}{ }^{\prime \prime}$ case size, higher capacitance in the $1 / 2^{44}$ case size ... and with $-\mathbf{0 \%}$ to $+125 \%$ capacitance folerance!

Higher ratings are now available in General Electric's new Microminiature Tantalytic capacitor line. Eight microfarads at four volts can now be obtained in the $\frac{5}{16}$ inch unit, higher capacitance in the $1 / 2$ inch unit. Designed for low-voltage d-c circuits, they are particularly adaptable to transistorized subminiature assemblies, where space is at a premium, such as hearing aids.
SUPERIOR PERFORMANCE. Micro-miniature Tantalytic capacitors outperform aluminum electrolytics in electrical stability, operating and shelf life, because of the inert characteristics of tantalum metal and the stability of its oxide. They gain added reliability from the use of silver cases, a non-acid electrolyte, and complete sealing that prevents leaking and contamination of the interior.
WIDE TEMPERATURE RANGE. Micro-miniature Tantalytics can operate over a -20 C to +50 C range - may be stored at -65 C . With some capacitance derating, they can operate well below -20 C . They also perform above +50 C with some life limitations.
AVAILABILITY. Designed especially for non-resonant, non-critical applications such as coupling, by-pass and filtering, Micro-miniature Tantalytics can be obtained in sample lots in 2 to 3 weeks, production lots can be shipped in 6 to 8 weeks. For more information, see your G-E Apparatus Sales Representative or write for bulletin GEA-6065 to General Electric Company, Section E442-14, Schenectady 5, New York.

Progress /s Our Most Important Product

STACNPOLE
FIXED AND VARIABLE RESISTORS - SPECIAL RESISTORS CERAMAG (ferrife) CORES IRON CORES - CHOKEFORMS -GA "GIMMICK" CAPACITORS, EfC.

For "Trouble-Free" Electrical Protection

You can rely on BUSS FUSES!

Accuracy and dependability are built in every BUSS fuse at the factory and will be there no matter when the fuse is called upon to operate.

For every BUSS fuse normally used by the Electronic Industries is tested in a sensitive electronic device that rejects any fuse that is not properly constructed, correctly calibrated and right in all physical dimensions.

Proper construction prevents poor contact heating, correct calibration makes certain that the fuse will carry its rated current.

This insistence on perfection results in quality, 'trouble-free' fuses. That's why manufacturers and service organizations rely on BUSS fuses for dependable electrical protection under all service conditions.

If at any time you have an electrical protection problem, let BUSS save you engineering time. At your service are the facilities of the world's largest fuse research laboratory and its staff of engineers ready to help you select the right fuse or fuse mounting . . . and if possible, one already available from local wholesalers' stocks.

How to pass a physical exam

CTC's coil forms pass their physical exams in great shape - thanks to precision manufacture.

The basic materials of these forms are certified, then checked again by us, before the forms are made. Each manufacturing detail is quality controlled to the high quality standards that enable us to offer guaranteed electronic components, custom or standard.

Forms then get these physical checkups: mounting studs checked for internal and external threads, for general size and electroplating; form checked for I.D., O.D. and concentricity; slug checked for threads, dimensions, electroplating and checked electrically for Q and permeability; final assembly checked for tightness, chips and cracks.

Other CTC components benefiting from CTC precision manufacture include terminal boards, terminals, capacitors, swagers, hardware, insulated terminals and coils. For all specifications and prices, write to Cambridge Thermionic Corporation, 437 Concord

Avenue, Cambridge 38, Massachusetts. West Coast Manufacturers contact: E. V. Roberts, 5068 West Washington Bivd., Los Angeles 16 and 988 Market St., San Francisco, California.

Coil Form Data: Made of grade L-5 silicone impregnated ceramic. Winding diameters from . $205^{\prime \prime}$
to $1 / 2^{\prime \prime}$. Mounted heights from $11 / 32^{\prime \prime}$ to $11111^{"}$. Certo $1 / 2^{\prime \prime}$. Mounted heights from ${ }^{11} / 32^{\prime \prime}$ to $111 / 11^{\prime \prime}$. Certain forms, known as Type C, are also available
with silicone fibreglas terminal retaining collars with silicone fibreglas terminal retaining collars
permitting 2 to 4 terminals. These are excellent permitting 2 to 4 terminals. These are excellent for bifilar windings and advantageous for single
pie windings because they permit terminals to be pie windings because they permit therminals to be wiring to circuit elements.

Laboratory Coil Kit. Type X2060 aids in developing prototypes and pilot models. Contains 10 slug tuned coils of L86 size Type C, ranging from 2 Microhenries to 800 Microhenries, each slightly overlapping next coil in scale. Kit contains mounting hardware and lists such information as in ductance range, wire size, number of turns, Q value. Coils are color-coded to chart for easy quantity-order.

CAMBRIDGE THERMIONIC CORPORATION

 makers of guaranteed electronic components, custom or standard

What FORM FACTOR do you want for your DC POWER?

Here's evidence of Federal's Design Flexibility:

ONE specificationTHREE packages!

HERE is a striking example of how Federal engineers can modify standard units to fit your form factor requirements ... to provide the same output and performance in a differ. ent package!

No. 1 is Model 3431-BS Airborne Power Supply, delivering 100 amp., 24 to 31 VDC, full load to no load; input, 195 to 210 VAC, 380 to 420 cy , 3 -phase; ripple, 2.5% max.
Then, without varying the electrical characteristics, the same unit was redesigned as No. 2-Model 3431-CS-to solve a difficult problem of mounting and control requirements.

Once more, another complete change in physical designbut still the same components and characteristics. Now it's No. 3-Model 3446 -AS-adapted to fit specific space requirements while meeting Spec. MIL-P- 7212 for use by the U. S. Air Force.
Other form factors - for any field - could easily be produced from the original specification!

Designing and building dependable DC power into specified size and space is a Federal specialty for:

> - AIRCRAFT - MARINE - RAILROAD - AUTOMOTIVE - PRODUCTION
> - LABORATORY - TESTEQUIPMENT

To meef unusual and exacting electrical characteristics... varying physical requirements of shape, size and weight . . . special placement of component parts ... environmental and other conditions of service.

AIRBORNE POWER SUPPLY

AC Inpur: 195 to 210
volis; 380 to 420 cy -
cles; 3 phase
DC Output: 100 am peres; 24 to 31 volis, full load to no load

(1) 3431-BS

(2 3431-CS
Ripple: 2.5% maximum
(3) 3446-AS

Individual adjusting of neutralized, magnetic voltage regulators guarantees less than 3% harmonic distortion

You can provide a stabilized source of undistorted voltage with a Sola Harmonic Neutralized Constant Voltage Transformer (Type CVH). Like Sola Standard Type CV stabilizers, each harmonic neutralized unit is individually adjusted during manufacture to regulate within $\pm 1 \%$ regardless of voltage fluctuations as great as 30%. In addition Type CVH regulators deliver sinusoidal output with less than 3% distortion. Operation is automatic and instantaneous. There are no moving parts, no manual adjustments, no maintenance.

They are available from stock in the following va out-
put capacities: $60,120,250,500,1000$ and 2000. Input voltage range of $95-125 \mathrm{v}$ with regulated output of 115 v . Custom units made to specification for production quantity orders.

Sola type CVH regulators may be used for the most exacting applications with equipment having elements which are sensitive to power frequencies harmonically related to the fundamental. They are especially suitable for inpur to a rectifier when close regulation of the dc output is required. Available from your electronic distributor.

S@ Δ Constant Voltage
 TRANSFORMERS

Write for literature describing these and other Sola Constant Voltage Transformers. Ask for Bulletin 7H-CV-200.

[^7]
Casting Molds of KLL－F Polymer Replace Plated Metal Molds．．． Cut Costs，Finisting and Rejects！

Complex electrical terminal boards，made of an especially abra－ sive epoxy compound，are now cast in molds of KEL，－F polymer，re－ placing former metal molds．Ad－ vantages include lower original mold costs，lower maintenance costs，fewer rejects ard higher prod－ uct precision without extensive machining．

Excellent wear characteristics of the new molds result in longer mold life despite high silica content of the casting resin．The non－hesive properties of KEL－F polymer pre－ vent pitting by the resin，result in damage－free release of the product without special coatings．Penn－ Plastics Manufacturing Company， Glenside，Pa．，produce these intri－ cate new molds by transfer meth－ ods．Molded of KEL．－F polymer Grade 300，they are designed to hold 40 terminal pins and to im－ press forty 1／66＂numerals in both faces of the finished part．Terminal boards are manufactured by Penn－ Plastics in conjunction with Wood－ mont Products，Inc．，electronic parts manufacturers of Hunting－ don Valley，Pa．

Wafer－thin Insulator Mount of KEL－F

Polymer Increases Life of

Miniature Switch to 5－Million Cycles ！

A wafer of KEL－F polymer provides a tough，insulated mount for a contact bar，guards the performance of this sealed precision switch under severe thermal cycling．Currents up to 10 amps are handled for a life of from 1 to 5 million cyeles．
This fluorocarbon plastic is molded directly to the beryllium－copper switch blade．It insulates the switch blade against are－heat damage and its dimen－
sional stability guarantees positice con－ tact position for service between minus $90^{\circ} \mathrm{F}$ and plus $800^{\circ} \mathrm{F} \ldots$ without short－ ing．Haydon Switch，Inc．，Waterbury， Conn．．utilizes insulation molded of KELF polymer Grade 300 in single－ and two－circuit snap switches for auto－ matic equipment used in aircraft，ma－ rine and industrial applications．
For further information ask for Application Report E－125

OISPERSION
COATINGS
FLUORO
CHIORO
carbon
PLASTIC

KELE
coarnas

GREASES

Only One RF Signal Probe，Insulated with KEL－F Plastic，Now Needed for Entire 500 to 5,000 Mc Range

Specification of KEL－F polymer plastic as the insulation for this wave－ meter probe resulted not only in a widened instrument range and accu－ racy，but increased efficiency and life as well．
This readily－molded fluorocarbon plastic permits complete，＂tight＂in－ sulation of the vital filaments in ${ }^{\circ}$ a single operation．Excellent electrical properties of KEL－F polymer under high humidity and thermal cyeling eliminate leakage and shorts．High strength and dimensional stability pre－ vent insulation failure from cracking or shrinkage in service．
Thompson Products，Inc．，Cleveland， Ohio，insulates the probe by injection molding，using KEL－F polymer Grade 300．It is used in the company＇s Model WIN6AA Wavemeter．

Forfarlierinformation ank for Applicalion Feport E－126

Molders \＆Fabricators of the Month

Leading molders，extruders and fabri－ calors specialize in the production of mate－ rials and parts made of＂Liel－F＂．．each month this column will spotligh sexeral of these companie，with their principal

Consolidated Molded Products Corp．

Scranton，Pa．
Compression \＆transfer molding Injection molding
Cortland Industries，Inc．
Chicago，III．
Sealing of film
Production machining
General Plastics Corporation
Paterson，N．J．
Dispersion Cooting
United States Gasket Company
Camden，N．J．
Extrusion
Forming \＆machining
Injection，compression \＆Pransfer molding
Rod，tube and sheet；fube sockets Gaskets，gauge glasses \＆tower packing
The William Brand and Company，Inc．
Willimantic Conn．
Insulated wire

Recent Significant KEL－F Polymer Developments．．．

Pyrex－to－steel seal is effected in a new centrifugal pump with a resilient O ring of KEL－F plastic．Damage to the glass observation plate，leaks at high pressures have been eliminated．

Electronic tubes used at high altitudes are now hermetically sealed in new sockets made of fluorocarbon plastic． Consistent hermetic seal over a wide temperature range．low＂arc－over＂ and shock damage are major features．

Conductivity cell－valve units for testing potable water use KEL－F polymer as a structural and electrical insulat－ ing member．Inmersed continuously in water at temperatures up to $250^{\circ} \mathrm{F}$ ，machined insulator maintains critical electrode gap．

Pump vanes of molded glass－filled polymer have been found to have the neces－ sary strength as well as complete chemical inertness to stand up under hot，extremely corrosive chemicals in a new transfer pump．

OFF THE PRESS ．．．
 liating KELEFF polumer producte，moldera and fabris cator＊．

For complefe information regarding any ifem mentioned in DESIGN AND PRODUCTION NEWS，ask for defailed APPLICATION REPORTS，wrife
Technical Service

WANUFAGTURING

THE
M．W．KELLOGE COMPANY

P．O．Box 469，Jersey City 3，N．J．
or offices in Bostön，Chicago，Dayton， Los Angeles and New York

Want more per hour . . . or more accuracy . . . or less cost?

However you want your coil winding improved . . . there's likely to be a Universal Coil Winder that will do the job.

Higher-production machines. More versatile machines. Machines that will give you greater accuracy.

See for yourself by visiting the Universal Demonstration Room nearest you - in Cranston, R. I. or Chicago, Ill. Watch how coils are turned out at top speed, see how convenient the
machines are for operators, observe how accurately the coils are wound.
Write us to set up a date for a visit. Address UNIVERSAL WINDING COMPANY, P.O. Box 1605, Providence 1, R. I., or 9 South Clinton St., Chicago, Ill.

And use the coupon to obtain information on latest developments in coil winding.

UNIVERSAL WINDING COMPANY

P. O, BOX 1605, PROVICENCE I, RHODE ISLAND

Please send me

Condensed Catalog of Universal WindersInformation on Universal Winders for coil types that meet my particular needs. I enclose specifications and production requirements.\qquad
Name
Title.
Company
\qquad

Conversion

from Copper to ALCUPLATE can Reduce Your Cost

What is ALCUPLATE?

ALCUPLATE is a solid layer of copper permanently clad on one side or both sides of less expensive aluminum.
This gives you solid copper performance at a lower cost over solid copper.

In addition to its lower cost, ALCUPLATE has virtually the same physical and electrical properties as pure copper. This permits fabrication of many parts and products from
 ALCUPLATE at savings of from $15 \%-30 \%$ over solid copper.

Can ALCUPLATE be worked?

ALCUPLATE can be fabricated by stamping, drawing, spinning and forming. The copper provides an ideal surface for soft-soldering operations and electroplated or other finishes.

In what sizes is ALCUPLATE stock available?

In coils or flat stock up to $1 / 16^{\prime \prime}$ thick $\times 13^{\prime \prime}$ wide and in a choice of thickness ratios and tempers.

ALCUPLATE

For further information, write or wire

ALCUPLATE FEATURES:

- Natural copper appearance
- High electrical conductivity
- Excellent heat dissipation
- Soft-soldering surfaces
- Easy fabrication
- Light weight

[^8]
C 747 MIDGET

400 CYCLE CHOPPER

PROVEN PERFORMANCE

 in large volume production is your hest guarantee of quality!- AIReAX has milit nearly $1 / 4$ million choppers
- AIRPAX maintains an engineering staff constantly striving to improve choppers
- AIRPAX has ample capacity for large volume production of choppers
- And AIRPAX choppers have proven performance life and reliability

Interval Timers

Running Time Meters

MOST COMPLETE LINE OF INDUSTRIAL

TIMERS for

 automationThe individual requirements of each automation problem are best met by selecting timers designed to perform specific functions. Whatever your timingcontrol problem, Industrial Timer Corporation can meet it with one of its standard timers, a combination of its standard units, or by designing an entirely new fiming element. Our Engineering Departr., ent not only originates new designs, but also develops modifications to meet our customers requirements.

We manufacture a complete line of timers in these 4 broad classifications:

TIME DELAY TIMERS - RE-CYCLING TIMERS INTERVAL TIMERS - RUNNING TIME METERS

Our large stocks of 17 basic types from which we have developed over 660 combinations to date, enables us to make rapid deliveries in most cases . . . and excellent deliveries on special orders. Our automation timer specialists will be happy to discuss your automation timer requirements. Your inquiries will receive prompt attention.

Timers that Control the Pulse Beat of Industry

an Ampex

tape recorder

for as little

as $\$ 498$

the new

At a prise thot's a real surprise, here is the kind of performance that has made AMPEX the supreme name in tape recorders. The new Ampex 600 has been simplified to reduce its size and price. But it retains ffll Ampex precision and performance.

As a portable recorder, the Ampex 600 is in a class by itself. It weighs only 28 pounds. You can carry it anywhere. The recordings you make "on location" will match those made on the finest studio equipment.

As a studio recorder, the Ampex 600 out-performs many others twice its size. It serves ably in all these needs: studio recording - line recording dubbing and editing - broadcast playback.
To assu*e long service, major components of the Ampex 300 have been subjected to tests equaling more than 1C years normal use. An Ampex pays for itself.

Performance

- 40 to 15,000 cycles at $71 / 2 \mathrm{in} / \mathrm{sec}$.
- Signal-ta-noise ratio over 55 db .
- Flutter and wow less than 0.25%
- 3 heads for monitoring tape while recording

For further soecifications, write today for descriplive bul. letin to Depf. E-1701

934 Charter Street - Redwood City. California Distrisutors in principal cities; Canadian distribufion by Canadian General Electric Company

 of all the ways ADLAKE Mercury Relays can save money in your business!

In any installation that requires both sensitivity and lasting dependability . . . from traffic control systems to chick incubators to long range navigation . . . AdLake Mercury Relays can do the jobs that conventional relays do in an uncertain manner at best!

For instance, adlake Relays have proved their ability to stand up under the most adverse conditions of temperature and moisture. Their time-delay characteristics are fixed and non-adjustable . . . normal line voltages and ambient temperatures from -38.8° to 200° have little effect on these characteristics. They require no maintenance whatever . . . are silent and chatterless . . . and their mercury-to-mercury contact prevents burning, pitting, and sticking.

If you don't find the relay you need in the ADLAKE catalog, it will be custom-built for you. Write for full information today: The Adams \& Westlake Company, 1171 N. Michigan, Elkhart, Indiana. In Canada, address Powerlite Devices, Ltd., Toronto.

THE

[^9]
mac Klystron Report

Ruggedized X Band local oscillator reflex klystrons

IKO15XA• coaxial output |KO15XG• waveguide output

R
Reliable X lanc performance through the VAST* punishment of airborne environment plus the features of single adjustment tuning and rapid production are offered only in Eimac 1K015XA and 1K015XG local oscillator reflex klystrons.
*VIBRATION-withstands 10G's of continuous vibration.

* ALTITUDE -arc-guard protection of leads eliminates possibility of flash-over at extremely high altitudes.
*SHOCK—withstands 100 G 's of impact shock.
*TEMPERATURE-maintains frequency stability through a semperature variation of -20° to $80^{\circ} \mathrm{C}$.

SANBRUNO•CALIFORNIA

TYPICALOPERATION
(with flat load)
IMOISXA and IKOI5XG KLYSTRONS

MODE	$73 / 4$	$53 / 4$
D.CResonator Voltage	250	300
D.C Cathode Current	36	47
D.CRepeller Voltage	-65	-170
Power Output	30	100
Frequency	9000	9000
Electronic Tuning Range	55	40

RAPID PRODUCTION-simplified design permits rapid, low cust production.
RELIABLE PERFORMANCE-25 to 100 milliwatts power output from 8400 to 9600 ne with low power consumption-plus assurance of uncompromising Fimac quality proved through 20 years of electron-power tube design and manufacture.
SINGLE TUNING -one-adjustment tuning without the use of lock nuts.

- For further information ahout the 1 KN 015 NA , IK015XG or any of the complete line of Eimac klystrons, including bigh power UHF.TV amplifiers, contach our Technical Services department.

ECLIPSE-PIONEER AUTOMATIC PILOT equipped with A-B resistors ... brings plane down safely and automatically on glide path

The plane in this picture is automatically controlled to the glide path by computer signals fed to the Automatic Pilot. As may be seen by the sweep of the windshield wipers, rain is coming down heavily, obscuring the runway which is dimly visible

Despite these adverse landing conditions, the human pilot . . . with the plane only a few hundred feet above the runway . . . displayed his complete confidence in the Automatic Pilot by stepping aside during its descent to permit the photographer to snap this remarkable

Such precision and accuracy call for QUALITY electronic components, like the Bradleyometers used for adjustable resistance controls and Bradleyunits used for

Each computer, located in the rear of the pilol-copilot area, and not visible in the abave pholograph, has six Bradleyameters and 130 Bradleyunits. Fa aritical applications, where accuracy and permanence of resistor values and ratings are of viral importance, Allen-Bradley fined and adjustable resistors are the logical choice of experienced ratio and electronic engimeers.

BRADLEYUNIT FIXED RESISTORS $1 / 2,1,2$ WATT Their world-wide reputation for high quality is due to the fact that Bradleyunits are rated at 70 C ambient . . . not 40 C . When used according to published ratings, Bradleyunits will not open circuit nor exhibit large erratic changes of resistance. Standard RETMA values in $1 / 2,1$, and 2 watt ratings.

TYPE J BRADLEYOMETER
The stability of Bradleyometer resistance is due to the solid, circular resistor that is molded to produce any resistance - rotatian curve. Not affected by temperature or humidity. Made in $1 / 3$ and 2 watt sizes.

Eclipse-Pioneer lacolizer range com puter, on importany component of the Bendix flight path control, show. ing Bradleyunits and Bradlewometers on cards and in end of coupler case.

Allen-Bradtey Co.
110 W. Greenfield Ave, Milwaukee 4, Wis.

In Canada-Allen-Bradley Canada Limited, Galt, Ont.
through the left windshield. action shot. fixed step resistors.

Waldes Truarc rings replace old-fashioned fasteners . . . save assembly time...end scrap loss...increase operating efficiency

This is the Monroe Calculator

..precision-engineered business machine made even more efficient, and less costly to manufacture through the use of Waldes Truar: Retaining Rings.

Old Way. One-piece assembly was spun together. Spinning operation was costly. re. sulted in high screp loss.

Truarc Way. Two-piece assembly is held together by one Truare Ring (series 5108). Rejects: practically zero.

Electric Motor Governor

Old Way. Cellector Disc as sembly was fermerly riveted. requiring skilled labor. Riveted Collector Disc could not be removec it the field.

Truarc Way. Truarc Ring (series 5100) replaces rivets, saves labor, material...im. proves Collector action. Collector Disc is easily replaced.

Monroe Calculating Machine Company, Orange, N. J. uses various types and sizes of Waldes Truarc Retaining Rings. Use of Truarc has helped eliminate scrap losses, saved on material and labor, and resulted in increased operating and servicing efficiency of the product. Monroe plans to use Truarc Rings for every possible fastening operation on their entire line!

You, too, can save money with Truarc Rings. Wher-
ever you use machined shoulders, bolts, snap rings, cotter pins, there's a Waldes Truarc Retaining Ring designed to do a better, more economical job. Waldes Truarc Rings are precision-engineered...quick and easy to assemble and disassemble.
Find out what Waldes Truarc Retaining Rings can do for you. Send your blueprints to Waldes Truarc Engineers for individual attention, without obligation.

How the Right* Permanent Magnet Material Can Benefit Your Product

Of the many permanent magnet materials available-a few of which are shown aboveonly one will permit your product to function best at the lowest possible cost.

Which one is it? To help you answer that question properly is part of our job. As specialists in permanent magnets, we have helped to provide manufacturers with the answers for over 35,000 applications. The case of the telephone equipment manufacturer is typical. Perhaps we can assist you, too.

There is no charge . . . or obligation . . . for this service. Just write us, today, giving the details of your particular design problem. Or, ask for our Engineering Design Manual No. 4-A8. We'll be glad to provide both.

A Typical Case

... Is that of a prominent telephone eqwipment monufocfurer who changed from a chrome stael magnet to the use of Alnico III In his polarized relay. The results:

- 70% Savings
in inltial eosi
- Simplified design
- Reduced welght
- Flux increase of 27% -impreved performance
- Saviag in space
- Less maintenance
* The one which will permit your product to function best of the lowest possible cost.

THE INDIANA STEEL PRODUCTS COMPANY • Valparaiso, Indiana

Worlds Largest Manufacturer of Permanent Magnets INDIANA PERMANENT MAGNETS

Instruments \& Transformers Tar

No. 1030 Low Frequency "Q" Indisalor

N4 1040
Vocuum Tube Voltmeter

No. 1210
Nulli Detector \mathbf{s}^{2} Vocuum Tube Volfmeter

FREED
MILITARY PULSE TRANSFORMERS
IN STOCK FOR IMMEDIATE DELIVERY
HERMETICALLY SEALED PULSE TRANSFORMERS for use in blocsing oscillators, low level interstage coupling, and modulator outputs. Made in accordance with MIL.T-27 specificat ois. These pulse transformers are designed for maximum pJwe efficiency and optimum fu se performance. Balanced coil structures permit series or parallel connection of windias: for turn ratios other than unity. Pulse characteristics, woltages and impedance levels will depend upon interconnections made.

	DM-12	$D M-18$		DM-8			M-01
CATALOG MUMBER	APPLICATIOM	pulse voltage KILOVOLTS	PULSE DURATION MICROSECONDS	DUTY RATIO	$\begin{aligned} & \text { TEST } \\ & \text { VOCTAGE } \\ & \text { KV., RMS } \end{aligned}$	\qquad	$\begin{aligned} & \text { CASE } \\ & \text { SIZE } \end{aligned}$
MPT-1	Blocking osclllator or interstage coupling	0.25/0.25/0.25	0.2-1.0	.0C4	0.7	250	DM-12
MPT. 2	Blocking oscillator or interstage coupling	0.25/0.25	0.2-1.0	. 014	0.7	250	DM-12
MPT. 3	Blocking oscillator or interstage coupiling	0.5/0.5/0.3	0.2-1.5	. 002	1.0	250	DM. 18
MPT-4	Blocking oscillator or interstage coupling	0.5/0.5	0.2-1.5	. 002	1.0	250	DM. 18
MPT. 5	Blocking oscillator or interstage coupling	0.5/0.5/0.5	0.5-2.0	. 0.2	1.0	300	DM. 12
MPT-6	Blocking oscillator or Interstage coupling	0.5/0.5/0.5	0.5-2.0	. 002	1.0	$5 x$	DM. 12
MPT-7	Blocking osciliator, interstage coupling or low power output	0.7/0.7/07	0.5-1.5	. 002	1.5	$2 x$	DM-18
MPT. 8	Blocking osciliator. interstage coupling or low power output	0.7/0.7	0.5-1.5	. 032	1.5	$2 x$	DM-18
MPT.9	Blocking oscilliator. interstage coupling or low power output	1.0/1.0/10	0.7-3.5	.0)2	2.0	200	DM. 18
MPT-10	Blocking oscilliator, interstage coupling or low power output	1.0/1.0	0.7-3.5	. 002	2.0	200	DM. 18
MPT-12	Biocking oscliator, interstage coupling or iow power output	1.0/1.0/1.0	1.0.5.0	. 002	2.0	500	DM.01
MPT-12	BlockIng oscillator, interstage coupling or low power output	$\begin{aligned} & 0.15 / 0.15 \\ & 0.3 / 0.3 \end{aligned}$	0.2-1.0	. 004	0.7	700	DM-8

SEND FOR COMPLETE CATALOG OF FREED INSTRUMENTS AND TRANSFORMERS

No. 1110A Iricremental luductance Bridys

BORG...new standard for precision mulfi-furn

 potentiometers
BORG MICROPOIS

MODELS 901-903

TEN-TURN POTENTIOMETERS

Designed for the utmost versatility and adaptability, Borg Micropots eliminate the need for special design. New Standard Borg Micropots are available in single or double shaft models with exceptionally rigid servomount or bushing-mount at either or both ends.

MODELS 931-935

THREE-TURN POTENTIOMETERS

All potentiometers are available with double end support to assure efficient operation where subjected to excessive vibration. Precision ball bearings and precision rolled lead-screw provide higher accuracies and longer life. Ganged units are accurately phased before coupling.

- One-piece centerless-ground stainless steel shaft
- One-piece lead-screw and servo-mount permits rigid mounting and maintains true shaft alignment
- Servo or bushing mountings of exceptionally rigid design available at either or both ends of any 900 series Micropot
- Drive assembly gives higher accuracy in the four basic types of linearity without additional modification
- Contact carrier assembly design permits no backlash between shaft rotation and electrical rotation
- Coupling band provides accurate alignment between mounting surface and housing
- 49" Kohlrausch wound resistance helix permits finer resolution
- Dual Spring contacts assure accurate transmission of voltages from carrier assembly to terminal

901 B

9025S

93 ISK

9335s

903BK

935BB

BORG EQUIPMENT DIVISION

the george w. borg corporation JANESVILLE, WISCONSIN

Why You

in Particular

Should
Know about

eenleat...

where quality control works on the production line!

As a reader of Electronics, you're interested in flight-inspired precision manufacture. You want to know companies with the skill and ingenuity required in the exacting engineering and production of aircraft and armamert instrumentation.

Along this line, Greenleaf has something special to offer you. In our factory, the most modern production techniques are combined with the ideal of individual craftsmanship. Every man is master of his job. Every job is quality-checked continuously -right on the production line. Our production people actually use laboratory testing instruments in their daily work.

As a result of this approach to manufacturing, Greenleaf has established a successful record as prime and subcontractor for the U. S. Air Force for such companies as McDonnell Aircraft, Eastman Kodak, Boeing, Avco, Emerson Electric. Among the products manufactured are Gyros (Rate and Integrating), Pressure Transmitters, Accelerometers, Synchros, Air Speed Indicators, Actuators, and many others.

Consider Greenlèaf in your fufure production plans. Write today for detailed information. Our facilities and working record have produced for many others. We're sure we can produce for you, 100.

Engineering • Development • Production

New $3 / 4$ " Sensitive Relay APPLICABLE TO PRINTED CIRCUITS

Write for catalag sheet giving complete information

MICRO SWITCH Precision Swirches
 A PRINGIPLEOFGOOD DESIGN

A Slide Eutton Switch

C Sealed Toggle Switch

E Push Button Assembly

MICRO SWITCH provides a complete line of extremely reliable, small-size, high-capacity, snap-action precision switches and mercury switches. Available in a wide variety of sizes, shapes, weights, actuators and electrical characteristics. For all types of electrical controls.

MICRO SWITCH

The rew Weston Inducironic D-C Amplifer measures both millivolts and microamperes to an accuracy previously unheard of. A product of Weston Electrical Instrument Corp, Newagk, N. J.

Its resistor network uses D-HALLOY assur HIGH STABILITY and ACCURACY

Wher it's millivoles or microamperes you are measuring, you talk.in terms of accuracy in the order of 0.1%. Here is the most accurate measuring instrument yet developed - the Weston Inductronic D.C Amplifier. This amazing instrument makes potential measurements down to microvolts, current measurements to fractions of a microampere.
By using this 200 kc frequency shift amplifier in connection with thermocouples, radiation receivers, bolometers, strain gages, pressure transducers, resistance thermometers, photocells, ionization gages, etc., related physical quancities can be measured with speed and accuracy far superior to any other method previously known.
The amplifying system is essentially an auto-
matic potentiometer, wherein an output current is maintained in balance against the input through a method of accurately adjusted resistors determining the balanced ratio of output to input. With a high gain in the amplificaion of error unbalance, the accuracy of amplification ratio is of course dependent almost entirely upon the stability and precision of the resistor network.
For this most exacting function Weston uses Driver-Harris MANGANIN, an alloy of such fixed stability that maximum change in resistance between $15^{\circ} \mathrm{C}$. and $35^{\circ} \mathrm{C}$. is less than 15 parts per million per degree Centigrade.
If fixed stability and constant resistance under normally variable operating conditions are "musts" in your resistor designs, let us have your specifications. We'll gladly put at your disposal 50 years of alloy manufacturing experience to help solve your problem.

HARRISON, NEW JERSEY
BRANCHES: Chicago, Detrail, Cleveland, Los Angeles, San Francisco, Louis ville
In Canada: The B. GREENING WIRE COMPANY, LId., Hamilton, Ontaria

NEW ATOMIC CANNON

This mobile 280 mm . atomic cannon has two recoil motions. The primary recoil absorbs the cannon's "kick". The secondary recoil (something new in artillery) absorbs the forces created by the primary recoil. And each recoil motion is recorded by this special Veeder-Root Counter designed with a plunger-action shaft . . . which keeps the score on the cannon's use and indicates
approaching need for maintenance.
This again points up the fact that "Anything Worth Making - or Worth Doing - Is Worth Counting." And Veeder-Root has the experience and resources you can count on, to give you any counter you need . . . for any mechanical or eectrical application . . . in any field from Atomics to Automation. Write:

12,800 TO 50,000 MC

integrated equipment for Extremely High Frequencies

Now, Polarad has applied its advanced-engineering techniques to produce fully self-contained microwave test equipment for use in the Extremely High Frequency region--12.800 to 50,000 MC.
This new line of Signal Generators, Signal Sources, and Spectrum Analyzers is designed to save engineering manhours in the laboratory and on production lines-obviating experimental test set-ups.

The Extremely High Frequency Polarad Signal Generator, for example, furnishes monitored power output as well as measures external signal strength and frequency.
Highest accuracy and reliability of operation are assured by careful engineering and the use of highest quality components. For complete information write to your nearest Polarad representative or directly to the factory.

	SIGNAL GENERATORS		SIGNAL SOURCES		SPECTRUM ANALYZERS		
Frequency Range	Mode! Number	Output Power	Model Number	Power Output (Average)	Model Number	Sensitivity (Signal=Noise)	Dispersion (Average)
12.8 to 17.5 KMC	SG 1218	-10 DBM	SS 1218	15 mw	SA 1218	-70 DBM	30 MC
15.75 to 16.25 KMC	SG 1516*	-6 DBM	SS 1516	5 mw	SA 1516	-70 DBM	45 MC
16.25 to 16.75 KMC	SG 1617*	-6 DBM	SS 1617	5 mw	SA. 1617	-70 DBM	45 MC
18.0 to 22.0 KMC	SG 1822	-10 DBM	SS 1822	10 mw	SA 1822	-60 DBM	40 MC
22.0 to 25.0 KMC	SG 2225	-10 DBM	SS 2225	10 mw	SA. 2225	-60 DBM	40 MC
24.7 to 27.5 KMC	SG 2427	-10 DBM	SS 2427	10 mw	SA 2427	-60 DBM	40 MC
27.27 to 30.0 KPAC	SG 2730	-10 DBM	SS 2730	10 mw	SA 2730	-60 DBM	45 MC
29.7 to 33.52 KMC	SG 3033	-10 DBM	SS 3033	10 mw	SA 3033	-60 DBM	45 MC
33.52 to 36.25 KMC	SG 3336	-10 DBM	SS 3336	9 mw	SA 3336	-50 DBM	45 MC
35.1 to 39.7 KMC	SG 3540	-10 DBM	SS 3540	5 mw	SA 3540	-50 DBM	45 MC
37.1 to 42.6 KMC 41.7 to 50.0 KMC	External Source Power Measurement Range: +6 to +30 DBM Accuracy with Correction: ± 2 DB		SS 3742 SS 4150	Approx. 3 mw Approx. 3 mw	1.F Gain Control: 0 to 40 DB 1.F. Band Width: 50 KC		
	Modulation: All unlts except the SG 1516* and SG 1617* can be modu. lated as follows: 1. Internal 1000 CPS Square Wave 2. External a. Pulse Pulse WIdth: 0.5 to 10 Microseconds PRF: 100 to 10,000 CPS Pulse Amplitude: 10 volts Pk to Pk Min. Polarity: Positive b. Sawtooth or Sinusoidal Frequency: 100 to $10,000 \mathrm{CPS}$ Amplitude: 15 Voits RMS Min. - Internal variable pulse and FM modulation				Sweep Frequency: 5 to 40 CPS		

REPRESENTAYIYES - Albuquerque - Atlanta - Boston - Chicago - Cleveland - Fort Worth - Kansas City - Los Angeles - New York - Phila delphia - San Francisco - Seattle - St. Paul - Syracuse - Washington, D. C. - Canada, Arnpriop-Export: Rocke International Corporation
M

COMPLETE MILITARY LINE AVAILABLE.
POPILLAR MILITARY TYPES ILLUSTRATED.
CORRESPONDING COMPLETE LINE FOR COMMERCIAL APPLICATIONS ALSO AVAILABLE.

5 acres of plant area . . . over 1000 employees ... making ALL TYPES of variable resistors by the million....for ALL your requirements. CTS SPECIALIZES in precision mass production of variable resistors and associated switches . . . makes nothing else.

Most controls available with switches and in concentric shaft tandems or with two controls operating on one shaft. Also available with locking bushing, water sealed bearing and many other special features not illustrated.

Immediate delivery from stock on many JAN-R-94, JAN-R-19 and other types.

WRITE FOR ILLUSTRATED CATALOG-
Describes Electrical and Mechanical characteristics, Special Features and Constructions of a complete line of variable resistors for military and civilian use. Includes dimensional drawings of each resistor

REPRESENTATIVES

Henty E. Sanders McClatchy pide 69th \& Market St	C. C. Meredith \& Co_{o}., Ltd. Streetsville, Ontario
Upper Darby, Penna,	SOUTH AMERICA
Hone: Flanders 2.8420	Jöse Luis Pontet
W. S. Har mon Company	Montevideo, Uruguay
121 No. Rovertson Blyd.	Rio de Janeiro, Grazil
Beverly Hills, California	Sao Paulo, Brazil
Phone: Bradshaw 2.3321	OTHER EXPORT
John A. Green Company 6815 Oriole Drive Dallas 9, Texas	Sylvan Ginsbury 8 West 40th Street New York 18, New York

$1 / 2$ watt $70^{\circ} \mathrm{C}, 3 / 4^{\prime \prime}$ diameter miniaturized variable composition resistor.

TYPE 65 (Miniaturized)

UNPRECEDENTED PERFORMANCE CHARACTERISTICS

Types 65, 90 and 95 are specially designed for military communications equipmentsubject to extreme temperature and humidity ranges: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$aridity tosaturation.

WATER SEALED NOUNTING AND BEARING FOR TYPE 65

Meets JAN-R-94
type RV4
2 watt $70^{\circ} \mathrm{C}, 1-1 / 8^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by JAN-R-94.

TYPE 95

TYPE GC-95 With Switch

RESISTORS...FOR EVERY NEED

Meets JAN-R-94 type RV3
$1 / 2$ watt $1-1 / 8^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by JAN-R-94.

TYPE C2-35 Tandem

LOCKING BUSHINGS FOR TYPE 65 CONTROL.

Meets JAN-R'-94 type RV2
$1 / 4$ watt $15 / 16^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by JAN-R-94.

TYPE C2-45 Tandem

LOCKING BUSHINGS FOR CONTROL TYPES 25, 252, 95, 35, 90, 45

Can you see this

frequency standards

 IN QUANTITIES

 IN QUANTITIES}

PRECISION WITH RUGGEDNESS

TYPE 2003. Temperature-compensated tuning fork with most of the circuitry sealed inside. Requires a miniature double triode and 6 pigtail components in your circuit.

TYPE 2007. Temperature-compensated tuning fork with ALL circuitry, including sub-miniature double triode, sealed inside.
Manufacturers of a wide variety of timing equipment used in such fields as Aviation, Navigation, Ordnance, Ballistics, High-speed Photography, Viscosity Measuremont, Fluid flow, Nuclear Physics, Telemetering, Chemical Reaction, Radiation Counting, Computers, Facismile, Fire control, School and Industrial Research Laboratories. Accurate speed control.

FEATURES - Plug in
Interchangeable
Shock-vibration resistant
Hermetically sealed
Light weight. (7 ounces)
Small size ($11 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}$)
Meets JAN-MIL specifications
WRITE FOR DESCRIPTIVE LITERATURE, TYPE 2003-7 OR SEND BRIEF OUTLINE OF REQUIREMENTS.

American Time Products, Inc. New York 36, N. Y.

ERIE components are stocked by leading electronic distributors everywhere.

ERIE RESISTOR CORPORATION
ELECTRONICS DIVISION

Main Offices and Factories: ERIE, PA.

Sales Offices: Cliffside, N. J. - Camden, N. J. - Chicago, III. - Detroit, Mich. Cincinnati, Ohio • Fort Woyne, Ind. - Los Angeles, Calif. - Toronto, Ontario

Moldite has taken the initiative in establishing accepted electrical standards long required by the electronic industry. Every coil and set manufacturer, every engineer has designed coils to utilize Moldite "standards".
The reasons are obvious. Moldite Core Standards Offer . . .

ECONOMY
 AVAILABILITY
 HIGH QUALITY
 INTERCHANGEABILITY
 UNIFORMITY
 FLEXIBILITY

This means a better product backed by years of
Moldite leadership in engineering and research. No one has done more than Moldite to give the industry a superlative core or coil form for every electronic application. So Design with Moldite Core Standards.

Robert T. Murray Co, Jerry Golten Co. Arnold Andrews Perlmuth, Colman \& Assoc. Jose Luis Ponte
604 Central Ave. 2750 W . North Ave. 521 Cumberland Ave. 2419 S . Grand Avenue Cardoba 1472 East Orange, N. J. Chicago 22, III. Syracuse, N. Y. Los Angeles, Cal. Buenos Aires

MOLDITE

 FERRICORESmolome
MOLDED COIL FORMS
MOLDITE
MAGNETIC IRON CORES

FERRITE CORES MOLDED COIL FORMS
(iron and phenolic)
MAGNETIC IRON CORES
FILTER CORES
THREADED CORES
SLEEVE CORES
CUP CORES
Samples promptly submitted upon request for design, pre-production, and test purposes
NATIDNAL

1410 Chestinut ave., hilsioe 5, N. J.

At the modern Carboloy magnet laboratory, in Detroit, trained engineers work with the finest equipment. Where necessary, special instruments are often designed by the engineers.

With such complete facilities, Carboloy magnet engineers can give you accurate information, quickly. And, they can thoroughly test their designs and the performance of the magnets in your products.

DC Recording Hysteresigraph. Simultaneously plots magnetic force and resulting magnetic induction. Produces complete hysteresis loops, not ordinary point-by-point readings.

High H-Permeameter. Provides point-by-point readings of magnetizing force and induction. Control table and Ballistic Galvanometer also used for general flux measurements.

Condenser Discharge Magnetizer. Produces very large current impulse for magnetizing magnet configurations that can best be accomplished with special field shapes.

 Ernest E. George
 Mgr.-Design and Application Eng.neering
 Robert J. Studders Supervisor-Magnetic Materials and Process Development
 Edgar W. Engle Mgr.-Product and Process Developmenf Engineering
 Edgar L. Hubbard Sales Mgr.-Permanent Magnets

 magnet engineers can help improve products, cut costs

Experienced magnet engineers, using the latest test and development equipment, will provide complete engineering appraisal service

You can get valuable technical assistance, without obligation, on tie design and application of permanent magnets, from Carboloy magnet engineers . . . men who are leaders in the field.
Only at the Carboloy Department can you obtain engineering appraisal service and sample magnets from separate laboratory facilities devoted exclusively to helping you determine the design and optimum size, shape and strength magnets to fit your particular application. Your product will be tested in the modern Carboloy magnet laboratories, on the latest test instruments, to assure the maximum operating efficiency of the magnets.

PROVED RESULTS

The assistance Carboloy engineers have given other designers and manufacturers has paid off time and again in lower production costs, improved product efficiency, simplifiel assemblies and reduced product size.
You can rely on their solutions because these engineers, many of whom worked on the original devel-

Three typical, successful appraisal projects:

INSTRUMENTS. Working with Thomas A. Edison, Inc., Carboloy engineers provided the magnet design that made possiole a revolutionary fire detection relay. Use of the proper magnets simplified the design of the relay and reduced its size and weight.
CONTROLS. The development of the hysteresis brake was pioneered by Carboloy magnet engineers. Now widely used in the textile and wire rope industries, this brake eliminates friction, while maintaining the necessary constant tension.
TELEVISION. Carboloy magnet engineers collaborated with tube engineers on the design of a new magnetic internal focusing device. They designed the smaller, more efficient magnets that helped eliminate focusing dials and external assemblies.
opment of Alnico, are specially trained and experienced in all phases of permanent magnet design and application.
You can depend on Carboloy magnet sales engineers, too, for authoritative and intelligent answers to your questions. These men have intensive, special training in permanent magnets, supporting their engineering and technical backgrounds.

A COMPLETE SERVICE

Together with the engineers who are working on the development of new magnetic materials and on the improvement of existing Alnico grades, these men make a complete permanent magnet team. Their sole job is to help you utilize the tremendous potential of permanent magnets for new and improved products.
This team can star1 working for you, today. Just fill out the coupon and attach to it your company letterhead, and where possible, blueprints or sketches of the job. Or, if you prefer, the coupon will bring a call by your local Carboloy magnet sales engineer.
"Carboloy" is the trademark for products of the Carboloy Department of General Electric Company

... in the electronics October Mechinimiail Inesign Special Lssue

The Importance of Mechanical Design

Wiring and Soldering

There has always been an intense need, in the electronic industry, for detailed knowledge of the place of mechanical design in the creation and construction of electronic equipment.
At long last, it is here! It will be available to you in the form of a 64 page textbook in the OCTOBER Electronics MECHANICAL DESIGN SPECIAL ISSUE.

Here is the issne that engineers and production men and all those with any interest in electronics have needed ... and wanted . . the PRACTICAL LINK between electronic engineers and mechanical engineers who work side by side in most plants within the field. Here is the 64 page insert (an addition to the regular issue) that renders a specific service by providing neatly packaged information intended to help solve mechanical problems peculiar to electronic design.

THE MECHANICAL DESIGN ISSUE

will contain 9 sections written by 9 painstakingly-selected specialists

Each author has developed an authoritative thesis on his own subject. No axes are ground. No specific products are emphasized. Factual, informative methods, short cuts, modern usages, ways to improve, ways to save material and man hours-increase efficiency.
Manufacturers of Mechanical Equipment: Plan now to reserve your advertising space in the important October MECHANICAL DESIGN SPECIAL ISSUE to insure your product story reaching the right purchasing influences (the 36,000 engineers, designers and specifiers . . . subscribers of ELECTRONICS.) These are the potential purchasers of YOUR mechanical products.

CLOSING DATES Complete Plates: September 1

TYPE 531

You just plug in the proper vertical preamplifier to have at your service a wide-band de oscilloscope, a wide-band high-gain oscilloscope, a wide-band dual-trace oscilloscope, or a differential-input high-gain de oscilloscope. The Type 53-Series Plug-In Units are small, weigh less than 6 lbs . each, and you can change them in a few seconds.

This new instrument is designed to make your oscilloscope dollar go farther. Development of additional plug-in units already in progress will increase the versatility of the Type 531, and assure its modernity well into the future. But your greatest gain is the many hours of valuable engineering time you save through its use.

OSCILLOSCOPE CHARACTERISTICS

24 Callbrated Sweeps
$0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$. Accurate $5-\mathrm{x}$ mognifier permits calibrated sweep times to $0.02 \mu \mathrm{sec} / \mathrm{cm}$. Sweep continuously vari able from $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm}$. Sweep colibration occurate within 3%.

New Cathode-Ray Tube
Tektronix TSIP metallized CRT has helical post-occelerating anode; deflection.plote leads ore brought out of the neck.

DC-Coupled Vertical Output Amplifler Designed for use with any of the Type 53-Series Plug-In Unirs

Balanced Delay Network Provides $0.25 . \mu$ ser vertical signal delay.

Horixontal Input Amplifier Sensitivity $0.2 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$, continu. ously voriable.
Internal or External Triggering Amplitude level selection or outomatic triggering.
Amplliude Calibrator
Square wave, 0.2 mv to 100 v in 18 steps, occurate within 3%.
DC-Coupled Unblanking
CRT Beam Position Inclicators
Electronically Regulated Power Supplies

Price $\$ 995$ plus price of desired plug-in units

NOW IN QUANTITY PRODUCTION

For complete specifications and shipping schedules call your Tektronix Field Engineer or Representative or write to:

PLUG-IN UNIT CHARACTERISTICS

Type 53A Wide-Band DC Plug-In Preamplifier-dc to $10-\mathrm{mc}$ passband, 0.035 - $\mu \mathrm{sec}$ riselime. Sensitivity 0.05 v / cm to $50 \mathrm{v} / \mathrm{cm}$, oe or de, continu. ously variable, with nine calibrated steps from $0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$. Two input connectors with $80-\mathrm{db}$ isolation Price $\$ 85$.

Type 53B Wide-Band High-Gain Plug-In Preamplifier -same as the Type 53A with the addition of on ac-coupled input stoge providing three additional calibrated sensitivity steps, $5 \mathrm{mv} / \mathrm{cm}, 10 \mathrm{mv} / \mathrm{cm}$ and $20 \mathrm{mv} / \mathrm{cm}$. Passband 5 cycles to $9 \mathrm{mc}, 0.04-\mu \mathrm{sec}$ risetime. Two inpul connectors with $80-\mathrm{db}$ isolation. Price $\$ 125$.

Type 53C Dual-Trace Plug-In Preamplifier - two identical amplifier channels, each with dc to 8.5 -me passband, $0.04-\mu \mathrm{sec}$ risetime, sensitivity $0.05 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$ continuously variable with 9 calibrated steps from $0.05 \mathrm{~V} / \mathrm{cm}$ 10 $20 \mathrm{v} / \mathrm{cm}$. Electronic switching triggered by oscilloscope sweep, or free running at about 100 kc. Polarity reversal switches.
Price $\$ 275$.

Type 53D Differential High-Gain DC Plug-In Preamplifier-sensitivity $\mathrm{mv} / \mathrm{cm}$ at dc to 250 kc - with passband increasing to 750 kc al $50 \mathrm{mv} / \mathrm{cm}$ and lower. Sensitivity in calibrated steps- $1 \mathrm{mv} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$, or continuously variable - $1 \mathrm{mv} / \mathrm{cm}$ to 125 v / cm. Differential input. Price $\$ 145$.

ALL PRICES F.O.B. PORTLAND (BEAVERTON), OREGON

Tektronix, Inc.
 P. O. Box 831A, Portland 7, Oregon
 Phone: CYpress 2-2611 - Cable: TEKTRONIX

FOR EVEN GREATER UTILITY

The adaptability of this now widely accepted unidirectional transmission line element is enhanced by several recent additions to the UNILINE family. Two such additions, illustrcted here, meet important new requirements, retain the desirable characteristics of the original UNILINE design, namely, substantial isolation between source and load with negligible loss in transmitted power.

"RUGGEDIZED" UNILINE

This compacted, thoroughly ruggedized new design broadens the field of application for UNILINE ... makes possible its use in equipment subject to severe shock and vibration. Same frequency range as Model $88-96$ but under $3^{\prime \prime}$ in length.
 for UNILINES at sfill lower frequency ranges, covers 3800 to 4200 megacycles.

UNILINE applications.

- Provides substantial isolation between source and load with negligible loss in transmitted power.
- Eliminates "long line" effects on klystrons or traveling wave tubes.
- Ensures adequate isolation between multiple coupled circuits .
- Minimizes frequency "pulling" effects due to varying load impedance . .

GYRALINE	1000	$9600-11,200$ Mcs.
GYRALINE	920	$8500-9900$ Mcs.
GYRALINE	720	$6900-7400 \mathrm{Mcs}$.
GYRALINE	670	$6400-6900 \mathrm{Mcs}$.
GYRALINE	620	$5900-6400 \mathrm{Mcs}$.

D. 92

GYRALINE
DRIVER

An audio driving unit for GYRALINES \#920 and \#1000. Adjustable outpu: level, frequency variable 800 to 1200 cps. Self-contained power supply.

and . . . GYRALINE

The GYRALINE is essentially a continuously variable microwave attenuator controlled by an applied magnetic field. It can provide an amplitude modulated microwave signal without undesirable frequency modulation and double moding when used on the output of a CW operated klystron. The GYRALINE may also be used as an excellent level set attenuator or as the direct control element in an AGC system.

Write for descriptive literature

Auckland C.I.

```

Pye Canada, Lid.,
Canada.
\[
\begin{aligned}
& \text { Pye-Electronic Pty., Led., } \\
& 65 \text { Park Street, } \\
& \text { Abbotsford, Melbourne, } \\
& \text { Victoria. Australia. }
\end{aligned}
\]

Pye Ireland, Led., Manor Works. Dundrum, Dublin. Eire.

Pye Radio \& Television (Pty.) Ltd.
P.O. Box 10648,

Johannesburg.
South Africa.

PYELIMITED


\section*{EAST or WEST. .. NORTH or SOUTH only KARP can offer deep cuts in your enclosure costs! \\ \section*{Distance is no barrier to the money-saving advantages}} of KARP's exclusive "one-stop" service.

Where else can you find ...
太 3000 stock tools and dies that eliminate or reduce new tooling costs . . Complete fabrication, finishing and assembly facilities, in an \(88,000 \mathrm{sq}\). ft. modern plant that permits mass production techniques, assuring . . . Rapid production output geared to cut your inventory needs, through . . Experienced design counsel and Engineering Service.
Let KARP prove that your initial and production costs on cabinets, enclosures, chassis, and housings can be low, whether you need ten or ten thousand units. There is no obligation for quotations on your blue prints, samples or sketches. Write or phone, today!

You are cardially invited to visit the Karp Display at the Western Electronic Show
and Convention, Los Angeles, Calif., August 25th, 26 th, 27 th, Booths 618 and 619.

\title{
KARP METAL PRODUCTS CO., INC. \\ Division of H \& B A merican Machine Comalany
}

Main office \& Plant
211. 63 rrd street Brooklyn 20, N. Y.

Telephone: HYacinth 2.7700

3420 Wesley street, Culver City, Calif.
Telephone: Lamont 9.4343



\section*{Do you know these famous record makers?}

Both of these people are famous record makers for Columbia. You'll probably recognize Mindy Carson, but do you know that other famous record maker-tune-spotter Mitch Miller?
"When a hot song comes along," Miller says, "we often cut the master tape out in Hollywood, holding oar breath because other companies will try to 'cover' the tune first.
"We rush the master tape to our Eastern factories-always relying on Air Express to get it through fast!
"The new disc is on the air and for sale in stores in recordbreaking time, thanks to Air Express.
"We turn to Air Express at least three or four times a week to beat out competition.
'And yet, most of our shipments cost less with Air Express than with any other air service.'

It pays to express yourself clearly. Say Air Express! Division of Railway Express Agency.


DESIGN AND CONSTRUCTION-The metallic resistance element is deposited on a low loss ceramic core using pyrochemic controlled process developed and patented by Continental. The metal film is protected by a layer of vitreous enamel thus insuring protection against unusual atmosphere conditions. The axial type leads are securely fastened to an extremely low resistance metal contact film thus minimizing noise and assuring positive contact. The resistor is calibrated to value by means of spiralled grooves cut into the film to increase the resistance path. This type of construction and design produces a resistor of small size and weight which will meet the requirements of critical applications for stability.

Write for Bulletin No. 287 for complete specifications.

\#20 AWG Tinned Copper Leads, \(11 / 2^{\prime \prime}\) long
\begin{tabular}{ccc}
\(A\) & \(B\) & \(C\) \\
\(15 / 16^{\prime \prime}\) & \(.160^{\prime \prime}\) & \(.130^{\prime \prime}\)
\end{tabular}
\[
\begin{array}{r}
\text { this } \\
\text { control } \\
\text { needed } \\
\text { protection }
\end{array}
\]
here's the easy way they protected it with

\section*{NOPCO LOCKFOAM}
\(\mathbf{H}_{\text {amilton Standard Division, }}\)
United Aircraft Corporation, needed a potting material for the electronic temperature control unit that governs cock pit air-conditioning - found Nopco Lockfoam ideal for the purpose.
Nopco Lockfoam is indeed ideal for this and many other similar tasks because of the absolute protection it affords against damage from severe vibration. Its light-weight closed-cell structure makes a tamper-proof assembly, and gives a high impermeability to dampness, corrosion, and fungi growth. Also, its pour-in-place technique effects great economy of assembly time.
Further, each of the 50 different formulations available is highly consistent and reproducible.
Perhaps the rare combination of properties of this versatile plastic can help with some product you have in mind. Write today for the Nopco Lockfoam booklet.

Plastics Division

\section*{NOPCO}

CHEMICAL COMPANY
Harrison, New Jersey


4858 Valley Blvd., Los Angeles 32, Calif.



\section*{Really \\ 『P \\ Reliable.}

\section*{RR66 PHOTO TRANSISTORS}


RR66 PHOTO TRANSISTOR
- Hermetically sealed in glass.
- Miniature size; low cosf.
- High optical sensitivity.
- Available base connection permits thermal stabilization.
- Spectral response includes visible range with greatest sensitivity in infra-red region making it useful for invisible light applications.
- Response embraces practically the complete spectrum of a tungsten filament lamp.
- Operates af low voltage and low impedance levels.

RR66 Photo Transisfors are headed for a long and important career in electronic circuits. Perhaps we can discuss this new device with you now!

recommended photo.transistor circuit for modulated light
TYPICAL OPERAIION
\(R_{2}=10 K_{;} \quad R_{1}=20 K_{;} R_{2}=1 K_{;} \quad R_{3}=1 K\)
Collector Supply voltage 12 volts
Collector Current
Collector Current .......... 0.5 Ma .
Sensitivity …................. 0.16 volts/ft. candle


In Radio and Electronics Since 1922
SALES OFFICES: 251 WEST 19 TH STREET, NEW YORK \(11, \mathrm{~N}\). Y. TELEPHONE: WATKINS \(4-3633\) •FACTORIESIN BROOKLYN, N. Y.

\section*{are Jou fighting space?}

High dielect ic insu ation. Rack, panel, chassis types

Are you looking for complete electrical circuit dependability in a very, very small space?
If so, you should use Cannon carefully engineered miniature and sub-miniature multi-contact connectors. In \(1 / 2\) or \(1 / 3\) the usual space, they give you up to 50 contacis, the same number as a standard connector, and still retain all the factors of utility, reliability, and nectanical strength found in Cannon's standard size con ectors. They are very rugged, easy mating, unusually versatile, neat and compact.
Miniatures - Marimum Dimensions Dnly \(1^{\prime \prime} \times 2^{\prime \prime}\) !
. . receptacles and plugs, standard pressurized, of hermetically seaied ... box, wall, ce cord mountings . . . jor aldio. control, and instrument use. D and \(U\) sub-miniatures have steel shells. DPA and \(K\) miniatures have 1 e-cast shells. Five ampere gold plated contacts are found in all miniatures and subminiatures, exzepring \(U\) receptacles, which have steel contacis. larger contacts havirg higner curren: ratings, and co-ax contacts, are in process of development
Sub-Minlaturez-0 nily \(2.5,8^{\circ} \times 39 / 64^{\prime \prime}\) !

\section*{Under overload conditions}


HERMETIC'S new lock-ring for mounting hermetically sealed headers


See Us of the Western Electronic Show and Convention in Los Angeles - Booth 905.

\section*{gives maximum mechanical security at lower cost!}

A simple hole is all you need to mount this vac-tite* glass-metal bonded header. Hermetic's new lock-ring design assures mechanical security without requiring shaped recesses. The ring will hold against internal pressures far in excess of any which can be encountered in service, and all the advantages and flexibility of round headers are retained.

Stripping and re-use of headers is facilitated by the lock-ring and by the intrinsic nature of the vac-tite* seal.

In co-operation with the Armed Services, Hermetic has developed a variety of other header and plug types which do not depend on solder alone for mechanical security of headers.
*VAC-TITE is HERMETIC's new, vacuum-proof, compression-construction, glass to metal seal. In addition to special shapes, many standard sizes such as . 800 O.D. and .900 O.D. multi-terminal headers and a large variety of individual terminals are available in VAC-TITE Compression Seals.

Write to Hermetic for assistance and samples to meet your problems,

\section*{Hermetic Seal Products Co.}

\author{
31. South Sixth St., Newark 7, New Jersey
}


\section*{Allen B. Du Mont}

\section*{Laboratories, Inc.,}
cordially invites you to examine the superb operating characteristics, high precision, and unique convenience of the new Du M ont Type 329 Cathode-ray \(\mathrm{O}_{\text {seillograph }}\) at your own laboratory under your own conditions. R.S.V.P.*

Do you telieve jour own eyes? Accept our invitation to see the new Type 329, right ir your own lab.
Operéte it yours f. See how easily you can stabilize a hard-to-sync signal on the screen for measurement. Give it a "tough" signal like a short pulse of low repetitionrate or a long, slowly.rising wavefront and watch the Type 329 perform. Compare the Type 329 with any cathode-ray oscillograph in your lab, with any signal you have to offer.
When yt ave pat the Type 329 through its paces on your own terms, you'll undoubtedly agree witt us that this is the best general -purpose cathode-ray oscillograph available e.
Some specific seasors why...
- Ire Du Mont Type 5ATP. Cathode-ray Tube used is the most precise, distortionfrom cath)de-ray tube ever used.
- -ligh-Izvel, linear sweeps permit accurate front-panel-reading time calibration.
- Revolutionary new Notch expansion permits a ten times, calibrated expansion of any \(5 \%\) of the sweep, leaving the remaining signal unexpanded.
- The linear wideband amplifier extends with full response to d.c. and 3db down at 10 mc , a response commensurate with a seven-decade sweep rate of 1 second to 0.1 usec/major division.
- Accurate, direct, amplitude calibration makes the Type 329 a precise cathode. ray voltmeter, with eleven full-scale ranges of 0.2 to 400 volts.
- Use of printed wiring throughout assures product uniformity, ease of access, and neat appearance.
*For your demonstration or for more complete information on the Type 329 send postcard to Technical Sales Department, 760-9 Bloomfield Ave., Clifton, New Jersey. Or, better still, phone MUlberry 4.7400, Clifton, N. J., for a prompt demonstration.

See the Du Mont exhibit at Booth 536-537 of the WESCON Show.

\section*{VIDEO}

\section*{TRANSMISSION TEST EQUIPMENT}

New Telechrome equipment designed to provide test signals for precise checking of video facilities.
This equipment is now in use by major networks, TV stations, and the Bell Telephone System. This type of equipment was recently described by H. Gronberg of NBC before the NARTB Engineering Conference in Chicago. These units are available individually or as an integrated system with 75 ohm or 110 ohm balanced output.

oscilloscope camera MODEL 1521-A (Polaroid Land Type)
for inslantaneous 1.to.1 ratio photo-recording of these of other pest signals.

MODEL GOB-A HI.LO CROSS FILTER
HODEL 524-D OSCILLOSCOPE

iferature on these and more than 100 addiional instruments for color TV by TELE. CHROME are available on request.
The Nation's Leading Supplier of Color TV Equipment 88 Merrick Road Amityville, N. Y. AMityville 9.8446


Distributor plate, molded of Monsanto's new Resinjx 3700 thermosetting material by Specialty Insulation Manufacruring Company, Hoosick Falls, N. Y. for American Bosch Corporation, Springfield 7, Massachusetts.

\section*{See how new Resinox 3700}

\section*{improves electrical parts two ways}

Resinox 3700 is a special thermosetting arc-resistant material developed by Monsanto research for low-cost superior performance in magneto ignitions, motor control and power transmission circuits, and other electrical applications. This new mineral-filled molding powder stands out from other materials because:
. It delivers high arc-resistance with outstanding dimensional stability . . eliminates undesirable after-shrinkage.

2 It imparts relatively good impact strength . . . and has excellent moldability (very good transfer molding properties).

Another advantage of Resinox 3700 is its good heat resistance. You'll find Resinox 3700, in short, an all-around better material for electrical parts. Why not write today for full information as related to your own product.
The coupon is for your convenience. Resinox: Reg. U. s. Pat.oft.

monsanto chemical company, Plastics Division, Room 2504
Springfield 2, Mass.
Please send me full information on Monsanto's new Resinox 3700 arc-resistant material.

Name \& Tille
Company
Address
City, Zone, Siate

\title{
makes PERFECT PREFORMS from MOLDED POWDERS
}

\section*{custom-made to exact specifications}

INVESTIGATE MANSOL'S TECHNICAL KNOW-HOW TODAY AT NO COST OR OBLIGATION
Mansol's engineers are at your service, ready to discuss your powder molding problems, whether they be seals, spacers, or lead through bushings.
If you are still making your own preforms, Mansol would like to show you how to save money and eliminate rejects.

Research, Engineering and Manufacturing skills guarantee the highest standards of: QUALITY - UNIFORMITY -
CLOSE TOLERANCES.
- Write io Dept. N. for your free brochure containing the

FAST DELIVERY complete story about preforms and our facilities ready to serve you. No obligation, of course.


CABLE ADDRESS MANSOL

STEATITE PREFORMS - We specialize in small die-pressed ceramic parts held to closest tolerances. All tools and dies are made in our own shop to assure qujck delivery. For immediate attention to your order, contact Mansol today.

GLASS PREFORMS - The ideal preforms for Ifon Sealing, and Kovar Sealing, matching the expansion of these metats over their entire working pange. They resist mercury attack, heve ample mechanical strength, and seal readily. Our taboratory is prepared to assist you in selecting the proper glass for any metal.


FORMULA 800 PREFORMS -An Epozy
Resin in preforms to improve production efficien. cy. Possesses extremely high bonding strength, with no shrinkage, on metal's to metals and metals to non-metals. This is a new chemical resistant material of construction that warrants consideration when the properties of standcrd resin cements and coats are not adequate for the service desired.



\section*{...DEPENDABLE...LOW COST BORO-CARBON FILM RESISTORS}

\section*{iN \(1 / 2,1\), AND 2 WATT RATINGS}

Now for the first time you can obtain a superior yet relatively low cost film-type resistor for military electronic gear-resistors that not only meet the severe performance requirements of Military Specification MIL-R-10509A, but are capable of full wattage dissipation at \(70^{\circ} \mathrm{C}\) ambient!

Sprague Type 4E, 5E, and 6E Filmite B resistors are housed in a dense molded jacket which not only provides unexcelled physical protection for the film resistance element but serves as a barrier to moisture and vapor, the tw in enemies of all film-type resistors.

Boro-carbon films are unusually sensitive to moisture. Protection against moisture in any form is a primary requirement for successful long term stability of resistance. The low-loss phenolic housings on molded Filmite resistors not only shed water but are vapor resistant and inert to the film material. There
is minimum possibility of field failure through electrolytic action and penetration of moisture or vapor through the dense molded jacket.

Other features of molded Filmite B resistors are special low-contact-resistance, low noise end terminations held rigidly in place on special ceramic cores, extremely low temperature and voltage coefficients of resistance, and excellent load-life and high frequency characteristics.
For complete engineering data, write for Engineering Bulletin No. 130 to:

SPRAGUE ELECTRIC COMPANY, 35 Marshall Street, North Adams, Mass.

\begin{tabular}{|c|c|c|c|c|}
\hline SPRAGUE TYPE NO & WATTAG三 RATING & DIMENSIONS (INCHES) L D & RESISTANCE (OHMS) Min. Mar & VOLTAGE (May.) \\
\hline \(4 E\) & \(1 / 2\) & \(3 / 41 / 4\) & 100 1 Neg. & 350 \\
\hline \(5 E\) & 1 & 116 3/8 & 100 2Meg. & 500 \\
\hline 65 & 2 & \(2 K_{6} 3 / 8\) & 20010 Meg . & 7.50 \\
\hline
\end{tabular}

Standard Resistance Tolerances: 1, 2, and 5\%

\section*{HAVE YOU A DISASTER PLAN FOR YOUR PLANT?}

\section*{BOMBS...OR FIRE...OR FLOOD...OR TORNADO}

\section*{. . . you can handle them if you act now.}

Let's face it . . . the threat of war and the atomic bomb has become a real part of our life-and will be with us for years. Fires, tornadoes and other disasters, too, can strike without warning.

Whatever the emergency is, everybody's going to want help at the same time. It may be hours before outside help reaches you. The best chance of survival for you and your workers - and the fastest way to get back into production-is to know what to do and be ready to do it. Disaster may happen TOMORROW. Take these simple precautions TODAY:
\(\square\) Call your local Civil Defense Director. He'll help you set up a plan for your offices and plant-a plan that's safer, because it's integrated with community Civil Defense action.
Check contents and locations of first-aid kits. Be sure they're adequate and up to date. Here, again, your

CD Director can help. He'll advise you on supplies needed for injuries due to blast, radiation, etc.

Encourage personnel to attend Red Cross First-Aid Training Courses. They may save your life.Encourage your staff and your community to have their homes prepared. Run ads in your plant paper, in local newspapers, over TV and radio, on bulletin boards. Your CD Director can show you ads and official CD films or literature that you can sponsor locally. Set the standard of preparedness in your plant city. There's no better way of building prestige and good community relations-and no greater way of helping America.
Act now . . . check off these four simple points . . . before it's too late.


Tuning Fork Resonators, the ultimate in precision audio frequency control...

... phone or write
for complete information regarding component type Tuning Fork Resonators, or variously packaged Tuning Fork Frequency Standards.

Philamon Laboratories Inc. 5717 third avenue, brooklyn 29, new york HYacinth 2-4800

this fellow is trained in your business, His main duty is to travel the country - and world - penetrating the plants, laboratories and management councils . . . reporting back to you every significant innovation in technology, selling tac. tics, management strategy. He functions as your all-seeing, all-hearing, all-reporting business communications system.

THE MAN WE MEAN IS A COMPOSITE of the edi. torial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many quali. fied men of diversified and specialized talents.

AND, THERE'S ANOTHER SIDE TO THIS "COMPOSITB MAN," another complete news service which complements the editorial section of this magazine the advertising pages. It's been said that in a business publication the editorial pages tell "how they do it"-"they" being all the industry's front line of innovators and improvers - and the advertising pages tell "with what." Each issue unfolds an industrial exposition before you-giving a ready panorama of up-to-date tools, materials, equipment.
such a "man" is on your payroll. Be sure to "listen" regularly and carefully to the practical business information he gathers.


You see here the next great area in the rocketing progress of flight . . . a study in deep blue of threelourths of our world.

To those behind the scenes, the picture says this:
Today at Martin, one of the most important developments in the world of aviation is under way-and under wraps. When the champagne is swung, it may well launch a new era. For the next Martin flying boat will be a giant step forward of unprecedented dimensions, both in its importance to naval airpower
and in its implications to commercial aviation.
The rivers, lakes and seas of the world offer limitless landing and take-off areas to most cities, at no cost. And tomorrow's flying boat, free of the tonsheavy weight of landing gear, is the most logical aircraft for atomic power
As top authorities on hydrodynamics, the technologies of water-based aircraft development, and the waters of the world, Martin's role in the coming new air era is inevitable.

You will hear more aboul Martin!

\section*{A FEW OF MANY EDO SONAR EQUIPMENTS FOR COMMERCIAL AND NAVAL USE}

\section*{EDO}

\section*{finest name in SONAR}

Ingenuity of design, proven performance and superior range with accuracy are the main reasons why EDO is now regarded and recognized as the outstanding leader in the development of echo-ranging equipment.

From deep depth sounders for navigation, survey, and ocean bottom exploration to a wide variety of under water detection systems, Edo equipment has made its mark and proven its superiority.

That's why when you see the Edo flying fish emblem on a sonar equipment you can confidently recognize it as a product of brilliant engineering and masterful workmanshipreliable beyond question.

> Just off the press! "The Story of Edo"-24 page book describing Edo's diversified facilities and the company's 29 -year old history. Send for your copy today.


EDO SCANNING SONAR a typical example of a complex naval sonar system, developed and built for the U. S. Navy by Edo.


O TO 6000 FATHOM DEEP DEPTH SOUNDER in wide use with U. S. Navy (AN/UQN-Ib) now available commercially (Model 185). Gives clear indication of depth on cathode-ray tube in two scales: \(0-100\) feet; \(0-100\) fathoms. Records continuously in three scales: \(0-600\) feet; \(0-600\) fathoms; \(0-6000\) fathoms. The finest deep depth sounder available. For complete details send for Model 185 brochure.


EDO fISHSCOPE. Most advanced fish finding device available today. Spots fish on cathode-ray tube in \(0-250\) fathom range, then magnifies any 10 -fathom sector 25 times for clearer view. Commercial fishing boats equipped with the Fishscope report better than average hauls in far less time thanks to this Edo development. For full details send for Fishscope brochure.



\section*{HOW TO WIN THE SERIES}

You can't play baseball with recurding dises . . . not, do bass balls provide ar adequate surface for resoding.
On the other band, a cheaf, poorly balenced baseball is use.ess in a professinal game. And, a second rate, unevenly ccated recording disctanspill doon for any professional recording jos.

In recording, the risk is removed when you choose prestr. For here is a disc made with the same care and perfection that go inlo the world's finest recording equipment. Produced in the world's most modern disc manufacturing plant, presto Green, White, Orange and Brown label discs are oulstanding in quality, unbeatable in performance.

Whether you're recording one program, or an entire series, you're always on the winning side with PResto discs.



\section*{Save money on high permeability needs with ARMCO TRAN-COR A-6}

Are you paying for low core loss to gain high permeability? Then investigate Armco Tran-Cor A-6, which is made for high permeability at low and moderate inductions. It is tested to meet permeability requirements at 100 gausses, rather than for core loss at high inductions. Yet it has core losses at high inductions similar to the best grades of hot-reduced high-silicon steels.

\section*{Replaces More Expensive Material}

Tran-Cor A-6 has high permeability in all directions. This is an advantage in certain applications like servo-mechanisms, where high permeability is required without strongly directional properties. In designing instrument transformers, phase angle and ratio errors can be kept low without using considerably higher priced magnetic material.

Punching quality and ductility are excellent. Armco Tran-Cor A- 6 is made in 29 and 26 gages in welded coils or cut lengths, in full or slit widths.

Here are typical magnetic properties of Armco Tran-Cor A-6:
\begin{tabular}{|c|c|c|}
\hline INDUCTION (gaiusses) & \begin{tabular}{l}
PERMEABILITY \\
(gousses/oersteds)
\end{tabular} & \begin{tabular}{l}
CORE LOSS \\
fin wotls per lb, for \(0.0185^{\prime \prime}\) thickness of 60 (ps)
\end{tabular} \\
\hline 20 & 1,300 & \\
\hline 50 & 1,800 & 0.000014 \\
\hline 100 & 2,300 & 0.000064 \\
\hline 150 & 2,500 & 0.00016 \\
\hline 1,000 & 6,000 & 0.0086 \\
\hline 2,000 & 9,000 & 0.032 \\
\hline 4,000 & 12,000 & 0.118 \\
\hline 6,000 & 13,000 & Similar to the better \\
\hline 10,000 & 9,000 & grades of hot-rolled, \\
\hline 12,000 & 4,400 & high silicon steels \\
\hline 14,000 & 630 & \\
\hline
\end{tabular}

For further information, write for our catalog, "Armco Hot-Rolled Electrical Steels." Included are such data as incremental permeability, reactive volt-amperes, and core loss at frequencies from 50 to \(10,000 \mathrm{cps}\). If you will tell us your requirements we will quote you promptly.


\section*{at Last a Truly flexible alr dielectire cable ANDREW HELIAX}


\section*{an important "for the first time" story...}

There has long been cable easy to install.
There has long been highly efficient cable.
HELIAX is the first cable to deliver both characteristics. It is as flexible in application as solid dielectric cable, but has the same efficiency as copper air dielectric. HELIAX is superior in design, in efficiency and in electrical performance at microwave anc all lower frequencies, yet it is comparable in cost to lower frequency cables.

HELIAX will be on display in Booth 532 at the Wescon Show.

Ease of installation (HELIAX can be pulled through condult and bent repeatedly without changing its characteristics) means substantial savings in installation costs.
HELIAX is crush proof, may be removed from one installation, colled and reinstalled. Now available in \(7 / 8^{\prime \prime}\) size in continuous lengths. Soon available in larger sizes. Send the coupon for detailed specifications.

ANDREW CORPORATION - 363 EAST 75th ST. - CHICAGO 19, ILLINOES Gentlemen:

Please send butletin 70-A, giving technical details and specifications on you \(7 / 8^{\circ}\) diameter flexible HELIAX cable (Type HX-0).
NAME
POSITION
COMPANY
ADDRESS
 carefully selected for balanced clectrical characteristics if your power supply is to give top performance in service.

You can avoid vibrator power supply trouble by calling on the specialized knowledge and experience of Mallory engineers. Let themi translate the power requirements of your equipment into a smooth operating, trouble-free design. You will save time and money and get the hind of performance you want.
Why call on Mallory? There are a lot of reasons . . . good ones. Our experience in this field is backed by an unmatehed fund of engineering hnowledge that started over 20 years ago when we produced the first commercial Vibrator. Our experience includes supplying more Vibrators for original equipment than all other makes combined.
That's not all. If you wish, we are equipped to design and manufacture complete power supply units... to your exact requirements... to rueet your production schedules.
To save engineering time and reduce production costs, write us today. It is the hest way to stop trombles before they start.

\section*{Expect more . . Get more from MALLORY}

Parts Distributors in all major cities stock Mallory standard components for your convenience.


\section*{CROSS}

TALK
- ECONOMIC SIGNPOSTS . . .

A top-flight executive with unique access to men considered expert in a wide variety of fields was recently asked to name factors most likely to exert major influence upon future American business. He listed them in the following order:

For the shoct term-military equipment needs, automobile sales and demand for sapital goods. For the long term-household durables, entertainment and construction.

If this is so the electronic industry is in a very healthy economic position indeed; almost all modern military equiprent involves electronics, and both radio and television sets are nousehold durables that provide entertainment.

We know of no other industry that dovetails into the future quite so promisingly as our does.

\section*{- DISTRIBUTION IDECISION . . .}

In Atlantic City last month we discussed the rapid rise of the socalled discount house with many distributors anc several manufacturers of radio and television receivers. It may be that this part of our industry is on the verge of an important decision concerning household appliance distribution; whether it be a short-term or longterm decision remains to be seen.

It seems that price is king on the retail front. Manufacturers are doing most of the market promo-
tion, with distributors essentially providing just warehousing and financing and dealers giving away their margins. Under these circumstances it has occurred to many sales managers that they might save money by doing their own warehousing and financing and further cut retail discounts.

Several unanswered questions serve as a deterrent. Among them are these: Can the manufacturer alone keep the marketplace pump primed? Would as much merchandise be sold by fewer retailers, even though they were larger? And what about service at the consumer level?

\section*{- POWER TRANSISTORS}

Addressing machine-tool builders, R. L. Bright of Westinghouse has pointed out two inherent differences between the conventional electron tube and the transistor that are not widely appreciated. The tube uses practically no power from the signal source to control, while the transistor requires a small but still appreciable amount of power. On the other hand, the tube is a device having relatively high internal resistance while the transistor's is inherently low.

The Doctor thinks the first-mentioned difference largely explains why the transistor has not yet successfully competed with the tube in many applications, and feels that
his second point may mean that transistors will play a particularly important part in the power field because of their high overall efficiency.
- RELIABILITY . . . We have it on good authority that 40 fire-control devices employing transistors have been tested for an average of 4,000 hours apiece, and that only two equipment failures occurred. One was caused by a defective battery. The other was caused by a poor connection to a transistor!

BROADCAST MARKET . . . Despite the phenomenal growth of television, radio continues to be good business-for the broadcaster and for his equipment supplier.

This year, new a-m stations are neck-and-neck numerically with tv starters. There is a growing market for transmitters and studio equipment to replace gear often as much as 20 years old. Prospects are particularly good for manufacturers of remote-control equipment.

Just over the horizon we think we see possibilities of automatic studio control, possibly achieved by recording inaudible control tones along with program material on 8-hour tape.
- UHF . . . A Washington wag recently spelled out the abbreviation uhf as "ulcer" high frequency.


Making large schematle entirely Irom wax-backed Artype pitated acetate symbols at Barnard Studios, Indianapolls. Draftsman cuts de sired symbols or lengths of circuit lines trom stock sheets and presses them onto drawing paper with frisket knife. Printed blue crosshatching on paper sliminates need for T-square and triangles. Cl:cuit nearing completion here, of new high-fidelity preamplifier and equalizer, is being m.sde to: Regeacr Division of I.D.E.A.


Using rubber stanips to speed production of schematics for military and commercial instruction manuals in drafting department of Mc-Graw-Hill Technical Wziting Servicen Fountain-type ruling pen is then used conventionally to connect symbols together


\title{
New Electronic Drafting
}

\section*{Tools and Techniques}

Neater, clearer schematics and wiring layout diagrams are obtained in less time through use of such shortcuts as preprinted acetate symbols, adhesive-backed paper for lettering, rubber or plastic symbol stamps, photographic templates and plastic stencils

Although electronic equipment is getting smaller, the size, complexity and number of schematic and wiring diagrams required is increasing. As just one example, the blueprints for a complex transistorized subminiature unit actually weighed more than the finished product. This increase in demand for diagrams often produces an added burden ard strain on already overloaded electronic drafting departments.

The principal increased demand for drafting time occurs in making the initial and other trial layouts that are essential for a readable and intelligible final schematic. With the increasing complexity of equipment, a good schematic layout is of vital imporfance to the manufacturer in the design, manufacture and servicing of his equipment. In addition, the modern electronic equipment sold to the Government requires instruction books and circuit drawings drawn to exacting specifications. These

By James r. McDERMOTT
McGraw-Hill Technical Writing Service
New York, N. Y.
specifications usually require the clearest, most understandable type of layout, which by the very requirements demands an additional amount of time, over and above that devoted to drawings used by factory personnel.

In laying out a schematic conventionally, the designer or draftsman first sketches a tentative arrangement of the tubes, transformers and other major components. The interconnecting lines and symbols for small components are drawn to complete the diagram.

The layout is then analyzed. If it is found to be satisfactory, all is well. If the layout is partially or completely unsatisfactory, it is necessary to erase a good part of the drawing, or even to make an entirely new one. This process is repeated until the desired clear logical layout is obtained. Rearrang-
ing and redrawing in pencil at least once is generally unavoidable for complex new circuitry.

The problem of expediting the layout of schematic drawings has been attacked by a number of concerns. All take advantage of the fact that electronic diagrams contain a multitude of repeated standard schematic symbols. The various new tools and techniques being used as shortcuts for this part of electronic drafting will be taken up one by one. First, however, a unique method of producing either preliminary or final schematics without ink will be described. This is particularly advantageous in preparing reproduction copy for technical instruction manuals.

\section*{Printed Acetate Symbols}

Complete elimination of inked lines and lettering, constituting a close approach to automation in electronic drafting, is being achieved in a number of plants through the use of symbols, letter-


Separating wiring line from backing sheet after cutting out line with frisket knife


Applying circuit line to control grid of tube. Surplus length of line will be cut off
ing and rules printed on transparent wax-backed acetate film. Sheets containing various assortments of standard symbols can now be obtained, and sheets of special symbols can readily be made to order.

With symbols printed on acetate, the only tool needed is a sharp scalpel or frisket knife. With this, the draftsman cuts around the desired symbol on the stock sheet with a few quick strokes, slips the knife under to pull the symbol up from the protective heavy backing paper then places the symbol on the drawing and applies pressure with a quick stroke of the flat of the knife to lock the symbol in position. The drawing paper used has printed light blue lines \(\frac{8}{8}\) inch apart horizontally and vertically to serve as guides for positioning symbols. This completely eliminates the need for T -square and triangles.

Circuit lines are printed on acetate sheets as ruled lines and are cut out the same as symbols. Generally the draftsman cuts out a line long enough for several connections, applies one end to a previously applied symbol, runs the line as far as he needs and makes a quick cross cut there. The remaining acetate piece is then picked up and used similarly for the next comection. With just a bit of practice, a man can place connecting lines on a schematic even faster this way than with a ruling pen. There is no waiting for ink to dry, no refilling of the pen and no erasing of mistakes. If an error is made, the line is lifted by slipping the knife under, then moved and pressed down again in the correct position. Most circuit lines are, for convenience, placed directly on the guide lines.
Where lettering for schematics is
standardized, much of it can be printed up beforehand on acetate sheets. Standard sheets are already available having parts numbers from \(\mathrm{R}-1\) through \(\mathrm{R}-200, \mathrm{C}-1\) through C-175 and many other combinations of numerals with or without letters.

Values of parts must be lettered conventionally, because of the great variety of values employed. Printed rules, arrow lines and arrow heads can be applied directly to glossy photos along with printed lettering to speed preparation of callouts and other identification on photos for instruction manuals.

When lettering varies so much that any preprinted notations would be more of a nuisance than an aid, another lettering technique is available for speeding up application of lettering while still keeping ink off the master drawing. This involves placing all the lettering on a


\footnotetext{
Examples of two stock sheets of Artype, now available from The Barnard Studios, Indianapolis. Symbols are repeated in varying numbers according to needs: entire sheets are devoted to most popular symbols, such as resistors, induciors, ground symbols, capacitors, circuit lines, crossover loops and tubes. Symbols are printed on clear acetate that peels easily from the heavy backing sheet
}
 (Kleen-Stick Products, Inc., Chicaqo), then cut apart as shown


Method of placing lettering on drawing and separating notes. Changes in positions of notes are easily made
drawing paper having a pressuresensitive adhesive backing. using mechanized or fieehand lettering as preferred. The designations are then cut out from the sheet with the frisket knife and applied to the drawing in muci the same way as were the symbols. Lettering the notes consecutively on one sheet makes for greater lettering speed, Notes that don't fit in the available space in one line can readily be cut into two or more lines without relettering. Any errors in placement of notes are easily corrected by picking off the note and putting it down in the new: location.

Comparative tests have indicated that drafting time for schematics can be cat approximately in half by using printec symbols. This can be bettered if it is feasible to print all lettering beforehand except parts values. With receiver schematics. for example, one firm using printed
symbols can turn out in 3 hours a diagram that takes 8 hours conventionally.

Some symbols are not needed often enough to warrant preparation of a printing plate. Here it is possible to cut out parts of existing printed symbols and recombine them. Special rotary switches can thus be formed from open dots, lines, arrows and ares of circles on acetate stock sheets.

\section*{Rubber and Plastic Stamps}

One popular solution to the preliminary schematic layout problem involves the use of individual rubber or plastic stamps for schematic symbols. The rubber stamps can be made up conventionally by any supplier of rubber stamps in the various sizes required if an inked sample of a desired symbol is furnished. To help the draftsman align the stamp properly when
stamping a symbol on the layout paper or cloth, guide marks are placed on two or more sides of the wood block at points where the symbol has its circuit corrections. A special opaque black stamp pad ink is used with a conventional stamp pad to secure impressions comparable to inked lines.

At least two firms are now making available to the electronic industry special stamps made from vinyl plastic mounted on clear acrylic plastic, rather than rubber mounted on wood. With these plastic stamps the draftsman can see exactly where he is placing a symbol on the diagram and thereby secure much more precise register of symbol imprints with lines already drawn or stamped on a diagram. These reguire special pads and printer's ink for best results, since plastic characters are harder.

Plastic stamps can be obtained


Using transparent plastic symbol stamps made by John Griffin Co., St. Paul, Minn, in drafting department of Northwest Airlines. Plastic box at right holds set of 27 standard ASA elecironic symbols and two facing ink pads


Transparency of plastic stamp permits precise alignment of new symbol with those a'ready printed on diagram


Representative transparent circuit stamps made by Precise Measurements Co., Brooklyn. N. Y. Built-in cross hairs at different level from printing surface aid in placement of stamp, particularly when symbol is small like those at right


Arranging magnet-bearing templates on photosensiiive paper taped to metal drawing board. Slowness of photcsensitive coating permits use under normal drafting room lighting conditions yet gives desired exposure under intense lights of blueprinting machine in plant of Reliance Electric and Engineering Co., Cleveland. where process was developed


Template arrangement on board is exposed in light box behind draftsman. This Ree-Copy template drafting process has increased efficiency of draftsmen by 30 percent, with similar saving in time
individually in stock patterns and sizes, as well as in complete assortments of electronic symbols. In addition, special designs can be made to order from drawings for complete frequently-repeated stages or amplifiers as well as individual symbols. Still another timesaver in
plastic stamps is one incorporating lettering frequently used on diagrams; as an example, a plastic stamp costing around five dollars can be made up that will in three seconds place on a drawing all of the following lettering, in exactly the same size and style of Leroy or

other lettering used elsewhere on the drawing:
1. RESISTORS \(\frac{1}{2}\) WATT UNLESS OTHERWISE SPECIFIED.
2. RESISTANCE IN OHMS UNLESS OTHERWISE SPECIFIED.
3. CAPACITANCE VALUES ONE AND OVER IN MICROMICROFARADS, LESS THAN ONE IN MICROFARADS, UNLESS OTHERWISE SPECIFIED.

\section*{Opaque-Line Symbols}

A mechanized approach to electronic drafting makes use of a photographic process for preliminary schematics and wiring layouts. The various symbols required are made up as opaque lines on transparent templates. A small round permanent magnet is attached to


Representative examples of electronic symbol stencils. Punched-hole lcyout stencil ai lower left is supplied by Cannon Electric Co. to users of its AN connectors. All others are made by RapiDesign, Glendale, California, as custom or stock designs. Unit at left center is used by Lockheed for electronic drafting, and 30.60 triangle is a Bendix design for its Scinflex electrical connectors. Parts-mounting stencils like that at upper right are made up in punch press department of the Berkeley Divislon of Eeckman Instruments Inc. Icr use by its drafting department
each template in an open area not interfering with the symbol. The drawing board contains a magnetic metal face to which the templates will cling.

In operation, a photosensitive sheet of bluep-int paper is placed on top of the board and fastened securely in place with masking tape to avoid wrinkles. The photosensitive material can be any ordinary blueprint or whiteprint paper which requires no special handling under normal drafting room lighting conditions. On tor of this, if desired, is placed a thin transparent master sheet which bears standard notations such as borders, titles and boundary marks.

The draftsman then sets the tem-
plates in place, moving them around until he gets the best initial arrangement. The permanent magnets hold the templates in position on the board while it is carried over to a blueprint machine and exposed.

The templates and border sheet are then removed and the photosensitive material is developed conventionally. The resultant print is a rough layout on which the draftsman can draw in the circuit lines connecting the individual terminals of the components or parts represented by the photographically printed symbols. In this fashion the draftsman can quickly determine whether or not the initial layout is satisfactory. If a change is necessary, he easily and quickly repeats
the procedure with a different arrangement of templates on a fresh sheet of blueprint paper.

\section*{Symbol Templates}

Another type of drafting aid, used in increasing qualities by manufacturers both for their own drafting departments and as giveaways to customers, is the plastic template. These have been available for some time with various combinations of symbols.

A variation of this technique, used for parts layout diagrams, involves punching in a sheet of heavy clear plastic each of the hole sizes and arrangements used in chassis production. The sheet is placed on each punch press in turn.


FIG. 2-Waveforms of warm-up transients in series string having tubes arranged on basis of operating voltage

\section*{Series Heater Strings}

USE OF SERIES heater strings in television receivers has potential advantages in cost, size and weight reduction.

Many manufacturers have attempted to use such strings in commercial receiver designs. In many cases the results have been far from satisfactory due to an excessive number of heater failures.

\section*{Causes}

One of the outstanding causes of heater failure in series circuits has been attributed to high power surges during warm-up. These surges arise due to inequalities in the rate of heater resistance change immediately following power application.

To examine the initial heater transients that occur in the first few seconds of warm-up the circuit of Fig. 1 was constructed. The oscilloscope sweep is adjusted to approximately \(1 / 15\) of a cycle or 15 seconds per sweep.

The relay contact oscillates from voltage to current at a rate of 0.4 seconds per cycle thus providing a record of both voltage and current surges as well as a calibrated time base.

If all tubes warmed up at the same rate, and if the initial resistances were in the same ratio as the final, the resistance distribution in the string would be the same at all times and no voltage surges could exist. It would seem logical to use tubes of similar characteristics throughout each section of the string. The series string of Fig. 2 was set up with the 12 and 25 -volt tubes grouped on one side, and the lower-voltage tubes on the other side in anticipation of similar heating characteristics. The tubes were chosen from a variety of manufacturers.


FIG. 1-Circuit used to obtain oscillograms of voltage-current surges during heater warm-up

A study of the voltage-current oscillograms shows that serious surges exist. The 6AL5 tubes take an excessive surge of 9 volts during the first few seconds while the 6CB6 tubes are warming up very slowly. On the other side of the string the 12 SN 7 GT tubes are surged to about 18 volts while the 25 BQ 6 GT is underheated. The 6 S 4 and the 12 AX 4 GT tube take surges of 9 volts and 14.5 volts respectively.

The tubes were then regrouped as in Fig. 3. The slow-heating 6CB6 tubes were combined with the slow-heating 25 BQ 6 GT tube, and the fast-heating \(12 S N 7 G T\) tubes were combined with the fastheating 6AL5 tubes.

Some improvement results. The 6 AL5 surge has been reduced to 7.8 volts and the 12SN7GT surge has been eliminated. At the same time the 6 CB 6 and 25 BQ 6 GT tubes are heating at a much faster rate. However, the 6S4 surge has been raised to 9.5 volts and the 12 AX 4 GT surge to 15.1 volts.

Figure 4 is identical to Fig. 3 except that the original 6AL5 tubes have been replaced. The 6AL5 s'rges ( 7.8 volts in Fig. 3) have


FIG. 3-Transient sarges with tubes regrouped with respect to heater warm-up time

\section*{for TV Receivers}

Current and voltage surges during heater warm-up are minimized by evaluation of tubes and placement in string on basis of warm-up time. Tube sample testing provides reliable method of equalizing surges in original equipment


FIG. 4-Replacement of original 6ALS tubes in circuit of Fig. 3 increased surge voltages on 6S4 and 12AX4GI


FIG. 5-Variation of heating times with method of heater construction
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \\
\hline
\end{tabular}

FIG. 6-Thermal-characteristic test circuit. Values of \(R\) and input voltage are given for various tube operating voltages and currents
been eliminated. The 6S4 surge has increased from 9.5 volts to 10.2 volts and the 12AX4GT surge has increased from 15.1 volts to 16.1 volts. This indicates that tube replacement can radically change voltage distribution during warmup.

Evaluation of large groups of 6 AL5 tubes revealed that in most cases all tubes of a given manufacturer behaved in like manner. Examination of the tubes revealed many variations of heater construction. Various 6AL5 heaters
are shown in Fig. 5 together with data on maximum and minimum heating times.

A controlled test current can be used to measure the rate of thermal rise from room temperature. The circuit of Fig. 6 was devised for measuring thermal characteristics. The value of \(R\) is chosen to be three times the hot heater resistance and the input voltage is four times the heater rating. These values were found to give consistent results in all tests. Smaller values of \(R\) result in a more nearly correct duplication of string operation but require a far more accurate timing method. Larger values of \(R\) tend to eliminate the tube variations. Supply voltage and resistance are varied to provide correlation between tubes having different rated heater voltages and currents.

A large sampling of tubes was tested using this method. In almost all cases all tubes of one supplier, assuming no construction changes, fell within a very narrow range of timing. It was found that an internal construction change by a manufacturer from parallel to series connection does not necessarily change the timing, while a change of coating thickness without a change in construction has a major effect on timing. This shows that the manufacturer can exercise some control over the warm-up characteristic.

\section*{Selection by Time Groups}

The data indicates that it is almost impossible to construct a string in which all tubes have similar time ratings. However, since the steady-state voltages require two 300 -ma legs, it seems entirely possible to use two timerating groups. Two basic times of 14 and 17 seconds were chosen for this particular application. A string was set up around these nominal figures as shown in Fig. 7. The tube locations were chosen to make maximum usage of available tubes.
There are no surges on any tube in the string. Major surges have been eliminated as well as the minor inequalities.

A number of tubes with various time ratings were entered into the string one at a time and the actual voltage surges noted. There were
essentially no surges for tubes rated between 12 and 16 seconds in the 14 -second leg and between 14 and 21 seconds in the 17 -second leg. The three tubes fed from both legs are not as clearly determined but experience has indicated that times between 14 and 18 seconds are safe.

Acceptance of these time limits does not assure safe operation in the event of field replacement. This is partially provided for since tubes are usually designed to withstand intermittent life-test surge conditions slightly in excess of normal voltages. Typical intermittent lifetest voltages are 8.0 volts for types 6AL5, 6CB6, 6AU6, 12AX7, 16 volts for 12 SN7GT, 12 AX 4 GT and 29 volts for types 25BQ6GT and 25L6GT.

A range of heater times can be found which will result in operation with surges not exceeding these voltages. The limits of this range are approximately 9 to 12 seconds for the 14 -second leg and 10 to 14 seconds for the 17 -second leg. This should be a fairly safe condition. Tubes which average within these time groups have been designated acceptable and should be used only where good rating tubes are not available. Tubes that have time ratings faster than allowed by the acceptable categories will have surges in excess of the intermittent life-test figures.
There is also a top limit time on both the good and acceptable categories. A tube having too slow a heating time will not have any heater surges and is not in danger. However, any voltage drop which does not occur across the slow tube must be distributed somewhere else in the string tending to raise the surge on the fastest tube in the string. For this reason an upper acceptable category has been set up with the same limits as the lower section.

The correlation between time and voltage that has been determined is not exact. Some variation about the stated values can be expected. This can be explained by the difference in starting voltage or cold resistance of the tube under test, and the variations in the shape of the test-circuit transient.

A tube with a fast initial slope


FIG. 7-Voltage and current transients for circuit using tubes selected on basis of two heating-time groups
and decreasing slope as it nears 5 volts in the test circuit will have a higher surge than a tube that has a slow initial slope with increasing slope near 5 volts, even if the time rating is identical. However, the many tubes tested all indicate somewhat similar curves and the basic approximatior is sufficiently accurate.

\section*{Heater Power Surges}

All of the preceding work has been predicated upon voltage surges. Some question exists that the important factor is heater power rather than heater voltage. Figure 8 demonstrates the direct relation of power and voltage surges. Power input versus time has been plotted for two 6AL5 tubes, one with a fast time rating and one with a nominal time rating excited from a normal low-impedance heater transformer.

The power curve is also shown for the same two tubes in the series string. The fast tube exhibits a much longer surge above the nominal power line when used in the string as compared to transformer operation. The nominal tube shows almost no power surge in string operazion and the input is at all times selow the power input for transformer operation. If the tube has adequate heater life under transformer operation it will cer-
tainly be satisfactory in series string operation.

Fixed resistances in both legs introduce a certain amount of surge reduction that is important in the final results. There is a consistent relation between time rating and the voltage surge that can be expected in a given series string. Use of smaller fixed resistors will result in narrower ranges of good and acceptable ratings.

At the same time, the longer the basic time group around which the string is determined, the less critical the time variations become. An extension of the time technique to other strings for either television or radio requires only a reevaluation of the correlation factors between time and voltage surge. If the tube types required are different, it is necessary to measure the thermal rise in the test circuit and then choose a


FIG. 8-Power transients for fast and nominal heating-time tubes
nominal time value that allows the use of as many tubes as possible.

The method of tube evaluation described has been applied to heater arrangements other than the examples used here. The results have justified the technique, particularly in strings with smaller fixed resistors where the surge conditions are more severe. The receiver manufacturer can readily determine a set of tubes that will give adequate results in production.

The only way in which all tubes can be used interchangeably is to establish industry standardization of heater characteristics. This standardization should not dictate the mechanics of heater construction but would require a nominal range of heater warm-up time.

If such standardization is possitole the entire industry will find one source of series-string trouble eliminated. Many tube manufacturers are already acutely aware of this problem and are undoubtedly willing to cooperate in establishing a reasonable requirement.

The author acknowledges the valuable assistance of W. Lukas, chief television engineer; I Horowitz, senior engineer; A. Franceschina, junior engineer; M. Sedacca, junior engineer and A. Harde, technician, in accumulating and analyzing the data required to develop the test procedures.

\title{
New Variable Capacitors
}

\begin{abstract}
Part II of a series interpreting recent developments in basic components. Survey of over 200 different variable capacitors and trimmers in current production reveals many new mechanical techniques for lowering minimum capacitance. increasing maximum capacitance, adapting for uhf. miniaturizing and pressurizing
\end{abstract}

\author{
By frank rockett \\ Research aml Engineering Division Airborne Instruments Laboratory Mineola, Neto York
}

STRIPPED down to bare essentials, the variable air capacitor continues to be the most popular tuning device up to about \(1,000 \mathrm{mc}\). A wide range of capacitors is available from tubular trimmers with a minimum capacitance of 1 upf to pressurized variable tank capacitors with a maximum capacitance of \(10,000 \mu \mu \mathrm{f}\).
The popular method for changing the frequency of a resonant circuit
has for years been the variable air capacitor. As operating frequencies moved upstairs, units were made smaller but the basic construction has remained unchanged. A frame carries one or more sets of stators and at least one set of ball bearings in which rides a shaft that carries rotor plates. Most of the special design features of these capacitors are directed toward overcoming the inherent limitations of


FIG. 1-Ratio of maximum to minimum capacitance for representative commercially available variable capacitors. Curves are for different families of capacitors in which numbers of plates are changed
minimum shunt capacitance and of series inductance and resistance of the spring wiper or other means for assuring positive contact to the rotor.

Although aluminum plates are conventionally used for both stator and rotor, at the higher frequencies copper plates or silver-plated plates are used for low loss. For most applications, plastic is used for insulated supports; miniature capacitors for vhf operation are mounted on ceramic insulators, which may be coated with silicon fluid for protection against condensation. The rotors are contoured to produce various capacitance characteristics as a function of rotor position.

\section*{Tuning Range}

A primary consideration in selecting a capacitor for a particular function is the capacitance range over which the component can be varied. Figure 1 shows this characteristic for over 200 commercially available capacitors representative of current practice. The diagonal lines indicate the capacitance variation. The lower right-hand insert is a portion of the plot transposed from beyond the left-hand edge of the grid area. The upper left-hand insert is transposed from beyond the right-hand edge of the grid. The several curves drawn through the plotted points show the manner in which the characteristic varies for a family of capacitors of like construction as the number of plates is changed.

\title{
Extend Tuning Range
}


FIG. 2-Techniques used by Radio Condenser Co. Ior adapiing variable air capacitors to uhf tv tuner. From left to right on tuning shaft are rotors for preselector input preselector

output and oscillator tank. In preselector, flat center conductor of quarter.wave line is stator. Wire loop above oscillator sta.or is gimmick, with rectangular oscillator loop back of it

In general, one can expect that stray circuit cepacitances will about double the actual minimum capacitance of a circuit so that, realistically, the diagonal lines ought to be shifted to the left. A compression flat-spring trimmer such as conventionally shunts a variable capacitor has a minimum capacitance of about \(2 \mu \mathrm{f}\) and a variation of some \(12 \mu \mu \mathrm{f}\). The open circles on Fig. 1 locate three such units. Their effect should also be taken into consideration.

\section*{Television Tuner}

The adaptajility of the variable air capacitor is illustrated by the uhf television tuner shown in Fig. 2. This contiruous tuning unit covers channels 14 through 83 in 159 degrees of shaft rotation. The tuned circuits are modifications of endtuned quarte=-wave shielded lines the center conductors of which form the stators. This tuning method lends itself to variation by means of conventional capacitor structures with comparable simplicity of manufacture and quality control.

Sufficient zuning range is obtained for low-end and high-end
adjustment. Tuning elements are readily shaped to provide uniform frequency distribution. The ratio of loaded to unloaded Q is high.

The oscillator operates on the high-side fundamental frequency in a basically Colpitts circuit using a 6AF4, as shown schematically in Fig. 2. For tracking, \(C_{2}\) adjusts the high end by controlling the minimum capacitance across variable differential capacitor \(C_{1} ; C_{3}\) adjusts the low end and also aids in reducing drift during warmup by adding a relatively stable capacitance across the grid-plate capacitance.

Oscillator injection is maintained reasonably constant and high for low conversion loss in the 1 N82 crystal mixer by a combination of inductance \(L_{1}\) and a capacitance gimmick, a gimmick being the smallest type capacitor that is distinguished as such from stray capacitance; one plate is usually a short wire placed near a portion of the circuit which constitutes the other plate.

\section*{Miniature Variable Capacitors}

To achieve as small a minimum capacitance as possible in variable
capacitors that are built as separate units rather than as integral parts of the electrical and mechanical structures of circuits, miniature air-dielectric capacitors are mounted on ceramic bases. Even so, in the smaller units a 10 -to- 1 variation is difficult to obtain. The dotted curves on Fig. 1 show that each half of a differential capacitor has substantially the same variation characteristic as a single-section capacitor: the butterfly capacitor has slightly less available variation.

In one style of miniature capacitor, a ceramic soldering technique is used to assemble bushing, stator rods and mounting posts on the ceramic base. This is done by first metallizing the ceramic where the metal parts are to be soldered to it; the parts are then positioned and soldered firmly in place. The ceramic soldered joints are stronger than the ceramic itself so that the

\author{
Previous Article in Series \\ Part 1: Fixed Capacitors Undergo Miniaturizotion, p 120, July 1954
}

\section*{COMPONENT DESIGN TRENDS}

\section*{- Machining rotors from solid blocks of metal}
- High-Stability slug-tuned coaxial trimmers
- Pressure-plate adjustment for hermetically sealed plasticdielectric bathtub capacitors
- Pressurizing with dry gas to boost voltage rating


Example of unit using gas pressurizing technique to boost voltage rating. Unit shown here, made by Lapp Insulator Co., is variable water-cooled capacitor rated to carry 70 amperes at 1 mc . Gas inlet is below gage near bottom, and water inlet and outlet fittings are at top. Tuning rod projects upward at top center


\footnotetext{
Examples of common types of miniature variable air capacitors. Left to right: Singlesection, butterfly and differential units, made by E. F. Johnson Co.
}
capacitor withstands shock and vibration well. This construction also results in a small temperature coefficient of capacitance; less than 30 parts per million is achieved in one design.

With 0.032 -inch-thick plates rounded at their edges for maximum voltage rating and spaced 0.045 inch apart, such capacitors have an approximate peak breakdown voltage at sea level of 2,000 volts. For a plate spacing of 0.03 inch, such capacitors are rated at 1,500 volts peak at sea level and at over 500 volts at 50,000 feet altitude.

Additional design features include silver-plated beryllium-copper spring wiper contacts to provide constant torque and relatively noise-free capacitance variation. Double stator contacts provide a low-inductance connection.

A wide variety of configurations can be assembled from the basic parts of these capacitors. This possibility has led at least one manufacturer (F. W. Sickles Division) to carry in stock substantial quantities of capacitor parts, such as mounts for all major designs. Any particular capacitor, even special designs to meet individual requirements, can then be supplied on a short delivery cycle.

The trend toward miniaturized equipment, both military and civilian, is reflected in the requirement for smaller components of all types. One variety of air trimmer, developed to meet a specific need for a smaller trimmer than previously available, occupies less than one square inch of mounting space and is thus especially suited to compact circuit arrangements for portable equipment. Rotor and stator assemblies are of brass, soldered to supporting members to assure mechanical stability and silver-plated to assure electrical conductivity. The rotor spring is also silverplated to assure positive contact. The low-loss steatite base can be treated with DC 200 silicon fluid if necessary. Mounting plate, bushing, shaft extension and locking nuts are of nickel-plated brass. Stator support rods are soldered into eyelets which have been spun rigidly into the steatite mount. An eight-plate unit, with four rotor
and four stator plates to give a capacitance variation from 2 to 11 \(\mu \mu \mathrm{f}\), has a depth from its front mounting face oz approximately \({ }^{3}\) inch and is rated at 1,000 volts d-c at sea level.

For special measurement capacitors that require high mechanical stability, General Radio mills both rotor and stator stacks from solid extruded aluminum stock. To obtain full advantage from this construction, cross-linked polystyrene is used for the supports and a glassreinforced polyester for the shaft to assure low loss.

\section*{Tubular Trimmers}

Where a small adjustable capacitor is needed, the tubular trimmer construction is finding wide application, especially at vhf. One such trimmer consists of an outside cylindrical stator supported on a polystyrene tube through which a plunger is driven by a screw. An important feature, shown in Fig. 3, of this trinimer is the nearly uniform relationship between turns of adjustment and capacitance, a characteristic that is particularly valuable in television tuners. The simplicity of design and the ribbontype leads result in low inductance; the form factor facilitates mounting it close to associated circuit elements to further minimize lead inductance. The unit is rated at 500 dewv.

A related tubular trimmer uses glass as the dielectric; the stator is metal-bonded directly to Corning glass to give the unit practically zero temperature coefficient. This design is particularly suited to applications where stability in the presence of vibration is required. To further increase stability for such critical epplications as oscillators, the trimmer is fitted with a direct-traverse brass or Invar slug that moves in and out without turning. For general high-f requency applications, the capacitor is furnished more economically with a rotating slug. Constant \(r\)-f contact is maintained during tuning by a bushing that incorporates a bearing spring loaded against the core shaft. Both types are produced with tuning ranges of 10 to 1 and a minimum capacitance as small as 0.3 uff they can be designed to
meet particular requirements including split stators. The compact coaxial shape simplifies multiple installations as in fixed-tuned multichannel high-frequency circuits. These capacitors also make excellent neutralizing capacitors in transmitters. One of this type capacitor has an effective capacitance range at 50 mc of 1 to \(12 \mu \mu \mathrm{f}\), a power factor of 0.16 percent and a d-c breakdown of 2,000 volts.

The tubular configuration has been adapted to a piston-type capacitor having a range of 5 to 50 uf. Quartz dielectric, an Invar piston and a Silvar fixed electrode provide thermal stability up to 200 C. Silvar alloy made by JFD Manufacturing Co. combines low h-f resistance with low thermal coefficient of expansion.


FIG. 3-Manner in which capacitance varies with rotation in representative tubular trimmer (Erie type 535)

An unusual adjustable capacitor has recently been marketed by Southern Electronics Corp. This consists of a tub capacitor with a normal capacitance of \(1,2,3,4\) or 5 uf rated at 200 dewv. It uses a polystyrene dielectric, has a dielectric absorption of 0.0001 and a dissipation factor of 0.0002 . Each capacitor is adjustable with a key over a range of \(\pm 1.5\) percent of the rated capacitance.

\section*{Construction}

The mechanical adjustment, consisting of an aircraft-type stop nut counterbored to receive a ball bearing, is located in the center of a heavy-gage bathtub can. The ball rides on a Teflon cover and applies pressure to a hardened metal diaphragm that is soldered to the inside of the can to hermetically seal the capacitor compartment. Under the diaphragm is a pressure plate to distribute pressure evenly over the Teflon-covered flat windings. A layer of acrylic plastic at the bot-
tom of the windings insulates them sufficiently from the bottom cover so that the tub can be sealed by soldering.

Although the adjustment screw can be rotated a complete revolution and reversed several hundred times without producing noticeable wear, this adjustment is designed primarily to zero out small initial increments of error in capacitance standards as well as to compensate for aging over long periods. A oneyear check of three units showed a maximum deviation of 0.03 percent of rated capacitance without correcting for temperature coefficient, which would have reduced this deviation. After a full excursion of adjustment, the capacitor requires 8 hours to stabilize after which a fine adjustment is necessary. With care, the capacitor can be set to better than one part in 100,000 . After fine adjustments, the capacitor has a long-term accuracy of one part in 100 parts of change.

\section*{Pressurized Capacitor}

For high-voltage operation, air capacitors become excessively large; therefore, variable capacitors are sealed in a container with dry gas at high pressure so that they operate at high voltage without breaking down. An outside protective gap is set to break down at a lower voltage than the internal structure. In pressurized capacitors such as the one shown, all gasket seals are adjustable from the outside; thus, in the event of a slight leak, as indicated by the permanently attached pressure gage, they can be tightened in the circuit.

These units are manufactured with minimum capacitances of about 50 wif; the largest units have a maximum capacitance of 10,000 muf. Voltage ratings vary from 6 kv to 85 kv peak. Current ratings at 1 mc vary from 70 to 130 amperes for air-cooled types and up to 400 amperes for water-cooled types.

The movable plate stack is mounted on a current-carrying ball race that is the full diameter of the stack. This eliminates the need for wiper contacts when the ball race is the diameter of the shaft. The wiper contacts usually limit the current rating of a variable capacitor.

UNTIL RECENTLY, little work has been published concerning equipment for transferring information from digital to analog form. Results of laboratory work on two experimental systems which convert binary-digital input signals into precise shaft-angle output positions are herewith described.
The converter system functions basically as a digital computer which calculates in binary form the difference between new and old information, as evidenced by the position of an output shaft. The system is essentially a closed-loop servomechanism in which the errorsensing portion is a digital computer.

The binary system allows a choice of but two symbols in each binary place, a zero or a one. These symbols can be expressed by open and closed switches, by low and high voltages or by the absence or presence of a voltage pulse in a discrete time interval.

The accuracy of analog data expressed by digital notation is a direct function of the number of places used in the selected number system. Nine binary places in the number system of this converter permit an accuracy of one part in \(2^{\circ}\) or 512 parts.

\section*{Complements}

This computing system uses complementary numbers.

Two values will be defined for the binary system complements which correspond to the decimal system complements. Let \(P\) be designated as the total number possible when each binary place is filled with a one symbol, \(P=2^{n}-1\). Let \(Q\) be the quantity which is one bit greater than \(P\), which means a one symbol in the next higher binary place than the last place in our restricted binary number system, \(Q=2^{n}\). Then the \(P\)-complement of a binary number is that number which results when the original number is subtracted from the
quantity \(P\) corresponding to the nines complement and the \(Q\)-complement is that number which results when the original number is subtracted from the quantity \(Q\) corresponding to the tens complement. The \(P\)-complement of a binary number can be obtained by substituting a one symbol for each zero symbol and by substituting a zero symbol for each one symbol. The \(Q\)-complement is then obtained by adding one bit to the \(P\)-complement.


FIG. 1-Angular relationship of output shaft to information content

There are two major parts to the converter system, an electronic comparator and an electro-mechanical transducer.

\section*{The Adding Method}

Three modes of conveying digital information in the form of electrical voltage pulses are voltage amplitude, relative time and number of transmission paths.

Four forms of digital information transmission will be defined. It is assumed that the presence of a voltage pulse represents a one and that the absence of a voltage pulse, at a given time and on a given transmission path, represents a zero. Parallel digital information is conveyed by means of \(n\) parallel channels in one unit of time, where \(n\) represents the maximum number of places in the limited numbering system. Digit-sequential informa-

\author{
By L. T. Thomasson
}

Bneing Airplane Company
seattle. Washington
tion is conveyed by means of \(n\) parallel channels spaced in \(n\) units of time. Pulse-sequential information is conveyed by means of one channel with pulses spaced in ( \(2^{n}\) - 1) units of time for the binary system. Serial information is conveyed by means of one channel in \(n\) units of time. The comparator in this system utilizes all four forms of conveying the digital information.

The new binary-digital input information will be designated by the letter \(A\). The old binary-digital information, as represented by the present position of the commutator segments of the shaft output transducer, will be designated by the letter \(B\). Subsequently the \(P\)-complements of the new and old information are expressed by \(P-A\) and \(P-B\) respectively.

The comparator calculates the difference between the new and old information and thus commands the output shaft to move in the proper direction to reduce the error signal to zero through the shorter of two possible paths. These requirements indicate the need for the operations of subtraction, information transfer and shaft sense or rotation-direction command.

The subtraction process is accomplished by adding the \(P\)-complement of the subtrahend and adding one bit. The \(P\)-complement of the old information, \((P-B)\), is injected into the adder as parallel-digital information. The new information is injected into the adder in the form of digit-sequential information to permit each stage to transfer its carry-one if necessary. The resulting sum in the adder is now

\title{
Controls Shaft Position
}

Binary output of digital computer translated into precise angular positional information at remote lecation with accuracy of better than 0.1 percent. System is useful in digital-to-analog computers, data-translating systems and precision remote-indicating applications
the quantity \(S=(P-B)+A\).
The major digit position of the adder is next examined by a sampling pulse to determine if it contains a zero or a one. If there is a zero in the major-digit position, the absolute value of the difference between \(A\) and \(B\) is less than onehalf \(Q\), and the shaft rotation shall be counterclockwise.

The output shaft is polarized so that increasing binary numbers represent conter-clockwise rotation, using the polar coordinate system of angclar measurement as shown in Fig. 1. If the quantity \(|A-B|\) is less than \(Q / 2\), the required direction of rotation for the shaft to move through the smaller angle from fosition \(B\) to the new position corresponding to \(A\) will be in the counter-clockwise direction.

The same zero in the major-digit position will control the condition of the adder so that it will change to the subtract condition while it is controlling transfer of the error magntiude to the output shaft. The motor-stop signal is derived when the major-digit position next changes its condition.

If there is a one in the majordigit position, it signifies that the quantity \(|A-B|\) is greater than \(Q / 2\). Thus, the direction of rotation for the output shaft must be clockwise so that \(B\) ean turn to \(A\) by the shorter path. With the quantity \(|A-B|\) greater than \(Q / 2\) in the adder, the adder is left in the add condition during the transfer of the error magnitude to the output shaft.

After the major-digit position is examined and if there is a one standing in it, an add-one pulse is


Binary digital-to-shaft analog converter breadboard system


Electromechanical transducer has three drums about one-half inch in diameter and three-quarters inch long
gated into the adder so that the resulting sum now becomes
\(S=(P-B)+A+1=Q-B\) \(+A=A-B\)

The limited number capacity of the adder makes \(Q\) identical to zero. The add-one pulse is necessary only when the adder is left in the add condition for the transfer of the error magnitude to the output shaft. This result is derived from the manner in which the motorstop signal is obtained from the major-digit position.

In the unique and frequent condition of no change in input data, a special treatment must be given to the computed error signal. This condition exists when the new number is the same as the old number or \(A=B\). The \(A=B\) condition must be detected and the information utilized to disable the motor-start circuit so that no shaft motion will result.

The \(A=B\) coincidence detector \({ }^{\circ}\) solves the problem by sensing two simultaneous inputs at the time when the add-one pulse is sent to the adder. When there is a condition of \(A=B\) the sum in the adder just prior to the add-one pulse will always be the quantity \(P\). There will be a one standing in the majordigit position and previous rules determine that the adder will be left in the add condition. When the addone pulse is gated into the adder the sum in the adder will change from \(P\) to \(Q\) which is identical to zero in this computer. The \(A=B\) detector senses the resulting change from one to zero in the major-digit position causing the motor-start signal to be inhibited.

\section*{The Output Transducer}

The second major unit of the converter system is the output transducer, an electromechanism from which the accurately positioned shaft output information is obtained. The output shaft is designed so that there are a total of 512, ( \(Q=2^{\prime \prime}=2^{9}\) ), discrete positions for each 360-deg of shaft rotation. The transducer also provides the source of the present shaft position, previously identified by the letter \(B\). In addition, the transducer generates a series of pulses which are fed back to the comparator during the time that the output
shaft is moving from the old to the new position.

The transducer shown in the photograph consists of three drums. The second and third drums have three metal disks separated by an insulating plastic. The disks have been formed so that tooth-like projections lie on the surface of the drum. The number of these disk projections is determined by the position of the disk in the drum, which in turn determines the binary number which is to be formed by that disk. All of the disks are
from zero to seven. Each drum contains the proper number of contacts required for counting in the octal system where the base is \(2^{3}\).

The transducer is made up of three of these drums, thus providing \(2^{2}\), or 512 , uniquely defined shaft positions. To produce this result a counter-type of stepping mechanism is used between the three drums. These coupling mechanisms are similar to the type used in an automobile mileage indicator, but the increment of rotation for each drum is one-eighth of a revolution.


FIG. 2-Ninestage adder subtractor determines difference between new binary. digital information, A, and old information as indicated by pesition of output
connected to ground through the transducer shaft mechanism.

The first disk has four projections spaced evenly around the circumference, so that this disk represents the minor-digit position for that drum. The second disk has two projections equally spaced on the circumference, and represents the next digit position. The third disk has one projection extending over one-half the circumference and represents the major-digit position for the drum. Commutator brushes ride in grooves in each of the commutator segments and connect segments with the electronic circuits.

The three disks representing the binary places are oriented so that there are \(2^{s}\) uniquely defined positions to which the brushes can be connected. These are arranged so that the commutator segments produce the successive binary numbers

The first drum, which rotates at the highest speed, has two extra contact disks and brushes which are used to count back the \(A-B\) difference to the comparator. These disks have eight segments each, but are displaced to give a start-stop signal for each of the eight positions. The combination of the two sets of contacts produces a series of eight switch positions per revolution, with control over the start and finish of each contact interval. These contacts are connected into the electronic system so that the effects of contact bounce can be eliminated during the operation of sending pulses back to the adder.

A small d-c motor drives the highspeed drum through a friction clutch and an electromagnetic stopping mechanism. The stopping mechanism ensures that the highestspeed drum always stops on one of
the eight unique positions, and the clutch allows the motor rotational energy to be expended without excessive wear on the stopping mechanism.

In order that the output shaft may have a smooth rotational characteristic, the output torque is taken from the highest-speed drum and passed through a 64-to-1 gear reduction to give the desired angular output, corresponding to the major-digit drum rate.

The transducer will operate at a speed up to 85 -kits per second with capability of stopping at the next angular position after it has been commanded to stop. This corresponds to an anzular velocity of 60 degrees per second for a nine-digit binary system.

The stages 0 : the converter system are shown in the block diagram of Fig. 2, end the schematic
diagram of Fig. 3, shown below.
The heart of the comparator unit is the nine-stage adder. The adder is composed of nine modified bi-stable-multivibrator circuits with a pair of crystal-diode gating networks between each stage. The gating networks are controlled by two buses so that the adder can be controlled to count-up or count-down.

One diode network of each pair is connected to a common add bus which, when properly energized, causes the adder to perform in normal fashion as a scaling or counting chain. The second diode network of each pair is connected to a common subtract bust which, when energized in place of the add bus, causes the adder to perform as a subtractor so that pulses are counted down instead of up.

The circuit of one stage of the reversible adder is shown in Fig. 4.

The controlling diodes, \(D_{1}\) and \(D_{2}\), are connected through their associated networks to the add and subtract bus respectively. The buses are controlled so that only one diode gate at a time is biased into the conducting state. A negative-going transition from the preceding stage is differentiated and passed by the enabled diode gate circuit. The addcarry output and subtract-carry output are taken directly from the two plates of the bistable multivibrator.

\section*{Multivibrator}

The grid circuits of the bistable multivibrator have been modified to accept trigger pulses which will trigger the circuit into but one condition on receiving a negative pulse. The grid circuit of \(V_{1}\) causes the circuit to be reset to the initial zero condition at the beginning of each


FIG. 3-Binary digital-to-shaft angle analog converter uses nine-stage adder. All triodes are type 5703, thyratron tubes are 5696's and crystal diodes cre IN3EA's
comparison cycle. The grid circuit of \(V_{2}\) controls the circuit so that a one count is injected into the stage when a negative pulse is received from the \(P-B\) gating network.

The fifth signal input at the adder stage is through the gating diode, \(D_{3}\). This diode will trigger the multivibrator to the opposite condition when a negative pulse is received from the \(A\)-gate in synchronism with an enabling waveform from the timer. The timer unit synchronizes and clocks the various operations of the comparator.

The \(A\)-gate is composed of nine crystal-diode gating circuits. Each gate in time sequence receives an enabling pulse from the timer during the time that the new information in serial form is injected into the system. The \(A\)-gate and the timer thus change the input information from serial form into the digit-sequential form required by the comparator. This form allows the proper carry forward to be accomplished when a one pulse must be added to a stage of the adder which already holds a one count.

The \(P-B\) network is a resistancedivider network which shunts or passes a pulse from the \(P-B\) pulse generator. It depends on the position of the segments for the respective digits on the transducer drums, which are stationary during the tranfer of the P-B information. The \(P-B\) pulse generator is a thyratrondischarge pulse generator which forms a high-amplitude, low-impedance pulse to transfer the simultaneous \(P-B\) information from the transducer into the adder.

The add-one gate and the subtract gate are crystal-diode circuits which are controlled by the voltage condition of the major-digit position of the adder. When the respective gate is enabled, a pulse is passed from the timer to the following circuit. The adder control is a bistable circuit with two unistable input triggers. A unistable trigger input causes the bistable circuit to go into one particular condition. Additional trigger pulses applied to that input point will have no further effect on the circuit condition. The adder control generates a pair of d-c control voltages which enable and inhibit the diode-gate networks in the adder.

The minus-sense control is a d-c amplifier with a relay in the plate circuit. The relay reverses the polarity of the d-c voltage supplied to the transducer motor when the minus sense of shaft rotation is required. The \(A=B\) gate is a duotriode coincidence circuit which produces an output pulse only when two simultaneous negative-input pulses are received. The \(A=B\) control is a bistable circuit similar to the adder-control circuit. It enables or inhibits the crystal-diode motor-start gate. The motor control is composed of two thyratron circuits with a plate relay and the electromagnetic stopping mechanism which start and stop a d-c motor in the transducer.

The last block in the diagram of Fig. 2 to be described is that of the jitter inhibitor. This is another bistable circuit similar to the adder control. The jitter inhibitor is a buffer between the mechanical switches of the transducer and the electronic input of the adder. It nullifies the effects of contact bounce in the transducer by producing one pulse for each pair of pulses from the out-of-phase contacts on the high-speed drum.

\section*{System Cycle}

The timing sequence, Fig. 5, is controlled by the timer circuits which must be synchronized with the serial \(A\) information. The speed of operation of the digital comparing circuits is not critical, because the mechanical shaft-output movement requires hundreds of milliseconds for operation. The time per operation in the comparator is restricted only by the time for reliable triggering of the tube circuits.

Referring to Fig. 5, a synchronizing pulse triggers the first


FIG. 4-One slage of reversible adder employing bistable multivibrator
monostable multivibrator. The leading edge of the waveform generated returns the comparator to its initial starting condition, with the adder in the add condition, the minussense control deenergized and the \(A=B\) control in its uninhibiting condition. The same waveform sends a motor-stop pulse to the motor-stop pulse to the motor control unit. The quasistable time of the first multivibrator is adjusted so that the following multivibrator stages will produce waveforms timed so that they center about the corresponding \(A\) input pulses.

The positive-going trailing edge of the waveform from the first multivibrator is differentiated to form the trigger of the \(P-B\) pulse generator. The \(P-B\) pulse generator produces a high amplitude, low-impedance pulse which passes through the \(P-B\) network, under the control of the transducer drums, and injects the \(P-B\) information from the drums into the adder stages. The negative-going trailing edge of the first multivibrator waveform is also differentiated and triggers the second multivibrator in the timer.

The positive waveform of the second multivibrator is used as an enabling signal to gate the first \(A\) pulse through the \(A\) gate, and into the first stage of the adder. The \(A\) information is transmitted as serial information, with the minor digit transmitted first. Sufficient time must elapse between the first and second \(A\) pulse so that carry pulses may be transferred in the adder before a second input pulse is injected into the adder. The succeeding \(A\)-input pulses are injected through the \(A\) gate one at a time under the control of the timer. The tenth multivibrator generates the enabling waveform for the ninth \(A\)-input pulse.

The negative-going leading edge of the eleventh multivibrator is differentiated to form the sample pulse which passes through the add-one gate, if there is a one in the majordigit position, under the control of the major-digit position of the adder and into the first (minor-digit position) stage of the adder.

The sample pulse also is transmitted to one input of the \(A=B\) detector. Coincidence between this pulse and a negative-going pulse
from the major-digit position of the adder to the second input of the \(A=B\) detector is indication that no change in the shaft position is required. In this event, the coincidence pulse triggers the \(A=B\) control. This inhibits the motor-start gate for the rest of the cycle.

The sample pulse is also transmitted to the subtract gate, which is controlled by the condition of the adder major-digit position. The add-one gate and the subtract gate are enabled by inverse waveforms so that the sample pulse will pass through one or the other but not both. If there is a zero in the major-digit position of the adder, the sample pulse will pass through the subtract gate and trigger the adder control to its subtract condition. This reversal changes the enabling voltages on the add and subtract buses to the adder so that the adder will count down, or subtract, when input pulses are applied during the remainder of the system cycle. The reversal of the adder control also changes d-c input to the minus-sense control, causing it to energize the minus-sense relay and reversing the polarity of the d-c voltages to the transducer motor.

The positive-going trailing edge of the eleventh multivibrator is differentiated to form a positive pulse which passes through the motorstart gate if not inhibited by an \(A=B\) condition and triggers the thyratron motor-control circuit. The single-pole single-throw relay combined with the magnetic detent mechanism, applies power to the d-c transducer motor. As the motor turns the output shaft, pairs of pulses are transmitted from the special contacts on the first drum to the jitter inhibitor. One standard pulse is generated for each pair of pulses or pulse trains if serious contact bounce exists. These standardized pulses trigger the first (minordigit position) stage of the adder.

The adder or subtractor will count up or down until the majordigit position changes its condition. When the major-digit position changes from one to zero during addition or from zero to one during subtraction, the positive-going output waveform is differentiated and the positive palse triggers the thyration motor-stop control. The


FIG. 5-Timing sequence of converter controlled by timer circuits
motor-stop thyratron energizes a double-pole single throw relay, one contact of which extinguishes the motor-start thyratron and opens the motor-start relay and magnetic detent. The second contact extinguishes the motor-stop thyratron after the relay has picked up.

When the motor is turned off and the magnetic detent stops the rotation of the drums on the next binary position, the digital comparing cycle has been completed.

\section*{Performance}

The accuracy of the output-shaft indication is within one bit out of 512 bits, or better than \(\pm 0.1\) percent. If the transducer should fail to stop at the correct position, or if the input data is changed before the shaft has time to reach it, the converter system will recalculate the new error signal.

Improved accuracy is limited only by the electromechanical shaft output transducer. Greater accuracies could probably be obtained by adding another drum unit, with a possible accuracy of one bit in 4,096 or approximately \(\pm 0.01\) percent. This accuracy would result in correspondingly slower speed of response and extreme mechanical tolerances in the transducer.

The shaft output speeds attained with the breadboard equipment reached a maximum rate of approximately \(60-\mathrm{deg}\) per second. Because of the torque-to-inertia ratio of the d-c motor and transducer, the shaft speed is a function of time during
the first half second. Typical times measured for the output shaft to reach the new position are 100 milliseconds for a 2 -bit, 1.4 -deg change, and 720 milliseconds for a 50 -bit, \(35-\mathrm{deg}\) change in position.

The input signals used in the converter described were serial in nature. By modifying the \(A\)-input circuits and the \(P-B\) feedback circuits, along with the timer, the converter can be made to operate on parallel-input information. The basic operating principles are the same, but the \(A\) information is changed into digit sequential form in a different manner. Assuming that parallel signals are present on nine conductors as d-c voltages in a given time interval, the voltages can be made to enable the respective \(A\)-gate circuits that control the sequentially differentiated pulses from the respective timer stages to the corresponding adder stages.

The author acknowledges the assistance of his associates at the Boeing Airplane Company Physical Research Unit. The output transducer was developed primarily by F. Hamilton and major contributions were made by S. G. Forbes and R. P. Abbenhouse. The original system theory was conceived by J. E. Maynard and W. A Hane, as part of the work performed under contract number AF 33(038)-19589.

\section*{Bibliography}
F. F. Burke, Jr., A Survey of Analog to Digital Converters, Proc IRE, p 1453, (bet 1953 .
W. A. Farrand, An Accurate DigitalInalog Function Generator, Proc Elecironic Computer Symposium, April, 1952.

\title{
Adjustment Procedures
}


Final testing section. arranged so that test equipment on overhead shelf can face either side of line. Sets can be passed under shelf to other side. Test signal outlet on overhead cable at each position receives standard in-plant black-and-white and color test patterns from central signal cage. Picture tube and subassemblies are tested before reaching chassis

> Chart gives signal sources, indicating devices and step-by-step tabulation of adjustments made at each of the 15 test positions on a color tv production line, with corresponding procedures for black-and-white receivers shown alongside for comparison

DIFFERENCES between factory test procedures for color and monochrome television receivers are shown in the accompanying chart. Straight-line testing procedures are used in both cases, with the exception that color convergence adjustments require three test stations operating in parallel. Such operation was necessary since it was not found practical to break this time-consuming operation down into smaller elements.

The sequence of test operations for both monochrome and color was selected because of circuitry in some instances and for convenience of station balance in others. Several adjustments are repeated in succeeding test stations. The first adjustment is a rough adjustment to assure proper operation of a circuit prior to final adjustment.

The monochrome portion of the color receiver is very much like any monochrome receiver and the same general test methods apply to both, as indicated in the chart. One difference is that some circuits require just a little more care and precision in adjustment for color than for monochrome.

\section*{Coior Subcarrier Problems}

For example, in the color receiver the r-f and i-f amplifiers are designed to produce a wider passband to amplify the color subcarrier. These amplifiers must be adjusted with care and precision, as a narrow or tilted passband may result in loss of color definition, reduction of saturation or even complete loss of color.

The sound carrier must be attenuated accurately so no visible
beat pattern between the sound carrier and the color subcarrier will occur ( 920 kc ), without attenuating it to such a point that the sound sensitivity will be adversely affected. A potentiometer is provided in the i-f circuit to set this attenuation level after the trap frequency has been adjusted.
The chrominance channel adjustment procedure, although not common to regular monochrome, is similar and straightforward. A \(3.58-\mathrm{mc}\) crystal-controlled signal is used to adjust the frequency of the electron-coupled subcarrier local oscillator and to resonate selective circuits and traps. A video sweep generator is used to adjust the video circuits for proper passband so that the combination of the r-f,

\section*{For details of}

\title{
for Color TV Production
}


THE FRONT CCVER-Test position on color tv line. Black curtains rolled back on overhead shelf can be lowered to darken test booth for critical study of celor test patterns

\author{
By CHARLES T. McCLANE
}

\author{
Superrisor Color TV Testing \\ Westinghonse Television-Radio Division Metuchen. Nea Jersey
}
i-f and video passbands will result in a minimum of attenuation of the color sidebands. Accuracy of adjustment is important.

The last test station prior to the installation of the color picture tube is provided to check the overall passband from the antenna to the kinescope grids, using a video sweep-modulated r-f generator. No adjustments are made at this station, whose parpose is to check the composite result of the r-f, i-f and video passbards. This double check on previous adjustments is desirable to assure proper operation after the tuke is installed and adjusted. Any incorrect overall response requires analysis as to which section is responsible before correction can be made.

The major difference between color and monochrome test procedures occurs after the tricolor kinescope is installed in the completed color chassis. Many of the adjustments to the tube and associated circuits are interdependent and adjustment of one may affect the other. Height, width, linearity and high-voltage regulation may affect both purity and convergence so these adjustments are made first, using a composite monochrome video signal. After purity adjustments are made the picture size and centering are rechecked, as a change in the yoke and purity coil fields may cause a shift in these adjustments.

The convergence adjustments are made using a video dot signal. The
fields of the convergence magnets, when adjusted for proper convergence at the center of the screen, can affect purity and henoe purity must be rechecked.
The chart shows that monochrome balance adjustments are made prior to and again after convergence adjustments. The adjustments made prior to convergence are only approximate in order to have the red, green and blue gains approximately correct so that white will be produced when the three color dots are converged. This balance adjustment is made with more precision in the station after the convergence adjustments.

\section*{Use of Color Bar Signal}

The screen controls, background controls and gain controls are adjusted so that white will track from highlights to low lights at various settings of the contrast and brightness controls. The chrominance channel phasing and gain balance adjustments, which were previously made at the sound i-f alignment station, are repeated using a color bar \(r\)-f signal. The sequence of the trausmitted bars is white, yellow, cyan, green, magenta, red and blue. The only reason these adjustments are checked previously is to determine if the associated circuits are functioning properly before the picture tube is installed.

The final test station before the chassis is installed in a cabinet is an overall quality operation check using color bar \(r\)-f, monochrome r-f and a color scan picture produced by a flying-spot scanner. No adjustments are made at this station except customer controls. Any incorrect operations that are noted require analysis and the necessary correction prior to cabinet installation.

A final test after cabinet installation, an operating heat run and a second final test are performed before the finished product is shipped.

THE COMPLETE PICTURE - Final alignment and test procedures for both types
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Test Position} & \multicolumn{3}{|r|}{COLOR TELEVISION RECEIVER} & \multicolumn{3}{|l|}{MONOCHROME TELEVISION RECEIVER} \\
\hline & Signal Source & Indieating Devices & Adjusiments Made & \multirow[t]{2}{*}{Signal Sourre} & Indicating Deviers & Adjustmenta Made \\
\hline & & Special circuit lester meter & Continuity and resistance check & & Sperial rircuit tester mieter & Continuity and romiotance check \\
\hline & & VTVM & Voltage check & None & None & None \\
\hline 3 & Composite video & \begin{tabular}{l}
Scope \\
VTVM \\
Kinescope \\
Electrostatic \\
Microammeter
\end{tabular} & Adjust horiz frequency and ringing coil Check vertical scan, height and linearity Adjust high-voltage regulation Adjust dynamic convergence amplitude and phase & \begin{tabular}{l}
Composite video \\
4.5-me signal
\end{tabular} & \begin{tabular}{l}
VTVM \\
Srope \\
Kinestopи
\end{tabular} & \begin{tabular}{l}
Adjust horizontal frequency and ringing coil \\
Check omeration vertical scan, height and linearity \\
(herk operation rideo amplifier anil contrast control \\
Adjust 4.5-me viden trap
\end{tabular} \\
\hline 4 & 3.58 me & \begin{tabular}{l}
Scope \\
VTVM
\end{tabular} & \begin{tabular}{l}
Adjust master phase control for aubcarrier Adjust phase detector balance control \\
Adjust local oscillater quadrature transformer \\
Adjust local ofcillator frequency \\
Adjust phase detector anc balanca
\end{tabular} & None & None & None \\
\hline 4 & \begin{tabular}{l}
3.58 mc \\
Video sweep
\end{tabular} & Scope VTVM & Adjugt burst amplifier takeoff coil Adjust line driver cathode trap Adjurt \(\mathrm{R}-\mathrm{Y}\) demodulator trap Adjust R-Y demodulator trap Adjuat chroma amplifier grid and plate Adjust 4.5-me trap & \multicolumn{3}{|l|}{\begin{tabular}{l}
-NOTE FOR COLOR AT POSITION 5: \\
See Fia. 1.2, 3 and 4. Solid cu res show respon e with trap in circuit. Dotted crive are for trep shor!ed
\end{tabular}} \\
\hline & \begin{tabular}{l}
\(4.5 \mathrm{mc}(\mathrm{a}-\mathrm{m} / \mathrm{f}-\mathrm{m}\) mod) \\
Color bar video
\end{tabular} & Scope & \begin{tabular}{l}
Adjust sound i-f grid coils \\
Adjust \(\mathrm{f}-\mathrm{m}\) detector quadrature coil \\
Adjust quieting control \\
Adjust hue and saturation controls (see Fig. 5) \\
Adjust B-Y gain and buffer transformer (see Fig. 6) \\
Adjust (;-Y gain and G-Y matrix (gee Fig. 7)
\end{tabular} & \[
\begin{aligned}
& 4.5 \text { nue ( } 4-m \\
& \text { and } f-m \\
& \text { moul) }
\end{aligned}
\] & Scope & \begin{tabular}{l}
Adjust sound i-f erid coils Adjust \(\mathrm{f}-\mathrm{m}\) detertor quadrature roit \\
Adjust quieting enntrol
\end{tabular} \\
\hline 7 & \begin{tabular}{l}
41.25 mc ( \(\mathrm{a}-\mathrm{m} \mathrm{mod}\) ) \\
44-me sweep
\end{tabular} & Scope & \begin{tabular}{l}
Adjust two \(41.25-m e\) sound traps in \(4 t h\) i-f output \\
Adjust 4th i-f transformer and shaper (see Fig. 8) \\
Adjust \(\mathbf{1 1 . 2 5 - m e}\) gound trap in grid of 4th i-f Adjust 3rd i-f transformer (see Fig. 9)
\end{tabular} & ```
44-mr нweep
    47.25 (a-m
    mod)
``` & Scope & Adjust 3-d viden j-f (nee Fig. 14) Adjint 2nd ridm i-f (see Fig. 15) Adjust adjacent sound trap \\
\hline 1 & \begin{tabular}{l}
47.25 mc (\(\mathbf{m}\) mod) \\
44-me вweep \\
39.75 mc (a-m mod)
\end{tabular} & Scope & Adjust adjacent zound trap Adjust 2nd video i-f (gee Fig. 10) Adjust adjacent picture trap & 44-me swrop & sicope & Adjunt lat viden i-f (ame Fig. 18) Adjust associaterl sound trap \\
\hline 4 & \begin{tabular}{l}
44-mc sweep \\
41.25 mc (\(\mathrm{a}-\mathrm{m} \mathrm{mod}\))
\end{tabular} & Scope and detector probe & \begin{tabular}{l}
Adjust let video i-f (see Fig. 11) \\
Adjust associated sound trap \\
Adjust mixer plate and lat i-f grid links Readjust aspociated sound trap
\end{tabular} & 13-channel swrep & Soppe & \begin{tabular}{l}
Adinet lat i-f grid link and mixer link \\
Readiust aumomiated sound trap \\
Adjust channel 13 nscillapor \\
Cherk r-f pase hand (see lig. 17)
\end{tabular} \\
\hline 1 & 13-channel sweep ror sig gen (a-m mod \(30 \%\)) & Scope & \begin{tabular}{l}
Adjust oscillator on all channels \\
Adjust mi bandpass if necesgary \\
Adjust mesociated sound trap (set atten control for 32 db) \\
Check overall bandpass (see Fig. 12)
\end{tabular} & 13-channel swerp & Scopr & Adjust oacillator on all channels \\
\hline & 13-Channel Video sweep & Scope & Check overall chroma bandpass on all channels (see Fig. 13) & None & None & None \\
\hline \[
7
\] & Monochrome video & \begin{tabular}{l}
Kinescope \\
High-voltage meter
\end{tabular} & \begin{tabular}{l}
Adjust widt \(h\), height. linearity and centering Check and/or adjust high-voltage regulation \\
Adjust purity
\end{tabular} & \(\underset{y}{\text { Nof }}\) & Kinescope & Adjust ion trap magnet Adjust defertinn yoke \\
\hline 18 & Monochrome video Video dots & Kinescope & \begin{tabular}{l}
Rough-adjust b-w ecreens, background and Rain controls \\
Adjust magnets for center convergence Adjust vertical dynamic convergence Check and/or adjust dynamic phase Adjust horizontal dynamic convergence Recheck purity
\end{tabular} & \multicolumn{3}{|l|}{\begin{tabular}{l}
\&NOTE FOR COLOR AT POSITION 13: \\
Since convergence adjustments are time-consuming. three similar test stations are operated in parallel
\end{tabular}} \\
\hline 14 & \begin{tabular}{l}
Monochrome \(\boldsymbol{r}\) \\
Color bar r-f
\end{tabular} & Kinescope & \begin{tabular}{l}
Adjust screens for white raster \\
Adjust blue and green gains for white on highlights \\
Adjust background controls for white on low lights \\
Adjust color phase and matrix
\end{tabular} & Nonoflirome & Kinescope & \begin{tabular}{l}
Adjust height. linearity, width and centering \\
Readjust ion trap magnet
\end{tabular} \\
\hline & \begin{tabular}{l}
Monochrome r-f \\
Color bar raf \\
Color scan r-f
\end{tabular} & \begin{tabular}{l}
Kinescope \\
loudspenker
\end{tabular} & Check monochrome operation and sound Check color har pattern Check color gean picture Check convergence and purity & Monochronte r-f & \begin{tabular}{l}
Kinescope \\
Iondspeaker
\end{tabular} & Check overall operation of picture and anind \\
\hline
\end{tabular}

IST VIDEO GRID TO DEMODULATOR GRID

ANTENNA TO VIDEO DETECTOR

2NJ I-F CURVE

2ND I-F GRID TO VIDEO DETECTOR

FIG
3

3RD I-F CURVE

ANTENNA TO VIDEO DETECTOR

\title{
Transistor Power Supply for Geiger Counters
}

Power unit operating from 3 -volt battery supplies \(5 \mu \mathrm{a}\) at 700 volts for portable radiation. detectors. Use with additional transistor in counting circuit makes possible low power-drain unit having no tubes other than Geiger tube

\author{
By ALAN R. PEARLMAN \\ Raytheon Wfa. ('o \\ West Neuton. Wass
}

CONVENTIONAL means for obtaining a high-voltage lowcurrent supply for portable radiation detectors either necessitate the use of relatively bulky, expensive high-voltage batteries or the expenditure of a considerable fraction of a watt of power to operate a vibrator or vacuum-tube oscillator power supply from low-voltage batteries. Since Geiger-counter tubes usually operate at power levels below one milliwatt, an unfavorable ratio exists between power expended to develop the high voltage and power consumed by the detector. Several high-voltage supplies using point-contact transistors in an inductive-kick circuit which consume less than 50 mw have been described. \({ }^{1}\) Thermionic rectifiers were used, and no attempt was made to regulate output voltage.

\section*{Design}

In designing a regulated highvoltage supply using point-contact transistors in a similar circuit, it was found that to develop sharp short-duration pulses for inductivekick operation, peak collector currents in the range from severalhundred milliamperes to almost an ampere might be encountered. At these levels of \(I_{c}\) excessive collector forming occurred and transistor failure was usually encountered after a few hours of operation.
To avoid the problems inherent in short duration high-intensity pulse operation, a high-voltage supply was developed using junction transistors operated as class-

FIG. I-High.voltage transistor power supply. Resistor \(R_{1}\) is adjusted to obtain proper operating point; \(\boldsymbol{R}_{2}\) and \(R_{3}\) can be from 100,000 ohms to 2.2 megohms.

C amplifiers, where collector efficiencies of over 90 percent could be expected.

Calculations indicated that a transformer step-up ratio of 50 to 1 or greater would be necessary and that the impedance presented to the collector should be sufficiently high to enable the collector to swing nearly the entire supply voltage without requiring currents beyond the ratings of the transistor. Losses in the transformer should be only a few milliwatts to achieve reasonably efficient operation.

Since a survey of available audio and geophysical transformer types failed to reveal the existence of a unit meeting the requirements, a special unit was constructed.

\section*{Operation}

The circuit of the power supply is shown in Fig. 1. Current bias is supplied to the emitter through \(R_{1}\). The operating frequency is determined by both \(R_{1}\) and \(C_{1}\); the oscillator output by \(I_{e} \approx V_{c} / R_{1}\) and by
\(V_{\text {ce. }}\) In general, the oscillator will function well over a wide range of frequencies below the self-resonant frequency of the transformer, and as a consequence a fixed value of \(C_{1}\) can be used with various values of \(R_{1}\) over a range of about 5 to 1 Regulators.

A corona voltage-regulator tube can be used across the output of the rectifier filter circuit to provide constant output voltage over a wide range of currents for operating Geiger counters or multiplier phototubes. A typical subminiature 700volt or 900 -volt regulator will keep the output voltage constant to within \(\pm 15\) volts between \(2 \mu \mathrm{a}\) and \(50 \mu \mathrm{a}\).

The quadrupler rectifier using four small selenium units enables efficient operation with collector supplies as low as 3 volts.

The 600 -turn primary of the transformer has a d-c resistance of less than 10 ohms and provides a voltage step-up of 50 to 1 with the 30,000-turn secondary.

FIG. 2-Voltaqe cuzves for 400 -megohm resistive load (A), output current at 700 valts (B) and d.c energy converaion efficiency (C)

Figure 2 shows performance curves for constant-resistance loading and 700 volt constant-voltage output conditions. The efficiency of d-c energy conversion is good when operating from a supply of 3 volts or greater and reasonably good even when operating from a single 1.5 -volt cell.

An illustration of efficiency and low power consumption of the transistorized circuit in comparison with a vibratcr circuit is the fact that the driving coil alone of a typical miniature vibrator consumes about 3 J milliwatts, whereas the entire transistor circuit operating at an input of only 10 milliwatts (3 volts, 3.33 ma). It can achieve at 42 percent efficiency while producing \(6 \mu \mathrm{a}\) at 700 volts, more than encugh to operate a 700 volt G-M tube for most counting applications. As a consequence of this low-powe feature it is possible to increase by more than tenfold the operating time of standard batteries.

Two mercury cells, rated at 3,600 ma-hours at 1.25 volts each, could provide 1,000 hours of operation at a drain of 3.6 ma , and produce \(5 \mu \mathrm{a}\) output current at 700 volts. Two size-D flashlight cells would provide about the same life. With vibrator supplies a battery life of 100 hours would be considered good and 50 hours considered acceptable.

\section*{Low-Alpha Transistors}

With regard to transistors, lessexpensive low-alpha types seem to work as we.l as high-alpha units.

The CK722 and CK723 pnp junction units were tested in this application and found to be satisfactory. While the present collector current ratings of the CK722 and CK723 are only 10 ma there seems to be considerable evidence that at low collector supply voltages the current ratings can be increased to 10 or even 20 ma without adverse effect.

Although the transistorized highvoltage supply can be used as a space-weight-power saving component in vacuum-tube portable equipment, its greatest advantages would be offset by the power requirements of the tubes. Maximum advantages can only be obtained when the equipment with which the

FIG. 3-Rough-indication counter (A) using 700-volt transistor power supply. Threerange count meter (B) uses npn transistors.
high-voltage supply is used is designed to eliminate vacuum tubes.

Figure 3 shows two typical Geiger-counter circuits which avoid the need for tubes other than the Geiger tube. Both circuits use halogen-quenched G-M tubes which provide considerably more energy per pulse than do conventional or-ganic-vapor-quenched tubes. Figure 3 A is a simple arrangement, using no additional transistors, capable of providing audible indication of low levels of radiation, and a quasilogarithmic visual indication of higher levels. Figure \(3 B\) is a threerange linear counting-rate meter using two additional \(n p m\) junction transistors, and capable of accuracy comparable to that obtainable from vacuum-tube circuits. The power required by the counting-rate meter is about 4 mw , less than \(\frac{1}{3}\) the power required by the filament of a low-drain hearing-aid tube.

Most of the experimental work on which this article was based was performed under U. S. Army Signal Corps Contract DA-36-039 SC-42482 at Technical Operations, Inc., Arlington, Mass. The author wishes to express his thanks to Technical Operations, Inc. and the Raytheon Mfg. Company for their cooperation and assistance.

\section*{Bibliography}
G. S. Bryan, Application of Transistors to High-Voltage Low-Current Power Supto High-Voltage Low-Current
plies, Proc IRE, \(40, p 1,521, ~ N o v . ~\)
4052 . plies, Proc \(\boldsymbol{R}\). Wmy, Smy and A. R. Pearlman, "Research Study Leading to the Use of Transistors in Radiac Survey Meters. Technical Operations, inc. Si Report No. P. Sulzer, Junction Transistor Circuit Applicationg, Ehectronics, 26, p 170, Aug. 1953.

WHEN a normal-size meter scale is used to show the rate of rotation of high-speed devices it becomes difficult to determine incremental speed changes to any degree of accuracy. To increase the ability to measure small changes, it is possible to expand the scale of the meter indications. This is done by keeping the meter in a nonindicating condition until such time as the speed of the unit being measured reaches a preselected lower limit. The incremental change between this speed and maximum speed is then presented so that each meter division indicates a smaller rpm change. By the addition of a timing circuit and relay, decay rates can be measured and presented automatically.

Figure 1 shows a block diagram of the unit. A calibration oscillator is incorporated for setting the upper and lower speeds as indicated by full-scale and zero readings respectively on the meter.

The input voltage can be derived from any type of pickup that will develop a signal or pulse frequency proportional to speed. The unit has direct control over motor speed by the insertion of variable resistance in series with each leg of the motor supply. These rheostats are ganged together on a single shaft so that all legs are controlled simultaneously. The rheostats are held shorted out by the relay system so that the pre-

FIG. 1-Tachometer system obtains ex. panded scale by indicating rpm only over operating portion of device's speed range. Calibration oscillator is used to sel upper and lower indicating limits
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Relay Number and Condition & Hesult & & Relay Number and Condition & Result \\
\hline Apply power to unit & \[
\begin{aligned}
& \text { 1-Open } \\
& \text { 2-Closed } \\
& \text { 3-Open } \\
& \text { 4-Closed } \\
& \text { 5-Closed }
\end{aligned}
\] & & Apply signal voltage & 1-Closes when up to speed 4 -Open & \begin{tabular}{l}
Opens relay 4. \\
Places meter in circuit. Removes short across rheostatsplacing them in motor circuit.
\end{tabular} \\
\hline SPEED MEA Apply control voltage & \begin{tabular}{l}
SUREMENT 3-Closed \\
5-Closed \\
2-Open \\
1-Open \\
4-Closed
\end{tabular} & \begin{tabular}{l}
Place -300 v on thyratron grid. Remove +300 v from thyratron plate. Closes relay 5. Turns on powerindicator light. Turns out time-delay indicator light. Connects circuit to provide voltage to motor. \\
Closes circuit between integrator tube and vivm circuit, charges \(C_{2}\). \\
Closes relay 4. \\
Disconnects meter circuit (prevents meterfromindicating) Shorts out motor control rheotats.
\end{tabular} & \begin{tabular}{l}
DECAY RAT \\
Remove control voltage \\
2D21 begins to conduct, causing relay 2 to operate after 20 -sec delay
\end{tabular} & E MEASUP 3-Open 5-Open 2-Closed 5-Closed & \begin{tabular}{l}
EMENT \\
Places +300 v on thyratron grid. Opens relay 5. Turns off powerindicator light. Places +300 von thyratron plate. Turns on time-delay indicator light. \\
Opens circuit to motor. \\
Opens circuit to vtvm grid and meter maintains reading due to charge on capacitor \(C_{2}\). Closes relay 4. \\
Turns off time-delay indicator light. Clowes circuit to motor.
\end{tabular} \\
\hline
\end{tabular}

Table I-Sequence of Relay Operation

\section*{RPM Indicator}

\author{
By A. J. Strassman
}
set lower level of speed is reached rapidly. When this speed is attained the rheostats are placed in the circuit by the relay system. The rheostat control is then used for adjustment of the final desired speed.

The pulse from the pickup is applied to an amplifier having a gain of approximately ten. The output of this stage is applied to the grid of a cathode-coupled multivibrator.

The output-pulse repetition rate of the multivibrator is proportional to the frequency of the pulse received. The multivibrator output is fed to the grid of a tube that operates as a speed-interlock relay.

When the speed approaches the minimum level this tube actuates a relay, closing the circuit to the meter. The output of the multivibrator is also applied to another amplifier which integrates the pulses providing a d-c voltage proportional to speed to a vacuum-tube voltmeter. The vtvm is calibrated to indicate the actual speed. Potentiometers in the integrator circuit calibrate the meter for minimum and maximum speed.

\section*{Multivibrator}

In the circuit diagram, Fig. 2, the output of amplifier \(V_{3}\) is a positive pulse, as shown in Fig. 3, which

FIG. 2-Meter starts to indlcate speed when integrated multivibrator output reaches level high enough to overcome bias on speed-interlock tube; relay then places meter in circuit to indicate rpm

\section*{Provides Expanded Scale}

Measuring system reduces scale compression by indicating only over operating portion of machine's speed range. Time-delay circuit measures decay in speed of shaft over specified period while machine is decelerating
is applied to the grid of \(V_{\mathrm{L}}\). When \(V_{4 A}\) begins to conduct \(V_{A B}\) is cut off and the output voltage at the plate of \(V_{\star R}\) rises and remains at this level until the multivibrator returns to its normal condition. This time can be determined by
\[
T=C R 2 \ln \frac{2 E_{b b}-E_{b 1}-E_{k} 2}{E_{b b}-E_{k 1}-E_{o 2}}
\]

Where \(E_{b b}=\) supply voltage, \(E_{\text {o }}\) \(=\) plate voltage, \(E_{k}=\) cathode voltage and \(E_{0}=\) cutoff voltage. Figure 4 shows the variation of pulse output with Irequency.

The output of the multivibrator is first applied to the speed-interlock

Front panel of tachometer has speed control at left. Switch at lower center injects calibration signal for setting upper and lower dicl points

Three ganged rheostats at right of tachomefer chassis are inserted in motor power line for speed control when motor approaches operating speed
tube, \(V_{s}\), whose cathode is biased at a reference level so that the relay is not activated until the sreed reaches a desired level. When activated, the relay places the indicating meter in the circuit. The meter then reads the preset low level at zero.

The multivibrator output is also applied to an integrating circuit and this output voltage is applied to vtvm \(V_{5}\).

Figure 5 shows how the output voltage varies with frequency. Since the vtum meter has been calibrated to give full-scale reading at maximum speed all incremental readings are magnified.

\section*{Time Delay}

With the addition of a delay circuit, decay rates can be measured easily. When operating as a speed indicator, a negative potential of -300 v is applied to the grid of thyratron \(V_{2}\) cutting off the tube, so that the relay in the plate circuit is deactivated.

When the decay-rate measurement is initiated, power to the motor is disconnected and a positive potential of 300 v is applied to the grid of the thyratron \(V_{2}\). Components \(R_{1}\) and \(C_{1}\) determine the delay between application of the 300 v and the firing of the thyratron. At the end of the delay time the thyratron fires, closing relay 2 . This disconnects the vtvm from the integrator circuit and capacitor \(C_{2}\) maintains
the voltage on the grid at the value at the end of the time-delay period. This reading subtracted from the original reading gives the decay in speed over a 20 -second period. The time delay is equal to \(0.607 R C\).

\section*{Calibrator}

The calibration oscillator, \(V_{1}\), provides two frequencies proportional
 FIG. 3-Pulse input to multivibrator

FIG. 4-Output of multivibrator at 600 \(\mathrm{rpm}(A)\) and at \(12,000 \mathrm{rpm}(B)\). Both oscillograms were made at sweep speed of \(2,000 \mu \mathrm{sec}\) per cm
to the upper and lower speed limits to be read on the meter. Potentiometers allow for setting of the frequencies to be used as calibrating speeds.

A sine-wave signal can be used as the synchronizing voltage to insure proper frequency output from the calibrator. The output signal, Fig. 6, is derived from the screen grid and is shaped to approximate the signal received from the pickup. The output signal derived from the calibrator is applied to the clipping diode and amplified by the following stage as is the normal input signal from the pickup unit on the machine.

A regulated source was used to supply both positive and negative voltages. All relays used in the tachometer other than the two sensitive relays are of the standard 28 -volt aircraft type.

Acknowledgement is made to H. E. Howard who designed the original model.

\section*{Bibliography}

Seely, "Electron Tube Circuits"", p 417, McGraw-Hill Book Company, New York,' 1950 .
MiT"Radar School Staff. "Principles of Radar", p 2, McGraw-Hill Book Company, New York. 1946.

FIG. 5-Relationship of pulse frequency to grid voltage on vivm

FIG. 6-Calibrator output wave is shaped to duplicate output of pickup device

\title{
Radar Duplexer Uses Dual T-R Tubes
}

\begin{abstract}
Low voltage-standing-wave ratio over 12 -percent of frequency band, ease of pressurization and elimination of design difficulties inherent in use of atr tubes are among the features of radar duplexer that uses dual \(\mathbf{t}\)-r box and short-slot couplers
\end{abstract}

\author{
By HAROLD HEINS \\ Bomac Lcboratories, Inc. \\ Beverly, Massachusetts
}

Broadband speration of pulsed radar may be achieved using a duplexer that consists of a dual t-r tube with appropriate short-slot couplers. In contrast to conventional broadband designs, the dual tube duplexer lends itself well to simple mechanical layout.

The short-slot coupler \({ }^{1}\) is an extremely compact broadband hybrid that provides an accurate power split similar to that of a magic \(T\) or hybrid ring although with different phase relations. Physically, the short-slot coupler consists of two waveguides that share a common narrow wall in which a coupling section is provided. This coupling slot together with suitable matching devices provides the hybrid properties.

\section*{Coupler Operation}

Figure 1A schematically illustrates the coupler. Assuming incident power on arm 1 with matched loads on all other arms, the wave excites two modes, one even and one odd, at the coupling slot. The amplitude and phase relations (Figs. 1B ard 1C) are such that the power is split evenly between arms 2 and 3 with no power coupled into arm 4. A \(90-\mathrm{deg}\) phase shift exists between the waves in arms 2 and 3. The junction input has a low vswr with either matched or balanced loads on the output arms, including the case of short circuit loads. These properties of the coupler are maintained over a wide

FIG. 1-Phase and amplitude relations in a short-slot coupler
band, approximately 12 percent.
Assuming a unit-voltage vector incident on arm 1, the voltage vectors in arms 2 and 3 are \(\sqrt{1 / 2}\) with the phases as shown in Fig. 1D, where the phase of the unit vector is the phase that would have resulted from the unit incident vector if no coupling slot existed in the main guide. Conversely, two unitvoltage vectors, 2 and 3 , with a 90 deg phase difference will result in a vector of amplitude \(\sqrt{2}\) in arm 1. If the phase relations of the vectors on arms 2 and 3 are reversed, then the resultant of amplitude \(\sqrt{2}\) is incident on arm 4, Fig. 1E.

FIG. 2-Characteristics of a shortslot coupler

The performance of an X-band coupler is shown in Fig. 2. The power split, isolation and input vswr are shown over the frequency range \(8,600-9,500 \mathrm{mc}\) with matched and shorted output loads. Isolation is defined as the ratio of incident

FIG. 3-Vector relations of a short-slot coupler while receiving
power to power in arm 4 with matched loads on the output arms, \(P_{1} / P_{4}\).

A short-slot duplexer consists of two couplers with suitable tubes, preferably a dual t-r tube, connected between them. While it is possible to use conventional single t-r tubes, this requires a complicated system of four bends. The dual t-r tube was specially designed to mate directly with the couplers.

\section*{Receiving}

Consider first the receiving condition; that is, the condition at which the power levels are of the order of target signals, which are too low to fire either the gaps or
the input windows of the \(t\)-r tube. The vectors involved are shown in Fig. 3. A unit vector incident on arm 1 results in vectors 2 and 3 of amplitude \(\sqrt{1 / 2}\) with phases as shown in Fig. 3A.

Neglecting any reflections, loss or phase shift in the \(t-r\) tube, vectors 2 and 3 traverse the t-r tube with no change in amplitude and no relative phase shift, and are the input vectors to the output coupler. Vector \(1^{\prime}\) or 2 splits into vectors \(2^{\prime}\) and \(3^{\prime}\) upon traversing the output coupler. Similarly, vector \(4^{\prime}\) is resolved into vectors \(3^{\prime \prime}\) and \(2^{\prime \prime}\), Fig. \(3 B\) and \(3 C\). Upon summing the components in the output, \(2^{\prime}\) and \(2^{\prime \prime}\) cancel since they are out of phase,

FIG. 5-Three dual t-r boxes and cutaway view of dual t.r box
while \(3^{\prime}\) and \(3^{\prime \prime}\) add to produce a unit vector in arm \(3^{\prime}\), the receiver arm, Fig. 3D.

Theoretically, there is no power into arms 4 (transmitter) or \(2^{\prime}\) (dummy load). In actual practice, the couplers do not have a perfect power split; the phase shift is not exactly \(90-\mathrm{deg}\). The t-r tube has small reflections and absorption losses and some relative phase shift. Nevertheless, these factors can be minimized and the overall performance of a complete duplexer is close to theoretical over a wide frequency band.

Since no power is returned to arm 4, the transmitter arm is effectively decoupled from the antenna and receiver, which eliminates the need for atr tubes.

\section*{Transmitting}

Turning to the high-level or transmitting condition, Fig. 4, the input windows of the t-r tube fire and the gaseous discharge behind the windows behaves as a short circuit. Assuming a unit-voltage vector on arm 4 (transmitter), the power split and 90-deg phase shift of the input coupler result in vectors 3 and 2. These are each reflected with \(180-\mathrm{deg}\) phase shift
from the input windows of the fired t-r tube. These reflected vectors again traverse the input coupler and recombine to a unit vector in antenna arm 1, Fig. 4A with no reflection presented to the transmitter arm. The vswr at the transmitter is thus quite low.

Since the \(t-r\) is not a perfect switch, some power is transmitted through it producing leakage power consisting of a spike, the transient switching power, and a quasisteadystate flat. Assuming a magnitude \(L\) of the leakage-power voltage vector for either the spike or the flat, the vectors as shown in Fig. 4 B recombine to cancel in the receiver arm and add in the dummy arm. Ideally, no leakage power is incident on the receiver arm and all of the leakage power is incident on arm 2'. A low-power matched termination is provided on the dummy
arm to absorb this power.
Here again, imperfections in the short-slot couplers with respect to power split and durations in theoretical phases together with inherent reflections and losses in the t-r tube, result in some leakage power incident on the receiver arm. However, in practice, a cancellation of the spike of \(4-6 \mathrm{db}\) and a cancellation of \(6-10 \mathrm{db}\) of the flat power are achieved providing an increase in the safety factor with respect to crystal burnout protection.

\section*{T-R Tube Construction}

A cutaway view of a typical dual t-r tube is shown in Fig. 5. Each section of the dual t-r tube is similar to the single-tube prototype. At high frequencies the two sections share a single wall thickness, while at the lower frequencies a double wall thickness is used.

FIG. 6-View of complete duplex, above, and detail of gasket assembly for t-r tube and mating fiange, below. Basic components (A) are assembled (B) then compressed to form tight seal (C)

A small aperture in the common wall serves to maintain equality of gas pressure and composition. This helps to insure uniformity between sections of those properties that depend upon the nature and pressure of the gas fill, such as leakage power, recovery time, arc loss and ignitor voltage drop. Each section is provided with its own ignitor terminal, although future designs may incorporate current-balancing resistors with only a single ignitor terminal.

The development samples of the couplers were designed with a special double choke flange to mate with the tube flanges. This was made by slicing two standard chokes in the direction of the narrow wall and butting them together. For pressurization, a special rubber gasket somewhat like a figure 8 was inserted into the resulting pressurization groove. This arrangement was replaced by the improved design shown in Fig. 6. This utilizes a composite metal-rubber gasket which fits into a rectangular groove provided on the outer periphery of the waveguide of the mating flange on the coupler.

\section*{ATR System}

One of the most difficult problems in the design of a broadband duplexer is that of the atr system. The inherent \(Q\) of conventional atr tubes is too high to permit a reasonable protection from excessive branching loss over a wide frequency band. Thus, 2, 3 and 4 tubes with various spacings and resonant frequencies have been utilized. These multiple-tube circuits introduce an appreciable loss in antenna power and often have excessive branching loss at a particular frequency within the band depending on the magnitude and phase of the transmitting tube.

These problems are eliminated with the short-slot duplexer, since the isolation between receiver and antenna arms is sufficiently high to insure that no value of phase and impedance of the transmitter tube will increase the duplexer loss by more than a fraction of \(a \mathrm{db}\).

\section*{Reference}
(1) Henry J. Riblet, The Short-Slot Hybrid Junction, Proc \(1 R E, 40, \mathrm{P} 180\), Feb. 1952

\title{
Continuous Film Scanner
}

\begin{abstract}
Optical features and electronic circuitry of rotating-polygon flying-spot scanner, originally developed as a high-quality color signal source, now adapted for broadcast applications. Avoids problems of color synchronization, registration and shading effects
\end{abstract}

TELEvising of film programs is complicated by the fact that standard sound films are recorded at 24 frames per second, whereas television images are scanned in the United States at 30 frames per second.
In current monochrome broadcast practice, this discrepancy is resolved by projecting the film images into a storage camera tube (iconoscope or image orthicon) which retains the image of each film frame until scanning takes place. A flash of light occurring at the end of each scanning field passes through the film to the camera tube.

The flashes are so synchronized with the film motion that two such flashes occur while one film frame is present in the gate, and three flashes occur during the dwell time of the succeeding film frame. Thus, during the scanning of five fields \((5 \times 1 / 60\) th \(\mathrm{sec}=1 / 12\) th sec\()\) two film frames are projected (\(2 \times\) \(1 / 24\) th \(\mathrm{sec}=1 / 12\) th sec) and the two processes are brought into synchronism.

It is required only that the film transport mechanism shall be synchronized to the field scanning rate; in practice this is accomplished by locking the projector motor and the synchronizing signal generator to the local \(60-\mathrm{cps}\) power source.

\section*{Disadvantages}

In monochrome practice, this method is open to two objections. The local power supply frequency may differ slightly from the nominal scanning standard of 60 fields per second. Also, the storage properties of the camera tube may produce deleterious effects such as variations in shading over the image. As a result, great pains are necessary through such techniques as edge-lighting of the iconoscope, to produce a high-quality image.

FIG. 1-Polygon has 24 sides; rotates once per second

FIG. 2-Optical elements of core that fits inside polygon

When compatible color transmissions are contemplated, the storage tube method of scanning is open to two additional objections. The field scanning rate is synchronized, in FCC color standards, to an accuracy of three parts in a million. To avoid immediate or eventual loss of synchronism in this case, the projector motor must be driven by a crystal-controlled power supply
having the requisite precision and tied to the color-sync generator.

Three images, in the primary colors, must be laid down in precise registry on three camera tubes to secure simultaneous red, green and blue signals that are later encoded according to NTSC specifications.

\section*{Continuous Scanning}

All these problems may be solved by use of continuous flying-spot scanning in conjunction with a nonstorage multiplier phototube pickup. The film moves continuously through the gate and an optical compensator arrests the relative motion of the film image. As one frame moves out of the gate, its image fades while that of the next frame comes into view, superimposed on the first.

If the sum of the brightnesses of the two superimposed images remains constant during the transition between frames, flicker is avoided and the scanned image is present continuously, no matter what the speed at which the film moves through the scanner.

Light from the spot on the c-r tube face passes through the optical compensator of the continuous projector, which effectively arrests the film motion while an image of the spot scans the continuously present film frame. The modulated light then enters a multiplier phototube, where it generates the video signal.

For obtaining compatible color, the light beam, after passage through the color film, is passed through a beam splitter consisting of dichroic mirrors and filters. The splitter separates the beam into three components, one in each of the primary colors. These pass individually into three multiplier phototubes, which produce the three simultaneous primary-color signals.

\title{
for Monochrome or Color
}

\author{
By E. H. TRAUB and J. F. FISHER \\ Research Division \\ Philco Corporation \\ Philadelphia, Pa.
}

Since there is only one light source, the three signals arise at any instant of time from identically the same spot on the film image and there is no registration problem. It is relatively simple to secure uniform light from each point on the raster of the flyingspot tube and the three phototubes display unvarying sensitivity to the light, so there is no uneveness of shading.

\section*{Scanner Signal Source}

Of several \({ }^{1}\) possible types, that adopted for the Philco scanner is the prism compensator. One form consists of a polygon of glass, having an even number of parallel faces. The film is wrapped around the polygon so that adjacent film frames cover acjacent faces of the polygon. The polygon is rotated about its axis of symmetry, while the light from the flying-spot tube passes through the polygon, entering one face and departing through the parallel face at the opposite side of the polygon and thence through the film.

\section*{Optical Compensation}

The optical compensator* finally adopted makes ase of a twenty-four sided polygon. At 24 film frames per second, it rotates once per second. In the \(35-\mathrm{mm}\) scanner, its diameter is about \(5 \frac{3}{2}\) inches as shown in Fig. 1.

As the polygon rotates, and the angle of each face changes, refraction of the light in passing through the polygon causes the spot to adhere to a particular point on the film, thus effectively arresting the film motion.

The complete system is so ar-

\footnotetext{
- An invention of Dr. John C. Kudar. The Philco Corporation has the exclusive license under IDr. Kudar's appllcable patents and applications, but only for the elevision field.
}

FIG. 3-Path through lenses and prisms of the optical sysiem

FIG. 4-Fade in and out of successive frames for lap dissolve

FIG. 5-Simplified diagram showing manner of flying-spot scanning
ranged that an image of the spot falls not only on one film frame, but also another image of the spot falls on the same point of the adjacent frame. During transition from one frame to the next, there is no interruption, one spot image taking over as the preceding spot fades away.

The polygon has a large cylindrical, polished hole cut in it. The film can be wrapped partially around the polygon, so that each film frame is optically and mechanically registered with each corresponding facet of the polygon. This arrangement, termed isotransport, enables the velocities of film and polygon to be kept automatically in phase synchronism.

Contained within the rotating polygon is a stationary optical system, the core, Fig. 2. This is a stationary platform that carries a number of optical elements essential to the system. Two planoconvex cylindrical lenses form a zero-focus air gap between the rotating polygon and the other optical components that constitute the core. Two prismatic rhombs serve as path length extenders, in the optical sense. Without such path length extension the diameter of the polygon could not be reduced sufficiently to enable it to be contained within the diameter of a film sprocket. The core contains an adjustable optical shrinkage compensator. A sectional view of the optical system is shown in Fig. 3.

An inherent feature of all machines using continuously moving film is that their operation depends on the degree of shrinkage of the film and provision for shrinkage compensation must be made. In a prismatic polygon-type of optical compensator, the best way to compensate for film shrinkage is effectively to vary the optical diameter

FIG. 6-Tricolor phototube assembly and film traction mechanism of picture head
of the polygon arrangement.
Compensation is accomplished by introducing into the optical path between opposite pairs of facets of the polygon the optical equivalent of a parallel plate of variable thickness. Such a plate is formed by sliding a thin wedge against a stationary wedge having the same slope angle. The in-and-out movement of this wedge against its corresponding mate, separated by a small air gap, varies the optically effective path length through the polygon and thus compensates for film shrinkage.

To maintain proper focus, a second plane parallel plate of variable thickness is introduced into the optical system between the projection lens and the polygon. The sum of the thicknesses of the shrinkage
compensator and refocus compensator is kept constant by push-pull operation of the respective wedges.

\section*{Picture Transition}

In continuously moving film devices, a method of picture transition from one film frame to the next must be provided in place of the intermittent pull-down. The method used in the scanner described is lap dissolve, the alternate fading in and fading out of successive film frames (Fig. 4).

While a given film frame is fading from maximum to minimum light intensity on the screen, the successive film frame fades in from zero to maximum intensity and the sum of the two light intensities must be constant. Thus, two successive film frames are superim-

FIG. 7-Arrangement of elements of the scanner
posed on the screen, except at the instant when one film frame appears on the screen, the preceding frame having faded down to zero intensity and the succeeding frame not yet having risen to a finite level of intensity.
The dynamic manner of operation is shown in Fig. 5, which relates the position of rotation of the polygon to the lap-dissolve diagram. The first view shows the polygon in the normal position, that used to transmit one stationary film frame (\(T_{0}\)). The second view shows the polygon in a position of rotation one-half frame-time later (\(T_{\text {。 }}\) \(+1 / 48\) second). At this instant the light from the raster is evenly divided between two successive film frames.

The third view shows the polygon an instant later (\(T_{0}+1 / 24\) second \(+\hat{o}\)). This view demonstrates that, when only one facet is illuminated by the projection lens, the action of the optical compensator causes the raster to move over a height of three film frames. In other words, a gate three film frames high is required even though no more than two film frames are utilized simultaneously.

The heart of the scanner, the optically compensated film-traction mechanism, is shown in Fig. 6. The main picture sprocket is not motor driven, but is driven by the film.

\section*{Circuits}

The block diagram of Fig. 7 shows the major units of the equipment. The source of the scanning beam of light is a flat-faced fiveinch diameter cathode-ray tube, using magnetic deflection and focus and having a zinc oxide phosphor. The scanned raster on the face of the flying-spot tube has a standard \(4 \times 3\) aspect ratio, with a diagonal equal to 3.75 inches. The tube, employing a fine-grain, short-persistence phosphor developed by Lansdale Tube Co., is operated at an anode potential of 30 kv and a beam current of \(250 \mu\).

\section*{Deflection}

The deflection circuits are driven from horizontal and vertical signals obtained from a standard sync generator. Since the film transport
provides constant velocity film motion with optical compensation, the machine is completely nonsynchronous with respect to deflection sync.

If used to generate a standard NTSC color sigral, the sync generator must be locked to a \(31.5-\mathrm{kc}\) pulse derived from the \(3.58-\mathrm{mc}\) crystal subcarrier generator.

When black and white film is run through the scazner, the sync generator may be locked either to the \(3.58-\mathrm{mc}\) subcar-ier generator, an internal crystal in the sync generator, or to the 60 -cycle power line.

The raster on the face of the flying-spot tube is standard, 60 fields per seconc interlaced and 525 lines per frame. To establish a definite black level in all three channels, the flying-spot electron beam is blanked during the horizontal and vertical blanking periods when no picture information is transmitted. This is accomplished by feeding a mixed blanking signal, obtained from \(\varepsilon\) standard sync generator, to a blanking amplifier. Negative blanking pulses of sufficient amplitude to cut off the electron scanning beam are applied to the control grid of the flying-spot c-r tube. For a vertical blanking time of 8 percent this would leave 483 active scar.ning lines per television frame.

\section*{Light Splitting}

The phototube head consists of three multiplicr phototubes, types 5819 and 6217, two dichroic mirrors, a plane mirror and three color trim filters. The intensity and spectral distribution of the light entering the phototube assembly at a given instant of time depends on the density and color of the picture element on the film that is being scanned. The first mirror, which is a red-reflecting dichroic type \(R R D\) reflects ed light toward the plane mirror \(M\) and transmits green and blue light. The second dichroic mirror \(B R D\) reflects blue light towards the blue phototube and transmits green light.

Suitable color filters in front of the phototubes take into account the spectral cutput of the flyingspot tube, the reflectance and transmission of the dichroic mirrors and the spectral response of the phototubes to obtain the three channel

FIG. 8 -Pholotube circuit includes phosphor compensation
signals \(E_{R}, E_{o}\) and \(E_{A}\).
Since in some applications it may be desirable to separate the phototube head from the channel amplifiers, the phototube outputs are connected to cathode followers by short lengths of low-capacitance cable. The cathode followers feed coaxial lines that terminate in the master gain control. The signal level at this point in the system is approximately 0.1 volt peak to peak with black level positive.

The phototubes are head-on multiplier type and the d-c dynode voltages are obtained from 18 K resistors. A master dynode power supply, which may be varied from -500 volts to \(-1,200\) volts \(d-c\) is connected to the photocathodes of all three phototubes. To improve the signal-to-noise ratio, by achieving good collection efficiency, the resistor between the photocathode and the first dynode is higher in value than the resistors used between the other dynode stages.

White balance requires that the three channel voltages \(E_{R}, E_{0}\) and \(E_{B}\) be set equal when white is being transmitted. To achieve white balance by inserting neutral density filters in the light paths would decrease the signal-to-noise ratio for the attenuated channels.

The white-balance controls consist of 50,000 -ohm rheostats connected between dynodes 5 and 7 of the red, green and blue phototubes. Controlling gain of each channel in this manner makes it possible to realize an optimum sig-nal-to-noise ratio and still prevent overloading of the latter dynode stages.

Figure 8 shows the phototube circuit, cathode follower and master gain control for one channel. Similar circuits are used in the other channels and the master gain control consists of three matched ganged potentiometers.

When the peak plate current of a multiplier phototube is held to approximately \(300 \mu \mathrm{a}\) or less, the output current is directly proportional to the incident illumination. The dynode voltage supply is adjusted to a voltage which, with the master gain control turned almost to maximum, will provide standard output with dense film. This adjustment will vary some with multiplier phototubes of different sensitivity, and generally need only be changed when phototubes are changed.

The white balance is adjusted by changing the gain of the individual phototubes, by means of rheostats connected across dynodes 5 and 7, so that the voltages \(E_{R}, E_{G}, E_{B}\) are equal when a film containing a white reference against a black background is inserted in the film aperture. Once white balance has been established in this manner it will not vary with different settings of the master gain control.

\section*{Phosphor-Compensation Amplifier}

Shown in Fig. 9 is the circuit of the phosphor compensation amplifier. This unit serves to increase the signal level from 0.1 volt to 1.0 volt and also, to compensate for the afterglow of the zinc oxide phospher.

The phosphor has a fast
decay time and the light decays to approximately 30 percent of its initial value in 1.5 microseconds. However, it is necessary to correct for this finite decay time with video peaking networks, to obtain a highdefinition picture without smear.

The circuit of the first compensating stage is illustrated in Fig. 8. A stage of cathode peaking, \(V_{z}\) in Fig. 9, is also used. A fast-acting keyed clamp \(V\), is used in the output circuit of the phosphor-compensation amplifier to insure optimum low-frequency response and also to remove any 60 -cycle hum that may be picked up in the input circuits. The clamp driving pulses, which are approximately \(2-\mu \mathrm{sec}\) wide, are delayed 7 usec from the start of horizontal blanking.

In alignment, both phosphorcompensating stages are removed and the frequency response of the amplifier is adjusted by means of the shunt peaking coils for \(V_{1}, V_{2}\) and \(V_{3}\), resulting in a uniform response to 5 mc and good transient response. A test film, such as the standard RTMA resolution chart, is inserted in the film aperture and the phosphor compensation circuits are adjusted to produce a highresolution picture without smear.

This results in an overall frequency response, as measured between input to the first compensating stage and the output of the phosphor-compensation amplifier, which is flat between 60 cycles and 25 kc and then rises to a five-to-one peak at 3.5 mc and remains flat to over 5 mc . The resultant picture has good horizontal resolution to 400 lines (fundamental frequency of 5 mc) which is more than adequate for standard television transmission in which the combination of the transmitter and receiver limits the horizontal resolution to 320 lines (4 mc) or less.

When the frequency response is measured by means of line-selector techniques \({ }^{\text {a }}\) from the test chart film, the detail contrast at 400 lines is approximately 50 percent of that at 100 lines. If desired, the detail contrast may be made equal at 100 and 400 lines by means of an aperture-correcting network, which has a frequency response with a gradual two-to-one rise between 1.25 mc and 5 mc and a linear phase

FIG. 9-Circuit of phosphor compensation amplitier
characteristic. Ordinary peaking networks produce a bad following white after a black-to-white transition.

The phosphor compensation amplifier and the gamma corrector for each channel are built on a single chassis. A unity gain cathode follower couples the two units.

\section*{Gamma Correction}

Gamma correction must be applied to the individual red, green and blue channel voltages to correct for the power-law distortion of the color picture tube in a receiver. When the transmitting equipment is white balanced, as required by NTSC specifications, voltages \(E_{R}\), \(E_{\sigma}, E_{B}\) are equal on white; and a color picture element in the film will produce unequal voltages in
the red, green and blue channels. The ratio between these voltages must be maintained in terms of light output from the three phosphors of a color tube if the luminosity, hue and saturation of the color on the film are to be reproduced faithfully.

Color display tubes have a gamma characteristic of approximately 2.2 relating brightness to grid drive. Without correction at the transmitter the light output of the color picture tube would show compression for signals near black level and expansion for signals of maximum amplitude. In this case, the ratio between the channel voltages would not be maintained in terms of light output from the individual phosphors and the color reproduced would be in error.

FIG. 10 -Circuit of gamma corrector stages

The gamma ccrrectors used with the film scanner are designed to have a gamma sharacteristic that is the reciprocal of the gamma of the reproducer. The gamma corrector, therefore, expands the signals near black level and compresses the signals in the highlights.

Contrast range of a tv color display device may not be as great as that obtained by theater projection. Also, there are distortions in luminosity and saturation in producing positive color film prints.

\section*{Gamma Corrector}

A circuit for ganıma correction \({ }^{8}\) is shown in Fig. 10. It is best analyzed by ignoring tubes \(V\), and \(V_{1,}\) which are used for black level clamping, and considering the grid of tube \(V\) : pegged to a fixed direct voltage. Tube \(V_{1}\) approximates a linear current amplifier because of cathode degeneration and the signa impressed on its grid has a peak-to-peak amplitude of one volt with black level negative. Tube \(V_{2}\) acts as a plate load for tube \(V_{1}\), and has a resistance equal to \(1 g_{m}\). Since the \(g_{m}\) of tube \(V_{z}\) is a function of its operating bias, its value will vary as the dynamic plate voltage of tube \(V_{1}\) changes with video signal.

Tube \(V_{g}\) is biased at an operating potential so that a small increase of input video voltage near black level applied to tube \(V_{1}\) will cause a large change in the \(g_{n}\) of tube \(V_{2}\). The effective plate load of tube \(V_{1}\) will then increase and give greater amplification for signals near black level than it does for signals near maximum amplitude. In effect, tube \(V_{2}\) becomes a varying resistor having its largest value when the video signal impressed on the grid of \(V_{1}\) is near black level and its smaliest value when the impressed video signal is large.

By selecting the proper operating bias for tube \(V_{2}\), the circuit may be adjusted to provide the correct amount of gamma correction. Tube \(V_{3}\) is a unity-gain cathode follower between the nonlinear stage and the output stage. Its main purpose is to minimize capacitance loading on the plate cf \(V_{1}\).

For a gamma corrector circuit of this type to operate correctly, black level must be held at a definite
d-c potential on the grid of \(V_{1}\). Tubes \(V_{4}\) and \(V_{7}\) accomplish this and also maintain stable drift-free operation.

Positive horizontal drive signals, which are obtained from a standard sync generator and delayed about \(7 \mu \mathrm{sec}\), are applied to the input of tube \(V_{7}\). Negative pulses are applied to the cathode of \(V_{\mathrm{c}}\), while positive pulses are applied to the cathode of \(V_{1}\). Positive pulses are therefore obtained at the plate of \(V_{1}\) and applied to the diode plate of \(V\), by cathode follower \(V_{3}\). By means of the balance control in the cathode circuit of \(V_{1}\), pulses on the plate and cathode of \(V\) are adjusted to be of equal magnitude but opposite polarity and hence do not appear in the output signal.

FIG. 11-Block diagram of monitoring equipment. Top switch is \(S_{1}\)

When the average value of the video signal impressed on the grid of \(V_{1}\) changes, d-c is fed back from the cathode circuit of \(V\), to re-establish black level at the correct operating voltage on the grid of \(V_{1}\). In addition, the d-c potential applied to the grid of the nonlinear tube \(V_{s}\) is also obtained from the cathode circuit of diode \(V_{4}\). This helps greatly to maintain correct operating conditions with slight changes of \(\mathrm{B}+\) voltage or changes in plate current of \(V_{1}\).

\section*{Calibration}

Switching circuits, shown in Fig. 11, have been incorporated so the equipment may be calibrated and white-balanced rapidly. By means of \(S_{2}\), the arm of which is connected to a unity-gain cathode follower,
any one of four signals may be applied to both a picture monitor and an oscilloscope. These four signals are: a one-volt peak-to-peak 60 -cycle calibrating voltage; a onevolt peak-to-peak ten-step linear staircase signal operating at a repetition rate of 15.75 kc ; the output signal from the phosphor compensation amplifier and the output signal from the gamma corrector:

Either the output signal from the phosphor compensation amplifier or the staircase signal may be applied to the input of the gamma corrector by means of \(S_{1}\). Separate switches are provided in each of the red, green and blue gamma correctors. Each unit, therefore, has a single low-capacitance output monitoring cable that connects to a three-position red, green, blue switch, the arm of which feeds the monitor and test oscilloscope.

The gamma correctors are most easily calibrated by applying the one-volt ten-step linear staircase signal to the input and then adjusting the stretch and gain controls so the various steps line up with calibration marks on the oscilloscope. A calibration that has worked very well with many color films results in a ratio of gain of eight to one between step one, which is nearest black level, and step ten.

White balance is adjusted by setting voltages \(E_{R}, E_{G}, E_{B}\) equal at the output of the phosphor compensation amplifiers when a black and white test film is inserted in the film aperture. To white-balance on equal-energy white, an opaque mask having a small horizontal slit may be placed in front of the flyingspot cathode-ray tube and the pulse voltages obtained in the three channels may be adjusted to be of equal amplitude by means of the whitebalance controls. If it is desired to white-balance for a different reference white, an appropriate filter may be inserted in front of the slit on the opaque calibrating mask.

\section*{Refrarences}
1) D. G. Fink, Continuous Film Scanner for TV, ELECTRONICs, p 114, July 1951. (2) J. F. Fisher, Television Picture Line Selector, Electronics, p 140, Mar.
(3) R. C. Moore, The Specification and Ray Tubes Paner presentedy of Cathode Ray Tubes, Paner presented at 1952 IRE

\title{
Single-Channel System of
}

\begin{abstract}
Fading due to multipath transmission may be overcome by system that produces frequency diversity within a single channel. Technique is simple, economical and may find wide application in line-of-sight communications
\end{abstract}

AVailable frequency diversity systems provide improved signal reception under multipath transmission conditions by using two or more communications channels. Duplication of receiving and transmitting equipment, however, makes such systems quite expensive.

The current trend towards uhf communications makes wider bandwidths available and suggests use of a single-channel frequency diversity technique in which the r-f energy is spread within a single channel. Such a system avoids the expense of duplicating equipment for separate channels and the use of special circuits for selecting the stronger channel.

This article describes a singlechannel frequency diversity system for \(a-m\) voice communication. The effectiveness of the system is described in terms of the parameters of the diversity signal and transmission paths.

\section*{Single-Channel System}

The single-channel frequency diversity system for a-m voice communication produces the spread of r-f energy over the channel by frequency modulating the carrier with a tone before amplitude modulating with intelligence. The resultant \(\mathrm{f}-\mathrm{m}\) carrier and sidebands act as separate carriers of the a-m intelligence and must remain within the passband of the equipment. The frequency diversity signal is described by Eq. 1 and its spectrum plotted in Fig. 1A
\[
\begin{align*}
& e=E\left(1+m \sin 2 \pi_{\alpha} t\right) \\
& \quad \sin [\omega t+(D / \mu) \sin 2 \pi \mu t] \tag{1}
\end{align*}
\]
where \(\omega=\mathrm{r}-\mathrm{f}\) carrier frequency
\(\alpha=\mathrm{a}-\mathrm{m}\) speech frequency, \(\mu=\mathrm{f}-\mathrm{m}\) tone frequency, \(m=\) percentage a-m, and \(D=\mathrm{f}-\mathrm{m}\) peak frequency deviation.

The effect of multipath transmission on a single frequency for a fixed geometry of signal path is plotted in Fig. 1B and 1C with amplitude versus frequency. This is essentially a plot of the magnitude of the transfer function of the transmission medium with multiple transmission paths.
\[
\begin{equation*}
|Y|=\left(1+x^{2}+2 x \cos \omega t_{0}\right)^{1 / 2} \tag{2}
\end{equation*}
\]
where \(E_{3}=\) direct path signal voltage, \(E_{2}=\) indirect path signal voltage, \(x=\left(E_{2} / E_{1}\right)<1\) and \(t_{\text {。 }}\) \(=\) delay of \(E_{2}\) in traveling the longer path with respect to \(E_{1}\). The two signals are seen to cancel or give a null in the transfer function at frequency intervals of \(1 / t_{0}\).

The effects of frequency diversity may be visualized by observing Fig. 1 and considering first an \(a-m\) signal without diversity. If this signal falls on a null of the cancellation pattern it may be completely lost. With the diversity signal of Fig. 1A, while a few carriers may be lost by the cancellation pattern others will be reinforced such that no matter where the cancellation pattern falls with respect to the signal spectrum the entire signal will never be completely cancelled.

\section*{Dynamic Fading}

The condition of dynamic fading may be observed in a to picture when an aircraft passes overhead and the signal fades in and out. This effect is equivalent to the cancellation pattern of Fig. 1B sliding along the abscissa; or the peaks and nulls passing the carrier
frequency. Under this condition Fig. 1 illustrates how the diversity signal tends to average over the cancellation pattern and smooth the signal fluctuation.

The effects of the parameters of the diversity signal and the multipath transmission conditions may likewise be observed. The indirect signal delay \(t_{0}\) is proportional to the difference in multipath signal path lengths. Figure 1C shows how the cancellation pattern spreads as \(t_{0}\) becomes small. The diversity signal, spanning a smaller portion of the cancellation pattern, will have less effect in averaging over the pattern.

The diversity signal width may be increased, however, by increasing \(D\) to increase the diversity signal effectiveness up to channel bandwidth limits. Essentially, the larger values of \(t_{0}\) and \(D\) give the greater effectiveness of the frequency diversity system.

\section*{Theoretical Analysis}

The frequency diversity system is analysed mathematically by summing the direct and indirect signals
\[
\begin{gather*}
\epsilon_{t}=E_{1}\left(1+m \sin 2 \pi_{\alpha} t\right) \\
\quad \sin [\omega t+(D / \mu) \sin 2 \pi \mu t] \tag{3}\\
e_{2}=E_{2}\left[1+m \sin 2 \pi_{\alpha}\left(t-t_{0}\right)\right\} \\
\sin \left[\omega\left(t-t_{0}\right)+(D / \mu) \sin 2 \pi \mu\left(t-t_{0}\right)\right] \tag{4}
\end{gather*}
\]

The indirect signal is shifted an amount \(t_{0}\) in time to account for its delay in traveling the longer path.
It will be assumed that \(t_{0}\) will be small with respect to the period of the maximum speech frequency \(x_{\text {max }}\) such that \(t_{0}\) in the a-m term of \(e_{\because}\) may be neglected. This assumption is valid for most line-of-sight communication. Where the assumption is not valid frequency-selective

\title{
Frequency Diversity
}

\author{
By DEAN D. HOWARD \\ Vaval Research Laboratory Washington, D. C.
}
distortion of the speech will be observed as in overseas short-wave broadcasts where portions of the speech spectrum are attenuated and others reinforced. \({ }^{1.2}\) This effect will rarely be significant in line-of-sight communication.

The two signals are summed and reduced to the form of Eq. 5 where \(e_{0}\) is the resultant received signal
\(e_{s}=E_{5}\left(1+m \sin 2 \pi_{\alpha} \ell\right)\).
\[
\begin{align*}
& \left\{1+x^{2}+2 x \operatorname{sos}\left[\frac{2 D}{\mu} \sin \pi \mu t_{0}\right)\right. \\
& \left.\left.\cos \left(2 \pi \mu t-\pi \mu_{0}\right)+\omega t_{0}\right]\right\}^{3 / 2} \\
& \sin \left[\omega t+\frac{D}{\mu} \sin 2 \pi \mu t\right. \\
& \left.\quad-\tan ^{-1} \frac{x \sin \beta}{1-x \cos \beta}\right] \tag{5}
\end{align*}
\]
where \(\beta=\left[(2 D / \mu) \sin \pi \mu t_{0}\right) \cos\) \(\left.\left(2 \pi \mu t-\pi \mu t_{0}\right)+\omega t_{0}\right]\).

The speech amplitude-modulation function remains in its transmitted form. The second major part is the carrier frequency function. This function contains the carrier frequency, the trarsmitted frequencymodulation function and a distortion term of the frequency-modulation function caused by multipath transmission.

In a practical a-m receiver, the received signal passing through tuned r-f circuits will cause some amplitude-modulation of the signal as a result of the frequency-modulation functions. \({ }^{\text {a }}\)

This addition to the signal envelope will appear in the second detector output zonsisting of only the tone frequency \(\mu\) and its harmonics. \({ }^{\text {. }}\)

The remaining portion of the resultant signal is the product of \(E_{1}\) and the radical. The radical contains a d-c component, plus com-

FIG. 1-Frequency spectrum of slgnal with and without diversity (\(\AA\)). Effects of multipath transmission on signal without diversity are shown for short time dif. ference in path (B) and long path difference (C)
ponents of the tone frequency \(\mu\) and its harmonics which will appear on the signal envelope.

\section*{Undesired Components}

The a-c components in the signal envelope of the frequency \(\mu\) and its harmonics are undesirable and must be removed from the second detector output.

This second-detector output is removed by choosing \(\mu\) sufficiently high to be readily removed from the receiver audio output by a lowpass filter.

Allowing for intermodulation between speech and tone, \(\mu\) must be chosen greater than twice the maximum speech frequency with some additional space for practical lowpass filtering.

The useful part of the radical is the d-c component that determines the effective received signal level under multipath transmission. This d-c component may be found by averaging the radical over a period of the tone \(\mu\) as shown in Eq. 6
\[
\left.\begin{array}{rl}
b=\mu & \int_{-1 / 2 \mu}^{1 / 2} \mu
\end{array}\left\{1+x^{2}+2 x \cos \left[\frac{2 D}{\mu}, \quad \sin \pi \mu t_{0}\right) \cos (2 \pi \mu t)+\omega t_{0}\right]\right\}^{1 / 2} d t
\]

The low-pass filter performs this integration in the receiver. The values of \(b\) were computed graphically for the the following theoretical data.

The term \(b\) although referred to as a d-c component may change with time when the geometry of the propagation paths change with time. This term causes the rise and fall of signal resulting from multipath transmission as the signal paths and \(t_{0}\) change. Figure 2 shows a plot of signal level \(b\) as \(t_{0}\) changes to cause a \(2 \pi\)-radian rotation of \(\omega t_{0}\) or a full fading cycle.

\section*{Simplified Equation}

A simplified form of Eq. 6 results when the argument of the sine function is sufficiently small to replace the sine function by the argument reducing the effective received signal to
\[
\begin{array}{r}
b=\mu \int_{-1 / 2 \mu}^{1 / 2 \mu}\left\{1+x^{2}+2 x \cos \left[\left(2 D t_{0}\right) \pi\right.\right. \\
\left.\left.\cos (2 \pi \mu t)+\omega t_{0}\right]\right\}^{1 / 2} d t \tag{7}
\end{array}
\]

This function is plotted in Fig. 2 for the worst multipath transmission condition where the two signals arrive with equal amplitude or where \(x\) is unity. Since \(\omega \gg 2 \pi D\), the change in \(t_{0}\) required to rotate \(\omega t_{0}\) thru \(2 \pi\) radians or a full cancellation cycle will cause negligible change in the value of \(2 D t_{0}\). The curves in Fig. 2, for a fixed value of \(t_{0}\) describe the multipath transmission fading cycle for different values of \(D\), which is a measure of the spread of r-f energy of the diversity signal.

When \(D\) is zero there is no diversity, and the severe fading cycle shown in Fig. 2 is experienced for \(2 \mathrm{D} t\) 。 equal to zero. As the r-f energy of the diversity signal is spread by increasing \(D\), it is observed that frequency diversity raises the fading cycle null and smooths the overall signal level fluctuations over the multipath transmission fading cycle.

In most multipath transmission problems the problem is to maintain the highest minimum signal over the fading cycle. However, in line-of-sight communication, reduction of the overall peak signal fluctuation over a fading cycle can also be important where signal fading approaches rates high enough to cause audible flutter in the receiver audio output. This flutter causes a garbled effect upon the speech with loss of intelligibility.

An example of rapid fading in line-of-sight communication is the reception of a tv picture while an aircraft passes overhead. The aircraft provides a moving reflecting surface for the indirect signal causing a rapid flicker of the picture which is too rapid to be controlled by ave circuits. The picture flicker can be annoying and cause loss of visual information to the viewer even when the signal remains well above readable level over the fading cycle.

\section*{Improvement}

The two effects of frequency diversity that improve communication under multipath transmission are plotted in Fig. 3 using the com-
plete function of Eq. 6. Each point in Fig. 3 is derived from a separate plot of the fading cycle like the three curves in Fig. 2.

The minimum value of \(b\) over a complete fading cycle is plotted in Fig. 3 giving the minimum signal level where the direct signal level \(E_{1}\) is normalized or set equal to unity. The peak signal fluctuation over the fading cycle is also plotted in volts for an \(E_{1}\) of unity.

To visualize the significance of these graphs, consider first the condition where \(t_{10}\) is small and the abscissa reduces to \(2 D t_{0}\). The curves are for only the worst multipath transmission condition where the signals arrive with equal amplitude; \(x\) is unity. With no diversity, \(D\) equal to zero, \(b_{\text {min }}\) drops to zero, or the signal is completely lost in the fading cycle null.

Also the peak signal fluctuation is at its maximum value of 1 v . As the r-f energy of the diversity signal spreads over the channel or as \(D\) increases, \(b_{m i n}\) is raised and peak fluctuation decreases to improve signal reception.

\section*{Signal Path Difference}

The multipath transmission parameter \(t_{\mathrm{n}}\) is proportional to the difference in signal path lengths. Since the abscissa is the product \(2 D t_{n}\), small values of \(t_{n}\) require a large \(D\) or diversity signal bandwidth to remain within the effective region of the curve. Therefore, when multipath transmission problems involve small differences in signal path lengths it is necessary to consume greater bandwidth with the diversity signal by increasing \(D\) for the diversity signal to remain effective.
The significance of the complete abscissa function with the sine term is that when \(t_{n}\) becomes very large or equal to the period of \(\mu\), the abscissa function returns to zero and frequency diversity effectiveness is lost. By choosing \(\mu\) at its lower limit, \(t_{n}\) will be allowed its maximum range of values before reaching the point of loss of diversity effectiveness.

If \(\mu\) is chosen at \(10 \mathrm{kc}, t_{n}\) may increase to 100 microseconds corresponding to a difference in signal path lengths of 18.6 miles. For most multipath transmission prob-

FIG. 2-Variation of signal level with path length in radians: \(E\) parameter is proportional to f -m tone frequency
lems in line-of-sight communication, significant fading will rarely occur for a difference in path length above approximately 10 miles, and the 18.6 mile limit will seldom be significant.

To show how Fig. 3 may be used to analyse a particular single-channel frequency diversity system, a sample set of parameters is chosen to reduce the effectiveness of the diversity system to only one variable, \(t_{0}\). The f-m tone frequency \(\mu\) is chosen at 10 kc and peak f-m frequency deviation at 27 kc requiring approximately \(60-\mathrm{kc}\) bandwidth. With these values of \(\mu\) and \(D\) the abscissa function of Fig. 3 reduces to \(1.72 \sin \left(10,000 \pi t_{0}\right)\). By choosing \(t_{0}\) at discrete intervals, points on the curves of Fig. 3 may be located and replotted versus \(t_{0}\).

The abscissa function \(t_{0}\) of the new plot may be changed to more easily visualized units by converting to difference in path length of the direct and indirect signal which is equal to \(186,000 t_{0}\) miles. This plot is made in Fig. 4. Other methods of displaying the effectiveness of the frequency diversity system may be more desirable depending upon the particular application of the system under consideration.

\section*{Experimental Verification}

The two-path transmission problem was set up experimentally with a multipath transmission simulator to verify the results of the theoretical analysis. The simulator divides a transmitted signal into two paths where one signal is delayed by a continuous delay line. To observe a full fading cycle, îhe deinay signal phase was shifted by a motor-driven capacitive phase shif-

FIG. 3-Variation of minimum signal level and peak fluctuation with \(f\)-m tone frequency for a difierence in path length

FIG. 4-Variation of minimum signal level and peak fluctuation with path length for a given \(\mathrm{f}-\mathrm{m}\) tone frequency
ter, which continuously rotates the phase through \({ }^{5} 60\) deg. \({ }^{\text {s }}\)
It was necessary to beat the indirect signal down to a frequency where practical delay lines could be used. By use of the same local oscillator to beat the delayed signal back up to its original frequency, no change in frequency was caused by the two conversions.

The rotating phase shifter does change the irdirect signal frequency by an amount equal to the velocity of rotation of the phase shifter in cycles per second. This change in frequency is a true simulation of actual multipath transmission where, for example, if the reflection surfase is in motion, Doppler effect causes a small shift in the indirect signal frequency where the beat frequency between the direct and indieect signals is the fading cycle rate observed in the receiver output.

Data was taken from the simulator for different values of \(t_{0}\) or different lengths of delay cable. The experimental data agreed closely with the theoretical data.

\section*{Application of the System}

Multipath transmission problems in line-of-sight communication will normally involve short difference in path lengths since the longer the indirect signal with respect to the direct signal the more it is attenuated with respect to the direct signal level. Including attenuation of the indirect signal at its reflection surface, the difference in path length need not be very great to reduce the indirect signal to an insignificant level. In Fig. 4 as the difference in path length becomes
small the effectiveness of the diversity system decreases rapidly. To increase the effectiveness in this region, it is necessary to increase \(D\) which increases the signal bandwidth.

Problems involving very short difference in path lengths require considerable bandwidth which may be limited by equipment bandwidth. The diversity system effectiveness is independent of carrier frequency and it may be practical to use higher frequency ranges where wider bandwidths are available.

Determination of the most probable values of difference in path length causing multipath transmission problems may be difficult depending upon the particular problem. In some cases, it may be possible to calculate the difference in path length such as the ocean surface reflection problem in ship-toplane communication, in terms of antenna heights and and separation. In other cases, as line-of-sight commuication in the vicinity of structures or rugged terrain, a great number of possible reflection surfaces are present requiring extensive measurements to determine difference in path length. If it is desired to evaluate the frequency diversity system where the most probable values of difference in path length is difficult to determine, actual trial of the diversity system may prove most convenient and economical since it involves only simple modifications of existing communication equipment.

Other effects causing signal fluctuations, which are not significantly affected by frequency diversity limited to a single channel, may
also be present in line-of-sight communication. For example, shadowing from terrain, structures and antenna pattern lobes may cause rapid signal fluctuations when a communication terminal is in motion. In consideration of application of the frequency diversity system, it is necessary to distinguish between these effects and multipath transmission fading.

\section*{Conclusions}

The single channel frequency diversity system is not a cure-all for line-of-sight communication, but offers a simple and economical method of improving signal reception under some multipath transmission conditions. This analysis is made for only two transmission paths, although intuitively similar results may be expected with a greater number of signal paths.

Improvements in signal reception are paid for by greater space in the freqnency spectrum which is fundamental for any frequency diversity system. However, in uhf communications greater channel space is available. The cost of modifying equipment for use of the singlechannel frequency diversity system is normally small, and may require as little as a triode tone oscillator and triode phase modulator in the transmitter r-f oscillator output.

Other methods of obtaining single channel diversity may be used including the use of other forms intelligence modulation.

This material is taken from a thesis submitted by the author to the faculty of the University of Maryland in partial fulfillment of the requirements for the degree of Master of Science. The author wishes to express appreciation for suggestions by J. D. Wallace of the Naval Research Laboratory.

\section*{References}
(1) R. K. Potter. Transmission Characteristics of a Short-Wave Telephone Ci cuit, Proc IRE. 18, p 581, Apr. 1930.
(2) I. H. Girks. An Analysis of Distortion Resulting From Two-Path Pronagation. paper presented at the IRE Conv, N. Y., 1949.
(3) Hans Roder. Fffects of Tuned Circults Upon a Frequency-Modulated Signal, Proc IRE, 25, p 1,617. Dec. 1932.
(4) Murry G. Crosby, Frequency-Modulation Propagation Characteristics, Proc IRE. 24, p 898, June 1936.
(5) F. A Holmes. TIT, "Comprnents p. 288, Mérraw-Hill Book Co., Inc.. 1949 .

FIG. 1-Conventional mount assembly as used in type 6045 tube

FIG. 2-Type SN-1724D mount as assembled on ceramic stem. All elements are stacked on two vertical pins and positioned by ceramic spacers

\title{
Ceramic Tube Mount
}

\author{
By ROBERT N. PaLMER \\ Engineering Manaser \\ Product Development Laboratories Sylvania Electric Products Inc. Kew Gardens, New York
}

THe receiving-tube mount described in this paper was designed and developed for machine assembly under a Navy contract with the Bureau of Ships. Every consideration in the design of the mount has, therefore, taken into account the feasibility of building machines to assemble it automatically.

Figure 1 shows a conventional 6045 , which is the military version of the \(6 J 6\) in that it has been ruggedized and redesigned for more reliable service. One of the most difficult parts to cope with when adapting a mount of this type to machine assembly is the mica. There are two support holes at both
the top and bottom where the plate is to be inserted into the mica. There are also two for the grid, one for the cathode and one for each of the supporting members. The total for both of the dual structures is twelve insertions. Inserting these one at a time into the bottom mica is not difficult. When applying the top mica, however, these twelve elements are free and loose at the ends and extremely difficult to insert. To avoid this insertion problem, it was necessary to find some other means of spacing the elements. Consequently, the design of the new SN-1724D tube uses a ceramic washer as the element spacer.

\section*{Design Approach}

Figure 2 shows the radically new approach to mount assembly. One of the chief differences is the elimination of mica. The elements
are stacked one upon the other. The complete mount is assembled on two small pins. First a plate, then a spacer ceramic, a grid, a spacer ceramic, a cathode, a spacer ceramic and any remaining pieces are put on the pins until the top is reached. When the stack is completed, the small pins are hot upset, giving a compact and tight mount assembly. Other overall objectives were to improve reliability and ruggedness, reduce microphonism, achieve high-ambient-temperature operation and achieve long life with greater uniformity. Therefore, it was decided to incorporate not only ceramic spacers between the elements but also a stem and envelope of alumina ceramic.

The method chosen for making the ceramic-to-metal seals and the ceramic-to-ceramic seals is a simple, single-step process using titanium-cored BT solder. Since no

Stacked mount in glass envelope, stacked mount on ceramic stem and same mount enclosed in ceramic envelope

Heat-sensitive mica insulators and glass envelopes of conventional receiving tubes are replaced by ceramic alumina in new stacked design using frame grids positioned precisely by ceramic spacers that can be dropped over support wires by automatic machinery

\title{
for Automatic Assembly
}
mica is used in the mount, it can be placed on a ceramic stem and sealed in a ceramic envelope. This type of structure is possible because the high temperatures needed for sealing have no ill effect on the ceramic spacers. Had mica been used it would deteriorate and break down, resulting in the liberation of water vapor.

Ceramic-to-metal seals and cer-amic-to-ceramic seals are made at a temperature of about 900 C . Because of this high baking-out temperature, which glass could not withstand, the finished tubes have less gas to begin with and therefore have a longer gas-free life.

Figure 3 shows how the tube elements are stacked. At the bottom is the plate, and above it the spacers, thee frame grid spacer, cathode, frame grid and plate with its corresponding spacers. There is much greater area of support with
the frame grid and this type of cathode than there is with a mica support. The only critical dimension is the thickness of the ceramic spacers, because comparatively wide tolerances in the horizontal direction will not disturb the grid-to-cathode or cathode-to-plate spacing.

No active element is inserted into anything. The pieces are merely stacked one upon the other. The grid-to-cathode spacing can easily be changed by changing the thickness of the grid-to-cathode spacer.

Figure 4 compares a conventional mica with the ceramic spacer. The mica itself is easily deformed and broken. When the numerous necessary holes are punched, the mica is weakened further. The hole tolerances themselves can be held to only about 0.001 -inch accuracy. An in-line, off-center accuracy can be punched to only about 0.001
inch also. In addition to this, the mica is temperature-limited. As it rises to high temperatures it breaks down and releases water vapor which attacks the cathode and shortens the life of the tube.

On the other hand, the ceramic spacer used in the stacked mount is extremely rugged and tough. The only dimension that need be maintained accurately is the thickness, and this can readily be held to 0.0005 inch.

\section*{Cathode Structure}

Figure 4 shows also the cathode support assemblies as used in a conventional tube and in a SN1724D stacked tube. The cathode in the conventional mount is supported only at the end. The mica must be punched so as to be a little larger than the cathode itself to allow for insertion. The tolerances of the hole in the mica

FIG. 3-Exploded view of mount. show. ing order of stacking
are about 0.001 inch and the cathode tolerances are about the same value. When the cathode is inserted in the mica, the fit may be loose and contribute to microphonism. In addition, the heating and cooling of the cathode gives a sawing action due to the expansion and contraction. This in turn enlarges the cathode hole, making a still looser fit.

The cathode coating must start somewhat above the mica on the bottom of the cathode and below the mica on the top, which means that actually only about 60 percent
of the cathode length is used for the emission coating. The rest is unused except for structural support. The high temperature of the cathode, particularly during processing, can and sometimes does break down the mica, liberating water vapor which in turn results in tube loss.

In the stacked tube cathode assembly, loops are welded to the side to give a larger support area. Tolerances are not critical except that these loops must be accurately welded so that the proper spacing between grid and cathode is obtained. The cathode is held extremely tightly; the loops are placed over the ceramic supports and all are compressed together in the final hot upsetting at the top. These design features contribute to a less noisy tube. The whole length of the cathode is used for the cathode coating area. There is no loss of space or coated area as required in the mica-supported conventional cathodes.

\section*{Grid Assembly}

Figure 4 likewise compares the conventional and stacked tube grid assemblies. With the conventional type of grid, the lateral wires are spaced by notches in the side-rod supports. These notches are then swaged over to hold the laterals in place. This operation enlarges the side-rod material. If the nicking and swaging are done along the inactive ends of the side-rods, there is again a sawing action when inserted into the mica which enlarges the mica hole and contributes to microphonism.

In addition, the side-rod grid is extremely fragile. If it is picked up with too much compression by the fingers, the minor dimension is changed and distorted. For the same reasons it is extremely difficult to measure this dimension and keep it accurate. The frame grid is perfectly flat and because of the mass of the frame will have no variation of major dimension. The minor dimension is controlled entirely by the spacer ceramics. There is no nicking and no swag. ing on this type of grid.

The lateral wires of the frame grid are wound on two frames back to back and the whole assem-
bly is then brazed. This frame material is molybdenum and is brazed with gold. The fact that there is no nicking or swaging allows the use of smaller lateral wires and higher tension. The whole frame grid is much more rugged than the side-rod grid. The frame grid can be handled easily without distortion and the separate grids can be stacked into piles for later assembly. The result is greater uniformity of tube characteristics.

\section*{Tube Performance}

The improvement in uniformity, shown in Fig. 5, illustrates what happens when a conventional type of structure has its regular siderod grid replaced by a frame grid. With the conventional grid, the mutual conductance spread was from 800 to 2,000 micromhos. These measurements were made right off the exhaust machine with no culling out and no previous testing. When this grid was replaced with a frame type of grid and the tubes were again tested right off exhaust without any sorting or culling, the

FIG. 4-Comparison of conventional assemblies with ceramic assemblies

FIG. 5-Comparison of transconductance characteristics, showing reduced spread achieved with irame grid
spread was considerably reduced, being only between 1,500 and 1,800 .

A sealed-in ceramic envelope and stem with the ceramic mount inside is much stronge: than a glass envelope. It can ba handled, dropped and shipped without breakage. In fact, it is extremely difficult to open. The ceramic envelope is also extremely rugged under thermal shock conditions. It has been removed from liquid nitrogen at -195 C and immersed in boiling water at 100 C , a range of almost 300 degrees, without fracture. This envelope structure has also been placed in an aiz furnace at room temperature and raised to 450 C for more than 100 cycles without fracture.

The ceramic envelope can be strapped directly to the chassis or it can be socketed. The basing arrangement allows for insertion into a jumbo miniature socket. Lead wires can also ke soldered directly to the pins. The ceramic envelope permits high-temperature outgassing on exhaust a fact which also permits high bake-out temperature and high-ambient-temperature operation.

\section*{Life Tests}

Figure 6 shows life test results of the \(\mathrm{SN}-1724 \mathrm{Dg}\). The g indicates that the stacked mount has been placed in a T5 \(\frac{1}{2}\) miniature glass envelope. The top curve shows that at room temperature the mutual conductance dropped off less than 5 percent at the end of 2,000 hours, whereas for the conventional 5718

FIG. 6-Comparison of life rest results at both room and high ambient tempera. tures
subminiature triode it fell off about 13 percent at the end of 2,000 hours.

These two types were then placed on life test at an ambient temperature of 175 C . The 5718 immediately began falling off; at the end of approximately 450 hours its mutual conductance was down by about 25 percent, and at the end of 2,000 hours was down by about 40 percent. The stacked mount assembly held up fairly well for a little more than 1,200 hours, with mutual conductance dropping off only about 15 percent. At that time it began to drop off rapidly and reached about the same point as the 5718 . This rapid dropping off is attributable to electrolysis which is set up in the glass due to the high temperatures.

Figure 7 shows some life test results on the \(\mathrm{SN}-1724 \mathrm{Dc}\), the c indicating a stacked mount in a ceramic envelope. At room temperature the mutual conductance had dropped off at the end of 2,000 hours to

Bottom view of ceramic stem

FIG. 7-Comparison of life test results for stacked mount in glass and in cer. amic envelopes
about 10 percent, which is not as good as the stacked mount in the glass envelope and is attributed to early difficulties in processing a ceramic enclosed mount.

Some of these tubes were also put on 300 C ambient life test, which is believed to be higher than any glass tube can withstand. At the end of 2,000 hours, the mutual conductance of the ceramic-envelope tube has about the same value as those on room-temperature life. Life test results at 175 C for the SN-1724 sealed in glass are also plotted in Fig. 6; these show the effect of electrolysis of the glass, which caused a rapid slump in mutual conductance after about 1,200 hours.

At the present time some life tests are under way at 400 C ambient temperature. These tubes have reached about 1,000 hours and are still satisfactory.

To determine the high dissipation capabilities of this type of structure, tests were run with the plate dissipation raised so that the plate temperature equalled that of the cathode. Tubes were run under this condition for well over 200 hours with no deterioration and no gas evolution.

Most of the tubes made have had about 1 millivolt noise output at 20 G . The electrical characteristics are more uniform than conventional tubes at normal life. The tubes are certainly better at high ambient life, and performance on 400 C ambient life after about 1,000 hours is still satisfactory.

\title{
Pulse Distribution in TV
}

\begin{abstract}
Master control, pulse distribution and switching system for key network television station combines efficient operation with maximum emergency protection. Any pulsesource output can be fed to any picture source within the facility
\end{abstract}

TELEVISION-NETWORK studio centers require elaborate systems for feeding synchronizing and blanking pulses to the various studios, projection rooms, monitoring and video recording locations. Such a system must be fully flexible, yet protected for emergencies. It must also be capable of being locked with synchronizing information received from network lines or other remote locations. The operation of the system also requires that accessible test points and provision for future expansion be included.

\section*{Equipment}

First to be considered in equipment selection is the number of synchronizing generators necessary. This information when collated with the number of picture sources will determine how many pulse distribution amplifiers are needed.

An important factor in the determination of the number of pulse generators for a network originating station is the necessity of locking the sync generator at the station with both remotes originating locally and programs received from network lines (genlocking). This type of operation is becoming more prevalent, especially with the increased programming of national events which are handled as pool telecasts or else under a joint sponsorship with each sponsor controlling a regional network. An example of this was a telecast of a football game having five sponsors requiring five separate audio pickups at the field. A single video pickup without commercials was made. The video was split at telephone company test boards and fed with its associated audio to certain key stations who would genlock the signal, insert commercials and feed a regional network. The ability of

Camera control console pulse distribution panel at WABD
the individual sponsor to superimpose his commercial over the signal from the playing field increased the intimacy of the program and kept each region oblivious of the joint sponsorship.

The simplest form of pulse distribution system would utilize one generator to feed all picture sources and one spare generator. Also included would be a single genlock unit switchable to either generator. This system's disadvantage is that whenever a program is genlocked the entire station facilities become controlled by the incoming remote signal. This practice is undesirable. If the remote pickup equipment is operating on a primary power other than that used by the station and the station is not equipped with synchronous-type projectors, the station will be unable to roll film locally due to phase bar. Also, stability of genlock equipment can be influenced by variation in signal
levels, too low a pedestal level or switching transients.

The situation becomes more predominant in the design of a pulse distribution system for a network originating center. Networks utilize theaters remotely located from their studios for theater-type productions and audience-participation shows. The commercials for these productions are at times handled in a studio with film and slide inserts originating from a centrally located projection room. This makes the use of genlock equipment a necessity. Network operation must have an arrangement whereby only the facilities required by the particular program are controlled by the genlocked generator thereby entailing a more intricate switching system.

Figure 1 is a block diagram of the master control pulse distribution and switching system recently installed. It is built around two units, one a studio synchronizing generator which furnishes both positive and negative outputs of RETMA standard: horizontal drive, vertical drive, sync and blanking pulses. The generator monitors all of the count-down circuits simultaneously on two three-inch oscilloscopes mounted in front of the unit. The other unit is a pulse distribution amplifier, having four inputs that can accept either positive or negative pulses. For each input there are four positive and four negative outputs.

Refering to Fig. 1, note that four generators are used. The generator outputs feed to a special synchronizing generator pulse patch panel where three of the generators are normaled through to groups of distribution amplifiers. The ability to normal through circuits, see Fig. 4, is realized by the use of audio jacks, equipped with bridging jacks,

\title{
Network Origination
}

\author{
By J. S. AULD and A. GALLONIO \\ Du Mont Television Network New York, . Y.
}

FIG. 1-Master.control pulse distribution and switching system
for all pulse jackfields. The fourth generator is a spare and its pulses are terminated in 75 ohms at the patch panel. The terminating resistors are placed between the \(A\) contact and ground on each jack, so that double termination is avoided if a patch is made. The spare generator may be patched into any distribution-amplifier group in a minimum of time in case of failure of one of the other units.

\section*{Genlock}

Although it is not shown in Fig. 1, each generator has an associated stabilizing amplifier for stripping sync from an incoming signal and a genlock cevice which allows this remote synchronizing information to control the timing sequence of the generator. Figure 2 shows how this equipment is connected.

The afc voltage output of the genlock, derived by comparing the horizontal pulses of the generator
with the incoming horizontal pulses by a discriminator circuit, is used to control the master oscillator of the generator. The vertical-pulse output controls the generator's 60 cps blocking oscillator. The use of this unit entails some slight modifications of the synchronizing generator's internal circuits.

Remote controls have been provided for the stabilizing amplifiers and genlocks to conserve front rack space in master control while maintaining the required ease of operation. An additional panel also has been provided containing four single-pole double-throw switches. These switches control a 24 -volt relay in each synchronizing generator allowing it to be switched from genlock to line-lock operation. The accessibility of this switch can save time in case of failure of a genlock or its associated stabilizing amplifier.

Each pulse distribution amplifier
provides 32 outputs (16 positive and 16 negative) for 4 positive or negative inputs. Twelve of these units divided into three groups of four, are utilized. By feeding each group from a single synchronizing generator it is possible to obtain fifteen positive and fifteen negative outputs of each pulse type. A pulse distribution amplifier group is associated with each of the three regular generators.

\section*{Switching}

Once the number of feeds has been established and the necessary distribution amplifiers provided, the best method for routing pulses to the various picture sources is determined. A television pulse-distribution system must be able to route any of the pulse source outputs to any picture source within the facility. To accomplish this a special sync switch assembly was designed, one of which is used in conjunction with each picture source.

A single switch proved impractical due to bulkiness and wiring difficulty. Therefore, two individual but identical three-position switches were utilized. These switches are denoted as \(S_{1}\) and \(S_{2}\) in Fig. 3. The output of \(S_{1}\) is fed through the first position of \(S_{2}\). Therefore, any one of five pulse sources may be selected depending upon the juxtaposition of the switches.

Each switch has six decks; four

FIG. 2-Genlock system has provision for switching sync generator from genlock to line-lock operation

FIG. 3-Sync switch assembly consists of two three.position switches, each made up of six decks
to switch pulses, one spare and one for indicator lights. These indicator lights are actually controlled by relays located in the equipment associated with the particular switch. The master-control transmission technician is thereby informed of what facilities are in operation and by which generator they are being fed. All unused pulses are terminated in 75 -ohm resistors mounted on the second and third arms of the switches.

The sync switch is mechanically compact. This can be partially attributed to the use of Teflon-73 for the internal switch assembly wiring. Teflon-73 is more flexible yet retains all of the electrical characteristics of RG-59/U.

Refering once again to Fig. 1, note that 23 switch assemblies are used. They are mounted in two front-row racks in master control. To keep the interconnecting RG\(59 / \mathrm{U}\) to minimum length the dis-
tribrtion amplifier groups supplying the pulses are located directly behind. Figure 3 shows the interconnecting wiring for a typical distribution amplifier group.

One switch assembly is assigned to each studio, film chain, slide scanner and the other sources of video information. To check each pulse before it leaves master control the outputs of each switch are brought to a normaled through patch panel with bridging jacks.

FIG. 4-Schematic of two jacks normalled through. Circuit of jack \(B\) can be opened by inserting male plug in jack

A problem in the design of a pulse distribution system is the establishment of proper time relationship between the pulses used in the various studios. This situation is aggravated in large networkoriginating centers where the distance between master control and the individual studios may vary by several hundred feet. It may be corrected by cutting all the pulse lines to the length of the longest run or by the use of lumped constants in artificial delay lines. The former method was chosen.

The longest cable run was determined and these cables were pulled first and their length measured. Since the sync and blanking pulses return to master control for insertion into the mixing amplifiers, this figure was doubled and in this instance totaled 430 feet. It then was a simple task to subtract the round-trip distance to each of the other locations from 430 feet and add the difference to the sending end of the pulse cable to these locations. The excess cable forming the delay line was coiled in the trenchwork.

The pulse cables from master control terminate in patch panels in each studio. From there the horizontal and vertical driving pulses pass through a sync adapter where the horizontal pulse is delayed one-half line and then combined with the vertical drive to form a mixed driving pulse.

A three-pole double-throw switch transfers the driving, sync and blanking pulses to either of two distribution amplifiers similar to those used in master control. These amplifiers have their outputs in parallel. A plate supply switch incorporated as part of the pulse switch determines which amplifier will supply the pulses for the studio.
From the sync distribution amplifiers the pulses are routed to the special panel shown in the photograph. This panel is mounted on the rear of the camera control console. The large cables carry the pulses to the appropriate camera circuits.
The system was designed and installed under the overall supervision of R. D. Chipp, director of engineering, and R. F. Bigwood, manager of general engineering.

Composite photograph of cars passing moving-target detector at roadside suggests military and civilian security applications

\title{
Moving-Target Detector
}

Image dissector using mechanical scanning and phototube pickup provides convenient and inexpensive monitoring means for remotely viewing moving objects. Applications include assembly-line and freight-yard surveillance and intruder detection

\author{
By J, L, McLUCAS and R, D. LAUGHLIN \\ Haller. Raymond and Brown, Inc. State College, Pennsylvania
}

MONITORING activity at a remote location is important on assembly lines where parts move past an inspection station, in railroad yards where boxcars pass certain check points, in military operations where guard must be maintained at road junctions and where entry of intruders must be detected.

In such applications, where the object to be monitored is in motion, the moving-target detector can perform the monitoring function more economically and more conveniently than can available industrial television systems.

\section*{Principle of Operation}

The scanner of the moving-target detector is shown in Fig. 1. A
rotating shaft carries a \(45-\mathrm{deg}\) mirror that scans a vertical strip in front of the device. Light is imaged onto a multiplier phototube by an optical system. As the motor shaft rotates, light from successive elemental areas falls on the sensitive detector.

As long as the target is stationary, the scanner sees the same signals on successive scans and no picture is created. If the target moves past the scanner, different vertical strips in the object plane will be imaged onto the detector so that, after the target has moved completely past the scanner, its image has been completely dissected. This image is reconstructed at the viewing point and the operator there
sees a picture of the target.
The viewing device is a cathoderay oscilloscope on which a raster is created having vertical bars instead of horizontal ones as in tv. The vertical bars correspond to the vertical scan lines of the scanner and are synchronized with the scan lines. In a typical case 60 scans or bars will be traced a second.

To create the raster, a horizontal sweep must be added. This sweep is relatively slow compared to the vertical sweep since only one raster is required during the time the object moves past the scanner. In typical situations about one raster per second suffices. The scan rates in both directions are variable.

The cable connecting scanner and

FIG. 1-Photograph showing details of scanner unit and corresponding drawing with important parts labeled. Rotating scanner has four scanning faces and is driven by \(3,600-\mathrm{rpm}\) motor
viewer need not be of high quality since the signal bandwidths are much less than in industrial tv. As an example, suppose it is desired to count the cars and trucks passing a given point on a highway. If resolution of six inches is required for easy identification and if the vehicles pass the scanner at 80 feet per second, then the scanner must perform 160 scans per second.

If the scanner is 30 feet from the side of a road 30 feet wide, about 40 elements per 20 feet or about 120 elements per radian must be resolved to achieve 6 -inch resolution vertically from the road level to a height of 20 feet. The number of elements to be scanned per second is \(160 \times 40=6,400\).

Field telephone wire, such as used by the military, can handle bandwidths up to several kilocycles and this is sufficient for relatively short runs. For long runs, a telephone wire of somewhat better quality can be used.

\section*{Tape Recording}

If a permanent record is required for later use or to allow the operator to store information at a slow rate for a long period and then play it back rapidly to see if any action took place in his absence, a magnetic tape recorder can be used. Tape recordings using quarter-inch tape running at a few inches per second can be used to actuate the oscilloscope.

If a particular sequence of scans appears interesting, the operator can cut off the desired section of tape and form a loop that keeps repeating the picture on the scope.

\section*{Infrared}

In many applications infrared detectors are more advantageous than the multiplier phototube. Hot objects such as ingots at a steel plant may require monitoring where the heat emitted is a better indication than the light reflected from them. The infrared emitted by exhausts from trucks, tanks and other vehicles can serve to make them detectable at night so that such a detector may be more practical than one requiring visible light. Railroads can detect hotboxes with an infrared detector.

The infrared reflection characteristics of some surfaces are more indicative of various phenomena than their visible light reflection characteristics. Such a case arises if newly-painted objects must be inspected to determine if the paint is still wet on any part of an object.

\section*{Circuit Operation}

Figure 2 gives circuit details of the moving target detector. The scanned object produces a varying light intensity at the photocathode of the phototube. To obtain good resolution of the scanned object, an aperture is inserted in the optical path at the image plane. This reduces the light incident on the cathode and therefore large amplification is necessary to bring the signal up to a usable level. This amplification is available in the 1P21 multiplier phototube. A negative potential of approximately 730 volts is applied to the photocathode and to a voltage divider that allows each successive dynode in the phototube to become more positive.

Electrons comprising the signal information are collected at the anode which operates at ground potential. The video signal thus appears across the 100,000 -ohm gridload resistor of \(V_{1}\), a 6AK5 pentode operated as a resistance-coupled amplifier.

A synchronizing signal is derived from the rotation of a small permanent magnet imbedded in the

FIG. 2-Complete schematic diagram of moving target indicator. Phototube and preamplifier are mounted in remote scanner while amplifiers and sweep generator are in indicator unit
scanning head that contains the mirrors. Since there are four mirrors there are also four magnets to supply one sync fulse for each scan. The pickup coil that intercepts the magnetic flux from these magnets is located on the motor mounting plate immediately to the rear of the rotating scanner.

Since there are four mirrors, each one should contribute 90 deg of scan but because of the mounting arrangement and protective cover the scan is limited to 45 deg. This means that with a motor running at \(3,600 \mathrm{rpm}\) and a four-mirror scanner, the effective scan time is about 2,085 microseconds.

If the pickup coil is moved relative to the fixed magnets in the scanner head, the sync pulse will also move relative to the video signal. This permiss placing the video immediately after the sync pulse or at any convenient point on a time scale. The resulting dead time or the time during which no video information is being received can be used to clamp this level to any desired voltage or to derive a blanking pulse to disable the indicator. unit.

The pulses derived from the rotating magnets are bidirectional. Since only the positive excursion at the grid of \(V_{1}\) is desired, a diode
shunts the negative portion to ground. The positive pulse is broad and requires sharpening before being mixed with the video to form a composite signal. Sharpening by differentiation and mixing are accomplished by coupling the sync pulse through a small capacitor into the grid circuit of \(V_{1}\). The video and sync form a composite signal that is amplified by \(V_{3}\).

The plate of \(V_{1}\) is direct-coupled to the grid of \(V_{2}\), a \(12 \mathrm{AU7}\) that has both sections in parallel to insure a low output impedance. The cathode resistance of \(V_{2}\) is chosen to give the proper operating bias for the cathode follower. Direct coupling eliminates \(R-C\) charging effects and saves space in the scanner unit.

\section*{Indicator Unit}

Reconstruction of the scanned scene requires a sweep on a cathoderay tube screen that is synchronized with the video information for that particular scan. The intensity of the trace varies with that of the object's intensity. The composite signal is amplified in \(V_{3 A}\) and \(V_{3 \beta}\). The output of \(V_{3 B}\) is fed to the intensity modulation grid of Z axis of the display oscilloscope. The composite signal that appears at the plate of \(V_{34}\) is also fed into the
biaseci diode \(V_{4 A}\) where clipping at a predetermined level takes place. Amplifiers \(V_{\Delta B}\) and \(V_{S A}\) further amplify and limit the sync pulses and present them as triggers for the next stage.

The positive triggers are then inserted into a blocking oscillator whose control grid is biased negatively to prevent operation except when triggered by the incoming pulses. The switching waveform generated by the blocking oscillator is applied to the grid of \(V_{a B}\) and produces a saw-tooth voltage at the plate. This sweep waveform is coupled to the X -axis deflection plates. By pulling strip film vertically past the intensity modulated horizontal line trace, the moving object is reconstructed as shown in the photographs.

If a television raster scan is desired, the sweep waveform generated by the blocking oscillator is put on the Y-axis deflection plates and a very slow sweep put on the X -axis plates. The video signal is still inserted into the intensity grid of the cro. This method requires a long persistence phosphor such as P7 in the \(\mathrm{c}-\mathrm{r}\) tube.

The authors acknowledge the assistance of W. B. Birtley and J. B. Cannon, Jr. who cooperated in the development of this device.

FIG. 1-Electronically regulated circuit used in model A power supply

F1G. 2-Two methods of using power supply for interstage coupling (\(A\)) and \(\alpha\) pentode cathode-follower circuit with good high-frequency response (B)

FIG. 3-Amplifier at (A) has low output impedance and good linearity. Cathode tollower circuit (B) has better operating characteristics than conventional circuit

Low shunt capacitance power supplies left to right, model A, 4.7 w ; model B. 1.3 w : model C. 1.74 w and model D. 0.143 w . Plexiglass is used for mechanical support of the secondary circuit

\section*{Bias Supplies for}

\author{
By JOHN H. REAVES \\ National Bureau of Standards \\ Washington, D. C.
}

0F VARIOUS METHODS of direct coupling, one of the simplest consists of inserting a bias battery in series with the signal source. The main disadvantage of this method is the periodic replacement or servicing required of the battery. A conventional power supply cannot be used because of its large shunting capacitance to ground.

This article describes four power supplies having low shunt capacitance usable in circuits requiring the power supply to operate at varying potentials with respect to ground.

The construction of the power transformers can be seen in the photograph. In each transformer the secondary winding has been separated from the core leaving as much air gap as the geometry permits. This lowers the capacitance of the secondary winding to the core and primary.

Isolation of the secondary causes the efficiency of the transformer to be lowered somewhat, partly because of the poorer magnetic coupling, and partly because of the
increased circumference of the windings. For low-power applications poor power efficiency is not serious but the accompanying increase in percentage voltage drop under load is important. By employing electronic stabilization good regulation of the output voltage can be achieved.

Data relating to the construction of the transformers are given in Table I. The cores were constructed of transformer steel, the lamination thickness being 0.017 in . for the transformer used in the model A power supply and 0.014 in . for the others. Enameled wire is preferred for all windings because of its compactness. The three heater windings in the transformer used in model A were put on top of the high-voltage winding. A primary consisting of two aiding series-connected coils on opposite sides of a square-periphery core was employed in models \(A\) and \(B\) to reduce magnetic leakage while giving maximum clearance for the secondary.

Data on the complete power supplies and their performance are

Table I-Mechanical Data for Construction of Special Transformers

Table II-Characteristics of Low Shunt Capacitance Power Supplies
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Power Supply Model} & & \multicolumn{4}{|c|}{Power Supply Model} \\
\hline & A & B & C & D & & & & & \\
\hline \multirow[t]{4}{*}{Core Dimensions Cross-section Outside, assembled} & \multirow{4}{*}{\[
\begin{aligned}
& 3 / 4 \times 17 / 8 \\
& 3 \times 3 \times 178
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{gathered}
1 / 2 \times 11 / 4 \\
2 \times 2 \times 11 / 4
\end{gathered}
\]} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 1 / 2 \times 11 / 4 \\
& 2 \times 21 / 21 \times \\
& 1 / 4
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{gathered}
1 / 4 \times 5 / 8 \\
11 / 8 \times 138 \\
\times 5 / 8
\end{gathered}
\]} & & & & & \\
\hline & & & & & \multirow[t]{3}{*}{Rectifier Circuit Rectifier Tube Filter Circuit} & \multicolumn{2}{|l|}{full-wave full-wave} & half-wave & half-wave \\
\hline & & & & & & 6 X 4 & G10C & 6AL5 & G10C \\
\hline & & & & & & electronic & & cap. & cap. \\
\hline Primary Windings Turns & \multirow[b]{3}{*}{\[
\begin{aligned}
& \frac{2}{\text { coils }} \\
& \begin{array}{l}
500 \text { each } \\
23
\end{array}
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& 2 \text { coils } \\
& 800 \text { each } \\
& 32
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
1,180
\]} & \multirow[t]{2}{*}{1,270} & \multirow[t]{2}{*}{Input Cap. Filter Choke} & \multirow[t]{3}{*}{ге\%} & \multirow[t]{2}{*}{\[
80 \mu f
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 40 \mu \mathrm{~h} \\
& 8 \mathrm{~h}
\end{aligned}
\]} & \multirow[t]{3}{*}{\(10 \mu \mathrm{f}\)
5,000 -ohm
resistor
\(10 \mu \mathrm{f}\)} \\
\hline & & & & & & & & & \\
\hline \(\xrightarrow[\text { Wire size }]{\substack{\text { Wizen } \\ \text { Form Dimensions }}}\) & & & 30 & 37 & \multirow[t]{2}{*}{Filter Capacitor} & & & & \\
\hline \multirow[t]{2}{*}{Form Dimensions Cross-section Length} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \frac{18}{18} \times 1 \frac{18}{18} \\
& \frac{1}{16}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\frac{9}{\frac{9}{16}} \times 1 \frac{5}{16}
\]} & \multirow[t]{2}{*}{\[
\frac{9}{16} \times 1 \frac{5}{1 \frac{5}{16}}
\]} & \multirow[t]{2}{*}{\[
\frac{8}{\frac{8}{18} \times \frac{17}{18}} \frac{11}{16}
\]} & & & 40 & & \\
\hline & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Secondary Winding Turns} & \multirow[t]{5}{*}{\[
\begin{aligned}
& 5,200 \\
& \text { center- } \\
& \text { tapped } \\
& 34 \\
& 23 / 4 \times 15 / 8 \\
& 3 / 4 \\
& \hline
\end{aligned}
\]} & \multirow[b]{5}{*}{\[
\begin{aligned}
& 1,800 \\
& \text { center- } \\
& \text { tapped } \\
& 34 \\
& 1 \times 1 \times 1^{3 / 4}
\end{aligned}
\]} & \multirow[t]{2}{*}{2,000} & \multirow[t]{2}{*}{2,416} & \multirow[t]{2}{*}{D-C Output No load} & \multirow[t]{2}{*}{160 v
200 v
\(30 \mathrm{ma-156}\)} & \multirow[t]{2}{*}{94 v} & \multirow[t]{2}{*}{186 v} & \multirow[t]{2}{*}{80 v} \\
\hline & & & & & & & & & \\
\hline Wire size & & & \multirow[t]{3}{*}{\[
36
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \frac{37}{\frac{9}{18} \times \frac{15}{16}} \frac{15}{16} \times 1 .
\end{aligned}
\]} & & & & & \\
\hline Form Dimensions & & & & & Shunt Capacitance & \(18 \mu \mu \mathrm{f}\) & \(10.6 \mu \mu \mathrm{f}\) & \(11.7 \mu \mu \mathrm{f}\) & \({ }_{17}^{8.2} \mu \mu \mathrm{f}\) \\
\hline Length & & & & & Figure of Merit & 260 & & & \\
\hline
\end{tabular}

\title{
Direct-Coupled Circuits
}

Special low shunt capacitance transformer designs permit bias supplies to operate above ground potential in d-c amplifier circuits. Capacitance to ground is only \(18 \mu \mu \mathrm{f}\) for 5 -watt supply as compared to \(700 u \mu \mathrm{f}\) for conventional power supply unit
given in Table II. Model A was built in a 20 ma and 30 ma size. The d-c output voltages are for an input of 115 v a-c. Capacitances were measured with the power supplies in an upright position on a grounded metal plate with the primary winding grounded. The capacitance of the largest supply is only \(18 \mu \mu \mathrm{f}\). Shunt capacitance of a conventional supply measured approximately \(700 \mu \mu \mathrm{f}\).

\section*{Figure of Merit}

To determine the relative merits of the power supplies, a figure of merit was assumed to be the ratio of maximum power output in milliwatts to total shunt capacitance in micromicrofarads. For the unregulated supplies, the maximum power output was determined on the basis of 50-percent regulation.

Maximum current, power and figure-of-merit values for each supply are given in Table II. A comparison of the figure-of-merit values shows model \(A\) to be superior. This is partly due to the use of electronic stabilization, but
large transformer core size and high output voltage are also significant factors.

Usefulness of the low-capacitance type of power supply is shown by several circuit applications. In Fig. 2A the power supply is used in two different ways for direct interstage coupling. The first method has the advantage of not requiring current from the supply, and the second method has the advantage that the magnitude of the voltage is not as critical. Use of the supply to provide screen-grid potential in a pentode cathode follower is shown in Fig. 2B.

Two direct-coupled circuits in which these power supplies have been found particularly useful are shown in Fig. 3. These circuits were designed to supply a relatively high-frequency square-wave signal. With a predominantly capacitive load and a signal that has a high duty factor, either of these circuits gives better high-frequency response for a given plate current than a conventional single-tube amplifier or cathode follower. \({ }^{\text {as, }{ }^{3} 4}\)

The amplifier circuit of Fig. 3A has, in addition to low output impedance, good linearity and a voltage gain very nearly equal to the amplification factor of \(V_{1}\). An improved version of this circuit uses a pentode in place of a triode for \(V_{3}\). In this case the power supply is connected to supply screen-grid potential as in Figure 2B.

The two-tube cathode-follower circuit of Fig. 3B has higher input impedance, better linearity, nearer unity gain and lower output impedance than the conventional singletube cathode follower. This circuit with the component values shown will supply peak charge and discharge currents of 80 ma with an average plate-circuit current as low as 15 ma when driving a capacitive load.

\section*{References}
(1) H. B. Brooks. "Information for the Amateur Designer of Transformers for 25to 60 -Cycle Circuits", National Bureau of Standards Circular C408.
(2) E. L. C. White, U. S. Patent No. 2,358,428, Sept. 1944.
(3) P. G. Sulzer, Survey of Audio Frequency Power-Amplifler Circuits, Audio Eng. 35. p 15. No. 5, May 1951.
- C. M. Hammack, Cathode-Follower Lery Low Output Resistance, ElecTRONICS, p 206, Nov. 1946

Table I-Comparison of Design Data with Measurements
\begin{tabular}{|c|c|c|}
\hline & Measured & Calculated \\
\hline Half-coil inductance & & \(4.78 \mu \mathrm{~h}\) \\
\hline \(f_{01}\) for \(150 \mu \mu \mathrm{f} \ldots\) & 6.1 mc & 5.93 mc \\
\hline \(\mathrm{fog}_{\text {or }}\) for \(14 \mu \mu \mathrm{f}\) & 13.7 mc & 19.42 mlc \\
\hline \(K_{2}\) & & 0.17. \\
\hline \(K_{1}\) & & \(057+\) \\
\hline \(K_{2} / K_{1}\)
Band & 3.02 \& 3.15 & 305 \\
\hline Band \(A\)
Band \(B\) & 3. \(45-11.4 \mathrm{mc}\) & 3. \(11-11.15 \mathrm{mc}\) \\
\hline
\end{tabular}

FIG. 1-Basic wide-range tuning circuit

FIG. 2-Tuning range representation

\title{
Designing Wide-Range
}

\begin{abstract}
Summary of design criteria for continuously tuned transmitter includes method of using tapped coil. Representative circuit developed has desired coverage in 3.5 to 30 mc spectrum with gap designed for region from 8.6 to 12.2 mc
\end{abstract}

WIDE-RANGE tuning circuits, for which design relations were introduced by King \({ }^{2}\) in 1948, are sometimes subject to simplification for specific uses. Such circuits have many advantages in elimination of coil switching in multiband transmitters, the most recent application being described by Chambers \({ }^{2}\). A simplified version of the tuning circuit, showing its derivation from the basic design, is presented below.

\section*{Basic Relations}

The circuit of King is shown in Fig. 1. In certain commercially available units the parameter \(m\) is unity, coupling is inductive into coil \(L^{2}\) and construction is for push-pull operation. Assuming the more general case, where \(m=1\) is not a necessary condition, input admittance is
\[
\begin{equation*}
Y=\frac{1}{j \omega L_{1}+1 / j \omega m C}+j \omega C+1 / j \omega L_{2} \tag{1}
\end{equation*}
\]

Introducing normalizing variables
\[
\begin{align*}
\omega_{0}^{2} & =1 / L_{2} C ; \omega_{1}{ }^{2}=1 / L_{1} C ; \\
p & =\left(\omega_{1} / \omega_{0}\right)^{2}=L_{2} / L_{1} ; x=\omega / \omega_{0} \tag{2}
\end{align*}
\]
and setting \(Y=0\) for antiresonance
\[
x^{4}-x^{2}\left(p \frac{1+m}{m}+1\right)+p / m=0
\]

By R. W. JOHNSON
Pasadena, Calif.
the solution of which is
\[
\begin{align*}
x^{2}= & \frac{1}{2}\left[p \frac{1+m}{m}+1 \pm\right. \\
& \left.\sqrt{\left(p \frac{1+m}{m}+1\right)^{2}-4 p / m}\right] \tag{3}
\end{align*}
\]
or
\[
\begin{align*}
\omega_{p}^{2} & =\frac{\omega_{0}^{2}}{2}\left[\frac{L_{2}}{L_{1}} \cdot \frac{1+m}{m}+1 \pm\right. \\
& \sqrt{\left.\left(\frac{L_{2}}{L_{1}} \frac{1+m}{m}+1\right)^{2}-4 \frac{L_{2}}{m L_{1}}\right]} \\
& =K^{2} \omega_{0}^{2} \tag{4}
\end{align*}
\]

From Eq. 4 it is apparent that two antiresonant frequencies exist simultaneously and that one value of \(K\) is greater than unity, thus providing a constant multiplying factor for the antiresonant frequency of \(L_{s} C\). Thus where \(\omega_{0}\) has a tuning range fixed by range of adjustment of \(C\), usually limited to about 3 to 1 owing to a 9 -to-1 limitation on range of \(C\) for practical circuits, this tuning range can be extended considerably by choice of the value \(K\).

Lettering subscripts 1 and 2 refer to lowest and highest respec-
tively. There are two bands on a frequency scale (not capacitance scale) that are simultaneously covered, as shown in Fig. 2.

By proper choice of \(K\) values in Eq. 4, bands \(A\) and \(B\) can be made to overlap, be exactly adjacent on the frequency scale or be separated. The maximum possible continuous coverage (all frequencies covered between \(f_{r x 1}\) and \(f_{r 2}\)) occurs in the second case when
\[
\begin{align*}
K_{1} f_{02} & =K_{2} f_{01} \text { or } K_{2} / K_{1}=f_{02} / f_{01} \\
& =\left(C_{\mathrm{M} \mid \mathrm{AX}} / C_{\mathrm{MIN}}\right)^{1 / 2} \tag{5}
\end{align*}
\]

Tuning ratio for this case is
\[
\begin{align*}
f_{r_{22}} / f_{r 11} & =\left(K_{2} f_{02}\right) /\left(K_{1} f_{01}\right)=\left(f_{02} / f_{01}\right)^{2} \\
& =C_{\Delta A x} / C_{\Delta 11 \mathrm{~N}} \tag{6}
\end{align*}
\]

It can be seen from Eq. 6 that the maximum continuous tuning ratio with this circuit is the square of the ratio for an ordinary circuit, assuming \(L_{2} C\) in the latter case. Thus frequency ratios of 9 to 1 are possible with this circuit.

It is important that ratio \(K_{2} / K_{1}\) be other than an integer. This is to avoid response to harmonics. The desired tuning range, the available capacitance range and the requirement for \(K_{2} / K_{1}\) not an integer are then the principal factors affecting choice of parameters \(m\) and \(L_{2} / L_{1}\). In Fig. 3 are shown curves

FIG. 3-Curves of \(X_{1}\) and \(K_{2}\) versus \(L_{2} / L_{1}\) for \(m\) equal to 1
FIG. 4-Curves similar to those of Fig. 3 with \(m\) equal to 0.5

\section*{Tuning Circuits}
of \(K_{1}\) and \(K_{2}\) versus \(L_{2} / L_{1}\) for the case \(m=1\) (equal capacitors). Ratio \(K_{2} / K_{1}\) is also shown and preferred operating points indicated. Figure 4 shows the same curves for \(m=0.5\). Comparison between Fig. 3 and Fig. 4 shows the advantage of varying \(m\); there is more freedom in choice of \(L_{2} / L_{1}\). Inductance of \(L_{1}\) and \(L_{2}\) can be made identical if desired and still maintain \(K_{2} / K_{1}\) as 2.5 , for example, by choosing \(m=0.789\).

Inductance ratio \(L_{2} / L_{1}\) can be found in terms of \(K\) and \(m\) by rearranging Eq. 4 and solving for \(L_{2} / L_{1}\). This gives
\(L_{2} / L_{1}=m K^{2}\left(K^{2}-1\right) /\left[(1+m) K^{2}-1\right]\)
For the special case \(m=1\), Eq. 4 for \(K\) and Eq. 7 reduce to
\(K^{2}=1 / 2\left(2 L_{2} / L_{1}+1 \pm \sqrt{4\left(L_{2} / L_{1}\right)^{2}+1}\right)\)
and
\[
\begin{equation*}
L_{2} / L_{1}=K^{2} \frac{K^{2}-1}{2 K^{2}-1} \tag{9}
\end{equation*}
\]

\section*{Series Resonance}

Series resonance occurs at \(\omega_{0}{ }^{2}=\) \((p / m) \omega_{0}{ }^{2}\), where reactance of \(L_{1}\) equals that of \(m C\). This seriesresonant frequency falls between the two anti=esonant frequencies and can be chosen advantageously to provide zero impedance for a particular order of harmonic from band \(A\). For example, setting \(\omega\). \(=2 K_{1} \omega_{0}\) and using Eq. 4
\[
\begin{equation*}
L_{2} / L_{1}=(12 m) /(4 m+3) \tag{10}
\end{equation*}
\]

For series resonance at the third
harmonic of band \(A\) frequencies
\[
\begin{equation*}
L_{2} / L_{1}=(72 m) /(9 m+8) \tag{11}
\end{equation*}
\]

Equation 10 or Eq. 11 can be substituted in Eq. 4 to find the \(K\) values and an explicit solution for both \(m\) and \(L_{2} / L_{1}\) obtained for a specified ratio \(K_{3} / K_{1}\).

The circuit in Fig. 5A is of particular interest as it has some advantages over that of Fig. 1. Inductors \(L_{1}\) and \(L_{2}\) are assumed to have positive mutual inductance \(M=k \sqrt{L_{1} L_{2}}\) between them. This circuit can be reduced to that in Fig. 5B. Input admittance for the circuit of Fig. 5B can be written and normalized using Eq. 2. Setting

FIG. 5-Coupled circuil (A) and equivalent (B)

FIG. 6-Values of \(Z_{m}\) and their ratio plotted against \(k\)
\(Y=0\), the antiresonant frequency relation is
\(\omega_{r^{2}}=\left[\omega_{0}^{2}\left(p \frac{1+m}{m}+1-2 k \sqrt{p}\right) \pm\right.\) \(\left.\sqrt{\left(p \frac{1+m}{m}+1-2 k \sqrt{p}\right)^{2}-4 \frac{p}{m}\left(1-k^{2}\right)}\right]\) \(/\left[2\left(1-k^{2}\right)\right]=K^{2}{ }_{m} \omega_{0}{ }^{2}\)
It will be noted that for \(k=0\), Eq. 12 reduces to Eq. 4. For the useful special case \(m=1, p=1\) (equal coils and capacitors) Eq. 12 becomes
\[
\begin{aligned}
\omega_{r}^{2}= & \omega_{0}^{2}{ }^{2} \frac{3-2 k \pm \sqrt{(3-2 k)^{2}-4\left(1-k^{2}\right)}}{2\left(1-k^{2}\right)} \\
& =K_{m}^{2} \omega_{0}^{2} \quad(12 A)
\end{aligned}
\]

The two values of \(K_{m}\) and their ratio from Eq. 12A are plotted in Fig. 6. With only reasonable values of negative mutual inductance, appreciable tuning ratios can be obtained. This observation leads to the important case of the tapped coil, which will be treated later.
Equation 12 can be solved for coupling coefficient \(k\) in terms of \(p, m\) and \(K_{m}\). In more convenient form, this gives
\[
k=\frac{\sqrt{p} \pm \sqrt{\left(K_{m}^{2}-1\right)\left(K_{m}^{2}-p \frac{1+m}{m}\right)}}{K_{m}{ }^{2}}
\]

The series resonant frequency for the circuit of Fig. 5 is given by
\[
\begin{equation*}
\omega_{0}^{2}=\omega_{0}^{2} \frac{p / m}{1-k^{2}} \tag{14}
\end{equation*}
\]

This relation could be used to measure \(k\) if necessary. Combining Eq. 14 with Eq. 12, and setting
\(\omega_{s}=2 K_{m, 1} \omega_{0}\) to cancel the second harmonic, it is required that
\[
\begin{equation*}
m=\frac{3 p}{12-4 p-16 k^{2}+8 k \sqrt{p}} \tag{15}
\end{equation*}
\]

This relation reduces to Eq. 10 for \(k=0\). To cancel the third harmonic, it is required that
\[
\begin{equation*}
m=\frac{8 p}{72-9 p-81 k^{2}+18 k \sqrt{ } p} \tag{16}
\end{equation*}
\]
which reduces to Eq. 11 for \(k=0\).

\section*{Tapped Coil}

As noted above, Fig. 6 shows that negative mutual inductance can be useful in the wide-range circuit. A circuit using but one tapped coil can therefore be used. Such a circuit is shown in Fig. 7A and its equivalent in Fig. 7B. Equations 12 through 16 apply, as well as Fig. 6 , using the negative sign for \(k\).

Coupling coefficient \(k\) between two sections of a tapped coil can be calculated with fair accuracy for single layer coils where the formula applies, from the Nagaoka formula \(L=n^{2} d F\), where \(n\) is the number of turns, \(d\) is the diameter and \(F\) is a factor \({ }^{s}\) depending on lengthdiameter ratio.

Coupling coefficient can also be calculated using the Wheeler formula and is made in the following way.

Assume uniform winding pitch and diameter. Lengths of each section of the tapped coil then are in proportion with the number of turns for each section. Considering the tapped coil and its \(T\) equivalent as shown in Fig. 8, three inductances can be calculated based upon coil dimensions. These are
\[
\begin{aligned}
& L_{1}=\left(n-n_{1}\right)^{2} d F_{1} \\
& L_{2}=\left(n_{2}\right)^{2} d F_{1} \\
& L_{1}+L_{2}+2 k \sqrt{L_{1} L_{t}}=n^{2} d F
\end{aligned}
\]
where \(n\) is the total number of turns. Combining these three relations and solving for \(k\) (already negative)
\[
\begin{equation*}
k=\frac{F-(1-N)^{2} F_{1}-N^{2} F_{2}}{2 N(1-N) \sqrt{F_{1} F_{2}}} \tag{17}
\end{equation*}
\]
wherein \(N=n_{2} / n\). For the special case of a center-tapped single-layer coil, \(N=\frac{1}{2}\) and \(F_{1}=F_{2}\) so that Eq. 17 becomes
\[
\begin{equation*}
k_{\mathrm{ct}}=\left(2 F / F_{1}-1\right) \tag{18}
\end{equation*}
\]

Also for the special case of a center-tapped single layer coil, the Wheeler-formula for inductance
\[
L=\frac{r^{2} n^{2}}{9 r+10(l)}
\]
can be applied conveniently. When this is done, the coupling coefficient between two halves of a center tapped coil is found to be
\[
\begin{equation*}
k_{e t}=\frac{9}{9+20(l / d)} \tag{19}
\end{equation*}
\]
where \(l / d\) is the total length-diameter ratio, in consistent units.

Curves of both Eq. 18 and 19 for the center-tapped case are shown in Fig. 9. These relations are not accurate below about (\(l / d\))

FIG. 7-Wide-range circuit using lapped coil (A) and equivalent circuit (B)

FIG. 8-Tapped coil and equivalent cir. cuit

FIG. 9-Length-diameter ratio versus coupling coefficient
\(=0.8\). Reasonable coupling coefficients (0.2 to 0.4) can be obtained with realistic coil dimensions.

\section*{Design Example}

As a typical example, suppose it is desired to provide in an amateur transmitter coverage of all amateur bands between 3.5 and 30 mc . The frequency tuning ratio \(30 / 3.5=\) 8.58 would require, from Eq. 6 and Eq. 5, a ratio \(K_{z} / K_{1}=(8.58)^{3 / 2}=\) 2.93, if continuous frequency scale coverage were necessary. This is dangerously close to 3.0 , which should be avoided for low harmonic response.

Choice is made of \(K_{z} / K_{1}=3.5\), allowing a gap to exist in the coverage. Continuous coverage for \(K_{2} / K_{1}=3.5\) requires (\(C_{M A X} / C_{M 1 X}\)) \(=12.25\), which is inordinately high. Reference to Fig. 6 gives \(k\) \(=-0.3, K_{s}=1.92, K_{1}=0.55\). So \(f_{\text {ot }}=3.5 / 0.55=6.36 \mathrm{mc}\) and \(f_{o s}=\) \(30 / 1.92=15.63 \mathrm{mc}\). Required capacitance tuning ratio is (15.63/ \(6.36)^{2}=6.03\). From Fig. 9 for \(k=\) 0.3 , coil \(l / d=1.05\).

The two bands then extend from \(0.55 \times 6.36=3.5 \mathrm{mc}\) to \(0.55 \times\) \(15.63=8.6 \mathrm{mc}\) and \(1.92 \times 6.36=\) 12.2 mc to \(1.92 \times 15.63=30 \mathrm{mc}\). No coverage is obtained between 8.6 mc and 12.2 mc , but this spectrum does not include any amateur bands, so the original specification is met. A suitable coil is designed to resonate with the desired capacitor at a frequency of 6.36 mc (maximum capacitance). This is actually half the total coil (by definition of \(f_{0}\)), so the number of turns should be figured using \(l / d=\) 0.525 . Then the actual coil has twice that many turns and twice that much length. Circuit is that of Fig. 7A, with \(m=1\).

\section*{Experimental Verification}

A B\&W type 3015 coil (1-in. diameter, 16 turns per inch) was used in a test circuit like that of Fig. 7A with \(m=1\). The coil had 34 turns total and was centertapped and conected with \(150-\mu \mu \mathrm{f}\) ganged capacitors. Resonant frequencies were measured with a grid dip meter, using the calibration of the meter which is approximate. The results obtained are shown in Table I.

Scope of this article does not permit analysis of loaded \(Q\), resonant impedance, bandwidth and similar important factors. It is believed that the possible arrangements using a single-tapped coil and two unequal capacitors have many applications where it is desired to eliminate coil switching, yet maintain basic simplicity of circuit.

\section*{References}
(1) Allen King, Jr., No Turrets - Just Tune!, QST, p 59, Mar. 1948.
(2) C. V. Chambers, Three-Control SixBand 813 Transmitter, \(Q S T, p\) 11, Jan. 1954.
(3) F. F. Terman, "Radio Engineering Handbook'' p 53, McGraw-Hill Book Co., New York, N. Y.
(4) Same as Reference 3, p 55.

\section*{\({ }^{* *}\) CENTER OF THINGS ELECTRONIC}

\section*{CINCH}

\title{
AT THE GEOGRAPHIC AND INDUSTRY CENTER CAN AND DOES PROVIDE THE SERVICE WANTED... WITH THE *STANDARD COMPONENT FOR THE PURPOSE
}

Molded miniaturized cornectors, \(14,21,34\) and 50 contacis available in low loss naterial for chassis mounting applicapions.

\footnotetext{
* We're a growing market right in the center of things.
}
- Chicago Daily News.

CINCH components evailable at leading jobbers everywhere.
* CINCH metal plastic assemblies fully perform the service for which they were designed and often have anticipated the engineering needs of the future. So that today, judged by demand and usage, CINCH components are "the standard'.

\section*{CONSULT CINCH}

\title{
Cinch Manufacturing Corporation
}

\section*{1026 South Homan Ave., Chicago 24, Illinois}

\section*{Thermistor Nomograph}

Chart gives rapid solution of exponential equation describing nonlinear resistancetemperature characteristics of thermistors. Results are well within accuracy limits of measurements and are equivalent to slide-rule accuracy

\author{
BY VICTOR W. bolis
}

\author{
Scientific Staff
}

Collins Radio Company
Cedar Rapids, Iova

BASICALLY the thermistor is a resistor whose resistance decreases in a nonlinear fashion with increasing operating temperature. Thermistors obey the empirical formula
\[
\frac{R}{R_{\circ}}=e^{B\left(\frac{1}{273+T}-\frac{1}{273+T_{\circ}}\right)}
\]
where \(R\) is the resistance (ohms) of the thermistor at the operating temperature \(T\) (centigrade), \(R_{\circ}\) is the resistance at the reference temperature \(T_{0}\) and \(B\) is a resistance-temperature constant.

The nomogram described in this paper is designed for a reference temperature \(T_{\circ}=25 \mathrm{C}\) and provides a rapid solution of the above formula for any one

of the quantities \(R, B\) or \(T\) in terms of the other two. Accuracy obtained is nearly equivalent to that of a slide rule and is within the limits of accuracy of the measuring instruments.

A linear temperature scale appears on the right side and a logarithmic resistance-ratio scale on the left side of the nomograph. Straight lines corresponding to the family \(B=\) constant intersect at a common point near the center of the nomograph. Passing through this same point is a curved line \(J K\) which is used in passing between the logarithmic resistance-ratio scale and the linear temperature scale.

Additional \(B=\) constant lines can be drawn in as required. Such lines must pass through the point of common intersection and must intersect the vertical line \(L M\) at a point which is horizontally opposite the number exp \(B / 1,000\), as read on the logarithmic \(R / R_{0}\) scale. For example, the line \(B=2,000\) intersects the vertical line \(L M\) at a point opposite \(\exp (2,000 / 1,000)=7.39\) on the \(R / R_{0}\) scale.

To find \(R / R_{0}\) given \(B\) and \(T\), enter the \(T\) scale on the right side of the nomograph and proceed horizontally to the left until intersecting the curved line \(J K\). Then proceed vertically (up or down, as required) until the correct \(B=\) constant line is intersected. Then proceed to the left horizontally, coming out on the logarithmic resistance-ratio scale and read \(R / R_{0}\).

\section*{function plotter}

Automatically plots a continuous curve of one variable as a function of another. Two measuring systems: one for chart, one for pen. See Data Sheet 10.0-5A.

How much

\section*{research time}
can these
Klectranik

\section*{instruments}

\section*{save you?}
adjustable span
recorder
Span is adjustable over a 50 to 1 range, and can be shifted up or down scale. Sensitivity and damping also adjustable. Refer to Data Sheet 10.0-10.

Tihese versatile ElectroniK instruments are relieving many research men of tedious hours of recording test data and plotting curves. Find out how they can help accelerate your Minneapolis-Honeywell Regulator Co., Industrial Division, Wayne and Windrim Aves., Philadelphia 44, Pa.

Honeywêll
BROWNINSTRUMENTS

\section*{ELECTRONS AT WORK}

\author{
Edited by ALEXANDER A. McKENZIE
}
\begin{tabular}{|c|c|}
\hline Flying Inirared Detector Spots Aircraft. 180 & Time Interval Go.No Go Gage....... . 208 \\
\hline Piano Roll Programs Driving Conditions 180 & Microwaves Gage Suriace Irregularities 210 \\
\hline Radar Cop Smoothes Traffic Flow.... 182 & Frequency Deviation Indicator. 214 \\
\hline Low Cost Breadboards for Electronic Training 184 & Modulator for Low-Frequency Tape Recording 220 \\
\hline & Laboratory Power Supply. 224 \\
\hline Visual Aid for Music Training. 200 & Whirlwind Memory 2226
Military Equipment Design. 230 \\
\hline
\end{tabular}

\section*{Flying Infrared Detector Spots Aircraft}

OTHER DEPARTMENTS
featured in this issue:

Page
Production Techniques .. 232
New Products 264
Plants and People....... . 310
New Books 352
Backtalk
362

EQUIPMENT recently delivered by Servo Corporation of America to the Air Force brings again to the fore infrared detection techniques that, in idea and simple form, antedate the development of radar.

Radiation created by the heat of engine power plants, friction of air molecules against aircraft skin or reflection and silhouette of sun's rays is inescapable. Although invisible to the naked eye, such radia-

FIG. 1-Simplified block diagram show essentials of airborne double monochromator that delects airplanes

\section*{Piano Roll Programs Driving Conditions}

Continuous loop of \(35-\mathrm{mm}\) film perforated at intervals plays electronic circuits that control test engines at California Research Corp.

Test engines used for research in fuels and lubricants require careful control and recording of operating conditions to produce a meaningful record.

A programming device that varies these conditions according to predetermined plan is now in use by California Research Corp. It comprises a \(35-\mathrm{mm}\) film loop punched in a code that can be interpreted by passage of light to a phototube. Six circuits are activated to control starting, stopping, speed, load and water and oil temperature.

In a typical test, a 15 to 30 minute sequence on the tape is run through the electronic control mechanism so it repeats for several hours. Control tapes reflect actual driving conditions. A recorder is installed in a car with contacts to record activity. Later a master tape is punched out by hand, duplicating this activity.

\(\star \quad \star \quad \star\)

\section*{TORKRITE POSSESSES MANY ADVANTAGES}

Torkrite affords unmatched recycling ability. After a maximum diameter core has been recycled in a given form a reasonable number of times, a minimum diameter core can be inserted and measured at 1 " oz. approximately.

Torkrite has no hole or perforation through the tube woll. This eliminates the possibility of cement leakage locking the core or cores.

Torkrite permits use of lower torque as it is completely free of stripping pressure.

Witb Torkrite, torque does not increase after winding, as the heavier wall acts to prevent collapse and core bind.

Improved new Torkrite is now available in various diameter tubes. Lengths from \(3 / 4\) " to \(31 /{ }^{\prime \prime}\), are made to fit 8.32 , 10-32, \(1 / 4-28\) and \(5 / 76-24\) cores.

Fast, Dependable Delivery at all times.

\title{
CLEVELITE*
}

\section*{laminated paper base phenolic tubing}

In seven specific grades, Clevelite is one of the finest and most complete lines of tubing available to the electronic and electrical industries.
\begin{tabular}{|c|c|}
\hline Grade & Application \\
\hline Grade E & Improved post-cure fabrication and stapling \\
\hline Grade EX & Special grade for TV yoke sleeves \\
\hline Grade EE & Improved general purpose \\
\hline Grade EEX & Superior electrical and moisture absorption properties \\
\hline Grade EEE & Critical electrical and high voltage application \\
\hline Grade XAX & Special grade for government phenolic specifications \\
\hline Grade SLF & Special for very thin wall tubing having less than .010 wall \\
\hline
\end{tabular}

High performance factors, uniformity and inherent ability to hold to close tolerances, make Clevelite outstanding for Coil Forms, Collors, Bushings, Spacers and Cores. Competent Research and Engineering facilities are always available to aid in solving those tough and stubborn design and fabrication problems. May we help you?

WHY PAY MORE? For Good Quality . . . call CLEVELAND!
- Reg. U. S. Pet. Off.

tion is detected with moderate ease. Actual measurement of frequency and intensity is somewhat more conplex, but can be accomplished with the techniques suggested in Fig. 1.

The heat source, which might be an aircraft, radiates a spectrum of energy that usually varies in intensity for different points of the spectrum. Total energy is picked up by a thermistor bolometer and compared with a reference heat source that is arranged to eliminate the effects of ambient temperature variation.

Intensity of the total radiation is recorded and likewise indicated aurally (in operator's headphones)

Self-stabilized spectrum ray servoscanner is mounted in nose of airplane
and on a meter.
The mirror chopper allows incoming radiation from the target
to pass through a monochromator after which it is likewise detected, amplified and recorded.

Various small slices of the infrared spectrum are sampled in turn under direction of the wavelength control and the wavelength information is fed to the recorder as well as to a visual dial. The signal strength recorded is therefore presented as a function of wavelength. Each body has its own special pattern that is identifiable.

Because the monochromator has an extremely small field of view, it is necessary to mount the infrared detector and a conventional optical viewer on a stabilized platform to keep it pointed directly on target.

Typical radar traffic-control installation shows equipment mounted on long bracket over street. Echoes from approaching cars keep trattic signal green

Radar unit removed Irom protective case with antennas uncovered. lmpulses sent from this unit acting as transmitter are returned and detected as street tratfic

Radar, used by some police departments to measure the speed of vehicles, is now being developed into a traffic control device. In the past, switches set into the pavement have been employed to operate traffic controls that allow occasional vehicles on side roads to enter main highways. An alternative system, used at main intersections, operates on a timing sequence.

In this application, radar impulses reflected from vehicles moving close to an intersection are returned to a receiver contained in the same cabinet, which is customarily mounted on a pole or bracket above the roadway. The receiver feeds the reflected signals to a simple electronic computer. Output signals dispatch traffic according to density rather than on a
time basis. However, if the flow of vehicles is continuous, the computer is equipped to recognize this condition and introduce a modified time cycle to take care of cross traffic.

First commercial installation of the device has been made by Eastern Industries, Inc., Norwalk, Conn., in that city.
(Continued on Page 184)

The first characteristic which the user has a right to expect in a precision potentiometer is accurate performance... and in precision potentiometers, performance depends upon the coil.

In an accurate linear potentiometer, any given amount of slider travel must result in a corresponding voltage charge... no matter which portion of the coil is traversed.

To achieve this, a potentiometer manufacturer is careful to select resistance wire of uniform thickness ... and to space is as accurately as possible when winding it around the core.

Like all manufacturers of precision potentiometers, we select our resistance wires from the good ones available from several sources... picking the proper alloy and size to meet your requirements.

Up to this point, making precision potentiometers is not particularly difficult.

The first critical phase is the series of operations involved in coil winding... and Helipat Corporation engineers have developed a special machine... unique in the industry ...which performs the coil-making operations in continuous sequence.

First the core wire travels through pressure rollers which take out all kinks. Next...in a dustfree chamber ...the resistance wire is wrapped around the core. To insure even spacing, the rate of travel of the core wire and the speed at which the resistance wire is wound are both minutely controled.

The wire travels on...through a small pre-heater...then past jets which coat it with just the right amount of insulating varnish... and through an infrared oven to dry the varnish. Finally, the wire is coiled into a helix of tre correct diameter by another set of rollers... and cut to the desired lergth of one to forty turns.

All this is done by the machine in a continuous operation...carefully controlled at each step...followed by microscopic inspection and rigorous testing of the completed coils.

At Helipot's Pasadena plant, a battery of these high-speed coilwinding machines assures full-scale production of high-quality coils... produced automatically with considerable saving of time and effort.

See our exhibit at the Wescon Show, August 25 to 27, at Pan Pacific Auditorium, Los Angeles...featuring our full line of single-turn and multi-turn precision potentiometers, and turns-counting DUodials**

Helipot*...first in precision potentiometers... makes sure that, in every Helipot, you do have a better coil. Specially-developed coil winding machines are but one of the many ways in which Helipot has pioneered, in the manufacture of better precision potentiometers.

The coil winding machine is another example of how Helipot has applied mass-production techniques to delicate operations requiring extreme accuracy ... insuring the lowest price consistent with the high quality you expect in Helipot products.
'Accuracy of Potentiometer Linzarity Measurements" by Robert McDonald and Irving J. Hogan... eprint of a significant article in Tele-Tech and Electronic Industries... is yours for the asking. Please request Data File 801.

\section*{Helipot}
first in precision potentiometers
Helipot Corporation/South Pasadena, California
Engineering representatives in principal cities a division of BECKMAN INSTRUMENTS, INC.

\section*{Low-Cost Breadboards for Electronic Training}

\author{
By Edward J. McGrane and William C. Martin \\ Lieutenant Colonel, USA \\ Fhe Artillery Schoo
Font Bliss, Texas \\ Field Engineer
Philco Corp. \\ Philadelphia, Pa.
}

Practical circuit experience is a necessary and valuable aid in teaching electronics. This requires laboratory equipment that is flexible and versatile, yet reasonable in cost if a large number of students is to be trained.

Some type of breadboard system is desirable since the student's time should not be taken up with laborious mounting and soldering of components. One solution is to mount permanently circuits on breadboards and provide test points and switches for changing component values. The disadvantage of this system is that the cost for a set of breadboards is high because each breadboard requires a complete set of components and a particular board is used only a small percentage of the time.

A solution to this problem is to provide versatility of components by using snap fasteners or Fahnestock clips. This approach allows the
use of the same components in more than one circuit, but requires considerable replacement because of leads broken in repeated connection and disconnection.

A system devised in the Electronics Department of The Artillery School, Fort Bliss, Texas, overcomes these disadvantages.

A typical breadboard is shown in Fig. 1. The board is constructed of one-quarter-inch plywood, 14 inches by 10 inches, mounted on one-inch-square pine stripping. The circuit schematic is placed on the surface of the plywood by a silkscreen process. The plate supply, plate, grid, cathode and ground circuits are painted red, blue, green, yellow and black respectively thus familiarizing the student with the wiring color code used in actual equipment.

After the circuit schematic has been silk-screened on the board, the entire surface is varnished for pro-

FIG. 1-Schematic of multivibrator circuit is silk screened on plywood board, rop. Operating circuit is constructed by installing mounted parts on board as shown below

FIG. 2-Components that may be used on any breadboard are stored in racks
tection. Wires are connected on the underside of the board corresponding to the solid lines shown on the silk-screened schematic diagram. The wires are connected to one-inch

 ponents that show the way to quality. Besides the standard AN and RF connectors, and RG cable, there are many special AMPHENOL components that will prove of value to you. These include the famous Blue Ribbon connectors, miniature ANtype 165 series connectors, field-serviceable audio and power plugs and receptacles, new 172 series Hermetic Seal receptacles (which mate with standard AN plugs), new Qwre microphone connectors and many others.

Write to the Product Sales Department at AMPRENOL for information about any of the above components.

6-32 machine screws, which provide both electrical contact and a means of mounting the physical components that are shown on the schematic. The only permanently mounted hardware on the majority of the breadboards is a tube socket and the 6-32 screws.

Used in conjunction with the breadboards are two component boards, shown in Fig. 2. One contains resistors of standard values and varying wattage ratings. The other contains capacitors, inductors and potentiometers of various sizes. These components may be used with any one of the more than 50 breadboards, thus keeping costs to a minimum. Each component is mounted on a Bakelite strip, threeinches long, \(\frac{8}{8}\)-inch wide and \(\frac{1}{8}\)-inch thick. Brass eyelets are mounted through two holes in the strip, which facilitate the mounting of the components on both the component board and the breadboards. The leads of each component are soldered to the eyelets to insure good electrical contact.

\section*{Measuring Waveforms}

Proceeding with the practical exercise, the student takes measurements and observes waveforms at various points in the circuit. Then, by changing values of the circuit components he may observe the effects on the circuit operation. Changes in components are made in a few seconds and alteration of the complete circuit may be made with a minimum of effort. Each laboratory has approximately 25 positions, each equipped with test instruments.

Two students are assigned to each position thus providing close contact with the equipment for each.

Power is supplied to the breadboards by means of individual power panels connected to a central power supply. A harness is used to connect from the panel to the screws on the left side of the board. Boards may be placed in cascade by simply connecting shorting bars from the terminals on the right side of one board to those on the left side of the following board.

In using the laboratory bread-

Are you ready for a revolutionary concept in the electrical and electronic industrythe Magnetics, Inc. "Performance-Guarantee" on Tape Wound Cores. Guaranteed
to meet your specifications, and sold at standard prices; these Cores mean truly economical production of high permeability magnetic devices in your plant.

Typkal of the unusual scope of the material contained in Catalog TWC. 100 are Tables A and B, reproduced from Page 4 of "Performance.Guaranteed Tape Wound Cores."

\section*{GET THE COMPLETE STORY}

A wealth of new and unusual material on Tape Wound Cores is available to you in Catalog TWC-100, "Performance-Guaranteed Tape Wound Cores." Tables A and B of the catalog, reproduced on this page, present a striking illustration of material not to be found compiled together elsewhere.
Data and descriptive details on high permeability materials ... factory core matching . . . free engineering design services . . . pages of characteristic graphs and tables ... are yours for the asking. Simply write on your company letterlead.

DEPT. E-7, BUTLER, PENNSYLVANIA

\section*{A New Easy-To-Mount Capacitor}

\section*{For Limited Space Applications Developed By INDUSTRIAL}

Industrial has expanded its line of inverted single-stud-mounting small case size tubular oil-filled capacitors to incorporate important new units for applications where chassis space and ease of mounting are prime factors. Included are dual 4 mfd . (600 vdc .), dual 2 mfd . (1000 vdc .), 8 mfd . (600 vdc .), 4 mfd . (1000 vdc .) and 2 mfd . (1500 vdc.) values. These, plus similar types in the 600, 1000 and 1500 v . range, make the Industrial line of tubular oil-filled capacitors one of the most extensive in its class.

Manufacture of capacitors is our exclusive business. Whether your needs call for oil, wax, electrolytic, Stabelex \({ }^{\circledR}\) or new and unusual capacitors, we offer you specialized service and a wide variety of complete lines to meet your requirements. Write today for detailed information and illustrated catalogs.

\section*{ONDUSTRIVAL \\ CONDENSER CORPORATION}

3249 N. California Ave.,
Chicago 18, 111.
board the student first selects components of optimum value from the component boards according to a practical exercise instruction sheet. The components are then mounted in their indicated positions on the breadboard by means of the 6-32 screws and knurled nuts. The components are thereby electrically connected to the wiring beneath the board. Copper shorting bars are placed over the broken lines on the schematic showing no electrical components.

The versatility of the breadboard can be seen in Fig. 1. It is possible to return the grids of the multivibrator to ground or B plus through either a fixed resistor or potentiometer. The same board may be operated as a free-running or synchronized multivibrator or a frequency divider.

\section*{Types of Circuits}

Some of the more than 50 breadboards now in use are a-c d-c circuit connectors that contain conductors and mounting screws situated so that practically any series, parallel or series-parallel circuit may be constructed using the mounted components. Also included are rectifier and filter circuits; audio, video, and power amplifier circuits, \(a-m\) and f-m circuits; oscillators; sweep generators; multivibrators and pulse-shaping circuits.

Excellent systems experience is provided for the student when he connects a number of boards to simulate radar operation. For example it is possible to produce a triggered sweep, movable range step and target echo on one oscilloscope using a hard-tube sweep generator, cathode follower, two one-shot multivibrators and two oscilloscope-amplifier boards connected in the proper manner.

The laboratory breadboards referred to in this article have been completely fabricated at Fort Bliss. The material cost per breadboard including lumber, hardware, connecting wire, lacquer, paint and varnish is approximately \(\$ 0.98\). Boards that require large components such as transformers have them permanently mounted thus increasing the cost of that particu-

offices are staffed with competent vacuum engineers, ready to help you get the right vacuum pump for each application.
Send Coupon for Complete Details

If the ceramics you use today become "crazed" antiques tomorrow-it's time to specify CRL surface-glazed Steatite. It's recommended especially for components where improving appearance, resisting dirt and protecting against acid or humidity penetration are important factors!
- CRL glaze is a hard. chemically-resistant silicate glass-permanently fused to the ceramic body in a tough-wearing coat approximately .003 to .004" thick.
- Glaze adds a plus to the already high JAN-specified characteristics of CRL Steatite including : extremely low loss at high frequency (1 MC - .007) ; high dielectric strength (240 v per mil); high mechanical strength (18,000 psi modulus of rupture).
Custom glazing formulas made to your specifications - fired under exacting CRL quality control direction.
Steatite supplied is Centralab's standard - Grade L-5. Meets JAN-I-8 and JAN-I-10 characteristics without exception.

Centralab has been "working wonders" in ceramics since 1928.
- CRL pioneered ceramic products into standard lines years before any other manufacturer in the ficld.
- Over 150 engineering specialists available for work on your ceramic-electronic problems.
CRL products tested \(100 \%\) before shipment if required.

A Division of Globe-Union Inc. 914H E. Keefe Avenue Milwaukee I, Wisconsin In Canada: 804 Mt. Pleasant Road, Toronto, Ontario

Standard items available at your local (CRL) distributor - see Catalog 29.
st source of standard and special electronic components
lar board. Cost of components and vacuum tubes for one laboratory position to perform sixty different experiments is about \(\$ 70.00\).

This type of breadboard system could be applied not only to large groups but also small classes whose amount of practical training is determined by a limited budget.

\section*{Thyratron-Type Transistor Circuit}

By T. A. Prugh and J. W. Keller
Diamond Ordnance Fuze Laboratories Washington, D.C

Performing functions similar in certain respects to conventional gas thyratrons, the circuit in Fig. 1 acts as an amplitude comparator in that it changes from a non-oscillating to an oscillating state when the input signal rises to ground level. It continues oscillating until reset by external means.

FIG. 1-Amplitude comparator uses tuned circuit with resonant frequency of 400 to 500 kc

Major factors guiding the development of the circuit are as follows: operation up to a temperature of 70 deg C or higher; supply voltages of +10 and -10 volts; noncritical parameter values; threshold level independent of temperature; amplitude of output level greater than 10 volts peak-to-peak; and high input impedance or minimum loading of the input signal.

Earlier circuits made use of a conventional resistance-coupled, single-transistor, bistable stage \({ }^{2}\). However, difficulty was encountered in the performance of the circuit at high temperatures. Increase of current with temperature made it hard to maintain accurate threshold levels and constant output signals. Inductance coils in the base and col-

\section*{When it comes to}

\section*{hermetic seals, consult E-I}
for standard type

\section*{terminals to fit}
standard closures.-.E-I

can save you
HERMETICALLY. SEALED TERMINALS CLOSURES
E.I . Headquarters for Hermetically-seoled Mulliple Headers, Octal Plug-ins
Terminals, Color-coded Terminals, End Seals

for catalogs and samples

\section*{A 640 -page guide to relay selection and use}

Let "RELAY ENGINEERING", the famous StruthersDunn handbook, help solve your problems of relay selection, application, circuitry and maintenance! Over 17,000 copies in use. Price \(\$ 3.00\).

\section*{STRUTHERS-DUNN}

5,348 RELAY TYPES
Struthers-Dunn, Inc., Lamb's Road, Pitman, N. J.
lector circuits have eliminated these problems.

Basically the circuit consists of a transistor oscillator with a tuned circuit \(C_{2} L_{1}\) in its base. If normal bias is applied to the emitter, the stage oscillates continuously at approximately the tuned-circuit resonant frequency of 400 to 500 kc . However, additional components are added in the emitter circuit to permit accurate control of the state of the oscillator.

FIG. 2-Typical point-contact transistor showing alpha as function of emitter current

Figure 2 shows the effect of emitter current on the alpha of a point contact transistor. Three regions are easily recognized as: alpha below unity; alpha near unity but slightly greater; and alpha considerably larger than unity.
These three regions correspond to three separate conditions of the circuit: transistor cutoff with no oscillations possible; circuit just able to oscillate ; and circuits oscillating at high ampltiude (class C).

The first condition exists as long as the input voltage is below zero. The fixed voltage of -1.5 volts applied to the emitter bias-resistance, \(R_{\text {s }}\), assures that the emitter is biased to cutoff.

As the input level approaches zero the critical emitter current is reached where oscillations can start and the second condition exists. The criterion for instability \({ }^{2}\) of a transistor circuit is as follows
\[
\boldsymbol{\alpha}>1+r_{c} / R_{b}+r_{a} / r_{0}
\]
where the \(R_{b}\) refers to the base resistance of the transistor plus the total external resistance in the base circuit. Near the resonant frequency of the tuned circuit \(R\), becomes large with respect to \(r_{\text {s }}\) where \(r_{\text {. }}\) is generally much larger than \(r_{\text {. }}\) Accordingly, alpha need only be slightly greater than unity for the circuit to start oscillating. As shown in Fig. 2 the region of rapidly increasing alpha is covered by

\section*{STACKS OF STABILITY}

Bradley rectifiers invariably exceed performance requirements, but this quality bonus does not carry a premium price. Our exclusive vacuum process not only assures stability and long life; it also
assures low cost We would like to prove it by quoting now on your rectifier needs. Please fill out the form below no obligation, of course. You will get quick action.

VACUUM PROCESSED-for performance as rafed
BRADLEY LABORATORIES, INC., 168E COLUMBUS AVENUE, NEW HAVEN 11, CONNECTICUT

\section*{MO-1 (OCTAL)}

Hermetic or gasket seal. Holds 1 or 2 McCoy M-1 \(^{(H C-6 / U)}\) crystal units. Temperature: \(65^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) (adjustable). Sta-

MO-1 (OCTAL)

MO-1L (LOCTAL) bility: \(+5^{\circ} \mathrm{C}\) from nominal. Ambient Ranges: \(-55^{\circ} \mathrm{C}\) to \(5^{\circ} \mathrm{C}\) below nominal. Power: less than 6 watts. 6, 12 or 24 volt operation.

\section*{MO-IL (LOCTAL)}
see description MO-1
One or the other of these MCCoy Ovens is the answer to the problem of maintaining close temperature control in all transmitting and receiving equipment mobile, railway, marine and aircraft.
ony other of your crystal requirements.

The most crifical element in an entire measurement or control system, the amplifier often determines overall precision. Input from transducers or other signal sources may
Optimum System Accuracy

\section*{WITH}

\section*{WM MILLER AMPLIFIERS}
 be accurate; output devices may provide exact indication. But if intermediate circuitry introduces inaccuracies, overall value is greatly reduced. Wm. Miller Instruments offers three basic amplifier types for incorporation in a wide variety of instrumentation systems. Each represents the most advanced, thoroughly tested design in its field; each allows the engineer to retain full advantage of the inherent accuracy of other system elements.
CARRIER-TYPE SYSTEMS are stable at extremely low to medium (500 cps) frequencies; are useful in straingage work.
D-C AMPLIFIERS combine high gain, wide-band response, low-drift; are used for the precision laboratory measurement.
LINEAR-INTEGRATING SYSTEMS are highly useful in vibration studies; provide direct measurement of velocity and displacement.
A brochure describing MiNer Amplifiers will be mailed on request.

WM MILLER INSTRUMENTS, INC.
CUSTOM INSTRUMENT DESIGNERS AND MANUFACTURERS
325 N. HALSTEAD AVENUE PASADENA B. CALIFORNIA•RYAN 1-6317

\section*{BHEAED Oudo Tinusformers}

CHICAGO audio transformers feature the famous "sealed-in-steel" construction. They have seamless drawn steel or cast cases for greater strength, moisture resistance and maximum shielding. These units are truly the world's toughest transformers.

These rugged transformers are designed to provide minimum leakage and hum pick-up, along with optimum coupling. Harmonic and intermodulation distortion are extremely low over the specified frequency ranges.

CHICAGO STANDARD TRANSFORMER CORP.
3501 ADDISON STREET•CHICAGO 18, ILLINOIS

\section*{EXPORT SALES:} Roburn Agencies, Inc., 431 Greenwich Si., New York 13, N. Y.

Chicago Catalog CT-554
listing complete electrical and physical specifications on over 500 chicago transformers. Available from your chicago distributor or from Chicago Standard Transformer Corporation.

Most Chicago audio transform ers are available in a choice of mounting styles, including hermetically sealed cases. You're almost sure to find the unit you require in the chicago line of stock transformers.

THE K.TRAN-made by Automatic Manufacturing Corporation -measures only \(8 / /^{\prime \prime}\) across. Yet it is available in RF and IF transformers covering frequency ranges from 20 KC to 30 MC and higher! For its size, it covers the widest range of uses in the \(1 F\) field-and with unsurpassed stabilities. . . . As indicated, the makers credit K-TRAN's success, in large measure, to the controlled uniformity of G A \& F Carbonyl Iron Powders.

Today there are ten types of iron powders made by the Carbonyl Iron Process-with the particle sizes ranging from 3 to 20 microns in diameter. The iron content of some types is as high as 99.6 to \(99.9 \%\).

With quite different chemical and physical characteristics, the ten types lend themselves to many different uses-to increase \(Q\) values, to vary coil inductances, to
coils, to confine stray fields and to increase transformer coupling factors. The Carbonyl Prucess assures the quality and uniformity of each type.
We urge you to ask your core maker, your coil winder, your industrial designer, how G A \& F Carbonyl Iron Powders can increase the efficiency and performance of the equipment or product you make, while reducing both the cost and the weight. We also invite inquiries for powders whose performance characteristics are different from those exhibited by any of our existing types.

This 32-page book offers you the most comprehersive treatment yet given to the characteristics and applicalions of G A \& F Carbonyl Iron Powders. \(80 \%\) of the story is told with photomicrographs, diagrams, performance charts and tables. For your copy-without obligation-kindly address Depart-

New Cdison Contuet Relay Amplifies Power 500.000 Times

New Edison Control Relay Amplifies Power 500,000 limes

New Edison Control Relay Amplifies Power 500,000 times

New Edison Control Relay Amplifies Power 500,000 Times

New Edison Control Relay Amplifies Power 500,000 Times
Edison Control Relay Amplifies Power 500,000 Times
Control Relay Amplifies Power 500,000 Times
Relay Amplifies Power 500,000 Times Amplifies Power 500,000 Times
linear semiconductor device, temperature effects are extremely important. This diode can radically effect the critical input current that starts oscillation. A low reverseresistance diode would act as an additional load on the input signal source. High temperature aggravates this effect to a considerable extent. Figure 6 illustrates the effect of several diode arrangements on the critical current for the complete circuit as a function of temperature.

FIG. 6-Proper diode arrangement emphasized by wide range of threshold current

The top curve shows the effect of a typical point-contact germanium diode. Deterioration is rapid as temperature rises. Two diodes of the same type are an improvement as shown by the middle curve. By far the most satisfactory diode is a small selenium unit (bottom curve). The circuit with this latter diode is still better (in the sense of the threshold current being near zero) at \(80 \mathrm{deg} C\) than either of the other diode arrangements at room temperature. One added comment on the bottom curve is that the current is of opposite polarity from that required for the other diode arrangements.

Some variation with voltage in the trigger point is experienced with different transistors and at different ambient temperatures. These are caused by \(I_{c o}\) changes creating an additional voltage drop in the base-resistance of the transistor. For a type \(1729, I_{\text {eo }}\) can vary approximately 1 ma from 25 to

Because there is an amplification factor of approximately 500,000 between the input power to the operating coils and the load capacity of its own contacts, Edison's Magnetic Control Relay actually eliminates the need for electronic boosting operates directly from a thermocouple, photocell, or from vacuum tube currents. Yet this precision instrument stands up even under the shock and vibration of aircraft service.

Designed and developed in the worldfamous Edison Laboratory, this small relay has features of particular interest to designers of electronic equipment.

Low power operation-Standard types operate at as low as 30 microamperes-do not drain
power from other circuit components, such as gyro motors.
Versatility-Coils can be supplied with resistances from 0.5 to 20,000 ohms. Differential operation is made possible by separate connections from each coil with polarized operation as an inherent characteristic.
Stability-Test relays have exceeded \(8,000,000\) cycles without calibration change.
Rugged Movement-Dissipates overloads up to 10,000 times normal operating input-withstands 50 g shock in all planes (unenergized).

Contacts - Platinum-iridium wire, either SPST or SPDT, with capacity of \(1 / 3\) ampere at 28 volts d.c. non-inductive.
Wrice us-especially if you are now using a single-stage electronic amplifier-for more complete information.

a great name continues great new achievements

\footnotetext{
Thomas A. Eclison, Inc.
instrument division - 54 lakeside avenue - west orange, new jersey
}

Alloy Special Wire Shapes eliminate costly machining time and cut metal waste. No need to start with round wire and then machine half of it away to get the shape you want. Alloy Metal Wire Division is ready to snpply you with Stainless and Nickel Alloy wire in just about any special shape you may require. Some of the standard shapes available are shown here. We will be more than willing to work with you in the development of any other shape.
Drawn Alloy Wire Shapes provide other advantages in addition to reduced costs. Product quality and performance are also improved. The drawn wire insures uniformity of cross-section and a smooth, flaw-free surface.

For more details on Alloy Special Wire Shapes or for information on Stainless, Nickel Alloy or Electrical Resistance Wire, Rod and Strip, drop us a line. We are happy to be of service to you.

\author{
"Rualily Products since 1919"
}

\section*{alloy metal wire division}

Some of the special shapes now in production. Others can be developed to meet your needs.
Hex-head bolts ard flat-wire lock washers take advantage of the matarial savings of spectal shapes.

H. K. PORTER COMPANY, INC.
of Pittsburgh
PROSPECT PARK, PENNSYLVANIA

\section*{...STOCK TYPES FOR QUICK DELIVERIES \\ . SAMPLES AND "SPECIALS" 70 EXACT SPECIFICATIONS}

As engineering specialists in both wire winding and electronic equipment assemblies, Shallcross offers complete facilities for the design and lafgescale production of delay lines in a variety of open and encapsulated styles for both highly critical as well as commercial uses.
Typical applications include use as compensating delays for color television, in signal delays for TV synchronizing signal generators, and in wideband distributed-type amplifiers.
Now available for prompt delivery is the Shallcross open-type 380 described below. This is a typical lumped parameter delay line using silvered mica capacitors conforming to JAN Style CM-15, Characteristic E. Many other types can be readily designed for specific applications. Quick delivery of prototypes! Send your specifications for prompt consideration by Shallcross engineers. SHALLCROSS MFG. CO., 522 Pusey Avenue, Collingdale, Pa.

Shallcross type 380 delay line
SIZE:
Open Type: \(21 / 4^{\prime \prime} \times 11 / 2^{\prime \prime} \times 5 / 6^{\prime \prime}\)
Encapsulated Type: \(211^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}\)
ELECTRICAL CHARACTERISTICS:
Maximum pulse voltage: \(\pm 100\) volts
Rise time: 0.04 microseconds
Total delay: \(0.3 \pm 0.03\) microseconds
Impedance: 500 ohms
Shatiñ

80 deg C. Through a base resistance of 100 ohms this represents 100 millivolts. This voltage effectively acts in series with the input signal. As in most circuits of this type, the input signal amplitude should be made as large as possible to swamp these small undesirable voltages.

Most of the data for this article were obtained by E. Harrison.

\section*{References}
(1) A. E Anderson, Transistors in Switching Circuits, Proc \(I R E, 40, \mathrm{p} 1541\), Nov. 1952.
(2) R. M. Ryder and R. J. Kircher Some Circuit Aspects of the Transistor Bell System Technical Journal, 28, p 367 July 1949 .

\section*{Visual Aid for Music Training}

By V. Ronald Nelson
Dept. of Physics Augustana College

An ELECTRONIC INSTRUMENT that may be used for the perfection of pitch, volume and quality control in vocal and instrumental music education and for the demonstration of many of the phenomena of the physics of music gives a picture on an oscilloscope screen of the note being played. The main elements of this device are shown in the block diagram of Fig. 1.

FIG. 1-Block diagram of audio viewing unit

The oscillator, which is resistancecapacitance tuned by means of the pitch-selector switch, emits through the speaker any one of the thirteen pitches of the chromatic equally tempered scale. The tone to be compared with the reference note, whether it be vocal, instrumental or otherwise generated, is picked up by the microphone, amplified and applied to the vertical deflection

\section*{stảatitity}

\section*{striller SIzE}

\section*{ineater \\ stremain}

\section*{? Temperature Compensating ® DISCAPS}

Temperature coefficients up to N .5200 available on special order.

\section*{SPECIFICATIONS}

POWER FACTOR: Over 10 MMF less than \(.1 \%\) at 1 megocycle. Under 10 MMF less than \(.2 \%\) at 1 megacycle.
WORKING VOLTAGE: 1000 V.D.C.
TEST VOLTAGE (FLASH): 1750 V.D.C.
CODING: Capacity, talerance and TC stamped on dise INSULATIDN: Durez phenalic-vacuum waxed
INITIAL LEAKAGE RESISTANCE: Guaranteed higher than 7500 megahms
AFTER HMMIDITY LEAKAGE RESISTANCE: Guaranteed higher than 1000 megahms
LEADS: No. 22 tinned copper (. 026 dia.)
TOLERANCES: \(\pm 5 \% \pm 10 \% \pm 20 \%\)

RMC Type \(\mathbf{C}\) temperature compensating DISCAPS are universally recognized as the ideal money-saving replacement for tubular ceramic and mica capacitors. Rated capacities will not change under voltage. Smaller size permits compact circuit designs. Greater mechanical strength assures rugged assemblies and lower costs in production line operations. Rated at 1000 working volts, Type C DISCAPS are available for \(\varepsilon\) wide range of applications and cost no more than ordinary 600 volt capacitors.
Whatever your ceramic capacitor problem, standard or specialized, RMC engineers are prepared to solve it for you. Take advantage of a wealth of experience by writing today.

The capacity of these condensers will not change under voltage.
These capocitors confarm to the RTMA specification for Class 1 ceramic condensers.

RADIO MATERIALS CORPORATION
GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.
DISTRIBUTORS: Contact Jobbers Sales Co., P. O. Box 695, Fairlawn, N. J.

\section*{Need pounds or tons}

\section*{Call or}

\section*{Cunnon-Muskegon}

Heats checked for chemical onalysis.

High frequency induction furnaces.

MasterMet afloys are available in ingot, Shol, billet or cast bar forms. Immediateing available are stacks of 300 and 400 cials." including tool steels, ferritic austenitic and super stoinless' alloys of
roday for your Copy of new MasterMe Alloy Bulletinn for complete technical details.

Exacting MasterMet metallurgical control to your specifications assures exactly predictable control of finished part or casting

Electronic design engineers! You specify the alloy and we'll tailor it to your needs, backed by a certified analysis! Name the quantity - the fast delivery will surprise you! Preparation can begin almost immediately after receipt of order. MasterMet alloy service gives you all this:

UNIFORM ALLOYS TO YOUR MELTING PROGRAM - The results you get from a sample cast are the same as the final production run.

MASTERMET CERTIFIED ANALYSIS-Regularly furnished are notarized certificates insuring you specified alloys with exact electrical, physical and chemical properties.

PRODUCTION MELTS OR SAMPLE JOBS Modern furnace equipment assures completely flexible service at any time.
fASt ACTION ON YOUR ORDERS - No long delays for a mill run. Alloys delivered in drums, clearly marked with all specifications for fast selection and storage.

\section*{Cannon Muskegon zen \\ \(\begin{array}{lllllllllll}C & O & R & P & O & R & A & T & I & O & N\end{array}\) \\ 2885 Lincoln Street - Muskegon, Michigan}

METALLURGICALSPECIALISTS
plates of the oscilloscope.
Because the sweep generator is synchronized at one-fourth the frequency of the oscillator, four complete cycles of the incoming tone appear on the screen of the oscilloscope as shown in Fig. 2, if the incoming frequency is the same as that of the reference tone. Drifting of the pattern to the right or left indicates an off-frequency condition, either flat or sharp, respectively.

FIG. 2-Waveforms produced by tuning fork (\(A\)) trombone (B) baritone voice (C. and signal from loudspeaker of viewing unit (D)

The speed of drift is proportional to the degree of sharpness or flatness. Undesirable variations in the amplitude of the pattern reveal a lack of volume control of the sound source. The shape and complexity of the pattern is a manifestation of the quality or color of the tone-in other words, of the number and relative strengths of the overtones present. Since the tendency toward the end of a long sustained note is to change pitch, volume, or quality,

MANUFACTURERS AND SERVICE MEN WHO SERVE BEST

\title{
Specify Belden WIREMAKER FOR INDUSTRY
}

\title{
BALLANTINE Sensitive, Wide Band Electronic Voltmeter
}

To measure. I millivolt to 1000 volts from.................. . . 15 cycles to 6 megacycles with accuracy of. \(3 \%\) to \(3 \mathrm{mc} ; 5 \%\) above with input impedance. . . . 7.5 mmfds shunted by 11 megs

When used without probe, sensitivity is increased to 100 MICRO. VOLTS but impedance is reduced to 25 mmifds and 1 megohm

\section*{Featuring customary Ballantine}

\section*{SENSITIVITY - ACCURACY - STABILITY}
- Same accuracy at \(A L L\) points on a logarithmic voltage scale and uniform DB scale.
- Only ONE voltage scale to read with decade range switching.
- No "turnover" discrepancy on unsymmetrical waves.
- Easy-to-use probe with self-holding connector tip and unique supporting clamp.
- Low impedance ground return provided by supporting clamp.
- Stabilized by generous use of negative feedback.
- Can be used as 60 DB high fidelity video pre-amplifier.

Write for calalog for more information about this and other
BALLANTINE voltmeters, amplifiers, and accessories.

the unit may be used to detect and correct these usually undesirable variations.

If the incoming frequency is an octave below the frequency of the reference note, only two complete cycles will appear as in Fig. 2B. If it is two octaves below the reference note, only one cycle of the incoming frequency will appear on the screen.

FIG. 3-Oscillator circuit for producing reference notes in audio viewing system

Conversely, if the incoming tone is an octave higher than the frequency of the reference tone, eight cycles will appear. This feature allows the musician to listen to one reference note, perhaps \(A_{4}\) (440 cps), and to practice playing that same note or any of its octaves, higher or lower.

Referring to Fig. 3, the oscillator frequency varies inversely with \(C_{1}\), \(C_{2}, C_{3}, R_{1} R_{2}\) and \(R_{3}\). Capacitors \(C_{1}\) and \(C_{2}\) provide coarse frequency adjustment while the trimmer across \(C_{3}\) and the potentiometer adjacent to \(R_{3}\) provide fine-frequency adjustment. Each note of the chromatic scale is tuned by its own individual trimmer capacitor across \(C_{1}\) or \(C_{2}\). The above network produces a phase shift of 180 degrees at the frequency to which it is tuned. Amplifier \(V_{1}\) furnishes another phase shift of 180 degrees, resulting in selfsustaining oscillations if the tube has sufficient gain. Cathode follower \(V_{2}\) isolates the oscillator from the circuits that follow.

The sweep generator in Fig. 4 is

These high precision standard Guardian Steppers afford positive selection and control of multiple circuits in Business Machines, Counting Devices, Totalizers, Computers and a vast array of similar products at low cost. Applications include: automatic circuit selection; automatic sequence selection of circuits; automatic sequence cross-connection of circuits.

\section*{SERIES M. E. R. GUARDIAN MIDGET ELECTRICAL RESET STEPPER} Keeps the reset magnet open, allows the ratchet to reset freely on a pulse of 10 milli-seconds. Stepping magnet releases lock mechanism on first step to ready unit for recycle. Standard unit has one disk with one finger rotating counter-clockwise. Two fingers available. Up to 21 of total 24 points on disk are active. Rated at 10 steps per second. Voltage ranges: 6 v . to 115 v . A.C., 60 cycles, or 6 v . to 110 v . D.C. Auxiliary small combination contact switches can be mounted on ratchet or on either magnet. New 3 -point mounting for easy installation.

Series
M.A.S.

\section*{SERIES M. A. S. STEPPER}

A compact dependable Add and Subtract unit. Up to 27 active points on total of 30 . Rated at 10 steps per second. S.P.D.T. contact switch can be mounted on any ratchet position or on either magnet. Available to operote on 6 v . up to 115 v. A.C., 60 cycles, or from 6 v .110 v. D.C.

\section*{SERIES M-120 STEPPER}

Up to 3 position contact combinations are available on the Guardian Series M-1 20 Stepper. 24 point ratchet employs case hardened steel construction to assure long life precision operation. Contact combinations in 3 standard ratings: 1.5, 10 and 12 amps. af \(115 \mathrm{v} ., 60\) cycles, noninductive. Voltage range: 6 v .10115 v A.C., 60 cycles; or 6 v. to 110 v. D.C. intermittent duty.

Series
M-120

Write for catalogs featuring Guardian Steppers, Relays, Solenoids,
Switches, Solenoid Contactors and Hermetically Sealed Controls.

\title{
ViNE \\ Very Nigh Frequencies
}

\section*{: RADIO INTERFERENCE and FIELD INTENSITY * - measuring equipment}

\section*{- Stoddart NM-30A - 20 mc to 400 mc}

\section*{- Commercial Equivalent of AN/URM-47} -

PRINTED CIRCUITRY... Modern printed circuits offer many advantages over conventional wiring, lighter weight, more compact units and freedom from many of the troubles normally encountered in conventionally-wired electronic equipment. Vibration becomes even less of a problem with printed circuits, adding to the mony portable features already available with Stoddart equipment.
ADVANCED DESIGN ... Specialized engineering and modern production techniques have produced one of the most advanced instruments for the accurate measurement, analysis and interpretation of radiated and conducted radio-frequency signals and interference ever monufactured. Designed to laboratory standards, rugged, and with matchless performance, the versatile NM-30A is an outstanding example of modern instrumentotion. Its frequency range includes FM and TV bands.
SMALLER SIZE ... A wider frequency range and higher standard of performance is incorporated into an equipment whose size is one-third that of any similar equipment ever manufactured.
SENSITIVITY... Sensitivity ronges from one to ten microvolts-per-meter, depending upon frequency and antenna in use.
APPLICATIONS ... Field intensity surveys, antenna radiation paftern studies, interference locotion and measurement for checking radiation from virtually any mechanical or electrical device capable of generating or radiating radio-frequency signals or interference.

Stoddart RI-FI* Meters cover the frequency range 14 kc to 1000 mc

\section*{VLF}

NM-10A, 14ke to 250ke
Commercial Equivalent of AN/URM-6B. Very low frequencies.

HF NM-20B, 150ke to 25 me Commercial Equivalent of AN/PRM-1A. Self-contained batteries. A.C. supply optional. Includes standard broadcast band, radio range, WWV, and communications frequencies.
Has BFO Has BFO.

\section*{114F}

NM-50A, 375 me 10 1000 me Commercial Equivolent of AN/URM-17. Frequency range includes Cifizens band and UHF color TV band.
a conventional gas-tube type. Resistor \(R_{4}\) provides the coarse sweepfrequency adjustment. Its value is so chosen that the free-running sweep frequency is approximately one-fourth the oscillator frequency. The output of the oscillator is coupled to the grid of the sweep generator tube \(V_{4}\). This synchronizes the sweep frequency at exactly one- fourth the oscillator frequency.

FIG. 4-Sweep-Irequency generator synchronizes crt sweep with note being produced

Because the frequency of the audio oscillator is a function of the plate voltage on the oscillator tube \(V_{1}\), this voltage must be regulated. Other voltages are not critical. Line voltages should be within the limits of 105 and 125 volts.

An \(A\) may be selected ranging from 434 cycles per second to 446 cycles per second by means of the pitch-adjust control in Fig. 4. The pitch of the other tones of the scale are varied proportionately. The loudness of the reference note is adjusted by the volume control (Fig. 3). The effect of changes in the quality of the reference note may be heard and seen by manipulating the color switch, which will select one of two tonal qualities. Variations in the quality of the speaker output is achieved by placing a diode rectifier across the output transformer. The diode clips the output voltage resulting in the introduction of many of the odd harmonics. The foot switch allows the operator to turn the reference note on or off at will. The microphone pickup and its connection to

- LOW MU, HIGH PERVEANCE
- PLATE CURRENT WITHIN \(\pm 10 \%\)
- COMPACT PHYSICAL DESIGN
- WITHSTANDS 500 G SHOCK

\section*{..an outstanding regulator tube for DC power supply units}

Specifically designed as a regulator tube, Type 6337 features plate current held within \(\pm 10 \%\), and complete absence of plate current drift. A hard glass envelope and a button stem that strengthens the mount, provide high immunity to extreme shock and vibration. Wide inter-lead spacing practically eliminates electrolysis. These and many other special features make the Type 6337 a tube of utmost dependability in critical regulating circuits. Call or write today for full information.

\section*{CHARACTERISTICS:}
\[
\begin{array}{lc}
\text { PLATE SUPPLY- } 225 \text { volis } & \text { TRANSCONDUCTANCE- } \\
\text { BIAS RESISTOR- } 100 \text { ohms } & 45,000 \mu \text { mhos } \\
\text { AMP. FACTOR- } 2.7 & \text { PLATE CURRENT- } \mathbf{4 5 0} \mathrm{ma} \\
\text { PLATE FESISTANCE- } 60 \text { ohms } & \text { HEATER VOLTS }-6.3 \text { (AC or D } \\
\text { PLATE DISSIPATION }-80 \text { watis HEATER AMPS } 7.25
\end{array}
\] no obligation.

\section*{CHATHAM ELECTRONICS CORP.}

Executive and General Offices: LIVINGSTON, NEW JERSEY
Plants and Laboratories: NEWARK and LIVINGSTON, NEW JERSEY
the viewing oscilloscope is shown in Fig. 5.

In addition to its applications in the production and variation of the pitch, volume and quality of musical sounds, the unit will show

FIG. 5-Input amplifier feeds sound pickup to vertical plates of crt
the effects of posture, relaxation, controlled breathing, vibrato, tongueing and embouchure. It will likewise show the inherent imperfections and distinguishing characteristics of the tones produced by various sources.

\section*{Time Interval \\ Go-No Go Gage}

By John H. Porter Rochester, N. Y.

In STATISTICAL CONTROL of production quality, it is often more desirable to know whether a quantity falls between two prescribed limits rather than to obtain an exact reading of the quantity. A circuit that will provide a positive indication of whether an event occurs within a certain interval of time is shown in the diagram.

If an event, for example, is to occur at a time greater than \(t_{1}\) seconds and less than \(t\), seconds after zero reference time, the \(R C\) constants can be set to these limits with \((R C)_{1}\) simulating the lower limit, \(t_{1}\), and \((R C)_{2}\) the upper limit, \(t_{2}\). Zero reference time is established by closing switch \(S\) starting the timing action.

Four miniature thyratrons are used as follows: At time \(t_{1}\) following the closing of \(S\), the \(C\) of \((R C)_{1}\) has charged to a potential that just

\section*{each of these HOLTZER-CABOT motors solved a special problem!}

Holtzer-Cabot specializes in motor and generator design, and is tooled to produce both AC and DC motors at lowest possible cost, in a wide range of frames, with unlimited varieties of mechanical and electrical features.
Quality motors correctly designed result in lowest ultimate cost.

Bring your small-motor application problem to Holtzer-Cabot. Our experience in developing custom-built motors assures you of a prompt and expert solution.

\title{
NATIONAL PNEUMATIC CO., INC. and HOLTZER-CABOT divisions
}

CALIFORN/A -
2050 BROADWAY, S.ANTA

\section*{MONICA}

\section*{Individually-engineered}

\section*{CLIMATE-PROOF, SHOCK-PROOF PACKAGING}

To meet the increased, country-wide demands of the electronics industry. Cargo Packers has now

12.page brochure tells how to ovoid the piffolls. gives complete deroited in. formotion on C.P methods of protective pockoging. inaugurated complete facilities in the West Coast area also, for packaging protection of delicate in struments, equipment and components, including
- Special Assembly Equipment
- Experts in Military Specifications
- Economical Production line methods
- Full Compliance in Every Detail
- Competent Consulting Service

Whether in storage or in transit anywhere, absolute protection against strain, stress, shock, vibration, temperature or humidity fluctuations, moisture - or even skin damage - is assured by Cargo Packers' individual atterition to every job. For ecommendations on specific packaging problems, call or write our Sales-Engineering Department today

\section*{CARGOPACKERS}

JINCORPORATED
New York - 73 RUILEDGE ST, BROOKLYN II, N. Y California-2050 BROADWAY, SANTA MÓNICA

\section*{A: With BRIDGEPORT PHOSPHOR BRONZE}

Parts made from Bridgeport Phosphor Bronze (Alloys 35 and 36) retain their resiliency and high flexural strength year after year. The inherent characteristics of these rugged Bridgeport alloys also make them corrosion and wear resistant. And their excellent electrical properties increase the operating efficiency of parts

For technical help in specifying the right alloy for electrical parts and prompt service on your metal needs, call your nearest Bridgeport Sales Office.

\title{

}

Serving Industry with a Nationwide Network of Convenienlly located Sales Offices and Warehouses
Mills in Bridgeport, Conn, Indianapolis, Ind., and Adrian, Mich.
In Canada: Noranda Copper and Brass limited, Montreal

\section*{A major advance in precision metal joining}

\title{
STORED-ENERGY WELDING SPEEDS ELECTRONIC ASSEMBLY
}

\section*{NEW MEIHOD}

Welded electronic components and precision instruments (resistors, potentiometers, capacitors, transducers, etc.) show superior performance with lower production costs. All metals and most combinations joined in many shapes and thickness ratios, Milli-second weld-time permits precision welding of copper, silver, and other "difficuld" materials.

\section*{storedo-energy principle}

Unitek Weldmatic equipment utilizes capacitor-discharge so make precision resistance welds. Energy stored is instantly adjustable over a very wide range so accommodate wires 0.0003 through 0.040 inch diameter and sheet metal 0.00005 to 0.020 .

\section*{weldmatic features}

Simple installation, rapid setup, versatility, easy operation, and low maintenance make the Model 1015 best for electronics assembly. Untrained operators make uniform, high-strength welds with no discoloration or deformation. Other models available for special jobs.

UNITEK CORPORATION
272 North Halstead Avenue
Pasadena 8, California

FIG. 1-Arrangement of magic.T for measuring surface irregularities on commutators
ing plug is adjusted in relation to the distance to the commutator surface, the reflected wave will return 180-degrees out of phase and produce a maximum signal in the \(E\) plane where it is picked up by a crystal-diode detector. Variation in the distance between the end of the magic- T and the commutator surface will cause a change in the phase relationship of the reflected waves and a corresponding reduction in the signal entering the \(E\)-arm to the crystal detector.

FIG. 2-Oscillogram (A) produced by test slip-ring having surface dimensions as in (B)

Figure 2A shows the oscilloscope pattern produced by a test commutator strip having the surface characteristics shown in Fig. 2B. As the width of the test strip bars decreases the pulse pattern becomes less distinct. To show the narrower bars more clearly it is necessary to constrict the open-ended collinear arm or use a matching stub as shown in Fig. 3. A beam-width approximately equal to the width of the bar being measured will give a good pattern.

This article was abstracted from a paper entitled "Microwaves Used to Observe Commutator and Slip Ring Surfaces During Operation" by A. H. Ryan and S. D. Summers,

\section*{WITH} TEXAS INSTRUMENTS SUBMINIATURE TRANSFORMERS

\section*{T/I announces 32 new subminiature transformers...}
...for transistor and other miniaturization applications. Texas Instruments - also a leading transistor manifacturer - has applied its precise instrument standards in producing both transformers and transistors to bring you this first complete line of subminiature transformers. Behind every TI product are years of experience in meeting the exacting requirements of geophysical and military electronic equipment and components. This experience gives you added assurance of the reliable performance of these new transformers.
Input, interstage, choke, and output types are available in four size series ranging from less than \(3 / 8\) inch cubed (one milliwall output) to slightly less than one inch cubed (over 100 milliwatts). Each series is manufactured in both open and cast construction, making a total of 16 basic types ... 32 models. Designed for use in the audio and ultrasonic frequencies, these subminiatures will operate over a temperature range of \(-25^{\circ}\) C to \(100^{\circ} \mathrm{C}\), with the cast units being particularly resistant to moisture and other environmental contamination. For your special applications, our engineers will design models to your detailed specifications.

Write for literature! Let our sales and design engineers help you with your specific transformer, magnetic amplifier or pulse network problems.

\section*{TEXAS INSTRUMENTS \\ incorporated \\ 6000 LEMMON AVENUE DALLAS 9. TEXAS}

CAST TYPE

OPEN TYPE

100 SERRES

"A great convenience, a tremendous impetus to sales", says Edward Farber of Strobo Research, Milwaukee. KOILED KORDS are now used on all the STROBOFLASH \({ }^{(1)}\) units made by this company, and Mr. Farber claims the retractile cord "adds that certain additional look of quality and efficiency".

On all electrical equipment that moves, KOILED KORDS eliminate long trailing wires. They are safe, long lasting, convenient and attractive. Whether your problems concern consumer or industrial products, KOILED KORDS may prove a tremendous asset

© 1954

\footnotetext{
*Koiled Kords is a Prademark of Koiled Kords, Inc.
}
appearing in the March 1954 issue of Electrical Engineering.

In a private communication from the authors, it was indicated that they propose trying a waveguide standing-wave indicator as the bridge rather than a magic-T. They

FIG. 3-Polystyrene matching slub used to reduce microwave beam width to dimension approximating width of irregularities beng measured
believe that using a standing-wave indicator in place of a T will permit the operator to line up the equipment more easily, although it may result in a slight loss of sensitivity

\section*{Frequency}

\section*{Deviation Indicator}

By J. L. Harned and J. J. Shorkey

> Vickers Inc.
> Detroit, Mich.

In designing a 400 -cps deviation indicator it was desired to obtain an instrument that would effectively measure alternator speed with a fair degree of accuracy and yet be light and compact enough to be easily portable. In the indicator circuit (Fig. 1) the input variable, frequency, passes through a highpass filter and a low-pass filter. The output voltages from these two filters are then rectified. The two resultant d-c voltages correspond to two functions proportional to the input variable. A sensitive galvanometer is bridged between the output of the two rectifiers such that it only responds to the difference between the two d-c voltages.

When the operating points of the filters are set so their outputs are equal at normal operating speed, the galvanometer indicates zero deviation. As the frequency changes

\section*{NOW...at half the former cost VARIAN brings you \\ A NEW, HIGH PERFORMANCE RELAY KLYSTRON}

UNSURPASSED
FOR EVERY
relar application

THESE ADVANTAGES

MEAN TOP PERFORMANCE

Greater Power - VA-220 high power klystrons are conservatively rated. They will deliver more than rated power without failure.
- Greater Frequency Stability - VA-220 klystrons have negligible frequency drift.
- Greater Uniformity - Varian mass production techniques assure uniformity - every klystron is as reliable as a nut and bolt.
- Longer Life - VA-220 klystrons can be operated at full power for thousands of hours, at low power for years.
- Less Dlstortion, Less Noise - FM distortion and inherent noise are hegligible - 60 db below a 1megacycle deviation,
- Lower Cost-VA-220 klystrons cost far less than any other relay klystron with comparable performance characteristics.
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & FREQUENCY RANGE & RESONATOR voltage & POWER OUTMT & BANDWIDTH & MODULATION SENSITIVITY \\
\hline VA-220* & 5925-7425 mc & 750 v & 1.2 watts & 35 mc & 375 kc/v \\
\hline
\end{tabular}

FOR COMPLETE SPECIFICATIONS . . . and technical data on the VA-220 and other Varian klystrons, write to the Varian Application Engineering Department today.

14
PALOALTOI, CALIFORNIA
Representatives in all principal cities.

\section*{provide consistently higher energy product}

When buying or specifying permanent magnets, consider these Crucible advantages. Crucible alnico permanent magnets are made to meet practically any size requirement from 0.01 -pound hearing aid magnets to several-hundred-pound magnetron magnets-and everything in between. Crucible magnets are sand cast, shell molded or investment cast to meet your every size, tolerance, shape and finish need. And their magnetic quality is unsurpassed . . . they consistently provide the maximum energy from a minimum volume of magnet material.

Since alnico alloys were first developed, Crucible has been a leading producer of this superior type of permanent magnet. So for technical assistance in solving magnet application problems, don't hesitate to call Crucible. And if you are interested in either Magnet Design or Data on
 Permanent Magnet Alloys, write for a free copy on your company letterhead.

CRUCIBLE
first name in special purpose steels

Serving the Armed Forces and Industry in the research, development, design and manufacture of electronic, electrical, electromechanical and mechanical devices-DAY. STROM INSTRUMENT has a full range of up-to-date equipment for production from raw materials to finished assemblies and systems. Under one roof their \(350,000 \mathrm{sq}\). ft. plant has facilities available to meet every need for internal, external, surface and centerless grinding; low to high precision turnind; jid boring and milling; welding, heat treating and finishing; spur and helical gear shaping; hobbing and shaving; straight and spiral bevel gearing; test and inspection, facilities and know-how for the entire range of production.

\author{
Division of Daystrom, Incorporated
}

\section*{DAYSTROM INSTRUMENT}

\author{
ARCHBALD, PENNSYLVANIA
}

\footnotetext{
AFFILIATES:
American Type Founders, Elizabetb, N.J. Daystrom Electric Corporation Daystrum Furniture Div., Olean, N.Y.

Poughkerpsic, N.Y
}
percent the following absolute accuracies can be obtained. On the \(\pm 50\)-cps range the accuracy of the reading for either 350 cps or 450 cps is 1.2 percent while on the \(\pm 100\)-cps range the accuracy of the reading for either 300 cps or 500 cps is 3.5 percent. As the frequency decreases toward 400 cps the accuracy of the reading on either range continually improves. Two other factors that affect the accuracy of the readings are harmonic content and amplitude variations of the input signal. With an input frequency of 450 cps a 10 percent change in voltage will cause the deviation indicator reading to change 5 cps which amounts to a 1.1 percent change in the absolute reading. No quantitative figures are available regarding the effect of waveform distortion on the accuracy of the readings. However, it has been observed that changes in the harmonic content of the waveform will produce changes in the instrument readings.

\section*{Modulator for Low-Frequency Tape Recording}

\author{
By Edwin R. Kolb \\ Research Assistant \\ Case Institute of Technology
}

THE TRANSISTOR MODULATOR described below was developed to record signals in the frequency range from d-c to 40 cps , which is below the range of direct tape recording.

FIG. 1-Linearity of oscillator output in relation to d.c modulating voltage

Basically, the modulator consists of a transistor oscillator \({ }^{1}\) whose collector power-supply voltage is directly proportional to the signal input. Thus, the amplitude of oscillation can be considered directly

\section*{- Retains Flexibility - Resists Abrasion"}

\section*{says Redmond Company \\ }

In making the field connections for the unique TRI-FLUX shaded pole micromotors built by Redmond Company, Inc., Owosso, Mich., a \(11 / 4^{\prime \prime}\) length of Irvington's Temflex 105 Tubing is slipped over the lead from one field coil, and the lead is twisted together with the comnection from the next field coil. Twisted wires are then welded and bent back, and the Temflex tubing drawn over the welded joint. The entire field is then varnished and baked.
In addition to abrasion resistance and retained flexibility, "resistance to baking heat and high dielectric strength are other reasons for

\section*{Look to}

\section*{IRVINGTON}
for Insulation Leadership INSULATING VARNISHES VARNISHED CAMBRIC VARNISHED *APER standard colors, to fit all standard wire sizes. It's identified by the continuously primted name on the tubing surface - look for it when you buy hightitemperature tubing. Send for literature and samples.
*T.M. Tirg. U.S. That. Oh.

\title{
Tint That \\ IRVINGTON yanushe INSULATOR
}

DIVISION OF MINNESOTA MINING \& MANUFACTURING COMPANY 11 argyle terrace, irvington 11, N. \%. - plants: irving tom, m. d.; monrovia, Calif.; hamilton, ontario. camada

\title{
high stability MINIATURIzED jk GLasline CRYSTAL
}
- Minimum Aging Drift - Miniature Size - High Q. For Maximum Performance

\section*{THE NEW STABILIZED JK-G3}

Smaller than a thumbnail, the miniature JK G-3 was developed in anticipation of today's growing need for minimum size with maximum stability. The smallest of the JK Glasline crystals to match today's most critical requirements. The frequency range is 10 mc to 100 mc . Sealing crystals in glass makes possible the techniques necessary to set new stability records.* Consult us for your requirements.
The JAMES KNIGHTS Company Crystals for the Critical-SANDWICH, ILLINOIS

\section*{*JK}

\section*{stabilized G-12A}

540 kc 101600 kc \({ }^{\text {Al }} 1000 \mathrm{ke}\) has proven a stability potential of one pars in 100 million.* Available for standards or non-femperature con(F.C.C. opproved). Ase tested in leading U.S. Gov't Lab.

ACTUAL SIZE

\section*{JK}

Stabilized G-9J 1 kc 1010 kc
Frequency folerance over range of -4010
\(+70^{\circ} \mathrm{C}\) \(+70^{\circ} \mathrm{C}\). with ckt. adj, \(\pm .03 \%\) with ckt. adj. \(\pm .02 \%\)

\section*{J K}
stabilized G-9
4 ke 10500 kc and 1.2 105 mc
JK stabilized G-12
99 kc 10180 kc
\(\stackrel{\text { reavency toleronce: }}{ \pm .0005 \% .2510} 700^{\circ} \mathrm{C}\)
proportional to the incoming signal with two limitations Since the process of starting and stopping oscillation is not linear, the oscillator must be kept running at some low level. The oscillator has a maximum a-c output. These limitations and the linear range of the unit are shown in Fig. 1.

FIG. 2-Circuit of amplitude-modulated oscillator (A). Demodulator (B) is halfwave voliage doubler

The collector power-supply voltage can be provided by using the voltage drop across a 1,500 -ohm resistor placed in the output of a d-c amplifier. By controlling the balance on the d-c amplifier, a quiescent transistor voltage can be obtained so that the modulator can be

FIG. 3-Frequency response
operated about any point in its linear range. For entirely positive or entirely negative signals, the unit should be operated from the lowest possible modulator output to some higher value. For a-c signals, the modulator would be operated near the center of its range. Figure 2 A illustrates the modulator circuit. Demodulation is accomplished by feeding the modulated signal into a half-wave voltage doubler

\section*{That's Why}

Indianapolis Sweepsfakes Champions Choose (1mf) Guerlock Lockwashers

EVERLOCK washers have been used on the top three cars in every Indianapolis Sweepstakes since 1936! This grueling, rugged grind demands the utmost in protection against vibration and strain. It's significant that, without exception, these winners put their trust in Everlock washers. EVERLOCK'S alternating chisel edges really bite into the surface-powerful spring steel tension holds them secure. Available in four standard rypes or made specially to your specifications. Next time you order screw-washer assemblies be sure - specify EVERLOCK washers.

THOMPSON•BREMER \& COMPANY S20 North Dearborn Street - Chicago 10, Illinois

\section*{1st-BIL YUKOVICH}
"Racing carsmust take rremendous punishment and still stay tight. I play safe with Everlock Washers -they ve never loosened yet." Nieléborich

2nd-JIM BRYAN
"After the terrific beating of the race, those AMF Everlock Washers werestilltight and secure.
\(9 x^{2}=\)

3rd-Jack McGRATH
"Race driving is tricky enough without having to worry about loose fastenings. Iknow I can count on Everlock Washers to really hold.'
Sadaccint

Chicago 10, Alinois

Looking for a new plant site?
The Long Beach area offers a rare combinakion of natural resources to assure you of continuous and most economical operation of your plant.
GAS is available at the lowest rate schedule on the Pacific Coast. Because of the vast amount of local natural gas of high B.T.U. rating, you are served with adequate fuel supplies.
WATER of excellent quality is available in abundant supply, with great unused surpluses. It comes from municipally-owned wells, combined with Metropolitan Water District importations.
POWER rates in Long Beach are among the lowest in the nation. Ample electric power is available through the combined hydro and steam generating facilities of the Southern California Edison Company, one of the largest electric utilities in the nation.

\section*{Vast Labor Pool}

Long Beach has a large reservoir of skilled and semi-skilled workers who happily live in their own homes. They came here before-duringand after the war. They are still moving here to buy their homes and enjoy Southern California living. Check into the many advantages of building, working and living here.

It would pay you to write today for full and confidential information.
such as shown in Fig. 2B.
Tests have shown that noise in the system results almost entirely from the tape itself. Different tapes have different signal to noise ratios, but when using a particular tape, the signal-to-noise ratio remains essentially constant over the normal recording range. Frequency response of the modulator system is

Fig. 4-Transistor modulator used in low. frequency tape recorder setup
shown in Fig. 3. The complete setup for comparing direct and indirect low-frequency recording is given in Fig. 4.

The research described was supported by the United States Air Force through the Office of Scientific Research of the Air Research and Development Command.

\section*{Reference}
(1) R. F. Shea "Principles of Transistor Circults", p 281, John Wiley and Sons, Inc., New York, 1953.

\section*{Laboratory Power Supply}

By L. Fleming
Falls Church, Va.
ACTUAL POWER SUPPLIES have several properties besides voltage, that are important to the circuits they serve, particularly those of ripple and internal impedance. In developing circuits that form part of a unit device such as a radio receiver or an oscilloscope, it is important to know the power-supply requirements of each building-block circuit, in order to arrive at a mature design.

In oscilloscopes for example, the output stages of the deflection amplifiers are tolerant of hum in their plate supply, but the sweep oscillator is critical. In amplifiers, triode stages in cascade will tolerate considerably more internal impedance in a common plate supply than will pentode stages.

The power supply described be-

Stepping Switches meet wide range of circuit selection and control problems

\section*{CLARE} Spring-Driven Stepping Switch

CLARE Spring-Driven Stepping Switches are uniselectors, or rotary switches, for completing, interrupting, or changing the connections in, a succession of electric circuits in response to momentary impulses of current.

The switch consists essentially of one or more wiper springs, fixed to a shaft, rotated by a pawl and ratchet mechanism, actuated by an electro-magnet which responds to current impulses. These impulses may be from an external pulsing device or produced by the switch itself, by interrupter springs operated by the magnet armature. Additional contacts may be included in this spring assembly to perform other desired control or signal functions. Remote control operation speed is 30 steps per second maximum. Automatic operation may be as high as 60 steps per second on 48 volts dc or 115 volts ac (with rectifier).

CLARE Direct-Drive Stepping Switches are operated as the stepping magnet drives the pawl into the ratchet to move wiper assembly. Wipers are held in place by a detent when magnet is de-energized. Pawl is returned to normal by a spring. Circui may be held closed for any desired time after final step. Pawl is normally disengaged from ratchet, and wiper assembly can be returned to normal by a rese magnet Maximum operating speed: 35 steps p. s. under ideal pulsing conditions. Release time is 0.030 to 1.070 second depending on voltage and the position from which wers are released.

A verscifle, high-speed switch forSeleciling desired point of a series Sequence control • Counting and toralizing Monitoring

Designed for such control functions as Selecting one circult path cut of ten Consecutively performing operations in separate individual circuits

Serd for Engineering Bulletin No. 103 for a discussion of stepping switch operation and apprications. For full technical data ask for Engineeri.g Eulletin No. 101. Address C. P. Clare \& Cc., 3101 West Pratt Blvd., Chicago 45, Illinois. Ir. Canada: Canadian Line Materials Ltå., Tcounto 13. Cable Address: CLARELAY

\title{
ELARE RELCACS
}

FEED-TRU BOWL ASSEMBIIES - Heavy duty, Inn-loss glass feed-thrs bowl avoilstila with or withoul flitings. \(6.15 \mathrm{f} 6^{\prime \prime} 0 .\left[\right.\).. \(41 / 3^{*}\) high. Fittings: studs for \(4^{\prime \prime}\) te \(12^{\prime \prime}\) wals, spur aluminun coronc shield, skel flange sne cork gastets.

STRAN TYPE ANTENNA INEU LATORS-W er \(p\) ocess porcelcin, white glazing. Non-corrosive cluminum alloy ead \(t\) olls. Sizes: \(3^{\prime \prime}\). \(12^{\prime \prime}\), and \(20^{\circ}\) ret lengit. Dameter \(11 / 2^{\prime \prime}\). Bresking s'rength 500 Its .

Jotnison manufcetures a wide range of zonsonents and ecuif riant for broadcast and commercial trarsmititer app ications. These cocessecie: in many cases offer the combined advantoges of tallored oesign-to suit your particular requirements plus the modest cost usually assecieted with stondardized equipment.

Far more information on JOHNSON broajeast and canmumicatiens eccessaries, write to Broadcast Sales Division:
E. F. JOHNSON COMPANY

2325 SECOND AVENUE SOUTHWEST - WASECA, MINNESOTA CAPACITORS - INDUCTORS • SOCKETS • INSULATORS • PWGS • JACKS • KNOBS • DIALS • PILOT LGGHTS

\section*{How MICO \({ }^{\circ}\) Insulation helps U. S. MOTORS for AIRCRAFT \({ }^{*}\) exceed tough specifications for high-temperature performance}

1. Cell wall made of ISOMICA \({ }^{\circledR}\)) Flexible Plate being inserted into stator slot. Before insertion, the cell wall is cut to size and given a double crease to facilitate assembly.

3. After winding, surge testing and treating, wound stator is assembled into motor. Units pictured are of the totallyenclosed, explosion-proof type with integral gearing, used for powering pumps, compressors, actuators, hoists.

2. Wound stator shown being subjected to surge test at 1000 V . Any weak spots, cross phasing, unbalanced winding or wrong connections can be detected by oscilloscope pattern.

4. Mica Insulator Company parts used to insulate U.S. Aircraft Motors. Left to right: Cell Wall-ISOMICA Flexible Plate; Center Stick-LAMICOID \({ }^{\text {® }}\) thermosetting plastic-sili-cone-glass laminate; Top Stick - LAMICOID; Phase Insulation - ISOMICA.

One of the big problems in aircraft motor insulation is altitude. Lowered air pressure reduces effective cooling by convection and radiation, creates higher operating temperatures. That's why U. S. Aircraft Motors use ISOMICA-a Class H silicone-bonded processed mica with silicone-treated glass cloth on both sides - for phase insulation and cell walls... and silicone-glass LAMICOID-a Class H laminate-for center and top sticks. These superior insulating materials enable U. S. Aircraft Motors to withstand higher temperatures while still retaining minimum weight per horsepower.

We'll be glad to work with you on your electrical insulation problems. Whatever clectrical insulation material you need - Class A to Class H-MICO makes it best. We manufacture it, cut it to size, or fabricate it to your specification. Write today.

\title{
UNION Miniature Relays resist vibration in excess of 500 cycles at 15 G's!
}

TF vibration is your problem, this new line of UNION Miniature Relays is the 1 answer. Severe laboratory tests have proved that these relays will withstand vibration over 500 cycles at 15 G 's acceleration. That's performance!
Compactly, precisely and ruggedly constructed, they were especially designed and developed to do a job where continuous operation is absolutely necessary. Under rigid test the Type M relay actually operated over one million timesand still remained in top working condition!
They meet all the requirements of Military Specifications MIL-R-5757 A\&B, and are available in either 6 -pole or 4 -pole double-throw models- for plug-in or solder-lug connections.
Send for literature.

\section*{DRY CIRCUITRY APPLICATIONS}

In grid switching applications where the relay contacts must operate at low-voltage, low-current levels, special alloy contacts can be furnished. These contacts maintain extremely low resistance through hundreds of thousands of operations. They are available on the complete line of UNION miniature relays.

\section*{GENERAL APPARATUS SALES}

\section*{UNION SWITCH \& SIGNAL division of westinghouse air brake company \\ PITTSBURGH 18 \\ \\ PENNSYIVANIA}
can be limited to any convenient low value such as 50 volts by pluging the power cord into a continuously variable autotransformer known in some laboratories as a covat, since there are no tubes in the supply to require a constant heater voltage. This procedure is useful in working with transistors.

The metering and series-resistance features make the supply a convenient device for finding the operating currents of relays and for checking thermistors and varistors.

The 6.3 -volt source is centertapped with a pair of resistors, so that the center is normally grounded to \(B-\), but either side can be grounded if desired without chang-

FIG. 1-Circuit of the laboratory power supply

\section*{ing any connections.}

The circuit, shown in Fig. 1, is completely straightforward. The voltages are not regulated, because in circuit development it is much more important to have them variable over a wide range and to know what they are.

The high-voltage supply comprises a small covat and an ordinary replacement-type power transformer. Selenium rectifiers of the replacement type are used in series, followed by an ordinary filter. The B-voltage switch, a telephone keytype unit, is connected after the filter, so that it is not necessary to wait for the filter capacitors to discharge through the load.

Two voltmeter scales are pro-

\author{
Admiral Radio Corporation \\ Bendix Radio Corporation \\ International Business Machines Corporation \\ Jow Manufacturing Coinpany \\ The Lincoln Electric Company \\ Moloney Electric Company \\ Singer Manufacturing Company \\ Westinghouse Electric Corporation
}

\author{
It Costs Less \\ to Buy the Best
}

To help you with any problems you may have in selecting and buying just the right hook-up wire or electronic cable, we have recently published Bulletin TR-5. It will provide you with complete information on the full range of hook-up wires and electronic cables Rome Cable regularly produces. Or, if you have a special problem, involving application of an unusual nature, Rome Cable engineers are qualified, and ready, to work with you . . . in the design of the type of conductor you need. Below is a quick rundown of the Rome hook-up wires and electronic cables which are completely described in Bulletin TR-5.

Rome Commercial Type Hook-Up Wires-Fully approved by Underwriters' Laboratories, Inc.-rubber and thermoplastic insulations...
Rome Hi-Temp: Underwriters approved for \(75^{\circ} \mathrm{C}\). A heat-resistant rubber insulated wire, available either with plain rubber or with lacquered braid of cotton or rayon.
Rome Symthinol: Underwriters approved for \(80^{\circ} \mathrm{C}\). Insulated with a polyvinyl chloride thermoplastic compound, has wide industry acceptance for its high heat resistance and workability.
Rome Synthinol 901 : Underwriters approved for \(90^{\circ}\) and \(105^{\circ} \mathrm{C}\). Newly developed as a resin plasticized polyvinyl chloride type of thermoplastic insulation. This hook-up wire has increased heat resistance and resistance

\section*{to oils and chemicals.}

\section*{Rome Multiple-Conductor Cables-} In addition to single-conductor wires, Rome Cable produces cables made up of varying numbers and sizes of the individual conductors. These special cables have been supplied in increasing quantities to manufacturers of electronic, radio and television equipment.
Sheaths are supplied in the form of thermoplastic or rubber jackets, or fibrous braids.

Electrostatic shielding is supplied in the form of metallic braids or metallic tapes.

Cables are designed for portable or fixed installation.

Write now for the helpful new Rome hook-up wire and electronic cable Bulletin TR-5.

ROME CABLE CORPORATION, Depf. EL-8, Rome, N. Y.
Please send me the new Rome hook-up wire and electronic cable Bulletin TR-5.
Name.
Company
Address.
City ... State.

TYPE 324-A VIDEO PHASE METER
This instrument of laboratory precision makes possible the rapid and accurate measurement of phase angle THROUGH THE VIDEO RANGE. It provides verification of design calculations, \(a\) criterion for optimum adjustment of delicate
 phase relationships, or a maintenance
 checking tool in the wide-band electronic system in modern use.

Phase angles from \(0^{\circ}\) to \(360^{\circ}\) full scale; and \(90^{\circ}\) quadrants full scale; no ambiguity.
FREQUENCY RANGE: \(\quad 20 \mathrm{Kc}\). to 4.5 Mc . - Range down to 20 cycles may be supplied on special order.
WAVEFORMS ACCEPTED: Sine waves and any complex waves having not more than one positive-going zero axis crossing per cycle. Phase angle measurement is defined as phase difference between corresponding positive going zero axis crossings of the periodic signals being compared.
AMPLITUDE RANGE: ACCURACY:

INPUT IMPEDANCE: 2 volts to 300 volts peak.
\(\pm 4^{\circ}\) on quadrant scales. Incremental change of \(0.25^{\circ}\) is easily read.
FULL 10 megohms shunted by 14 mmf .

\section*{Technologr Tnsirtumen Corp.}

\footnotetext{
533 MAIN ST., ACTON, MASS., ACton 3-7711
}
vided, and three current-meter scales. For a 0 -to- 1 milliampere, 200 -ohm meter at \(M_{2}\), the values of the resistors in the Ayrton shunt \(R_{3}, R_{4}\) and \(R_{5}\) are respectively 0.80 , 3.2 and 18.2 ohms.

The filament supply consists merely of a suitable filament transformer \(T_{\mathrm{s}}\), a meter, center-tap resistors and a power rheostat. A variable transformer may be used instead.

The hum-introduction circuit employs a small radio output transformer of the universal type fed from a 10,000 -ohm, 4 -watt potentiometer. Secondary taps are chosen to give a step-down ratio of about 100 -to- 1 and the potentiometer dial is calibrated in secondary volts. The impedance looking into the secondary is less than 1 ohm.
Appropriate values for the series resistors \(R_{\mathrm{n}}\) depend on the application. Convenient values used here are \(100,200,500,1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}\) and 25 K ohms.
Controls are arranged with a view to locating the most-used controls conveniently and grouping related items together, for example, the meters and their range switches.

\section*{Military Equipment \\ Design}

New military multichannel carrier telephone equipment developed by Bell Labs for operation over spiral-four cable is characterized by compactness, rug. gedness and portability. The test unit shown has been designed for use under adverse weather conditions. Inside, emphasis is upon accessibility for mainfenance and repair. The swinging subchassis type of construction makes every component quickly available without sacrificing reliability or minimum sizo

What makes the miracle of automatic washdays? What gadget turns water on and off; starts spinners, agitators, fans; regulates heat . . . all on a precise timing schedule? Chances are it's a P. R. Mallory timer switch.

Special paper-base Dilecto laminated phenolic cams are the heart of the switch. If the corners are not sharp, if tolerances are not held, if the laminated plastic fails,
the liming schedule would go haywire. But it doesn't happen with Dilecto cams fabricated by \(C-D-F\), now definitely identified for performance comparison.

C-D-F also supplies these Dilecto insulating side boards. Dilecto Grade X-13 was chosen for its ability to withstand severe riveting and staking impact, for its sturdiness in holding up under the strain of plugs being inserted and removed from terminals mounted on the board.

Look inside the smart, small, tough Mallory timer switch. The shaft revolves; with the switch operated by a manual clock which is wound or set whenever the switch is turned over to complete the entire cycle. Swith accuracy depends entirely on the degree of accuracy in which the cam is manufactured.

\section*{C-D.F and DILECTO LAMINATED PLASTIC helped Mallory improve design . . . simplify purchasing . . . speed production}

Two C-D-F Dilecto laminated plastic parts play small but vital roles inside P. R. Mallory's timer switches used to control the washing, drying, rinsing cycles.
Most important, the timing cams must be precisely fabricated to odd, notched shapes, with very close dimensional tolerances. In the design stage, it was first thought that there was no practical way to obtain the desired pieces.

But engineering-supplier teamwork always pays off. Good basic design . . . a quality material from an alert, interested fabricator . . . selective purchasing resulted in a solution.

\section*{C-D-F WORKS WITH DESIGNERS}

A father and son team, in Mallory's Switch Division, Arthur and Harry Hall, began 15 years ago to make this timer switch. Cam material after material was testerï none worked satisfactorily.

C-D-F sales engineer Robert Tappan was called in. He says, "After 18 months, the design was adaptable to Dilecto laminated plastic. The first cam did not work, but showed promise. Looking back, it was a crude punching compared to the ones now furnished by the C-D-F Valparaiso plant."

\section*{A BIG, RELIABLE SOURCE}

Mallory makes thousands of timer switches, naturally has several suppliers for laminated plastic insulation. But C-D-F keeps working hard to further improve the product: Special tools have been designed to increase
the accuracy of C-D-F cams, to provide Mallory with lower rejection rates. Resin-penetrating and laminating techniques have improved Dilecto grades. Inspection and quality control have been modernized.

When you have a problem in laminated plastics, think of improved, Dilecto and C-D-F. Send us your print for technical advice and quotation. Write for free test samples. The C-D-F cata\(\log\) is in Sweet's Design File and the IRE Directory. Best of all, call your C-D-F sales engineer . . . He's a good man to know!

\section*{Production Techniques}

\section*{Edited by JOHN MARKUS}

Tube Stem Machine. 252
Stretching Device for Hand-Wound Grids 253
Alignment Checks Quality of Printed I-F Parts 255
Filament Bending Jig. 256
Welding Slider Contacts. 257
Deburing Miniature Feed-Through Ter. minals 258
Transparent Containers Protect Camera Tubes
Resistance Brazing of Magnetron Cavi-
ties 260
Oven Racks Support Etched Coil Sheets. 261

\section*{OTHER DEPARTMENTS}
featured in this issue

Page
Electrons At Work. 180
New Products 264
Plants and People. 310
New Books 352
Backtalk 362

\section*{Air-Operated Lift Tables for Television Consoles}

Air Lift tables are used to lower television receivers from a roller conveyor to floor level for polishing operations, in the plant of E. K. Cole Ltd., Southend-on-Sea, England. Other identical lifts are used to raise the sets onto another conveyor for transfer to packing.

The receivers travel on platens on the roller conveyor to a position opposite the air lift table, and are then slid onto the air lift platform. The air lift table descends to its lowest position when the lever of the air valve is operated. The receivers are then wheeled out of the

Operating lever of air valve for lift table, to lower console to floor
platens (which have one side open) on their casters, down a metal slide to floor level. The slope of the slide is very slight, to merge with floor level.

After the polishing operations have been completed, the receivers are wheeled onto another air lift table of the same design and raised to a roller conveyor which delivers them via the mist spray booth to the packing conveyor. The lift table makes it possible to handle both table model and console receivers on the same conveyor line, regardless of their size and weight.

The tables were designed and constructed by the production engineering department of the plant. Each uses a standard air valve in conjunction with levers and linkages to obtain smooth up and down movement of the metal-surface table.

\section*{Knob Setscrew Inserter}

A simple jig designed by HewlettPackard, Palo Alto, Calif. speeds insertion of setscrews into tuning knobs. The knob is placed on a stud on a horizontally moving table, with the screw hole facing the operator. The Allen-type setscrew is then placed on the corresponding straight Allen wrench held in the chuck of a horizontally mounted hand drill. Turning the drill handle as the knob slide is pulled toward the operatoff then serves to insert

Hand drill setup for inserting setscrews in dial knobs
the setscrew rapidly and smoothly. A simple stop on the slide table controls the depth of insertion, so that the knob can later be placed on a shaft without loosening the screw. The arrangement worked so well that it is now being operated by a blind worker.

\section*{Bending Tool for Contact Springs}

A SPECIAL TOOL is used for forming contact springs of precision potentiometers at Helipot Corp., South Pasadena, California. The contact spring with a precious metal contact welded to its tip is inserted in the jig. The operator pulls the right-hand lever towards her, thus forming the first bend. She then pushes the left-hand lever away from her to complete the forming operation.

Shorted-Turns Tester for Etched I-F Coils

Pushing printed i.t coils through sensing fixture of shorted-turns detector

Flat rectangular windings etched on copper-clad plastic sheets are quickly checked for shorted turns by pushing the sheets through a clear plastic slide that supports the sensing coil of an electronic shorted-turns detector. A meter on the instrument is connected to read voltage across a tank circuit. A shorted turn is indicated by a lower voltage reading because currents
induced in the shorted turn load the oscillating circuit.

A strip of tape affixed to the meter window is marked BADGOOD to speed direct evaluation.

Acceptable printed strips are pushed right through the slides into a tote box. A curved cutout in the slide at the left of the sensing position permits grasping a defective unit and tossing it out.

\section*{Quality Control of Wire Stripping}

By W. O. Richards
Technical Adviser he Eraser Co., Inc.

The principal cause of failure of electrical connections is the fact that the wire is not absolutely clean at the time the connection is made. The most common reason is

Example of mechanized wire cutter and stripper. Operator places coils in conveyor and holds out both leads until they reach wire clippers, where they are cut from approximately 10 inches to 4 inches in length

The complexity and cost of many product testing projects places instrument reliability uppermost in importance. In designing the CEC Type 5-119 Recording Oscillograph, reliability was therefore a prime consideration. To assure maximum reliability under environmental extremes, construction of this instrument is extremely rugged throughout. Automatic safety and warning devices, insure against the loss of data. One example is a set of reserve lamps which light immedi-
ately in the event of a galvanometer-lamp failure. Convenient grouping of controls; ease of magazine loading; clarity and ease of viewing the scanning system; and many other conveniences help the engineer secure a high percentage of excellent records under adverse conditions 36 and 50 trace models are available with frequency response flat to 3000 cps , using CEC's newly improved Type 7-300 Galvanometers. Sixteen record speeds provide a 1000 to 1 range from \(0.01^{\prime \prime}\) to \(100^{\prime \prime}\) per sec.

By actuating a jump-switch, the speed of the record is instantly increased or decreased 10 times without interrupting the test. Complex wave forms in the high fre-

\section*{data recording} quency range are thus spread over an extended time base, showing both general trends and detailed changes on the same record. The jump-speed
feature also facilitates resolution of transient phenomena through expansion of the time axis. Combining the many proved features of CEC's other world famous oscillographs with numerous important improvements, the Type 5-1 19 Recording Oscillograph represents today's ultimate in high precision dynamic data recording instrumentation. Write for CEC Bulletin 1536-X17.

Increasing or decreasing record speed 10 times spreads complex wave forms over extended time base. This feature permits easier, more accurate interpretation of test records, and clarifies resolution of tran-
 sient phenomena.

Record magazine, locked in place with a single lever, accommodates 12 -inch wide record rolls 250 feet in length.

Convenient grouping of individual galvanometer connectors in recessed panel facilitates use of instrument in limited space.

\section*{Consolidated Engineering}

ANALYTICAL INSTRUMENTS FOR SCIENCE AND INDUSTRY

\section*{CORPORATION}

300 North Sierra Madre Villa, Pasadena 15, California - Sales and Service through cec instruments, ImC., a subsidiary with offices in: Pasadena, Atlanta, Chicago, Dallas, Detroit, New York, Philadelphia, Washington, D. C.

\section*{Where two materials are better than one}

- This circuit breaker bushing is a most unusual application for Synthane laminated plastics combined with another material. Basically it's a conductor and an insulator-a solid copper bar-to which is bonded a thick insulating shield of Synthane laminated plastic.

There is one little joker in the design: each bushing contains a thin copper grid, only .003" thick, buried in the insulating plastic. It is positioned concentric to the copper core as the Synthane is being wound before curing. After curing, the bushing goes to our fabricating department. Here precision machinists turn of the Synthane

Our 25th Year
SYMIHANE CORPORATION, OAKS, PA
over the grid until the delicate grid is fully exposed-yet unharmed.
Synthane-the material-was chosen for this job because of its combination of high dielectric strength, toughness and machinability. Synthane, the company, was selected because of its ability to handle a tough job. Our fabricating department is especially equipped to work with laminated plastics.
Look into the advantages of Synthane laminated plastics and Synthane fabricating service. Write for a free catalog detailing both. Synthane Corporation, 12 River Road, Oaks, Pennsylvania.
that the insulation has not been completely removed. Oxidation of the wire, resulting from a time lapse between the stripping and connection operations, can also be a contributing factor. The result is a connection that is either weak mechanically or high in electrical resistance which causes overheating.

The second major case of failure is the fact that the wire becomes nicked or reduced in diameter during the stripping operation. This increases the resistance at this

Hair-clipper-tyfe wire shears at front of the machine clip the leads to the desired length Clippers are designed so that they cannot cut the operator's fingers. Design allows for wide taler ance in vertical position of leads

Conveyor carries leads through pair of tandem-driven wheel-type wire strip. pers, shown here with wheel guards and dust-collector covers in place. Lead at left must be stripped up close to coil, hence stripper on this side is tilted so that edge of coil fits in between wheels. Nothed wheel cover guides the lead lnto the stripping wheels
point, causing a hot spot that results in early failure.

Manufacturers of insulated wire have achieved remarkable success in developing insulations that are tough, tenaceous and extremely durable. Their achievement has created a difficult problem for manufacturers of electric equipment who must remove this insulation without damaging the wire.

Speaking specifically of film-in-

Tandem-driven wheel-type strippers with wheel guards and dust-collector covers removed. Special tiberglass wheels develop sufficent frictional heat to melt insulation, which is then wlped off by brushes. The double pass in sures complete removal of insulation from stripped area. Entire width of wheels is used for stripping, so no low spots are worn in the wheels

Stripper head, withaut wheels, being placed into position. Black knob in foregraund is space regulator screw which maintains proper minimum spacing between wheels so that wire cannot be reduced in diameter or otherwise damaged. Knob at back is pressure regulator, which permits wheels to open up to receive wire and maintains proper amount of frictional heat. Antifriction plates under the arched spring allow free movement of upper spindle. Round part in base is part of dust-collecting system

\section*{laminated plastics at work}

In broadcasting This air inductor coil is used in rodio ond television broadcosting. Its Symithone end rings act os insulators, strong supports.

In machinery synthane ball bearing retainers are standord in many different types ond bronds of boll beorings. Synthone is mechonicolly strong, olmost friction-free, light in weight.

\section*{In plating equipment}

Ploting borrel ports ore mode of Synthone becouse of its combination of properties. It's mochinoble, resistont to ocids ond olkolis, and it hos high dielectric strength.

\section*{What's your PROBLEM ?}

MAIL COUPON FOR FREE FOLDER

sulated wires, there is such a wide variety of film formulations applied to such a wide variety of wires that it is impossible to develop a single stripping machine or stripping method which will successfully handle all types and gages of filminsulated wire. Other steps in the processing of the wire, from spool to finished component, also have a direct bearing on the stripping operation. For greatest efficiency, wire stripping must be planned as

Detail of conveyor drive which also op. erates wire clippers and dust-collecting blower. Aluminum coil cups on convey. or are specially designed for the coils in this specific operation
an interdependent part of the overall wire processing operation.

\section*{Manual Stripping Methods}

There are certain stripping methods and devices which, in theory, appear to be perfect for the specific jobs for which they are being used. Their actual efficiency, however, is limited by the human element. Quite aside from carelessness and indifference on the part of the operator, it is impossible for anyone to do something time after time exactly the same way every time. Honest human error can result in a high number of rejects and costly failures.

\section*{Mechanized Methods}

One logical means of attaining practical quality control of wire stripping-and hence of the connections and of the equipment itself-

\section*{Hi-Temperature}

\section*{Tested}

\section*{Germanium}

\section*{The new Hughes type 1N198}

Temperatures inside operating equipment usually climb well above the equipment ambient temperature. At these elevated temperatures, you need components with known characteristics. Most germanium diodes are tested at room temperature and, as operating temperatures rise, their performance deteriorates. But the new Hughes Type INI98 is a realistic germanium point-contact diode.

That's because this diode is tested 100\% at \(75^{\circ} \mathrm{C}\)-which is just about as hot as most electronic equipment gets in operation. In addition, samples of the 1 N 198 are regularly subjected to all standard tests at \(25^{\circ} \mathrm{C}\). This means that you can use these hi-temperature tested diodes with confidence, can design equipment to take full advantage of the fact that electrical characteristics at the higher temperatures are specified.

ACTUAL DIMENSIONS
DIODE BODY
0.265 by 0.130 inches (maximum)

\section*{Nature Made Their Properties... Fansteel Made Them Practical!}

(6)he valuable properties of tungsten, tantalum and molybdenum usually make it self-evident whenever one of these metals is the best possible material for a given application. However, the most practical and economical method of fabricating parts is a never-ending problem.

Here, at Fansteel, we make refractory metals; from raw ore to finished ingot, bar, rod or sheet. In working with hundreds of other engineers on their fabrication problems, we have learned a lot about forming these metals-about stamping, bending, deep drawing, machining, forging, brazing or welding them.

If you use Tungsten, Molybdenum or Tantalum compornents, we can probably fabricate them for less money than you can-with less rejects, less scrap loss, and with a fixed price per unit. We'd like to discuss it with you.

We have some very interesting and informative booklets on Tungsten, Tantalum and Molylbdenum. Write for your free copies today.

Let FANST EEL insure your cost control of refractory metal components Fansteel Metallurgical Corporation

Dust-collecting manifold and lines extending to individual stripper heads. Dust is collected in a container which is easily emptied
has proved to be a mechanized stripper developed for the specific job in hand, which reduces to a minimum the human element and results in uniformly high stripping quality every time.

Many manufacturers are now successfully using this approach to this serious problem. Oftentimes the same method that insures the quality of their connections also has cut their production costs.

\section*{Example}

A typical problem is the shunt coil shown, wound with AWG No. 30 Formvar-insulated wire. The starting lead requires 14 inches of stripped length extending to within 1 inch of the coil. The finishing lead, on the opposite side of the coil, must be stripped for a length of \(1 \frac{1}{4}\) inch and within \(\frac{1}{2}\) inch of the coil.

By previous methods, each lead was separately and individually sanded by hand. Control of quality depended upon the adeptness of each individual operator.

To solve this problem, a simple, compact mechanized wire stripper was developed to do a clean, dam-age-free stripping job to the required specifications and to reduce the human element to the very minimum. The illustrations here show the operation of this mechanized stripper.

As the direct result of the use of this specialized equipment, connec-

\section*{For maximum versatility in production inspection...}

\section*{the NEW KODAK CONTOUR PROJECTOR, Model 4}

You'll find setups are faster, fixturing easier when you use the Kodak Contour Projector, Model 4, for routine gaging of precision parts.

Designed for use on the inspection line, it has a movable table with 4 inches of travel in both horizontal and vertical directions. This lets you handle a wide variety of parts with simple fixturing.

The Kodak Contour Projector, Model 4, has the same unique optical system as the famous Kodak Contour Projectors, Models 2 A and 3 . The 14 -inch viewing screen covers a field of \(1.4^{\prime \prime}\) at \(10 \times\) magnification. Vertical illuminator, surface illumination, six-power lens turret, and rotating screen with protractor ring are available as accessories. For complete details, write to:

EASTMAN KODAK COMPANY
Special Products Sales Division
Rochester 4, N.Y.
the KODAK CONTOUR PROJECTOR

\title{
Engineered Economy Iron cores

}

\section*{STOCK}

Engineered
Economy means:
- HIGHEST PERFORMANCE
- HIGHEST QUALITY
materials
- UNIFORM HIGH

QUALITY
- LOWEST COST
- STANDARDIZATION

\section*{DELIVERY FROM STOCK:}

We maintain on inventory of EE Cores, thus increasing speed of delivery, inereasing your inventory turnover, cutting your investment, and eliminating expensive down-time on lines becouse of inventory "outs."

ENGINEERED ECONOMY IRON CORES ... AT MONEY SAVING VOLUME PRICES . . . ARE NOW AVAILABLE FROM STOCK. Two years of research and planning have produced the first concrete approach toward mass production in the iron core field. The EE cores illus. trated are based on the most commonly used electrical and mechanical standard specifications, therefore design engineers may adapt them easily to a wide variety of uses.

Literature is available upon request . . . please write for our EE specification sheets.

If your needs are not covered in the above group, ask aboul our "Cuslom Engineered Cores", made to your exacl specifications.

9540 Tulley Avenue Oak Lawn, Illinois
tion failures have been virtually eliminated. An important secondary saving lies in the fact that 1,620 coils can be stripped per hour by one operator.

\section*{Grid Stretcher}

Grids for vacuum tubes are sized to rigid specifications with a simple stretching tool operated by a foot pedal, in the plant of Tung-Sol Electric Inc., Bloomfield. N. J.

The operator slips a welded grid over the split mandrel that projects upward from the tool, then pushes

Stretched position of rool, with wedge projecting up between the two halves of the mandrel
the foot pedal down. This drives a thin tapered wedge between the two halves of the mandrel, to stretch the turns and thereby counteract the deformation due to centrifugal force during winding of grids.

\section*{Drilling Soft Insulation}

A drilling setup devised by Hewlett Packard Co., Palo Alto, Calif., permits counterboring into polyethylene insulation to make room for a soldered joint between coaxial cable and a platinum-coated 4 -inch glass pad. This solved the problem

HYORAULICS

telemetering

ELECTRO-MECHANICAL

ULTRASONICS

East Coast Office: Expart Division: Bendix International
475 th Ave., N. Y. \(17 \quad 205\) E. 42 nd 5t., N.Y. 17

With this proven lightweight radar set, developed and being produced by Bendix-Pacific, all terrain is continuously indicated . . . and pilots can "see" storm fronts as well as other aircraft in the vicinity.

Progress in airborne radar is a vital factor at Bendix-Pacific. Newer, smaller and lighter airborne radar equipment has already been developed with continuous advancements under way.

Bendix.Pacific is specializing in airborne radar for both aircraft and missiles. It will pay you to discuss your requirements with us.

PACIFIC DIVISION - Bendix Aviation Corporation 11600 Sherman Woy, Norlh Hollywood, Colifornio

Setup for drilling flexible polyethylene insulation. Fractional-horsepower motor at left drives drill. Sleeving is being pushed in at right, and bottoms against left center block at finish of boring

Operafor slips counterbored insulation over soldered joint between wire and platinum-coated glass pad
of insulating the joint without disfiguring the outer diameter of the insulation.

In the first step of the operation, wire is drawn out of a 4 -inch section of cable. The insulation is then counterbored to a \({ }^{3}\)-inch depth. The wire is connected to the glass pad with a brass sleeve and made fast with low-temperature solder. The counterbored insulation then can be slipped over the glass pad and joint.

\section*{Blast Cleaning Salvages Metal Picture Tubes}

Metal picture tubes which are production rejects or which have been returned due to failure in service can be reconditioned economically with new multitable airless blasting machine manufactured by American Wheelabrator \& Equipment Corp., Mishawka, Indiana. The glass, face and neck are first broken off. The metal cones are then placed in the machine and residual glass is blasted off to bright bare metal with size S-230 cast steel shot.

The steel shot is thrown by a rotating bladed wheel in the cabinet roof of the machine. Fixtures keep the cones from being displaced by

The Seismograph Service Corporation of Tulsa utilizes Mechanical Filters to narrow the I. F. pass band of their receivers and produce a better signal-tonoise ratio. Two Collins Mechanical Filters are now used in each marine mobile Lorac receiver.

During recent years the oil industry has displayed great interest in the Continental Shelf Area of the Gulf of Mexico. Increased geophysical activity in this area demanded a more accurate determination of the geographic position at which geophysical observations are made. As a result, Seismograph's Lorac radiolocation system, unhampered by poor visibility and line-of-sight limitations, was designed. Today the better signal-tonoise ratio provided by Collins Mechanical Filters in their Lorac receivers aids in providing position information as accurate as \(\pm 21 / 2\) feet.

Here is only one use of this compact, permanently tuned I. F. bandpass Filter. It is very probable that the Collins Mechanical Filter will provide the ideal selectivity and better signal-to-noise ratio you require. Collins Engineering Staff is available to assist in your particular application. Ask us today about the many types of standard Mechanical Filters now available for your use.

\section*{COLLINS RADIO COMPANY \\ Cedar Rapids, Iowa}

261 Madison Ave., NEW YORK 16
1930 Hi-Line Dr., DALLAS 2
2700 W. Olive Ave., BURBANK
Collins Radio Company of Canada, Lid., 74 Sparks Street, OTTAWA, ONTARIO

A compact, combination tuner (the world's smallest) for covering the entire. UHF-VHF bands.
- Straight line electrical sequence of compartmented circuits.
- Simple, coaxial tuning.
- Stage shielded.
- OVERALL PERFORMANCE MAKES ANY SET A BETTER SET.

Write for folder covering complete description and performance data.

\section*{SARKES TARZIAN, Inc.}

Tuner Division
Bloomington, Indiana

Cleaning insides of metal cones with machine. Rectangular steel frames hold cones in position on their waltzing turntables as the 6 -foot spider moves the tables under heavy flexible plastic cur. lains into the blasting zone. Shot hopper is at top

Metal cones before cleaning (left) and after blast-cleaning
the shot. As the main spider rotates the seven individual tables in and out of the blasting zone, the tables themselves rotate so that all areas of the cones are reached by the shot.

The outsides of the cones are cleaned on one pass through the machine. The operator then inverts the cones and puts them through again for cleaning the insides. After cleaning, the cone is ready for a new coat of vitreous enamel and final processing.

\section*{Crimping and Stitching Inner Leads of Coils}

To minimize breaking of leads for inner windings of multilayer coils when using wire gages that are very small, a technique has been developed for crimping separate leads so that they can be stored entirely inside the coils during winding and pulled out later. This eliminates the conventional procedure of sticking the leads down with adhesive tape and wrapping them in such a way that they could

Made of natural polyethylene mixed with a blowing agent that yields an inert gas when processed, this new material can be expanded to twice its volume.

Leaving the die, Bakfiate Ce lular Polvethylene ex pands to tivice its volume as \(i=\) is extruded on wire \\ \section*{DOWN COME INSULATION COSTS \\ \section*{DOWN COME INSULATION COSTS WITH BAKELITE CELLULAR POLYETHYLENE} WITH BAKELITE CELLULAR POLYETHYLENE}

Television lead-in wire with core of Bakelite Cellular Polyethylene. This construction guards against moisture penetration and provides superior low-loss qualities.

HERE ARE SOME OF THE ADVANTAGES IT OFFERS:
More volume, less weight. As it is being extruded on wire, Bakelite Cellular Polyethylene expands as much as 100 per cent, bringing lower pound volume costs. Its specific gravity can be as much as 50 per cent less than that of solid polyethylene, which is 0.92 .
Lower dielectric constant. The dielectric constant of expanded polyethylene is 1.48 . Solid polyethylene has a dielectric constant of 2.3.
Moisture resistance. Structurally, Bakelite Cellular Polyethylene consists of individual hollow cells separated by walls of polyethylene. Its moisture absorption therefore is of the same low order as that of polyethylene.
Service properties. Baselite Cellular Polyethylene has the same chemical resistance as solid polyethylene, and withstands sea water, most acids, alkalies, and oxidizing agents. Varying degrees of expansion are possible.
Write Dept. XZ-79 for copy of Kabelitems No. 70 "Bakelite Cellular Polyethylene."

"HOW SMALL
CAN YOU GET?"

in manufacturing precision-controlled insulated magnet wire so fine you can barely see it, it is only natural that our engineering people have been working with miniature and sub-miniature coil and transformer units from the inception of miniaturization.

The important NEW TINY-MITE series of transformers is one result of this work. Tiny-Mite Transformers, with unusually excellent typical characteristics, are ideal for use in transistor and printed circuits, control, guided missile, and similar applications where space, weight, and size are prime factors.

Tiny-Mite Transformers are assembled with nickel alloy laminated cores, with fine wire coils wound on nylon bobbins. Windings are terminated with special care and technique to insure maximum protection to leads.

Tiny-Mite Transformers are varnish-treated and can be supplied open frame with \(3^{\prime \prime}\) color coded leads, or in metal shells, hermetically sealed, and with \#22 tinned leads soldered to header terminals to facilitate assembly.

Tiny-Mite Engineering Data Sheets are available on request to Wheeler producers of fine gauge magnet wire, specialized coils, and transformers. Your own special needs can almost certainly be met by standard units in this new series, or by possible modifications. We will welcome your inquiry.

\section*{THE WHEELER INSULATED WIRE COMPANY, Inc.}

Division of The Sperry Corporation
1101 East Aurora Street, Waterbury 20. Connesticul

be pulled out after the coil had been parted off and removed from the mandrel.

One machine developed for this problem produces a continuous length of crimped tinned copper stranded wire. The wire is run between two spaced gears having specially shaped teeth for crimping the wire. After passing through these gears the angle in the zigzag wire is approximately 90 degrees.

Machine for crimping stranded copper lead wire. Wire comes from spool at right, passes first between steel forming gears, then through rubber rollers at left

The partially formed wire then runs through a spiral channel that rotates at 90 degrees for feeding between two rubber-faced rollers. These rotate at a slower speed than the forming gears and thereby serve to close up the pitch to approximately \(\frac{1}{s}\) inch. At the output of the rollers is a spring-loaded brush that retards the crimped wire, fully closing the pitch until almost parallel.

The crimped wire runs directly into the next machine, where the wire is stapled to Kraft tissue paper or other sheet insulation used between windings of a transformer. This interleaving paper is used in wide strips on multiple winding machines that produce a stick of half a dozen or more coils on a single mandrel simultaneously, for cutting into separate coils.

The stitching machine staples the crimped wire to the interleaving paper automatically, with the staples spaced the required distance, then guillotines the paper off in lengths corresponding to the number of coils being wound.

For a twelve-coil winding machine, the guillotine is operated by a solenoid through a snap-action switch actuated by a gear train
operating at a reduction of 12 to 1 from the mair paper feed drive. The paper is thus severed every twelve stitches.

The main drive is a large doubleacting air cylinder. This is linked to a reciprocating slide which in turn is linked to an arm on the body of a one-way clutch at one end of the input feed roller. This first feed roller drives the bottom roller at the output end of the machine through a bicycle-type chain. A rubbercovered idling roller directly above the output roller is sprung down to maintain constant drive. The drive mechanism is identical with that used for paper feed in power printing presses.

The entire sequence of stitching

Contact stitching machine. Interleaving paper is pulled from large spool at left. Crimped lead wire comes through U channel over this spool, directly from wire crimping machine off to left. Copper ribbon for staples feeds from horizontal spool at rezr. Staples made from the ribbon are diven through crimped wire and paper by highest air cylinder. Interleaving paper is chopped to correct lengths for multiple coil winding machine by guillctine blade inside horizontal drum at riçht end of machine

Input end of contact stitching machine, showing horizontal air cylinder that serves as main drive. U channel guides crimped lead wise into position over paper

\section*{Small size solves space problems in ultra-compact chassis}

Stop looking for space-do something about it. Design with Centralab BC disc Hi-Kaps. You'll find they not only "clear-up" circuits . . but make room for better performance as well! Here are BC highlights:
- Stable power factor - Initial, \(1.5 \%\) at 1 KC .
- High insulation resistance - 10,000 megohms.
BC's are so small that 24 \(1 / 4^{\prime \prime}\) capacitors occupy the space of one cigarette. Other small sizes: \(3 /{ }^{\prime \prime}\). K/' \(_{6}{ }^{\prime \prime}\) and \(5 /{ }^{\prime \prime}\).

Centralab
A Division of Globe-Union Inc.
914H E. Keefe Avanue - Milwaukee 1, Wisconsin In Canada: 804 Mi . Pleasant Road, Toronto, Ontario
 electronic components

This does not tell the whole story by any means, but it does indicate the growing acceptance of this powerful motor for all types of instrument and control applications which require constant speed and dependability even under adverse environmental conditions. The complete story is yours for the asking. Write today.
tame
TiMING

Air-operated progression-type press used for forming staples from half-inch copper ribbon and driving them through crimped leads and paper
and cutting is controlled by a roller air valve which is actuated by a cam on the main feed roller drive. The spacing of the staples is thus controlled directly by the circular movement of the rollers.

The machine produces its own staples for stitching, from a coil of 0.003 -inch copper it inch wide. A three-stage progression-type press tool, operated by an air cylinder, is used to produce the required notch, bend, crop and clench operations. The sheet copper feeds in at right angles to the paper feed. The last stage clenches the staple in position over a curling die, in exactly the correct positron for stapling the crimped wire to the interleaving paper.

\section*{Example of Use}

For a twelve-coil winding machine, a piece of interleaving paper having the crimped wire stapled at twelve points is attached to the mandrel of the winding machine. The operator then takes each of the

Closeup of output end of machine, show. ing horizontal drum housing for guillotine blade and rubber idling roller. Chain drive for output drive roller can just be seen below
enameled copper winding wires in turn, cleans its end and solders it to a copper staple. When all twelve wires have been anchored in this manner to the crimped leads, the remainder of the paper is wrapped over the soldering for insulation purposes. Winding of the coils twelve at a time then proceeds normally.

After the coils have been wound, they are parted off conventionally. This serves to cut the crimped lead wires apart also. It is then a comparatively simple matter to locate the cut end of a crimped wire and withdraw as much of it as desired from the interleaving paper. This gives a rugged and flexible inner termination for the coil.

Wiring crimping and stitching machines involved in this technique were developed by the engineering department of E. K. Cole Ltd., Southend-on-Sea, England under the direction of Frank Allen, for use in the production of television components.

\section*{Socket Holders for Tube Aging Conveyor}

Electrical characteristics of tolevision picture tubes are stabilized by putting them through an aging cycle on an electrified over head chain conveyor in the GE plant at Electronics Park, Syracuse, N. Y. A trolley system using a series of bus bars and collector trolleys supplies

\section*{Electra Deposited Carbon Resistors}

From Hearing Aids to Guided Missiles Electra Deposited Carbon Resistors have become "First Choice" on thousands of blueprints. Leading engineers have good reasons for this specified choice . . Deposited carbon resistors because they are extremely stable, small in size, accurate to \(\pm 1 \%\) but available also in other resistance tolerances and low in cost. Electra resistors are preferred because month after month, year after year, quality is always dependably high.

Purchasing and production people prefer Electra because of fast, dependable delivery - production schedules are met on time!

\section*{Electra Deposited Carbon Resistors} are available in 8 sizes \(-1 / 8\) watt to 2 watts, and in two types - coated as well as hermetically sealed. They are manufactured to specification MIL -R-10509 A.

Make your "First" Choice" Electra Deposited Carbon Resistors!

Write for complete information Slectia manufacturing co.

KANSAS CITY B, MISSOURI

WITH Three times the dielectric strength of nitrogen and equalling oil at modest pressure, Sulfur Hexafluoride provides a safe and convenient means of insuring reliable operation, increased power and voltage output, compact design and ease of maintenance of electronic equipment.

\section*{INERT, NON-TOXIC, NON-FLAMMABLE AND EXTREMELY STABLE,} Sulfur Hexafluoride is easy and safe to handle. Its vapor pressure changes but slightly over a wide temperature range. One of the heaviest known gases, \(\mathrm{SF}_{8}\) has only a slight tendency to diffuse into the atmosphere when equipment is being filled or recharged. Small amounts of air do not materially affect its dielectric strength. That means making repairs or filling apparatus becomes a simple operation.

FIND OUT MORE about SFs. Send in this coupon and get your free copy of the technical bulletin on this remarkable new dielectric gas. Specifying your intended use will enable us to make helpful suggestions on the most effective way of using Sulfur Hexafluoride in your equipment.

\section*{Send foday!}

the required voltages to the tubes while in motion.

Two coil springs support the molded plastic receptacle containing the picture tube socket, to simplify application and removal of the socket. For the occasional tubes that require a different socket, an adapter is attached to the socket housing with a small metal chain so that it is always at hand. The molded housing is deep enough and wide enough to admit the outboard resistors on the adapter, so as to protect the operator from shock.

\section*{Tube Stem Machine}

Wire leads for miniature tubes are dropped nine at a time into position for being fused into glass stems, on an automatic stem machine used in the Bloomfield, N. J. tube plant of Tung-Sol Electric Inc. The wires come in round boxes each holding approximately 300 pieces. The machine has nine loading areas for wire, each having a spring-loaded side that keeps the pins upright as they are used. When the supply runs low, the operator reloads by pulling back the retractable side and inverting a box of pins over the

Pin-loading section of aufomatic stem machine. Operator holds box of pins preparatory to repienishing supply on machine. Coil springs, below, guide pins down to moving heads of machine

Photoelectric setup for detecting absence of glass sleeve around pins. Light source and phototube are both at left, with reflecting murror just behind glass stem containing leads. Air-blast pipe can be seen just כack of stem on mold
resulting space. Each loading area holds about 900 pins.

A center slice moves back and forth to pick one pin out of each of the nine loading areas and move it over a drop hole. The pins then drop down the nine flexible spring coils to a head that drops them into position in a stem mold. A glass stem is dropped around the leads at the next stop of the mold. A photoelectric system at the next position inspects for the presence of the glass; if absent or broken, the photoelectric control actuates the valve of a powerful air-blast line to blow out all the leads so they don't fuse to the mold. At later positions, flares will soften the glass and another mold will come down over the wires to form the stem.

\section*{Stretching Device for Hand-Wound Grids}

Grids for Amperex type 4X150A beam tetrodes are precisely wound by hand with gold-plated wire on a fixture that permits stretching after winding. After tying a starting knot in the wire, the operator runs it through marked starting teeth, then loops the wire back and forth in adjacent teeth of the winding tool until all teeth have been filled. A needle-shaped prod
 NEW Calivolter*

\section*{WHAT THE CALIVOLTER IS}

The Calivolter is a precise electrical instrument which provides an accurate voltage output over a wide frequency range. True r.m.s. voltages regardless of waveform, and accuracy of \(\pm 1 / 2 \%\) are outstanding features. The Calivolter fills a long recognized need for an extremely accurate but inexpensive voltage standard.
* Trademark

\section*{What the calivolter does}

The Calivolter may be used to measure accurately the e.m.f. of voltageproducing vibration, pressure, and seismic pick-ups, as well as strainmeasuring devices. It provides a means for accurately calibrating voltage detectors and voltage-sensitive devices such as Vacuum Tube Voltmeters, Oscilloscopes and Sensitive Relays. It may also be used for over-all calibrations of Recording Systems, and for measuring the frequency-response of Amplifiers, Recording Systems, Transformers, High Impedance Meters, etc.

WHAT THE CALIVOLTER OFFERS
Here are some of the advantages and features which you get with the Calivolter:
- Accuracy \(\pm 1 / 2 \%\) from DC to \(10 K C\) useful to at least 20 KC .
- Voltage output from 10 microvolts to 10 volts in 5 continuous ranges.
- Easy operation, simple standard. ization.
- Low output impedance - max. 1000 ohms.
- No current waveform error.
- Current output - 1 microamp to 10 ma in decade steps.
- A transfer switch and input connection for "unknown". facilitates measurements by substitulion.
- Small size \(\left(8^{\prime \prime} \times 8^{1 / 2} \times 4^{\prime \prime}\right.\) o.a.)
- Lightweight (\(61 / 4\) lbs.), sturdy construction, matchless quality.

Write today for specifications and price.

120 CROSS STREET, WINCHESTER, MASSACHUSETTS
\begin{tabular}{|c|c|c|c|}
\hline SALES REPRESENTATIVES: & \begin{tabular}{l}
philadelpmia, pa. \\
G. C. Engei. Charmut mill o-0892
\end{tabular} & \begin{tabular}{l}
dallas, texas \\
John A. Green Coy, Olizon 9918
\end{tabular} & \begin{tabular}{l}
SAN FIANCISCO, CALIP. \\

\end{tabular} \\
\hline \begin{tabular}{l}
new york city area \\
G. C. Enge1, Rector 2.0091 EXPORT
\end{tabular} & \begin{tabular}{l}
cieveland. omio \\
M. P, Odell Co, Prospect 1.6171
\end{tabular} & WALTMAM. MASS. Robert A, Woters, Inc. & \begin{tabular}{l}
MINNEAPOLIS, MINN. \\
H. M. Richardion and
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Rocke international Con, } \\
& 13 \text { Eost } 40 \text { SN, S, Y, } 16, \text { N, Y. } \\
& \text { Murray Pill } 9.0200
\end{aligned}
\] & \begin{tabular}{l}
DAYTOM, OHIO \\
M. P. Ódell Co., Oregon 4441
\end{tabular} & \begin{tabular}{l}
Waithom 5.6900 \\
hotiywood. californa \\
G. B. Multer Co., Mollywood 9.6305
\end{tabular} & Genevo 407 l
W MAVEM. CONN. \\
\hline \begin{tabular}{l}
NORTMERN NEW YORK \\
Technical Sertien Co, Bos
\end{tabular} & \begin{tabular}{l}
WASHINGTON, D.C. \\
F. R. Jodon, Inc., Woodley 6.2615
\end{tabular} & \begin{tabular}{l}
SEATTE WASH. \\
G. ©. Miller Co. Lander 3320
\end{tabular} & Pobert A. Waters, ine.
Fulton 7.8780 \\
\hline \begin{tabular}{l}
Capirt 7.9797 \\
NEW JERSEY
\end{tabular} & Chicago, RIINOIS Hugh morslond Co Ambassador 2.1555 & \begin{tabular}{l}
albuquerque, new mexico \\
G. B. Miller Co. \\
albuquerque 5.8606
\end{tabular} & \begin{tabular}{l}
camaoa \\
Mearuement Enghoaring timited Armprior, Om. thane 400
\end{tabular} \\
\hline
\end{tabular}

\section*{PRECISION}
 -omponents

\section*{POPULAR DIALS AND KNOBS}

For years, national dials and knobs have been the popular choice of amateurs, exporimenters, and commercial users.

Natroxal dials feaure smobth, velvety action, easily-reat scales and quality construction. Many dials, like the N and ACN dials shown, can be specially calibtated or supplied with blank scales for commercial applications. Natiqnal knobs - distinguished by their clean, functional, chrome and plastic styling and sturdy construction are the most popular of their type ever produced. All fit \(1 / 4\) shafts. For commercial applications, they can be supplied in special colors and with special calibrations.
Write for new National catalog of dials and knobs to Dept.
helps to guide the wire into the teeth at the lower bends. A holding fixture clamped to the bench has a cog detent that holds the mandrel in a given position yet permits easy rotation for convenience in winding.

After anchoring the end of the winding with a few loops around the mandrel, the operator transfers

Method of wlnding parallel-wire grld on mandrel having gear teeth as winding guides. Halding fixture of mandrel is fastened to bench

Using stretching tool on completed grid. End bands and center ring are welded 10 grid wires before tenslon is released. Completed grids are placed on plastic studs on plastic sheets in foreground. Grids in background, on wood trays, have been completed but no yet re\(\rightarrow\) moved from mandrels

Tool used for stretching grid wires
the mandrel to a tool resembling a gear puller. Here a few turns of the threaded shaft of the tool serve to stretch the grid wires about is inch. This brings each wire deep down into the \(V\) of its slot to insure perfect alignment of the wires.

\section*{Alignment Checks Quality of Printed I-F Parts}

Final inspection and rough alignment of etched i-f components is combined in one position on the production line in one printed-circuits parts plant. This gives a final check for shorts or opens and at the same time brings the settings of the two tuning disks very nearly to their correct final positions for use in video i-f amplifiers of television receivers.

The operator places the transformer, coil or trap in the positioning grooves of a plastic holding fixture, then operates a lever. This lever moves the sliding fixture into the test position and at the same time pushes a hinged chassis with contact blades over the leads of the component.

A rod mounted on the slide and projecting ahead of it pushes against a right-angle stud coming down from the hinged chassis, thereby moving the entire chassis downward to make contact with the

Setup for rough adjustment of printed i-f transformer

\section*{OLYMPIC}

Combined Fabricating and Finishing of Metal Cases and Components for all Industry
- FABRICATION . . . Olympic offers standard and special housings, both drawn and fabricated, in steel, brass, copper, aluminum, and Mu-metal. Also, covers, end bells, channels, brackets and flanges. Modification and assembly service.
- FINISHING . . . centrifugal hot-tin dipping, cadmium plating, and black oside finish.
Mass-production prices. Stock deliveries.
Consolidate your specs with Olympic now!

METAL PRODUCTS COMPANY, INC. ALPHA, NEW JERSEY

PRECISION . ENGINEERED!

\author{
Shown Actual Size
}

IF You need a relay that will operate consistently under extremely critical or downright adverse conditions, there's an excellent possibility your requirements can be readily met by one of the multitude of variations possible with the basic "Diamond H" Series R relay. Originally designed to meet all requirements of USAF Spec. MlL-\(\mathrm{R}-5757 \mathrm{~B}\), they far surpass many. They're adaptable to a wide variety of applications ... guided missiles, jet aircraft, fire control and detection, radar, communications, high speed camera, geophysical and computer apparatus, for example.

TYPICAL PERFORMANCE CHARACTERISTICS
Vibration Resistance:
10-55 cycles at \(1 / 16^{\prime \prime}\) double amplitude
\(55-500\) cycles at 15 "G"
55-1,000 cycles at 15 "G"
\(55-2,000\) cycles at 10 "G"
Temperature Range: \(\quad-55^{\circ}\) to \(+85^{\circ} \mathrm{C}\).
\(-65^{\circ} 10+125^{\circ} \mathrm{C}\).
\(-65^{\circ} 10+200^{\circ} \mathrm{C}\).
Coils: Resistances-1 ohm to 50,000 ohms
Arrangements-single coil;
two independent coils, either or both of which will operate unit
Insulation Resistance: 1,000 megohms at room temperature
100 megohms at \(200^{\circ} \mathrm{C}\).
Dielectric Strength
450 to \(1,250 \mathrm{~V} ., \mathrm{RMS}\)
24 V . models 10 ms . or less; dropout less than 3 ms .
Contacts:

\section*{Operational}

Shock Resistance: \(\quad 30,40\) and 50 " \(\mathrm{G}^{\prime \prime}\) plus

\section*{Mechanical}

Shock Resistance:
up to 1,000 "G"
9 standard arrangements to meet all needs plus ceramic plug-in socket.
Size:
1.6 cu . in.

Weight:

Call on "Diamond \(H\) " engineers to work with you in developing a variation to meet your specific requirements.
THE HART MANUFACTURING COMPANY 202 Bartholomew Avenue, Hartford, Connecticut

Method of inserting component in sliding test fixture

Plug-in preamplifier with hinged upper plate serving as chassis, showing how rod on slide pushes chassis downward to bring contacts (upper left) against leads of component
leads of the component.
The actual alignment is done conventionally by using a model WR59B RCA Television Sweep Generator as the signal source and a standard RCA oscilloscope as indicator. The operator adjusts the two flat metal tuning disks until the trace on the screen coincides with a curve drawn there with black crayon.

The test fixture uses two 6BC6 tubes with a crystal diode as a twostage preamplifier for the component under test. The preamplifier unit has plug-in terminals underneath, so that it can be changed quickly for testing a different type of component.

\section*{Filament Bending Jig}

A simple hand-operated jig bends three coated filaments at a time to the correct contours for use in type 5 U 4 G rectifier tubes, in Tung-Sol's Bloomfield, N. J. plant. The heavy ribbon-shaped filaments for directemission use are coated on both flat

Loading filaments in bending tool

Pushing down lever to produce beading. This brings up side wings that perform the actual bending. After bending, filaments are removed with tweezers and placed in box at rear. Air duct is at upper left
sides and are slightly concave. The operator places three filaments in the tool with tweezers, concave sides down, then brings up a pivoted level and pushes its end down over the filaments. Further pressure pushes down a retractable anvil and brings up wings on each side to produce the desired U-shaped bends. An air duct pulls out loose particles of coating resulting from this bending operation.

\section*{Welding Slider Contacts}

A special spot-welding machine at Helipot Corp., South Pasadena, California, is used to weld the precious metal slider contact of a precision potentiometer to its contact spring. The contact is registered in a recess in the fixture. The

NOW! SPECIFICATION STRIPING ON TEFLON HOOK-UP WIRE ... ANOTHER TENSOLITE "FIRST!" New TENSOLON high temperature Teflon insulated hook-up wire is striped with one broad and one or two narrow stripes for circuit identification. Teflon inks fused into the insulation make sequence of colors easily distinguishable. Striping conforms to commercial (GEN-104) and military (MIL-W-76A) specifications for color coding. Wire sizes available from No. 26 to No. 10 AWG with 819 different striping combinations possible. Insist on TENSOLON when specifications call for . . .

Watch Tensolite for progress in electronic wiring-inquiries are invited.

\footnotetext{
- Du Pont
}

TARRYTOWN, NEW YORK - TArrytown 4-2300
Tensolite products include: TENSOLON - Teflon Hook-up Wire to MIL-W. 16878A and Miniature Teflon Jacketed Cables; TENSOLEX-Vinyl Insulated Wires to JAN-C-76, MIL-W.76A, MIL-W-16878A; TENSOLITE - Super-flexible Constructions including Phonograph Pick-up Cables and Hearing Aid Cordage.

\section*{NOW COST 20\% LESS}

Because so many of you are using Raytheon Standard Control Knobs on your equipment, we have been able to cut the unit cost by \(20 \%\) or more - and are passing this saving right on to you.

Such a demand underlines the strong appeal of standard control knobs, worthy of the very finest electric and electronic equipment without the heavy expense of custom designing and tooling.
Now, with top value added to top quality, it will pay you more than ever to use Raytheon Standard Control K nobs. Write for complete information. Address Raytheon Manufacturing Company, Equipment Sales Division, Waltham 54, Mass., Dept. 6120 KA

These injection molded knobs are available in an integrated family of 54 items - in a choice of six basic types and five widely-used sizes. Unlimited color variation is available to match, blend or contrast with color styled equipment - including knob parts assembled in many different color combinations.

To meet rigid government standards, Raytheon Standard Control Knobs are made of tough, durable "Tenite II" (cellulose acetate butyrate) with anodized aluminum inserts and dual setscrews. All types and sizes available with gleaming mirror finish . . or with non-reflect-
 ing matte finish.

Contact-welding jig
spring flat is registered on the three studs with the rear stud through a hole in the spring flat. The weld is accomplished with a single shot.

\section*{Deburring Miniature Feed-Through Terminals}

Mass production of over four million pieces of tubing to dimensions of \(0.045 \pm 0.002\) od by 0.032 \(\pm 0.001\) id by \(0.265 \pm 0.005\) inch long involves the design of special tooling to perform the critical deburring operation in the Modesto, Calif. plant of Boudreau Machine Co. The tiny lengths of tubing are used in feed-through terminals made by Bennett Products Co., Palo Alto, Calif. for electronic equipment.

After the tubes are cut to length they are loaded into a Syntron vibratory elevator. This automati-

Deburring punch press, with vibratory elevator at left. Lengths of tubing slide down curved glass tubing from elevator to turntable on press

Closeup of press turntable

Side view of press
cally feeds the parts through a glass tube to the turntable of a specially designed one-ton punch press.

The tubes are literally washed into position in the turntable where they are seated vertically. A tamping mechanism thoroughly seats the part into the drilled hole of the turntable before it is turned for the piercing operation. The 0.032 \(\pm 0.001\)-inch piercing rod performs its operation, and the part is removed to the next ejecting station. The mechanical ejection is supplemented by a vacuum air pump to insure that all parts are cleared quickly. The press is geared to pierce 320 parts per minute.

\section*{Transparent Containers Protect Camera Tubes}

SPECIAL TAMPER-PROOF containers are used by RCA Victor Division for image orthicon tubes intended for replacement use. A red seal which encircles each transparent plastic container must be broken

The electrical precision expected of laboratory instruments, with the mechanical ruggedness required for dependable duty under the most severe military and industrial conditions are combined in Litton Potentiometers.
electrically, "ultra-precision" distinguishes Litton "pots". Recently developed high-speed, servo-controlled coil winding techniques make possible consistently high linearities. Linearity data supplied with each unit. Close total resistance tolerances can be held. For some resistance values resolution is several times that of similar models. "Infinite resolution" (stepless) pots are available.
mechanically, Litton Potentiometers are outstanding examples of precision design and ruggedized construction. All metal case-machined aluminum, anodized-is rust-proof and dust-prool. Shielded stainless steel ball bearings are standard. desicn-wise, Litton Potentiometers simplify many application and assembly problems. Extremely rugged traveling-nut type stops eliminate need for external stop assemblies for many applications. \(3600^{\circ}\) of actual electrical rotation with \(90^{\circ}\) of electrical and mechanical overtravel at each end is a unique feature. Special mountings and shafts are available as well as other electrical angles, extra tap connections, and gang versions.
Litton Potentiometers are refinements of the Series 3500 and Series 1800 ten-turn potentiometers formerly manufactured by the Birklan Corporation.
\begin{tabular}{|c|c|c|}
\hline CONDENSED SPECIFICATIONS & series LMR35-10 & series LMR20-10 \\
\hline Independent Linearity-Standard Range & \(\pm 0.5 \%\) to \(\pm .01 \%\) & \(\pm 0.5 \%\) to \(\pm 0.02 \%\) \\
\hline Speclal Order & \(\pm 0.005 \%\) & \(\pm 0.01 \%\) \\
\hline Standard Total Resistance Range & IK to 300K ohms & 1K to 100K ohms \\
\hline a Resistance Tolerance Standard & +5\% & \(\pm 5 \%\) \\
\hline - Special & \(\pm 0.5 \%\) & \(\pm 0.5 \%\) \\
\hline Actual Effective Elecirical Angle & \(3600^{\circ}+1^{\circ}\) & \(3600^{\circ}+1^{\circ}\) \\
\hline Case Diameter & 3.500 Inches & 1.820 inches \\
\hline - Starting Torque maximum at \(20^{\circ} \mathrm{C}\). & \(1.0 \pm 0.5\) inch-ounces & 0.75 Inch-ounces \\
\hline 즌 Total Mechanical Angle-Nominal & \(3780^{\circ}\) & \(3780^{\circ}\) \\
\hline \(\pm\) Mechanical Overtravel Each End-Nominal & \(90^{\circ}\) & \(90^{\circ}\) \\
\hline \multicolumn{3}{|l|}{design details subject to change without notice, certified drawings available on request.} \\
\hline \multicolumn{3}{|l|}{write for complete data LITTON INDUSTRIES (incorporated)} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
336 N. Foothill Road • Beverly Hills, California - CRestview 4-7344 \\
215 S. Fulton Avenue • Mount Vernon, New York • Mount Vernon 7-6609
\end{tabular}} \\
\hline or contact our sales representative near chicaco l3, illinots, rivan encineents NEW YOHK CITY, E.R.A., INC. 10 s. MIDDLSNEC & \begin{tabular}{l}
est you... \\
co., \(2871 \mathrm{~N} . \mathrm{LiNCO}\) hoad. great neck.
\end{tabular} & E., DIVERSEy 8.68 ISLAND, HUNTEF 2.93 \\
\hline
\end{tabular}

- For duty at high voltage and high current, the Lapp Gas-Filled Condenser offers a combination of characteristics not available in any other type of capacitor . . . extreme compactness . . . low loss . . . high safety factors . . . puncture-proof operation . . . constant capacitance under temperature variation . . . and reliability of performance assured by a 15 -year service record.

In construction, the Lapp Gas-Filled Condenser assembly is supported on a top aluminum ring, the steel tank serving only as a support and as a leak-proof gas container. High-potential plates are stationary, carried on a rigid aluminum center stud, supported by a ceramic bowl. Rotor plates are grounded, carried on ball-bearings in a race almost the full diameter of the tank. This construction provides a grounded tuning shaft on variable models, makes possible efficient and complete water cooling for high current operation, and results in direct and short current paths to condenser plates.

Units available in 5 tank diameters, \(7^{\prime \prime}\) to \(24^{\prime \prime}\), for duties at capacitances up to \(60,000 \mathrm{mmf}\); current ratings to 525 amps at 1 mc ; voltages to 100 Kv peak. Write for Bulletin 302, with complete description and characteristics data. Lapp Insulator Co., Inc., Radio Specialties Division, 228 Sumner St., Le Roy, N. Y.

before the tube can be removed This gives visible assurance that the tube has been untouched, and discourages needless handling.

\section*{Resistance Brazing of Magnetron Cavities}

Precise permanent assembly of a magnetron cavity to its pole pieces and tuning mechanism is achieved by using carbon resistance brazing in the Hicksville, Long Island plant of Amperex Electronic Corp. Vacuum-tight copper to copper seals are achieved, using washershaped preforms of silver solder as the brazing material. Mechanical pressure applied during the brazing assures the required precise positioning of the parts.

Source of current for resistance brazing is a power transformer operating at 60 cycles and having a single-turn 8,000-ampere secondary winding of copper straps and sheets, made especially for this purpose by Ecco High-Frequency Corp. This single-turn winding terminates in electrodes faced with carbon, the lower one of which is movable vertically to permit insertion and removal of parts to be brazed.

A glass-windowed enclosure drops down over the electrodes after loading, to permit providing an atmosphere of nitrogen that

Turning hand wheel to move up lower brazing electrode after magnetron paris have been placed in position. Rubber hose feeds nitrogen into cavity of mag netron. Heat-adjusting tap switch is be hind right hand of operator

Resistance brazing setup for magnetrons
prevents oxidation during brazing. The nitrogen gas is run through an alcohol bath to remove moisture before it enters the chamber. The gas is fed into the magnetron cavity as well, by means of a separate hose connection.

The movable lower electrode is supported by a vertical feed screw, with a hand wheel underneath for raising and lowering the electrode. After the component parts have been placed in position the hand wheel is cranked up and brazing current is applied for approximately \(2 \frac{1}{2}\) minutes through a timer. Either pushbuttons or a foot-operated switch may be used to initiate the brazing cycle.

A tap switch permits adjusting brazing heat ky changing primary turns on the transformer.

\section*{Oven Racks Support Etched Coil Sheets}

Welded angle-iron racks support copper-clad plastic sheets, each containing over 150 identical photoetched i-f transformers, in a special bake oven. The drying operation follows acid etching of unexposed areas and subsequent rinsing in a large parts plant making printedcircuit components.

The angle irons are welded to horizontal supports. The lower troughs are slanted sufficiently to form \(V\) troughs that drain off water. With this arrangement, only the corners of the plastic sheet are

\section*{And nowfor AC applications as well...}

\section*{TYPE ACD CERAMIC DISK CAPACITORS}

To meet the more severe conditions of AC operation - especially electric-razor noise suppression and certain TV by-pass applications -\(H_{1}-Q\) specialists now come up with the new Series ACD ceramic disk capacitors.

You can effect marked economy by using HI-Q ACD's in applications calling for steady or intermittent AC voltages. Thicker dielectric and other heavy-duty features take care of voltage peaks. Voltage ratings are guaranteed. Underwriters' Laboratories requirements
(a ceramic capacitor used in AC applications shall withstand a 1500 VAC 60 -cycle 1 -minute test) are fully met.
Also: Power factor (initial) of \(1.5 \%\) max. at 1000 cps . Working voltage of 900 AC, or 1500 DC. Initial leakage resistance better than

7500 megohms; higher than 1000 megohms after humidity test.

\section*{Get the facts}

Write for literature on these and of \({ }^{\text {Her }} \mathrm{H}_{1}\) Q Ceramic Capacifors. Let our ceramic specialists collaborate on your requirements, Lef us quote.

\section*{AEROVOX CORPORATION \\ }

OLEAN, N. Y.
CINEMA ENGINEERING CO. CORPORATION ELECTRONICS, INC. ENGINEERING CO
NEW BEDFORD, MASS. MONROVIA, CALIF. BURBANK, CALIF.
in Conedo: aEnovox CAMADA ITD., Mamilton, Ont.
JOBEER ADJRESS: 7 to Bellovilt Ave., New Bedford. Mase.

\section*{Bemediz \\ HARD GLASS Miniature Beam Power Amplifier}

Here's another advance in the Bendix Red Bank "Reliable" Vacuum Tube program. Featuring a hard glass bulb and stem with gold-plated pins . . . plus a conservative design center of cathode temperature . . . the Bendix Red Bank RETMA 6094 can operate at temperatures up to \(300^{\circ}\) C. com. pared to an average of only \(175^{\circ} \mathrm{C}\). for soft glass bulbs. Thus, this new tube ideally meets aircraft, military and industrial applications where freedom from early failure, long service life, and uniform performance are essential.

The Bendix 6094 uses pressed ceramic spacers, instead of mica, for element separation. In other tubes, deterioration of mica in contact with the hot cathode causes loss of emission which is greatly accelerated under shock and vibration. Ceramic eliminates this problem and greatly reduces damage caused by fatigue failure of parts.

For complete details on our special. purpose tubes, write today.

\section*{electrical ratings*}
\begin{tabular}{|c|c|}
\hline Heater voltage (AC or DC)** & Its \\
\hline Heater current & 0.6 mmps . \\
\hline Plate voltage (maximum DC) & 275 volts \\
\hline Screen voltage (maximum DC) & 275 volts \\
\hline Peak plate voltage (max. instanta & 550 volts \\
\hline Plate dissipation (absolute max.) & 12.5 watts \\
\hline Screen dissipation (absolute max.) & 2.0 watts \\
\hline Cathode current (max. instantaneous peak value) & 100.0 ma \\
\hline Heater-cathode voltage (max.) & \(\pm 450\) volts \\
\hline Grid resistance (max.) & 0.1 megohm \\
\hline Grid voltage (max.) (min.) & \[
\begin{aligned}
& +5.0 \text { volts } \\
& -200.0 \text { volts }
\end{aligned}
\] \\
\hline Cathode warm-up time (Plate and heater voltage may be appli ously.) & 45 seconds dimultane- \\
\hline -To obtain greatest life expectancy fro designs where the tube is subjected to ratings simultaneously. & I tube, avoid all maximum \\
\hline - Voltage should not fluctuate more & \\
\hline
\end{tabular}

\section*{MECHANICAL DATA}
\begin{tabular}{|c|c|}
\hline Base & 9 pin miniature hard glassgold plated tungsten pins \\
\hline Bulb & Hard glass-T61/2 \\
\hline Max. over-all length & 2\%" \\
\hline Max. seated height & 25/2* \\
\hline Max. diameter & , \%" \\
\hline Mounting position & any \\
\hline Max. altitude & 80,000 feet \\
\hline Max. bulb temperature & - \(300^{\circ} \mathrm{C}\) \\
\hline Max. impact shock & 500 g \\
\hline Max. vibrational accele & tion 50 g \\
\hline (100 hour shock excite & fatlgue test, sample basis.) \\
\hline
\end{tabular}

lnsering sheet in drying rack

Cleaning glass negative in printing írame before exposing copperclad plastic sheets coated with photographic emulsion
in contact with the drying rack.
The horizontal supports can be raised or lowered easily to accomodate different sizes of sheets, by loosening and tightening set screws that go through the supports and bear against vertical rods passing through drilled holes in supports.
The etched components, used for six different types of \(40-\mathrm{mc}\) i-f transformers, coils and traps, are produced in quantity from corresponding multiple photographic negatives. The technique eliminates the need for copper wire and for wire-winding operations, since the inductances are provided by flat rectangular windings etched out of the copper covering on the plastic sheets. Circuit changes involve only the making of a new negative.

\section*{STANIESS . \({ }^{\text {STOCKK }}\)}

All types and sizes of screws (slotted, Phillips, socket, hex head), bol"s, nuts, washers, rivets, keys and pins livery from one source
- Now Garden City plant now operoting of fop speed and qualify
- Unsurpassed facilities for quantity fobrication of specials
- A staff of seasoned engineers always ovoiloble for consultation
- Pioneers in the monufacture ef stainless spoel fastoners

WRITE NOW FOR FREE COPY OF FASTENER MANUAL PIO

MANUFACTURERS SINCE 1929
AKH4MGTAR SCREW PRODUCTS COMPANY, INC. GARDEN CITY NEW YORK

\section*{MEASURE HIGH-FREQUENCY VOLTAGES}
with the Heterodyne Voltmeter Model BL-2002

This selective vacuum tube voltmeter is particularly useful in radio, radar and television circuit measurements, signal generator control, and monitoring of coaxial carrier frequency systems. It is designed for the measurement of highfrequency voltages and has very high sensitivity for measuring extremely small R. F. voltages.

All measurements are made through a test probe. The input voltage is indicated on one meter, and the degree of amplitude modulation of the signal on a second meter. Normal sensitivity is in the microvolt and millivolt range; however, by using an external attenuator this range can be extended to a maximum of 10 volts.
For specifications on the Model BL-2002 Heterodyne Voltmeter and information on the complete line of Bruel \& Kjaer Instruments, write Brush Electronics Company, Dpt. K-8A, 3405 Perkins Avenue, Cleveland 14, Ohio. Outside U.S.A. and Canada, address Bruel \& Kjaer, Naerum, Denmark.

\section*{ACOUSTIC AND TEST INSTRUMENTS}

Bruel \& Kjaer instruments, world famous for their precision and workmanship, are distributed exclusively in the United States and Canada by Brush Electronics Company BL-IC12 Beat Frequency Oscillator
BL. 1502 Deviation Test Bridge
BL-1t04 Integration Network for Vibration Pickup BL-4304
BL-4304 Vibratian Pickup
8L-2 105 Frequency Analyzer
BL-2109 Audio Frequency Spectrameter
BL-2304 Level Recorder
BL-2423 Megohmmeter and D. C. Volimeter BL-3423 Megohmmeter High Tension Accessory BL-4002 Standing Wave Apparatus
BL-4111 Condenser Microphone
BL-4120 Microphone Calibration Apparafus and Accessory
BL-4708 Automatic Frequency Response Tracer

\section*{BRUSH ELECTRONICS COMPANY \\ The Brush formerly Brush Elertronies Company is an operating unit of \\ }

\title{
NEW PRODUCTS
}

\author{
Edited by WILLIAM P. O'BRIEN
}

58 New Products and 41 Manufacturers' Bulletins Are Reviewed . . . Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered

\section*{PRECISION RECEIVER \\ insures communication through jamming}
J. L. A. Mclaughlin Corp., P. 0. Box 529, La Jolla, Calif. Type DDX-R radio receiver is a singlecontrol, dual-diversity, selectable single-sideband, exalted carrier device designed for long-distance reception of double or single-sideband signals. In addition to protection from fading and jamming, the receiver design provides for rapid tuning, high frequency stability and readability in frequency to within 0.5 kc . A feature of the receiver is the frequency computer panel that makes possible accurate tuning, based upon a 1 -me crystal oscillator followed by a multi-

vibrator and harmonic selectors. Output from the dual-receiver vfo is mixed with computer output to show, on a meter, deviation from

dial indication. Automatic frequency control is available for unjammed signals. By avoiding the complication of usual tracking procedures, r-f sensitivity has been brought to 18 dbm output with 1 microvolt input. Tuning range is 10 kc to 31 mc with diversity possible from 4 mc to 31 mc . Singlesideband width can be furnished for 3,500 or 6,000 cycles. Exalted carrier is 0 to plus 30 db . Spurious frequency response and noise are both down 60 db .

\section*{TINY CHOPPER}

\section*{is break-before-make type}

Airpax Products Co., Middle River, Baltimore 20, Md., has introduced a tiny 60 -cycle chopper that is break-before-make, spdt, and withstands \(30-\mathrm{g}\) vibration. It will handle signal levels from 100 v down to the \(\mu v\) region at 1 ma . It can be operated at any ambient from -65 C to 100 C , or at any fre-
quency from 30 to 150 cycles, and is hermetically sealed with a 7-pin miniature base. At \(6.3 \mathrm{v}, 60\) cycles the phase angle is 20 deg ; the dwell time, 167 deg. Noise level is extremely low. In direct noise measurements with a \(200-\mathrm{kc}\) bandwidth amplifier the noise at a megohm impedance was about \(50 \mu \mathrm{v} \mathrm{rms}\), or about 150 uv peak to peak. Life tests on recording equipment show life well in excess of 1,000 hours.

\section*{RESISTIVE NETWORKS}

\section*{are hermetically sealed}

Cinema Engineering Co., Division Aerovox Corp., 1100 Chestnut St., Burbank, Calif., has announced its hermetically sealed resistive networks, embedded in epoxy plastic, and offered in a large number of terminal types, including plug-in and low and high-voltage insulator types. They are available in resist-

ances of 0.1 ohm to 15 megohms. They are produced with accuracies of 1 percent to \(1 / 40\) th of 1 percent, and are built to meet and surpass many applicable MIL specifications.

\section*{VOLTAGE STANDARD is also a power source}

Electronic Measurements Co., INC., Lewis St. and Maple Ave.,

\title{
Big Savings Ahead
}

\section*{2 New SYLVANIA SOCKETS save Assembly Time... Cut Costs ... Improve Performance!}

.New Sylvania 7-pin Miniature Printed-circuit Sockets. Contacts and center shield are shaped so that sockets can be stacked one upon another for automatic feeding and assembly. Small slots are used on the circuit board to receive the contacts, resulting in stronger chassis construction. Only one socket assembly need be stocked since terminals can be interconnected by printing the circuit on the chassis board rather than using a metallic connector on the socket itself.

Insulator is molded of general-purpose or low-loss phenolic. Contacts are brass or phosphor bronze, plated to suit your specification. Supplied with or without center shield. Now available in 7-pin construction with 9 -pin miniature and other types to follow. Tube Shield Ground Strap can also be furnished.

See the full story of Sylvania's Fabricating Services in Sweet's Catalog Product Design File. Look for \(\frac{1 b}{5 y}\)

2.New Sylvania Solderless-type Sockets for wire-wrapped connections are now being made in all 7 and 9-pin miniature sizes. Contacts are shaped to provide reliable connections with the use of present wire-wrapping tools.

\section*{For full information concerning} these or other Sylvania parts, or special quality components engineered to your own specifications, write to Dept. 4A1608, Sylvania today.

\title{
S \\
}

Sylvania Electric Products Inc., 1740 Broodway, New York 19, N. Y.
In Canada: Sylvania Electric (Canada) Ltd., University Tower Euilding, St. Catherine Street, Montreal, P. Q.

Eatontown, N. J. The new Regatron series provides, in one unit, a variable \(d-c\) voltage standard, a high powered super-regulated power supply, and a research voltage source with small signal modulation, in single chassis, standard relay-rack or table models. The d-c voltage is 0 to 600 v vernier calibrated on a 10 -turn precision

potentiometer to 0.25 percent (or better where required). Current ratings are 0 to 600 ma or 0 to \(1,000 \mathrm{ma}\). Regulation is 0.05 percent (or better where required). Usefulness of low voltages for transistor work is increased by a 0 to 3 -v electrical vernier, and an injection circuit for small signal modulation of the output.

\section*{TINY ELECTROLYTICS}

\author{
operate from -20 C to +65 C
}

Illinois Condenser Co., 1616 N. Throop St., Chicago 22, Ill., has added a new line of miniature and subminiature electrolytic capacitors, designated as the types MT and SMT. These low-cost, low-cur-rent-drain capacitors are especially designed for use with transistors,
printed circuit applications and hobby models where small size and light weight components are required. They are all-aluminum constructed and hermetically sealed with connecting leads of tinned brass for extra strength. Operating temperature range is -20 C to +65 C. Capacitance range is 0.5 to \(100 \mu \mathrm{f}\) and from 3 to 75 working volts d-c.

\section*{WELDED RESISTORS}

\section*{use no soldering or brazing}

Ohmite MFg. Co., Skokie, Ill. The all-welded terminal construction has now been extended to cover the company's entire line of wire-wound resistors. The resistance wire is welded to the terminal band; and the terminal band itself is held permanently around the core by means of welding. No soldering, brazing or mechanical fastenings are used. Fusion of the resistance wire and terminal lug provides a

stable electrical connection which is important in eliminating noise in
audio circuits or instability in other highly sensitive circuits. The terminal bands are made of a special, high-strength alloy whose coefficient of expansion is properly related to that of the resistance wire, ceramic core and vitreous enamel coating. This keeps the terminal firmly anchored and prevents cracking of the core and enamel coating. The resistance wire is welded flush to the terminal band, so that the connection and terminal are well covered by the vitreous enamel coating.

\section*{VTVM}
covers from 10 cycles to 4 megacycles

Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif. Model 400D vtvm covers all frequencies from 10 cps to 4 mc , measures voltages from 0.1 mv to 300 v , and is accurate to within 2.0 percent up to 1 mc . Input impedance is 10 megohms, so circuits under test are not loaded. The instrument has a new amplifier circuit providing approximately 56 db of feedback in midrange for high stability and freedom from calibration changes caused by external condi-
tions. Ranges are selected on a front panel switch which changes sensitivity in accurate 10 db steps. This, plus calibration of the 4 -in. meter directly in decibels, means direct readings are available without calculation or conversion between -72 dbm and +53 dbm .

\section*{CAVITY OSCILLATOR uses uhf planar triode tube}

Amerac, Inc., 116 Topsfield Road, Wenham, Mass., announces the No. 192A rocket tube cavity oscillator

\title{
first 5KW engine-generatior set builit to military standard parts specifications!
}

\section*{Built and tested for military service!}

The Onan Model 5VB-4M meets all specified test requirements for Military Type II, Class A engine-generator sets. It's built to withstand braking and dropping shocks, to resist high humidity, to start at extreme temperatures and to operate at all angles up to 15 from horizontal.

After 1,000 hours of operation with full rated load, and under test conditions of \(107^{\circ} \mathrm{F}\). and 5,000 -foot altitude, the Model 5 VB delivers more than \(150 \%\) of rated output at rated voltage, frequency and power factor.

The skid-mounted set has an actual dry weight of 445 pounds and requires \(25 \%\) less space than many conventional units. Design of the suction air--sooling system allows the generator set to be "buried" within a large piece of equipment in space only slightly larger than actual generator-set dimensions

Prime mover on the 5 VB is a new Onan high-compression, over-head-valve, two-cylinder, V-type gasoline engine delivering 19 H.P (with accessories) at 3600 R.P.M. It is equipped for manual starting using integral, self-winding rope starter. Electric starting can also be provided.

Designed specially for field service as a source of power for communications, lighting and operating motor-driven equipment, the Onan 5VB combines the portability, rugged construction and dependable performance demanded in military service, with the all-important advantage of being built with military standard parts.

\section*{GENERATOR DESIGNED}

TO MIL-G-10228 (CE)
Specially designed direct-connected generator supplies multiple voltages (1 and 3 -Phase) with voltage regulation within a total band width of \(4 \%\). A single rotary switch selects the required voltage and phase. Rated at 5 KW with 60 -cycle output, this model is also available with D.C. output.up to \(71 / 2 \mathrm{KW}\) in standard voltages.
Splash-proof generator is unusually accessible for inspection and adjustment. Equipped with all essential instruments conveniently located and protected from the weather.

\section*{OTHER ONAN GENERATING EQUIPMENT}

Onan designs and builds engine and motor-generator sets including 400-rycle models for specialized elecfronic applications in milifary aircraft, communiations, and commercial use. Onan Electric Plants in regular production range from 400 to 55,000 watts in all standard vallages . . . gas, gasoline and Diesel-driven models.

\section*{Another NEW Fairchild Precision Potentiometer}

\section*{ \\ The basic Type 910 rectilinear potentiometer is flexible in design to accommodate dual resistance elements, various stroke lengths, double shaft extensions, external fixed resistors, various methods of actuating, and a broad range of shaft speeds. It meets or exceeds military specifications for vibration and high and low temperature exposure. A mandrel resistance element of all-welded construction, aged and stabilized for accuracy and long life, provides small diameter, uniform cross section and a smooth operating surface for the new one-piece wiper design. Rigid mechanical construction maintains initially-tight electrical tolerances throughout stringent environmental and
performance conditions. performance conditions. \\ Areother reason why Fairchild can supply ALL your precision potentiometer needs}

Fairchild makes a complete line of precision potentiometers to fill all your needs-linear and nonlinear potentiometers, singly or in ganged combinations . . . single-turn, helical and linear motion . . . and with resistance elements to meet your requirements.

Fairchild guarantees accuracy of \(\pm 1 \%\) or better in nonlinear types and \(\pm 0.5 \%\) or better in linear types. Highly accurate production methods and close mechanical tolerances, plus thorough type-testing and quality control, provide high resolution, long life, low torque and low electrical noise level in every Fairchild potentiometer. For more information, or for help in meeting your potentiometer problems, call on Fairchild Camera and Instrument Corporation, Potentiometer Division, 225 Park Avenue, Hicksville, L. I., N. Y., Department 140-57A.

\section*{FAIRCHILD}

PRECISION POTENTIOMETERS

for microwave signal generation. It is a small-size, coaxial line cavity oscillator, employing the Sylvania uhf planar triode tube, which provides a highly stable r-f signal source in both a c-w and a pulse model. The unit features a single knob control and utilizes fixed feedback. It is 8 in . long \(\times 1\) 点 in . in diameter and weighs \(1 \mathrm{lb}, 3 \mathrm{oz}\) (including tuning mechanism), or may be supplied as a cavity alone- -4 in . long \(\times 1^{\frac{5}{8}} \mathrm{in}\). weighing only \(\mathrm{a}_{\mathrm{a}}^{\mathrm{l}} \mathrm{lb}\). It is available at frequencies from 1,000 to \(4,000 \mathrm{mc}\) with a tuning range of 400 mc . Pulse operation is 2,000 peak volts with a peak pulse power of 200 w . Its \(\mathrm{c}-\mathrm{w}\) operation is 175 v with an average output power of 100 mw . Tuning accuracy is \(\pm 0.1\) percent with regulated power supply. Output connection is BNC or type N jack. It has a Root counter for calibration. The cavity comes complete with tube and can be furnished with a regulated supply and frequency calibration curves.

\section*{AMPLIFIER is chopper-stabilized}

Mid-Century Instrumatic Corp., 611 Broadway, New York 12, N. Y. The MC-500-A is a dual channel amplifier mounted on one chassis with each amplifier individually chopper-stabilized. The chassis

- An ossembly with 14 concentric, hard silver rings electro deposited into machined flastic blank. Dovetail locks rings in ploce. Mo. chined blank insures accuracy. Diometer approx. 11 ", thickness approx. 5/16".
\(\Rightarrow\) An assembly with 30 rings of various widths to accommodote various current requirements. Unit is opprox. 4.5/16" lang, designea for flange mounting.
\(\rightarrow\) Cylinder iype assembly approx. \(33 / 4^{\text {ec }}\) lang with 24 hard silver rings. \(13 / 9^{\prime \prime}\) O.D with woll thickness less than \(1 / 4^{\prime \prime}\) 。
*PATENTS
PENDING
- Cylindrical assembly with 25 rings. Three wide rings occommo. date large contact area brushes for high current capacity. length 14", O.D. opprox. \(5 \%\) "

ELECTRO TEC is now tooled up, with new expanded facilities for production of large Slip Ring Assemblies to exact customer specification. Sizes range up to \(24^{\prime \prime}\) in diameter, either cylindrical or disc type.
The exclusive ELECTRO TEC PROCESS*-the electro-deposition of hard silver rings into an accurately machined plastic blank-consistently yields a high degree of dimensional accuracy, excellent concentricity, and a jewel-like ring finish. This process also eliminates expensive tooling and mold charges, frequently lowers costs to \(30 \%\) of other methods of manufacture. The silver rings are uniformly hard for long life-75-90 Brinell.
ELECTRO TEC one-piece construction precludes dimensional variation due to accumulated errors. The plastic base is fully cured before rings are plated into it, thus preventing separation of base material from the rings.
ELECTRO TEC LARGE SLIP RING Assemblies are widely used in Radar Equipment, Fire Control Systems, Test Tables and many other critical applications. Light weight combined with rugged durability recommends their use in airborne applications.
Every user knows the ELECTRO TEC reputation for quality and superiority in miniature and sub-miniature slip ring assemblies.

Our Engireering Department is avoilatle for consultation on any of your slip ring problems without obligation.

\title{
Gasoline Engine Driven Generators to meet tough MIL specifications
}
is a specialty with

\section*{A Typical Homelite Example}

To meet government specification MIL-G-10286 (CE) Homelite engineers designed and built this unusual lightweight gasoline-enginedriven generator capable of starting and operating in temperatures as low as \(-65^{\circ} \mathrm{F}\). With a speed regulation of \(3 \%\)... assuring close frequency control... it has a military rating of \(1.5 \mathrm{KW}, 120\) V., 60 cycle, 1 Phase 1.0 P.F. reconnectable to \(1.5 \mathrm{KW}, 120\) V.DC.

When it comes to designing and building lightweight, dependable gasoline-engine-driven generators, Homelite is more than thirty years rich in experience. Regardless of the required specifications, the chances are, that through Homelite's extensive engineering and manufacturing facilities, you will find your best solution quickest. Write and you will receive prompt, competent service.

Hamelite builds generators in sizes from .15 KW up to 5 KW in all voltoges and frequencies . . . with either gasoline engine or electric molor drive.

Conadion Distribufors: Terry Machinery Co., Lłd., Taronfo, Montreal, Vancouver, Otrawa.
carries its own filament transformer. Open d-c amplifier gain is 100,000 . The a-c chopper amplifier provides an additional gain of 500 to yield a total open-loop gain of \(50 \times 10^{\circ}\). Precision matched 0.1 -percent resistors convert the unit into a feedback amplifier with a grid current of less than \(75 \mu \mu \mathrm{a}\), a drift of less than 0.2 mv for 8 hours and a bandwidth which is flat to \(1,000 \mathrm{cps}\) at full amplitude with less than 1 mv of noise. Phase shift is less than 0.2 percent at 100 cps and 2 percent at 500 cps . Output impedance is less than 0.01 ohm and output voltage range is \(\pm 100\) v into a \(10,000-\mathrm{ohm}\) load.

\section*{FILM RESISTOR}
available in \(0.5-\mathrm{w}\) ratings
Continental Carbon, Inc., 13900 Lorain Ave., Cleveland 11, Ohio. A new deposited metal film resistor, measuring 0.160 in . diameter \(\times\)㹉 in. long is now available in \(0.5-\mathrm{w}\) ratings. First in a series of the Noblette line, it offers excellent stability under high ambient temperatures. A temperature coefficient rating of 0.02 percent per \(\operatorname{deg} C\) is typical of the characteristics inherent in this resistor. Resistance range is 1 ohm to 3 megohms in tolerances of 1,2 and 5 percent. Bulletin 287 will be furnished on request.

\section*{PRECISION RESISTOR} housed in a ceramic tube
AErovox Corp., Hi-Q Division, Olean, N. Y. Type CPC Carbofilm precision resistor is housed in a ceramic tube with metallized
ceramic end-seals for complete and permanent hermetic sealing. There is no capacitance effect between element and casing. The longest leakage path is provided. The insulated resistor can be squeezed in among other components and against metal surfaces without electrical complications. Carbofilm resistors are made to guaranteed tolerance of \(\pm 1\) percent. They feature excellent stability with regard to temperature and voltage coefficients, ageing and noise, and also withstand extreme humidity and heat. They are available in \(\frac{1}{2}\), 1 and 2 -w sizes.

\section*{CABINET RACKS}

\section*{for multiple installations}

Premier Metal Products Co., 3160 Webster Ave., Bronx, N. Y. Constructed of heary-gage steel and welded throughout, these racks have detachable sides, permitting multiple assembly of cabinets in double, triple or larger units by bolting together. Equipped with handle and lock, the front and rear doors are hung on loose jointed hinges that may ke hinged for right or left-handed opening by rotating the door 180 deg. Panel mounting angles are \(\frac{8}{18}\) in. taick, tapped \(12 / 24\) on universal spacings, and are adjustable to any position. The racks are 22 in . wide, 18 in . deep, and come in 3 heights- \(67 \frac{3}{8}\) in., \(76 \frac{\mathrm{~s}}{\mathrm{~s}} \mathrm{in}\). and \(83 \frac{1}{8}\) in.

\section*{HERMETIC PLUGS \\ for miniature connectors}

Winchester Electronics, Inc., Glenbrook, Conn. A new design of the series HM hermetic plugs provides contacts fused into a simple one-piece low-expension glass insu-

\section*{BOLOMETERS}
 The new Narda Bolometers offer optimum characteristics
and specifications combined with long life and low cost.
\(\mathbf{N}-610 \mathrm{~B}\) is designed for use in any crystal or Bolometer mount for measuring power, attenuation, artenna patterns, and in impedance meters for measurement of high VSWR's. Correct bias current is obtained from all VSWR amplifiers and from all microwave wattmeter bridges.
N-610B is interchangeable with 1 N 21 and 1 N 23 crystals in all waveguide and coaxial crystal holders.
order your
supply now! N-610B \$9.50 each postpaid U.S.A.

N-821B may be used in any standard Bolometer or "barretter" mount. It is electrically identical to the \(\mathrm{N}-610 \mathrm{~B}\), but is designed for holders of the 821 type Bolometer.
Like the \(\mathrm{N}-610 \mathrm{~B}, \mathrm{~N}-821 \mathrm{~B}\) is hermetically sealed, moisture-proof and tropicalized. Meets all shock and vibration requirements.

N-821B \(\$ 7.50\) each postpaid U.S.A.
NARDA IFACTURES A COMPLETE LINE OF MICROWAVE TEST EQUIPMENT, THERMISTORS AND BOL \(n\) Iters. WRITE OR CALL FOR TECHNICAL LITERATURE . . . and use the Narda advisory services without obligation.

> THE NARDA CORPORATION 66 MAIN STREET • MINEOLA, NEW YORK Ploneer 6-4650

\section*{Burroughs} PULSE equipment

\section*{lets you assemble} your own systemIN MINUTES

Just by connecting standard cables between Burroughs Pulse Control units, you can assemble virtually any pulse system you want.

Suppose you need a complex pulse sequence for testing. The basic units required to make up the system can be ordered from Burroughs-and delivered from stock. Connect them together, and there's your system. You've saved time-consuming "breadboard" engineering, equipment cost, and delay on your primary project. What's more, your Burroughs Pulse Equipment can be used over and over again on different, future projects.

To meet the growing need for
versatile pulse control systems, Burroughs offers a whole family of matched pulse handling units: pulse generators, coincidence detectors, flip-flops, gating circuits, etc. During the past four years, this equipment has been in use by such prominent organizations as MIT, Consolidated Engineering Corp., Wayne University, Stanford Research Institute, and many others.

Let us help you get started quicker on pending engineering work. Write us a letter outlining briefly your pulse system requirements. Dept. 3-H, Electronic Instruments Division, Burroughs Corp., 1209 Vine St., Philadelphia 7, Pa.
> (1) Burroughs

FIRST IN PULSE HANDLING EQUIPMENT
lator to allow increased operating voltage for the connectors. The glass insulator is also fused to a special flanged base plate for soldering in a round hole in a metal container or bulkhead. The construction provides an absolute hermetic seal with a high strength-to-weight ratio. The plugs are designed to mate with standard \(M\) receptacles and include arrangements of 4,5 , 7 and 9 contacts. Connectors are polarized for positive engagement and are available with a locking mechanism to prevent accidental disconnection. Electrical features provide 5 -ampere contacts for No. 20 Awg wire with voltage breakdown between adjacent contacts at sea level, \(3,500 \mathrm{v}\) d-c at \(60,000 \mathrm{ft}\) altitude, 950 v d-c.

\section*{V-T ELECTROMETER is line-operated d-c vtrm}

Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. Model 210 v-t electrometer is a lineoperated d-c vtvm with an extremely high input impedance. Ba sic specifications include an input greater than \(10^{16}\) ohms, grid current below \(10^{-13}\) ampere, and drift within 10 mv per hour. Five voltage
ranges are provided: zero to 0.8 , \(2,8,20\) and 80 v in either polarity. The electrometer has output terminals for driving balanced or unbalanced recorders and recorder amplifiers, oscilloscopes and galvanometers. All the company's electrometer accessories fit the new model. Typical applications of the unit include potential measurements of charged capacitors, v-t electrodes and piezoelectric crystals. Current measurements cover photocell, mass spectrometer and insulation leakage currents.

\section*{BOLOMETER PREAMP measures r-f ratios}

Weinschel Engineering Co., Inc., 10503 Metropolitan Ave., Kensington, Md. Model BA-1 bolometer preamplifier is a linear, low noise instrument for precision measurement of power ratios in the frequency range from 20 to 10,500 mc. Its input noise is below 30 millimicrovolts when operated with a 200 -ohm bolometer. Its linearity is better than 0.1 db at 400 and \(1,000 \mathrm{cps}\). It is used to measure r-f ratios from 1 to 30 db with an overall accuracy of 0.1 db . Insertion loss measurements of coaxial or waveguide attenuator pads and measurement of antenna radiation patterns are among the major applications.

\section*{VIDEO VOLTMETER \\ covers 20 cps to 10 mc}

Millivac Instrument Corp., 444 Second St., Schenectady 6, N. Y. Type MV-22B video frequency vtvm has a frequency range from 20 cps

\section*{SOMETHING NEW FOR THE ELEGTRIGAL AND} ELEGTRONIC INDUSTRIES

Here is another group of silver products produced and supplied by Handy \& Harman to help solve conductivity problems.
Silver particles with their excellent corrosion resistance and exceptional conductivity, whether in the form of crystalline powder or wafer-like flake, make possible conductive coatings and even resistive coatings as well.
Are you a user or interested in the use of silver powders or flakes? If you are, do you have conductivity or density problems? Are you looking for better covering power, better flow char-
acteristics or a particular particle size? If so, get in touch with us. We'll be glad to cooperate and help solve problems involving materials of this kind.

\section*{TYPICAL USES OF SILVER POWDERS AND FLAKES}
- Sintered Metals
- Silver Paints
- Silver Cements
- Silver Inks
- Printed Circuitry
- Conductive Coatings
- Resistive Coatings

\section*{THIS}

RELAY
IS FOR THE "bipds"

In spite of the fact that we've often wished we had more things non-military to crow about, we've just found another adaptation of our (admittedly military)* Series 73 relay which may have a future in guided missiles that can't be ignored. Quite prosaic - merely as "another" midget SPDT relay. The point is that several others now available about the same size seem to leave something to be desired in vibration resistance and sensitivity.
In this adaptation, coded 73 Y , omission of the three-position null-seeking features of the 73 X gives a biased polar relay with outstanding abilities at straight switching. It withstands 30 g 's at frequencies up to 500 cps , which do not interfere with operation at adjusted sensitivities of 40 milliwatts (e. g. 2.5 ma . in 6400 ohm coil). It operates in less than 1 millisecond without bounce in most circuits, although, having bearings, it is not suitable for extended keying service. Mechanical life is \(10,000,000\) operations conservatively.

Our occasional pleas for non-military uses of sensitive relays should not be construed as a lack of interest on our part in military business. So if you think you can use a 73 Y in your "bird", get the word on it.
*See "Null-Seeking Shark...", January advertisement.

SIGMA INSTRUMENTS, INC. gi pearl street. so. braintree, boston bs, mass.

to 10 mc . Sensitivity of the instrument is \(70 \mu \mathrm{v}\). Its highest range is 1 kv . The excellent, flat freqency response is made possible by a combination of extremely heavy degrees of negative feedback and frequency selective circuitry in the feedback path. The customary but hazardous peaking coils in plate circuits are carefully avoided. The new instrument is expected to expand tv camera and receiver research since it not only covers well the full video range but exceeds it to a sufficient degree to explore the important pulse characteristics of video amplifiers.

\section*{VIDEO ATTENUATORS for wide band use}

Daven Co., 191 Central Ave., Newark, N. J. The series V-250 video variable attenuators are recommended for use in wide-band equipment where precision and dependability are of prime importance. The V-250's are especially adaptable for tv video circuits where a wide frequency range without change of impedance is of special importance. They may be used with black-and-white or color tv. These units have zero insertion
loss and constant input and output impedance. They have a flat frequency response from 0 to 10 mc . Standard impedance is 75 ohms. Impedance accuracy is \(\pm 2.5\) percent. These video pads can be obtained in either 10,20 or 45 steps. Standard lug terminal board or BNC (UG-185/U) connectors are supplied.

\section*{RECEIVER-CONVERTER} for the 50 to \(200-\mathrm{mc}\) range

Servo Corp. of America, New Hyde Park, N. Y. The unit illustrated extends the frequency range of a standard h-f receiver into the vhf range of 50 to 200 mc . It has a self-contained power supply and no modification of the receiver is required. The vhf antenna is connected to the converter which in turn is connected to the h-f receiver. Power input is 35 w from nominal \(115 \mathrm{v}, 50 / 60\) cycles. The small and compact unit weighs only 22 lb .

\section*{R-F FILTERS}
in various bandwidths
Burnell \& Co., Inc., Yonkers, N. Y., announces two additional types of r-f filters now available. Both types employ a combination of crystal and toroidal networks and are designed for operation at standard intermediate frecuencies employed

\section*{make the Model 2 Radiohm industry's finest control}
here's how it goes together...
SWITCH . . COVER provides superior switch shielding. Laminated phenolic SHOE resists humidity. Double wiping CONTACT SPRING for noiseless rotation. TERMINALS ...velvet-smooth RESISTOR (O) available in 14 standard tapers. CENTER TERMINAL-COLLECTOR, specially treated for smooth take-off. BASE \(\left\{\begin{array}{l}0 \\ 0\end{array}\right\}\) laminated phenolic for high humidity insulation. GROUND PLATE © ... BUSHING (1) accurately finished to close tolerances for smooth shaft rotation. RETAINING RING \(\mathbb{C}\)
..SHAFT available in round, flatted, slotted, split-knurl, and finger-tip knurl. ALL ASSEMBLED in diameter, rated at \(1 / 2\) watt.

VARIETIES AVAILABLE: single or twin, soncentric shafts, plain or switch type, with or without taps; control and rotary tap switch combinations.

MANY SWITCH TYPES-Line switches rated 5 or \(8 \mathrm{amps} @ 125\) volts a-c. Six switching combinations for real production flexibility.

NOW! Write for bulletins 42-164 and 42-157.
Get all the facts and you'll specify Centralab.
Qalitcron ab
A Division of Glabe-Union Inc.
914H E, Keefe Avenue Milwaukee 1, Wisconsin In Conada: 804 MI, Pleasant Road, Toronto, Ontario

CRL vatinge
vasisiots aimanc \(\underset{\sim}{\text { andenic }}\) Industry's greatest source of standard and specia! electronic components, Ouly
Precision offers you
HIGHEST QUALITY, IOW cost PAPER inting any shape \(<11\), plus any ID every OD any quantity

\section*{DIELECTRIC KRAFT - FISH PAPER - GELLULOSE ACETATE COMBINATIONS • PHENOL IMPREGNATED}

Round, square, rectangular, triangular, any shape, any size Precision Paper Tube Co. can provide all your paper tubing needs. Your specifications are met to the most exacting tolerances. Precision Paper Tubes are sturdy, crush resistant, have high tensile strength and excellent dimensional stability.

Send in your specifications for samples. Request Arbor List of over 2000 sizes.

\section*{HIGH DIELECTRIC BOBBINS FOR BETTER COILS}

Precision-made on specially designed equipment, using the finest materials, to provide maximum tensile strength, light weight, more winding space and other essential electrical and mechanical characteristics.

Furnished in any size or shape. Supplied plain or fitted with leads, slots or holes. Flanges cut to specification, plain or embossed. Tube ends swaged to lock flanges.

Send Specifications for samples. Ask for illustrated folder.

\section*{Soles Representatives in:}

New England
Framingham, Massachusetts, Framingham 7091
Mesropolitan New York. New Jersey:
Jersey Clity, New Jersey, Journal Square \(\mathbf{4 . 3 5 7 4}\) Upitate New York:
Syrocuse, New York, Syracuse 76-8056
Northern Ohio. Western Pennsylvania:
Clevelond, Ohio, Allonsic 1.1060
Indiana, Southern Ohio:
loganspart, Indiana, Loganspart 2555

Missouri, Soushern Illinois, Jowa: St. Lovis, Missourl, Sterling 2318 Maryland:
Baltimore, Marylond, Plaza 2-3211
Philadelphio, Camden:
Philadelphia, Pa., Chestnut Hill 8.0282 California:
Pasodena, Callfornia, Sycomore 8.3919 Conada:
Montreal, Quebec, Conada, Walnul 27 is

PRECISION PAPER TUBE CO.
2041 W. CHARLESTON ST.
CHICAGO 4\%, ILL.
Plant No. 2: 79 Chapel St., Hartford, Conn.
in communications equipment and receivers and can be supplied in various bandwidths. The TX-455-9, for example, provides a 9 -kc total passband at 455 kc and the TX-\(455-\mathrm{SB}\) is a sideband filter. Size of either type is equivalent to an ordinary i-f transformer.

\section*{DESK CABINET RACKS} with sliding drawer
Premier Metal Products Co., 3160 Webster Ave., Bronx, N. Y., has available desk cabinet racks in an 18-in.-deep size which can hold the new sliding drawer. Another improvement is the addition of wall mounting brackets to facilitate mounting the racks on a wall if desired. Available in 10 sizes, the racks are constructed of No. 16gage cold rolled steel. Panel mounting angles are tapped for \(10 / 32\) machine screws on universal spacings. Panels fit into a recess so that the edges are not exposed. Piano-type hinges are used on the top doors which are provided with flush snap catches.

\section*{SOLDER PREFORMS} for precision products

Anchor Metal Co., 244 Boerum St., Brooklyn 6, N. Y., has designed and manufactured solder preforms so small that they have been put to use in the production of transis-
tors and germanium diodes. Microforms can be made in almost any shape and size-wafers with a diameter of 0.015 in . and thickness of 0.015 in ., to spheres of 0.022 in . in diameter. They have been successful as compositions of tin and lead, tin and silver, lead and silver, lead and antimony, fusible alloys, indium and brazing aloys.

\section*{RECORD COMPENSATOR has latest recording curves}

Pickering \& Co., Oceanside, L. I., N. Y., has re-engineered its model 132 E record compensator to take account of the most recent developments in the recording curves used by the record industry. A new position on the compensator matches the Orthophonic-AES recording curve. The compensator is designed for ase between pickup and preamplifier. It requires no power and can be mounted in any position.

\section*{METAL NAMEPLATES available in many colors}

North Shore Nameplate Co., Bank of Manhattan Bldg., Bayside, L. I., N. Y., heve announced a new type of metal nameplate-SpeedyCals. They are easily fastened to curved as well as flat surfaces without the need of drilling holes and they permanently adhere to such surfaces as porcelain, glass, Bakelite, wood and metal. Available in many colors, they will not crack, peel, chip or tarnish. Made for nameplates, trademarks, circuit diagrams, terminal designations and many other uses, they are only 0.003 foil and laminated with the

TYPE Ki, one of several types of STERLING Relays esed on torpedoes.

"FIRE ONE!" A torpedo leaps into the water. Now beyond human control, its own electro-mechanical "brain" takes over. And in that brain a small STERLING Relay plays a vital part!

Each torpedo gets only one chance to find its mark! When the alternatives are kill or be killed, who can calculate in American lives and ships the price of failure? . . . or measure fully the confidence placed in that tiny STERLING Relay? Because they have proved so rugged and thoroughly reliable in operation, standard types of STERLING Relays are used by every American torpedo manufacturer . . . and by many other leading manufacturers as well. You, too, can depend on STERIJING Relays for your most critical circuits.

General Specifications, STERLING Type KS Relay:
COIL-single wound up to 6500 ohms - SPRING ASSEMBLY-up to 6 springs in each of 2 pile-ups; wide choice of contacts - OPERATE TIME -.003 sec. min . - RELEASE TIME-. 010 sec. max. - MOUNTING-two "5.40 tapped holes; also available with 2 or 4 mounting studs, tapped = 4 -40 (Mounting centers are \(3 / 8^{\prime \prime}\) by \(7 / 16^{\circ \prime}\)) . DIMENSIONS \(-1 / 2^{\prime \prime} \times 1^{\prime \prime}\) x 1-7/16" max. WEIGHT-approx. \(1^{2 / 3}\) oz.

May we send you the new STERLING RELAY CATALOG or make up a test relay for your particular requirements? Write STERLING ENGINEERING COMPANY, INC., 54 Mill St., Laconia, N. H. (Subsidiary of American Machine \& Foundry Company, N. Y.)

\section*{}

\title{
M 1 TV POLYPENCO \({ }^{\ominus}\) Teflon Spaghetti Tubing
}
- The ultimate in insulation for wire
conductors, leads, tube plugs, etc.
- Unaffected by heat from soldering operations
- Unaffected by repeated flexing
- Available in a choice of 7 different colors for color coding

Now you can obtain the excellent dielectric properties of POLYPENCO Teflon in a spaghetti tubing that slips easily over AWG conductors . . . permits fast soldering of connections... and simplifies wiring and trouble-shooting in miniaturized UHF circuits. POLYPENCO Teflon Spaghetti Tubing also offers many desirable mechanical properties and resists weathering, chemicals, fungi, and high temperatures. Like other shapes of POLYPENCO Teflon, its quality is uniformly high in every shipment.
You can now get this new spaghetti tubing in natural, black, brown, red, green, blue and yellow colors. There's also a full range of internal diameters corresponding to American Wire Gauges 22 through 8. For convenient use, all POLYPENCO Teflon Spaghetti Tubing is supplied on reels in lengths of \(100,200,500\) or 1000 feet.

\section*{Write for price list and tubing samples}

The POLYMER CORPORATION of Penna. • Reading, Penna. In Canada: Polypenco, Inc., 2052 St. Catherine W., Montreal, P.Q.

\title{
- CHPENGO TEFLON' \\ . . . nylon and other non-metallics
}

Warehause stocks: Reading • Chicago • Los Ângeles•Newton (Mass.) • Branford (Conn.) *trademark for Du Pont tetrafluoroethylene resin
newest and finest transparent bonding material.

\section*{MOTOR GENERATORS for use in servo controls}

G-M Laroratories Inc., 4300 North Knox Ave., Chicago 41, Ill., has announced small, lightweight motor generators for use in servo controls. The generator is housed in the same case with the servo motor. Weighing approximately 4 oz , the dual unit measures \({ }^{\frac{\sigma_{8}}{4}}\) in. in diameter \(\times\) \({ }_{5}^{5} \mathrm{i}\) in. long. Both stators are completely embedded in an insulating compound of extreme dielectric strength and very high temperature stability. This material has low mechanical coefficient of expansion and therefore great stability at high ambient temperatures. The motor is a two-phase unit with an input of 26 v per phase at 400 cycles. Power input is 3.75 w per phase. Stall torque is 0.35 oz in. No-load speed is \(6,500 \mathrm{rpm}\). The generator provides an output of 0.32 v per \(1,000 \mathrm{rpm}\).

\section*{CRYSTAL PHOTOCELL is unusually sensitive}

Clairex Corp., 50 W. 26th St., New York 10, N. Y. Type CL-1 photoconductive cell employs a small cadmium sulphide crystal as the light sensitive element. It has a sensitivity to light flux on the order of one million times the sensitivity of a conventional high vacuum photoemissive cell. The median sensitivity to light intensity is \(100 \mu \mathrm{a}\) at 100 v at 2 foot-candles. It has a very high ratio of light to dark current-on the order of 60 db at 1

foot-candle. It is not a photodiode but conducts substantially the same with both polarizies of voltage and thus can be used to modulate an alternating current. At low light levels the output is sufficient to fire a cold-cathode discharge tube and to operate directly meter or electrostatic relays. At high light levels the output is sufficient to operate directly conventional sensitive magnetic relays. Price is \(\$ 2.50\).

\section*{METER-RELAYS}
in two small models
Assembly Products, Inc., P. \(O\). Box 191, Chagrin Falls, Ohio. The instruments shown are both indicating meters and relays meeting MIL-R-5757-E. and MIL-M-10304 specifications. They are offered in \(2 \frac{1}{2} \mathrm{in}\). and \(3 \frac{1}{2} \mathrm{in}\)., models 255 and 355. The contact meter-relay is made in all the usual a-c and d-c voltage and current ranges. They have a pair of built-in contacts. The tiny contacts are platinumiridium and will make and break up to \(15,000,000\) times before wearing out. They are normally used at 5-25 ma d-c, 75-125 v. The complete movement-coil, pointer assembly, hairsprings, jewels, bracket and magnet-weighs only 0.8 oz compared with \(4 \frac{1}{2} \mathrm{oz}\) for that of a standard conzact meter-relay. These contact meter-relays protect com-

\section*{New Multiple function microwave vswr amplifier}

\section*{FEATURES:}
- Crystal current and power monitoring
Two channel input VSWR to 60 db Set-up signal sources

\section*{for faster, more accurate readings... easier operation}

WAVELINE, precision leader in the manufacture of microwave test equipment, now offers you the ultimate in advance-design VSWR AMPLIFIERS.
This NEW Standing Wave Amplifier is the culmination of extensive research and testing . . . directed at developing new concepts of instrument function and design for microwave test equipment.
Exclusive combinations of features make WAVELINE microwave instruments the most valuable test equipment available today!

Technical data on microwave instruments covering the range 1,000 to \(40,000 \mathrm{MCS}\) available on request.

SPECIFICATIONS New mOdEL 2000

\section*{Standing Wave Amplifier}

Crystal Current Measurement - a fea. lure is incorporated making the meter avail. able for monitoring crystal current and power. Two Channel Input - provides in one instrument:
1. By alternate use of two channels a pulsed oscillator in combination with a calibrated attenuator provides a substitute for a costly signal generator
2. Monitoring crystal current and measuring VSWR.
3. Both channels measure vSWR.
4. Monitoring power with bolometep and measuring VSWR.
5. Monitoring power at two points.

Sensilivity - full scale deflection; minimum 0.3 microvolts; maximum 0.3 volts.

Selectivity - Overall Q of approx. 20.
Calibration - Calibrated for use with a square law detector. 60 do over-all range in 6 steps. Accuracy \(\pm 0.1 \mathrm{db}\) per 10 db .
Detector-Crystal rectifier or bolometer with 8.75 Ma . or 4.0 Ma . bolometer bias for standard 200 ohm bolometer, barretter or \(1 / 100 \mathrm{amp}\) instrument fuse.
Modulation Requirements - For VSWR measurement the RF source must be modulated at 1000 CPS \(\pm 20\) CPS. Plug in units for frequencies 250 to 2500 CPS available.
Price - \(\$ 200\). F.0.B. Caldwell, N. J

\section*{INTERNATIONAL RECTIFIER}

\section*{POWER RECTIFIERS}

RATINGS TO 250 kw POWER FACTOR 95\% EFFICIENCY TO 87\%

\section*{Write for BULLETIN \\ C-349}
widest range
in the industry

\section*{ALI}

TYPES
hl-voltace
CARTRIDGE TYPES
Case Diam. \(1 / /^{\prime \prime}\) to \(1 /{ }^{1 / 2}\) Length: \(1 / 2^{\prime \prime}\) to \(12^{\prime \prime}\) DC Output: 20v to \(200,000 \mathrm{v}\) at

\section*{1.5 ma to 60 ma}

\section*{BULLETIN}

\section*{MANUFACTURED} TO YOUR INDIVIDUAL SPECIFICATIONS

PROMPT DELIVERIES ON PRODUCTION QUANTITIES

puter circuits from voltage overloads, sound or flash warnings when bearings are too hot, give warning and control in radiation measuring equipment and provide aids in many quality control and inspection procedures.

\section*{THYRATRON TUBES}
for electronic control
Amperex Electronic Corp., 230 Duffy Ave., Hicksville, L. I., N. Y., has announced two standard thyratron tubes, specifically designed for electronic control purposes such as the speed of d-c motors, counting and sorting devices. Designated as types AX-5544 and AX-5545, these tubes are directly interchangeable in every respect with RETMA tubes bearing the same designation. Both are three electrode, Xenon filled thyratrons, with negative control characteristics. The inert gas filling allows reliable operation at maximum ratings over a wide temperature range. Typical applications include: the electronic control of the speed of d-c motors, regulation of current and voltage, counting and assorting devices and electronic switching.

\section*{POLYMETER}

\section*{has consistent stability}

Sylvania Electric Products Inc.. 1221 West Third St., Williamsport. Pa. The 302 Polymeter offers a tiny v-t r-f probe, a peak-to-peak scale, a new \(7-i n\). meter movement, a lighted scale, a patented linearity circuit, an input impedance of 17
megohms, shielded a-c and r-f leads, and screw-on connectors. The instrument reads peak-to-peak voltages from 200 mv to \(2,800 \mathrm{v}\); d-c voltages from 200 mv to \(2,800 \mathrm{v}\); d-c voltages of plus or minus polarity from 50 mv to \(1,000 \mathrm{v}\); a-c voltages from 50 mv to \(1,000 \mathrm{v}\); r-f voltages from 100 mv to 300 v in the band of 10 kc to 300 mc ; and resistance from 0.5 ohm to 1,000 megohms and decibels from -20 db to +61.4 db . The d-c voltage range may be extended to \(30,000 \mathrm{v}\) by using the tiype 225 (30 kv) d-c voltage- multiplier probe. Type 302 achieves consistent stability.

\section*{LOUDSPEAKER MAGNET has high energy product}

The Indiana Steel Products Co., Valparaiso, Ind. The RETMA standard No. 9 loudspeaker magnet is available with a minimum energy product of over 6 million B-H max. It is made of Hyflux Alnico V HE (high-energy grainoriented Alnico V). Immediate advantages offered to users of the speaker magnet are: (1) extremely high sound level; (2) a better transient response that assures a full range of tones and overtones; and (3) truest reproduction of sound.

COLOR YOKE
for 19-in. tubes
General Instrument Corp., Ridgewood, N. さ., has introduced a new magnetic deflection yoke for
ateiland Amplifier

\section*{The most}
complete, yet
easiest to
operate amplifier

\section*{system ever} developed for oscillographic recording

\author{
System
}

Heiland's model 119 Amplifier System, used in conjunction with Heiland Recording Oscillographs, has received wide acclaim from engineers for its extreme versatility, accuracy and simplicity of operation in the amplification of static and dynamic current phenomena.

This small, compact instrument, which can be provided for either rack, table, or shock mounting with available accessories, is housed in a rugged, yet lightweight cast aluminum case finished in attractive
 silver-gray gloss enamel.

Wrife or wire for complefe information on the Model 119 Amplifier System, Heiland Recording Oscillographs, Galvanometers and Bridge Balance Units.

Amplifier Assembly (Rear View)
2OTH ANNIVERSARY \(\qquad\)
Heiland takes pleasure in announcing the opening of its new Eastern regional office at 561 Washington Ave., Dumont, New Jersey.

\section*{Heiland Research Corporation boater ramace Denver, Colorado}

If we
haven't already made it we'll design it for you...

\section*{GAMENELL \\ PRECISION POTENTIOMETERS Linear. Non-Linear}

都(2)

To solve your specific potentiometer problem, send an outline of your specs to Gamewell. You'll get prompt service on your order for a prototype to meet your requirements.
Linear and non-linear Gamewell Precision Potentiometers are described in the booklet shown below. We'll be glad to send you a copy.

THEGAMEWELL COMPANY newton upper falls 64, massachusetts
In Canada: Northern Electric Co., Lid., Belleville, Ont.

PRECISION POTENTIOMETERS

\footnotetext{
Manufacturars of precision olectrical equipmont since 1855
}

19-in., 3 -gun color tv tubes, with extraordinarily close convergence characteristics. The yoke governs the convergence of the 3 streams of electrons in the color tube with exceptional accuracy. The yoke is suitable for the 3 major types of color tubes: the planar mask type, the mono-convergence shadow mask type, and the type in which the color phosphors are applied directly to the curved face.

\section*{I-F STRIP}
has \(3.75-\mathrm{mc}\) bandwidth
Allen B. Cardwell Electronics Production Corp., Plainville, Conn., has developed a 40 -mc printed circuit i-f strip for monochrome tv receivers using intercarrier sound systems. A feature is the new laminate used on both the base and transformers. Transformer windings are etched on both sides of the laminate, and to provide accurate and reliable tuning aluminum disks are threaded into centertipped nylon inserts. A new and special design feature of the insert prevents any possibility of shorting of turns. The i-f strip is a compact in-line design featuring extremely high gain and full bandpass response, and is prealigned and tested to the strictest customer specification.

PLUG-IN PREAMPLIFIER a wide-band high-gain unit

Tektronix, Inc., P.O. Box 831, Portland 7, Oregon. Type 53B is the fourth of a series of plug-in units
designed for use with types 531 and 535 oscilloscopes. Characteristics are: 0.05 v per cm to 50 v per cm sensitivity, a-c and d-c, continuously variable, with 9 calibrated steps from 0.05 v per cm to 20 v per cm , d-c to \(10-\mathrm{mc}\) passband, \(0.035-\mu \mathrm{sec}\) rise time. Three additional calibrated sensitivity steps are offered -5 mv per \(\mathrm{cm}, 10 \mathrm{mv}\) per cm , and 20 mv per cm , a-c coupled, 5 cps to \(9-\mathrm{mc}\) passband, and \(0.05-\mu \mathrm{sec}\) rise time. Weight is \(3 \frac{1}{2} \mathrm{lb}\) and price \(\$ 125\).

\section*{POWER SUPPLY}

\section*{for mobile transmitters}

Tech Laboratories, Inc., Palisades Park, N. J., has available the RODIC type RO-2 mobile transmitter power supply. Engineered for completely automatic operation, it offers many advantages: 75-percent efficiency, 5 to 8 -percent regulation, low starting current with no surge. The rugged, comjact unit provides instant starting and stopping, long operating life and ease of maintenance. Operating from a \(6-\mathrm{v}\) battery, the RO-2 has two filtered outputs available 520 v at 320 ma , or 330 v at 320 ma .

\section*{CAPACITOR}
is stable up tc 200 C
balco Research Laboratories, 49-53 Edison Place, Newark, N. J., has developed a sapacitor employing a perfected high-polymer plas-tic-film dielectric which is stable up to 200 C. Encased in a tubular metal container, the units are hermetically sealed with rugged glass end seals. Cans are floating or grounded and leads are axial. Standard units guarantee insula-

Bourns TRIMPOT is a 25 turn, fully adjustable wire-wound potentiometer, designed and manufactured exclusively by Bourns Laboratories. This rugged, precision instrument, developed expressly for trimming or balancing electrical circuits in miniaturized equipment, is accepted as a standard component by aircraft and missile manufacturers and major industrial organizations.
Accurate electrical adjustments are easily made by turning the exposed slotted shaft with a screw driver. Self-locking feature of the shaft eliminates awkward lock-nuts. Electrical settings are securely maintained during vibration of 20 G 's up to \(2,000 \mathrm{cps}\) or sustained acceleration of 100 G's. Bourns TRTMPOTS may be mounted individually or in stacked assemblies with two standard screws through the body eyelets. Immediate delivery is available in standard resistance values from 10 ohms to 20,000 ohms. BOURNS TRIMPOTS can also be furnished with various modifications including dual outputs, special resistances and extended shafts.

Bourns also manufactures precision potentiometers 10 measure Linear Motion; Gage, Absolute, and Differential Pressure and Acceleration
ourns laboratories
6135 MAGNOLIA AVENUE, RIVERSIDE, CALIFORNIA
Technical Bulletin On Request, Dept. 12

KEARFOTT COMPONENTS INCLUDE:

Kearfott now offers Servo Motors, Synchros, and Servo-Motor Generators able to operate continuously in temperatures up to 185 degrees C. They are the same size and weight, and have the same characteristics as standard Kearfott Motors, and may be operated with them interchangeably. Besides the use of a new high-temperature insulating material, the stainless steel bearings, laminations and housings enable them to resist corrosion accelerated by high temperature operation.

Complete technical information on these and other Kearfott Components is available in bulletin form. Write today.

Gyros, Servo Motors, Synchros, Miniaturized Servo and Magnetic Amplifiers, Tachometer Generators, Hermetic Rotary Seals, Aircraft Navigational Systems, and other high accuracy mechanical, electrical and electronic components.

Visit the Keariott display at the Western Electronic Show and Convention, August \(25-27\) at the Pan-Pacific Auditorium, Los Angeles, Calif., and the first International Instrument Congress \& Exposition, September 13-24, Philadexposition.
delphia, Pa.

\section*{KEARFOTT COMPANY, INC., LITTLE FALLS, N. J.}

Scles-ond Engineering Offices 1378 Moin Avenue, Clifton, N. J.
Midwest Office: 188 W , Randolph Street, Chicogo, III. South Central Office: 6115 Denton Drive, Dallos, Texas West Coast Office: 253 N . Vinedo Avenue, Posadend, Calif.
A GENERAL PRECISION EQUIPMENT CORPORATION SUBSIDIARY

tion resistance of \(5 \times 10^{9}\) ohms at 200 C and \(5 \times 10^{13}\) ohms at 180 C . Capacitance ratings are guaranteed within \(\pm 10\) percent. Special units are available with insulation resistance of \(5 \times 10^{15}\) ohms and tolerances of \(\pm 1\) percent. Temperature coefficient is less than 75 parts per million from - 70 C to 200 C , and power factor is less than 0.0005 even in the vhf band. Tests show no deterioration in this performance after 13,000 hours at 200 C and 140 percent of rated voltage. These characteristics exceed the requirements of MIL-C-5 for micas. Standard ratings are from 0.0003 to \(1.0 \mu \mathrm{f}\).

\section*{RESISTORS}

\section*{of deposited carbon type}

Phaostron Co., 151 Pasadena Ave., South Pasadena, Calif. Carb-Ohms are ideal for high-frequency applications, particularly where high values of resistance are essential. They also answer the need for closely matched units for computer network and other applications. These resistors are available hermetically sealed in glass, in a specifications series conforming to MIL-R-10509, and clad in humidityimpervious Kel-F and vinyl casings. These precision-engineered resistors provide stability over time and freedom from variations due to
climatic changes. Wattage rates range from to 2 w , with a resistance range of 20 ohms to 200 megohms.

\section*{PICKUP ARM}
takes less mounting space
Pickering \& Co., Oceanside, L. I., N. Y. Model 190 pickup arm has been re-engineered to require less mounting space, while fully retaining the low vertical mass, static and dynamic balance, lack of arm resonance and low friction of the original design. The new and smaller arm, when combined with a typical high-quality manually-operated turntable, requires a \(17 \mathrm{in} . \times 17 \mathrm{in}\). motor board. It is designed to overcome the disadvantages of all conventional arms, the shortcomings of which are accentuated by long-playing microgroove records.

\section*{RELAY AMPLIFIER}
for use in aircroft
The Goldak Co., 1544 W. Glenoaks Blvd., Glendale 1, Calif., has available the model 200 relay amplifier for use in aircraft, missiles and any

Those hundreds of manufacturers who buy small diameter paper tubes from Stone know this.
Stone led the way by inventing the spiral wound drinking straw back in the ' 80 's. Precision production of small diameter spiral wound paper tubes has continued to be our speciality.
Widely known for hi-dielectric strength and close tolerances are Stone's spiral tubes of kraft, fish paper, and plastic films. Stonized, a phenolic impregnated tube, is best known for its low moisture absorption and good dimensional stability qualities.
Stone's tubes can be manufactured, fabricated, and imprinted for less than tubes of any other material.
Take advantage of our experienced hand by phoning or writing us today.

\section*{ \\ AFFILIATED WTH \\ STONIZED PRODUCTS CO. INC.}

900-922 Franklin Street, N.E., Washington 17, D. C.

installation where heavy-duty, vibration resistant relays must give positive triggering from low input currents. It provides 28 v at 400 to 600 ma d-c for driving stepping switches or 250 ma continuously for the operation of 50 -ampere aircraft relays. The input signal can be either positive or negative or alternating current (approximately 60 to \(5,000 \mathrm{cps}\)). Input operating current is less than 1 ma . The fact that a-c can be used as a triggering voltage is convenient in that conventional audio circuitry can be used. With an a-c trigger, the relay should be adapted easily to telemeter applications. The same circuit will also trigger with a d-c input voltage of either polarity. Weight of the amplifier is 32 oz and it measures \(3 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}\).

\section*{IMPULSE COUNTER \\ resists shock and vibration}

Unimax Switch Division of The W. L. Maxson Corp., 460 W. 34th St., New York 1, N. Y. The dynamically balanced mechanism of the new electromagnetic impulse counter effectively prevents miscounts due to shock or vibration, thus suiting it to use in aircraft and in mobile equipment. This impulse counter, with 4 dials (nonreset) reading up to 9,999 , is only \(1 \frac{5}{8}\) \(\times 1{ }^{1 / 2} \times 5^{8^{7}}{ }^{7}\) in. and weighs less than 13 oz . It counts at speeds up to 40 cps , on actuation by interruption of a \(28-\mathrm{v}\) d-c circuit.

\section*{BUSHING}
is hermetically sealed
Heldor MFg. Corp., 238 Lewis St., Paterson, N. J. An improved non-

turning, hermetic seal bushing meets MIL-T-27 specifications and conforms to the MIL-T-27 twist test. The HLI-5000 bushing consists of a stud with a hexagon shoulder (6) which cushions on a neoprene gland (5) and seats into a hexagon counterbore in the top steatite (4). This top steatite has a hexagon-shaped shaft fitting through a neoprene washer (3), through the panel opening and through another neoprene washer (3) and into a hexagon counterbore in the bottom steatite (1), and is cushioned against neoprene gland (2). This forms a nonturning hermetic seal with greatly improved mechanical and electrical characteristics. The insertion of steatite (4) into the counterbore (1) gives additional electrical insulation.

\section*{SERVO DEMONSTRATOR is an educational tool}

Magnetic Amplifiers, Inc., 632 Tinton Ave., New York 55, N. Y. Model MA-93001 servo demonstrator unit consists of two assemblies, a gear train unit including motors, synchros, and tachometer and an amplifier assembly containing magnetic amplifier, demodulator, stabilizer and terminals making different parts of the circuit readily accessible. This unit is designed as an educational tool for teaching and research at undergraduate and graduate level. It is

\section*{Berkeley Decimal Counting Units}

\(\star\) Absolute counting accuracy
\(\star\) Counting rates to \(1,000,000\) per second
\(\star\) Direct reading in digits
\(\star\) Control signal at any preset count if desired
\(*\) Proved reliability - more than 50,000 in use
* Compact plug-in design, easily replaceable
\(\star\) Any desired count capacity by cascading, or driving mechanical register
\(\star\) Instantaneous reset without missing a count

\section*{For These Typical Applications}

Measurement and control of : packaging, sorting by count, weight or size...cutting to width or length... rotary or linear motions or speeds ...frequency, velocity, pressure, temperature, flow, viscosity, nuclear radiation, etc.

\section*{COUNTING OR COUNTERCONTROLLER TYPES AVAILABLE}
decimal counting units... four models, with count rates of \(40,000,100,000,350,000\) or \(1,000,000\) cps. Overall dimensions from \(13 / 8^{\prime \prime} \times 51 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}\) for lower count rate units to \(31 / 4^{\prime \prime} \times 51 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}\) for \(1,000,000\) cps. unit. Operate over wide voltage range. Low current models and special units to suit various requirements available promptly.

1
COUNTER-CONTROLLER UNITS... produce electrical output signal when any desired pre-set count is reached. Similar to counting units in design and construction; maximum count rate, 40,000 per second. Output actuates relays, signal devices or servomechanisms. Dual preset type (output at any two preset counts) a vailable; first signal can be used to warn of approaching limit, slow down operation preparatory to second "stop" signal, etc.

\section*{ENGINEERING ASSISTANCE AVAILABLE}

As the pioneer in development of decimal counting devices since 1946, BERKELEY has an unsurpassed fund of experience and knowledge to offer. Representatives in 20 U.S. and Canadian cities. Write today for technical bulletins and specific application data; address Dept. G8.
M. 35
division
BECKMAN INSTRUMENTS INC. 2200 WRIGHT AVE., RICHMOND, CABIF.

FOR EVERY PURPOSE

CONSULT OUR RESEARCH AND ENGINEERING LABORATORY. IT IS AT YOUR SERVICE.

One of the Oldest Manufacturers of Crystals in the United States.

ORDERS PROMPTLY FILLED

SCIENTIFIC RADIO PRODUCTS, INC.

> 215 South 11 th St., Omaha, Nebr., U.S.A.

NEW PRODUCTS
(continued)
also well suited for industrial training courses.

\section*{POLAR RELAY}
is fast and sensitive
Automatic Electric Sales Corp., 1033 W. Van Buren, Chicago 7, Ill. The PTW polar relay features exceptional sensitivity for high-speed pulse repeating and dependable performance where low current is transmitted over long lines. It has performed billions of operations without readjustment. The relay is recommended for line current direction indication or as a differential relay in the Wheatstonebridge type of control. It measures only \(2 \frac{7}{18} \mathrm{in} . \times 24 \mathrm{in} . \times 3{ }_{18}^{5} \mathrm{in}\). The snap-on cover is easily removed for visual inspection. Circular 1821 gives specifications.

\section*{RESET COUNTER}
has many industrial uses
Veeder-Root, Inc., Hartford 2, Conn. The Vary-Tally counter has been used for quality control, inventory control, traffic control, sales analysis, laboratory analysis and many other uses in a wide variety of industries. The equipment is

. . . WHEN YOU dESIGN METEX ELECTRONIC WEATHERSTRIPPING INTO YOUR EQUIPMENT YOU GET ITS POSITIVE SHIELDING EFFECTIVENESS - at maximum overall economy

Plan now to take full advantage of Metex Electronic Weatherstripping's unusual effectiveness in shielding all types of electronic equipment. Because it is made of knitted wire mesh, Metex Electronic Weatherstripping is both conductive and resilient. It assures positive metal-to-metal contact between all mating surfaces. And being resilient it accommodates itself positively to surface inequalities.
In reality, Metex Electronic Weatherstripping can do more for you than just shield RF leakage. It can cut the cost of machining mating surfaces to close tolerances. It can eliminate the need for extra fasteners and many other costly means of making joints RF tight.
Applications in which Metex Electronic Weatherstripping has already proved its effectiveness include pulse modulator shields, wave-guide choke-flange gaskets, local oscillators on TV sets, dielectric heaters, etc.

For detailed information on METEX ELECTRONIC PRODUCTS, write for FREE copy of "Metex Electronic Weatherstrips" or outline your SPECIFIC shielding problem - it will receive our immediate attention.

\footnotetext{
MEIAL TEXTIIE
CORPORATION
ROSELLE NEW JERSE*
}
available in any of 66 combinations, up to 6 banks high and 12 units wide, with a minimum of 2 units wide, arranged sompactly on stands in tiers. Fingertip pressure on the front lever of a unit registers each count from 1 to 9,999 . A reset knob returns all counters in any tier to zero instantly with one complete turn of the reset shaft. The name, color, denomination, quality or size of the item to be counted is inserted in a panel over the reading line on each Vary-Tally. Features include no-glare, easy readability and rugged construction.

\section*{A-C AMPLIFIER has built in preamp}

Electronic Crafts Co., 74 Cortlandt St., New York, N. Y., has introduced a new, 5-w a-c amplifier with a built-in preamp for use with reluctance or crystal type phonographs. The small, compact unit may be used for paging systems, intercoms, record players or other sound systems. Consisting of 3 tubes (6X5, 6V6GT and 6SL7), it also features a power outlet for a motor, a simplified and sturdy twoconnection terminal strip for a \(3.2-\mathrm{ohm}\) voice coil speaker and a built-in output transformer. The model RL-5 amplifier features fine tonal qualities. It lists for \(\$ 29.95\).

\section*{MOUNTING BRACKET for matched pairs of diodes}

Radio Receptof. Co., Inc., 251 W. 19th St., New York 11, N. Y., is now supplying type 1N35, a matched pair of diodes, mounted in a single bracket. This improvement supersedes the common type of double

for remote position indication
"Sixth sense" is provided by the midget generator whose rotor is turned by scanning or tracking radar.

How many applications for these precision electro-mechanical units! Any revolving shaft can be closely monitored through reference generator output in a closed loop control system.

OSTER Avionic Products conform to military specifications for altitude, high and low temperature, life, shock, vibration, humidity, and fungicidal treatment.

You can depend on Oster quality in rotating components for automatic control.

OSTER two-phase Reference Generator, Type 212055. Develops 40 volts, 35 cycles when driven 2100 rpm . Use it on rotary or rate indication applications.

Other OSTER Avionic Products include:
- Special motors: Servos, Synchros, Drive Motors. Blowers and Fans for use with D-C and A-C supply voltages in common usage on aircraft and ground equipment.
- Synchro Generators, Control Transformers, Transmitters, Diffeeentials, Receivers, Resolvers and Two-Speed Synchros.
- Tachometer Generators and Reference Generators.
- Aircraft Actuators, both linear and rotary.

John Oster Manufacturing Co., Avionic Division
Depl. 438, Racine, Wisconsin, U.S.A.
Please send me your catalog of OSTER Avionic Products.
Name
Title
Firms
Address
Citv. \(\qquad\) Zone \(\qquad\) State

\section*{5 reasons \\ why Corning film-type resistors meet your most exacting circuit needs}
1. They're Stable - The resistive element of Corning Resistors is so stable it can be cycled from near absolute zero to red heat without impairing its electrical properties. These resistors withstand high-ambient and high-operating temperatures.

\section*{2. They're Moisture-} proof - Corning Resistors are impervious to moisture. They meet specifications for maximum resistance change under moisture resistance tests of MIL-R-10509A and MIL-R-11804A.
3. They're Durable • No need to coddle Corning Resistors. Drop them or scratch them. Neither affects them. The film material is fired in at a red heat and makes an integral contact with the heat-resist-
ant base. You end special handling and assembly costs.
4. They're Quiet • No need to use oversize resistors to overcome solder heat noise. Fired-insilver bands afford low-load resistance, low-noise termination. These resistors are so quiet, noise is difficult to measure. Excellent for sig-nal-level, high-gain amplifier stages.

\section*{5. They're Space-}

Saving - You can couple Corning Resistors close-without damage or fear of creating noise.

That's not all! Corning Resistors have other important characteristics to help you. And there are 16 different types, covering a resistance range from 10 ohns to 1 megohm; ratings from \(1 / 2\) watt to 150 watts. Write today for technical descriptions of all of them.

bracket mount which is more difficult and costly to handle and apt to cause undue strain on the diodes. The mount takes advantage of a hexagonal tapered case construction, which readily permits the diode to be mounted securely in the one bracket. Uses for the 1 N35 are in \(\mathrm{f}-\mathrm{m}\) discriminators, ratio detectors, phase detectors, industrial control circuits and other applications requiring matched pairs of diodes. Matched pairs of mounted or unmounted diodes with other characteristics than 1 N 35 can be built. to specification.

\section*{OUTPUT RELAY \\ for 2-way control systems}

Sigma Instruments, Inc., 170 Pearl St., South Braintree, Boston 85, Mass. This new 3-position relay has either a single or double pole switch of 2 -ampere rating. With current balanced in two windings, or zero in a single winding arrangement, all switch circuits are open. One polarity of coil current or unbalance current closes one throw of the switch; opposite polarity closes the other. Rated double pole sensitivity is 12 mw . The relay measures 28 in. high above octal or magnal socket by 1 s in. square. Bulletin
and application notes on the type \(23 J O X C C\) relay sre available on request from the nanufacturer.

\section*{SERVO MOTORS}

\section*{for high-temperature use}

American Electronic MFg., Inc., 9503 W. Jefferson Blvd., Culver City, Calif., has available new hightemperature servo motors that can operate in regions of 160 C . These include Bu Ord Mark V11 and Mark V111 as well as 15 other variations available with a wide choice of plain or pinion shafts. These high torque to inertia ratio units have been qualified to meet all military humidity, salt spray and fungus requirements.

\section*{CODETYPER}
has small tube complement
Codetyper Laboratories, 550 Fifth Ave., New York 19, N. Y., announces the improved model EBC2 electronic brain Codetyper which has had its tube complement reduced from 40 tubes down to only 12 tubes. The instrument is a small computer that automatically sends the Morse code as the buttons on its typewriter-like keyboard are touched, at any speed from 10 to 75

(4) The Complete Line of Quality Phonomotors
- FOR PORTABLE PHONOS
- FOR HI-FI UNITS
- FOR COMBINATIONS
- FOR RECORD CHANGERS
- FOR TAPE RECORDERS
- FOR REPLACEMENT USE
- FOR EVERY PHONO APPLICATION

Whatever your phonomotor or tape recorder requirements, you'll find the exact answer in the famous Smooth Power line of singlespeed, dual-speed and three-speed motors. Illustrated at the left are just a few of the many different types from which to choose.
Each of these advanced design motors incorporates General Industries' exclusive engineering and construction features which assure trouble-free performance and longlasting dependability.
Complete information, including dimensions, specifications and quantity quotations, furnished promptly upon request. Write to:

THE GENERAL INDUSTRIES CO.
DEPARTMENT MA - ELYRIA, OHIO

\section*{QUALITY HOUSINGS}

FUNCTIONAL
Protective

\section*{Attractive}

Control boxes, dictating machines, cases, covers, chassis, etc. made by Artisan have a three-fold appeal resulting in greater efficiency, lower maintenance cost and greater sales value.

Artisan has complete facilities for taking your job from original design prototype through production and into final finishing stages.

Write for literature on this line of cases and enclosures... or on our line of electronic cabinets and chassis produced for leading manufacturers.

\section*{Artisen}

Metal Works Company
11410 MADISON AVE. cleveland 2, ohio
words per minute. No typing skill is needed. One-finger operation is adequate for the most used code speeds. Output of the Codetyper is simply clipped across the hand key formerly used. Subminiaturized to a unit smaller than a portable typewriter, it uses printed circuits and plug-in embedment cells throughout and operates on a-c or d-c.

\section*{GENERATOR \\ provides square waves}

New London Instrument Co., P.O. Box 189, New London, Conn. Model 183 is a high quality precision instrument. It provides square waves suitable for testing the transient and frequency response of wideband amplifiers, and accurately measures their amplitude. Frequency range is from 10 cps to 1 mc continuously variable over decade steps. Model 183 has a low impedance output which provides 10 v peak-to-peak. At high impedance 100 v peak-to-peak is available. A \(60-\mathrm{db}\) step attenuator and a \(20-\mathrm{db}\) continuous attenuator (which do not affect wave shape) provide means of using the generator as a voltage calibrator.

\section*{MIDGET RELAY has magnetic structure}

Magnecraft Electric Co., 1442 W. Van Buren St., Chicago 7, Ill. Class 33 subminiature d-c relay meets requirements for reliable relay operation in limited space. The open type model with dpdt contacts is only \(1{ }^{132} \mathrm{in}\). long, tis in. wide and 1 in. high. Hermetically sealed base dimensions are \({ }^{3} \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}\)., height, 1 封 in., with 14 -pin solder terminal header and 6 contact

This is a miniature beoring! if looks like a big bearing, doesn't inf That's because it has all the features of o big bearing, such os-
- Deap greove races
- Balanced two-piece or snap-type ball retainer
- Non-rubbing capillary all seal
- Removable and replaceable dust shield
- Precision tolerances

RMB Type RF Filmoseal bearings (illustrated) are ovailable in sizes from 0.1969" O.D.
Type \(R F\) now available in \(R 2\) size (ABEC.1, 3, 5) (\(1 /{ }^{\prime \prime}\) bore- \(1 /{ }^{\prime \prime}\) O.D.)

\section*{Bring your Miniature Bearing Problems to RMB}

A complete line of over 250 minialure and instrument bearings including radial and roller types ovailable for prompt delivery. Experimental quantities from stock.

\section*{Write for catalog 12}

Or see our catalog in Sweet's Files.

\section*{\(B M B A N D A_{1} \& \mathrm{H}_{\mathrm{V}}\)}

I NCORPORATED . 15 WEST 45 TH ST. - NEW YORK 36, N. Y.

springs per stack, 12 springs total per relay. The new relay, featuring well proportioned magnetic structure, is available to meet military specifications for shock and vibration and also withstands wide temperature variations. It is furnished for any voltage to 110 v d-c and with up to 6 contact arms per stack, 12 arms total.

\section*{POTENTIOMETER}

\section*{of the sine-cosine type}

Rawson Electrical Instrument Co., 110 Potter St., Cambridge, Mass., announces production of the RL11C sine-cosine potentiometer. This precision wire-wound potentiometer has many applications in radar, computer and servomechanism work. It is especially useful for slow circular sweep on oscilloscopes or for l-f sine-wave generation. The RL11C provides two output voltages, accurately proportional to the sine and cosine of the angle of shaft rotation. It has a 360 -deg continuous mechanical rotation; standard winding resistance, 16,000 ohms (\(\pm 10\) percent) ; rating, 1.5 w at 65 C ; and life expectancy, 350,000 revolutions, minimum. The output wave is pure sine or cosine, with an average deviation less than 0.5 percent. Its overall diameter is \(2 \frac{5}{8} \mathrm{in}\)., with a case diameter of 2 简 in. The mounting shoulder is

Aircraft electronic equipment designers, with this one stock type of transformer, can supply needs for a 3 -phase to 2 -phase conversion or for single phase filament power. This limits the necessity for special transformers, necessarily of high cost because of small quantities.

This universal, compact, MIL-T-27 style transformer, with 2 units Scott-connected, supplies at the secondary 2 -phase 26 or 13 volt power for resolvers, computers, remote indicators and control devices. One transformer, single phase, will supply 26 volts C.T. at 2 amperes, 12.6 volts C.T. at 4 amperes, or two 12.6 volt, 2 ampere windings, one center tapped.
All this in a MIL-T-27 case only \(113 / 16^{\prime \prime} x\) \(115 / 6^{\prime \prime} \times 23 / 4^{\prime \prime}\) high, with the proved-inservice Triad Hermetic Seal Terminal and permanently affixed schematic decal.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tro.} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { blite } \\
& \text { pilco }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Plimaty } \\
& \text { Volts }
\end{aligned}
\]} & \multicolumn{2}{|c|}{Seconasty} \\
\hline & & & Volts & Amperes \\
\hline HS-442 & 22.6 & 515.\%-115.120 singie phase. & \[
\begin{aligned}
& 12.6 \mathrm{c} . \mathrm{T} . \\
& 12.6
\end{aligned}
\] & \(\frac{7}{2}\) \\
\hline \multicolumn{5}{|l|}{Two H5.42's can be used. 115 volt 3 phase to 26 voll 2 phase, Scoltrconnected.} \\
\hline
\end{tabular}

NEW PRODUCTS (continued)

3 in. in diameter, and the stainless steel shaft is 88 in . long. Price is \(\$ 35.00\).

\section*{COUPLERS}
with new design concept
Microwave Development Laboratories, Inc., 220 Grove St., Waltham 54, Mass., announces a new series of cross-guide couplers introducing a new design concept. These couplers make it possible to provide higher minimum directivity over the waveguide band, less coupling variation with frequency and higher breakdown power. Model X126E has the following characteristics: directivity-approximately 22 db or more; coupling accuracy-mean coupling level within 0.4 db of 30 db ; coupling variation-less than \(\pm 0.6 \mathrm{db}\) over the frequency range.

\section*{TINY CONNECTORS feature reduced weight}

American Phenolic Corp., Chicago 50, Ill. A marked reduction of weight is a feature of the new 165 series of miniature AN connectors. The new line is designed for use in modern aircraft, rockets and missiles. They are available in two sizes, six configurations-with 5 ,

\section*{FERRITES}

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.

Williams Ferric Oxides analyze better than \(99 \% \quad \mathrm{Fe}_{2} \mathrm{O}_{3}\). They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.

Tell us your requirements . . : we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

\section*{WIITIAMS \\ C. K. WILLIAMS \& CO. Easton, Pa. - East St, Lovis, ill. Emeryville, Cal.}

\footnotetext{
P. Wo also produce IRN Magneflic Iron powders for the Electronic Core In. duary, the Mors for the Electronic Core Intry and othere. Write for complete technical Information.
}
\(9,11,12,140=24\) gold plated contacts. They are pressurized but not hermetically sealed and will far exceed the government required 50 hour salt-spray test. Female connectors feature a sandwich type construction for the inner seal with the containing cartridge spun over, thus being sealed at the factory with no chance of leakage. The outer seal is accomplished with a silicone 0 ring. Contact sizes are No. 20 and No. 16.

\section*{TEFLON SEAL}
helps to conserve space
The Joclin Mfg. Co., 2964 Whitney Ave., Hamden, Conn., has developed a new Teflon hermetic seal that solves many problems of space conservation. It may be made in a number of different contours, one of which is illustrated. The chemical inertness of Teflon, its high dielectric strength and temperature resistance to 500 F make it very suitable for the sealing portion. The flanged bashing surrounding the Teflon is so designed that it accommodates the differing coefficients of expansion between the metal and the Teflon, to assure a positive seal. Installation is simplified by soldering or welding the bushing into position. This leadthrough may be obtained in a number of sizes to neet different operating conditions.

\section*{TRANSFORMERS \\ for commercial and military}

I-T-E Circuit Breaker Co., 19th and Hamilton Sis., Philadelphia 30, Pa. Antenna transformers, r-f output transformers, stage turners, buffers, doublers, mixers, r-f

\section*{Where the}

\section*{AS IN INSTRUMENT DIALS}

\section*{"MICROSCOPIC-PRECISION"} actually defines the minute accuracy of dials by U.S. Radi. um (instrument, clock, or watch), for "microscopic" checks and painstaking inspec. tions in every step of production assure the highest degree of perfection humanly or mechanically possible.

Regardless of size of the order, we take the same pains to assure a finished product in strict accordance with prints and specifications. You are welcome to avail yourself of our engineering and designing experience toward the end that your product may be both functionally satisfactory and less costly in production.

\section*{where FUNCTIONAL DESIGN}
is IMPORTANT

\section*{AS IN INSTRUMENT PANELS}

Special equipment and specialized personnel, plus our rigid controls, constant checking and inspection guarantee the fine finished product your order merits. Whether flat or curved, we can produce your panels edge-lighted, and either luminous or non-luminous engraved, etched, screened or lithographed, with the ultimate in uniformity and legibility.

\section*{where APPEARANCE AND ECONOMY are IMPORTANT - AS IN NAMEPLATES}

The same engineering skill and same plant facilities are yours for the production of nameplates. For years we have been the major source of supply for many industries and our reputation has been built on attention to detail, prompt deliveries, and the economy effected for our customers.

FOR COMPLETE INFORMATION on items of interest to you, address United States Radium Corporation, 535 Pearl St., New York 7, N. Y. attention Dept. E-8

The present availability of VECO THERMISTORS, and varistors, are opening vast new fields in electronic measurement and control circuitry, and are helping engineers to fully utilize the extreme sensitivity and reliability of these new versatile circuit elements.
VECO THERMISTORS ARE RESISTORS WITH AN EXTREMELY high negative temperature coefficient of electrical RESISTANCE. They have high stability, and unlimited life when operated within their temperature ratings. These small, compact, shock-resistant, semi-conductors are STOCKED in a wide range of temperature vs. resistance characteristics. VECO thermistors and varistors can also be produced to your specifications. Types of construction include rods, discs, washers, and beads, in a variety of sizes and mountings.
\(\$ 5.00\) cash or money order will bring you the Model 168 VECO Experimentors' THERMISTOR-VARISTOR package-7 items and application circuitry-over a \(\$ 15.00\) value!

Visit Victory in booth 627 at the Western Electronic Show \& Convention... August 25-27, Los Angeles, Calif.

PA request on your business stationery will bring the \(\overline{\mathrm{V}} \overline{\mathrm{E}} \overline{\mathrm{A}} \overline{\mathrm{l}}\)
|THERMISTOR DATA BOOK, which contains specific technical |
information, characteristics, and applications.
CUSTOMER ENGINEERING SERVICE AVAILABLE AT NO CHARGE. However, where unusual problems in thermal conductivity or temperature control may require laboratory development of radically new types of Veco Thermistors, with associated circuits, VECO research and manufacturing know-how may be obtained on contract. COMBUSTION ANALYZERS ELECTRONIC and THERMAL CONTROL INSTRUMENTS

chokes, linearity coils or peaking coils can be custom-made to the user's particular requirements. Dependable service of components is assured because of qualified fabricating, controlled production, and coil-winding experience. Critical L, C and Q electrical tests are carried out in the company's laboratories for quality control purposes. Prototypes are stable under time, temperature variation and in humid atmospheres.

\section*{TWO-WAY RADIO for 450-470-mc operation}

General Electric Co., Syracuse, N. Y., has announced new radio transmitter-receiver combination units for operation at recently authorized frequencies between 450 and 470 mc . The new radios are expected to be most useful in big city police and fire departments, taxicabs and some industrial applications, where the lower frequency channels have become seriously crowded. Mobile models will function from either 6 or \(12-\mathrm{v}\) batteries, with no adjustments necessary to convert from one to the other. Nominal output of mobile units is 20 w . All station units have \(40-\) w output, and are
rated for continuous duty. Receivers in the new combinations feature 6-coil i-f transformers, which provide a stability of selectivity for the life of the equipment. The low i-f used is 290 kc . High Q cavities at both receiver input and output insure against ts interference.

\section*{WIRE MARKERS resist heat up to 400 F}

North Shore Nameplate Co., Glenwood Landing, L. I., N. Y., has announced the Speedy-Marx HiTemp wire markers. They can be used for marking selenium rectifiers, electric motors, transformers or any application where temperature rise is considerable over ambient. The special pressure sensitive tape made to rigid specification insures permanent identification on various surfaces with no effect from colc, humidity, vibration or heat up to 400 F . A catalog is available on request.

\section*{TEST CABINET meets ASTM specifications}

The G. S. Equipment Co., 5317 St. Clair Ave., Cleveland 3, Ohio. The H-T Sincolite salt-spray test cabinet meets ASTM specification B-11749 T and the intent of other Government specifications for similar equipment. It has no parts of contaminating materials susceptible to corrosion exposed to test solutions or vapors. Completely transparent, the cabinet affords clear visibility for observing and controlling progress

\section*{Arepoug gating IEFLON with no porosity}

\section*{Non-porous FLUOROFLEX-T rod, tube, sheet assure optimum electrical stability in parts}

At its optimum electrical values, Teflon is virtually the perfect dielectric material for UHF use. If, during extrusion or molding, however, a high degree of porosity results, dielectric strength, power factor and dielectric constant are bound to be affected. That's because porous insulation means absorbent insulators.

As the above photographs show, Fluoroflex-T is non-porous. This is achieved in two ways. (1) By processing on equipment especially designed to compact Teflon powder to the critical density.
(2) By not bleaching out Teflon's natural spotting at the expense of optimum density.

Fluoroflex-T products are also stress relieved. Result: Non-porous rods, tubes, and sheets that not only give greater electrical stability but also dimensional stability and fewer rejects in machining. Write for Bulletin FT-1.
- DuPont trade mark for its tetrafluoroethylene resin.
- Resistoflex trade mark for products from fluorocarbon resins.

\section*{RESISTOFLEX}
corporation
Belleville 9, N. J.
SPECIALLY ENGINEERED FLEXIBLE RESISTANT PRODUCTS FOR INDUSTRY

\section*{INTRODUCING A NEW} man ounc. Selenexiuifier
of tests, and examining specimens from all sides without opening lid. Fusion-welded construction provides permanent no-leak seams, and complete elimination of deterioration and maintenance extends service life indefinitely.

\section*{D-C POWER SUPPLY has 3 decade switches}

John Fluke Mfg. Co., Inc., 1111 W. Nickerson St., Seattle 99, Wash. Model 301B is a super-regulated, ultrastable d-c supply capable of delivering \(\frac{3}{2}\) ampere of current at any voltage from 5 to 815 v . Three decade switches permit selection of output voltage in \(1-\mathrm{v}\) steps while a \(1.1-\mathrm{v}\) vernier calibrated in \(1-\mathrm{v}\) increments affords resolution of 2 mv at any output voltage. Calibration accuracy is better than \(\ddagger\) percent. Regulation of the 301 B is 0.002 percent for 20 -percent change in line voltage and 0.002 percent for load current change from no load to full load. These figures obtained over the entire output voltage range. Long-term stability is 0.01 percent or better.

\section*{Literature}
\(\qquad\)

Transfer Voltammeter. Charles Engelhard, Inc., 850 Passaic Ave., East Newark, N. J. A 4-page brochure illustrates and describes the new Hermach-Engelhard transfer voltammeter, a precision, a-c, multirange instrument with an accuracy
of 0.05 percent through a frequency range from 20 to \(20,000 \mathrm{cps}\). Included are chief features, how-touse information and a block diagram showing the unit in operation with accessories.

Germanium Phototransistors. Texas Instruments, Inc., 6000 Lemmon Ave., Dallas 9, Texas. Type 800 bulletin describes a line of germanium phototransistors that perform a phototibe's functions with the further acivantages of smaller power demanc, space and weight. The series liscussed are \(n p n\) grown junction germanium transistors manufactured with glass-to-metal hermetic seals. They operate essentially as grounded emitter transistor amplifiers, displaying great sensitivity to the direction as well as the amount of light received through the optical glass window.

Microwave Test Equipment. F-R Machine Works, Inc., 44-14 Astoria Blvd., Long Island City 3, N. Y., has a catalog showing a full line of precision microwave test equipment. The FXR line described includes all the wanted units and components for operation in the microwave region. The company has available catalogs bound in multiring leatherette binders.

Record-Playback Control. General Electric Co., Schenectady 5, N. Y. A system of recording motion on magnetic tape and playing it back fer automatic programming of production machines and processes is described in bulletin GEA-6092. The two-color six-page publication explains the principle of the new control that incorporates a magnetic tape recorder. Well-illustrated, it explains how recordplayback control is especially valuable in bringing to small-lot manfacture many of the advantages of special, mass-production machines.

TV Distribution Systems. Jerrold Electronics Corp., 26th \& Dickinson Sts., Philadelphia 46, Pa., has available a \(\varepsilon 2\)-page illustrated specifications book covering the planning of \(t v\) distribution systems. The advent of color tv gives it special value to architects,

Of course, you've never bought an automobile in pieces, picking up a bumper here, a carburetor there, a clutch somewhere else. Even if you could arrive at the appearance and performance of a finished car, chances are it would require countless hours of work and a factory-full of fabricating equipment to integrate the odd sized parts.

Surprising, then, how many companies build servo systems just this way. Buying parts from different manufacturers ... putting them together and hoping for an ideal system. Either the final result is far below potential efficiency, or the time, labor, machinery, and materials wasted in trying to "fit" the components together boosts the cost as tronomically.

Experience proves that complete assemblies of Transicoil components not only assure improved system performance but actually cost less than the total purchase price of the individual components acquired from several sources.

If you are now purchasing servo components from several manufacturers, a serious talk with Transicoil will pay you dividends in lower costs and a better system. But if you require only one component, you can be sure of optimum performance from the Transicoil units you specify.

82
labor reduction in wiring-with mis , Contralab Printed Electrofic circuit Couplatet \(\dagger\)
- CRL PC-101 Vertical Integrator reduces wiring connections from 16 to 3 .
- Four capacitors - four resistors in one package.
- PC-101 is in CRL stock for IM. MEDIATE DELIVERY - as are 30 standard circuit couplates.

Here are some of the reasons why Centralab is your only thoroughly experienced source for Printed Electronic Circuits.
- Centralab has more years of P.E.C. \(\dagger\) engineering and production experience than any other supplier. (CRL pioneered Printed Electronic Circuits in the electronic industry.)

Write nowt Before you turn the page. Por Centralab's P.E.C. folder and cusfomer specification sheets.
- CRL has over 150 specialized engineers for the design and development of P.E.C.'s. They can help you with your circuit problem.
- Hundreds of experienced production persomel and extensive, mechanized facilities produce your requirements whether hundreds or millions of couplates.
- Up to 29 different quality tests are made on each CRL Couplate before shipment.
- Centralab's experience in resistor, capacitor and ceramic materials goes back to 1923 - all these have contributed to the quality of Centralab P.E.C.'s.

Centralab P.E.C.'s reduce time and cost of in. stallation, stocking and paper work -give you consistent, accurate performance for 100 or 1,000,000 plates.
\(\dagger\) Trademark
A Division of Globe-Union Inc.
914H E. Keefe Avenue Milwoukee I, Wisconsin In Conado: 804 MP . Pleasant Road, Toronto, Onlorio
engineers, contractors and others concerned with the problems of designing, specifying and supervising the installation of tv systems.

A-C Electrolytic Capacitors. Micamold Radio Corp., 1087 Flushing Ave., Brooklyn 37, N. Y. A 4-page bulletin on Motorlytic a-c electrolytic capacitors for motor starting and other intermittent-duty service is available. Bulletin 109 describes molded-plastic encased units suitable for duty cycles up to 20 starts per hr , temperatures from -20 C up to +65 C , and altitudes up to \(6,000 \mathrm{ft}\). Capacitors in the series described are offered in ratings of 110 v and 125 v a-c. Units are listed according to rated capacitance, part number and case dimensions in a convenient reference chart of standard ratings. End cap and mounting bracket information is provided by means of line drawings and photographs. Also included are applications and ordering information.

Panel Instruments. General Electric Co., Schenectady 5, N. Y. A 12-page bulletin describes the company's line of panel instruments. Designated GEC-368F, the 2 -color publication contains description, construction, and application details of both d-c and a-c instruments. Well illustrated, it also includes complete dimension and price information, as well as physical, operational and electrical data.

Delay Lines. Andersen Laboratories Inc., 39 Talcott Rd., West Hartford 10, Conn. Solid ultrasonic delay lines with particular reference to the superiority of quartz to mercury and metal lines are the subject of the 12 -page technical bulletin 54 just published. Theory, performance, circuitry and specification data are also included.

High-Voltage Resistors. International Resistance Co., 401 N . Broad St., Philadelphia 8, Pa. Catalog data bulletin G-1 discusses type MV high-voltage resistors. Comprehensive data on 45 different types, characteristics,
construction, individual specifications, applications, installationcharts, graphs and photos-are given in 8 pages.

Magnetostriction. The International Nickel Co., Inc., 67 Wall St., New York 5, N. Y. Bulletin A-169 (28 pages) contains 11 graphs and an extensive selected bibliography. The report discusses ferromagnetic metals and alloys, giving data on some of their magnetostrictive properties. Numerous devices employing this phenomenon are described and explained.

Instruments and Accessories. Burlington Instrument Co., 153 N . Third St., Burlington, Iowa. Cata\(\log N-1\) has assembled the outstanding characteristics of instrument design in respect to size, type of material of the case and style of mounting. Under various column headings are listed the prices for the different types of instruments such as microammeters, milliammeters, ammeters, voltmeters and other units. The catalog will help to visualize for the user the best combination of factors related to design and price that will improve his own design practices.

Components Catalog. Jan Hardware Mfg. Co. Inc., 75 North 11th St., Brooklyn 11, N. Y. A data chart listing the stock magnetic shields and bezel combinations which fit most standard e-r tubes is a feature of the new 6-page catalog. The brochure also contains complete data on the company's other electronic components, including \(h-v\) insulated couplings, insulated universal couplings, panel bearings, jack covers, shaft locks, bushing extenders, shock testers and controlled torque knobs.

Ring Ceramic Capacitors. Sprague Electric Co., 35 Marshall St., North Adams, Mass. Engineering bulletin No. 610 fully describes a line of ring ceramic capacitors that are available in voltage ratings from 100 to 500 v d-c. The capacitors discussed are designed to provide neat physical layout of electronic and tv chassis

\section*{THIS BOOK DOESN"T}

QUCCESSFUL developments in the electronics field depend mainly on three things: ideas . . . experience . . . facilities. This book is full of all three.
Just a short request on your letterhead . . . or the coupon below . . . will bring this valuable book in the mail to you at once.

\section*{Thompson Products, Inc.}

\section*{TURRET ATTENUATOR featuring "PULL-TURN.PUSH" action}

\section*{frequency range:}
dc to 3000 mc .
Characteristic Impedance:
50 ohms

\section*{CONNECTORS:}

Type "N" Coaxial female fittings each end AVALLABLE ATTENUATION:
Any value from. 1 db to 60 db

\section*{VSWR}
\(<1.2\), dc to 3000 mc ., for all values from 10 1060 db
\(<1.5\), de to 3000 mc ., for values from . 1 to 9 db

\section*{accuracy:}
\(\pm 0.5 \mathrm{db}\)

\section*{POWER RATING:}

One watt sine wave power dissipation
Send for free bulletin entitled
"Measurement of RF Attenuation" -
Inquiries invited concerning pads or turrets with different connector styles
while occupying a minimum of space.

Tetrode Transistors. Texas Instruments Inc., 6000 Lemmon Ave., Dallas 9, Texas. Type 700 bulletin contains detailed information on a line of tetrode grown junction transistors especially suitable for use in audio amplifier age circuits. Amplification factor (alpha) of the tetrode through the amplifier section is guaranteed to be 0.95 or better. Output signal attenuation of over 20 db can be secured with less than 100 ua applied to the second base lead.

Capacitor Microphones. Frank L. Capps \& Co., Inc., 20 Addison Place, Valley Stream, N. Y., has available literature on a new series of capacitor microphones. Data and characteristics are given on three new models, as well as descriptions of the associated power supplies and cables.

Cutter-Splicer. Yale Industries Corp., 82-09 251 st St., Bellerose 26, N. Y., has released a catalog page that fully describes the construction and operation of its model TS-4 cutter-splicer for magnetic recording tape. The model described cuts rounded indentations in the tape edges, giving the tape a "Gibson-Girl" shape, leaving the edges of the tape entirely free of adhesive.

H-F Resistors. International Resistance Co., 401 North Broad St., Philadelphia 8, Pa. Catalog data bulletin F-1 covers the type MP high-frequency resistors. Comprehensive data on 43 different types show characteristics, construction, individual specifications, applications and installation. Charts, graphs and photographs are included in the 8 pages.

Power Plants. Katolight Corp., First Ave. at Chestnut, Mankato, Minn. A new brochure describes the highly portable \(3,600 \mathrm{rpm}\), manually starting power plants in sizes of \(650,1,350\) and \(2,000 \mathrm{w}\). Also covered is an \(1,800-\mathrm{rpm}\) series driven with air-cooled engines in sizes from 500 w through 5,000
w. Larger units to \(50,000 \mathrm{w}\) are shown with both air and watercooled engines showing a series of \(1,200-\mathrm{rpm}\) as well as \(1,800-\mathrm{rpm}\) speeds. The brochure describes each individual unit in considerable detail along with ratings, general features and accessories.

Electrical Insulating Materials. Insulation Manufacturers Corp., 565 W. Washington Blvd., Chicago 6, III. A new 32-page catalog has descriptive information, photos, prices and ordering data on electrical insulating materials. A table of contents and an alphabetical product index are quick guides to: cords and twines, woven tapes, tubings and sleevings, mica plates, slot wedges, varnishes, solvents, paper, vulcanized fiber, slot insulation, fiber washers, varnished fabrics, pressure-sensitive tapes and class-H silicone insulating materials.

Transformer Catalog. Halldorson Transformer Co., 4500 Ravenswood Ave., Chicago 40, Ill. Catalog No. 22 features an expanded line of transformers, with special emphasis on tv components. Both specific and multipurpose replacements for thousands of popular tv models and chassis are thoroughly described and illustrated. The catalog also contains a complete and comprehensive range of power, audio, reactors and varivolts. For quick reference, the table of contents has been displayed on the front cover. For added convenience, a special index listing part rumbers in numerical sequence is shown with list prices and page numbers on the inside front cover. The back cover carries a chart of audio-amplifier tubes versus output transformers.

Electron Microscopes. Research \& Control Instruments Div., North American Pailips Co., Inc., 750 South Fulton Ave., Mt. Vernon, N. Y., has available a 4-page folder titled "Some Reasons Why The EM-75 and EM-100 Electron Microscopes Deserve Your Consideration." Forty-four typical applications are listed together with design and operating information on two types of electron micro-

\section*{ANOTHER EXAMPLE OF ATERMnת PIONEERING...}

The WIDE BAND POCKETSCOPE, model S-14-B, hits a new high in frequency response for light, compact, truly portable oscilloscopes. The response extends all the way from DC to 700 KC within -2 db without peaking. Thus providing a pulse rise time of 1.8 microseconds. Furthermore, sensitivity has not been unduly compromised in order to accomplish such fidelity. The vertical sensitivity is 50 millivolts \(\mathrm{rms} / \mathrm{inch}\). The sweep is operated in either a repetitive or trigger mode and covers a range from 0.5 cycles to 50 KC with synchronization polarity optional. Other essential vertical and horizontal amplifier characteristics include non-frequency discriminating attenuators and gain controls as well as individual calibration voltages. Additional provisions for direct access to all the deflection plates, the second anode, and the amplifier outputs help to make the \(S-14-B\) a standout instrument of flexibility and utility. All this plus portability! The incredibly small size and light weight of the S-14-B now permits "on-the-spot" use of the oscilloscope in all industrial, medical, and electronic fields. Its rugged construction assures "laboratory performance" regard less of environment.

WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA. CABLE ADDRESS: POKETSCOPE

WATERMAN PRODUCTS INCLUDE

> S-4-C SAR PULSESCOPE \((8)\) S-5-A LAB PULSESCOPE S-6-A BROAD 3 ANO PULSESCOPE S-11-A INDUSTRIAL POCKETSCOPE S-12-B JANIZEd RAKSCOPE S-14-A HIGH GAIN POCKETSCOPE S-14-B WIDE BAND POCKETSCOPE S-15-A TWIN TUBE POCKETSCOPE RAYONIC \((\mathbb{C}\) Ccthode RaY Tubes -nd Other Associated Equipment

\section*{The Aremas \\ RECORDOSCOPE 1073}
a 35 MM Synchronous Camera for Continuems Hotion or Single Frame Oscillossope Recording

The Aremac 1073 Recordoscope is a compact self-contained unit mounting an \(f / 2\) six-element 50 mm lens and special 400 foot Aremac powered magazine. Shutter interlock system prevents film motion when shutter is closed. Synchronous film speeds range from \(256^{\prime \prime} / \mathrm{sec}\). to \(1 / 8^{\prime \prime} / \mathrm{sec}\). in 12 steps of \(2: 1\) ratio. The camera can be stopped and restarted with practically instantaneous speed synchronization. Periscope mounts camera vertically. Provision for automatically illuminated data cards and strobe contacts.
Write for Complete Technical Dato on AREMAC Cameras Today.

\section*{remac associates}

MANUFACTURERS OF MECHANICAL \& OPTICAL INSTRUMENTS 329 WEST WASHINGTON STREET - PASADENA 3, CALIFORNIA
scopes. Data cover viewing screen, accelerating potential, magnification, electron diffraction, focus determination and control, image stability, resolution and other features of this equipment.

Fluorothene Resins. Bakelite Co., a Division of Union Carbide and Carbon Corp., 260 Madison Ave., New York 16, N. Y. Recent property and fabrication data on the company's fluorothene resins is compiled in a new 16 -page booklet. Much information on the new, high heat resistant resins, now in commercial production after 5 years of process development, is contained therein. Included are graphs, tables and text indicating their high softening temperature, resistance to burning, chemical inertness, weathering and moisture resistance, electrical characteristics, and good low temperature properties. Also given are recommendations on extrusion, injection and compression molding of the resins, as well as many applications.

Silicon Transistors. Texas Instruments Inc., 6000 Lemmon Ave., Dallas 9, Texas, has announced descriptive literature on its commercially available silicon transistors. Bulletins may be obtained on both the types 900 and 901 (general purpose) and the \(\mathrm{X}-15\) (medium power) silicon transistors. The devices described will operate up to 150 C , with current amplification factor being essentially independent of temperature change. The X-15 is conservatively rated at 1 w power dissipation. All three types discussed are \(n p n\) grown junction units manufactured with glass-to-metal hermetic sealing.

Interference Filters and Suppression Capacitors. Micamold Radio Corp., 1087 Flushing Ave., Brooklyn 37, N. Y. Engineering bulletin No. 107 is a 4 -page brochure illustrating 11 types of r-f interference filters and noise suppression capacitors. It describes each unit by means of a photograph and dimension drawing, plus a table of specifications showing type number, power ratings and r-f attenu-
ation characteristics. Three curves of typical attenuation characteristics, as measured per MIL-STD-220 in a 50 -ohm system, are also contained.

Transformer Catalog. Triad Transformer Corp., 4055 Redwood Ave., Venice, Calif., has available catalog TR-54 listing more than 500 transformers of which over 60 are new items. It features 11 new amplifier kits for high-fidelity reproduction, an expanded line of tv components, plus additional items in the hermetically sealed power components, instrument power supply, choke, filament, power and audio transformer lines. Two new photo-flash transformers are included in the list of new items. A complete line of geophysical transformers are shown in a special section of the catalog.

Laminations Catalog. Magnetics, Inc., Butler, Pa., has issued a catalog describing its standard line of laminations, laminated cores and dies. Catalog ML101 includes many pages of lamination specification sheets, showing both the individual laminations to actual scale, as well as properties of square cross section core stacks, and weights and counts for different materials. Catalog sections are devoted to laminated core assemblies, mechanical and magnetic parameters and lamination tolerances. The catalog also includes a section on the proper information needed in determining and ordering quantities of magnetic laminations.

Industrial Components. Collins Radio Co., Cedar Rapids, Iowa, has available a reprint telling how its line of industrial components can be of help. Illustrated descriptions are given for the company's mechanical filters, hysteresis motors, variable frequency oscillators, Autotunes and Autopositioners.

Variable Inductance Coils. North Hills Electric Co., Inc., 246-32 54th Ave., Douglaston 62, N. Y. A recent mailing piece announces the series 120 variable inductance coils designed for commercial and

 DEFENSE PROGRAM. Sandia Corporation is engaged in the development and production of atomic weapons-a challeng. ing new field that offers opportunities in research and development to mon with Bachelor's of advanced degrees, with of witheut applicable experience. Here you can work with able colleagues, eminent consultants and superior facilities on advanced prolects of high importance - and also build a permanent career in a ropidly expanding field with a company that recognizes individual ability and initiative.
LIVE
in alsuquerque, the heart of the sunny SOUTHWEST. Locatod in the historic Rio Grande Valley af the foot of the Sandia Mountains, mile-high Albuquerque is fomovs for its climate-mild, dry and sunny the year around. A modern, cosmopolitan city of 150,000 , Albuquerque offers unique advantages as a place in which to live. Albuquerque's schools, churches, theaters, parks, and modern shopping facil ities afford advantages of metropolitan life-yet hunting, fishing, skiing and a multitude of scenic and historic attractions may all be found within a fow hours' drive of the city. New residents have little difficulty in obtaining adequate housing.

\section*{ENJOY}

THESE OTHER IMPORTANT ADVANTAGES.
These are permanent positions with Sandia Corporation, a sube sidiary of the Western Electric Company, which operates Sandia Laboratory under contract with the Atomic Energy Commission. Working conditions are excellent, and salaries are commensurate with qualifications. Liberal employee benefts include paid vacations, sickness ben-

government equipment. The series described covers the \(2-\mu \mathrm{h}\) to 2 -mh range with eleven coils. They have a wide variety of applications such as color tv circuits, filter networks, video peaking, and \(r-f\) and i-f amplifiers.

Cabinets. Artisan Metal Works Co., 11400 Madison Ave., Cleve land 2, Ohio, has published a 4 page folder on its line of cabinets for the electronics industry. Folder EC-354 ilustrates representative type metal fabrication jobs produced by the company for manufacturers; gives the wide range of facilities available; and discusses the company's capacity to follow through on a job from original design stages to full finishing operations.

High-Reliability Pentode. General Electric Co., Schenectady 5, N. Y. A 4-page, 3-color brochure (ETD892) describes the new GL-6265 type, the high-reliability version of the 6BH6, for critical applications in two-way communications systems. Technical data are included, as well as block diagrams showing application of the new type along with other Five-Star types in existing aircraft and mobile receivers, and a block diagram showing a 152 to 174 -mc mobile receiver with every socket filled with the Five-Star tubes.

Deposited Carbon Resistors. Campbell Industries Inc., St. Elmo Station, Chattanooga 9, tenn. A 6 -page technical data bulletin covers Fixtohm deposited carbon, 1-percent resistance tolerance, precision resistors. The resistors described have power ratings from \(\frac{1}{8}\) to 2 w , and resistance from 10 ohms to 100 megohms. Included in the brochure are performance test results, electrical and mechanical characteristics, material and construction details, protećtive finishes and enclosures available.

Tube Shields. International Electronic Research Corp., 175 W. Magnolia Blvd., Burbank, Calif. Two recently published booklets entitled "Effect of Tube Shields on Miniature Electron Tubes" and
"An Evaluation of Shields for Subminiature Electron Tubes" contain factual test result data, comparison ciarts on tube shield clamps and their heat dissipating effects, condustivity and vibration effects as applied to advanced electronic and guided missile development.

Magnetic Relays. R-B-M Division, Essex Wire Corp., Logansport, Ind., has issued a quick-reference 4 page bulletin showing the various types of copen and hermetically sealed a-c and d-c relays in its line. The bulletin readily indicates general characteristics including maximum coil resistance and power requirements, contact forms available, approximate weight and dimensions. Write for bulletin 560 A .

Subminiature Receiver. Lehigh Valley Electronics, 215 So. Third St., Allentown, Pa. A single-sheet bulletin describes and illustrates a tiny receiver (no longer than a pack of cigarettes) that is designed to operate between 25 and 60 mc and has an effective range of about 20 miles. It outlines chief features and some of the unit's many possible applications. A price list is included.

Automation. T.A.B. Engineers, Inc., 767 N. Milwaukee Ave., Chicago 22, Ill., has prepared a new, condensed and highly practical brochure on automation. It will help top exesutives understand the present day significance of the term and determine whether their factories can be adapted to complete or partial automation.

Computer Components. Feedback Controls. Inc., 503 Rhode Island Ave., N. E., Washington 2, D.C. An 8-page folder discusses a line of computer components and packaged servo systems. It contains illustrated descriptions and specifications for closed systems, servo amplifiers, precision gear trains and data output gearings.

Standard and Power-Type Potentiometers. De JUR-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. Six basic models of

\section*{Type M10T SERVO POTS}
wound coil, multiturn potentiometer design is integrated with system aspects of precision computors, servomechanisms and electro-mechanical instrumentation. Extremely precise mechanical tolerances shaff diameter concentricity, and perpendicularity assure complete ransfer of potentiometer accuracy to external systems. Universal mounting surface offers a choice of servo-mount or precision pilot and tapped holes. SERVO POT resistance elements are wound under contral of an electronic servo-mechanism* by a unique method based or the output accuracy of the potentiometer as the controlling fac-
tor. Gold-flashed connec-tor-type terminals permit ease of connection where accessibility is limited.
*Based upon a method originated by IBM Corporation under U.S. Government Contract.

For further details on the new odvonced performance mulliturn potentiometers write, wie or coll
Technoloci TNstrthent Corp.
533 Main St., Acton, Mass. Colonial 3.7711
West Coast Eng'r'g. Facllity, 731 No. Labrea Ave., Mollywood, Calif., whitney 0108

standard and power-type potentiometers with a wide range of functional and mechanical variations are described in a new 8 page brochure. These linear and nonlinear instruments provide a full \(360-\mathrm{deg}\) mechanical and 356 deg electrical rotation angles.

Beryllium Copper Strip. Penn Precision Products, Inc., 501 Crescent Ave., Reading, Pa. Bulletin 1 makes available complete data for specifying beryllium copper precision strip. A discussion of available alloys, conditions and tempers is included together with tables covering available sizes and properties.

Reference Cavities. General Electric Co., Schenectady 5, N. Y. A 12-page, 3-color booklet (ETD-885) describes three new reference cavities: types GL-1Q26-A, GL-6301, and GL-6452, for use as frequencydetermining references in microwave systems. The booklet covers application information, adaptation to existing equipments and technical data.

Isolated-Pulse Voltmeter. Shepard Laboratories, 480 Morris Ave., Summit, N. J. A single-sheet bulletin gives an illustrated description of the PPM-1, a precision transient peak voltmeter applicable to many uses where the quantity to be measured is represented by a voltage change. The unit discussed includes a capacitative voltage-divider element adjustable over a \(1,000-\) to- 1 range in its input circuit to facilitate high level measurements and, with an associated preamplifier, it may be used with low-level voltage sources such as strain gages. The instrument described is ideal for field as well as laboratory service.

Standby Electric Plants. D. W. Onan \& Sons Inc., Minneapolis 14, Minn. Technical bulletin T-O11 covers the installation of emergency standby electric generating plants and automatic line transfer controls, in simple language. Typical installations of both watercooled and air-cooled standby electric plants are pictured clearly for easy understanding.

\footnotetext{
\section*{"PRICE BUYING" VS.}

\section*{"ECONOMY BUYING"}

Somelimes we save our customers money by charging them what at first seems to be a little more.

But, in the long run, the accuracy of our products saves you cost of assembly time and makes you money by speeding your assembly line and by satisfying your customers.

\section*{CONRAD \& MOSER}

Workers in Aluminum, Brass, Steel \& Plastics DESIGNING engineering - manufacturing mechanisms - machines parts - tools - dies - molds stampings - castings machining - sheet metal enclosures \& Chassis \(1 / 8\) to \(1 / 1 /\) NAVY SPEC ALUMINUM SPOT WELDING AND HELIARC WELDING.

2 Borden Ave. Long Island City 1, N.Y.

}

\section*{PLANTS AND PEOPLE}

\author{
Edited by WILLIAM G. ARNOLD
}

> Electronic manufacturers continue plant expansions . . . Associations announce convention plans and activities ... Engineers and management executives are promoted...

\section*{RETMA Elects Officers, Honors Sprague At Annual Meeting}

Attending RETMA's annual meeting were, left to right. C. F. Stromeyer of CBS-Hytron, M. F. Balcom of Sylvania and new RETMA board chairman, R. E. Carlson of Tung-Sol, R. C. Sprague of Sprague Electric receiving Medal of Honor from president Glen McDaniel

Max F. Balcom, who was president of RETMA from 1947 to 1949 , was elected chairman of the Association's board of directors.

Balcom succeeds Robert C. Sprague who, upon the conclusion of his third term as board chairman, was awarded the 1954 RETMA Medal of Honor by president McDaniel for his outstanding contributions to the advancement of RETMA and the radio-tv-electronics industry.

Re-elected officers included president and general counsel Glen McDaniel, treasurer Leslie \(F\). Muter, executive vice-president and secretary James D. Secrest, engineering department director W . R. G. Baker and general counsel emeritus John W. Van Allen. Vicepresidents Robert S. Alexander,
R. E. Carlson, H. J. Hoffman and R. G. Zender were re-elected, and Floyd W. Bell was elected to succeed Sidney Harman as vice-president of the amplifier \& sound equipment division.

Director H. L. Hoffman was elected chairman of the radio-television industry committee, succeeding Balcom. Director F. R. Lack was re-elected chairman of the electronics industry committee.

Following are the new and reelected chairmen and new directors elected by the five divisions:

Set Division-Robert S. Alexander, chairman (re-elected), and John C. Marshall of Arvin Industries, director.

Tube Division-John Q. Adams, chairman (re-elected) ; John L. Hanigan of Corning Glass Works
and Charles F. Stromeyer of CBSHytron, directors.
Parts Division - Herbert W. Clough of Belden Manufacturing, chairman; Edward C. Tudor, Industrial Development Engineering Associates and W. A. Nicely, Chicago Telephone Supply, directors.

Technical Products DivisionJames D. McLean of Philco, chairman, and William C. Jordan of Hughes Aircraft, director.

Amplifier \& Sound Equipment Division-A. K. Ward of RCA Victor, chairman, and Lester Bogen of David Bogen Co. director.
C. B. Thornton of Litton Industries was elected a director-at-large.

The following 16 directors were re-elected for new terms at division membership meetings:

Set Division-Benjamin Abrams,

Automatically handling 10 Records \(7^{\prime \prime}, 10^{\prime \prime}\) and \(12^{\prime \prime}\), with 3 seconds changeover, providing uninterrupted armchair entertainment for up to 5 hours-that's the Monarch 'Magidisk' performance! Tested and proved reliable by radiogram manufacturers, applauded by gramophone experts, this unique feature is only one of the many attributes for enthusiasts in the Monarch Record Changer. It is the leading automatic electrical high fidelity record reproducer which is giving pleasure to millions all over the world.

BIRMINGHAM SOUND REPRODUCERS LTD., OLD HILL, STAFFS., ENGLAND
H. C. Bonfig, Leonard F. Cramer, E. G. Fossum and Fred D. Wilson.

Tube Division-Max F. Balcom.
Parts Division-A. Blumenkrantz, Herbert W. Clough, Russel E. Cramer, Jr., J. J. Kahn, W. Myron Owen, A. D. Plamondon, Jr., and L. S. Racine.

Technical Products DivisionE. K. Foster, F. R. Lack and W. A. MacDonald.

The radio-television industry committee received a lengthy report on industry response to the proposals of the spurious radiation committee, and approved the recommendations of chairman W. R. G. Baker. Dr. Baker proposed that a further effort be made to obtain replies from set manufacturers who have not responded to the committee's questionaire and that thereafter complete information be presented to the Federal Communications Commission.

Baker also proposed that representatives of RETMA and the FCC confer on certain provisions of the Commission's Notice of Further Rule Making on set radiation limitations and that the proposed establishment of a RETMA certification laboratory be deferred until after this conference.

The board of directors, upon recommendation of the RETMA labor legislation subcommittee, adopted a resolution authorizing the Association's officers to support the principle of "pay as you go" in social security financing and an extension of social security coverage to a greater number of persons through the endorsement of pending Administration bill H. R. 9336 which has just passed the House and is now before the Senate Finance Committee. The action was taken following a brief report by subcommittee chairman Robert C. Sprague, Jr.

Fifty committee and section meetings were held during the three-day convention. These included sessions of the division membership and executive committees and regular general and division committees.

The principal subject of discussion at the set division meeting was the removal of the 10 percent excise tax on television sets capable of uhf reception.

\section*{Ramo-Wooldridge Forms Transistor Firm}

Ramo-Wooldridge Corp. has organized a new subsidiary, Pacific Semiconductors, in Los Angeles. Harper Q. North, center, president of the new firm, discusses building plans with Dean E. Wooldridge, left, and Simon Ramo, right, president and vice-president, respectively, of Ramo-Wooldridge.

The new company will be engaged in the development, manufacture, and sale of semiconductor
devices such as diodes and transistors of advanced design. It is a wholly-owned subsidiary of RamoWooldridge and is also receiving \(\$ 3\) million in financing from Thompson Products.

Dr. North, who was previously director of the semiconductor division of Hughes Aircraft, said that Pacific Semiconductors should be in commercial production within a year from now.

\section*{WESCON Outlines Technical Program}

More than 100 technical papers will be presented in approximately 27 separate sessions during the 1954 WESCON, August 25-27.

WESCON is sponsored jointly by WCEMA (West Coast Electronic Manufacturers Association) and the Los Angeles and San Francisco Sections of IRE.

Convention activities for this year's event will center around the Ambassador Hotel, Los Angeles, with several sessions also taking place in the Institute of Aeronautical Sciences Building near Pan Pacific Auditorium.

Plans for the technical program are still subject to minor changes, shifts, and additions. The overall schedule calls for three sessions
each on telemetering, antennas and propagation, computers and electron devices; two sessions each on component parts, circuit theory, management, vehicular communication, airborne electronics and microwave theory and one session each on broadcast and tv receivers, information theory and audio.

Sessions will be held both mornings and afternoons all three days, and one or two sessions of general interest may be scheduled for an evening. The average session will consist of four papers.

Papers on the schedule include: An Input-Output System for a Digital Control Computer by L. B. Retzinger of Librascope; A Transistorized FM/FM Telemetering

\section*{VARGLAS SILICONE CLASS H \\ TUBING and SLEEVING}
for applications requiring prolonged heat endurance at temperatures up to \(260^{\circ} \mathrm{C}\).

Varglas Silicone tubing and sleeving were developed by Varflex for applications involving continuous operating temperatures up to \(260^{\circ} \mathrm{C}\). Exceptional stability is combined with the following qualities . . .

Flexibility - sharp turns and \(90^{\circ}\) bends cause no crocking or peeling - no loss of dielectric strength.
Dielectrically-Strong - All grades conform to NEMA and MIL-I-3190 standards. Moisture-Resistant - including resistance to salt woter, mild alkalis and acids.
Flame-Resistant - Standard burning test is 45 seconds to burn 1 inch. Can

\section*{Send for fREE SAMPLES}

Mail coupon today for free folder containing 25 different test samples of Varflex insulating sleeving, tubing, lead wire and tying sord.

be made self-extinguishing on special order.

Cold-Resistant - Excellent resistance to chafing and obrasion, flexible to \(-35^{\circ} \mathrm{C}\). \({ }^{*}\)
*For temperatures down to \(-65^{\circ} \mathrm{C}\), and for applications requiring extraordinary flexibility, we recommend our new Varglas Silicone Rubber sleeving and fubing. Inquiries invifed.

\title{
servo motors the way you want 'em!
}

As one of the world's oldest and largest producers of servo components, we are ideally qualified to provide you with the right answer to your motor and motor generator needs. Why not take advantage of our long, practical experience? Call on us for recommendations based on your individual problem. TYPICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Type } \\
\text { Number }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Rated Voltage} & \multirow[t]{2}{*}{Max. Power Input Total (Watts)} & \multirow[t]{2}{*}{No Load Speed (RPM)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Stall } \\
\text { Torque } \\
\text { (ox, inches) }
\end{gathered}
\]} & \multirow[t]{2}{*}{Torque to
Ineflial Ratio
(Radians per
Sec.?} & \multirow[t]{2}{*}{Weight (01.)} \\
\hline & Phase 1 & Phase 2 & & & & & \\
\hline \multicolumn{8}{|l|}{LOW INERTIA MOTORS} \\
\hline CK-1018.7 & 18 & 18 & 5 & 10,000 & 0.13 & 13,000 & 1.6 \\
\hline CK-1022-13 & 115 & 115/57.5 & 12 & 4,800 & 1.45 & 33,800 & 8.0 \\
\hline CK-1027.14 & 115 & 115/57.5 & 7 & 6,200 & 0.63 & 41,500 & 4.5 \\
\hline CK-1028-16 & 26 & 26 & 6 & 10,000 & 0.28 & 13,000 & 1.6 \\
\hline CK-1031-18 & 26 & 55 & 9 & 6,400 & 0.35 & 10,000 & 2.2 \\
\hline CK-2006-1 & 64 & 64 & 30 & 7,200 & 2.6 & 70,000 & 10.0 \\
\hline CK-3000-1 & 110 & 220 & 80 & 3,700 & 14.0 & 3,750 & 30.0 \\
\hline \multicolumn{8}{|l|}{MOTOR GENERATORS} \\
\hline FV-101-5 & 26 & 26 & 9.5 & 10,000 & 0.28 & 10,000 & 2.9 \\
\hline FV-2001-2 & 115 & 115 & 30 & 6,600 & 3.0 & 70,000 & 12.6 \\
\hline FV.3000-1 & 110 & 220 & 80 & 3.700 & 14.0 & 3,750 & 30.0 \\
\hline X-1214382 & 26 & 26 & 9.7 & 6,000 & 2.6 & 21,000 & 5.5 \\
\hline
\end{tabular}

WRITE DEPARTMENT C

\section*{ECLIPGE: PIONEE}

\section*{TETERBORO, NEW JERSEY}

Export Sales: Bendix International Division, 205 E. 42nd St., New York 17, N.Y.

System by R. F. Colander and C. M. Kortman of Bendix Aviation, Pacific division; The User Looks at the Component Parts Problem by A. M. Okun of Bell Aircraft; The Planning and Performance of a Completely Integrated Source of Television Signals From Film by A. D. Emurian of Philco; Are Engineers People by A. M. Zarem of Stanford Research Institute and several papers on travelling wave tubes, klystrons and semi-conductor devices.

\section*{Gabriel Electronics Names Engineers}

William P. Short
William P. Short was appointed general manager of the Gabriel electronics division in Norwood, Mass. John Martin was named chief engineer.

John Martin
Short continues in his new post as assistant to the president of the parent firm. Previously he was vice-president in charge of piezoelectric and acoustic development

THREADED TRIPLE-FOLD RING HEAD, . \(075^{\prime \prime}\) thick eliminates nuts . . . avoids loosening. SERRATED EDGES on large size clamp ring circumference allow for maximum and minimum tolerances between the two cups . . . provide greater holding power to cup walls.

When clamp screw is tightened to lock the ends in position, any added take-up on screw brings all pressure to bear on cup circumference . . . prevents slippage.

\section*{BE SURE...USE AUGAT "GRIP-TITE" CLAMP RINGS}

The Augat clamp ring is a sure grip in multiple ganging of precision potentiometers.
Grip-tite potentiometer clamp rings are made of 302 stainless steel, are corrosion resistant and have withstood rigid 200-hour salt spray tests.
All rings normally supplied without screws.
Samples, specifications and prices on request.
For smaller diameters, use Augat standard double-fold non-serrated clamps.

\section*{AUGAT BROS. INC. \\ 31 PERRY AVENUE - ATtLEBORO, MASS.}

\section*{60-DAY FREE TRIAL}
of America's most popular bench assembly stool

A fired worker costs MUCH more than a good chair
- 4-war adjustable backrest
- Scrall shaped pasfure seat
- Tamper-praaf iubular all-welded construction
- Adjustable height ronges fram \(17^{\prime \prime}\) ta \(\mathbf{2 5}^{\prime \prime}\) or \(\mathbf{2 4 " ~}^{\prime \prime}\) ta \(32^{\prime \prime}\)

Now test Royal's famous No. 515 stool in your own plant without cost or obligation. See why the country's top firms choose it for superior versatility and durability. Write for free trial stool today!
orelal furnilure since '97

\section*{Royal Metal Manufacturing Co.}

175 Horth Michigon Avenue, Depl 2108 , Chicago 1
Factorias: Los Angeles - Michigan City, Indiana
Warren, Pa. . Walden. N. Y. + Galt, Dntario
Showrooms: Chicago - Los Angeles - San Francisco
Now York City. Authorlied Dealers Ever ywhere
Royal Metal Mfg. Co., 175 N . Mlchigan Ave., Depl. 2108 , Chicago 1, Ill.
- We want to telt your No. 515 stool for 60 days with\(\square\) Please send your new catalog of industrial sealing.
Name
Firm Name
Addrese
City \(\qquad\)
 on Centralab to solve special switching problems. Industry's most experienced and ingenious "answermen" solve switching problems like yours practically every day. Right at their finger-tips is a wealth of technical and mechanical data covering all of Centralab's basic switch types. It's a matter of using this data, and then assembling the switches in one of Centralab's seven plants. You'll save your company plenty of \(\$ \$ \$\) !

4 -position, 2-pole lever switch on a single wafer. This special switch was designed to solve a particular problem and save money for one customer - we can do the same for you!

\section*{Why is CENTRALAB your most qualified special switching source?}
- Centralab has produced over 10,000 different special type switches.
- Widest variety of standard or special designs available from any manufacturer: Ceramic or phenolic insulation; tone, selector, slide, lever, rotary, power, spring return, TV tuner.
- Extreme design flexibility - you name the switch, we'll design it!
Remember . . CRL design service is yours for the asking - anytime! Ask for a complete set of customer specification sheets for preliminary planning.

\section*{Centralab}

A Division of Globe-Union Inc.
914H E. Keefe Avenue - Milwaukee 1, Wisconsin In Canada: 804 Mt . Pleasant Road, Toronto, Ontario
for Clevite Brush Development.
After the war he was assistant technical director in charge of microwave commercialization at Federal Telecommunication Laboratories. Previously, as manager of radio engineering and development at Crosley early in World War II, he organized the design and production facilities for proximity fuzes, military radio, and radar equipment. He was chief engineer of RCA's receiver division during the period prior to 1940 . While serving at the Radiation Laboratory of M.I.T. during World War II, he was awarded the Presidential Certificate of Merit.

John Martin, previously director of research of Gabriel Laboratories, will direct the division's new product development program as well as head its product and electrical engineering operations. He served as head of development with Canadian Aviation Electronics and during World War II was with the British Admiralty.

\section*{RCA Promotes Engineers, Reorganizes Division}

To coordinate the research and engineering activities of the RCA organization as part of an over-all plan adopted earlier this year to meet the needs of the corporation's steadily expanding business, the following promotions were made:

Elmer W. Engstrom, executive vice-president of RCA Laboratories, has been elected executive vicepresident of research and engineering and continues as head of the RCA Laboratories. In his new capacity Dr. Engstrom will have broad responsibility for all research and engineering activities of the corporation.

Irving Wolff, who has served as director of research, has been appointed vice-president of research for RCA Laboratories.
D. H. Ewing has been appointed administrative director of RCA Labs. He was previously director of the physical and chemical research laboratory.
O. B. Hanson, heretofore vicepresident and chief engineer of NBC has been elected to the RCA

\section*{For easier-to-tie knots that will not slip!}

\section*{Heminwar © Bartlett LACING CORDS and FLAT BRAIDED TAPES}
- Revolutionary synthetic resin coating prevents knots from slipping.
- Laces faster and tighter with less effort. Unique "plastic memory" actually causes lacing to tighten itself after knot is made!
- Its greater strength means minimum breakage minimum rejects.
- The synthetic resin coating retains the desirable malleability of wax and yet has a melting point of over \(190^{\circ} \mathrm{F}\). It is non-toxic to humans.
- Complies with \(A L L\) construction and fungus-proof requirements of Govt. Spec Jan-T-713 and Jan-T-152. Cords and tapes are also available with wax finish.

\section*{For FREE SAMPLES and prices write:}

The Heminway \& Barlett Mig. Co., electronics division, 500 Fifth Ave., New York 36, New York Sales Offices: Chicago, Philadelphia, Boston, St. Louis, Cincinnati, San Francisco, Los Angeles, Charlotte, N.C., Gloversville, N. Y. Fareign Agent: Turner, Halsey Co., Inc., 40 Worth St., New York. Cable Address: THECOTEX

RG-60-D SERIES (RG-60-D-6, 27 and 115) with the following respective specifications - maximum \(D C\) output current of 4.5 A, 1.2 A and 225 MA ; and Regulated output voltages of \(6.0,27\) and 115 V DC.
 hermetically sealed LB case; four \(8-32 \times 5 / \mathbf{E}^{\prime \prime}\) mounting studs; weight: 2 pounds, 3 ounces.
MD SERIES Servo Motor amplifiers specifications -MD-60-115-5: Supply voltage, \(115 \mathrm{~V}, 60\) cycles; oufput. 0-57 V RMS at 10 watts to control phase. Size, \(21 / 2^{\prime \prime} \times 2 \frac{1}{2} 2^{\prime \prime}\) \(\times 3 \%\) "; weight, \(1 \mathrm{lb} ., 9\) oz. MD-400-115-5: Supply volf-
 age, \(115 \mathrm{~V}, 400\) cycles; oufpup, \(0-57 \mathrm{~V}\) RMS at 10 walts: to control phase. Size, \(2^{3} / 8_{8}^{\prime \prime} \times 2^{1 / 10^{\prime \prime}} \times 2 \frac{1}{2 \prime}\) ", weight 14 oz .
\[
\text { Write for Technical Bulletins MA-I, } 2 .
\]

Oiannini DIGITAL COMMUTATORS

Codes: Binary, Binary-Grey, Binary-Decimal with non-ambiguous outputs

Immediate Delivery from stock on standard models having following characteristics:
- 1,000 counts decimal \(\left(300^{\circ}\right.\) to \(360^{\circ}\))
- 1024 counts-binary, grey (\(300^{\circ}\) to \(360^{\circ}\))
- torque-0.5 oz. in ball bearings
- inertia-400 gm. \(\mathrm{cm}^{2}\)
- micrometer zero adjustment
- automatic alignment-no gears

\section*{CUSTOM COMMUTATORS}

Commutators can be furnished
to fit specific applications by either modification of standard
models or wholly new designs. Some variations now available are:
- nun-linear coding
- high-count multi-turn units
- ultra low torque models
- miniature size, geared units
- direct decimal coding
G. M. GIANNINI \& CO., INC.

LABORATORY APPARATUS DIVISION PASADENA 1, CALIFORNIA
Offices: New York: Phone Judson 6.7500
Los Angeles: Phone Ryan 1-7152

\section*{Cicnnini}

\title{
Trouble-Free 400 Cycle" Power Supplies
}

\section*{with American Electric}

\section*{Aliennotors}

\section*{The Alternator} with NoWerr Points!

This is the complete rotating member of an American Electric Inductor Alternator with 2 bearing commonshaft motor drive. Note absence of coils, slip rings, brushes etc. Ball Bearings are the only wear points.

Most rotary electrical equipment is subject to wear... in windings, slip rings, brushes, springs or other working parts. But here's an alternator with NO W-EAR POINTS other than two ball bearings! Even these are grease-sealed; lubricated for life.
With American Electric's exclusive Inductor Alternator design you can forget maintenance, forget trouble! Write for details and power ratings.
- Also available in other fixed frequency ranges or in variable frequency models.
features-Low Harmonic Content, Compact Design, Quiet Operation, High Power Factor.

Here's how the American Elec. tric Inductor Alternator is bullt Note all windings are station. ary. Output is taken directly off stationary windings. Even the excitation is fed to a sta. tlonary winding (center coil)!

Also Manufacturers of High Frequency Revolving Field Alternators,
Miniafure Elcetric Motors A. C. Industrial Motors, Motor Driven Blowers \& Fans

2 Bearing Common Shaft MotorAlternator Set.

Completely Portable Motor-Alternator Sct.

4811 Telegraph Road
Los Angeles 22,
California

FIELD ENGINEERING REPRESENTATIVES: SHVer DIVISION OF AMERICAN ELECTRONICS, INC.
Dallas \& Kansas City * Wright Fleld . Minneapolis. Boston © Buffatio. New York City - Chicago JOE Wright Field \& Minneapolis . Seattle © Montreal - Toronto
DOS ASSOCIATES,
Los Angeles
staff as vice-president of operations engineering. He will have responsibility for engineering matters pertaining to broadcast and communications operations and will direct the activities of the RCA Frequency Bureau. Hanson will report to the executive vice-president of research and engineering as will D. F. Schmit, vice-president of product engineering, who continues in that capacity.

Robert E. Shelby has been elected vice-president and chief engineer of NBC succeeding O. B. Hanson.

He has been associated with NBC since 1929 and in recent years served as director of color television systems development. H. W. Leverenz, has been appointed director of the physical and chemical Research Laboratory at RCA Laboratories. Leverenz was previously a senior member of the technical staff heading the chemico-physics research group and in charge of RCA's phosphor research program.
To achieve greater specialization, RCA Victor has divided its home instrument division into a separate division devoted solely to the manufacture and sales of home television receivers and a new division for radios and phonographs.

Henry G. Baker, vice-president and general manager of home instruments, will serve as vice-president and general manager of the new television division. James M. Toney, former director of distribution for consumer products, has been appointed general manager of the new division for radios and phonographs.

\section*{Bendix Radio Names Engineering Heads}

Norman Caplan has been named manager of commercial engineering at the Bendix Radio Communications division of Bendix Aviation.

He replaces Douglas M. Heller who has been appointed director of engineering at the Bendix missile plant in Mishawaka, Ind.

Heller, with Bendix Radio for the last seven years, was responsible for the development of several of the firm's most important communication and navigation devices.

Caplan was formerly chief en-

\section*{? YOU CHANGE YOUR ADDRESS}

Be sure to notify us at once, so future copies of ELECTRONICS will be delivered promptly.

Also make certain you have advised your local Post Master of your new address so other important mail doesn't go astray.

Both the Post Office and we will thank you for your thoughtfulness. Mail the information below to: Subscription Dept., ELECTRONICS, 330 W. 42 nd St., New York 36, N. Y.

\section*{ELECTRONICS}

\author{
330 W. 42nd St.
}

New York 36, N. Y.

Measure mamex noio To 500 MC:
For development . . . production . . . and communication testing!

Heterodyne-type, uses one crystal to meosure all tronsmitters from 0.1 to 175 me., and crystal-controlled trarsmitters to 500 mc . Accuracy better than \(0.005 \%\). Readings in absolute frequency, or percentoge of error from desired frequency. Useful os precision, low-level, CW signal generator, 20 mc . up. Price \(\$ 220.00\). FN MODULATION METER

Direct indicotion of pzok deviotion on voise modulation, \(0-25 \mathrm{kc}\). positive or negative. Tunable 25 to 500 mc . in one band. Dubles as relative field-strength meter. B silt-in speaker. Jock for oscilloscape. Price \(\$ 240.00\).

\footnotetext{
LAMPKIN LABORATORIE, INC.
INETRUMENTS DIVISION
BRADENTON, FLORIDA
Without obligation, please send me data on lampkin meters
Name \(\qquad\)
Street \(\qquad\)
}

gineer of communications and navigation engineering, hub of the division's production design and development projects for the military. In his new position he will be responsible for the design and development of commercial products in the aviation, automobile and mobile radio fields. Previously, he was deputy director of the technical staff of the Air Navigation Development Board.
J. H. Taylor, veteran of 14 years of engineering service with Bendix Radio, will move into the position vacated by Caplan.

\section*{Burgess Named By Eitel-McCullough}

James Burgess has been appointed head of the newly-formed product engineering department for EitelMcCullough. His new duties will include directing plant activity in design testing, quality control and special engineering assignments arising from plant or customer requirements.
Burgess has been with the Eimac research laboratories since 1949.

\section*{General Instrument Sets Canadian Subsidiary}

General Instrument has organized a Canadian subsidiary, General Instrument-F. W. Sickles of Canada. The new firm has purchased Watt Electronic Products, with a plant in Kitchener, Ont., near Toronto.

Edgar Messing, vice-president of the company's F. W. Sickles Division, will be responsible for initiating and coordinating Canadian ac-

\section*{The Case of the SNUG BUGS}

\section*{Solved by \\ WATLOW HEAT}

\section*{The Case:}

Cartain bacteria (the anaerobes) connot exist in free oxygen. Because they are useful in research, they are cultivated in a Brewer Anaerobic Jar which makes use of hydrogen or illuminating g.js to eliminate free oxygen.

\section*{The Solution:}

Watlow designed a special cortridge unit sealed in a \(3 / 8\) " b-ass tube with a pipe thread and male plug, operating of \(115 \mathrm{v}, 25 \mathrm{w}\), and measuring \(5^{\prime \prime}\) overall. When heated, it activates a platinized catalyst which causes the hydrogen to
 cumbine with the free oxygen to form hot water. The "bugs" are then free to live and reproduce in warm, comfortable "no-oxygen" surroundings.

Wotlow solves unusual electric heating problems every day. What is your heating problem?

newest, neatest, lightest lapel mike on the market

The handiest, low cost lapel mike for all tape recording uses . . . it weighs only 1 ounce and has an alligator clip that really holds. The clip is rubber padded and adjustable holds the mike where you put it; on draperies, clothing or recorder case. Speech reproduction is crisp, clear-cut with chest sounds damped out. Case is light grey plastic. Crys. tal and ceramic interiors available. Send coupon for full information.
Model L-100 (with clip and 20-ft. cable) List Price_---------\$12.50
Model 100 (with clip and with 7 -ft. cable) List Price \(\qquad\)

905 - 17th St. N.E.
Cedar Rapids, lowa
Please send me complete information on your new Models L-100 and 100.
Name.

City
State

\section*{High Accuracy Synchro for Gyro Pick Off}

\author{
(Type SG-17-ו-A)
}

As quantity producers of precision synchros we offer these specially designed interchangeable rotors and stators for gimbal mounting in gyroscopic instruments.

Errors in the finished instrument of less than 6 minutes are obtainable as a production operation with comfortable working tolerances. (The calibration chart in this advertisement shows an error spread of less than 3 minutes.)

Our new plant, built to produce 15,000 synchros monthly, now has open capacity which assures prompt delivery of these synchros if required.

Write or phone A. E. Hayes, Sales Mgr., for full information.

Telephone: MAdison 6-2101 (Suburban Philadelphia)

\section*{CLIFTON \\ PRECISION PRODUCTS COMPANY INC. \\ CLIFTON HEIGHTS PENNSYLVANIA}

\section*{eppe}

Edgar Messing

Hugh T. Watt
tivities, which will include the manufacture of deflection circuit components, auto radio tuning devices, television tuners, converters, transformer windings of various types and ultimately transformers themselves.

Eventually, all manufacturing operations for Canadian customers will be transferred from General Instrument's four domestic plants to Kitchener.

Hugh T. Watt, former president of Watt Electronic Products, will remain in charge of this operation.

\section*{Stupakoff Named Carborundum V.P}

Semon H. Stupakoff, formerly president of Stupakoff Ceramic and Manufacturing was elected vicepresident of The Carborundum Co. of Niagara Falls, N. Y.

Stupakoff Co. was acquired by

Equipment Manuc!s - Product Catalogs - Handbooks - Training Aids Industrial Relations Literature - Procedural Guides - Engineering Presentations - - and any type of technical literature
use our specialists in - - -
WRITING . . . EDITING
ILLUSTRATING . . . PRINTING

\section*{McGRAW-HILL}

Technical Writing Service*
330 West 42nd St., N.Y.C. 36
LOngacre 4-3000

\section*{you could build your own furniture...}

But you wouldn't have much time left to make a living!

It's like that with coils, too. Maybe you make your own - but usually we at Coto-Coil can make them for you faster, as well as better and at lower cost. We use time-saving automatic equipment and the most modern testing devices. We know the best types of materials for each type of coil. And we contribute to your job nearly 40 years of coil design and experience.

Find out how this combination can save costs for you.

Coto-Coil Company, 63 Pavilion Avenue, Providence 5, R. I. New York Office: 10 East 43rd Street, New York 17. N. Y.

\section*{}

\section*{New aids for Thermistor use}

Send for application kits and 52-page manual
Two special application kits of Carboloy Thermistors (negative temperature coefficient resistors) are now available for design and application work. Each kit contains a selection of the most widely used styles and sizes.

The new, free 52 -page technical manual includes latest information on the use of Thermistors in the automatic detection, mation on the use of Thermistors measurement and control of energy.
The manual also contains comprehensive descriptions of Thermistors' properties, revised static and dynamic characteristic curves, specifications and order information. Send coupon, today.

"Carbaloy" is the trademark for products of the Carboloy Department of General Electric Company

\section*{Precision Attenuation -}

Standard push-button Attenuators are the symbol for precision attenuation at very high frequencies. As the only accurate instruments of their kind they are in great demand for research work and regular service the world over.
Four models are now available, ready for building into your own equipment. Each is designed to handle inputs of up to 0.25 watt.

\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{ MODELS AVAILABLE } & CHARACTERISTIC IMPEDANCE \\
\cline { 2 - 3 } & 75 ohms & 50 ohms \\
\hline 0.9 db in 1 db steps & Type 74600A & Type 74600E \\
\(0-90 \mathrm{db}\) in 10 db steps & Type 74600B & Type 74600F \\
\hline
\end{tabular}

\section*{Standard push button ATTENUATORS}

\section*{D.C. Adjustment - Accuracy}

\section*{High frequiency performance}
\(0-9 \mathrm{db}\) models: The insertion loss error will not exceed \(\pm 0.05 \mathrm{db}\) for any setting. \(0-90 \mathrm{db}\) models: The insertion loss error for the 90 db setting will not exceed \(\pm 0.3 \mathrm{db}\). For other settings this limit falls linearly to a value of \(\pm 0.06 \mathrm{db}\) at the 10 db setting.
\(0-9 \mathrm{db}\) models : At \(50 \mathrm{Mc} / \mathrm{s}\) the insertion loss error for the 9 db setting will not exceed \(\pm 0.15 \mathrm{db}\). For other settings this limit falls linearly to a value of \(\pm 0.05 \mathrm{db}\) for the 1 db setting.
\(0-90 \mathrm{db}\) models: At \(50 \mathrm{Mc} / \mathrm{s}\) the insertion loss error will not exceed \(\pm 0.1 \mathrm{db}\) per step. N.B. All insertion errors are relative to zero db setting.

Calibration charts for frequencies up to \(100 \mathrm{Mc} / \mathrm{s}\) for the \(0-9 \mathrm{db}\) models or \(65 \mathrm{Mc} / \mathrm{s}\) for the \(0-90 \mathrm{db}\) models can be supplied, if required.

\section*{Bulletin on request to:-}

Srahdard Telephomes amd Cables Limifed
(AnI.T.\&T.Associate)
TRANSMISSION DIVISION - LONDON - E. 16 - ENGLAND

Carborundum in early 1954 and was recently made a division of Carborundum. As a vice-president of Carborundum Stupakoff will continue to direct the activities of the division.

Stupakoff made many contributions in the development of high temperature ceramics to insulate the white hot tungsten filaments from the nickel cathodes in radio tubes. He developed methods of manufacture of pure alumina insulators of extremely small dimensions precisely made and fired at temperatures of about \(3200^{\circ} \mathrm{F}\). He developed improvements in the insulators of tungsten filaments which reduced the starting time of a radio set from 90 seconds to 30 seconds. Stupakoff's experimentation in this field led to other developments which now form the principal basis of the company's operations.

\section*{Du Mont Tele-centre Formally Opened}

The \(\$ 5\) million Du Mont Telecentre in New York City was formally opened in June.

A new system of isolated control booths is used throughout the Telecentre. The audio technicians, the video technicians and the director and his staff are isolated from each other. Although they can communicate with each other through an intercom system, their mutual isolation is said to eliminate a great deal of the noise and confusion attendant on tv studio operations and to allow each man to concentrate fully on his own job.

All five control rooms are located

\section*{500 GAN'T SHAKE EM COOSE! BUT YOU CAN COOL 'EM OFF.}

With BIRTCHER

\section*{KOOL KLAMPS}

BIRTCHER KOOL KLAMPS will help keep your subminiature tubes COOL ... and hold them firm and secure, regardless of how they are shaken, or vibrated.
KOOL KLAMPS are made of a specially developed heat treatable alloy \(991 / 2 \%\) pure silver of high thermal conductivity.
KOOL KLAMPS under certain conditions are able to reduce bulb temperatures as much as \(40^{\circ} \mathrm{C}\). KOOL KLAMPS have proved of particular value in miniaturized electronic equipment.
Where heaf conditions are less critical, beryllium copper KOOL KLAMPS are available.

Company
Attention of
City
\(\qquad\) f...
..... State

By consistently gearing our production to meet customers' schedules, of ten anticipating their needs, Allied Industries has earned a reputation for service and for making good on delivery promises ... and we intend to do everything possible to maintain it.

Rather than take a chance or production tie-ups-it's far better to rely on Allied Industries adequate plant facilities that assure prompt delivery of all orders.

Our coaxial cable connectors meet all government specifications. Constant inspection and sensitive testing devices maintain the most rigid quality control. Engineering know-how makes it possible to reduce tolerances to new minimums with accuracy-and our silver plating is of outstanding high quality.

For fast action on quality connectors at the right price \(\ldots\). phone, wire or write Allied Industries.

1 A1-11022-High voltage quick disconnect plug.
2 UG-154U - A1-11070 - Type LC Plug for use with RG-17/U cable.
3 UG-21D/U-A1-11072 Improved Type \(N\) Plug.
4 MX-554/U - A1-11039 - Type BNC Resistive Termination,
5 Al-11047 - High voltage quick disconnect right angle adapter.
6 UG-355/U-And UG-356/U -A1-11006 Klystron Coupler.
7 UG37A/U-A1-11032 Ceramic insert, pressurized, high voliage receptacle.

\section*{ALLIED INDUSTRIES, Inc}

25th at Woodland Ave. Louisville 10, Kenfucky
in a vertical bank through the building. The cables connecting each studio with the master control are in a straight line for shortest possible cable runs.

The Tele-centre contains five major studios. The largest measures \(110 \mathrm{ft} \times 80 \mathrm{ft}\) in area and 40 ft in height.

One studio is devoted exclusively to color telecasting.

Amphenol Canada
Organized in Toronto

A new company chartered as Amphenol Canada Limited, under the presidency of J. R. Longstaffe has been formed in Toronto. The undertaking is to be a Canadian operation with its manpower, management, and engineering being reinforced and aided by American Phenolic of Chicago to whatever extent may be necessary at the outset and for only as long as conditions demand.

A close liaison is to be maintained between the two companies which will permit adequate stocks of Amphenol components to be kept on hand for prompt delivery from the Canadian plant to all Canadian customers.

To house the new firm's operations, \(30,000 \mathrm{sq} \mathrm{ft}\) of manufacturing and office facilities have been acquired in Toronto, Ontario. Sales offices are to be maintained in leading cities from coast to coast.

\section*{Magnecord Appoints Two Chief Engineers}

As part of a general reorganization and expansion program at Magnecord in Chicago, Erwin M. Weiss has been named chief en-
gineer in charge of instrumentation and Michael G. Seidl heads the technical section of the new commercial music division as chief engineer.

Prior to jaïning Magnecord, Weiss was chief engineer in charge of color television of Muntz TV. Previously he was senior engineer for the Chicago division of Raytheon and in the research division of Admiral.

Seidl joined Magnecord in August, 1953, as chief engineer. He was formerly with Boeing in Seattle, Wash., where he directed research, design and development of electronic equipment.

The company has entered into an agreement to buy two buildings in Chicago with a total of 72,000 sq ft of floor space.

\section*{Donald Rogers \\ Joins Jerrold}

Donald H. Rogers has joined the engineering department of Jerrold Electronics of Philadelphia. He was formerly chief engineer of BlonderTongue Labs and has been with Western Electric.

\section*{Golenpaul Elected Head of Radio's Old Timers}

At the annual gathering of Radio's Old Timers, held in conjunction with the Electronic Parts Show, Charles Golenpaul, right, vice-president of Aerovox, was elected president of the group succeeding Ray L. Triplett, left,

Amerac's new...

\section*{KLYSTRON CAVITY OSCILLATOR}

The type 198 Klystron Cavity Oscillator is a signal source designed to accommodate the Sylvania 6 BL6 and 6 BM6 Klystrons. Utilizing both tubes and two modes of operation, it is possible to generate a CW signal tunable over a frequency range from \(1 K M C\) to \(4 K M C\). For the exact frequency range of each tube in either of its modes, as well as power output, consult the syivania specification sheets for 6 BL6 and 6 BM6 Klystrans. It is passible to gain full performance from these tubes In the type 198 Cavity Oscillator because the precision machined component parts of the best quality materials available have been held to exacting requirements of accuracy.

\section*{FEATURES}
- A tuning accuracy in the center trequencies of \(\pm 1\) MC, made possible by the precision machined tuning mechanism incorporating a Root counter for ease of calibration and observation.
- A quick release tube socket assembly, making tube changing a simple operation.
- A standard rack panel machined for secure aftachment of the cavity, assembling neatly into your equipment.
- Silver plated conducting surfaces providing high radio frequency surface conductivity; Rhodium flash preventing corrosion.
- Female type \(\mathbf{N}\) coaxial output connection.

Overall size, including panel, is \(19^{\prime \prime}\) wide, \(51 / 4^{\prime \prime \prime}\) high, \(12^{\prime \prime}\) deep. Finish is smooth gray or black lacquer on cavity, with nickel plate trim, and gray or black baked wrinkle enamel on panel.
Shipped with tubes, if desired, at extra cost.

\section*{Engineers like these Features}
- Interchangeable R. F. Heads for specific frequency (or band) coverage - \(300 \mathrm{mc} / \mathrm{s}\) to \(40 \mathrm{kme} / \mathrm{s}\).
- 5" medium persistence C R T display.
- 20 kilocycle bandwidth I. F. amplifier. Stable low noise circuit with higher usoble gain.
- Dual range sweep - 2 to 20 C P S in iwo overlapping ranges.
- Single control - ready to use on either range without modification. Stondard C R T bezel for camera or hood.
- Fully regulaied DC supplies and stabilized "safely" high voltage supply.
- Minimum controls for maximum convenience.
- Amplified indication for transmission wavemeters.
- Exiended low frequency response - New high-speed sweep and relrace.
- Improved power response linearity.

\section*{PLUS your choice of INTERCHANGEABLE R. F. HEADS}
\(2511 \quad 800-2400 \mathrm{mc} / \mathrm{s} \mid 25 \times 2 \mathrm{a} \quad 5700-7425 \mathrm{mc} / \mathrm{s}\) 2051 2400-3650mc/s \(25 \times 2 \quad 6250-7425 \mathrm{mc} / \mathrm{s}\) 2051a 2400-4040mc/s 20Xib \(9500-10,250 \mathrm{mc} / \mathrm{s}\) 25C1b 4240-4910me/s 20X1a 8500-10,250me/s 25C1a 4240-5900me/s 20X1 \(8500-9660 \mathrm{me} / \mathrm{s}\) 25C1 5100-5900mc/s 25K1 15,300-17,700mc/s \(25 \times 2 \mathrm{~b}\) 5700-6600mc/s \(25 K 2\) 22,800-26,400me/s \(25 \mathrm{KQ1} 34,000-38,500 \mathrm{mc} / \mathrm{s}\)

On Display at

\section*{WESCON BOOTH 535}

August 25-27, 1954 WEST COAST REPRESENTATIVES
J. T. Hill Sales Co.
C. E. Ault Associates 800 West llth St. 625 Laurel Ave. Los Angeles 15, Cal. Ron Merritt Company 120 West Thomas St. Seattle 99, Wash.
Gates Company Gates Company 200 South Main Si. 122 Harvard Dr., S.E. Salt Lake City, Utah Albuquerque, N. M.

\section*{FOR FULL INFORMATION}
on the SA25 and R.F. Heads see your local representative or write:

founder and president of Triplett Electric Instrument. Triplett, who is celebrating his fiftieth anniversary as a manufacturer of radioelectronic equipment, was presented with the testimonial plaque shown on which an original Triplett tube tester of 25 years ago is mounted. Sam Poncher, president of Newark Electric, was named secretary of the group.

\section*{McGraw-Hill Book Co. Appoints Schiff}

Leonard I. Schiff, professor of physics at Stanford University, has been appointed consulting editor of McGraw-Hill's International Series in Pure and Applied Physics. He succeeds G. P. Harnwell, who resigned the editorship upon his recent acceptance of the presidency of the University of Pennsylvania.

\section*{Roberts Elected President of Philharmonic}

Leslie Roberts was elected president and chief executive officer of Philharmonic Radio and Television.

Roberts, who has been executive vice-president of the firm since 1950, replaces B. H. Lippin who stepped up to board chairman.

\section*{Gramer Names}

Vice-Presidents
Gramer Transformer has recently appointed three vice presidents.

Ralph L. Weber, secretary, was named executive vice-president; Burt Anderson, vice-president in

\section*{- \(\sqrt{\text { ECTRON }}\) \\ PRECISION LINEAR WIRE-WOUND POTENTIOMETERS}

\section*{GENERAL SPECIFICATIONS}

Over-all Resistance: 50 ohms to 50,000 ohms Resistance Tolerance: \(\pm 5 \%\) standard (\(\pm 2 \%\) or \(\pm 1 \%\) if specified)
Independent linearity: \(\pm 1 \%\) standard (\(\pm 0.5 \%\) or \(\pm 0.25 \%\) if specified) Temperature Coefficient of Resistance Wire: 0.00002 parts per \({ }^{\circ} \mathrm{C}\), above 250 ohms 0.0007 parts per \({ }^{\circ} \mathrm{C}, 250\) ohms or less Power Dissipation: Nominal dissipation rating. 2 watts at \(25^{\circ} \mathrm{C}\). Rated 5 watts to \(5^{\circ} \mathrm{C}\) under specific conditions
Electrical Rotation: \(320^{\circ} \pm 5^{\circ}\) standard to \(357 \pm 1^{\circ}\) if specified
Resolution: Optimum-based on resistance Terminal Assembly: Treated, electrical grade, laminated phenolic with goldplated terminals.

\section*{Always to Your Specifications}

From Vectron's three basic Potentiometer styles, \(7 / 8^{\prime \prime}\) diameter, \(11 / 16^{\prime \prime}\) diameter and \(2^{\prime \prime}\) diameter, units can be made to suit your individual requirements. Multiple ganged units with individual phasing, special stops and even specially tapped units supplied to order, individually or in quantity. Additional new sizes and new types are being prepared as this publication goes to press. Standard shafts supplied in any length or detail; special bushings and shaft locks to order.
High Linearity - Superior Performance Vectron Potentiometers provide superior performance. Uniformity and linearity far beyond normal specification requirements are the result of long experience. Close tolerances and special processing insure minimum run-out and bearing angularity.

\section*{Precision Components Section}

Sle tomicicand Slecto -Tuchanical Racioment

\section*{Have You Taken a Good Look Lately at...} CERAMHICS?

Very possibly you need the properties of FRENCHTOWN engineered ceramics to give you resistance to high temperatures and low thermal expansion; excellent mechanical strength and wear resistance; superior dielectric strength at both high and low frequencies.

Why not send for this chart showing electrical and mechanical characteristics of FRENCHTOWN high-performanceceramicbodies. Name your problem; we'll also send test samples.

\title{
Finest CLOSELY-REGULATED PRECISION DC POWER SUPPLIES
}

\author{
HIGH VOLTAGE-HIGHCURRENT
}

Control Magnetic Amplifier.
OUTPUT: 6 to 500 VDC at 5 to 200 Amps. continuous.
RIPPLE As low as \(0.01 \%\) RMS.-or to customer's specification.
regulation-Steady State, \(\pm 0.15 \%\) no load to full load.
Dynamic. \(\pm 0.2 \%\) under extreme load or line change.
precise regulation for Laboratory or Production work.
Designed to meet the most exacting requirements of the Electronics industry, Inet Precision Power Supplies combine the long-life performance of selenium rectifiers with the rugged dependability of magnetic amplifier controls.
protected . . Engineered for long, trouble-free operation, Units are fully protected against overloads and static elements eliminate maintenance.
COMPACT-Simple to Install and Operate
Requires minimum space, housed in steel cabinets with meters and controls mounted for quick visibility and operation. Available in wall, floor-standing or caster mounted models.

Division of LEACH CORPORATION

4441 Sonta Fe Avenue Las Angeles 58 , California

\section*{IN.RES.CO \\ WIRE WOUND RESISTORS for CIRCUIT DESIGNERS}

\section*{SEALED IN MOLDED BAKELITE PLUS LIGHTWEIGHT}

The dependable resistive elements that combine positive sealing with the important advantage of lightweight Molded Bakelite core reduces weight by one-half compared to ceramics Positive seal effectively protects the winding against harmful climatic conditions. Additional IN-RES-CO fea tures include long life stability, hard soldered connections to terminals and extra-sturdy, vibration proof terminal leads. Both CX and BX Resistors include space-saving terminal sup-
 ported axial terminals of tinned wire.

ASK for the new RESISTOR HANDBOOK Contoins complete dato on resistors for every purpose and their recommended poplications Please make request on

\footnotetext{
APPLICAIION-DESIGNED RESISTORS FOR ELECTRONICS AND INSTRUMENTATION
}

\section*{Electronic Counter}
- All Digital Operation for High Reliability.

No frequency odjustments are mode. The counting interval is generoted
by digital division of the crystal standord frequency.
- Internal Self Checking Features.
- Input Level Metering Circuit.
- Military Quality Premium Components Throughout.
- Rugged Construction for Field Use.

en Citalog answers O-ringr questions

You"d find complete installation data-
and the answers to most O-ring questions -in the new O-ring catalog 9-B given free by

Minnesota Rubber. No matter how tough your O-ring problem, rest assured that Minnesota

Rubher will find the best answer at the
lowest possible cost
Minnesola Rubber is the world's
largest manufacturer of O-rings. Many
are used today in the finest electrical systems
Write today for complete details. Don't forget
to request your free catalog 9-B, "O-rings."

\section*{Minnesota Rubber and Gasket Company}

3630 Wooddale Avenue, Minneapolis 16, Minnesota,
Dept. 311. Phone Mohawk 9-6781

Ralph L. Weber
charge of sales and Fred R. Cooper, vice-president in charge of engineering.

Weber, who retains his position as secretary, has been general works manager. With 21 years background in metal finishing and transformer manufacture, he joined Gramer in 1951.

Cooper, who has been chief engineer, has been in the transformer field for twenty years, with ten years experience in design and production of transformers for the armed forces. He has been with Gramer since 1949.

\section*{Pinkerton Joins} Airborne Instruments Lab

Harry Pinkerton has been appointed manager of engineering applications by Airborne Instruments Lab. of Mineola, N. Y. He will direct the laboratory's activities toward
increasing the application of electronics techniques to the needs of government, commerce and industry.

Prior to joining AIL, Pinkerton operated his own development laboratories at Oyster Bay, New York. He was also affiliated with Specialties Incorporated as chief production engineer; Higgins Aircraft in New Orleans as assistant director of mechanical operations and Martin Aircraft at Ft. Cook, Nebraska as supervisor of facility maintenance.

\section*{Professional Engineers Name Officers}

Thomas M. Linville, manager of GE's research operation services department, was named president of the New York State Society of Professional Engineers. He succeeds Carl M. Gilt of Brooklyn.

Other Society officers for the year beginning June 1 are: Herbert F. Roemmele, first vice-president; Lewis J. Sforzini, second vice-president; Patrick M. Corry, treasurer and Richard B. Richardson, financial secretary.

\section*{A. D. Little Acquires Merrill Laboratories}

Arthur D. Little, Inc. has acquired the research and development division and laboratories of The Merrill Company, metallurgy and engineering firm in San Francisco.

The acquisition of Merrill laboratories, now to be known as the Western Laboratories Division of Arthur D. Little, will make research and product development by ADL conveniently available to West Coast industry

Charles G. Harford of ADL has

\section*{AUTOMATIC LOCKING - QUICK DISCONNECT ELECTRICAL CONNECTORS}

Here's an exclusive, new concept in electrical connector design. Hubbell Interlock's line features an Automatic Locking - Quick Disconnect action for fast, easy wiring and wiring maintenance. The Interlosk plug locks automatically when plugged in, stays locked in use, yet can be quickly disconnected when desired. This locked, vibration proof connection has con-
stant low contact resistance and actually makes contact on two separate surfaces, which are under constant coil spring pressure. Above, are illustrated the versatile line of Interlock Connectors, including the newly developed Type "C" SubMiniature Connector that has proved ideally adaptable to the "printed" circuit.

\section*{Locking and Contact Action}

For Further Information, Write Dept. A:

\author{
HARVEY HUBBELL, INC. Interlock Dept., Bridgeport 2, Conn.
}

\title{
COAXWITCH COAXIAL SELECTOR SWITCH
}

\author{
50 Ohms - \\ \section*{Type N Connectors-Manually Controlled Low VSWR-4 Models}
}

The \(X C A X W I T C H\) is an RF swiech for use ine coaxial circuics where it is imporcant that the 50 OHM impedance of the cables be maintained. In a circuit sense, this switch consists of two pairs of "N" connectors upaced \(11 / 2\) " apart using RG-8/U as the conaecring link. The COAXWITCH itself foerodeces no VSWR other than that of connectors. Charscreristic impedance is maintained thru all switch details. Cute-

Why view shows that shield as well as cencer conductor is switched. Beryllium copper contacts, on the gooseneck, mate directly with male " \(N\) " (Type UG-21B/Ul connectors, which connect directly to back plate of switch. Since all connectors come out is line with axis of switch, right angle connectors are usually unnecessary.
\(\angle\) Lerature Gladly Sent

SIGMUND COHN MFG. CO. INC. 121 So. Columbus Avenue, Mı. Yernon, N.
been transferred to San Francisco to be technical director of the Western Laboratories Division. He joined the staff in 1925 and has been in charge of many of the company's leading product development cases.

Raymond E. Byler, who has been responsible for the technical activities of the Merrill Company, has been named business manager of the division.

\section*{Central Research Names Rickett}

Robert J. Rickett has been appointed as a physicist on the staff of Central Research Laboratories, a scientific instrument firm in Red Wing, Minn.

Rickett was formerly employed in the radio instrumentation department of Sperry Gyroscope.

Standard Coil Elects Executive Vice-President

James O. Burke was elected executive vice-president of Standard Coil Products Co. Jere H. Cavan-

\section*{Fits your Product --Builds Sales} BRADLEY
HAS A PIGID PLASTIC BOX FOR YOU

\(819^{\prime \prime} \times 4 \%{ }^{\prime \prime} \times 1 \%{ }^{\prime \prime}\)
(assorted compartments)

\(51 / 4^{\prime \prime} \times 4^{\prime \prime} \times 11^{\prime \prime}\)

Many aggrossive merchandisers of industrial components are using our polystyrene boxes to
improve their packaping....create sales appeal. Write for illustrated catalog, giving dimenstons, etc. ... or visit our new factory and showrooms when in Chicago.

Available from Stock molds ... "'World's largest assortment of plastic boxes.'

\section*{DHPENDABIHFY PROVFD ! !}

\section*{In Thousands of Installations}

\section*{ENTTCMERAFT}

\section*{"UIT-JAX"}
- Rugged Steel Frame provides rigidity and dimensional stability.

Long frame type, commonly referred to as a Telephone Switchboard Jack. Rugged steel frame, produced in specially designed dies-press welded to provide the rigidity and dimensional stability so important in Communication Jack Ponels.
Write for special bulletin No. S-520.
- Maximum Life Springs Corrosion resistant.
- Palladium contacts.

Springs of special alloy of nickel silver, produced in precision designed dies, insure maximum spring life. Welded cross-bar palladium contacts. Finishes and insulations meet the exacting requirements of the military specification JAN-J-641.

1336 N. Halsted St. Chicago 22, III.
Conodian representative Atlas Radio Corp. Ltd. 560 King St. W., Toronto 2 B , Conada. Phone: Waverly 4761

Waverly 4761

Visit our booth
No. 261-
Western Electronic Show \& Convention Los Angeles, August 25-27, Pan Pacific Auditorium

\section*{ULTRA LOW ULTRA LOW} TO HANDLE DIRECT ORDERS OR EMQUIRIES FROM OVERSEAS
SPOT DELIVERIES FOR U.S. BILLED IN DOLLARS SETILEMENT BY YOUR CHECK CABLE OR AIRMAIL TODAY

\section*{Radio Receptor has changed the}
capacitance capactuation

\section*{NEV 'MX and SM' SUBMINIATURE GONNEGTORS Constant \(50 \Omega-63 \Omega-70 \Omega\) impedances}

TRANSRADIO LTD. 138a Cromwell Rd. London SW7 ENGLAND
Cables: thanshas, londem
augh was appointed financial administrator for the company and will work directly under Burke.
Burke, who founded Standard Coil with president Glen E. Swanson in 1935, is also treasurer and a director of the company.

\section*{TV Station Chief Engineer Is Honored}

Raymond C. Rodgers, right, chief engineer of WDTV in Pittsburgh, received the first Channel Master Award for "outstanding contributions resulting in the betterment of television transmission and reception." Harry Johns, executive director of the Electric League of Western Pa. presented the gold cup award. The antenna firm has established the award as an annual honor.

\section*{Radio Receptor}

Changes Division Name name of its seletron \& germanium division to semi-conductor division, to better identify the complete range of products manufactured under its expansion program.

Electronic components now produced by the division include selenium rectifiers, germanium transistors and diodes, and silicon diodes. Silicon transistors will be next.

\section*{Industrial Electronics \\ Lab To Be Established}

A \(\$ 27,500\) GIFT from the faculty of Case Institute of Technology has been made for a Glennan Laboratory in Industrial Electronics, in honor of T. Keith Glennan, presi-
dent of Case. The lab will be in the electrical engineering building now under construction at the Institute. It is scheduled for completion next Febrlary. It is expected that the gift will be used to equip the laboratory.

\section*{Dempsey Promoted}

By Convair
James R. Demfsey was appointed program director of one of Convair's guided missile projects.

Dempsey joined Convair in 1953 as assistant to vice-president T. G. Lanphier Jr. For the previous ten years he was with the Army and Air Force.

In 1951, he was sent to the Air Force Missile Test Center at Patrick Air Force Base, Fla., as operations officer for a Missile Test Wing. He held the rank of lieutenant colonel when he left the Air Force last year.

\section*{Larson Appointed WCEMA Manager}

DON LARSON has been named to the post of gene:al manager of WCEMA, West Coast Electronic Manufacturers' Association. The position was recently established by the group to meet the increasing need for coordination of the activites of the 165 member companies.

According to E. P. Gertsch, WCEMA president, the electronics industry of the West in the fastest growing field in the area and will maintain a volume this year of more than three-quarters of a billion dollars, principally in complex

\section*{SWEEPMASTER Sweep Frequency Generators give you these outstanding advantages}
- Frequency Marker with an accuracy independent of Sweep Width. Inserted after external detection, it eliminates erroneous interpretation-climinates possibility of undesirable transient distortion or limiting actions. The Marker is adjustable in amplitude and after adjustment remains independent of other controls.
- An attenuator whose performance is free of Frequency, assuring you that the Output Envelope is the same as that indicated by the Internal Monitor.
- A simple switching operation to permit examination of either Envelope of the Swept Freguency Signal.
- Durable, compact, lightweight Output and Detector Probes, either of which can be detached easily and replaced by cables having standard connectors.

SPECIFICATIONS
\begin{tabular}{|l|c|c|c|c|}
\hline MODEL & \begin{tabular}{c}
CENTER \\
FREQUENCY
\end{tabular} & \begin{tabular}{c}
RF OUTPUT \\
SO ohm \\
TERMINATION
\end{tabular} & \begin{tabular}{c}
SWEEPWIDTH \\
CONTINUOUS \\
ADJUSTMENT
\end{tabular} & \begin{tabular}{c}
FREQUENCY \\
MARKKER
\end{tabular} \\
\hline SM I & 100 KC to 11 MC & 1 volt RMS & 150 KC to 14 MC & 100 KC to 11 MC \\
\hline SM II & 500 KC to 50 MC & 0.2 volt RMS & 150 KC to 20 MC & 500 KC to 50 MC \\
\hline SM III & 500 KC to 75 MC & 0.1 volt RMS & 150 KC to 20 MC & 500 KC to 75 MC \\
\hline
\end{tabular}

FLATNESS: Less than 1 DB variation over maximum sweepwidth range. FREQUENCY MARKER: Engroved calibration accurate to \(\pm 2 \%\).
- 75 ohm available when specified

HORIZONTAL DEFLECTION: A 60 eps sine wave for application to horizontal input of oscilloscope is supplied.
BLANKING: The RF signal may be operoted
continuously or blonked out for \(1 / 2\) of each 60 cycle period.
EXTERNAL DETECTOR: Blocking copocitor of 400 volt breakdown capocity.

(1) Glasseal hermetically sealed sub-miniature paper tubulars. Manufactured to the highest commercial standards and engineered to the exacting performance requifements of Military Specification MIL-C-25-A.
(3) Oil paper capacitors of finest possible commercial quality, meeting MIL-C-25A and Jan-C-25 standards of precision.
(3) Electrolytics of superior commercial performance characteristics, meeting Jan-C-62.

Write for Catalog J-8 for further detailed information. Or call your local Pyramid Sales Representative or write to:

\section*{PYRAMID ELECTRIC COMPANY}

\author{
Dept. 123, 1445 North Hudson Blvd., North Bergen, New Jersey
}

\section*{TRANSFORMERS}
"Fill Your Need to a "

DESIGNED TO COMMERCIAL AND MILITARY SPECIFICATIONS
(MIL-T-27 and AN-E-19)

Brooklyn 7. New York

\section*{HALF KILOWATT}

\section*{REGULATED} POWER SUPPLY

\section*{Continuously Adjustable}

These Furs Power Supplies are designed for laboratory, producedion line test stations and other applications requiring 500 watts of closely regulated power.

Electronic regulation provides a constant DC voltage independent of line and load variations within wide limits.

Two models are available with continuously adjustable outputs without switching:
Model 1110 Up to 1000 Volts at 500 milliamperes
Model 1110A Up to 1500 Volts at 330 milliamperes

Write for complete specifications of these and other Furst Regulated Power Supplies. We will also design power supplies to fit your exact requirements.

\section*{FIRST}

ELECTRONICS, INC.
3324 W. Lawrence Ave., Chicago 25, III.

\section*{Reliance Pica Co., Inc. MICA SPECIALTIES}

\section*{RADIO and TV TUBE SPACERS}

\section*{CAPACITOR FILMS}

\section*{HEAT RESISTANCE WASHERS}

Reliance are specialists in the fabrication of Mica parts. For 27 years, they have met industry's specifications for critical tolerance and quality control. Our years of experience meeting close tolerance work can help you whenever you are faced with tight specifications and our quality control will meet the increasing rigid specifications of today's design

\section*{QUALITY MICAS MAKE QUALITY TUBES}

Is your application of Mica correct? Consult us for help in obtaining the proper use of Mica in your products.

\footnotetext{
RELIANCE MICA CO., INC. 341-351 39th St. Brooklyn 32, N. Y.
}

Our specially designed machines now wind Toroidal Coils quicker and with more accuracy than other standard methods. Universal Toroidal Coils in any size wire to your specifications-are economical in materials and possess the smallest external leakage field of all other shapes.

Universal Toroids wound to Mil-T-27 specs.
Wire sizes \#42 (.00249 mils) to \#10 (. 1019 mils). Excellent Delivery in small or large quantity.

\section*{Engineering Service Available.}
"ACCURACY IS A UNIVERSAL WORD"
 UNIVERSAL (W)

MANUFACTURING COMPANY,INC.
Michigan \& Monroe Aves., Kenilworth, N. J.

The I.E.R.C. subminiarure shield has no resonances when I.E.R.C subminiature tube clamp shields reduce bulb temshaken at 10 G from 0 to 2000 cycles. The shield relies upon intimate contact of the soft pure silver with the bulb to conduct hear from the tube to the hene sink and in all to holds the tube firm in relation to the heat sink.
Use of the I.E.R.C. shield provides the only method, with the exception of potting, that does not have a resonant condition of a cube and shield combination. Any high spots existent on the tube readily embed themselves with the soft silver of the shield preventing the movement of a tube in relation to the silver.
perature more than any other type shield or mouming procedure and result in a maximum temperature gradient of \(5^{\circ} \mathrm{C}\) per watt of plate dissipation between the bulb of the subminiature tube and the heat sink when the shield is cither soft or silver soldered to the heat sink
I.E.R.C. can also supply, on request, aluminum subminiature shields. The aluminum subminiature thields are ideal for use where aluminum chassis are used and may be spot welded or aluminum welded directly to the chassis.

\section*{free booklets! \\ There's a wealit \\ of practical engineering informa} tion, grophs, te facts on miniature and subminiature tube
clamps in thets booklefs. Write on com-
clamps int thew booklefs. Write
electronic research corporation 177 WEST MAGNOLIA BOULEVARD - BURBANK, CALIFORNIA repíksentatives

will be 8,500 , including about 1,000 civilians and specialists.
The army has announced that as an electronics proving ground, Huachuca will provide facilities for developing operational doctrine, procedures, and techniques for communication systems and equipment. It also will serve as testing ground for electronic warfare and battlefield surveillance technique and equipment, combat operations, research, and Signal Corps activities.

\section*{Hammarlund Names \\ C. L. White}

C. L. White has been appointed chief liaison engineer of Hammarlund Manufacturing of N. Y. C. He will coordinate engineering and sales activities relating to industrial applications of telemetering and remote control to petroleum refineries, pipe lines, railroads, public utilities and other heavy industries.
White came to Hammarlund from R. B. Barnhill Associates of Baltimore, who represent Hammarlund. Previously he was associated with the Brown Instrument Co. in Baltimore, Chicago and Detroit.

\section*{GE To Build New \\ TV Set Warehouse}

A NEW \(91,450 \mathrm{sq} \mathrm{ft}\) warehouse is being built for GE's radio and television department at Electronics Park.

The expansion is to permit increased production and a speed-up of shipments of television receivers to the department's customers.

The new warehouse will be an ad-
dition to the present radio and television department building and will increase the capacity of the present warehouse by about five and a half times. The structure and its equipment will cost in excess of \(\$ 1\), 500,000 , and will be used for warehousing o up to \(40,000 \mathrm{tv}\) receivers.

Total available manufacturing and warehousing space, after completion of the new warehouse, will be \(393,678 \mathrm{sq} \mathrm{ft}\). The building also houses the eng-neering, sales and administrative functions of the department.

\section*{Block Joins}

\section*{Burroughs Division}
I. Edward Block has been appointed computer consultant by Burroughs' Electronic Instruments Division, Philadelphia.

The mathematical specialist, who two years ago co-founded the Society for Industrial and Applied Mathematics (S.I.A.M.), will serve as technical liaison to customers who rent the services of Burroughs Unitized Digita Computer.

Block also will establish a computer training course planned by Burroughs for scientists and engineers from firms who make use of the UDEC computer.

Dr. Block cones to Burroughs from Philco where for three years he worked in the research division as mathematical consultant on electronic problems.

Previously Block worked on the development and testing of radar devices for the Naval Research Laboratory in Washington, D. C. Block is now secretary of S.I.A.M.

UHF Standard Signal Generator with Low Hum Level

SPECIFICATIONS:
Frequency Range: 300 to 1000 Mc .
Frequency accuracy \(\pm 0.5 \%\).
Outpul: 0.1 uv to 1.0 v across a 50 -ohm load.
Modulation: 0 to \(30 \%\) from an internal 1000-cycle oscillator. External modulation from 5010 20,000 cys. Residual hum modulation less thon \(0.5 \%\).
Power Supply: 105 to 125 volts, 60 cycles, 120 watts. Leakage: Negliggible.

\section*{MODEL 84 -TV}

\section*{fEATURES:}
- DC operation of oscillator tube filament.
- Wide continuous frequency coverage.
- Frequency calibration accurate to \(\pm 0.5 \%\).
- Outpur dial calibrated in microvolts.
- Negligible stray field and leakage.
- Special design mutual inductance type attenuator.
- Low harmonic content.
- Low residual hum modulation. USES:
The versatility of this instrument makes it adaptable to many applications within its frequency range; for driving slotted lines and other impedance measuring devices; for measuring the characteristics of UHF filters, traps, antennas, matching networks and other devices.

\section*{CTMEASUREMENTS \\ Laboantany Stardardi \(\mp\) CORPORATION BOONTON . NEW JERSEY}

\section*{NOW...SOLVE YOUR HIGH VOLTAGE PROBLEMS with BETTEREQUIPMENT}

Our years of experience gives you MAGNATRAN Heavy Duty High Voltage products . . . built
for longer life and rugged performance

\section*{\(\leftarrow\) NEW UNITIZED RECTIFIERS}

For high voltage D.C. sources . . . lower initial cost . . . minimum upkeep . . . convenient - ready to connect to AC. line and D.C. load...compact - requires minimum floor space.

\section*{AIR . . . OIL . . . ASKAREL}

Plate Transformers. Filament Tronsformers. Filter Reactors. Modulation Transformers. Distribution Transformers. Pulse Transformers. Testing Trans. farmers. Precipitation Transformers. General Pur34 KW 17,000 V.D.C. pose Transformers. Hi-Valtage Transformers.

Askarel Immersed
Filter Reactor 50,000 Volt Test

\section*{WRITE FOR DETAILED INFORMATION MEETS STANDARDS OF AIEENEMA}

A NAME SYNONYMOUS WITH EXPERIENCE MAGNATRAN INCORPORATED
TRANSFORMERS AND ELECTRICALEQUIPMENT WAGTER OARGICK, JR., PRESIDENT
246 SCHUYLER AVE., KEARNY, NEW JERSEY

(®)

\section*{Leaders and Specialists in \\ "ENGINEERING"}
offered splendid opportunities in Boston Engineering Laboratory!
Men qualified to handle high level assignments in electronics are offered a challenging opportunity in Boston, under ideal working conditions divorced from production. The laboratory provides stimuloting projects, an atmosphere of scientific progress and provides assistance towards your personol advancement or professional recognition. You will work with o top level technical staff possessing the finest focilities. Administrative positions are open to men qualified to guide the efforts of others.

\section*{MICROWAVE ENGINEERS}

Senior engineers to hondle design and development projects ond provide technical direction of other top-level engineers working on micrewove circuits and microwave plumbing in the development of military oirborne electronic equipment. Shauld hove 5 yeors' experience in such work and of leost 0 BS degree.

SYLVANIA ELECTRIC PRODUCTS INC. 70 FORSYTH STREET
\[
\begin{array}{ll}
\text { NGINEERS } & \text { RADAR SYSTEMS AND } \\
\text { hondle design and } \\
\text { CIRCUIT ENGINEER }
\end{array}
\]
- \(311 / 2^{\prime \prime}\) high, \(183 / 4^{\prime \prime}\) wide, \(27^{\prime \prime}\) long.

\section*{LAB DOLLY model a}
- ... with 8 power outlets (1500 watts, 110 VAC) and a 10 foot heavy duty extension cord.
- Ball Bearing Swivel - Recommended by Rubber tired Casters. Laboratories wherever
- Constructed of Aluminum. Features 2 Shelves for Equipment and a pan for test leads, notebooks, etc.

\section*{Price 4950}

FOB Louisville, Ky
New Components for designing Electronic Equipment for RELIABILITY-IN-SERVICE

Alden Components for Plug-in Unif Construction enable you to design to these Bold New Standards -
1. Gircuitry subdivided funcrion by function into plug.in unies.
2. Tiny Tell-Tales spot croubles instantly.
3. Plug in replacement spares in 30 seconds.
4. All leads brought to single accessible point of check, numbered and color coded so layman can make first-level tests.

\section*{It's as simple as this -}

1Orgonize your circuitry function by function in compact vertical planes using Alden Terminol Mounting Cords, Ratchet-Slof Terminols and Card-mounting Sockets.
 System - for Packages - for Chassis.
2
Mount the circuitry planes in Alden Plug-in Parkages and Basic Chasses which can be yanked out and replaced in 30 seconds.

ALDEN
PACKGAN
PACKAGS
2. 90.11.

ALDEN
CHASSIS
* \(17^{\prime \prime}\) WIDTHS

Moniter each plug-in unil with tiny Alden TellTales that spot trouble inssontly, permit checks while operating, from front of panel.

ALDEN POINT JACK OINTOBCS ALDEN MINIATURE PAN-I-LITE \#8GL ALDEN MINIATURE FUSE.LITE \(=440.4 \mathrm{FH}\)

4Centralize unit interwiring at o single accessible point of check, with Alden Back Connectors and Serve-A.Unit Lock which allow color coding and symboling that "reads like a book"

\author{
TECHNICAL SERVICE CORP. \\ 1404 W. Market St. \\ Louisville 3, Kentucky
}

7127 N. Main St., Brockton 64, Mass.

\section*{SPECIALIEED PLAING NARL}

\section*{WIRE AND STRIP PLATING OF PRECIOUS AND BASE METALS AND ALLOYS}

NARL continuous process electroplating equipment and controls are engineered for the special type of job.
FINE WIRE PLATING plotinum, gold and silver, ploted on fine wire to extremely close toleronces.
Wire ploting to protect against corrosion--to resist obrosion--to improve adhesion of insulation.
COPPER PLATING ON ALUMINUM
STRIP PLATING-_from fine ribbon through o wide range of strip sizes-practically any plating on flexible metol-lowers finishing costs.
PREPLATING copper on stoinless steel strip for blanking or stomping operations--reduces cost by greatly increasing life of the dies. Mochines designed for difficult continuous plating operotions.
SMALL PARTS-PLATINUM
or other precious metols ploted on small ports.
Consult NARL on your plating requirements.
Research - Development
tional division activities, and Harold K. Work, director of the research division in the College Of Engineering at New York University, vice-president in charge of the Engineering College Research Council.

Continuing as association vicepresidents are William L. Everitt, dean of the College Of Engineering at the University of Illinois, and B. R. Teare Jr., dean of the College Of Engineering And Science at Carnegie Institute Of Technology and as treasurer, Prof. G. W. Farnham, editorial director for engineering and technical books at Ronald Press.

\section*{Automation Firm Formed In New York}

Automation Associates, a consulting organization primarily concerned with printed circuits, has been organized in New York City by Paul L. Anderson and John A. Zagusta.

Anderson was previously sales manager of Circuitron and also involved in production. Before that, he was with Spaulding Fibre in printed circuit materials, design and application work. Zagusta was formerly chief engineer of Circuitron.

\section*{Sylvania Opens \\ New Warehouse}

Sylvania has begun operations in the new \(110,000-\mathrm{sq} \mathrm{ft}\) warehouse and sales offices it has leased in Teterboro, N. J. The new facility consolidates several sales and service facilities that previously had
been situated in various locations in the metropolitan New York City area.

The facility contains \(99,000 \mathrm{sq} \mathrm{ft}\) of warehouse space and \(11,000 \mathrm{sq}\) ft are devoted tc sales offices.

\section*{American Phenolic Promotes Soria}

Rodolfo M. Soria has been appointed director of engineering of the American Phenolic Corp. succeeding Richard M. Purinton, recently resigned vice-president who is representing the company in the New England area.

Dr. Soria, head of the development division of the company, assumes full responsibility for all Amphenol engineering functions. He joined Amphenol in August 1946. He is the 1954 president of the National Electronics Conference.

\section*{Symposium For Applied Solar Energy Planned}

A WORLDWIDE SYMPOSIUM on applied solar energy will be conducted at Phoenix, Ariz., Jan. 12 through 15, 1955 with at least 50 scientists and 100 businessmen integrating ideas.

The whole project is the idea of Henry B. Sargent, president of Arizona Pablic Service Co. In collaboration with the Phoenix branch of the Stanford Research Institute, Sargent interested a group of Arizona business leaders in forming the Association for Applied Solar Energy. Lewis W. Douglas, former ambassador to Great Britain, now an Arizona rancher, is general chairman.

A fund of \(\$ 25,000\) was raised to bring top-flight scientists of the world to Phoenix to meet with business research mer.

\section*{Lennox Transfers Production To Park}

Lennox Engineering Associates of Cleveland, Ohio, transfers all high production manufacturing to Park Products in Cleveland. The products transferred include the dual ring centering device and ion traps.

Lennox will cortinue to do con-

Precision is two-fold in Acme Electric transformers. Exact mechanical dimensions facilitate installation in limited space. Unvarying electrical characteristics provide for dependable performance.

\section*{ACME ELECTRIC CORPORATION}

\section*{318 WATER ST. CUBA, N. Y.} West Coast Engineering Laboratories 1375 W. Jefferson Blvd., Los Angeles, California In Canada: Acme Electric Corp. Lid. 50 Northline Road, Toronto, Ontorio

\title{
[rowendery]
}

OQUIPMENT AT
Western Union Telegraph Co. Development \& Research Dept. Electronics Research Div. Water Mill, N. Y.

INCLUDES
13
hallicrefters RECEIVERS

\section*{HALLICRAFTERS SX88}

Wherever world wide, all band radio reception is important and reliability of receiver performance paramount, there is bound to be HALLICRAFTERS! The radio man's radio.

Olsed by 33 gorenmments, sold in 89 counlixies.
hallicrafters
CHICAGO 24, ILLINOIS

\section*{Federal Laboratories Names Valentine}

James M. Valentine was appointed sales manager of Federal Telecommunication Labs' television branch in Lodi, N. J.

Valentine has been associated with IT\&T since 1951. From 1951 to 1952 , he made his headquarters in Buenos Aires, where he was in charge of the installation and operation of LR-3-TV, the first television station in Argentina. For the past year, he has been with International Standard Electric supervising the planning and installation of foreign television stations.

From 1945 to 1947, he was a member of the color television development group of CBS and was in charge of the development and construction of color television cameras and studio equipment. From 1947 to 1948, he was television sales engineer in the Transmitter Division of Du Mont Laboratories. From 1948 to 1951, he was television engineering manager for the central division of ABC .

\section*{Kellogg Names \\ Engineering V-P}

Roy S. Redmon, chief engineer for the Kellogg Company since 1944, was appointed vice-president in charge of engineering for the firm.

Redmon joined Kellogg in 1938 as plant engineer for the Battle Creek plant. Prior to that he was associated with Stone \& Webster Engineering in both its construction and engineering divisions.

\section*{R. R. Jenner Named By Micro Switch}
R. R. Jenner, formerly chief radio and electronics engineer for Beech Aircraft, has been appointed to the

\section*{Hormettially SEALED}

\section*{PRECISION WIRE-WOUND}

\section*{RESISTORS}

The new Hycor "H" Series Precision Resistors Incorporate unique desig features that make it possible for the resistors to meet performance requirements far beyond those required by mili. tary specification.
The "H" Series Precision Resistors are encapsulated in a tough plastic compound. The result is a solid, homogeneous unit with unparalleled puggedness, impervlous 10 the effects of moisture, thermal shock and mechanical shock. The plasitic is filled with heat conducting mineral which disslpates the heat and equalizes the "hot spots" In the resistor winding. The sealed-in terminal connections are welded.

\section*{SPECIFICATIONS...}

MILITARY SPECIFICATIONS: Performance charac. teristics satisfy all requirements of MIL-R-93A and JAN-R-93.
TEMPERATURE COEFFICIENT: \(\pm 0.0022 \%\) per deg.C.
OPERATING TEMPERATURE : \(-65^{\circ} \mathrm{C}\). to \(+125^{\circ} \mathrm{C}\)
RESISTANCE ACCURACY: Standard resistance tolerances are \(1 \%, 0.5 \%, 0.25 \%\) and \(0.1 \%\)
Type 10 (Itlustrated):
\(1 / 4^{\prime \prime}\) dia \(\times 13 / 32^{\circ}\) long
Resistance range: \(1.0 \mathrm{ohm}-0.35 \mathrm{meg}\).
Send for Bulletin \(H\) for complese description on ofber ploysical sizes and watiage ranges.

\section*{DISTRIEUTOR}

Hyeor Sales of Californic
1423 Vonowen St., No. Hollywood, Calif.
REPRESENTATIVES
Beebe Assaciates
155 Woukegan Road, Glenview, Illinois
Burlingame Associafes
103 Lafayette Street, New York Cliy
Harrison J. Blind, 1616 Cord St
Indianapolis 24, Indiana
734 Bryant St., San Francisco 7 Colif.
EXPORT DIVISION
Morhan Exporting Corporation
458 Breadway, New York 13, N, Y., U.S.A
Cable: "MORHANEX

\section*{Precision Unlimited}

The breeding of Fine Pltch Instrument Gears involves both science and artisanship. Requires craftsmen-not just machinists.

Why? Because these little animals have complex personali-ies-sometimes hard to deal with.

Now, here we have done nothing else; day after day for some 20 years.

The point is: if you need Fine Pitch Gears-GET THEM HERE.

6854
Dexiel Machine products, inc. CHELSEA, MICHIGAN BOX 328 Phones Detroit WO. 5-2359-Chalsea: GReenwood 9-1791

\section*{More Reliability in less space without external DC Power Supply}

former-no external DC supply s required. A single input-power winding wil supply multiple arr plifiers. Output, when used with Servomechanisms, Inc. Type 17 ID motor (below), is 100 Volt's at 400 cps (max.). Voltage gain, with an input of 0.01 V . ac (rms) at 400 cps , is \(7300 \pm 25\) percent. Darrped natural frequency approximates 10 cps in a typical servo loop. Hermetic sealing and silioone fluid filling allow for rapid

Servomechanisms, Inc. Type 17 D. for use with the amplifier, is a damped.control motor whose control winding is the output load for the amplifier.

For odditional information
Write to

Westbury Division, Post and Stewart Avenues, Westbury, N. Y.

West Coasp Division. 316 Woshingion Street. El Segundo, California

newly created post of director of airborne products for Micro Switch, a division of Minneapolis-Honeywell.
He will be directly responsible for the design and production of all products destined for use in the aircraft industry.
He served 14 years as chief radio and electronics engineer for Beech. In that capacity he was in charge of the research, design and development of all electrical and electronic components for aircraft which that firm manufactures.

\section*{Horrocks Heads Aerovox Special Products Division}

Stanley W. Horrocks was named general manager of the special products division of Aerovox Corp. at New Bedford, Mass.
He is responsible for the engineering, manufacturing, market analysis and development for products of the division which include printed-wiring and a new line of ceramic power and transmitting capacitors. The purpose of the division is to develop and produce new materials and products. Horrocks is also general manager of Precision Ceramics, an operation jointly owned by French interests and Aerovox.
Before joining Aerovox, Horrocks was with RCA for 18 years in various managerial, supervisory, and engineering positions. The last few years he was manager of the component products operation of RCA Victor and earlier progressed in various positions at RCA electron tube plants.

\section*{Rensselaer Presented Automatic Equipment}

Automatic control equipment worth \(\$ 14,000\) has been donated to the electrical engineering department at Rensselaer Polytechnic Institute, at Troy, N. Y. by Servomechanisms, Inc. of Westbury, N. Y., and Technology Instrument Corp. of Acton, Mass.
The sets of apparatus are expected to prove a valuable asset in both teaching and research at the Institute.
The units donated by the two
(*Very High Sensitivity)
The VHS is a balanced armature, Alnico magnet type relay. It is internally shock mounted and resistant to vibration. The screw - on cover is gasket sealed. It can be opened and resealed.

0.2 microamperes, (3000 ohms coil) or, 0.1 millivalts, (20 ohms).

Connections: 9 pin octal style. Dimensions: \(13 / 4^{\prime \prime}\) dia. \(\times 21 / 4^{\prime \prime}\) long. Weight: 4 ounces.

1. Shock mount
2. Contact assembly
3. Contact detail
4. Armature with contact detail
5. Cast bracket
6. Alnico magnet
7. Bearing detail
8. Yoke (steel)
9. Mounting frame

Sensitivity: Infinite variations from 0.2 Ua. to 10 Amp . or 01 Mr . to 500 volts, self contained. Higher volts or amps with external multip iers. A.C. rectifier types. Trip point occuracies to \(1 \%\). Differential and repeatability better than \(1 \%\).

Contacts: SPST or SPDT, 5-25 Ma. D.C. Other ratings to \(1 / 2\) Amp. A locking coil gives high pressure and chatter free contact even under shock and vibration.
Samples 3 to 4 weeks.

\section*{ASSEMBLY PRODUCTS, Inc.}
P. O. BOX 191. CHAGRIN FALLS 4, OHIO Ask for Bulletín 102
companies are sufficient for setting up 12 different complete automatic control systems.

It includes 300 precision gears of varying sizes, 12 linear potentiometers, 12 servo motors, 12 amplifiers, 12 power supplies, 130 bearing blocks, 60 mounting blocks, 12 dial assemblies, 12 terminal boards and 12 foundation boards. These are enough parts to set up 12 complete units, with 10 to be used in teaching or research and two to be held in reserve.

\section*{New Philadelphia Company Formed}

Winston Electronics of Philadelphia, has been organized to design, produce and market quality test instruments for electronic service and industry. The company is currently introducing a line of color television test instruments. It is also engaged in research and development on techniques to simplify the servicing of color tv and reduce the cost of color service instruments.

\section*{Baldwin-Lima \\ Acquires Peters}
baldwin-Lima-Hamilton Corp. of Philadelphia acquired all outstanding stock of the O. S. Peters Co. in Washington, D. C., manufacturers of devices for materials testing equipment and electronic specialties.
No changes are contemplated in the personnel or location of Peters.

The addition of these product lines in the electronics field expands Baldwin's business to 40 product lines with more than 100 markets.

\section*{Officers Elected}

By AIEE
A. C. Monteith, vice-president in charge of engineering and research at Westinghouse, was elected president of the AIEE. He succeeds Elgin B. Robertson and will serve until Aug. 1, 1955.

Vice Presidents elected by the Institute included: G. J. Crowdes, of Simplex Wire \& Cable; J. P. Newbauer of Consolidated Edison;

\section*{WET or DRY Resistance is high}

\section*{with LUNDEY \\ miniature hermetic terminals!}

TESTS PROVE - Lundey series \#199 miniature hermetic terminals give excellent performance under conditions of high humidity.

In an average test the following results were tabulated:
\begin{tabular}{ccc}
\begin{tabular}{c}
Rapalaive \\
Humidity
\end{tabular} & Temp. & Insulation Resistance \\
\hline \(90 \%\) & \(80^{\circ} \mathrm{F}\) & \(1,000,000\) megohms \\
\(50 \%\) & \(80^{\circ} \mathrm{F}\) & \(3,000,000\) megohms \\
\hline
\end{tabular}

\section*{OTHER FEATURES}

Mounting in simple drilled or punched holes . . . no extrusion needed.
Effective spring loading
Teflon external member
Silicone or neoprene core
Minimum mounting \(-15 / 64^{\prime \prime}\) on centers
Voltage rating - 500V RMS operating
Current rating - 8 amperes
Three electrode styles available Production-proved
Meets MIL-T- 27 specifications

If humidity creotes a problem for you, let Lundey terminals help you solve it. Write for Bulletin \#199. Dept. E.

\section*{ULTRA-HIGH PRECISION POLYSTYRENE CAPACITORS}

\section*{as low as \(0.1 \%\) tolerance in most values}
0.5 MFD. \(13 \mathrm{~K}^{\prime \prime} \times 11 / 4^{\prime \prime} \times 11 / \mathrm{h}^{1 \prime}\)

O.1 MFD. \(13 \mathrm{~m}^{\prime \prime} \times 1^{4 \prime} \times \mathrm{F}^{\prime \prime}\)

O.O5 MFD. \(174^{4 \prime} \times 7 / 7^{\prime \prime} \times 11 / 16^{\prime \prime}\)

CAPACITANCE AVAILABLE-0.05 to 10.0 MFD . VOLTAGE AVAILABLE-100 to 400 VDC INSULATION RESISTANCE—10 MEG./MFD. TEMP. COEFF.-100 P.P.M. per \({ }^{\circ} \mathrm{C}\left(-20^{\circ}\right.\) to \(140^{\circ} \mathrm{F}\))
DIELECTRIC ABSORB.-. \(015 \%\) DISSIPATION—. 0002

\section*{Special Values to} Close Tolerances-Our Specialty Write for new, complete catalog to Dept. IA SOUTHERN ELECTRONCS CORP.

\author{
239 W. Orange Grove Avenue, Burbank, Calif.
}

\section*{CONTINUOUS, DIRECT-READING} X-BAND VSWR mesurumsan

\section*{\(2 \%\) overall accuracy!}

For speedy and accurate VSWR measurements in laboratory or production use, the CTI Model IIOA VSWR Indicator reads VSWR directly, and is continuously tunable from 8,500 to \(9,600 \mathrm{mc}\).
SPECIFICATIONS

VSWR Ranges: A

Waveguide Fitting
Directional Couplers, directivity
1.06101 .3 1.3 to 2.5

UG-39/U
over 40 db

See this equipment at the WESCON show los Angeles,
Aug. 25-27, 1954 BOOTH 231

bare
- insulated plated .

. wherever the element calls for PRECISION
all metals. - all alloys ribbon• precision
small wire

\section*{NEW HORIZONS}

Today's horlzons in electronic engineering are limited only by the vision of the in dividual himself. To those qualifled men who desire to stand on the constantly changing frontiers of electronic develop ment, we offer a chance to pioneer and grow with a saundly-established, yef young and progressive company.

\section*{- Electronics Field Engineers}

Local \& Field Assignments Available

At least 5 years' experience in any one of these fields: Servo Mechanisms; Specia Weapons: Microwaves; Antennas; Circui Design; Flight Simulators; Radio Prapagation; Electre-nic Computers and Communicotions.
Qualified to instruct in the operation and supervise installation, maintenance and supervise installation, maintenance and ond allied electronic equipment in the field.
Solary and odvancement commensurate with obility liberal vacation sick leove 9 paid holidays, group life, sickness ond occident insurance plans, and a worthwhile pension system

\section*{STAVID ENGINEERING, INC.}

Personnel Office, 312 Pork Avenue Plainfield, N. J.-PLainfield 6-4806

\section*{Subminiature Voltage Regulator Tubes}

NEW! DEPENDABLE! INEXPENSIVE!
\begin{tabular}{|c|c|c|c|}
\hline TYPE & STARTING VOLTAGE & operating VOLTAGE & MAXIMUM CURRENT \\
\hline 55ST2-32 & 67VDC & 55VDC & 1.5MA \\
\hline 90ST2-32 & 110VDC & 90VDC & 1.5MA \\
\hline 140ST2-32 & 150VDC & 140VDC & 1.5MA \\
\hline
\end{tabular}

Other Voltages \& Currants to your Specifications Complete Technical Data Furnished on Request
SIGNALITE INC.-37 Neptune H'wy.-Neptune, N. J. Actual
Sizes Shown

MANUFACTURERS OF NEON GLOW LAMPS SINCE T940

European Theater of Operations for the Office of Scientific Research and Development, which, under the direction of Dr. Vannevar Bush, had responsibility for development of new weapons and equipment for the three armed services.

\section*{Hughes Expands Arizona Plant}

Hughes Aircraft is spending \(\$ 1.6\) million to expand its guided missiles plant at Tucson, Ariz. The project calls for 22 buildings on a square mile of desert.
This will bring to more than \(\$ 14\) million, the amount the government has allotted Hughes plants at Tucson for manufacture of the topsecret F-98 Falcon, an air-to-air missile carried by the delta-wing F-102, Consolidated Vultee's supersonic fighter-interceptor.
The Tucson electronics plant has a work force of nearly 3,000 .

\section*{New Instrument Firm Formed in California}

Formation of Electro-Instruments of San Diego, California was announced by Jon Edwards, formerly vice-president and chief engineer of Non-Linear Systems. The new company will manufacture electronic instruments for the data processing field as well as instrumentation for automatic testing and control. It is currently manufacturing digital voltmeters at its new plant in San Diego.

\section*{Universal Winding Acquires Patterson, Moos}

Universal Winding of Providence, R. I., manufacturers of coil winding machinery for the electric and electronic industries and textile twisting and winding machinery, have acquired the business and personnel of Patterson, Moos and Co's a research and development organization.
The activities of Patterson, Moos, which now becomes the Patterson, Moos division of Universal Winding, have been in the fields of nuclear physics and electronics. For the past six years they have been

\section*{Miniafure AN CONNECTOR ASSEMBLY}
consists of

HHB 3359 WATERPROOF PLUG ASSEMBLY

H月B 3310 TUBING CLAMP

\section*{-for limited space requirements}

This compact connector assembly (approx. \(23 / 8-i n\). long \(x 13 / 4-i n\). dia.) is a forerunner of miniature AN Components design to be pioneered by HHB design and engineering departments.

Components include 38 contact receptacle and plug - two 35 Amp. (No. 12 wire) and thirty-six 5 Amp. (No. 18 wire) contacts. Shell adapter and clampof gray anodized aluminum. Features the new HHB 3300 Series flexible plastic tubing clamp instead of standard AN cable clamp.
Write for complete data.
H. H. BUGGIE, Inc.

726 STANTON STREET TOLEDO 4, OHIO
doing basic research and development for the Department of Defense and bring with them a back\(\log\) of contrect and development work that will be continued under Universal's management.

Universal plans to continue the operations of the new division at its present location in Jamaica, New York, and will retain present personnel.

The activit:es of the Patterson, Moos division will continue in the same fields as previously and under the guidance of Anthony M. Moos, David F. Dcody and their subdivision heads.

\section*{I-T-E Acquires \\ Bulldog Electric}

Through an exchange of common stock, BullDog Electric Products of Detroit has become a subsidiary of I-T-E Circuit Breaker. BullDog will continue to operate under its own corporate name with William H. Frank remaining as president of BullDog ard with the same personnel and policies. William \(H\). and Henry E. Frank of BullDog will shortly join the board of directors of I-T-E.

\section*{New Brazilian Plant For RCA}

RCA reportedly plans to build a \(\$ 1.5\) million Brazilian factory which will produce 5 million radio tubes per year. The company also plans to increase its production of records, tv sets and radios in Brazil. The goal is double its present output in that country within 3 years.

\section*{Electronic Engineering Forms New Subsidiary}

The EECO Production Company, a wholly-owned subsidiary of the Electronic Engineering Co. of California, has been officially incorporated.

Organized to manufacture plugin electronic circuits, electronic counters plus other products for the industry, the new company was formerly operated as a division of Electronic Engineering.
T. E. Coalson will serve as manager of the nэw company. He was formerly manager of the division.

specifications - Transconductance Range : 0-100, \(0-500,0-1000,0-5000,0-10,000\) and \(0-50,000\) micromhos. Range of Current Measurements: Plate \& Screen: \(0-100 \mu \mathrm{a}, 0-10 \mathrm{ma}, 0-100 \mathrm{ma}\), \(0-200 \mathrm{ma}\); Grid \& Suppressor: 100-0-100 на, 1-0-1 ma, 10-0-10 ma. Available D. C. Voltages: Plate \& Screen: 0 to 300 V ; Grid \& Suppressor: 0 to \(3 \mathrm{~V}, 0\) to 15 V , or 0 to 150 V pos. or neg.

\section*{TRANSCONDUCTANCE ANALYZER} \& CIRCUIT SIMULATOR

This direct-reading vacuum tube transconductance meter measures transconductance under all operating conditions and reproduces all kinds of static or dynamic tube characteristics. It has means for connecting components to simulate the circuitry in which the tube will operate. Push button switching applies voltages to each tube element.

This compact, versatile instrument covers the frequency range from \(400-900 \mathrm{mc}\). It can be used as a grid dip meter, absorption wavemeter, auxiliary signal generator, oscillating or absorption marker, etc. The power supply and oscillator are combined in one lightweight unit. Single tuning range. SPECIFICAIIONS - Freq. Range: 400900 Mc ; Power Input: 117 V, 50/60 Cycles, 15 Watts: Tube: 6AF4; Weight: 2 lbs.

Write for specifications and catalog on our complete line of measuring equipment.

\section*{NEW LONDON/INSTRUMENT ionoo}

\section*{Electronic Devices, Inc. \\ 429-12th St., Brooklyn 15, N. Y.}

Manufacturers of Iong life Selenium Rectifiers

In Socket Screws \& Keys

Don't take it for granted that any hex socket screw is an Allen. Your Allen Distributor alone can offer you
1. allenpoint set screws with the new smaller point - proved by impartial laboratory tests to have greater locking power and vibration resistance, plus uniformly high shaft holding power, compared with conventional cup point screws and those with serrated or angled points.
2. Leader point cap screws, for substantially reduced chance of thread injury or damage to threaded holes.
3. Allenor stel - with the strength and temper to permit the use of smaller sizes, and make button head and flat head screws practical despite necessarily shallower sockets.
4. alen progressive pressur-forming, producing contoured uncut fiber flow, from head to point. A process originated and perfected by Allen.
Be sure to get Allens in the black and silver striped box, sold only through leading Industrial Distributors. Write us for technical information.

\section*{ALLEN}

MANUFACTURING COMPANY Manfford 2, Connecticut, U.S.A.

\section*{開明}

\section*{NEW BOOKS}

Transistors, Theory and Practice

By Rufus P. Turner, Gernsback Library No. 51., Gernsback Publications, Inc., New York, 1954, 144 pages, paper cover, \(\$ 2.00\).
In THis book, Rufus P. Turner has managed to anticipate many of the questions that arise in the minds of engineers and technicians trying to absorb enough information about transistors to put them to use in practical circuits.

The theoretical discussion is simple, and yet quite accurate. Useful equivalent circuits are explained, and actual transistor amplifiers and oscillators are described complete with component descriptions, operating voltages and transistor types.

Separate sections are devoted to transistor trigger and switch circuits, and to methods and equipment for determining characteristics and testing. A complete list of transistors currently on the market, along with pertinent information regarding their intended purposes and operating characteristics, is included.
The transistor beginner will especially appreciate the one-page section entitled, "Care and Feeding of Transistors". The veteran's reaction to this section will probably be, "Why didn't somebody tell me that." This section lists 16 suggestions for preventing damage to transistors through improper connections. The book is recommended for those who have not had the opportunity to study transistor literature. Aside from providing a great deal of useful data itself, the book contains a good list of recommended reading for those who require additional details.-J. D. Fahnestock, Potter Instrument Co., Inc.

\section*{Low Frequency Amplification}

By Dr. N. A. J. Voorhoeve. Philips' Technical Library, Elsevier Press, Inc., Houston, Texas, 1954, 497 pages, \(\$ 9.00\).
A COMPREHENSIVE exposition of the many facets of low-frequency amplification. More precisely, the

\section*{DAWO COILS Serve Modern Industry}

Betind the scenes come Dano Coils-made to exact custo ner specifications to perform an exact electrical function.
- Molded Coils
- Form Wound
- Paper Section
- Acetate Bobbin
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Application

Also, Transformers The AN N Made to Order mAIN ST., WINSTED, CONN.

\section*{LISTS OVER 85,000 TYPES OF} ELECTRONIC PARTS AND EQUIPMENT

If you order electronics . . . this giont, new 1954 Rodio's Master is a "must". It is the afficiol reference boak ond buying guide af the radio electronics industry. Lists aver 85,000 internationally known radio and electronic parts ond equipment. Eosy index reference . . . hard cloth binding. Helpful, handy, time ond maney-saving. \(\$ 6.95\) volue. Write for your FREE Radia's Master Calolag taday an yaur campany lelterhead stoting yaur tille. Address: FEDERATED PURCHASER, DEPT.72, 66 Dey Streel, N. Y., N. Y. Overseas inquiries address: FEDERPURCH, Dept. Y. and enclase \(\$ 2\) far shipping and handling. Catalag supply limiled. Order tadoyl
* Radio's Master is invaluable for ordering electronics
* Lists over 85,000 types of electronic parts and equipment
* Easy reference . . . simplifies buying
* A real time and money saver

UNESCO Coupons Accepted in Payment. Fully Equipped Export Department

\section*{Federated Purchaser,me. \\ America's only coast-10-coast electronics distributor serving the world} 66 Dey St., New York 7, N. Y. - 911 S. Grand Ave., Los Angeles, Callif. Now York, N. Y. - Newark, N. J. - Easton, Pa. - Allentown, Pa. - Los Angeles, Calif. Now In Our 28th Yeor

A COMPLETE LINE OF INSULATED STAPLES

The Insulated Staple is the most satisfactory cleat or carrier for low voltage wiring that has ever been devised.
Emerson Apparatus Co.
187 TREMONT ST. MELROSE, MASS.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
WE CARRY \\
IN STOCK.
\end{tabular} & \begin{tabular}{l}
ALNICO \\
PERMANENT MAGNETS \\
Cast and Sintered CARBOLOY Permanent Magnets
\end{tabular} \\
\hline ALL SIZES ALL SHAPES & \\
\hline ALL ALNICO GRADES & \begin{tabular}{l}
CARBOLOK DEPARTMENT \\
of general electeic co. \\
PERMAG CORP., 210 TAAFIE PL., BROOKLYN 5, N. Y. - Phone: MAin 2-0114
\end{tabular} \\
\hline
\end{tabular}

Your product benefits 3 ways from the use of a DIALCO Pilot Light:

Enhanced appearance: The glow of light and sparkle of a lens add colorful visual attraction. Greafer sofefy: A timely warning flashed by a pilot light can prevent damage to equipment. Added service: Discs inserted behind lenses can be used to deliver specific messages, such as "FUEL LOW", "ON", "OFF", etc. Let the Dialco engineering department assist you in selecting the right lamp and the most suitable pilot light for your needs.
Dialco offers the complete line of pilot lights, from sub-miniature types to giant units with \(11 / 2^{\prime \prime}\) lenses.
Every ossembly is available complete with lamp

SAMPLES ON RE. QUEST AT ONCE no Charge
lllustrations are ap prox. \(70 \%\) actual size ii (A) No. 8-193011 sub-miniature pilot light ... (B) No. \(521308-991\), with mul tivue cap... (C) No.
\(922210-111\), dimmer type... (D) No. 47901 with light shield cap. Write for Catalogues L-15). L-153, and L-154

Foremost Manufacturer of Pilot Lights

60 STEWART AVE. - GROOKIYN 37, N. Y. HYACINTH 7.7600

\section*{PLANT AT}

BROOKLYN, N. Y
subject is concerned with amplification of frequencies in the audio spectrum. There is no concern with the still lower frequencies, as employed, for example, in such applications as geological survey. Its presentation, although somewhat pedantic in nature, covers an extensive field.
In addition to the basic principles of vacuum tubes and audio amplification, attention is given to their utilization with transducers for the recording and reproduction of sound in disc, magnetic and sound-on-film recording systems. It is illustrated throughout with electronic equipment of European origin, probably of slight familiarity to U. S. readers. Similarly, its extensive bibliography, while including many of our publications, consists largely of foreign references ordinarily not accessible to readers on this side of the Atlantic. Performance characteristics, such as for vacuum tubes, phonograph reproducers, microphones, etc, are concerned entirely with European products unfamiliar if not practically unavailable to U.S. markets.

Although the preparation of this textbook was excellent and thorough, by European standards, it cannot be enthusiastically recommended to the audio engineer engaged in his profession in this country. There is little to substantially advance his interests or increase his knowledge over the present state of the art as currently presented in the more familiar idiom of U. S. technical publications.-Price Fish, CBS Television, New York, N. Y.

\section*{Inventions and Their}

Protection (2nd Edition)
By George V. Woodling, Matthew Bender and Co., Inc., Albany, New York, 1954, 495 pages, \(\$ 10.00\).
As A what to do and what not to do reference manual relating to inventions and their protection by patents this volume will make a valuable addition to the library of executives and engineers alike. The usefulness of the book is not limited to patent attorneys.

The chapters of the book are arranged so as to provide needed information on such matters as

\section*{Printed Gircuit}

\section*{is a WIRING DEVICE}

Yes, a Printed Circuit, mare accurately termed a Printed Wiring Board, is nothing more nor less than a Wiring Device. It is a most significant wiring device in that volume applications in conjunction with multiple soldering techniques permit the simultaneous production of up to 100 electrical connections

A five fube superheferodyne in volume production utilizing multiple soldering and semi-outomatic ossembly techniques . . . on excellent opplicotion of printed wiring methods by Roytheon Monufocfuring Compony.

Printed Wiring Boards can be mode to your engineering specifications by Methode, an electronic wiring device manufacturer equipped and experienced in the specialized manufocturing techniques necessary to support continuous high production. Typically, the printed wiring ponel will be o smaller cost item than most other major component portions of an electronic device.

patent law, exploitation, prosecution, infringement, licensing and the like. A cl.apter on the ownership of patents w.th respect to employeremployee relationships includes a discussion of such matters as employee incentive plans to stimulate invention, and the legal questions of ownership of inventions in the patent office and in the courts.

The new patent codification act of 1952 is extensively discussed with relation to its provisions regarding patentability and the tests therefor. Ir. addition suggestions are presented as to how to avoid such delays as may lose an inventor his right to a patentable invention under the new act. In particular various factors which create a statutory bar to obtaining a patent are presented. These include such things as prior publication, wrong inventors, improper joinder of inventors, one year of public use, prior use in foreign countries, and so on and on. These details of what constitute statutory bar are most important in the patent protection of industrial property. From the author's wide experience in both the electrical engineering fields and his patent practice he has promulgated a set of rules to follow in preparing jatent applications to obtain the strongest patent protection.

Copyrights and trade marks are also covered in their relation to the legal protection of this type of industrial property.

Whatever problems come up in relation to satent protection of inventions, the engineer or executive seeking a how-to- and how not-toproceed answer is likely to find it in this valuable book.-Norman L. Chalfin, Patent Engineer, Hughes Aircraft Company, Culver City, Calif.

\section*{The Law of}

\section*{Electrical Invention}

By Frank Groom Kirtz, Matthew Bender \& Co., Inc., Albany, New York, 1954, 742 pages, \(\$ 16.50\).
An attempt to review fully a work so large as this and so needed in the field of electrical patents would require a small volume in itself.

Since 1953 , in so far as the

They're the answer to all your environmental test needs . . . temperature, altitude, relative humidity . . . in any combination. Bowser, pioneer in the development of environmental test equipment, has incorporated the most adranced engineering features in these redesigned units.

All interior walls are of stainless steal for rust prevention and long life. Bowser's unique "HumiCoil" system (humidifier plus dew point coil) provides the most practical design yet developed for humidity simulation. Semi-hermetic compressors, air or water cooled condensers, safety thermostats . . . these are just a few of the other plus features of Bowser's new units.

All units are factory tested under conditions simulating those in the customer's own plant.

The Bowser sales engineer in your area will be glad to help on your environmental test problems.

NEW
Microllatch
measures rf power and vswr IN FREQUENCY RANGE OF
0.5 TO 225 MCS.

0 TO 1 kW.

MODEL 262 Indicator ONLY, provides VSWR and relative power measurements when measurements when pler. \(\$ 14.50\)

Compact, sensitive and accurate, the MicroMatch 260 Series monitors both incident and reflected power without the necessity of removing the coupler or reversing its connections. Three models are available to meet requirements of transmitter manufacturers and radio amateurs.
M. C. JONES ELECTRONICS CO. Inc.

BRISTOL, CONNECTICUT
Distributed outside of U.S.A. by RCA International Div., N. Y., N. Y., U.S.A.

\section*{for YOUR MICA REQUIREMENTS}

NEW ENGLAND MICA COMPANY Incorporated
30 WOERD AVE., WALTHAM, MASSACHUSETTS

\section*{MANUFACTURERS OF}

\section*{ELECTRICAL MICA INSULATION ALL TYPES - FORMS - CLASSES}

\section*{FABRICATED FORMS \& STAMPINGS TO SPECIFIED DIMENSIONS \& TOLERANCES}

HIGH VOLTAGE PLATE TRANSFORMER

ATLANTIC TRANSFORMER CORP. зо Hymes ave, Goroon, Com.

Official Gazette of the U. S. Patent Office is concerned, separate attention has been given to "Electrical" patents, "Chemical" patents and "General and Mechanical" patents. This separate listing is significant of the importance of electrical technology (readers of ElecTRONICS may substitute "electronic technology") in industrial and scientific development.

It has been pointed out by Dr. Kirtz in his introduction that electrical and chemical patents constitute about 75 percent of those litigated in current practice and the greater number of these appear to be electrical. The courts presently concern themselves more with the mental processes that inventors go through in the development of their inventions than in the final result.

The first section of this book provides a detailed analysis of what constitutes invention. The second discusses the conditions which distinguish electrical invention and the granting of patents for them.

A third section of the book is of particular value to the engineer because in it are included data relating to disclosure of electrical inventions. The drawings, the claims and the many little "tricks" of the patent "triode" so to speak are pointed up so as to avoid improper patent coverage.

In the final sections of the book details of the writing of claims to electrical patents are discussed with extensive reference to what has been decided in the courts as to the validity of various types of claims.

Especially valuable are the discussions of infringement of patent claims and how they are handled by the courts.-Norman L. Chalfin, Patent Engineer, Hughes Aircraft Company, Culver City, California

\section*{Elliptic Functions}

By F. Bowman, Head of the Department of Mathematics, College of Technology, Manchester, England, John Wiley \& Sons Inc., New York, N. Y., 115 pages, 1953, \$2.50.
THIS small volume is a compact and concise introduction to the rather complicated class of mathematical tools known as elliptic functions. It

High-speed, quality production with custom-made precision. Wire formed to any shape for every need.

\section*{WIIBE FOES.Pos}
.0015 to . 125 diameter
STIEAEGIITENING \& COTHING Perfect straight lengths to 12 ft . .0015 to .125 diameter

SMALI METAL STAMIPSGS .0025 to .035 thickness .062 to 3 inches wide.

Speciolizing in Production of Parts for Electronic, Cathode Roy Tubes \& Transistors

Write for illustrated folder. Send Blueprints or Samples for Estimate.

\section*{ART WIRE and STAMPNG}

COMPANY 1 BOYDEN PLACE NEWARK, 2, M. J.

\section*{Advantages}

\section*{Gunnugham \\ - aramusiad tase}

\section*{CROSSBAR}

A truly superior switch for MASTER CONTROL AND MONITOR SWITCHING OF AUDIO \& VIDEO CIRCUITS Also
COMPUTERS TELEMETERING TELEPHONY DELAY LINES ETC. Fast quiet switching
Crosstalk down 60 Db at 10 MC Any group of setups may be held intact while setting up others
Provision for spot or remote control
Strapwiring eliminated
Excellent HF characteristics Palladium contacts
Reduced cost
Compact design, small size
Low operating power- 2.5 watts Simple "package" installation

- Individual magnets at each cross-over.
- Maximum, six conductors per circuit.
Life-tested to 100 mil. lion operations.

> JAMES CUNNINGHAM, SON \& CO., INC. Dept. T-1, Rochester, New York Tel: BAker 7240

\section*{INSTRUMENT \\ ENGINEER}

Project Responsibility for the Mechanical Design and Development of Air Data Sensing Instruments.

SERVOMECHANISMS INC.

POST \& STEWART AVE'S WESTBURY, L.I.

YOU BUILD
 KITS IN ONE EVENINGbut they last a lifetime... and you save 50\%
38 Kits and 42 Insiruments the Industry's most complete line of MATCHED

TEST INSTRUMENTS
\(1 / 4\) - million EICO ln struments are now in use the world over! That's the proof of EICO's leader. ship in Value.

For lolest precision eng. neering. finest compo. nents, smort professional oppeorance, lifetime performonce and rock-bolfom economy - see ond compare the EICO llne at your Jobber before yau buy any higher-prised equip: mentl You'll ogree with over 100,000 others that only EICO Kits ond In-
stroments give you the in.
 dustry's greatest volues of lowest cosp.

is restricted to the Jacobian forms. The text and examples are suited to a one-semester course on this subject for graduate students in physics having some preparation in the theory of functions of real and complex variables.

The presentation in this book is aided by some diagrams, often neglected in treatises on mathematics. The principal emphasis is directed to conformal mapping of polygons, a fascinating branch of field geometry that is still advancing in its general familiarity and applications. As compared with Oberhettinger and Magnus (in German) on this subject, the present volume covers much less territory. However, it does present a few of the author's specialties seldom found elsewhere, such as the case of two concentric squares.

The author achieves his objective of presenting an introduction to the subject. This will serve as a nucleus for the student or researcher who may wish to expand his knowledge and practice in other current works such as Oberhettinger and Magnus (a well illustrated intensive reference on conformal mapping), Byrd and Friedman (an extensive collection of elliptic integrals) and MineThompson (a short numerical table of elliptic functions). The graphical presentations by Jahnke and Emde are always helpful in comprehending this subject.-Harold A. Wheeler, Wheeler Laboratories, Inc., Great Neck, New York

\section*{Proceedings NEC, 1953}

Available from National Electronics Conference, 84 East Randolph St., Chicago, Ill., 958 pages, 1954, \$5.00.
Annually the papers of this important conference represent a bird's eye view of progress in the many-sided electronics art. From the publishing standpoint this book is a good buy from any aspect.

As customary the volume is divided into broad subjects with all the many papers grouped under these broad headings. Thus the natural divisions are Circuits, Magnetic Amplifiers, Audio and Microphonics, Servomechanisms, Ultrasonics, Materials and Components, Filters, Television, Tubes,

\author{
- Helium - Argon \\ - Neon - Krypion
}
- Xenon

In radar electronic equipment, nuclear eadiation counters, cosmic ray cloud chambers, and thyratrons, where the purest rare gases are demanded, Linde M.S.C. Grade zases meet the specifications. They are produced under continuous mass spectrometer control to assure you of gases \(\mathrm{o}^{*}\) known purity and consistently high quality. Linde, the world's largest producer of gases from the atmosphere, can meet your individual needs of volume, mixture, and container.
For information on the physical, chemical, and electrical properties of these gases, send for the booklet, "Linde Rare Gabes."

\section*{*}

\section*{LINDE AIR PRODUCTS COMPANY}

A Division of
Union Carbide and Carbon Corporation 30 E. 42nd Stree1 णЕ. New York 17, N.Y

\section*{In Canada:}

Dominion Oxygen Company, Division of Union Carbicle Canada Limited, Toronto The term "Linde" is a registered trade-mark of Union Carbide and Carban Corporation.

\section*{"INOUSTRAL"}

ELECTRONIC COMPONENTS

- Laminated Sockets - Terminal Strips - Wired Assemblles - Duo-Decal Sockets - Anode Connectors - Terminal Board Assemblies - Metal and Bakelite Stomp ings
Tuner Strips, Sockets and Brackets for UHF

Write for samples and Write for samples and
information Dept. E-8

INDUSTRIAL HARDWARE
Manufactuving Company, Inc.
109PRINCE ST,NEW YORK 12,N.Y.

Nucleonics, Computers, Networks, Transistors, Instrumentation, Microwaves, Communication, and Engineering Management. In addition the tables of contents of previous volumes are included in an appendix.

While each engineer would find high spots of interest in this book which depended upon his individual field of interest, this reviewer found especially stimulating the paper "Electronic Components, Selecting the Right One for the Job Automatically" by R. A. Corby of the Battelle Memorial Institute. Under contract to the Air Force BMI has developed a most intriguing system for selecting components rapidly by means of punched cards and automatic machines, a system known as ECIC (Electronic Components Information Center).

Another interesting paper describes the induction public address system developed by Shure Brothers and revealed in a paper "Vagabond Wireless Microphone System" by Thomas W. Phinney.

A careful perusal of this big volume will reveal many other interesting aspects of electronics as well as non-technical papers useful to management.-K.H.

\section*{Fundamentals of X-ray and Radium Physics}

By Joseph Selman. Charles C. Thomas, 301-327 East Lawrence Ave., Springfield, Ill., 340 pages, 1954, \(\$ 8.50\).

An elementary book for student x-ray technicians, written with the greatest of simplicity and with every attempt to make as painless as possible the acquisition of some knowledge of elementary mathematics, physics and chemistry.

The mathematics portion consists of the elements of arithmetic, algebra, proportion, curves and graphs. This is followed by material on the constitution of matter, data on electric currents, motors, vacuum tubes, and a general background for the greater portion of the volume, which deals with x-ray techniques.

The considerable amount of material on radium and other sources

\section*{POLYSTYRENE CAPACITORS}

Insulation-Resistance at \(100 \mathrm{~V}=20^{\circ} \mathrm{C}\) \(R>1 \cdot 10^{7} \mathrm{M} \Omega\)

Loss angle at \(800 \mathrm{~Hz} 20^{\circ} \mathrm{C}\) tø \(S<1 \cdot 10^{-4}\)

For a Flexible

\section*{VINYL TUBING} that is

\section*{HIGHLY RESISTANT}

\section*{TO HEAT AND OIL}

\author{
it's Resinite EP-53 \\ High Heat 105
}

Where high dielectric strength, extreme flexibility and outstanding resistance to heat and oil are required in vinsl tubing. Resinite EP. \(\mathrm{S}_{3}\) is the perfect answer.

Surpasses all MIL-I-631-A, Type F, Grade C. specifications. Resistant to \(12.5^{\circ} \mathrm{C}\). for over 100 hours. Approved by Under. writers* Lahoratories for \(105^{\circ}\) C. continuous operation. In all standard sizes AWG 24 through \(21 / 2^{\prime \prime}\) II). Special sizes on order. Seven colors. others available. Printed to indicate LL approval.
Ideal for clectric motor insulation, transformer leads, appliance wiring. Write for performance data, samples and prices.

\section*{Resin Industries, Inc.}

Box 1589, Santa Barbara, Calif.
Please send samples and prices of EP-53 tubing as follows:
\begin{tabular}{lll}
Name & Title \\
\hline Firm & & \\
\hline Address & & \\
\hline City & Zone & State \\
\hline
\end{tabular}
of radiation, of methods for protection against overexposure and for improving radiographic quality and other highly significant and important aspects of the laboratory technicians work makes the text up to date and eminently useful.K. H .

\section*{THUMBNAIL REVIEWS}

History of the School of Engineering, Columbia L'niversity. By James Kip Finch, Columbia University Press, New York, N. Y., 138 pages, 1954, \(\$ 2.75\). How the School of Engineering has paralleled in its evolution the growth of this country. Dean Finch has been identified with Columbia for more than fifty years.

Optical Image Evaluation. National Bureau of Standards, Circular 526, 289 pages, \(1954, \$ 2.25\). Proceedings of the NBS Semicentennial Symposium October 18-21, 1951. Twenty papers from American and foreign scientists covering old and newer methods.

Mathematical Data Book. Lefax, Philadelphia 7, Pa., 176 pages, 1954, \$2.25. Looseleaf pocket manual of tables of logs, trigonometric functions, etc.

Bibliography on Filing. Engineering Societies Library, 29 West 39 St., New York 18, N. Y. ESL Bibliography No. 9.. 79 references, 18 pages, 1954 , \$2.00. Selected references for enginecrs and librarians concerned with organizing their own files and dealing with filing, classification and indexing.

Who's Who in Electronic Distribution. 845 Leader Bldg., Cleveland 14, Ohio, 376 pages, \(1954, \$ 7.50\). Buyer's guide for purchasers of radio-television-electronic components and equipment.

Zirkonium. By Werner Espe, C. F. Winter'sche Verlagshandlung, Fussen Bavaria, Germany, 75 pages, 1953. In German. Techniques for working with zirconium including its use as a getter.

Standards in a Changing World, American Standards Association, 70 East 45 St., New York, N. Y., 80 pages, 1954, \$3. Proceedings of the Fourth National Standardization Conference, New York, October 1953. Sessions on industrial noise, quality control, design and production in electronics.

Statistical Theory of Extreme Values and Some Practical Applications. By E. J. Gumbel, National Bureau Standards Mathematics Series N 33, 51 pages, \(1954,40 \%\). A monograph resulting from series of lectures at NBS and useful to engineers having problems involving extremes of pressure, temperature, loading and breaking strengths.

WIRE STRIPPING: Your jobs are peculiar to your ow a business and may be governed by such varables as kind and size of wire, what you use it for, your production requirements, and sther similar factors.

So we may se:ve you promptly and efficiently, tell us what you are now doing and your hopes in the way of improved quality. increased production and lower costs.

Illustration shcws a MODEL "D-1" TwoWheel Stripper, which is but one of the many diflerent types of machines made. This one uses \(11 / 4^{\prime \prime}\) diameter stripping wheels and is ordinarily used to strip any type of Film Insulation from wires in the range of AWG \(\# 25\) to AWG \#44. A. wide variety of stripping wheels are available, made from EybRglass and Brush Wire, all designed to provide economical service.

This particular machine is only \(\$ 156.25\), f.ob. Syracuse, exclusive of stripping wheels. It is available on a Test-Rental plan or may be purchased out of savings over a ten month period.

For a confideatial report containing our recommendations, send samples and complete information to

\section*{Rush Wire Stripping Division}

THE ERASER COMPANY, Inc. 1060 Soust Clinton St. Syracuse 4, N. Y.

INJECTION MOLDING TECHNIQUES OFFER WIDE FLEXIBILITY AT IMPORTANTSAVINGS!
new design possibilities new production economy

Gries tiny thermoplastic parts meet simple or intricate specifications precisely, uniformiy, and economically. We mold all thermoplastics! Nylon, Kel-F, acetotes, polystrene, polyethylene, etc. Quontities of 25,000 to millions.

\section*{SMALL PLASTIC PARTS}

NYLON A SPECIALTY
Gries' unique special molding facilities make the most of nylon's unique advantages-at the least cost!

AUTOMATIC INSERT MOLDING. Exclusive focilities for individual or continuous ins serts; finished parts produced automatically - without manual labor of any kind!

MAXIMUM SIZE:
.025 oz. 1" long
NO MINIMUM SIZE!

Write today for samples and informative bulletins; send prints for quotations

World's Foremost Producer of Small Die Castings
151 Beechwood Ave., New Rochelie, N. Y. - NEw Rochelle \(3-8600\)

\section*{FIRST CHOICE For Every Industrial Use \\ LIVERMONT TORQUE WRENCHES}

Rugged, streamlined, accurate wrenches for every torquing probleml Based on patented non-friction principle, so will give years-longer, dependakle service. Used in major auto, aircrafi plants.
(A) New Livermont "ROTO TORQ" screwdriver. For low torque electronic - or similarprecision ossembly work. Fits 50 standard bits.
(B) Only "HI-LO TORQ" has adiustoble and reversible rotchet heod! 16 models, 10 to 500 foot pounds. Also plain square drive.

Write Dept.E.
for complere price cotalog. Over 100 models, copaclties.

RICHMONT INC "TNE HOME OF 922 so. mYRTLE AVE., MONROVIA, CALIF

Crystal Temp. held to + or \(0.025^{\circ} \mathrm{C}\) with NEW CRYSTAL OVEN

FR-61 (Model LA-61)

\section*{Frequency Meter}

\section*{(500-2000 MC)}

A compact, portable, highly (\(0.001 \%\) a accurate instrument that will perform with most rellability under all conditions and in ly diversified application, including.
ly diversifed application, including:
UHF transmitters or power oschllators
- Checking narrow bandwith and other fil.
ter characteristics... measuremeat of
- Checking stability and drift of UHF oscil.
- lators.
- Qualitative and quantitative evaluation of
- modulation.
- As an accurate signal source wherery.

Manufactured by Lavoie Laboratories
Sold By

\section*{Phillip H. Harrison \& Co.}

Route 34, Matawan, N. J
Write for Illustroted Descriptive Pamphtet

\section*{MAGNECRAFT Class 33}

\section*{featuring-}
- Reliability unlimited by small sizewithin recommended range of use.
- Resistance to shock, vibration and temperature change available to meet military specifications.
- FLEXIBILITY for adaptation to wide range of application. Available for D.C. operation only.
- The same well proportioned magnetic structure characteristic of all MAG. NECRAFT Relays.
- Dimensions-open type, 1-11/32" long, \(11 / 16^{\prime \prime}\) wide and \(1^{\prime \prime}\) high with DPDT contacts.
- Dimensions-hermetically sealed with up to 6 contact springs per stack, 12 springs total, and 8 - or 14 -pin solder terminal header. base dimensions \(31 / 32^{\prime \prime}\) by \(1-11 / 32^{\prime \prime}\), height \(1-41 / 64^{\prime \prime}\)

Send for Catalog describing Class 33, Class 11 and Class 22 Relays for A.C. or D.C., open, plug-in, dustproof, hermetically sealed and many special models.

\section*{MAGNECRAFT ELECTRIC CO.}

1448 W. VanBuren St., Chieago 7, III.

\section*{BACKTALK}

\section*{Tube Reliability}

Dear Sirs:
In the published version of our article on the reliability of electron tubes in military applications (\(p\) 130, March, 1954), we note that certain points have suffered somewhat in the condensation necessitated by publication requirements.
One fact which we particularly desire to call to your readers' attention is the important part played by the Cornell University School of Electrical Engineering in the laboratory analysis of defective tubes collected by Aeronautical Radio, Inc., at military bases. This valuable work, which is still continuing, was carried on under the competent direction of Professor Walter Jones until his untimely death...
With respect to other information which could not be included or is not presented as precisely or fully as we might have wished, we hope that interested readers will refer to the full report on which the article is based.
Considering the article as a whole, we feel that you have done a good job of condensing the original version and highlighting the major findings.

\author{
E. R. Jervis \\ J. Swanger \\ utical Radio, Inc.
Waslington, D. \(C\).
}

\section*{Zero Output Impedance}

Dear Sirs:
With reference to Drisko \& Darrell's amplifier (Electronics, p 130, March 1952), and to the correspondence on it (p 420 Oct. 1952; p 362 Jan. 1953), I would offer these comments.

It has been established (and published) that omitting cathode bypass capacitors in push-pull stages is beneficial and helps to achieve better balancing in all classes except class \(\mathrm{AB}_{2}\) and class \(B\) equipment.

It is perhaps doubtful whether 12 watts of horn-load tweeter output are beneficial for any use except the concert hall. Most tweeters are of the ribbon form (over here) and they will certainly not take 12 watts.

For baffle-loaded M.C. loud

speakers there is no virtue in zero output impedance. This your authors' admit!

The major criticism against the authors' ampifier is in the use of a very expensive output transformer when comparable results can be obtaired at a cheaper cost.

One transformer available here is an excellent job but it costs about 9 to 10 pounds. It was originally meant to give 50 watts with only 0.5 -percent distortion without feec.back. No wonder it gives virtually zero distortion at only 12 watts and less than 0 db N.F.

This transiormer is made so that enhanced feedback (20 db) can be taken from the secondary. It's a waste of its good properties not to do so. Of course it is conceded that the authors' amplifier would not present sufficient gain at the secondary tc give 40 db feedback, and primary feedback is the only course open to them.

In their reply (p 362, Jan. 1953), the authors seem unnecessarily sceptical over amplifiers not published in Electronics. If they will consult Wireless World for January, 1948 they will see a 10 -watt 6L6 amplifier with \(36-\mathrm{db}\) feedback and only 0.1-percent distortion. Moreover the transformer costs only about half as much as the ones previously mentioned.

In their reply, the authors seem to belittle balancing as a device to level out tube life. . . . Williamson stated that his object was to eliminate saturation on d-c magnetization and thereby preserve at low frequencies the results obtained at higher frequencies.

It is to be regretted the authors never gave more details of their screen feed system that keeps anode current constant.
F. B. White

London, England

\section*{Tone Compensation}

Dear Sirs:
In the May issue of Electronics, page 184 , appears an article by Mr . Ed C. Miller entitled "Signal-Operated Tone Compensation". While it may well be that the circuit described will do what the author

MICROWAVE DEVELOPMENTS

\begin{abstract}
Wheeler Laboratories is an engineering organization offering cansulting and engineering services in the fields of radio and radar.

The waveguide labyrinth pictured above is an impedance measuring circuit developed by Wheeler Laboratories. It is used in conjunction with our sweeping oscillator to display on an oscilloscope screen a continuous polar plot, over the 12 -percent \(X\)-band, of the magnitude and phase of the reflection from a waveguide component.

At present, Wheeler Laboratories comprises a staff of twenty engineers under the personal direction of Harold A. Wheeler, with supporting facilities including a group of designers and a model shop.

A brief summary of our work will be sent on request, and comprehensive engineering reports on some of our developments are available. Inquiries are welcomed regarding your particular problems in microwave design and development.
\end{abstract}

Wheeler Laboratories, Inc. HUnter 2-7876

\section*{COMPUTER Field Engineers the Key to your Future}

EISLER MANUFACTURES COMPLETE EQUIPMENT WELDERS FOR SPOT \& WIRE BUTT RADIOTV TUBE EQUIPMENT \& REFAIR UNITS NCANDESCENT, FLUORESCENT MFG. EQUIPMENT NEON SIGNMAKERS EQUIPMENT, GLASS LATHES Wet Glass SLICING \& CUTTING MACHINES for Lab Use TRANSFORMERS, SPECIAL \& STANDARD TYPES EISLER ENGINEERING CO., INC.
751 So. 13th St. Newark 3, N. J.

Noise \& program erasure. Use the best. Cinema's Bulk-Tank Type Degausser 9205. Economically priced. Buy yours today

Shorted Turn Indicator

\section*{\$175 \\ Kartron}

HUNTINGTON BEACH, CALIF.

\section*{use this}

\section*{CONTACTS SECTION}
- PROMOTE NEW USES
- PROMOTE NEW USERS
- GET NEW SALES OUTLETS
- REACH All bUYing INfluences
- EFFECTIYELY ** ECONOMICALLY
claïms, this writer wonders whether the premise upon which the desire to tone compensate by signal control is justified in the first place.
The writer agrees that while tone compensation is desirable to take care of the difference in level between what is heard in the concert hall and the level used in reproduction in the home, the famous loudness control being well established among audio engineers, it is believed that the use of tone compensation controlled by signal level is illogical.

How, in Mr. Miller's opinion, does his circuit discriminate between reduction of home reproducing level versus concert hall level on the one hand and the, say, piano or pianissimo versus forte or fortissimo playing of the performing artist? Ulric J. Childs Audio Engineer New York, N. Y

\section*{Polarity}

\section*{Dear Sirs:}

The transistor circuit diagram of Fig. 1 on page 169 of the April issue of Electronics is incorrect. The 4.5 -volt base biasing battery is reversed in polarity. In order for the circuit to operate correctly the base must be negative with respect to the emitter.

Robert L. Riddle
Asst. Prof. of Eleot. Engr. The Pentsylvania State University State College, Pennsylvania

\section*{Silicon Diodes}

Dear Sirs:
We have noted . . . page 12 of May Electronics, you indicated "Transistor products of Melrose, Massachusetts" has silicon diodes commercially available ...

I think you meant the firm to be Transitron Electronic Corp. of Melrose, Mass. We have had silicon diodes commercially available since October, 1953 and I believe were the first company to put them on the market.

James B. Hangstefer
Transitron Electronic Corp. Melrose, Mass.

\title{
Professional Services
}

\author{
Consulting-Patents—Design—Development—Measurement \\ in \\ Radio, Audio, Industrial Electronic Appliances
}

\section*{ANNIS ELECTRIC RESEARCH LABORATORY, INC. \\ CONSULTING - REAEARCH - DEVELOPMENT AND DESIGN OF RADIO AND FILECTRONIC \\ Antennas, Wave Propakation, Information Storace. Computers, Impedanee Matching and Varisblo Speed A-C Motors. \\ P. O. Box \({ }^{\text {Champaign, }} \mathbf{I I}\) \\ 14011/2 S. Nell St}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
ROGER BARRETT BROSS Converiting Bmotree \\
SPECLAL EEECTRIC MOTORS
ELFCTROMAONETIC COMPONENTS \\
Design - Deve opment - Manufacture \\
25 Curtis Rd \\
Box 15 \%, Netick, Mass. \\
OL 3-9235
\end{tabular} \\
\hline
\end{tabular}

\section*{CROSBY LABORATORIES, INC.}

Murray G. Crosby \& Staff Radio - Electromio
Research Develqument \& Manufacturing Communismation, FM \& TV
Roblins Lane, Hicksylle, N. Y.
Hicksulle 3-3191

EDGERTON, GERMESHAUSEN \& GRIER, INC.
Consultsing Engineers
Stroboscopy - Tratudent Oecillography Photoelectricity - Pulse Technlques - Tlming Tolemetering - Indurtrial Tolevision Appliantions 160 Brookline Avenue Borton 15, Mas.

Eldico of New York, Inc.
Pioneers of Talevision Interference Elimination from Transmitters, Induction Heatary, Diathermy and etc.

Donald J. S. Merten \& Encineering Star
70 E. Second St.
Bneola. Is, I., N. Y.
Gardon Clty 7-0383
ELECTRONIC RESEARCH ASSOCIATES, INC.
'"TRANSITOMEE" YOUR PRODUCTI Complete Service in eonsulting, research, derelopmeot, and production on Trangistor circuitry, products and instrumenta ion.
718 Maln Street
C.altwell 6-6729

\section*{ERCO RADIO} LABORATORIES, INC.
Radio Communications Equipment Fagineering - Desigm - Development - Production

Our 23th Year in Air to Ground Gerden Clys - Ong Iskand - New York

\author{
HANSON-GORRILL-BRIAN INC. \\ Product \& . Ufg. Developmen medidtric.ll - Electronic \\ hYDRAULIC - MECEANICAL \\ One Contineatal Hill \\ Glen Coro, N. Y. Glen Cove 4-7300
}

\section*{Professional Assistance} in solving your most difficult problems in the specialized field of electronic devices is offered by consultants whose cards appear on this page.

\section*{HIGHLAND ENGINEERING CO.}
\(W^{\prime}\) illiam R. Spittal \& Staff
DESIGN, DEVELOPMENT AND MANUFACTURE
OF TRANSFORMERR, CHOKES, ETC.
enlectronic. INDUSTRLAL \& ALIIED FIELDS Westbury W L. I
hogan laboratories, INC.
John V. L. Hogan, Pree.
Applied Retearch, Dovelopment, Engineering
Bat. 1929. Electroniek, Optics, Mechanisms. Facsimile Communication, Digital Computers (Circlo). Electro-sensitive recording media. Instrumentalion.
155 Perry Street, New York 14. CHelsea 2-7855

\section*{INTERFERENCE MEASUREMENT LABORATORY}

Interferance Study per Government Specifications 8hiolded Space for Interforence Iarestigation Field Surveyt for F.C.C. Certincation of Induction and Didectric Heating Equipment
1844 UtIc Avenue Navate \(\begin{gathered}\text { Brook } \\ 8-1248\end{gathered}\)

\section*{THE KULJIAN CORPORATION}

Consultants Engineers © Constructors
Electronic Control
Spechallsti
Utility - Industrial - Chenleal
1200 N. Broad 8t. .
Phile 21, Pa.

\section*{ROBERT McCABE}

Iradio Nolse Yeasurement and Elimination Fiald Intensity Surveys

1781 Blde-a-Weo Park
Columbus 5, Ohio

Measurements Corporation
Research ©o Manufacturing Engineers Harry W. Houck Martisl A. Honnell John M. van Beuren
Specialists In the Desten and
Development of Electronic Test Instru
Development of Electronic Test Instruments Boonton, New Jersey

\section*{NEW ROCHELLE TOOL CORP.}

FOR CERTIFICATION OF INDUCTION
AND DIELECTRIC HEATING EQUIPMFNT
IN ACCORDANCE WITH F.C.C. RULINGS
Mobde Test Unit a rallable Entire U. 8.
320 Main St. Phone NE \(\begin{gathered}\text { New Rochelle, New York } \\ 2-555\end{gathered}\)

NIAGARA ELECTRON LABORATORIES
CONSULTATION - DESIGN - CONSTHUCTION MFG. THE THERMOCAP RELAY
Spbecalizing in solution of problems of electronle and electro-physical instrumentation for the reserrch or analyticel laboratory. Induatrial plant prablema also invited.
Andover, Now Yort Cable Address: NIatronlab
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PICKARD \& BURNS, INC.} \\
\hline \multicolumn{2}{|l|}{Consulting Electronic Engineers} \\
\hline \multicolumn{2}{|c|}{Analyals and Braluation of Radio Systems} \\
\hline \multicolumn{2}{|l|}{Research, Derelopment and Production of Special Electronic Equipment} \\
\hline 240 Highland Are. & Needham 94, Mass. \\
\hline
\end{tabular}

\section*{JOSEPH RACKER COMPANY}

Radar Consultants © Editors
Technical Manuals
Research and Development
140 Nassau 8treet
Woeth 4-1463

\section*{THE TECHNICAL \\ MATERIAL CORPORATION \\ Communications Consultants} Systemi Engineering
General Offices and Laboratory
700 Fentmore Rd., Mamaroneck, N. Y.
\begin{tabular}{|c|c|}
\hline & TELECHROME, INC. \\
\hline & Electronic Design Specialists COLOR TELEVISION EQUIPMENT \\
\hline & Flying Spot Scanners, Color Synthesisers, Keyers. Monitors. Oscilloscopes and Related Apparatu J. R. Poplin-Clurman, Pres. \&Oh. Bngr. \\
\hline & 88 Mertek fid. Amturdie, L. I., N. Y . \\
\hline
\end{tabular}

\section*{WHEELER LABORATORIES, INC. Radio and Electronics \\ Consulttag - Research - Developmont K-F Clrcults - Lines - Antennas \\ Microwave Component - Test Equipment \\ Harold A. Wheeler and Engineering Stati \\ Gieat Neck. N. \(\mathbf{Y}\). \\ HUnter \(2-7876\)}
YARDNEY LABORATORIES, INC.

Research-Design-Developmens

Electro-Chemical Generators of Enersy

40-40 Leonard Street

Worth 6-3100

New York 13, N. Y.

\section*{CLASSIFIED Searchlight Section \\ ADVERTISING}

\section*{UNDISPLAYED RATE}
\(\$ 1.80\) a line, minimum 3 lines. To figure odvance poyment count 5 overage words as a line POSITION WANTED undisplayed advertising rate is one-half of above rate, payable in adrance.
BOX NUMBERS count 1 line odditional. Send MEW ADVERTISEMENTS to N Y Oftice 330 W.

DISCOUNT 10\% if full poyment is made in advance for four consecutive insertions of undisplayed ads (not including proposals). EQUIPMENT WANTED OR FOR SALE Advertisements occeptoble only in Disployed Style.

DISPLAYED-RATE PER INCH
The advertising rate is \(\$ 16.10\) per inch for all advertising appearing on other thon a controct basis. Controct rates quoted on request.
AN ADVERTISING INCH is measured \(3 / 4\) inch vertically on one column, 3 columns- 30 inches
- EL a page. Send NEW ADVERTISEMENTS TO N. Y. Office, 330 W. 42 St., N. Y. 36, for the September issue closing August 2nd. The publisher cannot occept advertising in the Searchlight Section, which lists the names of the manufacturers of resistors, capacitors, rheostats, and potentiometers or other names designed to describe such products.
```

REPLILES (Box No.): Address to offce nearest you
NEW YORK: \$30 W. 42nd \&t. (\$6)
HICAGO:520 N. Michtgan Ave. (11)

```

\section*{POSITIONS VACANT}

RELAY DESIGN Engineer. Must have experience in design. production, patents and sales of relays and components for electronics. Write outlining experience-salary - and what you think you can do with a iree hand in charge of
newly formed relay division or small (70 employees) Northern Ohio manufacturer. Salary, commission and other financial inducements to the man who can qualify. Assembly Products, Inc., P. O. Box 191, Chagrin Falls, Ohio.
TECHNICIAN - 2-WAY Radio Shop in MidSouth center of oli activity, needs properly licensed technician experienced in 2-way radio instaliation and maintenance. Salary open to
good technician. Please write glving full pargoodiculars, as to experience, past galary. marital status, and references from previous employers.

\section*{SELLING OPPORTUNITY OFFERED}

TECHNICAI, SALES Rep wanted by one of leading manufacturerg of Industrial and
Transmiting Tubes for each of following TerTranamitting Tubes for each of following Ter-
ritories: Territory A: Southern New Jersey, ritorles: Territory A: Southern New Jersey,
Eastern Pennsylvania, Delaware and Maryland. Eastera Pennaylvania, Delaware and Maryland.
Territory B: Ohio and Weatern Pennsylvanla. Allinquiries will be held in strictest confidence. RW-3277, Electronlcs.

\section*{POSITIONS WANTED}

PLANT ENGINEER-Production manager oxperienced engineering analysis, quality contronic flelds, including ordinance and fire-control syntems, communications equipment. Age 45. Box PW-2779, Electronics.

GOOD TECHNICAL training with iwenty-four year experience bullding and designing electronic apparatus resent experience in Ultra Sonic generators seeking position where experiformation to Box PW-2696, Electronics.

PYROLYTIC RESISTANCE Films: Chemical engineer, experienced in the development and improvement of Boron-Carbon realstance filme, lamiliar with all operations used in the provelopment of same or similar processes. PW2985 , Electronics.

SALES ENGINEER B.E.E. Ten years experlence in all phases of military electronlcs. Deslres a challenging opportunity in a sales capacity with progressive firm. Metropolitan New
York. PW-3266, Electronics. York. P-a
LAABRATORY TECHNICTAN, 29 years, studied physics, experienced in component wood, Pleasant Ridge, Mich.

\section*{Mr. Manufacturer: \\ IS YOUR CALIFORNIA \\ TERRITORY OPEN-FOR GOOD REPRESENTATION?}

I offer the experience of \(\mathbf{2 5}\) years in the electronic and industrial fields as jobber, manufacturer and sales representative. Hard driving; realistically in tune with the times; have the key contacts; number of lines strictly limited for personalized service.
1111 whishire Bivd. Lios Angeles 17, Caurs.

\section*{POSITIONS WANTED}

SAILES FNGINEER thirteen years experience in engineering, manufacturing and sales in electronics and plastics avallable to leading
manufacturer requiring dynamic representation manufacturer requirlng dynamic represeatation
in New England full tlme or as manufacturer's in New Eingland full time or as manufacturer's
representative. PW-3307. Electronics.
COMMUNICATIONS ENGINEER - Technician desires job with smali firm speclalizing in communications equipment, or small communications firm. No degree. Have ten years prac-
tical communications experience, backed by tical communications experience, backed by technical know-how and imagination. Available
U. S. in Dec, C. E. Greene, Pago Pago, Samoa, Via Airmail.

PRODUCT ENGINEER 12 years experience in design and production of electronic and mechanical components and their applications.
Desire position with good prospects. PW-3312. Desire posit

DEVELOPMENT ENGINEER. Four years small electromechanical instruments and auistry. Experienced machinist. B.S. in Physics. PW-3295, Blectronics.

\section*{CONTRACT WORK WANTED}

Open capacity for continuous vitreous enamel\(1600^{\circ}\) of imall parts. Maximum temperature having close temperature and speed controls. CWW-3325, Electronlcs.

\section*{WANTED}

ANYTHING within reason that is wanted in the fleld served by Electronics can be quickly located through bringing it to the attention of
thousands of men whose interest is assured because this ls the business paper they read.

\footnotetext{
TRANSISTORS
Transistor
Bushess man-Finginear can develop six fare volume for transistors, transistor iransformers or sistors. Deaire to obtain substantial Interest in small established manufacturing company now ac-
tive in this feld. Must have martetable componenta.

330 W .42 St., New York 36,
}

REPRESENTATIVES WANTED
Manufacturer of electronic tont equipment for military and commercial applications neseds technically qualified represontatives. Writ giving qualifications, lines handled territory covered.

RW-2178, Blectroalce
1111 Wilehire Blvd., Lom Angele 17, Caluf.

\section*{WANTED:}

COMMISSION SALESMAN
Experienced with following wanted by representa.
tives of stricfly frat-clas European mills manu. tives of strictly first-ciast European milis manuthe Electronio industry. Dotalls Arst lottor.
\[
330 \mathrm{~W} .42 \mathrm{St} .3180 \text {, Electronics }
\]

\section*{TWO PRACTICAL MANUALS}

Prepared by Staff Members of the Phillips Research Laboratories

\section*{NEW—UP-TO-THE-MINUTE INDUSTRIAL ELECTRONICS}

By R. Kretzmann
Detailed, descriptive study of successful modern electronic devices. Has many typical examples of a wide range of industrial electronic controls. 250 pp., 266 illus., 1954 \(\$ 5.50\).

\section*{TELEVISION}

By F. Karkhof and W. Warner
An introduction to the physical and technical principles of television with comprehensive descriptions of different circuits. 475 pp., 360 illus., 1953 , \(\$ 9.00\).
Available on 10 day free opproval
ELSEVIER PRESS INC.
1603 Oakdale St. Houston 4, Texas

\title{
Clear Horizons head \\ . . . at Goodyear Aircraft Corporation
}

BUILD YOUR CAREER and help build Pomorrow's worid with the pioneer and leader in lighter-than-air craft. There's a clear, bright future at Goodyear Aircraft for engineers with talent, aptitude and ambition.

\section*{FORCEFUL, CREATIVE THINKING is the key to Goodyear's pro-} gressive research and development programs in missiles, electrical and electronic systems, servomechanisms, new special devices and fiber resin laminates. Design and development engineering opportunities are many and varied . . . are now available to capable and imaginative men and wamen in the field of airships, aircrafi and aircraft components.

POSITIONS ARE OPEN in several fields with salaries based on education, ability and experience.
\begin{tabular}{ll}
Physicists & Civil engineers \\
Mechanical engineers & Welding engineers \\
Aeranavical engineers & Electrical engineers
\end{tabular}

\section*{SEARCHLIGHT SECTION}

General Electric hermetically-sealed, evacuated junction transistor (left), contrasts sharply with standard miniature vacuum tube.

\section*{WORK ON THE NEW DEVELOPMENTS IN ELECTRONCS AS AN ENGINEER WITH GENERAL ELECTRIC}

Few developments today can match the importance and versatility of the tiny transistor, which has vast possibilities for both industrial and consumer use.

General Electric engineers are at work now on new improvements, new applications and advances. As always, they are aided by the finest facilities . . . by the cooperation and encouragement of recog. nized leaders in the field . . . by the opportunity to take on increas. ingly challenging assignments.
These factors, combined with stability, excellent salary and benefits, provide the engineer with the ideal environment for achievement and growth.

Experience required in the following fields:
Advanced Development, Design, Field Service
and Technical Writing in connection with:
MILITARY RADIO \& RADAR MULTIPLEX MICROWAVE MOBILE COMMUNICATION COMMUNICATIONS

\section*{ELECTRONIC COMPONENTS}

TELEVISION, TUBES \& ANTENNAS
Bachelor's or advanced degrees in Electrical or Mechani. cal Engineering, Physics, Metallurgy or Physical Chemistry and/or experience in electronics industry necessary.

Please send resume to: Depf. B-4-E, Technical Personnel

\section*{RESPONSIBLE POSITIONS \\ FOR \\ ENGINEERS \\ PHYSICISTS}

\section*{SERVOMECHANSM AND CONTROL DEVICES}

> Applicants must have Bachelor, Masters or Ph.D degrees and a minimum of two years experience in experimental research, design and development of control equipment and instruments.
> Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications.
> Employee Relations Manager Research and Development Department PHILLIPS FETROLEUM COMPANY Bartlesville, Oklahoma

RCA, world leader in electronics, has career opportunities for qualified Electrical and Mechanical Engineers... Physicists . . . Metallurgists . . . Physical Chemists ... Ceramists ... and Glass Technologists for long range work in military or commercial fields.

> SYSTEMS - ANALYSIS—DEVELOPMENT —DESIGN—APPLICATION ENGINEERING in the following fieids:

AVIATION ELECTRONICS (FIRE CONTROL, PRECISION NAVIGATION, COMMUNICA. IIONS)-RACICATRON COMMNICA-TIONS)-Radar-Analog Computers Digital Computers-Servo-Mechanisms Transfer-Remote Controls-Sub-Mini-aturization-Automatic Flight-Transis-torization-Automation
RADAR - Circuitry - Antenna DeajgnServo Systems-Information Display Sys-tems-Gear Trains-Stable ElementsIntricate Mechanisms

COMPUTERS—Digital and Analog-Systems Planning-Storage Technique-Circuitry -Servo-Mechaniams-Aasembly Deaign -High Speed Intricate Mechanums
COMMUNICATIONS-Microwave - Aviation -Mobile-Specialized Military Systems
missile cuidance-Systems Planning and Design-Radar and Fire Control-Servo Mechaniams-Vibration and Shock Prob-lems-Telemetering

COMPONENT PARTS (COLOR A MONO. CHR OME TV)-HV Transformers-CoilsDefiection Yokes

SEMI-CONDUCTORS-Transistors-Diodes
ELECTRON TUBE DEVELOPMENT-Receiv ing - Transmitting-Cathode-RayPhototubes and Magnetrons-Power Tubew-Camera Tubes

ELECTRONIC EQUIPMENT FIELD ENGINEER -Specialists for domeatic and overseas asaignment on military electronic Com munirations, Navigational Aids, and Guided Missiles.

At IRCA you'll work in an atmosphere conducive to creative work-laboratory facilities unsurpansed in the electronics industry tiats and engineers.
Positions now open in Systems, Analysis, Development, Design and Application Engineering. Your choice of long range work in commercial or military fields.
Delightful suburban living easily available. Modern retirement program . . . liberal tuition refund plan for advanced study at recognized universities . . . modern company paid benefits for you and your family. Individual accomplishments readily recognized. Ample opportunities for increased income and professional advancement.

Join the team at RCA and grow with the world leader in electronics.
Personal interviews arranged in your city.
Please send complete resume of your education, experience, and specialized field preference to:

MR. JOHN R. WELD
Employment Manager
Dept. 300H
Radio Corporation of America 30 Rockefeller Plaze, New York 20, N. Y.
- Positions are available in our organization at all levels for qualified personnel in the following fields:

Our rapidly expanding interests in these and other fields opens many opportunities for experienced electrical engineers as well as recent graduates.
Chicago location offers excellent opportunities for further study and graduate work in the electronics field.

Personal interviews will be arranged at the convenience of qualified applicants
We suggest you write Mr. Walter Wecker, Personnel Department to get more information on career opportunities, advanced educational plans, and other advantages.

\section*{Admiral Corporation}

\section*{ELECTRONIC ENGINEERS \& PHYSICISTS}

OUR STEADILY EXPANDING LABORATORY OPERATIONS ASSURE PERMANENT POSITIONS AND UNEXCELLED OPPORTUNITY FOR PROFESSIONAL GROWTH IN

\section*{RESEARCH-DEVELOPMENT-DESIGN}

ELECTRONIC COUNTERMEASURES
RADAR SYSTEMS
MICROWAVE COMPONENTS
AIRBORNE ANTENNAS
MISSILE GUIDANCE CONTROL SYSTEMS SOLID STATE PHYSICS TELEVISION

\author{
ADDRESS \\ INQUIRIES to CAPEHART FARNSWORTH CO. FORT WAYNE, IND.
}

\section*{DEVELOPMENT \& FIELD SYSTEMS ENGINEERS \\ - antenna \\ - RADIO COMMUNCCATIONS \\ - Radar \\ - MICROWAVE \\ - navigational aIdS \\ - terminal eaupment \\ - TELETYPE}

With a progressive, expanding, well established corporation. Interviews will be arranged for qualified applicants. Send complete biographical resume, experience and education to

Mr. J. E. Richardson
Personnel Director
maryland electronic mfg. corp.
5007 Calvert Rood
College Park 9, Maryland

\section*{The}

Super
Constellation

Family...

\title{
Engineers choose Lockheed for better careers
}

It gives an engineer a fine feeling of security to know his career is backed by a plane with a future that grows daily. regardless of international events.
The Constellation project started in 1939, developed into a family of commercial and military aircraft. The Super Constellation now flies on 18 airlines throughout the world. Each month this year a new airline starts Super Constellation service. Military versions of the plane are in service with the U.S. Navy and U.S. Air Force as transports and radar search planes.
Production orders already extend into 1956. And in development: turbo-prop Super Constellations to continue Lockheed leadership in rapidly expanding passenger and cargo transport fields.
This means stability to a career-conscious engineer, whether you work on the Super Constellation or one of Lockheed's fighter, bomker, trainer, vertical riser or nuclear energy projects. (Example : when the F. 94 project was completed, all Starfire engineers were assigned to the Super Constellation or one of the other projects. The Super Constellation family and Lockheed diversification made this possible.)
To engineers who look to their future, Lockheed also offers: 1) increased salary rates now in effect ; 2) generous travel and moving allowances; 3) a chane for you and your family to enjoy life in Southern California.

\section*{Training Program for Engineers}

Aircraft experience is not necessary to join Lockheed. An engineering degree or equivalent experience qualifies you to receive transitional or on-the-job training - at full pay.

\section*{Lockheed}

Aircraft Corporation • Burbank

\section*{Immediate openings for:}

Servomechanisms Engineers
for development and testing of servomechanisms and autopilot systens.
Design Engineers A \& B
in fields of structures, electrical, electrical installation, mechanical.
Flight Test Instrumentation Engineers
for the development and application of special instrumentation in analyzing autopilots, acoustics and vibration. The position requires a degree in Electrical Engineering or Physics.

Flight Test Analysis Engineers
to evaluate airplane and engine performance from flight test data. The position requires a degree in Mechanical or Aeronautical Engineering.

\section*{Aerodynamics Engineers}

Thermodynamics Engineers
Weight Engineers
Structures Research Engineers
for Lockheed's Research Laboratory.
Structures and Stress Engineers
to perform work in structural analysis, basic loads and stress methods.

Mr. E. W. Des Lauriers, Dept. EE-8
Lockheed Aircraft Corporation
1708 Empire Avenue, Burbank, California
Dear Sir:
Please send me your Lockheed brochure describing life and work at Lockheed in Southern California.

\section*{My name}

I am applying for ... (name position in this advertisement which fits your training and experience)

My street address

\section*{M. I. T.}

\section*{LINCOLN LABORATORY}

Staff research positions available for exceptional electrical engineers with advanced training or experience in electronics as applied to

Radar,
Communications
and
High Speed
Digital Computers.

\author{
Please reply to: \\ Personnel Department, P. O. Box 73,
} Lexington 73, Mass.

\section*{PROGRESSIVE ENGINEERS LOOK WEST}

Qualified Electronic and Electro-Mechanical engineers find happy association with a Western electronics pioneer and leader.
design \(\mid\) Commercial and military projects. Radar, DME, Comdesign
development production munlcations, Noise, Test Equipment including color T.V. - Many others with real interest \& challenge. Relocation expenses - excellent working conditions - Central location. Scheduled reviews \& advances. Fine insurance plan. Move should not dlsturb urgent military projects.
Send complete resume, income history \& requirements to engineering employment mgr.
Hoffman Latoouroness, wc.
3761 SO. HILL ST. LOS ANGELES 7. CALIF.

\section*{production and design ENGINEERS FOR TV COMPONENTS}

One of the world's largest manufacturers of electronic components since 1921 - plants in the east and midwest - offers you the opporfunity to grow in a dynamic organization.

Are you a qualified engineer, praferably experienced in TV funers ond sweep circuit components?
We invite you to write to us today, detailing your experience in this field.

Address all replies to: Director Industrial Relations
General Instrument Corporation 829 Newark Avenue, Elizabeth, New Jersey

MIDWEST Research insitute KANSAS CITY, MISSOURI

Offers Career Opportunities to Experienced ELECTRICAL ENGINEERS

Staff Openings in a Wide Variety of INDUSTRIAL RESEARCH AND DEVELOPMENT PROGRAMS

\section*{Activities in:}

Electronic Circuit Design Special Instrumentation Servomechanisms
Automatic Control Systems
Write: Mr. F. N. Stephens, Manager Engineering Division
4049 Pennsylvania Avenue Kansas City, Missouri

\section*{If you have design experience in MAGNETIC AMPLIFIERS CRYSTAL and L-C FILTERS MINIATURE TRANSFORMERS PLASTIC ENCAPSULATION TECHNIQUES}
(or if you are an engineer desiring experience in these fields)
. . . you owe yourself an investigation of the career advantages offered by Communication Accessories Company, Hickman Mills, Missouri . . . located in South Suburban Kansas City, where you and your family can enjoy advantages of:
1.
- Management-owned expanding organization.
2. Rural atmosphere - 25 minutes to metropolitan Kansas City

3
. Newly developed housing facilities, schools and shopping centers.

For confidential negotiations, address inquiries to W. S. Bonebright, V. P.,

\section*{COMMUNICATION ACCESSORIES COMPANY}

Hickman Mills, Missouri

SPECIAL OPPORTUNITIES FOR ELECTRONIC ENGINEERS
Convair in beautiful, sunshiny San Diego invites you to join an "engineers" engineering department. Interesting, challenging, essential langrange projects in missiles, engineering research and electronics development. Positions open in these specialized fields:

Microwave Antennae Dynamics Testing Microwave Components Telemetering Electronic Packaging Servomechanism Mathematical Physics Electronic Components Electronic Systems ElecIron Tubes Radome Design Applied Malhemalics Test Equipment Transmitters \& Receivers Minialure Circuils

Generous travel allowances to those accepted. For free brochure, write Mr. H. T. Brooks,
Engineering Depl. 900

\section*{CONVAIR} IN BEAUTIFUL

\section*{SAN DIEGO}

Division of General Dynamics
3302 PACIFIC HIWAY SAN DIEGO 12, CALIFORNIA

\section*{FORD \\ DEVELOPMENT ENGINEERS}

FOR:
Design Engineering, Practical Research, Investigations of Theories, Functional Analysis
An interesting challenge for senior design engineers to work directly with top project supervisors helping through the prototype stage new developments in:
- Automatic Control Instruments
- Airborne Armament Systems
- Electronic Navigational Aids
- Guided Missile Controls
- Magnetic Amplifiers
- Computing Equipinent

For these jobs we are interested in men with two or more years experience in electro-mechanical work related to the above fields or in men with superior scholastic records in physics, electrical, electronic or mechanical
engineering.

YOU'LLLIKEWORKINGATFORDINSTRUMENT
- Not too large, not too small
- Pension Plan
- Stable but progressive company
- N. Y. C. location with all its additional varied opportunities
- Above-average fringe benefits
- Nine Paid Holidays
- Two Weeks vacation with pay
- Tuition assistance for further related studies
Our policy of permanency of positions and continuity of service does not allow us to employ engineers unless there is a clear and definite need for them projected years into the future. And we promote from within. If you can qualify, we urge you to contact by mail, or if in N. Y. C. phone:

\section*{Mr. P. F. McCaffrey, Stillwell 4-9000, Extension 416}

\section*{FORD INSTRUMENT COMPANY}

Division of the Sperry Corporation
31-10 Thomson Ave., Long Island City, N. Y. (20 minutes from the heart of New York Cify)

Bendix Aviation Corporation - YORK Division...

This NEW division of our nationally-famous corporation has openings for

\section*{ENGINEERS PHYSICISTS}

Too-flight men in advanced fields of electronic research, development and product engineering are needed for challenging work under ideal conditions in our new, modern plant. You benefit ot Bendix York from our location in the heart of a beautiful suburban area, from high wages, paid vacations and holidays... ond excellent opportunities for odvancement.
Openings of all levels.

\section*{RECEIVER ENGINEERS} With Experience in VHF and UHF Frequencies

Career Opportunities
With Old Established
Central Connecticut Firm Interesting Projects

Top Salaries Suburban Living
Replies Held in Strict Confidence
Wire or Phone Collect
Personnel Mgr. SHerwood 7-2741

\section*{THE ALLEN D, CARDWELL ELECTRONICS PRODUCTIONS CORPORATION \\ Plainville, Connecticut}

\section*{ENGINEER}

We have an excellent opportunity for an experienced engineer, capable of designing relays, switches, and small electro-mechan lcal devices.
The man we are looking for must have in, genuity, and inherent mechanical ability. For such a man, our well-established and constantly growing company (located in eastern Massachusetts) offers a real op portunity and challenge.
Liberal fringe benefits.
P-3087, Electronics
330 W. 42 St., New York 36. N. Y.

\section*{ENGINEERS}

\title{
Have You Considered
}

\section*{What a Career at}

General Precision Laboratory

\section*{Can Mean to You?}

Electronics, systems, computer, field and related engineers will find few opportunities which can match the advantages at General Precision.

It's a growing research laboratory, subsidiary of the large and diversified General Precision Equipment Corporation. Work is on a variety of interesting long-range projects, and men with initiative and ability are given prompt recognition for their achievements.

Living and working conditions are of the best. The modern laboratory is located in New York's Westchester County, known throughout the country for its beautiful surroundings and high standard of living . . . and only one hour from metropolitan New York city with its wealth of cultural and educational activities.

If you're interested in a permanent, satisfying career, send your resume to Mr. H. F. Ware, Personnel Director. Expenses will be paid for qualified applicants who come for interviews.

\section*{GENERAL PRECISION LABORATORY INCORPORATED}

4 subsidiary of
General Precision Equipment Corporation
63 Bedford Rood
Pleasantville
New York

\section*{engineers . . . physicists... STYMED? \\ }

Have you come to a standstill in your work - future stymied?

Then by all means let us tell you about Melpar and the interesting assignments it can offer qualified men. We're increasing our engineering staff again ... for the eighth consecutive year - and that means a real "groundfloor opportunity" for you.

We have a variety of challenging project assignments, both military and commercial including the following:
- Data Handling Equipment (magnetic cores, magnetic. recording equipment, digital compuring rechniques, analogue so digital conversion, shaft digitizers)
- Flight Simulation (servomechanisms, pulse, circuitry, electronic cabling)
- High Frequency Antennas
- Audio and Video Circuit Design
- Small Mechanisms Design
- Mechanical Packaging of Electronic Components
- Measuring Techniques and fundamental investigations of the behavicr of Mechanical Systems
- Radioactive Tracer Techniques
- Instrumentation and Control Devices
(servo, pnermatic and electric control)
A grand future awaits you at Melpar - anc pleasant living in the delightful suburbs of the Nation's Capi:al. Write us today for personal interview in your locality.

440 Swann Avenue Alexandria, Virginia
or Galen Street
Watertown, Mass.
A SUbsidiary of the
WESTINGHOUSE AIR BRAKE CO.

\section*{JOIN RCA} ENGINEERING

\section*{MANAGEMENT}

RCA has two engineering management openings in its expanded electronics engineering program:

\section*{Manager Aviation Systems} Electronics Development (to supervise circuit development engineering and systems analysis of precision navigation, fire control and communications equipments). Manager Airborne Fire Control Product Design (to supervise design engineering of airborne electronic equipments).

These positions require the ability to manage a comprehensive design and development engineering organization and to plan broad engineering programs. Your ability should be substantiated by proven supervisory experience and a degree in EE, ME, or Physics.

Send a complete resume of your education and experience to:
Mr. John R. Weld, Employment Manager Dept.B-454H,Radio Corporation of America Camden 2, Mew Jersey

\section*{RADIO CORPORATION OF AMERICA}

Tmks. (2)

Motorola Research Laboratories, located in the healthful climate of Arizona's Valley of the Sun, has several openings for experienced engineers in the following fields:

Elecironic research and development formissile guidance, radar and VHF communications.
Mechanical design of missileborne and vehicular electronics equipment.
Analysis and laboratory work involving development of new types of airborne and ground radiators and waveguide components.
VHF and microwave antenno woveguide circuitory.
Transistor development.
Desire men with B, S. degree or obove. Salary commensurate with education and experience. Free health, accident and life insurance. Free hospitalization. Profit Sharing. Paid holidays. Sick leave. Vacations. Ideal working conditions. Plenty of housing, reasonably priced. Excellent schools. Exceptionally mild and dry winter climate.
WRITE: J. A. Chambers, Manager Motorola Research Laboratory 3102 North 56th Street Phoenix, Arizona

\section*{ELECTRONIC ENGINEERS and PHYSICISTS}

Our new, aggressive, expanding Tube Division is seeking top-quality Electrical Engrs with 2 or more years' experience in the following fields.

\section*{THESE POSITIONS OFFER:}

A pleasant life in Eimira, N. Y. . . . amid New York State's resort lakeland Good housing. excellent schools, hunting, flshing. sailing, etc. . . An opportunity for Professional Progress . . . stock-purchase and pension plans . . . tuition-refund program, etc.
TUBE DESIGNERS . . for micrownve tobes, reeciving whes and solid state devices
application engrs
Requires circuit development experience in radio, TV, VHF and sweep circuits.
PRODUCTION ENGRS
for our color TV development program. Requires physics background, with knowledge of photo sensitized screens, silk screens or printed screens. Work requires initiafive and vision to develop new techniques
WFSTINGHOUSE will pay expenses of Fangineers Invited to Elmira for interview. Send resume:

\section*{WESTINGHOUSE ELECTRIC CORP.}
P. O. BOX 284,

You can be SURE . . . If ir's WEstinghouse

A well established company and a leader in its field has positions open in engineering for the following:
A. Engineers experienced in the design of modern machine switching eircuits. Should have ability to think in terms of relay circuitry and do Independent design work. A good knowledge of problems involving reliability and common practice in modern telephone systems is essential.
B. Enqineers with experience in the design and application of telephone and/or industrial relays. A good working knowledge of materials from both the magnetic and mechanical standpoints is required. Design and application work will stress reliability and long life of components.
Reply in confidence, fully stating details of personal and professional history as well as education. Expense paid interviews will be arranged for those applicants demonstrating suitable qualifications in first letter. Salaries will be liberal and as justified by qualifications. Location: Middlewest.

\section*{P-3363, Electronics}

520 N. Michlgan Ave., Chicago 11, Ill.

\section*{ELECTRONICS ENGINEERS}

Design and development of counting and data-handling equipment for industrial control, scientific and business applications. B.S.E.E. and experience required.
POTTER INSTRUMENT CO. INC. ils Cutter Mill Rd. Great Neck, N. Y.

\section*{FLORIDA Electronic enainers -.. \\ Enjoy abundant living —all year- \\ Design • Research • Development for \\ Automatic Gages and Controls with \\ Southeastern Electronic Labs division of \\ The Electron-Machine Corp. \\ Umatilla, Florida \\ (Located on one of Central \\ Florida's springfed lakes)}

\section*{New "Searchlight" \\ Advertisements}
received by August 2nd will appear in the September issue subject to limitation of space available. Address copy to the

\section*{ELECTRONICS}

330 W. 42nd St., New York 36, N. Y.

\section*{ELECTRONIC \& ELECTRICAL ENGINEERS \& MATHEMATICLANS}

Research \& Development
Internationally known research organ. ization seeks experienced engineers and mathematicians for challenging research and davelopment programs in the following fields:

Analog \& Digital Computer Development
Business Record System Design \& Development
Mathematical Services Utilizing Ana\(\log \&\) Digital Computers
Radar \& Radio Communications
Gulded Missiles \& Servomechanisms
Our expanding staff assures permanent positions and excellent opportunities for personal and professional growth. Liberal benefits including generous tuition refunds for graduate study. Send resume to:

> Mr. John F. Collins

ARMOUR RESEARCH FOUNDATION of Illinois Institute of Technology

Technology Center
Chicago 16, Ilinois

\section*{ENGINEERING OR SCIENTIFIC FIELD REPRESENTATIVE}

The National Jnion Research Division has an unusual opening for a physicist or enginear to act as field representative covering research selling. Requirements for this position are: A college degree and knowledge of electron tube research in all its phases plus the ability to deal with technical and executive personnel. From 5 to 10 years experience in this field is desired. Send complete resume or apply in person to:

Research Division
NATIONAL UNION ELECTRIC CORP.
350 Scotland Rd.
Orange, N. J.

\section*{Career-chance} of a lifetime for RESEARCH and DESIGN SPECIALISTS

\author{
in LOCKHEED'S expanding Missile Systems Division
}

Recently formed from other Lockheed engineering organizations to prepare for the era of automatic flight, Lockheed's Missile Systems Division has a few openings for highly-qualified specialists in research, design and proposal work.

The type of work involved in the Division's contracts - along with its expansion program makes these openings outstanding opportunities for achievement. The positions call for engineers of senior or group leader level. Engineers who qualify probably have worked on missile, radar-computer, counter-measure, IFF, AMTI or similar projects.

\section*{LOCKHEED has openings for:}

\section*{Research Specialists}
with broad experience in missile guidance problems, missile proposal work, control system analysis and evaluation, and servomechanisms. Strong electronics and electro-mechanical background needed.

\section*{Design Specialists}
with broad experience in missile proposal work and systems analysis. The positions also require experience in missile design, electronics, communications, microwave techniques, systems evaluation, airframe design, aerodynamics, structures and mechanics.

In addition to outstanding career opportunities, the Missile Systems Division offers you exceilent salaries commensurate with your experience, generous travel and moving allowances, an unusuelly wide range of employee benefits and a chance for you and your family to enjoy life in Southern California.

Coupon below is for your convenience.

L. R. Osgood Dept. E-M-8

LOCKHEED MISSILE SYSTEMS DIVISION 7701 Woodley Avenue, Van Nuys, California

Dear Sir: Please send me information on the Missile Systems Division.
name
field of engineering
street address
city and state

\section*{amplifier unit magnetic}

Mfr. Pioneer Instrument Type
12071-1-A;
110 volts, 400 cycles;
 26 volts, 400 cycles; 4 tube
(12AH7-GT); take-off for four autosyns.
\(\$ 29.95\) ea.

\section*{TELEGON OSCILLATOR}

PIONEER TORQUE UNITS
Type 12602-1-A. Includes CK 5 Servo motor coupled to output shaft thru

125:1 gear redustion train. Output shaft coupled to autosyn follow-up (AY-43). Ratio of output shaft to follow-up autosyn is \(30: 1\). Includes base mounting type cover for motor and gear train... \(\$ 34.95\) ea.

\section*{TREMENDOUS SAVINGSIN SERVO MOTORS}

WAR TERMINATION INVENTORIES SAVE UP TO 85\% • Immediate dellvery • EeUlpment fuliy guaranteed

PERMAG D.C, HANSEN MFG.

AUTOSYN, MFG. BENDIX, TYPE AY-200-4.B

\section*{SYNCHRO TRANSMITTERS}

Mir. Kearfott; Type R-212-1A-A; ROTOR -1 phase, 26 volts. STATOR - 3 phase, 11.8 volts, 400 cycle. Overall size: \(1-1 / 16^{\prime \prime}\) dia \(\times 1-11 / 16^{\prime}\) long, shaft \(3 / 16^{\prime \prime}\) long;

\(\$ 19.95\) ea.
MFG. KOLLSMAN TYPE 1377.0410

\section*{BIG WAR TERMINATION INVENTORY CLEARANCE SALE} DIFFERENTIAL GEAR SYSTEMS ATGREATLY REDUCED PRICES

SPIDER DJFFERENTIAL
11/8" spur gear. 72 teeth. \(1^{\prime \prime}\) gear, 31 teeth. Size: \(2 \frac{3 / \mathbf{m}^{\prime \prime} \text { long }}{}\)

\(\$ 2.00\) ea.

SPIDER DIFFERENTIAL

SIMPLE DIFFERENTIAL

SAVE UP 70 85\% EQUIPMENT FULLY GUARANTEED IMMEDIATE DELIVERY C\&H SALES CO.

\section*{DUAL SIMPLE DIFFERENTIAL}

2176-E East Colorade St. Pasadena 8, California RYan 1-7393

WRITE OR WIRE FOR ITIFORMATION ON OUR COMPLETE IINE OF SURPLUS ELECTRONIC COMPONENTS. ALL PR CES NE \({ }^{-}\)F. D. B PASADENA, CALIFORNIA

GEAR DPIVE SFIDER JIFFERENTIAL

\section*{SEARCHLIGHT SECTION}

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. \(25 \%\) DEPOSIT WITH ORDER. BALANCE C.O.D. RATED CONCERNS SEND P. O.

\section*{131 Liberty St., New York 7, N. Y. Deptes Chos. Rosen Phone: Dlgby 9-4124}

POMER TRANSFORMERS
COMBINATION-115V/60~INPUT cт \(133150.0 .150 \mathrm{~V} .65 \mathrm{MA}, 6.3 \mathrm{~V} / 2.5 \mathrm{~A}, 6.3 \mathrm{~V} /\) ст \(005{ }^{0} 50.6 \mathrm{~A}, 350 \mathrm{~V}, 25 \mathrm{MA}, 5 \mathrm{VCT} / 3 \mathrm{~A}\).
 ст \(100 \mathrm{~A} .6 .3 / 3 / 3.5 \mathrm{~A}, \ldots\). СТ-003 350.0.350V'70NA, SVCT/3A, ст. 007 \begin{tabular}{l}
\(400.0 .400 \mathrm{~V} / 110 \mathrm{MA}, 5 \mathrm{SCT} / 3 \mathrm{~A}\), \\
2.5 CT \\
\(5 A\) \\
\hline
\end{tabular} Ст-312 \(290-0.290 \mathrm{~V} 90 \mathrm{MA} .5 \mathrm{SCT} / 3 \mathrm{~A}\).
 \(2.5 \mathrm{VCT} / 22.5 \mathrm{~A} .2 .5 \mathrm{VCT} / 3.5 \mathrm{~A}\)
 ст. 002 250.5VCT/ \(2.5 \mathrm{AA}, 50 \mathrm{~V} / 50 \mathrm{MA}, \mathrm{SVCT} / 2 \mathrm{~A}, 2.5 \mathrm{VCT}\) ст. \(4797000.5 \mathrm{~V} / 018 \mathrm{~A} 12 \times\) ind. V . Test \() 2.5 \mathrm{~V}\)

 CT. \(403{ }^{350} 5 \mathrm{VT}\). \(036 \mathrm{~A} 5 \mathrm{~F} / 3 \mathrm{~A}\). A, \(6.3 \mathrm{~V} / 6\) @ 7.50
 V 200 MA

FILAMENT-115/60~ INPUT
 FT-140 5VCT © 1DA 25 KV Test

\begin{tabular}{l}
FT 924 \\
FT. 824 \\
\(5.25 A / 25 A\) \\
\hline
\end{tabular}

 \begin{tabular}{l}
12. \\
255 \\
\hline 2.4
\end{tabular} 2.55
22.5
2.95
.79
9. 9.95 8.95 8.95
2.79
2.95

PLATE-115V/60~INPUT PT \(034125 \mathrm{~V} / 45 \mathrm{MA}\)
PT \(157660-0.660 \mathrm{VAC}\) (500 VOC) or 550.0 . PT \(15990 \mathrm{~J} .0 .900 \mathrm{VAC}(750 \mathrm{VOC})\) PT 1671400.0 .140\() \mathrm{VAC}(300 \mathrm{MADC})\) or
 33.00
9.45

PT \(80122,000 \mathrm{~V} / 254 \mathrm{MA} .5 .35 \mathrm{KVA}\).
\(\$ 1.15\)
\[
\begin{array}{r}
8.70 \\
10.35
\end{array}
\]

PT 521 7500V \(/ 06 \mathrm{~A}\). Half-Wave
C. T. G-ounded (case) INS.

PT 913 2500V LI2 MA H'SLD.

\footnotetext{
25.50
}
33.00
9.45
05.05

PT. \(38.2 \quad 37.5 / 40 \mathrm{~V}\) AT 750 MA .
\begin{tabular}{ll}
10.2 \\
\hline
\end{tabular}

\section*{THIS MONTH'S SPECIALS}

SOUND POWERED PHONES: HEAD AND CHEST SET-NAVY TYPENo butteries required, 1deal for TV Antenna instal-
lations. and muns other usts. 20 Ft . Cord. Used-
Teited.

\section*{NEW TTEM \(\begin{gathered}\text { HANDSE } \\ \text { TS-10 }\end{gathered}\)}
\(\$ 6.95\)

\section*{MOTORS:}

24 VDC REVERSIBLE MOTOR- 3.7 RPM, 401 b . Torque, Slotor size: \(5 / 1^{-2}\). Also operates 24

\section*{NEW ITEM \\ 1,4 RPM. 75 Torgue oz, in. 9 Watts-with variable} Mrutiple Disc Coder Wheel and Micro Switch. GEAR 2505 MEAD MOTCR-Heavy Duty. 24 VDC \(\$\) GEARED HEAD MOTGR-Heavy Duty, 24 VDC \&

\section*{TRANSFORMERS:}

180 VOLT 6C CYCLE PRIMARIES:
5 VOLT CT-25A-10,000 V. Ins. OIPEN FRAME-

\section*{SEARCHLIGHT SECTION}

\section*{WANTED}

ARC-1, 3, ART-13, BC-342, 348, APS 10, 15, TS-13, 35, 146, 147, 148, 174, 175, 263 ETC. All SCR, \(B C, A N, T S\). ALL TUBES.

AN/TPS-3—AN/TPQ-3
Early warning and mortar tracking radar. This equipment is completely portable and can be set upfor feld use very quickly, 600
mc freq. \(\mathrm{z}^{\prime \prime}\) PPI \(5^{\prime \prime} \mathrm{A}\) scope. Range \(20-120\) miles. Very accurate ranging. Pon.

AN / APS-2—AN/APS-15
10 and 3 CM nav. and bombing radar. Has 5"PPI and \(3^{3 \prime}\) A scope. Provides very accurate range information, and detalled presentation. the weather bureau in a tornado warning net. We can supply above for ground use. POR.

\section*{VE-VF-VG-VC-VD}

We can supply many remote PPI indicators for use with various ground and marine rasynchro pulses from the main sadar. pok.

\section*{BM-1}

Shlpbourne or land based navy IFF. This is a very large model IFF. Operates in the I and cating circuits. Very compact 110 v and indiput

\section*{SA-SF-SG-SJ-SL-SO-SP-SQ NAVY} AND MARINE RADARS
We can supply many types of Navy Radar installations of the above and also of the MK series fire control sets in many input voltages. Write for quotations.
AN/TPO-2 K-BAND GROUND RADAR Very late model set. Freq. 23,000mes. Used shells and to enable counter battery fire with accuracy. It can also be used to measure MPE. WESTERN ELECTRIC, POR.

RADALAB
87-17 124ih STREET Richmond Hill 18, New York Phone VIrginia 9-8181-2-3

\section*{COUNTERMEASURES}

We specialize in and can supply search and jamming equip. to cover \(30 \mathrm{mc}-10,000 \mathrm{mc}\) for Air Ground and Marine use. We can deliver many others. Write
Search-Detection
A.N/APR-4 \(38-4000 \mathrm{mc}\)

AN/APR- \(\quad 300-1000 \mathrm{mc}\)
AN/APR-6 \(1000-3100 \mathrm{mc}\)
Direction finding
AN/APA-17 300-5000mc

Indicating
AN/APA-10 Pan-adaptor
AN/APA-11 Pulse analyze
Recording
AN/APA-23 Slgnal \& time rec.
Jamming
A N/APT-1, 2, 3, 4, 4,10
AN/APQ-1. 2,0
Misc. Equip.
TDY, MRQ, SPT. SPQ. TPQ-1
AN/APN-3 SHORAN EQUIPMENT This equip. is used for navigation and surveying. Operates in conjunction with AN/ 290 mc . Accuracy is plus or minus 10 feet up to lta range of 300 miles. Spares avallable.
AN/CPN-2 ground beacons avallable. POR

AN/GSQ-1A
Speech scrambler for use on any comm. channelete installations of thls equipment 28 comnput. Very compact. Poit

Prices FOB NYC. Rated firms open account. Prices subject to change without notice.
CABLE: Radalab, NY
TELETYPE: NY-4-4361

\section*{SCR-508-528-608}

10 channel rreq.-modulated moblle military radio set \(20-27.9 \mathrm{mc}\). Output 25 watt transable. Input 12 or 24 v DC. Receiver is tune

\section*{SCR-891A}

Automatic ground direction finder covering 1.5me-30mc. Provides instant bearings on a
C. \(R\). Indicator of any signal in This equipment is transportable and can be set up quickly. 110 v 60 cyc. P()f and can be

\section*{SCR-300A}

Walkle talkie FM. covering 40.48 mc in 41 channels. This is the standard set of mont of communications up to 10 mlles. 6 reliable vibrapacks, IRC-291G.P. and spares also avail able. 1OK

> FIELD RADIO AND COMMUNICATIONS

SCR-284 Field Radlo
SCR-53t Handi-Talki
sCR-536 Handl-Talkie
SC•R-694-C Field Radio
SCR-506 Moblle Radio
SCR-188. 193 Mobile Radio
CR-206 Direction Finder
AS-81-GR Direction Finder

\section*{AIRBORNE COMMUNICATIONS}

RA-1B, ART-13, ARN-6, ARN-7, RTA-1B, ARC-1, 3, APN-9, DY-17, CRN-2 glide path

\section*{TEST SETS}

Spare parts for many equipments available WRITE

\title{
A GREAT BUY!! 807 TUBES \$1.25 LOTS of 500
}

Lots of 100
\(\$ 1.35\) Lots of 50

FOB, New York, N. Y.
STANDARD BRAND_-NEW-lobber_BOXED CURRENT 1954 DATING - 90 DAY GUARANTEE AV AILABLE NOW!! • BUY NOW!!
Write us for quotations on many other transmitting, special purpose and receiving type tubes all standard brands.

ready cash for your tube inventory
SOLO ELECTRONICS SALES CORP.
190 Washington Street
New York 7. N. Y.
Phone: WOrth 2-1042

Transmitters: ART-13, BC-610E, ET-8019-D, KW-1, \(30-\mathrm{J}, 32 \mathrm{VI}, 32 \mathrm{~V} 2,32 \mathrm{~V} 3\) Receivers: AR88D, BC-312, BC-342, BC-348
Trans-Recvrs: SCR-694C, ARC-1, RTA-IB Teletypewriters: Model \#15 (TG-7-B) ALLTRONICS, Box 19, BOSTON 1 , MASS Telephones Richmond '2-0048, 2-0916

\section*{FOR SALE}

TRANSMITTER TUBES
Eimac-Machtett-750TL
List \(\$ 137.00\) Our price- \(\$ 32.50\). J. BEEBER CO. INC. 838 8roadway Algonquin 4-3510 New York

\section*{"Searchlight"}

IS
Opportunity Advertising
-to help you get what you want. -to help you sell what you no longer need.

Take Advantage Of It
For Every Business Want
"Titivk Searciflight First"

\section*{TELEPHONE} RELAYS

Large Stock of
CLARE, TYPESCD\&E
COOKE. AUTOMATIC-ELECTRIC
ALL TYPES of COILS and PILE-UPS
Send Us Your Spece, for Our Quote CLARETYPEG HALF SIZE SENSITIVE TELEPHONE RELAYS Coll Contacts
1) 65000 hms
1) 6500 ohms
2) 5800 ohms

4850 ohms
\(\mathbf{3 6 0 0} \mathrm{ohms}\)
3600 ohmms
4850 ohms
5) 4850 ohms
7) 3300 ohms

All above Helay* may be uned for continuous duty
operation on 110V. D.C.
OTHER T
1) 1300 ohms
400 ohms
\begin{tabular}{cccc}
1300 ohms & \(1 \mathrm{~A}-1 \mathrm{C}\) & 24 or 48 V & \(\$ 2.50 \mathrm{ea}\) \\
400 ohms & 1 A & 24 V & 1.65 ea. \\
500 ohms & 1 D & 24 V & 1.65 ea \\
200 ohms & 1 A & 24 V & 1.50 ea
\end{tabular}

CLARE TYPE C STANDARDSIZ D.C. TELEPHONE RELAYS
\(\qquad\) 1) \(1300 \mathrm{hm} 1 \mathrm{~B} \quad 24\) to 85 V . \(\$ 2.25\) ea. \(\begin{array}{ll}\text { 2) } & 1300 \mathrm{ohm} \\ \text { 3) } 2 \mathrm{~A}-1 \mathrm{~B} \\ \text { 4) } 1300 \mathrm{ohm} & 2 \mathrm{C}-1 \mathrm{~A} \\ 1300 \mathrm{ohm} & 4 \mathrm{C}-2 \mathrm{~A}\end{array}\)
5) 1300 ohm
6)
1300 ohm
6C-1B-1C-1D
7) 2000 ohm 2 Cm
8) 2000 ohm 4 Cm
10) 2000 ohm 6
11) 3000 ohm

CONTACT SYMBOLS
\(\Delta=\) Norm. Open \(\underset{\mathbf{D}}{\mathbf{B}}=\mathbf{M}=\) Nake Before Break \(\quad \mathbf{C}=\) S.P.D.T.
Chase
Electronle Supply Co.
Queens Village 225 St.
HOlls 4-5033

IMMEDIATE SHIPMENT from one of the MOST COMPLETE inventories of SPECIAL-PURPOSE, TV, WESTERN ELECTRIC, SUB MINIATURE, \& RADIO TUBES. Fully guaranteed, STANDARD BRANDS at the LOWEST PRICES, consistent with HIGHEST QUALITY. Special attention to export orders.
\begin{tabular}{|c|c|}
\hline 1C6-GT & enrad \\
\hline IH4G & kenrad \\
\hline 3GP1 & Criginal Jan \\
\hline C6J & \({ }^{\text {coseme }}\) \\
\hline FG17 & \(\xrightarrow[\substack{\text { General } \\ \text { Electric }}]{ }\) \\
\hline
\end{tabular}

\section*{VOLTAGE REGULATOR VICTOREEN \\ VXR-130 \\ Quantity in Stock. \\ Users Net Cost \(\$ 5.00\) \\ }
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2 E 24 & RCA & 225 & \multicolumn{4}{|l|}{WESTERN ELECTRIC SPECIALS!} \\
\hline 2K25 & \(\underset{\substack{\text { Original } \\ \text { Box }}}{\text { cose }}\) & 1900 & \(1822 \ldots\) & 955 & 416 A & 3500 \\
\hline QK60 & Raytheon & 5500 & 2K45 & 8500 & 416 B & 4500 \\
\hline QK61 & Raytheon
Boxed & 6500 & 2K55 & 4000 & 703A & 185 \\
\hline HK253 & 3ammatron & \(4^{50}\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(4 \times 500 \mathrm{~A}\) & \({ }_{\text {Boxed Suma }}^{\text {Elma }}\) & \(80^{00}\) \\
\hline 4X500F & Boxed Suma & \(65^{00}\) \\
\hline KU627 & Westinghou & \(14^{50}\) \\
\hline KU628 & Wes & \(17^{5}\) \\
\hline KU676 & westinghous & 3500 \\
\hline
\end{tabular}

> Remember! We Ship No Seconds or Rehashed "Bargains." You Can Place Your Confidence in Our Dependable NEW Tubes. We Ship the Best-First Quality RCA, GE, SYLVANIA, WESTINGHOUSE, HYTRON and RAYTHEON TUBES Insure Repeat Orders From You-Our Customers.

WESTERN ELECTRIC SPECIALS!

SPECIAL ON
DIODES
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{All Original Lead - Brand} \\
\hline 1 N21 & Western & 305 \\
\hline 1N26 & Sylvania & 495 \\
\hline 1N38A & Amperex & 65 \\
\hline
\end{tabular}

750 TL New, Jan 6500 \(869 \mathrm{~B} \quad \begin{gathered}\text { Federal } \\ \text { Boxed }\end{gathered} \quad 30^{00}\) CK1006 \(\begin{gathered}\text { Raytheon } \\ \text { Boxed }\end{gathered} 175\)
\(9004 \underset{\text { R.C.A. Jan }}{ } \mathbf{2 5}\)

THIS REPRESENTS OUR SPECIALS FOR THIS MONTH.
Write or call for our complete tube listing.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{SELENIUM RECTIFIERS FULE—WNVE BRIDGETYPE} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[b]{2}{*}{} \\
\hline \(M_{\substack{\text { max }}}^{\text {mind }}\) & \({ }^{18 / 14}\) & & Sk/122 & V2/56 & \(\underbrace{\text { vols }}_{\substack{138,180}}\) & & & & \\
\hline \(\frac{1}{2}\) & ¢ & 2. 3.40 & \begin{tabular}{c}
3.80 \\
5.40 \\
\hline 80
\end{tabular} & 6.50
6.00 & 8.50 & & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{TUBE CARTONS}} \\
\hline \({ }_{1}^{2314}\) & & & & & cini.jo & NEW RECTIFIER TRANSFORMERS & & & \\
\hline \({ }^{4}\) & cisc & (\%.50 & & \({ }^{17} 18.50\) & cole & & \multicolumn{3}{|l|}{} \\
\hline 120
\({ }_{20}{ }^{2}\) & coick & come & & cisi.00 & & & & & \\
\hline cis & cock & & & cisi.jo & 6t.50 & & 6T \({ }^{\text {a }}\) & ¢AL5, ete.). & \\
\hline 30
36
30 & & & 66.00 & 12.06 & & St Tranitormeri ond & CARGE GT & & \\
\hline 100 & 60.08 & 122.50
120 & & & & Buy from the Dirett soufet ior Qutek Delivery. & & & \\
\hline
\end{tabular}

RECTOR 2-2562

\section*{WOBULATOR}

Build TV-FM-AM Sweep Generator

 land width operating from \(80 / 115 \mathrm{VAC}\), single phasc
60 to 2660 cpa and cne amp. at 26 VDC . com-
 an/APT5 TRANSMTTER
utput 30 operates over freq. of 800 to 1400 MC: output 30 watrs. The car notse freq. up to 2MC. Complete with tubes. like new 59.50 1-122 SIGNAL GENERATOR RF slgmal 15 to 25
 cike. rower Supdy lik to Spare parts kit for atove................s9.95 (new)

Write for prices and bulletin.
RW ELECTRONICS. Deṕt. EL
2430 S. Michigan Ave. Chicago 16, III. Phone: CAlumet 5-128I
```

                F.OR SALE
    HEADSETS, HS-30/U
REMOTE CONTROL UNITS, RM-29
ANTENNA EQUIPMINT. RC-17
DYNAMOTORS, DM-32A
DYNAMOTORS, DM-36
YNAMOTORS. PE.86
VICTOR-BERNARD INDUSTRIES, INC
1511 N. 26th St., Phila. 21, Pa.

```


\section*{AN/APR-4 LABORATORY RECEIVERS}

Complete with all five Tuning Units, covering the range 38 to 4,000 Mc.; widebond discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, efc. Versatile accurate, compact - the aristocrat of lab receivers in this range. Write for data sheet and quotations.

We have a large variety of other hard-fo-get equipment, including microwave, aircraft, communicafions, radar; and laboratory electronies of all kinds. Keleket alpho scalers and chambers, dosineters and other nucleonics now in stock. Quality standards maintained.
NEW TS-13/AP X-BAND SIGNAL GENERATORS with manual \$575.00; TS-175/U Frequency Meter 85-1,000 Mc. \$485.00; H-P, Boonton, G-R, Measurements, many others in stock
ENGINEERING ASSOCIATES
434 PATTERSON ROAD
DYTON 9, OHIO

\section*{CARRIER EQUIPMENT}

Western Electrio CF-IA 4-channel carrier telephone terminals.
EE-101.A 2 -channel \(1000 / 20\) cycle sarrier ringers. CFD-B 4-channel carrier pllot regulated teleohon terminals conplet with four channels 1000/20 cyele raging C. 42 -A V. F. telegraph In trom 2- to 12-channel FMC I or 2 channels carrier teleptione terminals FMC or 2 channels carrier teleptione terminals nel. Carrier frequencles above 35 KC . Ideal for adding channels above type "C". Complate ongineering and installation services offered.

RAILWAY COMMUNICATIONS, INC
Raytown, Mlssourt
Telephone: FLemlne 2121

\section*{4 PDT}

MIDGET RELAY
25.5 -de \(425 \Omega\).... \(\$ 2.95\) \(12 \mathrm{rdc} 70 \Omega\). 6 vde 180 dpdi.
 12 vde 4200 dpdt.. 1.35 5.3 rde 150 spst NO inA bridge cont. \(\$ 1,60\) RELAY 3 PDT 24 vde 250 ohm Clare K pRIE 357 allrer trimmers \(3-12\) NPO Thouseads of other items. Write for Bulletto

EMPIRE ELECTRONICS COMPANY
409 Avenue L. Brooklyn 30, N. Y. Cloverdale 2-4000

\section*{\(1 / 3\) HP ADJUSTABLE SPEED DRIVE}

Stepless speed range of 50 to 1750 rpm with the turn of a knob. Complete system consists of rectifier cabinet, remote control station and motor. Operates from a 220 volt single phase line. A fortunate purchase of 150 motors allows us to sell this drive at a fraction of the cost of comparable drives.
Price at a low of
\(\$ 159.00\)

\section*{BARGAIN SPECIALS}

C1B Thyratron
\(\$ 1.75\) each 100 lot \(\$ 1.25\) each
CSB Thyratron
\(\$ 1.75\) each 100 lot \(\$ 1.25\) each
Western-Electric Photo Tube 35s each 100 lot 15 s each
Barber-Colman 110 v-60 cy. Motor \(\$ 1.85\) each 100 lot \(\$ 1.35\) each
Haydon Timing Motor 1 rpm \(\$ 1.50\) each 100 lot \(\$ 1.00\) each
Pioneer 10047400 cy. Servo Motors \(\$ 8.50\) each 100 lot \(\$ 7.50\) each
Westinghouse FL 400 cy . Blower \(\$ 4.75\) each 100 lot \(\$ 3.75\) each
5AM3INJI8A Amplidyne-G.E. \(\$ 14.50\) each 100 lot \(\$ 9.50\) each
Inverter for C. 1 Autopilot
\(\$ 7.50\) each 100 lot \(\$ 4.50\) each
Delco 27 volt Shunt Motor \(1 / 50\) H.P. \(\$ 3.75\) each 100 lot \(\$ 3.00\) each

PIONEER PRECISION AUTOSYNS
We have quanti-
 ties of the following Autosyns which were removed from new equipment. Priced at a fraction of original cost.

AY-101 D Transmitter or Re-
AY-131 D Differential...... \$14.50
AY-130 D Differential \$14.50
AY-1 23 Resolver \(\$ 24.50\)
AY-103 Transmitter or Receiver
.\(\$ 14.50\)
AY-201-3-B Transmitter or
Receiver
\(\$ 17.50\)
AY-221 Resolver \(\$ 27.50\)
AY-231-3-B Differential \$19.50
BROWN BALANCING MOTOR

Minneapolis Honeywell reversible two phase gearhead servo motor. 115 volts 60 cycles. Models with the fol lowing spceds available: 27 54,162 . Total input 13.5 watts. 4 watts on amplifier phase.
SA-436
\(\$ 19.50\)

\section*{QUARTZ CRYSTALS!}

Guaranteed to oscillate! COMPLETE SETS

SCR-508
Channels 0-79. FT-241 HOLDERS. Fundamental crystal \({ }^{\text {frequency }}\) range: 370.370 to
516.667 KC . Set of 80 crystals......

SCR-509 \& SCR-510
Channels O-79. FT-243 HOLDFRS. Fundamental crystal Prequency range: 5706.7 to \(\$ 32.00\)
8340 KC . Set of 80 crystals.....\(\quad \$ 3\)

\section*{SCR-608}

Channels 270-389. FT-241 HoLDeras. Fundamen. tai crystal \(\begin{aligned} & \text { Prequency range: } 375.000 \\ & \text { to } \\ & 540.277 \\ & \mathrm{KC}\end{aligned}\) Set of 120 crystals.. \(\$ 48.00\)

TRC-1
Channels \(700-999\). In 2 types of holders: TRANS MITTER Crystais in FT-241 HOWERR FundamenRISCEIVEAI frequency ranke, 729.168 to 1040.625 KC . mental crsstal frequency range 7500 to MATCHED PAIR (1 transmitter \(\$ 1.50\)
 ciystals

\section*{SCR-609 \& SCR-610}

Channels 270-389, FT-243 HoLdERS. Fundamen tal crystal frequency range: \(5675-\quad \$ 48.00\)
8650 KC . Set of 120 crystals.

FUNDAMENTAL OUTPUT FREQUENCIES

 SCR-536 tal is 155 KC higher than the freYOUR CHOICE OF ANY MATCHED PAIR.
PER PAIR
. \(\$ 1.00\)
ALSO AVAILABLE IN
LARGE QUANTITIES

\section*{QUANTITY DISCOUNTS} AVAILABLE
WE INVITE INQUIRIES FROM FOREIGN BUYERS, AIRLINES, MILITARY AND EXJO8BERS WHOLESALERS AND VOLUME DEALERS, WHOLESALERS AND VOLUME

\section*{U. S. CRYSTALS,INC. \\ 805 S.UNION AVE. DEPT. E. \\ LOS ANGELES 17, CALIFORNIA}

\section*{TS-10 SOUND POWERED HANDSET}

Used, Excellent Condition

INCLUDES 6 FT CORD \& CLAMPSUSES NO BATTERIES OR EXTERNAL POWER SOURCE...... \(\$ 6.50\) PER PAIR

TALLEN CO., INC.
159 Carlton Ave., Brooklyn 5, N. Y.

\section*{RADIO - RADAR - INSTRUMENTS AIRCRAFT - PHOTO EQUIPMENT \\ AIRLINES • \\ GOVERNMENTS RESEARCH • LABORATORIES \\ We car-y a large inventory of NEW and Guaranteed overhauled U.S. Signal \\ Corps and U.S. Navy Surplus Equipment. \\ We solicit your inquiries. \\ TFANSMITTERS RECEIVERS RADAR \\ DYNAMOTORS INSTRUMENTS SELSYNS. PLUGS AERIAL PHOTO EQUIPMENT SPARE PARTS}
dWE WILL NOT BE UNDERSOLD!
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \begin{tabular}{l}
Commueication Equipment \\
Joverifer - Dywamolars Hadio-Radar Test tiquip. \\
Arrial Pintomerablic Eluip.
\end{tabular} & 吕 \\
\hline & \multicolumn{2}{|l|}{CUIPMENT WANT} \\
\hline \multicolumn{3}{|r|}{Semler Industries, Inc.} \\
\hline \multicolumn{3}{|l|}{6853 Lankershim Blyd, North Hollywood,} \\
\hline
\end{tabular}

YOUR MOST RELIABLE SOURCE FOR JAN TYPE TUBES
\begin{tabular}{|c|c|}
\hline 1 N26 Sylvania & \$4.95 \\
\hline \(2 \mathrm{C43}\) G.E. & 12.50 \\
\hline 2D21 RCA & 75 \\
\hline 3C33 RCA & 8.75 \\
\hline 5BP1 RCA & 2.95 \\
\hline 6 AS6 RCA & 1.75 \\
\hline \(28 \mathrm{D7}\) Sylvanio & . 95 \\
\hline FG32 G.E. & 8.95 \\
\hline RK60/1641 & 1.95 \\
\hline 3074 KenRod & 1.95 \\
\hline 703A TungSol & 1.95 \\
\hline \(723 A B\) W.E. & 14.00 \\
\hline 832 A & 7.50 \\
\hline 2051 RCA & . 85 \\
\hline 5635 Sylvania & 7.50 \\
\hline 5654 Roytheon & 1.50 \\
\hline 5964 RCA & 1.50 \\
\hline
\end{tabular}

WE BUY YOUR SURPLUS TUBES
- SEND LIST WITH DETAILS -

Partial Listing. Query us ior other Types. F.O.B.N.Y.C. Rated (D\&B) FirmsOpen Account. Attractive Discounts To Quantity Buyers.

\section*{SAVE ON TUBEG BRAND NEW TUBES GUARANTEED TU:BE}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline OA9...... \(\$.95\) & 2.36 & 4J26... . . . 99.50 & C6L, 5598. . 6.50 & 307A/RK75 2.95 & 119A 1000 & & \\
\hline OA3/VR75 1.00 & 2J49...... 105.00 & 4J98... . . . 99.50 & C6J...... 7.85 & 3108.... . . 8.95 & 719A 10.00 & \(86110 .00\) & 5646...... 8.95 \\
\hline OA5..... 3.50 & 2J49..... . 59.50 & 4)99.... . . 99.50 & 6ALSW.... 1.60 & 319A... . . 2.95 & 780BY.... 185.00 & 865....... . 98 & 5651....... 2.50 \\
\hline OB2....... 1.00 & 2J51 195.00 & 4J30.... . 149.50 & 6BL.6..... 60.00 & 316A... . 1.25 & 720Cy.... 125.00 & 866A 1.00 & 5654....... 1.75 \\
\hline OC3 VR105 . 90 & 2J56.......89.50 & 4J31 99.50 & 6BN6.... . 69.50 & 3938.... . . 4.95 & 720EY . . . 125.00 & 869B 35.00 & 5656....... 14.95 \\
\hline OD3 NR150 . 85 & 2561 24.50 & 4334...... 75.00 & 6C \(8184 .50\) & 327A... . . 4.50 & 781 A...... 50 & 878A.... 1.75 & 5657...... 150.00 \\
\hline 1822 1.90 & 2J62........ 11.00 & 4336...... 99.50 & 6F4........ 3.00 & 328A..... 3.95 & 7218.... . . 14.50 & 874........ 1.10 & \(5670 \ldots3 .50\) \\
\hline \(18234 .00\) & 2K22...... . 17.50 & 4J49.... . . 79.50 & 6J4. \({ }^{\text {¢ }}\) (4.50 & 336A. write & & & \[
\begin{aligned}
& 5672 \ldots \\
& 5676
\end{aligned} 1.89
\] \\
\hline 1894....... 6.75 & 2K23 19.95 & 4J52... . . 199.50 & 6SUTGTY... 2.75 & 337A..... 6.00 & & & \begin{tabular}{lll}
5676 & \(\ldots . .\). & 1.29 \\
CK 5678 & 1.00
\end{tabular} \\
\hline 1826....... 1.75 & 2K25 20.00 & & & & & & CK5678.... 1.00 \\
\hline 1827 11.00 & 2K96. 50.00 & & & & & 889R-A... 175.00
891R.... 125.00 & 5687....... 3.75 \\
\hline 1832/532A 1.75 & 2K98...... 25.00 & & & & & \[
\begin{array}{ll}
\text { 891R } & 195.00 \\
\text { GL893A. } & \mathbf{9 9 5 . 0 0}
\end{array}
\] & 5693...... 4.85 \\
\hline 1B35...... 5.50 & 2K33A.... 65.00 & & & & & \[
\begin{aligned}
& \text { GL893A . } 295.00 \\
& 9221 .25
\end{aligned}
\] & 5708......... 2.95 \\
\hline 1B42........ 8.95 & 2K34. . . . 139.50 & 4157. ... 299.50 & 7C2:......99.50 & \begin{tabular}{l}
\(349 A\). \\
350 A.... \\
\hline
\end{tabular} & 723A.B... 18.00 & & \\
\hline 1B63 A.... 49.50 & 2K41..... 125.00 & \(4125 A . . .19 .00\) & 7C24..... 7500 & 350A......
368 AS & 7248...... 1.00 & \begin{tabular}{lll}
\(931 A \ldots .\). & 3.75 \\
\(935 \ldots . .\). & 5.00
\end{tabular} & \[
\begin{aligned}
& 5704 \ldots8 .80 \\
& 5718 \ldots \\
& 8.00
\end{aligned}
\] \\
\hline 1D21/SN4.. 3.75 & 2K42.... 139.50 & 4X150A ... 27.50 & 19097.... 13.00 & 368AS.... 4.00
\(383 A . .\). & 725A..... 3.50 & \[
\begin{array}{ll}
935 \ldots & 50 \\
955 \ldots . . . & \\
\hline 49
\end{array}
\] & \[
\begin{aligned}
& 5718 \ldots \ldots80 \\
& 5719 \ldots \\
& 8.95
\end{aligned}
\] \\
\hline 1N21B..... 2.00 & 2K45 110.00 & 4X500A ... 75.00 & 12GP7.... 17.50 & \(383 A\)
\(393 A\) & 726A....... 32.00 & & \\
\hline 1 N23B. 2.90 & 9K48. 99.50 & 5AP1...... 2.95 & 12HP7..... 13.50 & 393A...... 4.90 & 7308......... 85.00 & & \begin{tabular}{l}
RK5721 ... 189.50 \\
\(5750 . . .\). \\
\hline 10
\end{tabular} \\
\hline 1N34A... 79 & 2×2A 1.40 & 5BPRA 4.95 & 15E 1.75 & 394A:..... 3.50 & 803......... 2.75 & 959......... 1.50 & \begin{tabular}{l}
5750....... 3.10 \\
\(5787 . . .\). \\
\hline .00
\end{tabular} \\
\hline 1N35..... 1.95 & 3B22....... 1.95 & 5BP4....... 2.50 & KC4...... 39.50 & & 803........ 2.75 & 959........ 1.5 & CK5787.... 4.95 \\
\hline 1N38...... 1.50 & & & & & & & 5814....... 1.75 \\
\hline 1 N44..... 1.10 & & & \[
\begin{aligned}
& \text { 35TG } \\
& \text { FG57/5559 } 15.95
\end{aligned}
\] & & \(5 \prime 11\) & UNTJBE & 5844. 4.50 \\
\hline 1N47...... 4.50 & & & FG57/5559 15.00
OK \(2059 .00\) & \[
\begin{aligned}
& 46 \mathrm{~B} \\
& 450 \mathrm{TH}40 .00
\end{aligned}
\] & & & 5902....... . 8.95 \\
\hline 1N55.... 2.75 & & & & \[
\begin{gathered}
450 \mathrm{TH}40 .00 \\
450 \mathrm{TL} . \\
\hline 0.00
\end{gathered}
\] & & & 5904....... 8.95 \\
\hline 1N63/K63.. 1.95 & & & \[
\begin{aligned}
& \text { RKCD } / 1641.1 .95 \\
& \text { FGE7/5798.15.00 }
\end{aligned}
\] & & & & 5905 8.95 \\
\hline 1N69..... \({ }^{\text {1P98 }} .59\) & acuum & Capacitars & \[
\begin{aligned}
& \text { FGE7/5728.15.00 } \\
& \text { RK72....... } .95
\end{aligned}
\] & \[
\begin{array}{r}
\text { WL456 . . . } 59.50 \\
464.50 . . .3 .50
\end{array}
\] & , & lued & 5907....... 9.00 \\
\hline \begin{tabular}{l}
1P28........ 7.75 \\
1P29........ 8.00 \\
\hline
\end{tabular} & mmfd. & \(30 \mathrm{KY}10 .00\) & RK73....... . 95 & WL530 . . 16.95 & & & 5908. 9.00 \\
\hline 1P36....... 2.75 & & 22 KV.... 12.50 & \(7516 .95\) & CK536AX. . 95 & & & 5916...... 9.00 \\
\hline 1P39....... 1.90 & 50 mmfd . & \(40 \mathrm{KV}14 .50\) & 751-...... 7.95 & GL569.... . wilte & rejected for m & & 5939/6WGA 495 \\
\hline 172....... 9.00 & 100 mmfd . & \(10 \mathrm{KV}12 .00\) & 83 W゙. 1550 . 1.10 & GL605..... write & & \% 81795 & 6L6WGA 4.95 \\
\hline VS-9..... 7.50 & 100 mmfd & \(20 \mathrm{KY} . . .14 .00\) & \[
\text { FGS5/5560 } 22.50
\] & WL616.... 99.50 & Fully ouara & Only \(\$ 17.00\) & \\
\hline 2882.... 2.95 & & & \[
\begin{aligned}
& \text { ML-100. . . . write } \\
& \text { 100rH. . . } 7.50
\end{aligned}
\] & \[
\text { KU627...... } 17.50
\] & & & 6026....... 2.85 \\
\hline & 3823....... 4.05 & 5CP1 A :: : . 14.50 & HF120..... 9.95 & KU698.... witt & 804. 12.95 & CK1005.... . 69 & 6110...... 8.95 \\
\hline 2C39...... 19.50 & 3824....... 4.25 & 5C29...... 27.50 & FG104.... 29.50 & WL-651 . . 39.50 & 805........ 8.95 & CK1006... 1.25 & \(6111 \ldots . .\). \\
\hline 8C39A.....13.0C & 3826...... 3.50 & 5CP7...... 9.50 & FG105.... 17.50 & W/659/65739.00 & 807... 1.50 & 1616....... . 90 & \(61919 .95\) \\
\hline 2C40..... 7.25 & 3828....... 5.95 & 5021 9.50 & F-123A.... 7.79 & F660....... write & 808....... 2.75 & 1619....... . 30 & 6201....... 4.50 \\
\hline 2C42..... 10.0C & 3829....... 6.95 & 5FP7....... 1.95 & VT-197A... 2.75 & F661. \(\because\). wite & 809......... 2.75 & 1625....... . 30 & 8005..:: . . . 4.95 \\
\hline 2C43..... 13.95 & 3C92....... 78.50 & 5FP14.... . 7.50 & VT158.... 17.50 & 700/B/C/D. 16.50 & \(8109 .50\) & 1629....... . 30 & 8012...: ... 1.95 \\
\hline 2C44...... 89 & 3C23..... 6.50 & 5HP1 3.95 & OK159.. . 149.60 & 701 A...... 2.50 & 811A...... 3.50 & 1630...: . . . 89 & 8013.... . . 4.95 \\
\hline 8C46.... 10.00 & 3C94/24G. 1.10 & 5HP4 3.95 & FG172.... . 22.50 & 703A...... 9.95 & 819....... 2.95 & 1636....... 1.25 & 8080....... 1.25 \\
\hline 2C51..... 3.69 & 3C97..... 3.75 & 5JP1.... . . 17.50 & HF\$00.... 14.50 & 705 A..... 1.50 & \(813 \ldots . . .7 .95\) & 8050....... 1.00 & \({ }_{8}^{8025} \times \ldots . . .{ }^{2.75} 5.95\) \\
\hline 2C52 3.00 & 3C33..... 9.95 & 5JPQ....... 17.50 & WL.200... . write & 706AY... 27.50 & \(815 \ldots . . .2 .50\) & 2051...... 80 & \({ }_{8}^{8025} \times 15 .95\) \\
\hline 2D21...... 1.15 & 3C45...... 9.50 & 5JP4...... 17.50 & 207. \(\because\) - . 45.00 & 706BY.....27.50 & 828........ 8.50 & ZB3200... 8.00 & 9001....... 1.15 \\
\hline 2D81W 2.49 & 3E99....... 9.50 & 5JP5 17.50 & 211~VTC. 80 & 706CY..... 27.50 & \(8896 .00\) & \(5128 /\) FG67.15.00 & \({ }_{9003} 9002{ }^{\text {a }}\). 98 \\
\hline 2E24....... 3.30 & 3FP7....... 1.95 & 5J23... . . . 29.50 & 21T...... 4.95 & 706DY 27.50 & 8898...... 9.50 & \(5516 \ldots . . .50\) & 9003...:. . 1.30 \\
\hline 2E26....... 3.25 & 3GP1 1.95 & 5J26... . . 180.00 & 281 A..... .98 & 706FY. 27.50 & 8308....... 1.50 & \(5586 . . .200 .00\) & 9004...:. . \({ }^{49}\) \\
\hline 2E35...... 1.40 & 3JP1....... 19.50 & 5J89... . . . 10.00 & OK 149.. . 200.00 & 706GY..... 29.50 & 839A...... 6.50 & \(5591 / 4038,3.0 C\) & 9005....... 1.50 \\
\hline 2126....... 5.00 & 3K27...... 199.50 & 5330... . . . 19.95 & 250R...... 6.95 & 7078....... 13.55 & \(8369 .95\) & \(5611 \ldots . . .115 .00\) & \\
\hline \(21977 .50\) & 3K30.... 199.50 & 5J33....... 7.50 & 2501H 14.50 & \[
708 \text { A...... } 1.95
\] & \[
837
\] & \[
\begin{aligned}
& 5633 \ldots{ }_{8.95}^{8.95} \\
& 5634
\end{aligned}
\] & \\
\hline \(813117 .50\) & & 5MP1 3.95 & 250TL 12.50 & \[
\begin{array}{ll}
713 A \ldots \\
715 A & .95 \\
300
\end{array}
\] & \[
\begin{aligned}
& 838 . \\
& 846
\end{aligned} \cdots i c 0.98
\] & \[
5634 \ldots . . .
\] & \\
\hline 2132....... 17.50 & \({ }^{4884} \times 1 / \mathrm{CV} 98.0 .95\) & \[
\begin{aligned}
& 5 N P 1 \\
& 5 R A G Y \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
951 A \ldots . . . \\
978 \\
\hline 75
\end{array}
\] & \[
\begin{array}{ll}
715 A \ldots \ldots & 3.00 \\
715 B
\end{array}
\] & \begin{tabular}{l}
846 \\
851
\end{tabular}\(\cdots .{ }^{1} 0.00\) & \[
\begin{aligned}
& 5636 \ldots \ldots \\
& 5637 \ldots \\
& 5.25
\end{aligned}
\] & \\
\hline 2J33....... 80.00 & 4C27/CV22 9.00 & 5R4GY... 1.25 & 278....... 2.75 & \(7158{ }^{3} 13.50\) & 851
852 & \begin{tabular}{l}
\(5637 \ldots . . .\). \\
5639.0. \\
\hline .9 .95
\end{tabular} & \\
\hline 2J34....... 17.50 & 4C35 17.50 & 5R4WGY... 1.60 & 304 TL 6.95 & 715C... ... 13.00 & 859.......12.50 & 5639...... 8.95 & \\
\hline
\end{tabular}

All Prices F.D.B. Los Angeles, subject to change without notice. Minimum order \(\$ 5.00\). Orders for \(\$ 5.00\) should be prepaid in full. Please include sales tax.

[LECTRONICS
Dept. EC
7552 Melrose Ave.
les Angeles 46, California

Thossands of other types in stock. Send us youp requirements. RECEIVING TUBES? We carry a complete line in stock. Standard brands only.

\section*{An Investment} Input \(95-125 \mathrm{VAC}\), Output 118 VAC 60 cycle 65VA. \(\$ 24.95,225 \mathrm{VA}\) \$32.95, 310VA \(\$ 42.50\) \(500 \mathrm{VA}(115 \mathrm{~V}\) out) \(\$ 47.50,6.3 \mathrm{VAC} @ 2.7 \mathrm{~A}, \$ 6.95\) Raytheon 120 VA (115 V out) \(\$ 19.95\)
LAPIROW BROS.

1649 Moffner St. Kirby 1285 Cincinnati 23, Ohio

\section*{GLASS TUBING}

PYREX - NONEX - URANIUM BULB \& CYCLINDERS WRITE FOR FREE MONTHLY LIST HOUDE SUPPLY COMPANY PHONE KEYPORT 7.1286
M. R. \#1 Box \(86 \times\) KeYPORT Keyport, N. J

Productive advertising is an INVESTMENT rather than an \(E X\) PENDITURE.
"Searchlight" advertisers almost invariably report prompt and satisfactory results.
BE CONVINCED send us your advertisement TODAY.

\section*{Address}

Classified Advertising Division
ELECTRONICS
330 W. 42nd St., N. Y. 36, N. Y.

\section*{K-RK-ARC-UG-PL-AN CONNECTORS In Stock for Immediate Delivery - Connector Corporation.}

137 Hamilton St., New Haven 11, Conn. Phone: Spruce 7-25 13

New York Phone: LExington 2-6254

\title{
SPECIAL PURPDSE TUBES
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA5 & \$3.25 & 3DP1 & 2.00 & RK-19. & 1.50 & 283 A & 3.00 & & & & \\
\hline 1824 & 6.00 & 3EP1 & 3.00 & RK-21 & 1.25 & 286 A & 3.00
5.50 & 7028. & 2.00
2.00 & 838
846 & 2.50
8500 \\
\hline 1827 & 8.75 & 3GP1. & 1.75 & RK. 23 & 3.00 & 304 TH & 5.50
5.90 & 7703 A & 2.00
3.50 & 846
849 & 85.00
15.00 \\
\hline 1842 & 7.75 & 4.65 A & 17.00 & 28D7W & 3.00 & 304 TL . & 3.75 & 707A & 3.50
7.00 & 849
850 & 15.00
20.00 \\
\hline \(2 \mathrm{AP1}\) & 5.00 & 4826 & 4.50 & Twin 30 & 10.00 & 305A & 3.50 & 708A & 1.00 & 850 & 20.00
1.50 \\
\hline 2C33/RX-233A & 2.00 & 4827 & 5.00 & FP.54/5740 & 44.00 & 307 A & 1.75 & 709A & 1.50 & 861 & 1.50
10.00 \\
\hline 2C40. & 4.75
1.00 & 4C22 /HF-100. & 7.50 & HK. 54 & 3.50 & 310A & 3.00 & 715 A. & 2.00 & 866 A & 10.00
1.00 \\
\hline 9E22 & 1.50 & 4C97/CV.92 & 7.50
16.50 & RK.60/1641.
RK-62 & 1.75
1.75 & 311 A & 5.00 & 7158 & 3.00 & 8698. & 30.00 \\
\hline 2121 A & 3.50 & 4 E 97 & 12.00 & RK-65/5D23 & 1.75
20.00 & 313 C & 2.50
1.00 & 715C. & 12.50 & 872 A & 1.50 \\
\hline 2129 & 3.00 & 4134 & 70.00 & RK-73.... & 20.00
1.00 & \(316 A\)
3238 & 1.00
4.50 & 719 A & 10.00 & 878 & 1.00 \\
\hline 2196 & 4.75 & \(4 J 35\) & 80.00 & FG.95/5560 & 14.75 & 328 A & 3.25 & 721 A. & 1.25 & 884 & 1.00 \\
\hline 2127 & 8.00 & 4142 & 75.00 & C.100D & 2.00 & 329A & 5.50 & \(723 \mathrm{~A} / \mathrm{B}\) & 14.00 & 885 & 1.35 \\
\hline 2129 & 25.00 & \(5 \mathrm{SP}_{1}\) & 2.00 & F-128A & 35.00 & 348 A & 6.00 & 724 A & 1.00 & 891 R & 100.00 \\
\hline \(2 J 30\) & 50.00 & 5BP4 & 2.00 & HK-154 & 4.00 & 349A & & 724 B & 1.00 & 892R & 150.00 \\
\hline \(2 J 32\) & 14.00 & 5CP1 & 3.75 & VT-158 & 15.00 & 349A & 6.50
2.50 & 725A & 4.00 & \(902 . \mathrm{P1}\) & 4.25 \\
\hline 2133 & 18.00 & 5C30/C5B & 2.00 & FG-190 & 5.00 & 354 A & 10.00 & 726 A & 10.00 & 913 & 9.00 \\
\hline 2134 & 16.90 & 5D21.... & 8.00 & HF. 200 & 12.50 & 354A & 10.00
10.00 & 7268 & 30.00 & 922 & 1.00 \\
\hline 2136 & 70.00 & 5 FP7 & 1.00 & C-202.... & 10.00 & 393A & 4.50 & 7803 & 30.00 & 923. & 1.00 \\
\hline 2137 & 9.90 & 5FP1 4 & 6.00 & 2032. & 5.00 & 394A & 4.50
8.00 & 803 & 2.75 & 931 A & 3.75 \\
\hline 2138 & 8.00 & 5JP1 & 9.00 & 204 A & 8.00 & 417A & 8.00 & 805 & 2.50 & 959. & 1.35 \\
\hline 2140 & 22.50 & 5JP4. & 9.00 & 205B. & 1.00 & GL.434A & 5.00 & 807 & 1.00 & CK-1006 & 1.00 \\
\hline 2155 & 55.00 & 5126 & 75.00 & F-207. & 40.00 & 446A. & 1.00 & 808 & 1.50 & 1500 T & 100.00 \\
\hline 2156 & 80.00 & 5130 & 18.50 & 217 A . & 2.00 & 4468 & & 810 & 9.25 & 1624 & 1.00 \\
\hline 2161 & 20.00 & 5132 & 50.00 & WL-218 & 20.00 & WL.460 & 2.00
10.00 & 811 & 2.00 & 1904 & 12.00 \\
\hline 2162 & 7.50 & 5R4GY & 1.00 & 235R... & 75.00 & 464A. & 10.00
3.50 & 811 A & 3.00 & 2050. & 1.00 \\
\hline 2J.851 & 1.00 & C6A & 6.00 & 250R & 75.00
6.00 & WL. 468 & 3.50
15.00 & 812 & 2.50 & ZB-3200 & 85.00 \\
\hline 2K33A & 47.50 & C6L/5598. & 5.00 & 250 TH . & 14.00 & CK.510AX & 15.00
150 & 813 & 8.25 & \(5551 / 652\) & 60.00 \\
\hline 2K54. & 35.00 & 6BM6... & 50.00 & 251 A. & 14.00
45.20 & CK=510AX & 1.50
1250 & 815
899 & 2.00 & 5610. & 1.50 \\
\hline 2 K 55 & 35.00 & 6C21. & 15.00 & 258 A & 15.00 & W27. 530 & 12.50
8.00 & 822 & 15.00 & 5725 & 3.75 \\
\hline 3 AP1 & 4.50 & 6G4/X-102B & 3.00 & 253 A & 15.00
5.00 & WL.530 & 8.00
450 & 826 & 1.00 & CK-5829 & 2.25 \\
\hline 3 BP 1. & 2.50 & 6J4....... & 4.50 & 257 A & 3.00 & 559. & 4.50 & 828. & 8.00 & 5963 & 1.25 \\
\hline \(3 \mathrm{B2} 4\) & 3.00 & 7EP7 & 2.00 & 2678. & 6.00 & 575A & & 8298 & 9.00 & 8002R & 25.00 \\
\hline 3B24W & 6.75 & 9GP7. & 3.75 & 271 A. & 5.00 & WL.579 & 15.00
1950 & 830 B & 1.50 & 8005 & 4.00 \\
\hline \(3 \mathrm{B25}\) & 2.50 & 9LP7. & 2.00 & 274 B . & 1.50 & \(631 . \mathrm{P} 1\) & 12.50
3.00 & & 5.00 & 8012 & 1.50 \\
\hline 3826 & 2.50 & \(12 \mathrm{GP7}\) & 15.00 & 276 A & 4.50 & \(631 . P 1\)
701 & 3.00
9.00 & 832 A & 6.00 & 8012 A & 2.50 \\
\hline 3828 & 3.50 & FG-17/5557. & 3.00 & 282 A & 6.00 & 702A & 2.00 & 833 A & 30.00 & 8013. & 1.50 \\
\hline 3 C 23 & 5.00 & & & & & 70 & & & 1.00 & 8020 & 1.00 \\
\hline 3C24/24G & 1.00 & & & & & & & & & 8025 & 2.75 \\
\hline 3 C 45 & 8.00 & & & & & & & & & PD8365 & 50.00 \\
\hline 3D22........ & 7.75 & & - & - & & & & & & & \\
\hline
\end{tabular}
- Prices do not include transportation

ELK GROVE, CALIFORNIA
- Fully guoranteed

GEORGE WHITING, OWNER

GRAIN OF CORN LAMPS
10 for \(\$ 3.00\) - 100 for \(\$ 25.00\)

Edwards \(\$ 1.45\) LUNGEN BUZZÉR \(1^{\prime \prime} \times 11 / 4^{\prime \prime}\)
\begin{tabular}{l}
SMALL BLOWER OR AGITATOR FOR \\
COOLINGT.V.ETC...................... \(\$ 4.50\) \\
\hline
\end{tabular}
HAYDON TIMING MOTORS

110 F . 60 cycle 30 RPM . . \(\$ 2.60\) 110 r. 60 cyele 1 RPM.... 2.85 \(230 \mathrm{~V} \mathrm{f}_{1 \text { Lем }}\) 60 C
\[
\left\{\begin{array}{l}
1 \\
2 \mathrm{RPPM}
\end{array}\right.
\]2.85
. .1 .00 1.00

Genuine TELECHRON

Motors 2 RPM 2 RPM

Laboratory Special 1 of Each Above \(\$ 25.00\)
DELCO REVERSIBLE GEARED-MOTOR
P.M.-Permanent Magnet Alnico FYeld
\# \(5071895 \% / 4\) " SHAFT or \(11 / 16\) GEAR... \(\$ 17.50\)
\# 5069600
ciamps to nold motor: si.so ea.
Seo back lissees of ELECTRONICS for other Bargains ALL PRICES f.O.B. N. Y.
\({ }_{1923}^{\text {EST. }}\)
64H Dey \(5 t\).

\section*{WANTED - BC-221}

Heterodyne Frequency Meters

Any quantity, any model-we will purchase for cash, provided only that each unit is complete with original Calibration Book, tubes, crystal and cabinet.
Write, wire or telephone
OVERBROOK CO. Overbraok, Mass.
- WE NEED YOUR SURPLUS - ELECTRONIC EQUIPMENT -

\section*{WE PAY TOP \(\$ \$ \$\) FOR:} t TUBES PAY TOP \$ \(\$ \$\) FORNECTORS
TRANSFORMERS \& TRANSFORMERS
+ COILS \& PLUGS T TRANSFORMERS
CORLS \& PLUGS
ARC.
- RANNECT - RECEIVERS - TRANSMITTERS CONTRRLL BOXS
CNDICATORS \# NDRDS
\#ELEFPONE
\# MATERIALS WE BUY ANYTHING!

\section*{COMPASS \\ COMMUNICATIONS CO.}
- DESIGN, MODIFICATION, PRODUCTION, AND TESTING OF COMMUNICATION5 AND RADAF EQUIPMENT
- SUPPLY AND DISTRIBUTION OF ALL TYPES OF EQUIPMENT AND TUBES
Laberatory to Test and Guarantee Anvihing We dell

\section*{SA-2-RADAR}

Used for air vraffic control, tracking and search, both land-based and' ship-borne. 5 microsec, pulse., ppl indication, operates at 200 mcs, peak power of 150 KW. Input
\(110 / 120\) volts a.c. 4 complete installations in stock.-Wrlie for price.

Equipment in Quantity: 500 Sets 5CR 5108610
250 Sets SCR 508-528
250 Sets SCR 608-628
50 Sets SCR 808-828
200 Sets MN-26
200 Sets SCR-269
200 Sets SCR-284
30 Sets TCS
Switchboor 72

MOTOR GENERATORS CONVERTERS
INVERTERS DYNAMOTORS We Have One of the Largest Stocks of Electrical Conversion Equipment in the East, including All Types of Rotating Machinery and a Varlety of DC and AC Mognetic Starters and Controllers from
100 Watts to 100 Kilowatts 100 Watts to 100 Kilowatts

393 Greenwich St., New York 13, N. Y. BEEKMAN 3-6S10
Cable: COMPRADIO, N. Y.
Wholesale, Industrial and Institutional Soles Only

\section*{SELLING}

Receivers
Transmitters
Radar
Special Purpose Tubes
Relays
Meters
Switches
Connectors
Rectifiers
Transformers
Motors \& Generators Wiring Cable
Instruments
and
All Electronic Components

\section*{WILL BUY ALL}

RADIO \& ELECTRONIC SURPLUS
13933-9 BRUSH STREET
Wholesale Only
Wholesale Only

Detroit 3, Mich. TO 9-3403
all values
FROM STOCE
American make
Fully Guaranteed
\(1 / 2\) watt \(10 \%\)
1 watt \(10 \%\)
2 watt 10\%
\(\$ 15.50\) p Mille 24.50 p Mille 47.50 p Mille
for \(5 \%\) resistors add \(100 \%\)
Immediate deliveries on all types and values
G. GRINN, 4650 Livinǵston Ave., Riverdale 71, N. Y.

OVER 300,000 in STOCK 1100 DIFFERENT TYPES
HERMETICALLY SEALED RELAYS
CLARE SERIINE 5000：Clare cally sealed cylindrical can \(11 / 2^{\prime \prime}\) di．\(\times 2^{1 / 2 " h}\) ．All relays in this series are provided with a sta
plue base．

\section*{stock} sele
 ひNはんKNN？ MA
80
80
15
12
80
30 Contact
3 L
2 C
\(2 \mathrm{~A}, 1 \mathrm{C}\)
\(2 \mathrm{C}, 1 \mathrm{C}\)
2 C NuNN N CRARE 15001 ； \(115 \mathrm{VAC}, 60-400\) cyc；DPST（2A） CLARES SC7037， 5000 ohm，is ma，2C：Octa
PLur Ras： 3 RI113， CLARE SK18050；24 VDC：2C．1B： 300 ohm
SOIdor lus Heador；fR1115．
CLARE 15006；115VAC，60－400 cyc；SPDT（iC） ALLIED \＆PRICE S709－27HPX 24VDC

 ADVANCE E8722－2；20－30VDC：2C， \(1 \mathrm{~A}, 15 \mathrm{amp}\) contacte： 200 ohm；Solder lug header0／H11120．．
 contact： 200 othm；Solder lug header； 1 H1122．
ADVANCE E8903－1B； \(24-28 V D C ; 1 A, 1 B: 300\) Ohm；Pluk－in header：II1123， \(18,10.000\) vol

3Bs： 150STRUTHERS DUNN I8IAAX100； lupheader：InI 04
STRUTHERS DUNN \(181 \times\) XABIOO； 24VDC，1C，2B， 300 ohm：Solder Iug beader：JM110
STRRUTHERS DUNN 181AXX 100 ． header： 1 Rill1 \(1 . .\). STRUTHERS DUNN 181XBX53；
24VDC：2C； 600 ohm；Solder lug 4PDT SEALED AN TYPE； 24 VíCO 425 ohm STEVENS ARNOLD Millsec Relay Type 328： 24VDC；1B，1C； 1600 obm：Solder head SIGMA 4AH； 4 ma nullin， 2.5 ma bold SPDT． SIGMA4RS－47G； \(3 V \operatorname{VDC} ;\) SPDT； 47 ohm：Solder head terminals：／R148．．．．SMDT： 100 ohm
SIGMA 5 R100S； \(1.5 V D C\) SPDT SIGMA head terminals；／H10011： 5 HJ 2000 ；2．3 ma；SPDT： 2000 obm． SR1005 POPDT： 5000 ohm；FR281 2SVDC；1C，3A： 250 ohm；Solder lug header
 1A： 350 obra Solder lug header，IR1112 6000 ohm． 10 ma ； \(1 \mathrm{C}, 2 \mathrm{~A}\) ；Solder lug beader： POTTER BRUMFIELD 59C 201865，MT 2078－1
2iVDC：IC， 2 A ； 250 ohm ；Solder lug header MAGNETIC DEVICES DX234； 6000 ohm， 6 ma IC．2A：Solder lug header；／H1128．
 Universal； \(24 \mathrm{VDCC} 3 \mathrm{~A} ; 300\) ohm，Octal plug

\section*{AND MANY OTHERS}

SIGMA 5JO－16，000 G； 16000 ohm； 1 mo；1C， \(1 A\) ；Octal plug bose；\＃R1118 1.95 in lots of 50

E－SPST SPST normally elosed；\({ }^{\text {A }} \mathbf{C}\)－ －SPDT Orders Under \(\$ 10\) Remlittance With Order，Plus
Approxtmate shipping charges（overage will be Approxtma
returned）．
red
TERMS：－All prices F．O．B．Our Plant． All Others Remiltance with Or
Merenandisa returnoble within 10 days for full credit

\section*{INDEX TO THE SEARCHLLGHT ADVERTISERS}

\section*{AUGUST， 1954}

This index is published as a convenience to the readers．Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions．

SEARCHLIGHT SECTION
（Classified Advertising） H．E．Hilty，Mgr．
PROFESSIONAL SERVICES ．．．．．．．．．． 365
EMPLOYMENT
Positions Vacant ．．．．．．．．．．．．．．．．．．．．366－377
Selling Opportunities Offered．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 366
Positions Wanted
Selling Opportunities Wanted．．．．．．．．．．．．．． 366
EDUCATIONAL
USINESS OPPORTUNITIES
Offered
EQUIPMENT
（Used or Surplus New）
For Sale ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．378．390
WANTED
Equipment
386
ADVERTISERS INDEX
Admiral Corporation ．．．．．．．．．．．．．．．．．．．．．．．．．． 370
Allied Electronic Sales ．．．．．． 384

Alltronics ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Institute of Technology．
Arrow Sales Inc．
Barry Electronics Corp．
Barry Clectronics Corp．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Bendix Aviation Corp．，York Div．．．．．．．．．．．．． 382
Blan
Calvert Electronics Inc．
Capchart－Farnsworth Co．
Cardwell Electronics Prod．Corp．，Allen D． 374
C \＆H Sales Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 378 ， 379
Chase Electronic Supply Co．．．．．．．．．．．．．．． 382
Communications Accessories Co．．．．．．．．．． 380.
Compass Communications Co．
Connector Corp．of America．
Convair Cornell－Aeronatics Laboratory Inc
Electronic Engineering Co．of Calif
Eisevier Press Inc．．
Empire Electronics Co
\(\underset{\text { Engineering }}{\text { Essociates }}\) Re．．．
Fair Radio Sales．
Fay－Bill Distributing Co．
Finnegan， H ．
Ford Instrument Corp．
General Electric Co．．
General Instrument Corp．．．．．．．．．． 378
General Precision Laboratory Inc．．．．．．．．．． 374
Goodyear Aircraft Corp ．．．．．．．．．．．．．．．．．．．．． 387
Hoffman Laboratories Inc．．．．．．．．．．．．．．．． 372
Hoffman Laboratories Inc．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 385
Houde Supply Co．．．．．．．
JSH Sales Co．． 385
Lapirow Bros．
Liberty Electronics
Locklieed Aircraft Corp．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 37
Lockheed Aircraft Corp．
Missile Systems Division．．．．．．．．．．．．．． 377
Maritime Switchboard Co．．．．．．．．．．．．．．．．
Massachusetts Institute of Technology
Maxson，W．L．
Melpar，Inc
Midwest Research Institute
Mogull Co．，Inc．．
Motorola，Research Laboratories
National Union Electric Corp． Overbrook Co．
Phillips Petroleum Co．．
Potter Instrument Co．，Inc．
Radalab Corp．of America．
Radio \＆Electronic Surplus．
Railway Communications Inc
Semler Industries Inc．
Servo－Tek Products Co
Solo Electronics
Southeastern Electronic Lahs
Sylvania Electric Products Inc
＂TAB＂
Tallen Co．，Inc．
Universal General Corp
U．S．Ctystals Inc
Victor－Bernard Industries Inc
Western Engineers
Westinghouse Electric Corp．

\section*{LAVOIE TYPE 105 WAVE METER}

SPRAGUE 15A-1-400-50P 15 KV " "A" Circult 1 Microsec. \(\$ 14.50\)
400 PPS 50 ohms imped. 400 PPS 50 ohms imped.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RECEIVERS-TRANSMITTERS} \\
\hline OSCILLCSCOPE & SPECIALSI \\
\hline & \(\begin{array}{rrr}5 \mathrm{in.} & 225.00 \\ 50 \mathrm{in.} & 87.50\end{array}\) \\
\hline (1)C.A. & \(\begin{array}{ll}5 \mathrm{lim} . & 87.50 \\ 50 \mathrm{ln.} & 87.50\end{array}\) \\
\hline BROWNING . . . P4E & \(5 \mathrm{in} \quad\). \\
\hline
\end{tabular}
 Ask for complete listling
of our Radar Equipment 5NMnでALOGUE NO NEW CATALOGUE NO. 113 , 3 INDUSTRIAL AND MILITARY ELEC: TRONICS EQUIPMENT. NOW OFF \{ THE PRESS SYEND FOR YOUR

\section*{ARROW SALES INC.}

\section*{UNEQUALED COVERAGE!!!}

The SEARCHLIGHT SECTION offers advertisers unequaled coverage of the three fields which ELECTRONICS penetrates.
The first being the designers, manufac turers, and users of electronic and allied equipment.
Elie second field, Communications. tenance engineer in every type of wireless and wire communication.
In Electronics' third field, namely the industrial, these is harizontal penetration to all types of industry where users of industrial electronic equipment for conirol, measurement and safety ase found.
The SEARCHLIGHT SECTION can be used at a small cost to announce all kinds of business wants and needs to other men in the Electronic industry.

When you want additional employees. want to buy ar sell used or surplus new equipment, components or other allied products, seek more capilal-in fact, for SEARCHLIGHT SECTION to work for You.

For more information write to the
Classified Advertising Division, McGraw-Hill Publishing Company, Inc. 330 West 42nd Street, New York 36, N. Y.

\section*{N.Y.s RADIO TUBE EXCHANGE}

TERRIFIC SLASHES IN PRICE UP TO 70\% FROM PREVIOUS LOW PRICES

NEW
TS-147 B AND C/UP TEST SET SIGNAL GENERATOR

Hard-to-get X-Band Now Available

Test Set TS 147 UP is a portoble Microwave Signal Generator designed for testing and adjusting beacon equipment and radar systems which operate within the frequency range of 8500 MC to 9600 MC .

NEW UNUSED SURPLUS TS 259 K BAND 23400-24500 MEGACYCLES SIGNAL GENERATOR

MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER
Ficld type \(X\) Band Spectrum Analyzer, Band 430-958.0 Megacycles.
Will Check Frequency and Oneration of various \(X\) Eand equipment such as Radar Magnetrons Klystrons, modulated Signal Generator etc. Available new complete with all accessories, in carrying case.

SPECIAL! 5,000 V. POWER SUPFLY
For IP25 infrared image Converter from 3 V . Bottery Source. NEW,
Complete with RCA 1654 Twbe

\section*{OTHER TEST EQUIPMENT USED CHECKED OUT, SURPLUS}

TS \(3 \mathrm{~A} / \mathrm{AE}\) K Frequency and power meter \(S\) Band
RF4/AP Phantom Targot S Band
TSII A/AP VSWR Test Set lor X Band
TSI3/AP
\(X\) Band Signal Generator
TSI4/AP Silonal Generator
TS33/AP X Bancl Power and Frequency Meter
TS34/AP Western Electric Synchroscope
T35/AP X Band Sinnal Generator
1.96A Signal Generator

TS \(45 \times\) Band Signal Generator
TS \(47 / \mathrm{APA} 40.400 \mathrm{MC}\) Sional Generator
TS59/AP Frequency Meter \(400 \cdot 1000 \mathrm{MC}\) TS100 Scope
TSi02A/AP Range Calibrator
TS 108 Power Load
TSillo/APS Band Echo Box

SI25/AP S Band Power Motor TS147 X Band Signal Generator S270 S Band Echo Box ISI74/AP Signal Generato
TSI75/AP Signal Generato
S226 Power Meter
TS239A-TS239C Synchroscope a34 Genaral Radio Frequency Meter

SURPLUS EQUIPAIENT
APAIO Oscilloscope and panoramic receiver
APS 3 and APS 4 Radar
APR4 Receiver and Tuning Units
APR5A Microwave Receiver
APT2.APT5 Radar Jamming Transmitter

Wide Band S Band Signal Generator \(2700 / 3400 \mathrm{MC}\) using 2 K 21 or PD 8365 Klystron, Internal Cavity Attenuator, Precision individually calibrated Frequency measuring Cavity. CW or Pulse Madulated, externaliy or irternally.

You Can Reach Us on TWXNY1-3235
Large quantities of quartz crystals
mounted and unmounted.
Crystal Holders: FT243, FT171B others. Quartz Crystal Comparators.
North American Philips Fluoroscopes Type 80.
Large quantity of Polystyrene beaded
Minimum Order 25 Dollars
Phone: WOrth 4-8262
LIBERTY ELECTRONICS, INC.
I35 LIBERTY STREET, NEW YORK 6, N. Y.

Cables: TELSERUP

WESTON MODEL 5 O.C. VOLTMETER T.5, 15 , 30, 75, \(150,300,10\) M.A. F.S. Calib Whist Weston march \(545.1-10\) of \(1 \%\) accurace \(153=10 \mathrm{P}\) ELECTRONIK RECOROER-model C. uses C.A. couples WHEELCO INDCATOR CONTROLLER-modef \({ }^{225}\) L.B—S \(95,0-1000\) deg. C. C.A. Couples 110 V. W0 CEELCO CAPACLOG inóicator RE. CORDER CONTROLLER-model 7002-S12 \(0-1000\) Deg. C. I.C. couples \(110-220\). 50 cs .
will operate equaliy well on 60 cy . Complete with 2 thermo couples \& accessorre ER CONTROLLER-SIngle point \(0-3000\) deg \({ }^{1 / 2}\)
Plat \(10 \%\) Rhod. Couples 110 V .60 cy .5325 .0ii
MARITIME SWITCHBOARD
Instrument \& Accessories
336 CANAL STREET, NEW YORK 13, WOrth 4-8216 (7)

SILVER
MICA BUTTON CONDENSERS

CAP ELECTRONICS INC.
102 WARREN ST., N. Y. 7, N. Y. RECTOR 2-8078

\section*{INDEX TO ADVERTISERS}
Acme Electric Corp 343
Acme WIre Co 392
Adame Wentuke Company 0
Aeronautical Conmmoleations Faluip- ment, Inc. 325
Aerovox Corparation, Hi-l Inv 961
Alrerift-Marine Prodncts. Ine 51
Airpax Products Co \(6 \%\)
Alden I'roducts Co 341
Allen-brailey Co. 72
Allen Co., Inc., \(L_{\text {L }} \mathbf{1 3}\) 364
Illen Manuficturing Co 852
Allied Control Co 39
Allied Industries, Ine 396
Allmetal Gerew Prolucts Combany, luc. 263
Alloy Metal Wire Dinimion, of K. Jorter Compuny, Inc. 149
Amerac. Ine. 22\%
Ampricsin Airlines, In* 42
Amerlean Electrie Motors 318
A merican Gas Furmane Co 358
American Lava Cormoration \(8:\)
Ameriean Phenolic Curb 186
Amerionn Television \& Kudio Ca 350
Imerican Thme Prolucte Inc. 86
Ampex Corporation 69
Anlrew Corp 117
Antara Clemieals Division of GenernAniline \& Flim Carp.\(19 \%\)
Aremac Associates 304
Armeo Steel Corp 116
Arnold Engineering on 11
Artisan Metal Works Compuny \(29 \%\)
Art Wire \& Stampling Company 35:
Issembly Froducts, Inc 317
Atantic Transformer Cory 356
Athas Eingineering Co., Ins \(31 \%\)
Angat Bros. Ime 313
titomatic Electric wfs. (Cu 208- Curbon Corp.247
Ballantine Lumoratariem, Inc 201
Barry Corp 15
Belden Manufucturing Co 203
Bell Telephone Laboratories. 56
Betmilix Aviation Corporation Fellise-]loneer Div 314
Preitie Dlv 243
Keal Bunk blo 262
Berkeley lity., Beckmun lust ruments, theBeruit-Bach. Inc361
Bird Eleetronic Corp 332
ISirmingham Sound Reprodurers. Ltd. 311
Birtclier Corperation 323
Boesch Mfy. Co., Ine 893
Bary Cormoriation, George W 6
Bourns Iabboratories 283
Bowser, Inc. 355
Bradley Indinatrlen 333
bradley Laboratorien. Inc 193
Bridgeport 13rass Co 211
Brush Electronics Co. 263
sugsie, Inc, II. 11 \(3 \overline{10}\)
surnell S Can, lic 21
1H\%. 272
Busmmath Mfy. Co 61
Calialyne Company 253
Cambridge Thermionle Corp \(6 \%\)
Cannon Flectric Co 103
Cannon Maskegon Corp 202
Carholas lhept. of Gentral Electric Co 81
Carborundum Company 36
©inco Packers, Inc 210
Cuscade Research Corp 95
Cent ralab, Div. of Globe-Union Ine. 150, 249,
Chutham Electronles Corb 207
Chtengo Standard Transformer Corb. 196
Chicano Teleplante Supply Cori 84, 85
Clach MPs. Corp 17
Clnema Engineering \(C\) : 364
City of 221
Cinre \& Co. C. \(\mathbf{p}\) 285
Cleveland Container Ca 181
Clifton Precimion Producta Co. Inc 322
Cohn Mfy. Con., Joc. Bigmund 339
Collims Radio Co 245
Color Televimion, Ine 218,348
Communlwation Accenmbries Co 29
Conrad \& Mower 304
Conmulialated Ensineering Corp 235
Continental Curbon, Ine 09
Coutluental-Dhmonal Fibre Co 231
Cornelt-llubilier Flectric Corp 55
Corning Giass Works 290
Cummic Connienmer Cos 341
Cuto-Coil Co 323
Crumuer Co., Inc., R. W 250
Crose Co., 11 361
Cru-ible Steel Co., of Americal 219
Chnnimphan, Son d Co., Jnc. Jamen \(35 \%\)286
Duno Electric Co

...AND SUP RING ASSEMBUES

\section*{FIFTY \\ ELECTRIFYING YEARS}

This year marks fifty years of continuous service to the evergrowing Electrical Industry, during which time The Acme Wire Company has had as its aim the production of the highest quality of Integrated Electrical Products.

The Acme Wire Company is proud of its contribution to the Electrical Field, which could not have been accomplished without the constant support and patronage of its many customers.

As we enter our second half century, we would like to express our sincere appreciation and our assurance that we will endeavor to continue producing only such highest-quality materials as will contribute to the advancement of the Electrical Industry.

\section*{ACME WIRE CO.}

NEW HAVEN, CONN.
MAGNET WIRE - COILS VARNISH INSULATIONS INSULATING VARNISHES AND COMPOUNDS

Daven Company
......................... Cover Daystrom Instrument, Div. Iayntrom Inc. \(2 \boldsymbol{2} 0\)【eJur-Amses Curparition 46

Dewey Almy Chimjeal Co............. \(4 \%\)
1hexter Machine Promlucts, Inc. 315
Dialight Corporation 351
Driver-Hartis Cus. 81
Dumont Arplane \(\mathbb{A}\) Marine Instruments. Inc. 320

Dumont Laboratories, Inc. Allen B31, 105 DuPont de Nemours \& Co., (Inc.) E. I.
Polychemicals Dept.321, 3213

Eastman Kodak Conipany
241
Edgon Inc. Thomas A. 198

Cdo Corporation 114
Eicor, Inc. \(\mathbf{3 0 5}\)
Eligler Engineering Co.. Inc. \(3 n 8,364\)
Witel-McCulloush, Ine. 71
Plectra Manufacturing Co 251
Electrical Industries, Miv. of Amperex Electronic Corp.

191
Electronic Devices, Inc. 351
Electronic Engineering Co. of Callfornia. 330
Electro Tex Corporation 269
Electronic Instrument Co. Inc. (EICO). . 357
Elly Etectronicß Corp 336
Emerson Apparatug Co 353
Emerson A: Cuming Inc. 349
Engineering Research Associates Div. of Kemington Kand. Ine. 363

Epen Products, Jnc . 387
Eruspe Company, Ince. The 361
Erie liesistor Cory............................ 87

Fairchild Camera \& Instrument (orp. . . . 268
Fansteel Metallurgical Corp. 210
Federal Telephone \& Radio Compuny . . . 63
Federated Purchaser, Inc \(\mathbf{3 5 3}\)
Fllm Capacitors, Inc...................... 393
Freed Transformer Co., Int 75
Frenchtown Porcelain Compuny. 329
Fugle-Miller Laboratories 343
Farst Electronies, Inc 337

\footnotetext{
G M Laboratorips. Inc...................... 309
Gamewell Company 282
Garde Manufaeturting Co. 392
General Ceramics Corp 45
General Chemisal Div.. Allied Chemical \& Dye Corp. 25
General Flectric Company Apparatus Dept.
\(.49,58\) Electronics Dept.
.. .49,
\(\cdots\)
General Industries \(\mathbf{C u}\) 291
General Radio Company 17
Glannini \& Co., Inc., G. M................. 31
}

Good-all Electrle Hfg ("0. 53
Gooklmuns Industries Idmited.
Grantw frass \& Jowephber County ('humber of ('onimerce

Graphite Metallizing Corb
Grewn Inwtrumpint ('o 360
Greenleur Manufacturing ('ompany.\(7 \%\)
Grlen Reproducer ('orparationt 361
Gumpllan Eifetric Mty. Co 20:
Hallimpatters 344
Eamilton38. 39
Eammarlund Manufucturlug Co., Inc. 23
Hamdy \& Darmoll. \({ }_{7}^{98}\)
Harrimen dio., I'hll!t! |I 361
Hart Manufatituring Company \(\because 58\)
Ilarvey \|fubbell, Inc 331
Eaydon Company, A. W 321
Harilon Manufacturing ('ompany, Inc 298
Heath Company 315
Heiland Remeareh Cimp 281
Helipot Corporation a Jiv. of IBerkmun Instrumesits, Inc. 183
Heminway \& Bartlett Mfg. ('os. \(31 \%\)
Henry \& Miller Imlust ries, Ine 364
Hermetle Seal IProducts ('o 104
Hewlett-I'ackard (ompany 34.35
Lomellte Corporation 270
Hughen Aircraft Company 230
Hughen Research \& Jevelopmient Eabs. 238
II yeor sules ('o. of (alifornia 344
Inco Copper Tube \(\mathbb{A}\) Irodurts, Juc. 325
Indumtrial Condenser Corb 188
nduatrial Ilariware Manufacturing Co. Ine. 3.50
Industrial Timer corp 68
Indiana Steel IProlucte Co. 74
Inet Ilv, of Leuch Sorp 820
Instrument Realstors ('o 329
International Electronic Research Corp. 388
International Rectifler Corp 280
ppolito \& Co., Jnc. James 263
Maton Varmin a Insulntor Div. of Minnemota Mininz iv Mfg. Co 221
Jelliff Mfg. Corb.. . \(O\) S58
Johnmon ('0.. E. F 2.6
Jones IViv., Howaril I3. Cinch Mfg. Corp. 3.3
Joneg İlect ronicn ['o.. Jme. M. C 356
 Americun Machatue ('o

\section*{NEW PLASTIC FILM DIELECTRIC FCI-TYPE D CAPACITORS ARE SMALLER-BETTER-LESS COSTLY}

YOUR ANSWER IS HERE

FCI TYPE D
- IN GLASS TUBES

Hermetically sealed end caps W'ire leads or threaded stucts
- IN PLASTIC TUBES

Hermetically sealed metal end caps or Plastic end buttons Threaded studs

IARGE STOCKS OF SINGI.F
PROPERTY UNITS ARE NO)
I.ONGI:R NECESSARY

\section*{NOTE THESE} CHARACTERISTICS

III:CTRICAI. PROPERTIES OF F.C.I TYPE D CAPACITORS. Operating Range, in Glass Tubes: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) Operating Range, in Plastic Tubes: \(-55^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\)
Voltage Range, \(\mathrm{D}, \mathrm{C}:\) : KV to 60 KV: higher on order. Capacitance Rance: .0001 MF to 0.1 MF Power Factor: \(0.5 \%\) at 1 KC I. R. at Room Temperature: \(10^{i}\) Megohm-Microfarads Dielectric Absorption: \(0.1 \%\) Temperature Coefficient: \(+500 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\)
Capacitance Stability: \(0.5 \%\) Voltage Derating at \(65^{\circ} \mathrm{C}\) : None Voltage Derating at \(85^{\circ} \mathrm{C}\) : \(30 \%\) Voltage Derating at \(115^{\circ} \mathrm{C}\) : \(: 50 \%\) Voltage Derating at \(125^{\circ} \mathrm{C}\) : \(66 \%\)

SEND FOR CATALOG

The all-plastic assembly gives minimum exposed metal at high potential and is excellent for shock or misalignment problems.

\title{
film capacitors, inc.
}
3.400 Park Avenue, N. Y'., N. Y' CYpress 2.5180

\title{
ALIVIVR FOR HI-ALTITUDES
}

Constant coaling efficiency et high altifudes ecn now be realized with brushless induction motors of the AltIVAR type, pioneered by ROTRON. Blowers and fans thus fittsd will move 2 to 10 limes more volume of cooling air at a tifudes than al sea heval.

Of the 240 different types of fans and blowers presently listed in ROTRON'S ringbinder calalog (sent free to potential customers on letterhead request) many are now listed with these new ALTIVAR motors, and meny more ore assembled to order.

HI-ALTITUDE NOMOGRAMS, just published by ROIRON, will assist you in solving intricete high-altitude cooling calculations. If you are not on our catalog mailing list, send us your letter-

ALTIVAR heod request for a free copy.
* REGISTERED U. S. PAT. OFF.

\section*{ROTRON MANUFAGTURING CO., ING. \\ SCHOONMAKER LANE \\ woodstock, N. Y.}
K゙はriron 364
Kiparfatt Co.. Inc. 28
Kellogi Company, II. W. 61A. 6413
Kenson Transformer Co., Inc 340
Kepo Jaboratories 52
Kester Solder Co 233
Kevatone Proincts Combany 60
Kimey MPE.. Mivision. New Iork Air IBrake Company 188
Klights Co., Jamers 222
Koiled Kordn Ine 214
Labaratory for Eilectronica 101
Lampkin Laboratorien, Ine 310
laudie \& Gyr Inc. 2,2
Lapp Jusuhutor Co.. Jnc 260
Ierlatiche, S. A. 358
Jewis \& Kaufman Itd 185
Lilbraseope, Inc \(31 ?\)
liude Air Products Company, Div. of Union Carbide \& Carbon Corp. 350
Litton Induntries, Iuc 250
Loral Mambfacturing Company 48
Lituley Aqmociaters 347
A Is Manufacturing Company, Inc. 24
Magnecrift Electric Co 36
Magnetics, Inc. 187
Maghutran, Inc. 339
Mallory and Co., Inc., P. R. 118
Mansol Ceramics Co 108
Danufacturers Figglnepring \& Eunipment Corp. 335
Marconl Instruments, Ltd. 78
Martln Company, Glenn L 113
NcCoy Electronics Co 194
Measurements Corporation 339
Metal Textile Corporation. 288
Metals \& Controls Corp., General Plate 66
Methode Manofacturing Corp 354
Mlea Insulator Co 227
Micro Switch, A Div. of Minneapolis Honeywell Kegnlator Co 80
Microdot Div, of Felts Corm 345
Midland Mfg. Co., Inc. 25
Milion Mfg. Co., Inc., Jumes 217
Mhler Instruments Inc., Willinm 195
Minneapolla-Honeywell Regnlator Co., Industrial Div. 179
Minnesota I ubber \& Gusket Co. 330
Monsanto Chemical Company 107
Mulrbend \& Co., Ltd. 3
N. R. K. Mfg. \& Engineering Co. 333
Narda Corporntion, The 271

\section*{Cementable TEFLON..}

Need Teflon, the finest dielectric, for many purposes? Is it a problem to attach this-dielectric to desired places because rivets, screws, bolts or other usual fastening devices cause loss of efficiency, defeating the purpose of the dielectric?
Cementable Teflon is the answer.
Teflon, usually the slipperiest material known, is now available with a pure Teflon porous cementable surface on one or both sides (U.S.G. patent pending) which receives the cement and permits bonding to

high voltage parts made of Cerrentable Teflon for "unit assembly" of components for electronic devices.
for electronic devices.

\section*{solves electronic problems}
metal or ary other material for which commercial adhesives are made.

The resuling bond ranges from 8 to 30 lbs . using the 1 in . Feel-back test and is actually hundreds of pounces par square inch for a vertical pull test, being limited only by the cement selected.

It copens the way for many electronic applications, a few of whica are illustrated below. Write for Bulletin No. MI- \(\leq 43\).

\section*{PRINTED \\ CIRCJITS}

Cementable Trplon is also applicable to the production of printed circuits. Available cements include al. of the commercial adhesives and \(\mathrm{Kel}-\mathrm{F}\), ap \(=\) roximately equal in dielectric values with Trelon.

\section*{Dielectrizs applied}
to selected areas for high frequency and righ valtage work.
Shielling applications of either filled, metallized or cemented metal combinations of the finest dielestric, conductors or semi-conductors, can be applied so chassis areas improving miniaturization techriques.
fabiacators of du Pont teflon, Kellogg Kel-F AND OTMER PLASTICS
National Company Ine 254
Nutional Moldte Co. 88
Nistiousal Pneumatic Co.. Inc. \& Holtzer Cabot Divisions 209
New England Mira Conipany 356
New London Instrument Co 351
Nopeo Clienical \(\mathbf{C o}\) 100
North Amerlcan Kesparch Iaboratories, Inc. 342
Nothelfer Whaing labs. 32
Olympic Metal Prodinets Co., Inc 255
Oman \& Sons, Ine. D. W 267
O-ter Mig. Co., Jolın 289
Panoramle Rudio Products, Ine 352
Paramount Paper Tube Corp 346
Parks Laboratory 364
Permag Corp. 353
Phalo Platies Corp 244
Ihilamon Laboratories, Ine 111
Polaral Electronics Corporation 83
Polymer Corporation of Penna 278
Precision Apparatus Co., Inc 396
I'recision Paper Tube Co 276
Presto Recording Corp 115
Pye, Ltd 96
IM ramid Electric Company 336
Radio Corew, lue 242
Hesllo Corporation of America. Ath Cover.
Hadin Materials Corp 201
Rudle Receptor Co.. Ine 102
Fallway Fxpress Agency, Alr Express Div. 98
Enytheon Mft. Company 19, 216,258
Rellance Mica Co., Inc. 837
Kesin Industries, luc. 360
Eienistoflex Corp. 297
Rlehmont Inc. 361
Eome Cuble Corp 229
Rotron Mfg. Co., Ine 393
Enyal Metal Manufactaring Co 315
Sandia Corporation 306
garkes Tarzian, Inc. Tuner Div 246
Schuttiz \& Co., Inc 309
Scientific Radlo Products, Ine. 988
Secon Metuls Corp 319
Servomechanisms, Inc. 34, 357
Shallerose Mfg. Co 200
Sigmill Ingtruments, Inc 274

A Reliable, Generai- Purpose \(5^{\prime \prime}\) Oscilloscope

\section*{The NEW \\ PRECISION}

MODEL

PRECISION-engineered in response to industrial requirements for a reliable, low-cost, FACTORY-wired and FACTORY-calibrated scope for basic production and testing applications.

\section*{SPECIFICATIONS INCLUDE.}
* Push-Pulf vertical drive. 20 millivolts per inch sensitivity.
3-Step, frequency-compensated, vertical input attenuator.
500 KC within 20 cycles to
\(\star 1\) voit, peak-to-peak, built-In vertical voitage calibrator.
* Excellent vertical square wave response from 20 cycles to 50 KC
\(\star\) Push-pull horizontal drive, 50 millivolts Per inch sensitivity.
\(\star\) ' H ' frequency response 20 cps to 200 KC within 3 DB (at full galn).
\(\star\) Internal linear sweep 10 cycles to 30 Kc . Neg. and pos. sweep synch.
Plees additional engineering and performance osclllograph fesigned fore incorporated in an cation and at such economical price! appli-

SERIES ES-520: In black ripple finished, rugged steel cabinet, \(81 / 4 \times 141 / 2 \times 161 / 2^{\prime \prime}\). Complete with all tubes, including 5UP1 CR tube. Comprehensive instruction manual

Net Price: \(\mathbf{\$ 1 2 7 . 5 0}\)
Write directly to factory for complete dato and specifications.

\section*{PRSCKYYONApparatut co. ine.} 92-27 Horace Harding Blvd., EImhurst, L. I., N. Y.

Signal Enxinerring \(\boldsymbol{N}\) Mfr. Co 88
Signalite. Inc. 349
Sola Electric Cu 61
Surensen \& Co., Ine 2
Gouthern Electronien Co 343
Sbrague Electris Co a, 103
Stackpole Carbon Co. 59
Standard Telephones \& Cables Led 321
Gtavid Engineering. Ine 349
Sterling Engincering Company ぎ7
Stodslart Aircraft Radio Co., Inc 206.302
Stone Piaper Tube Ca 285
Struthers-1)unn, 1ne 199
Stupakoff Ceramic \& Mfr. Co 43
Superior Electric Co 33
Superior Tube Co 44
Switeheraft, Inc. 331
Sylvania Electrical I'rolucts. Inc. . \(7,265,341\)
suthane Corporation 236, 237
Taylor Fibre Co 26, 27
Technical Service Curp 311
Technicraft Laboratorien, Inc 310
Technology Instrument Corb 30, 30\%
Tektrenix, Inc 91
Telechirome, Ine 106
Tensolite Insulated Wire Co., Ine \(25 \%\)
Texas Inst ruments, Inc 89, 213
Thomjuson-Isremer \& Co. 223
Thompson Iroducts, Inc. 301
Transicoil Cory 299
Transrutio Lta. 331
Triad Transformer Corib 291
Tung-sol Electrte. Inc 40. 41
Turner Company, The 321
Ungar Electric Towin Ine. 349
Union Carbide \& Carbon Corp., Hakelite
24\%Union Carbite \& Carlon Corp., Linde Air
Frodnets Div 35
Hon Switeli \& Sigmal, Div. of Westing house Air IBrake Co 22
Unlted States Gasket Co. 394, 39Uniterl States Railium Corp295
United Trangformer Co. . . 2nil Corer
Uritek Corrs. 212
Universal Manufacturing Company. Ine. 33Universal Winding CompanyG
Varflex Sales Co.. Ine 313
Varian Associates 215
Vectron, Ine. 328
Veeder-Ikant, Inc. 82
Hekers Eleptric Div., Vickers Inc 298
Victory Engineering Corp 296
Vulean Electric Cu. 360
Walden Ḱohinoor. Ine. 73
Waterman I'roducts Co., Inc. 303
Watlow Electric Mfg. Co 321
Waveline, Inc. 279
Wekh Scientithe Co.. W, M 346
Wenco Mfa. Co 392
Westinghouse Electric Corn 54
Weston Nertriad Instruments Corb. 30
Wheeler Insulated Wire Co, Inc 248
Wheeler Laboratories, Inc 363
Whife Iental Mfg. Co., S. S 308
Williams \& Ca., C. K. 291
Cophar Mills, Ine 319
PROFESSIONAL SERVICES 365
SEARCHLIGHT SECTION
(Classified Advertising)
H. E. HII.TY, Mgr

This index is published as a convenionce to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.

DAVEN'S exslusive, patented, "KNEE-ACTION" Rotor embodies the most advanced principles in switch engincering.

Developed by DAVEN's own staff of switch specialists, it makes possible the fabrication of units with a greater number of switch positions and poles in smaller space than previously possible.
"KNEE-ACTION" insures low contact resistance and uniform contast pressure over the life of DAVEN Switches. Silver alloy contacts, slip rings, and rotor arms are used on all units.

Because a greater number of poles per deck is available, more compactness is possible . . . a feature which is in line with the present trend toward smaller size components which will render maximum performance in minimum space.
DAVEN also offers you every facility for solving your particular switch problems. It stocks a large assortment of standard parts . . . will develop special switches from these standard components . . or will engineer special switches to meet unusual requirements. DAVEN's Development Engineering Department is at your service to help you. Call on DAVEN roday!

Write for your Free copy of DAVEN's new, 28-page brochure on SWITCHES.

Year after year, most of the successful TV receiver designs use deflection components made by RCA.

RCA deflection yokes and flyback transformers are first choice among leading circuit designers today because their outstanding quality and performance have been proved by satisfactory service in millions of receivers since they first made history in the famous " 630 " chassis.
The fact is, more yokes and flybacks produced by RCA are in use now than any other make. You'll consistently find them in the industry's "best-sellers".
For information on the latest RCA yokes and flybacks contact your RCA representative at the nearest district office.

\section*{(EAST)}

Humboldt 5-3900. 415 S. Fifth Street, Harrison, N J. (MIDWEST)

Whitehall 4-2900. 589 E. Illinois Street, Chicago 11, III.

\section*{(WEST)}

Madison 9-3671.
420 S. San Pedro Street, Los Angeles 13, Cal.```

[^0]: In Conadaz Sylvanio Electric \{Canada) Lid., Universily Tower Blde., St. Catherine St., Montreal, P. Q.

[^1]: We sell direct. Prices shown are NET, f.o.b. Cambridge or W. Concord, Mass.

[^2]: buLletin tells more
 Contains specifications, operating information and helpful hints on usages of the complete line of MB Exciters. Write for Bulletin 1-VE-5.

[^3]: "Zytel" is the new trude-mark for Du Pont nylon resin.
 (Continued, column I back side),

[^4]: "Conventional molding and extruding rechniques for plastics are not applicable 10 "Tefion". because it does not melt and flow. Nor can it be dissolved.

[^5]: Many types of nickel cathodes-made in Seamless and Lockseam" from nickel strip, disc cathodes, ond a wide variety of anodes, grid cups and other tubular fabricated parts are available frem Superior. For informarion and Free Bulletin, oddress Superior Tube Company, Electronics Division, 2500 Germantown Avenue, Norristown, Po. - Manufoctured under U.S. Patents.

[^6]: OFFICES: METROPOLITAN AREA 671 Broad Sp., Newark, N. J., Mitchell 2.8159 - SYRAZUSE, N. Y.. 647 S Warren St., Phone 74.4889 and 74.4880 - CLEVELAND: 5012 Euclid Ave., Room 2007. Express 1.6685 - NEW ENGLAND: 1374 Mass. Ave., Cambridge, Mass., Kirkland 7.4498 - PHILADELPHIA: 1649 N. Broad SP., Stevenson $4-2823$ - ST LOUIS: 1123 Washington Ave., Garfield 1.4959. CHICAGO: 228 N. LaSalle SI.. Central 6.172 . SOUTHWEST. John A. Green Ca., obsh Oriole Dr., Dallas 9. Dixon 9918 - LOS ANGELES: SITTSBURGH: 911 Plaza Bldg.. Atlantic 1.2075

[^7]:
 SOLA ELECTRIC CO., 4633 West 16th Street. Chicago 50, Illinois, Blshop 2-1414 © BOSTON: 272 Centre Street, Newton 58 , Massachuselis

[^8]: METALS CONTROLS CORPORATION
 GENERAL, PLATE DIVISION
 38 forest street, attleboro, mass.

[^9]: Established 1857 - ELKHART, INDIANA - Now York - Chicago
 Manufacturers of ADLAKE Hermetically Sealed Mercury Relays

