TYPE SG AUXILIARY RELAYS

Closed and Open Types for A-C. or D-C. Use;

Fig. 1-Ciosed Typf SG Relai Showing Solid Molded Cover. Relay with Cover Off, and Molded Cover with Glass Window. this Relay has Two-Make aido Two-Briax Contacts.

Application

The SG relay is made small and. sturdy for auxiliary service. It is obtainable in two types; closed type with molded cover or molded cover with glass front, and front connected open type without cover. The open type is used widely for mounting in individual sheet metal cabinets or in larger cabinets with other apparatus.

The standard closed type relay is supplied with two-make and two-break contacts with each moving contact being common to its corresponding front and back stationary contacts. The standard open type relay is supplied with two independent contact circuits and the contacts can readily be adjusted to provide either two-make, two-break, or one-make and one-break. The open relay also can be supplied with twe-make and two-break contacts simi'ar to the standard closed type SG.

Designed for continuous duty at rated voltage, the SG relay is obtainable for circuits up to 575 volts a-c. or $600 \mathrm{~d}-\mathrm{c}$. Ranges up to 250 volts can be used for intermittent duty up to approximately three times their continuous value.

Fig. 7 gives the method of connection when the SG relay is used to control circuits where the circuits required cannot be incorporated in the primary relay.

Distinctive Features

1. Design is simple, construction is sturdy, and price is low.
2. The complete relay can be dismantled in a few minutes.
3. The stationary contacts of the open-type relay are reversible to provide for either two-make, one-make and onebreak, or two-break contact service.
4. Relay is adapted for any thickness of panel material from $1 / 8^{\prime \prime}$ (steel) to $2^{\prime \prime}$ (slate). The molded terminals are

Fig. 2-Open Type SG Auxiliary Relay with One-Make and One-Break Contact. This Relay can be Supplied with TwoMake and Two-Break Contacts.
$11 / 8^{\prime \prime}$ long, being ample for steel-panel mounting. For thicker panels, extension terminal studs are furnished
5. Molded cover is held securely by a bracket and a spring clip, yet can be easily removed. A glass window is optional.

Construction

The SG relay, closed type, is shown in Fig. 1. The magnetic circuit is fastened to the molded base by two screws, while the coil and core are held securely in place by one screw. The armature is held in the de-energized position by gravity and a spring.
The moving contact fingers have a contact surface on both sides, and is so mounted on the armature block that motion in either direction compresses a spring. This permits sufficient contact follow to be obtained for both the make and the break contacts.
The standard relay is supplied with a molded cover which can be equipped with a glass front if desired.
The SG open type, shown in Fig. 2 , has the same operating characteristics as the closed type. The coil, magnetic circuit, contacts and connecting screws are mounted on a molded base. The entire assembly is arranged so it can be mounted on any flat surface by means of 3 screws or bolts.

Contact Rating for Each Contact			
Non-Inductive			
Each contact will carry 12 amperes continuous and 30 amperes for one minute.			
Volts	Interrupting Amperes D.C Amperes 2 Gaps 1 Gap in Serie		Interrupting Rating Amperes A-C.
	15		
$\begin{array}{r}48 \\ 115 \\ \hline\end{array}$			45 30
${ }_{2}^{230}$. 75	2.5	20
550	. 25	. 5	10

The SG relay operating time is approximately 1 to 2 cycles (60 cycle basis) and for most applications this
characteristic is required. However, in certain relay applications it is desirable to have a D-C. relay which provides a short time lag between the opening of the circuit to the relay coil and the dropping out of the relay armature. A time delay of approximately 0.1 second can be obtained with the SG relay by providing it with a heavy copper ring on the core. Because of the consequent reduction of coil space, this relay can be used only for intermittent service.

A longer time delay can be obtained by using a condenser, with or without a series resistor, connected across the relay coil. In this case the copper ring is omitted and the coil can be energized continuously. A maximum time delay of approximately 0.5 second can be obtained by using a condenser of approximately 30 mfd capacity. A similar ar-
rangement, with the resistor in series with the coil, will delay the pick-up time to approximately .07 second.

Operation

The armature to which the moving contacts are fastened closes the make contacts when the coil is energized at the proper voltage or current which should not be less than 80% of the maximum rating marked on the name-plate. The armature will open at 30% or less (on d-c.) and 60% or less (on a-c.) of the relay rating. The relay can be supplied for voltage circuits up to $575 \mathrm{a}-\mathrm{c}$. or $600 \mathrm{~d}-\mathrm{c}$.

Volt-Ampere Burden

The volt-ampere burden at rated voltage (60 cycles) is 10 , power factor, 50%. The watt consumption at rated d-c. voltage is 3.5 .

Application Table No. 1 Relay Coils

Application Table No. 2
 Operation Indicators

Use this table to determine if an additional resistor is required with an $S G$ relay in order to draw enough current to operate a 0.2 ampere indicator. The resistor is not supplied with the relay and should be ordered separately.

Control Volts D-C.	Indicator Rating Amperes	SG Relay Coil Resistance and Resistor if Required	Rating	Current in Indicator at Normal Voltage
24	0.2	Relay Coil $\mathbf{1 8 5}$ ohms.plus $\mathbf{1 5 0}$ ohm resistor (3.8 watts) style $\# 879976$ in parallel with relay coil	Continuous	0.29
48	0.2	Relay Coil 725 ohms plus 200 ohm resistor (12 watts) style $\boldsymbol{*} 879977$ in parallel with relay coil.	Continuous	0.31
125	0.2	Relay Coil 4430 ohms plus 400 ohm resistor (39 watts) style 281407 in parallel with relay coil	Continuous	0.34
250	0.2	Relay Coil 4430 ohms with 5000 ohm resistor (furnished with relay) in series with relay coil plus 970 ohm resistor (64 watts) style ${ }^{2} 286266$ in parallel with relay coil and series resistor.	Continuous	0.28
Note-	ohm and er resistor	ohm resistors are $8^{\prime \prime}$ tube type with screw terminals and require mounting detail style $2^{\prime \prime}$ tube type with flexible leads and require mounting detail style $* 877339$.	$454921 \text {. }$	

LIST PRICES

	Ohms.	Resistance	Coil	Relay
Volts	Rmperes	Cycles*	Relay Coil	Amperes

CLOSED TYPE

2 make- 2 break contacts, moving contact common

	1	D-C.	2.5		1	059	282		157	848	$\begin{array}{r} \$ 750 \\ 750 \\ 750 \end{array}$	
	3	D-C.	0.33		1	059	284	1	157	849		
	5	D-C.	0.1		1	059	286	1	157	850		
24		D-C.	185	0.130	1	008	517	1	155	687	7	50
48		D.C.	725	0.066	1	008	520	1	155	688	7	50
125	\cdots	D-C.	4430	0.028	1	008	524	1	155	889	7	50
250		D-C.	4430	0.028	1	008	524	1	155	680	7	50
115		$50 \& 60$	185	0.087	1	008	517	1	155	693	7	50
230		$50 \& 60$	725	0.044	1	008	520	1	155	684	7	50
460		50 \& 60	2770	0.022	1	008	523	1	155	695	7	50

OPEN TYPE \dagger
2 contact with stationary reversible contacts

* 25 cycle relays can be supplied. Specify, "similar to style number (give 60 cycle style) except 25 cycle." Add 10% to price of 60 cycle relav 25 cycle relays can be supplied. Specify, similar to style number. (give 60 cycle style) except 25 cycle. Add
SG relays can be supplied for other A-C. voltages up to $575 \mathrm{~A}-\mathrm{C}$. or 600 D - C and with D.C. current coils not over 5 amperes. Refer to nearest Westinghouse Sales Office for prices.

Por $\$ G$ relays having glass front add $\$ 0.25$ to the list price of the standard style. When ordering, give "similar to style number.
except with molded cover having glass front." The nameplate furnished with this relay will have the standard style number.

+ Open type relays can be obtained at no additional price with 2 make and 2 break contacts having moving contact common. When ordering give " " Open type relays can be obtamed at no additional price with 2 make and 2 break contacts having moving contact common. When ordering, give SG RELAYS CAN BE FUXNISGED FOR VOLTAGES OTHER THAN THOSE LISTED ABOVE AT AN ADDITIONAL PRICE,

SHEET METAL CABINETS

Two sizes of sheet metal cabinets for mounting the open-type SG relays can be supplied for industrial applications, etc. where it is desired to enclose one or two relays for conduit wiring or where it is desired to mount the relays near the machine. Both cabinets have knockouts for conduit connections.

LIST PRICES

OUTLINE DIMENSIONS IN INCHES

* If relay is mounted under another device extending approximately same distance from panel, allow $8 / 0^{\prime \prime}$ minimum spacing to permit re. moval of cover.

Fig. 3-Octline and Drilling Plan for the Closed Type SG Auxiliary Relay.

Fig. 4-Outline and Driliing Plan for the Open Type SG Alyiliary Relay

WIRING DIAGRAMS

Fig. 6-Interval Connections for Open Type SG Reiay

Pig. 5-Interial Connections for Closed Type SG Relay.

Pig. 7-External Connections for the Open Type SG Relays. The Connections Would me Similar for the Closed Type Relay Except That Four External Circuits Can me Controlled.
Printed in U.S.A.

TYPE SG AUXILIARY RELAYS

Non-Reversible Contact Relays

Volts	Cycles	Switchboard Mounting			Panel Mounting		
		2 Make Contact Relay	1 Make 1 Break Contact Relay	2 Break Contact Relay	2 Make Contact Relay	$\begin{aligned} & 1 \text { Make } \\ & 1 \text { Break } \\ & \text { Contact } \\ & \text { Relay } \end{aligned}$	2 Break Contact Relay
		Style Number	Style Number	Style Number	Style Number	Style Number	Style Number
48	DC	837257	877717	930432	837264	877724	930439
125	DC	837255	877715	930430	837262	877722	930437
250	DC	877034	930444	930446	837035	930445	930447
115	25	837256	877716	930431	837263	877723	930438
230	25	837259	877719	930434	837266	877726	930441
115	$50 \& 60$	837258	877718	930433	837265	877725	930440
230	50 \& 60	837261	877721	930436	837268	877728	930443
460	$50 \& 60$	837260	877720	930435	837267	877727	930442

NOTE: Switchboeri mounting relays may be supplied with or without glass cover. If glass cover is desired it should be clearly specified on the order. Otherwise all new relays will be supplied with solid moulded covers.

When desired, the 2 -make contact switchboard type can be changed to 1 make-1 break. The set of parts for the l-break contact, switchboard type only, is covered by S\#930448.

Whan desired, the 2 -make contact panel type can be changed to 1 make1 break. The set of parts for the l-break contact, panel tjpe only 13 covered by s\#930449.

When desired, the panel type only can be changed to single pole, double throw or double pole, double throw contacts. The set of parts for single pole, double throw combination of contacts, panel type only, is covered by $\$ \$ 930450$.

Reversible Contact Relays

Volts	Cycles	Switchboard Mounting	Panel Mounting	
		Style Number	Style Number	
48	DC	11008526	1008534	
125	DC	1008527	1008535	
250	DC	1008528	1008536	
115	25	1	008529	1008537
230	25	1	008530	1008538
115	$50 \& 60$	1	008531	1008539
230	$50 \& 60$	1	008532	1008540
460	$50 \& 60$	1	008533	1008541

NOTE: Switchboard mounting relays may be supplied with or without glass cover. If glass cover is desired, it should be clearly specified on the order. Other wise all new relays will be supplied with solid moulded covers.

For Prices refer to Price List 120

Westinghouse Electric \& Manufacturing Company

Newark Works, Newark, N. J.
Primedi in USM.
Eviry House Nerds Westinghouse

TYPE SG AUXILIARY RELAYS
Non-Reversible Contact Relays

SWITCHBOARD TYPE

TWO BREAK CONTACTS

TYPE SG AUXILIARY RELAYS

Non-Reversible Contact Relays

Ref No.	DESCRIPTION OF PAR'I	Style Number	No. Req	Ref No.	DESCRIPTION OF PART	Style Number	$\begin{aligned} & \text { No } \\ & \text { ig } \end{aligned}$
1	Cover, moulded solid, switchboard	876718	1	14	Stationary contact support and contact,		
1	Cover, moulded with				1 make, 1 break .	836175	1
	glass front, switchboard.	876270	1	15	Yoke.	668593	1
2	Bese, moulded, switchboard type	878637	1		Washer under yoke, a-c. only	935765	1
2	Base, moulded,			16	Post, switchboard		
	panel type.	821999	1		type, 2 make .	836176	2
3	Terminel nut,	821998	6	16	Post, switchboard type, l make, 1 break		1
4	Mounting details,			16	Post, switchboard type,	836176	1
	switchboard type	839114	1		1 make, 1 break . .	837991	1
5	Terminal stud.	$\begin{aligned} & 797078 \\ & 837 \\ & 330 \end{aligned}$	6	16	Post, switchboard type, 2 bresk.	837991	2
7	Core complete, e-c. only.	762981		17	Stationary contact	837991	2
3	Core complete, d-c. only.	838286	1		spring and contect,		
8	Coll, 48 volt, d-c., 115 volt, 25 cycle.	837270	1	17	1 make, 1 break Stationa	930303	1
8	Co11, 125 and 250 voits,				and contact, 2 break.	930303	2
	d-c., 460 volts, 50 and			18	Stop, 1 make 1 break.	837989	1
	60 cycle ${ }^{\text {c }}$ - ${ }^{\text {c }}$	837269	1	18	Stop, 2 break	837989	2
8 8	Coil, 230 volts, 25 cycle	837273	1	19	Stationary contact support,	838632	1
	50 and 60 cycle.	837272	1	19	Stationary contact		
8	Coil, 230 volt, 50 and 60 cycle.	837275	1	20	support, 2 break . Back plate,	838632	2
9	Spring for arma-				1 make, 1 break	837990	1
9	ture, ${ }^{2}$ make. ${ }^{\text {Spring for armatune, }}$	837967	1	20	Back plate, 2 break ,	837990	2
	1 make, 1 break, 2 break.	876778	1	214	Fillister head brass mach	837990	
10	Armature block complete.	837931	1		1ne screw, ".190-32 $\times 7 / 8$ ",		
11	Spring for contact finger	837968			for mounting stationary		
12	Spring cap oin ${ }^{\text {a }}$	975418	1		contact, panel type only	Std Hdw	2
13	contact finger and lead, left hand.	838253	1	$22 \uparrow$	Hexagon brass machine screw nut for above screw	Std Hdw	2
13	Contact finger and				External resistor,		
	lead, right hand - . .	838255	1		250 volt, d-c. only . .	879978	1
14	Stationary contact support and contact, 2 make	836175	2		Resistor mounting details, 250 volt, d-c. only	877339	1

* Not Illustrated

Order Perts by Style Number and Description
t When ordering, specify "Plus nickel finish"
Parts indented are included in the Part under which they are indented

TYPE SG AUXILIARY RELAYS
Reversible Contact Relays

TYPE SG AUXILIARY RELAYS

Reversible Contact Relays

Ref No.	DESCRIPTION OF PART	Style Number	No. Req	Ref No.	DESCRIPTION OF PART	Style Number	No. Req
1	Cover, moulded solid			10	Armature block complete.	1008712	1
	switchboard. .	876718	1	11	Lower contact spring.	1001025	2
1	Cover, moulded with			12	Upper contact spring.	1000826	2
2	glass front, switchboard.	876270	1	13	Washer for upper		
	switchboard type	878637	1	14	contact spring Cup washer for	001009	2
2	Base, moulded, panel type	821999	1		upper contact spring.	1000824	2
3				15	Bushing under upper		
4	switchboard type Mourting details,	821998	6	16	contact spring. .	1008223	2
4	panel type	1008226	1	16	Lead and contact,	1008709	1
4	Mounting details,			17	Lead and contact	1008709	
	switchboard type	839114	1		right hand. .	1008710	1
5	Terminal stud. .	797078	6	18	Stationary contact complete	1008711	2
7	Mounting stud. . Core, d-c.	837 100830 1	2	19	Post for mounting		
7	Core, a-c. .	1008225	1		switchboard type.	836176	2
*	Washer, under core,			20	Yoke. . . .	668593	1
	$a-c$ only.	935765	1	21	Terminal screw, panel type.	837321	4
8	Coil, 48 volts, d-c., 230 volts, 50 and 60 cjcles.			22 +	Fillister head brass machine screw, ". 190-32 $\times 7 / 8^{\prime \prime}$		
8	coil, 125 and 250 volts d-c.	11008524	1		for mounting stationary		
8	Coil, 115 volt, 25 cycle.	1008519	1		contact, panel type only	Std Hdw	2
8	Co11, 230 volt, 25 cycle.	1008522	1	$23+$	Hexagon brass machine		
8	Coil, 115 volt, 50 and 60 cycle.				screw nut for above screw	Std Hdw	2
8	coil, 460 volt,	1	1		External resistor, 250 volts, d-c. onl	1008714	1
	50 and 60 cycle. .	1008523	1	*	Resistor mounting details,		1
9	Spring for armeture	1000998	1		250 volt, d-c. only. .	877339	1

* Not Illustrated

Order Parts by Style Number and Description
† Wher ordering, specify "Plus nickel finish"
Parts indented are included in the Part under which they are indented

WESTINGHOUSE ELECTRIC \& MANUFACTURING COMPANY
 Headquarters-306 4th Ave., Pittsburgh, Pa. P.O. Box 1017

- AKRON, OHIO, 106 South Main St.
- ALBANY N. Y, 456 No. Pearl St.
- ALLENTOWN, TA., 522 Marle St.
(3) 'APRLETON, WISC., 1827 N. Oneida St., P.O.

Box 206
!APDLETON, WISC. 1029 So. Outagamic St
ATLANTA, GA., 426 Marietis St.. N. W.
$\|^{\circ} A T L A N T A, G A ., 426$ Marieriạ St., N. W.
\times aTTICA, N.

- 1 AUGUSTA, MAINE, 9 Bowman Si.
- BAKERSFIELD, CALLF., 2224 San Émedio St. ${ }^{\bullet}$ BALTIMORE, MD. 118 E. Lombard St. \dagger BALTIMORE, MD. 501 Ensi Preston S
\times - \quad BATMA ROUGE, LAA., 128-134 So. Sixteenth St . (1¡BATON ROUGE, LA., 128-134 So. Sixteenth BINGHAMTON. N. Yidla nd Blds., 86 Couri'st
-BIRMINGHAM, ALA., 1407 Comer Bldg.
- BLUEFIELD W. VA. 208 Bluefield Avenue
-BOSTON, MASS. 10 High St.
t/BOSTON, MASS., 235 Old Colony Ave., Sor. Boston. Mass. CONN. 540 Grant St .
(1) BUFFALO, N. Y., 814 Eillicort Suuare
to BUFFALO, N. Y., 1132 Seneca St.
- BURLINGTON, VER., 208 Flynn Ave
-BUTTE. MONTANA., 129 West Park Sr.
:BUTTE, MONTANA, Iron \& W Woming Sts.
-CANTON. OHIO, 120 W. Tuscarawas S.
${ }^{\circ}$ CEDAR RAPIDS, IOWA, 36121 se Si., S.E. F.O. Box 148
- IICHARLOTTE, N. C., 210 East Sixth Se.
${ }^{\circ}$ CHARLESTON. W., VA., 1415 Oakmone Rd., P. O. Box 865
(1) ${ }^{\text {CPHATTANOOGA. TENN., Volunter }}$ State Life Bldg., Georgia Ave. \& East Ninth St
CHICAGO, ILL., 20 N. Wacker Drive, P.O. Box B
IfCHICAGO, ILL., 2211 W. Pershing Road, P.O. Box 1103
-

${ }^{\circ}$ COLUMBUS. OHIO, 85 E. Gay St.

- DALLAS, TEXAS, 209 Browder St
pDALLAS, TEXAS. 1712 Laws St.
©DAVENFORT, IOWA, 206 E. Second St., P.O.
- DAYTON, OHIO, 30 North Main St.

OENVER, COLORADO, 910 Fifteenth St .
DOENVER, COLORADO, 1700 Sixteenth St
TOENVER, COLORADO, 988 Cherokee St.
-DERRY, PA.
-DES MÓINES, IOWA, 1400 Walnur St.
-t/DETROIT. MICH., 5757 Trumbull Ave., P.O.
-DULUTH, MINN. 10 East Superior Sc.
IEAST PEORIA.ILL., 900 W . Washingion St.
\times - EAST PITTSBURGH, 「A.
${ }^{\text {EEL }}$ PASO, TEXAS. Oregon and Mills Sts
EL PASO, TEXAS, 450 Canal St.
"EMERYVILLE. CALIF., 5915 Green St.

1tEMERYVILLE, CALIF., 1466 Towell St
\times EMERYVILLE, CALIF, 6121 Green St.
-ERIE, PA. 1003 State St.

- EVANSVILLE, IND., 201 N. W. First Sr.
- FFAIRMONT, W. VA., 10h and Beleline Sis
-FORT WAYNF., IND, 1010 rackard Ave.
-FRESNO, CALIF., 872 Pcralta Way, P.O. Bux
-GARY, IND., 846 Broadway
-GRAND RÄIIDS, MICH., 511 Montoe Ave. N. WSBORO, N. C., 409 W. Bessemer St., P.O Box 1828
${ }^{-}$GREXENVILLE, S. C., 110 W. Tallulah Drive, F.Q. Box 1591
- HAMMOND. IND., 235 Locust Sr.
- HONOLULU, T. H.,' Hawaiian Eler. Co. Agt - HOUSTON. TEXAS,' 1314 Texas Ave.

HOUSTON, TEXAS, 2313 Commerce Ave.
†HOUSTON, TEXAS, 2315 COmmerce Ave.
$1 \cdot J H U N T I N G T O N, ~ W . ~ V A ., ~ 1029$ Seventh Ave.
-INDIANAPOLIS, IND., 137 S. Penna. Ave.
tindianarolis. ind., 551 West Merrill St
ISHPEMING, MICH., 433 High S.

- J JACKSON MICH, FLA., 37 Hogan St., Suuth. R.O. Drawer K
- 1 OHNSTOWN, PA., 107 Station St
-KANSAS CITY, MO.., 101 W Eleventh St.
TKANSAS CITY, MO., 2124 Wrandolte St.
KLIMA. OHIO
- tlims AnGEles, CAlif, 420 So. San Pejro Sr. LOUISVILLF. KY., 332 Ẅest Broadway MADISON. WISC., 370% Nakoma Rd., P. O. Box 228
XMANSFIELD, OHIO, 246 E. Fourth St
(1) MIAMII, FLA. II N. E. Sixis S.., P.O. Box 590
(1) 'MILW'UUKEE, WISC., 538 N. Broadway MILWAUKEE, WISC,', 4560 No. Port Washington Rd.
- 1 -MINNEAFOLIS, MINN., 2303 Kennedy St., N.E.
-MONROE, LA. 1503 Emerson St, P.O. Box 1851
-NASHVILLE, TENN. 219 Second Ave., N.
- NEWARK, N. J., 1180° Raymond Blvd.
tinewark, N. J., Haynes Ave. \& Lincoln High-
${ }^{\text {x }}$ NEWYARK, N. J., Plane \& Orange St .
-NEW HAVEN, CONN., 42 Church St., P. O.
Box 1817
-NEW ORLEANS, LA. 333 St. Charles St
NEW ORLEANS, LA.; 527 Pordras St
NEW YORK. N. Y., 150 Broadway
NIAGARA FALLS, N. Y., 253 Second So.
NORFOLK, VA., 320 City Hall Ave
- OKLAHOMA CITTY, OKLA., 120 N . Robinson

OKLAHOMA CITY, OKI.A., Third \& Alie St *OMAHA, NEB., 409' South Seventeenth 9 .

- P-Flillan illitia, pa., 3001 Walnur Se
-PHOENIX, ARIZONA, 11 Wekt Jefferson Se arHOENIX, ARIZONA, 425 Jackson Sr.
© PITTSBURGH. P.A., Nuthall Works, 200 Mr .
C.indluss Avc. 30 4 1 Ave Box 1017
: •PITTSBURGH, PA., 306 4th Ave., Box
PORTLAND, OREOON, 309 S. W. Sixth Ave.
+PORTLAND, OREGON, 2138 N. Interstate Ave PORRTLAND, ORECON, 720 N . Thompron ST:
-RALEIGH, N. C., \&ic3 North Person St., P.O Box 2146
-RICHMOND, VA., 301 S . Fifth St .
- ROANOKE, VA., 726 Firse St., S.E
-ROCHESTER, N. Yi 1048 Universitv Ave
-ROCKFORD, ILL. ${ }^{\text {- }}$ I3J SJuth Sicond St.
-SACRAMENTO, CALIF. T wenticth \& UST. LOUIS, MO: 717 Sorth Twelfh S
\#ST. LOUIS. MO. 717 South Twelfth St.
Squth St.
t:SALT LAKE CITY, UTAH. $3+6$ A Pierpone
- SAN Antonio, texas, 115 W . Travis St
-SAN ANTONIO, TEXAS, 15 W. T
§SAN FRANCISCO, CALIF., 1355 Market St.
:SAN FRANCISCO, CALiF., I Montgoinery
-SEATTLE. WASH. 603 Stewatr St.
T4SEATTLE. WASH.. 3451 East Markinal Way \&SEATTLE, WASH., 1041 First Ave.. South
XSHARON, TAA
-SIOUX CITY, IOWA. 2311
-Sville Ave.
Georwe Si.
SOUTH BEND, IND, 216 East Wayne St
\times SOUTH PHILA. WKS., Essingon, Pa.
\times SOUTH PHILA. WKS., Essinkton, Pa.
${ }^{\circ}$ SOUTH PHILA. WKS., P.O. Box 7348 , Phil.. del hia, Pa.
-SROKANE, WASH., 158 S. Monroe St
-SPRINGFIELD. ILL.. 601 E. Adams St., Bhi 37
- SPRINGFIELD. MASS., 395 Liberty Sr.
xSRRINGFIELD, MASS., 653 Page Houlevard
-SYRACUSE, N. Y.i 420 N. Geddes St.
TAMPA, FLA., 417 Ellamae Ave., Box 230
TAMPA, FLA.iO 417 Ellamae Ave.,
\times TRAFFORD CITY PA.
TULSA, OKLA., 303 East Brady St.
toUTICA. N. Y..il3 N. Genesee St.
-WASHINGTÖN, D. C., 1434 New York Ave.. WATERLOO. LOWA. 328 Jefferson St., P.O. Box 147
- W/LKKESBARRE, PA. 267 N. Pennsylvania Ave.
(1) WORCESTER. MASS., 507 Main Sr .
-YORK. TA.. 143 So. George Sr.
- YOUNGSTOWN. OHIO, 25 .
- YOUNGSTOWN. OHIO, 25 E. Boardman Sr,

WESTINGHOUSE AGENT JOBBERS

Westinghouse Electric Supply Company-Headquarters-150 Varick St., New York, N. Y.

Fully rquipped aslea officee and warehoumpare molntained at all addreseem.

albany. N. Y. 454 No. Pearl Sc. ALLENTOWN. PA., 522 Maple St ATLANTA. GA., ó Popler $\xi_{\text {r., N. N. }}$ w. AUGUSTA, MAINE, 90 Warer Sr . BALTIMORE, MD., 40 Sourh Calvert St . BANGOR, MAINE, 175 Brond Sr. BINGHAMTON, N. Y, 87 Chenango Sr . BOSTON, MASS., 88 Pearl Se. BURLINGTON, VT, 208 Flynn Ave. BUTTE. MONTANA, 50 East Broadway CHARLOTTE, N. C., 210 Ease Sixth CHICAGO, ILL. 113 North May St. COLUMBIA. S. C., gis Lady St.
DALLAS. TEXAS, 405 No. Griffin St DAVENPORT. $10 W$ A. 402 E. Fourth Se DES MOINES, 10 W A, 1400 Welnut St. DETROIT, MICH., 547 Harper Ave. DULUTH, MINN., 308 w. Michigon St EVANSVILLE. IND.. 201 N . W. First St FLINT, MICH: 1314 N . Saginaw St. FORT WAYNE, IND. 612 S . Harrison St FORT WORTH, TEXAS, 210 lones St.
GRAND RAPIDS, MICH., S11 Monroe Ave. N. W.

GREENVILLE, S. C., 226 Pendleron St HOUSTON, TEXAS, 1903 Ruia St.

INDIANAPOLIS, IND., 137 S. Pennsylvania Sc
INDIANAPOLIS, IND., 137 S. Pennsylvania
JACKSONVILLE, FLAA. 37 Sourh Hogan Sr.
LOS ANGELLES CALIF, 905 Easr Second Si. LOS ANGELES, CALIF, 905 East Second St. MADISON, WISC. 1022 E. Washingron MEMPHIS, TENN, 366 Madison A MIAMI. FLA. ${ }^{11} \mathrm{~N} . \mathrm{E}$. Sixth St.
MILWAUKEE,
WISC., 546 N . Broadway MILWAUKEE, WISCIN Si6N. Broadway NEWARK. N. J., 49 Liberty St.
NEWARK. N. . CONN., 240 Cedar Sr.
${ }_{2} N E W$ YORK. N. Y. 150 Varick Sr.
NORFOLK. VA. 320 Ciry Hall Ave.
NOKLAND, CALIF. Tenth \& Alice Sis.
OALLAHOMA CITY, OKLA., $850 \mathrm{~N}, \mathrm{~W}$. Second
St.
OMAHA, NEB., 117 North Thirteenth St.
OMAHA, NEB, 117 North Thirt
PHILADELPHIA, PA. 1101 Race Sr.
PHOENIX, ARIZONÄ, 315 West Jackson St.
PITTSBURGH, PA., 575 Sixth Ave.
PORTLAND, OREGON. $134 \mathrm{~N} . W$. Eighth Ave.
PROVIDENCE, R. 1.66 Ship St.
RALEIGH, N. C., 319 W. Marti
READING, PA., 619 Sp: ure St. Fifth St
RICHMOND. VA., 301 South Fifth St
ROANOKE, VA., 726 First St., S. E.
ROCHESTER, N. Y., 1043 University Ave.

ST. LOUIS, MO., 1011 Spruce Sk. SACRAMENTO, CALIF., 20 Fifth and R Sts. SACRAMENTO, CALIF,
SAN Remple St.
SAN FRANCISCO, CALIF, 260 Fifth Se.
(1)SEATTLE, WASH., 1051 First Ave., So.

SIOUX CI'TY, $10 W$ W, 1005 Dace Se .
SPOKANE, wASH., is2 So. Monroe St
SPRINGFIELD, MÄSS. 46 Hampden St
SYRACUSE, N. Y., 91 W . Genesee St.
(1)TACOMA, WASHI., $1115^{\text {"A }}$ " St.

TAMPA, FLA.. 417 Ellamae Sr.
TERRE HAUTE. IND.. 234 So. 3rd Sr.
TRENTON N, 245 N . Prodeenth S
TRENTON, N. J. 245 N . Broad St.
(1)TULSA, OXLA. 303 Eass Brady St

WASHINGTON, D. C. 1216 " K " St., N.W.
WATERLOO. IOWA, 328 jefferson Si.
WHEELING, W. VA., 1117 Main St.
WICHITA, KANSAS: 233 So. Sr. Francis Ave
WCRITA, KANSAS, 233 So. Sr. Francis
WILMINGTON DEL., 216 E. Sciond St.
(1) WORCESTER, MASS., 17 Mulberry St.

YORK, 「A., 143 S . Gcorge St.

TYPE SG AUXILIARY RELAY
 Closed or Open

Westinghouse Electric \& Manufacturing Company East Pittsburgh, Pa.

TYPE DnW "DE-ION" MOTOR WATCHMAN

Manual Motor Starter for A-C. Motors

1 and 3 Phase

Fig. 1-Type DnW "De-Ion' Motor
Watchman in Standard
Surface Enclosure
$1 / 6$ to $71 / 2 \mathrm{Hp}$.
110 to 600 Volts

Fig. 2-Size 1 Type DnW "De-Ion" Motor Watchman in Flush Enclosure with Cover Removed

DISTINCTIVE FEATURES

- "DE-ION" ARC QUENCHERS most effectively open circuit and save contacts from burning - QUICK-MAKE AND QUICK-BREAK TRIP-FREE toggle operating mechanism.
- POSITIVE INDICATION of all switch positions (On, Off, Tripped).
- BI-METALLIC DISC TYPE overload relay provides inverse time limit motor protection.
- NON-CARBONIZING, NON-WARPING, moisture-proof arc boxes and relays.
- SAFETY INTERLOCK prevents contact with live parts.
- DOUBLE BREAK silver to silver contacts eliminate necessity for flexible shunts.
- STRAIGHT THROUGH WIRING and easily accessible terminals.

Off

On

Tripped

Fig. 3-The Handle Indicates

DISTINCTIVE FEATURES

APPLICATION

The "De-ion" Motor Watchman is a manually operated motor starter, designed for starting, stopping and protecting small single phase and polyphase A-C. motors driving looms, fans, pumps, machine tools, food machinery and many other industrial applications. It may also be used for small D.C. motors which may be started directly across the line.

Maximum Horsepolver					Class Number				
3 Phase			1 Phase		Standard Sheet Steel Enclosure NEMA Type I	Mush Type Steel Enclosure NEMA Type Ib	Water-Tight Dust-Tight Cast Iron Enclosure NEMA Types III	For Hazardous Locations Class I Group D. Class II Group G NEMA Types VIII, IX	Switch Unit Without Enclosure
$\begin{aligned} & 110 \\ & \text { Volts } \end{aligned}$	$\begin{gathered} 208 . \\ 220 \\ \text { Volts } \end{gathered}$	$\begin{aligned} & 440- \\ & 600 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 110 \\ & \text { Volts } \end{aligned}$	$\begin{gathered} 208 \\ 220 \\ \text { Volts } \end{gathered}$					
$13 / 2$ $13 / 2$	2	2	1		$\begin{gathered} \text { 10-100-SO } \\ =10-100-\mathrm{SOA} \end{gathered}$	10-100-PO	10-100-WO	10-100-U0	10-100.0
3	5	$71 / 2$	13/2	3	10-100-S1	10-100-P1	10-100-W1	10-100-U1	10-100.1

[^0]
TYPE DnW "DE-ION" MOTOR WATCHMAN-Continued

- OPERATION

These starters are operated by means of a positive toggle mechanism that is:

1. Quick-make and quick-break.
2. Trip free on overload.
3. Indicating of all switch positions (on, off, tripped).
4. Capable of rapid and accurate inching operation.

- CONSTRUCTION

The switch unit is assembled on a rigid steel base. The toggle mechanism operates the moving contact assembly vertically, and is so easy yet positive in operation that rapid inching and accurate control of the machine is possible. The stationary contacts and the "Deion'' grids of the arc quencher are mount-

Fig. 8-"De-Ion" Motor Watchman on Pedestal.

Fig. 7-Switch Unit Removed from Enclosure; Heater in Place
ed in porcelain arc boxes. All contacts are steel-backed silver buttons. Double break silver contacts-plus the "Deion" arc quenchers-assure minimum contact burning, and eliminate the necessity for flexible shunts. Size 0 and Size 1 starters are similar except that the moving contact assembly of Size 1 starters has a magnetic loop (like Class 11-200-S1 LINESTARTERS) to accelerate the movement of the arc into the "De-ion" grids. This also requires a different arc box.

Overload protection is provided by two pre-formed bi-metallic disc relays, which operate independently with inverse time limit characteristics. These relays allow ample time in starting and for short peak loads, yet accurately protect the motor. The discs are heated by heaters in the motor circuit. When an overload causes the disc to reach tripping temperature, it snaps from

Fig. 6-Flusia Type Enclosure
concave to convex form and trips a latch on the toggle mechanism, opening the switch.

The discs reset themselves when cooled, but the switch mechanism must be "reset" by moving the handle to the extreme "off" position, before the switch may be closed again. The handle cannot be held closed on overload.

The heaters are the same as those used on Size 0 and Size 1 magnetic LINESTARTERS; a great convenience when stocking or changing heaters.

Arc boxes and relays are moulded of grey porcelain which will neither absorb moisture, warp nor carbonize. All metal parts are cadmium plated or tinned to resist corrosion.

The switch unit mounts in any enclosure by only one screw at the top of the base. The lower end of the base is hooked into place over a projection in the back of the cabinet.

Fig. 9-"De-Ion" Motor Watchman Mounted on Loom Motor

TYPE DnW "DE-ION" MOTOR WATCHMAN-Continued

Fig. 10-Water-Tight "De-Ion" Motor Watchman

- ENCLOSURES

Standard steel enclosures (Type S, Fig. 5) have deep drawn covers, hinged at the top. The operating handle is recessed in the front of the cover, eliminating projecting pieces, and permitting close mounting in group installations. Keyhole mounting holes at the top and oblong holes at bottom of cabinet make mounting and lining up easy. Ample knockouts for conduit are provided in top, bottom and both sides; and in addition the Size OA and Size 1 switches have two knockouts in the back.

The cover is interlocked for safety so that it cannot be opened unless the switch is in the "off" position. A spring
latch holds the cover closed, and only one padlock is needed to lock both the switch off and the cover closed. A small lateh on the switch unit may be swung into position and then the cove- locked shut. Finish is baked black enamel.
Flush enclosures (Type P, Fig. 6) for mounting in a plastered wall, or in a recess in a machine casting, consist of a wide flanged flush plate and a folded steel box with an adjustable mounting plate for accurately lining up the switch unit. The box has knockouts in all four sides and is finished baked black enamel. The flush cover is finished in gray lacquer.

Water-tight and dust-tight (Type W, Fig. 10) enclosures are cast iron with tapped conduit holes and with a rubber gasket between cover and box. The
switch is operated by a handle on the front which is arranged for padlocking in the "off" position. Finish is weatherresisting aluminum paint and all hardware is corrosion resisting copper-alloy.

Explosion-protecting (Type U, Fig. 13) enclosures are cast-iron designed in accordance with the specifications of the Underwriters' Laboratories for Class I, Group D; Class II, Group G; or Class III or IV Hazardous Locations. Finish is weather-resisting aluminum paint, and all hardware is corrosion-resisting copper alloy.
For Textile Loom service special mountings are available either on the side or top of the special loom motor (Fig. 9) or on pedestals (Fig. 8) which are designed for floor mounting over a junction box.

Fig. 11-Size O "De-Ion" Motor Watchman

Fig. 13-"De-Ion" Watceman for Class I Group D and Class II Group G Hazardous Locations

TYPE MW MOTOR WATCHMAN THERMAL OVERLOAD RELAY

INSTRUCTIONS

Application
The type MW Thermal Overload Relay employs an elertrically heated bimetallic disc to open a pair of contacts in the coil circuit of a contactor for the disconnection of power on the occurrence of an overload Heating of the disc is ac. complished by a heating element connected directly in the circuit to be protected. With a proper choice of heaters, the relay may be used on a-c. or d-c. circuits of from .49 to 40 amperes at not more than 600 volts. The contacts will carry and break coil currents up to 1 ampere in an a-c. circuit and 50 volt. amperes at a maximum of 1 ampere in a d-c. circuit.

The relay will provide protection against abnormal load conditions to current values exceeding locked rotor current. In accordance with the National Electric Code the relay should be protected against short circuits by fuses rated at not more than four times the rated motor current, by a time limit circuit breaker set at not more than four times the rated motor current or by an instantaneous trip circuit breaker.

Construction and Operation

The thermostatic element is a bi-metallic disc which suddenly reverses its con: vexity when it is heated to a given temperature. This acts to separate the double-break silver-plated contacts, and initiates the movement of a reset rod which latches the relay contacts in this position until manually reset. After the disc has cooled sufficiently to resume its normal convexity, resetting may be accomplished by depressing the reset rod.

Under normal operating conditions the reset rod may be used as a spring. returned stop button, separating the relay contacts when fully depressed.

HEATER APPLICATION TABLE

Heater* Style Number	Heater Code Marking				
			$\begin{aligned} & \text { Table No. I } \\ & \text { Relay Ambient } \\ & \text { Same as } \\ & \text { Motor Ambient } \end{aligned}$	$\begin{aligned} & \text { Table Ni } 2 \\ & \text { Relay Ambient } \\ & 15^{\circ} \mathrm{C} \text { A Almice } \\ & \text { Motor Ambient } \end{aligned}$	$\begin{aligned} & \text { Ti.hle No }{ }^{3} \\ & \text { Rulay Minhicut } \\ & 30^{\circ} \text { C. Above } \\ & \text { Nintor Ambient } \end{aligned}$
1129372	χ	49	0.50 to 0.54	0.4+ (1) 0.41$)$	(0.31) 100.43
1129373	Y	55	0.55 to 0.62	0.50 to 0.54	0.44 (1) 0.44
1129374	Z	6.3	0.63 to 0.71	0.55 to 0.62	0.50 to 0.54
966 465-B	AA	71	0.72 to 0.79	0.6 .3 to 0.71	0.55 to 0.62
966 466-B	AB	82	0.80 to 0.89	0.72 to 0.79	0.6 .3 to 0.71
966 467-B	${ }^{\text {A }}$ C	9.3	0.90 to 0.99	0.80 to 0.89	0.72 to 0.71)
966 468-B	AD	1.0	1.00 to 1.04	0.90 to 0.99	0.80 to 0.84
906 469-B	AE	1.1	1.05 to 1.18	1.00 to 1.04	0.90 to 0.91)
966 470-B	${ }^{\text {AF }}$	1.2	1.19 to 1.32	1.05 to 1.18	1.00 to 1.04
966 471-B	${ }_{\text {AG }}$	1.4	1.33 to 1.49	1.19 to 1.32	105 to 1.18
	${ }_{\text {AH }}^{\text {A }}$	1.5	1. 50 to 1.71 1.72 to 1.89	1.3 .3 to 1.49 1.50 to 1.71	1.19 to 1.32 1.33 to 1.49
966 474-B	AK	1.9	1.90 to 2.09	1.72 to 1.89	1.50 to 1.71
966 475-B	AL	2.1	2.10 to 2.35	1.90 to 2.09	1.72 to 1.89
966 476-B	AM	2.5	2.36 to 2.65	2.10 to 2.35	1.90 to 2.0)
966 477-B	AN	2.7	2.66 to 2.98	2.36 to 2.65	2.10 to 2.35
$966478-\mathrm{C}$	AO	3.0	2.99 to 3.35	2.66 to 2.98	2.36 to 2.65
966 479-C	AP	3.4	3.36 to 3.75	2.99 to 3.35	2.66 to 2.48
966 480-C	AR	3.8	3.76 to 4.21	3.36 to 3.75	2.99 to $\mathbf{3 . 3 5}$
966 481-B	AS	4.3	4.22 to 4.71	3.76 to 4.21	3.36 to $\mathbf{3 . 7 5}$
966 482-C	AT	4.8	4.72 to 5.3 .3	4.22 to 4.71	3.76 :0 4.21
966 483-C	AU.	5.4	5.34 to 5.94	4.72 to 5.33	4.22 to 4.71
960 484-C	AK	6.1	5.95 to 6.63	5.34 to 5.94	4.72 to 5.33
966 485-C	AX	6.8	6.64 to 7.52	5.95 to 6.63	5.34 to 5.94
$966486-C$ $966487-\mathrm{B}$	AY	7.7 8.5	7.53 to 8.52 to .31	6.64 7.53 to 7.5 8.51	5.95 to 6.63
966488 48-C	BA	9.6	8.32 to 10.5	8.52 to 9.31	6.64 to 7.53 to 8.51
966 489-B	BB	11.	10.6 to 11.5	9.32 to 10.5	8.52 to 9.31
966 490-B	BC	12.	11.6 to 12.4	10.6 to 11.5	9.32 to 10.5
966 491-B	BD	13.	12.5 to 13.4	11.6 to 12.4	10.6 to 11.5
$966492-\mathrm{C}$	BE	14.	13.5 to 14.9	12.5 to 13.4	11.6 to 12.4
966 493-D	BF	16.	15.0 to 17.5	13.5 to 14.9	12.5 to 13.4
966 494-C	BG	18	17.6 to 18.2	15.0 to 17.5	13.5 to 14.9
966 495-C	BH	19	18.3 to 19.0	17.6 to 18.2	15.0 to 17.5
966 496-C		21.	19.1 to 20.5	18.3 to 19.0	17.6 to 18.2
966 497-D	BK	23.	20.6 to 22.6	19.1 to 20.5	18.3 to 19.0
${ }_{906}^{960} 49898$	BL	27.	22.7 to 24.9	20.6 to 22.6	19.1 to 20.5
040588	8	29.	$\begin{array}{ll}28.5 & \text { to } \\ 28.4\end{array}$	22.7 to 24.9	$\begin{array}{ll}20.6 & \text { to } 22.6 \\ 22.7 & \text { to } 25.0\end{array}$
974 084-A	80	31.	32.3 to 35.0	28.5 to 32.2	25.0 to 28.4
1040589	BR	36.		32.3 to 35.0	28.5 to 32.2
1040590	BS	40.			32.3 to 35.0

Fig. 2-Sectional View Type MW Overload Relay with keset Rod Removed
tact surfaces must be clean and all connections tight. Periodic inspection is recommended.

No oiling of relay parts is required Heaters

Each heater is identified by a code marking stamped on one terminal near the mounting hole. The Heater Application Table indicates the range of full load motor current to which a given heater may be applied. This range is so selected that the current to produce ultimate tripping of the relay will be approximately 115% to 125% of the ritted motor current.

The current rating of the relay (see Table No. 1) is based on an ambient temperature of $40^{\circ} \mathrm{C}$. Standard motor ratings are also based on an ambient temperature of $40^{\circ} \mathrm{C}$. For protection of the motor when it and the relay are operated in a common ambient temperature, heaters should be applied according to Heater Table No. 1 for average applications.

Confining the relay in a small space, such as a starter cabinet, with other apparatus which dissipates heat will raise its ambient temperature, affecting thereby its tripping value. Heater Table No. 2 is for use when the temperature of the air within the cabinet and immediately surrounding the relay is $15^{\circ} \mathrm{C}$. above the ambient temperature in which the motor is applied. Heater Table No. 3 is to be used when this temperature difference is $30^{\circ} \mathrm{C}$.
Renewal Parts

Pig. 3-Average Time Current Curve

* Por totally enclosed, splash-proof, drip-proof and all other continuous rated 50° and 55° motors, use one sise smallor Heaters.

TYPE TK UNIVERSAL TIMING RELAY AND D.C. TO A.C. INVERTER

Application

The TK relay can be used on $a-c$. circuits which require a definite time delay between the closing of an a-c. circuit and the closing or opening of other circuits (either a-c. or d-c.) through the relay contacts. Accurate time settings from a few seronds to fifty minutes can be obtained in a single relay. The relay will reset practically instantaneously even with the longest time setting. Two sets of main contacts, one single pole double throw and the other single pole single throw are provided, and these contacts can be adjusted to operate either simultaneously or sequentially.

An unusually wide variation of applications can be handled with the TK relay. The wide time range, quick reset and number of contacts provided will allow a single relay to be applied without modification. Some typical applications are found in automatic control circuits for generators and motors, in connection with the operation of large rectifiers and other thermionic tubes, as a part of the control for voltage regulators, tap-changing transformers, and various forms oí irdustrial control.

Distinctive Features

1. Synchronous motor that will stay "in step" over a very wide fluctuation of voltage. $\quad \mathbf{2 0 \%}$ plus or minus motor rating).
2. Quick reset (less than 1 seconc at the maximum time setting).

Fig. 1-Type TK Relay with Cover Removed
3. Large silver contacts capable of carrying 12 amperes continuously. They will open 20 amperes 115 volts a-c. or 15 amperes at 230 volts a-c. non inductive or a circuit carrying 3 amperes at 125 volts d-c.
4. The motor is energized only during the timing interval and since the bearing has sealed-in lubrication, no attention is required and wear is negligible.
5. A new design relay consisting of standard well-known design parts.
6. Time settings from approximately 2 secords to 50 minutes.

Construction and Operation

The TK relay consists essentially of (1) a synchronous motor (2) a gear train which provides three different ratios (3) a clutch to permit quick resetting when the relay is de-energized (4) tripping mechanism adjustable for time delay and (5) a contactor which carries the main contacts and operates the clutch.
The motor and gear train are mounted between two plates supported by four posts which are in turn fastened to the relay base.
(1) The motor is the same standard design used in some of our other products (relays, meters, etc). It runs at a speed of 600 rpm . and its coil has a low temperature rise. Sleeve bearings, in which a permanent supply of lubrication is placed, are used. The motor pinion is permanently in mesh with the gear train.
(2) The gear train is mounted be tween the upper portion of the two plates which act as supports for the motor and gear train. The plates are drilled and reamed for the polished gear shafts. These shafts run at low speeds and require no lubrication. The location of a sliding gear assembly on its shaft can be varied to allow it to mesh with different gears or pinions to obtain any one of three speeds. This sliding gear assembly consists of two gears and hub which are free to slide on a shaft but can be locked in any desired position by a set screw. To assist in determining which speed is to be obtained, arrows are placed on the index plate. The sliding gear assembly can be moved to the position where its larger gear is opposite the index plate arrow corresponding to the desired time scale.
The 30 second scale is graduated in sub-divisions to 1 second, and the smallest sub-division on the 5 minute and 50 minute scales is 1 and 1 minute respectively.
(3) The clutch consists of two aluminum discs with serrated faces (resembling crown gears) which are normally separated. The clutch is mounted on the same shaft as the sliding gear assembly. The rear aluminum disc is mounted on this shaft; the front disc has a loose fit on the shaft and has fastened to it the pinion that drives the tripping mechanism. When the relay is energized, the two discs are pressed together by a spring, the serrations on
their faces mesh, and power is transmitted from the motor through the gear train to the tripping mechanism.
(4) The tripping mechanism is fastened to the front plate of the gear train assembly. The armature and clutch spring move in (that is toward the rear of the relay) when energized, but the two moving contacts that the armature carries are prevented from moving by the micarta latch arms. Therefore, the back contact on the left hand side (from the front of the relay) will remain closed until the arms are tripped and the moving fingers released. This same statement also applies to the side of the motor circuit which uses the back contact on the right-hand side of the relay. The tripping is accomplished by a pin on each of the tripping discs pushing down the latch arm levers.

Each of the tripping discs has an index mark on its edge. These marks are located so as to coincide with the zero on the scale plate when the trip pins have reached a point where they will just trip the micarta latch arms and release the contact fingers. Before setting for a predetermined tripping time the gear on the sliding gear
assembly should be shifted to the ratio desired. The tripping discs can be rotated so the index is on the desired scale marking by loosening the thumb nut. If sequential operation of the contact fingers is required the left hand contact must trip first as the motor is in series with the back contacts on the right-hand side. When the latter contact is tripped the motor supply becomes open circuited. The minimum setting obtainable without partially raising the latch arm is approximately one small division on the 30 second scale. When the relay is de-energized the clutch is released at once and therefore the tripping mechanism does not have to operate through the gear train. The tripping discs will reset from the maximum travel position in less than one second.
(5) The contactor is of the clapper type. The spring arm, which presses against the front half of the clutch and pushes it into mesh, is fastened to the top of the armature. The sealing-in contact, when used, is operated by an insulating button attached to the same spring arm. The motor and contactor coil are connected together so that as
soon as the clutch is operated the motor is also energized. The armature carries the two moving contacts. The moving and stationary contacts are made of chemically pure silver which will carry 12 amperes continuously and 20 amperes for 1 minute. The contacts will interrupt a non-inductive a-c. circuit carrying 20 amperes at 115 volts or 15 amperes at 230 volts. On 230 volts or higher voltages (60 cycles) the contactor coil has a tap brought out at the proper place to act as an auto-transformer to supply 115 volts to the motor.

The TK Relay can be provided with a sealing-in contact which closes when the relay is energized. By properly connecting this contact the relay can be energized and kept energized by momentary closure of an external contact or switch, such as a push button. The supply circuit must then be opened through some other contact or switch in order to de-energize the relay.

Burden at 125 Volts, 60 Cycles

Contactor Burden $=18$ Volt-amperes
Motor Burden $=2.6$ Volt-amperes

TK RELAY LIST PRICES

Volts	Frequency	Style No. of Relay Without Sealing Contact	List Price Discount Symbol FC	Style No. of Relay With Scaling Contact	List Price Discount Symbol FC
115	25	1008930	\$40 00	1008933	$\$ 4000$
230	25	1008931	4000	1008934	4000
160	25	1008932	4000	1008935	4000
115	50	1008924	4000	1008927	4000
230	50	1008925	4000	1008928	4000
460	50	1008926	4000	1008929	4000
115	00	938926	4000	1008552	
230	60	1008550	4000	1008553	4000
460	60	1008551	4000	1008554	4000

TYPE TK UNIVERSAL TIMING RELAY-Continued

WIRING DIAGRAMS

Front View
Fig. 2-TK Relay with Sealing Contact

OUTLINE DIMENSIONS IN INCHES
Dimensions are for reference only. For official dimensions refer to nearest Westinghouse Sales Office

No.of Terms	Drill Holes
8 or less	1 to 8
9	1 to 9
10	1 to 10

Note -For $\frac{1}{8}$ or $\frac{3}{16}$ metal swbds. use screws For mtg. relay and for terminal conns. For $\frac{1}{4}$ to I IN swbds. use studs for min. relay and screws for terminal connections For all other swbds. use studs for both purposes.

TYPE TK UNIVERSAL TIMING RELAY-Continued

D-C. TO A-C. INVERTER

Fig. 5-D.C. to A.C. Inverter

Fig. 6-D.C. to A.C. Inverter-Cover Removed

D-C.-A-C. INVERTER

To provide a means of converting $\mathrm{d}-\mathrm{c}$. power to $\mathrm{a}-\mathrm{c}$. for operating $\mathbf{1 0}$ cycle devices of low power consumption the inverter was developed; and as there are a number of installations where it will be desirable to operate a TK relay from a d-c. source, the information on the in verter is included in this section.

Application

It is well-known that very small d-c. motors generally are not as satisfactory or accurate as small a-c. motors. Consequently most motor-driven relays are a-c. operated to obtain the most reliable results.
In many installations it is essential to obtain the operating energy from an unfailing source of power. In these installations a battery is used.
The d-c. to a-c. inverter enables both of these advantages to be employed. It is an intermediate device used to convert battery power into 115 volts 60 cycles so that standard a-c. apparatus within its capacity can have a positive source of power at all times. It, therefore, is sometimes desirable to convert available d-c. to a-c. to operate timing relays such as the Westinghouse TK relay and other small synchronous mo-tor-driven devices.

It will not convert a-c. to d-c.

Distinctive Features

1. Simple and reliable.
2. Provides a reliable sinusoidal wave form.
3. No chemical action or thermonic tubes required.
4. Small burden (does not exceed 20 Watts).
5. Contained in $51 / 2^{\prime \prime}$ square case for back of switchboard mounting.

Construction and Operation

The d-c. to a-c. inverter includes a magnetically operated double contact vibrator that charges a tank circuit through a series reactor. When the contacts make on either side the tank circuit is given impulses which furnishes the power to keep it oscillating

The vibrator mechanism is mounted in a sulphur free sponge rubber sleeve with end pads to absorb the contact noise, so that the operation of the d-c. to a-c. inverter is practically noiseless. The mounting serves as a resilient support as well as for sound absorption.
The vibrator has special silver-alloy contact material which has high conductivity, resists oxidation and will give long wear. There is a magnetic weight with a cross-wire on the end of the moving contact spring. The combined weight of these parts together with the spring strength determines the oscillating period of the vibrator.
The tank circuit is composed of a center tap reactor that has a center-
tapped capacitor connected to it. The oscillatory circuit is designed to maintain a sinusoidal wave form from no load to full load. The reactor is tapped to obtain the proper operating voltage.

The series reactor is the same size as the tank reactor and has the proper characteristics to reduce the instantaneous tank circuit charging current, reduce the contact duty and aid in obtaining the excellent wave form secured for a device of this kind.

There is a condenser and resistor combination used to absorb the voltage of the series reactor when the vibrator contacts open.

A second resistor and condenser is connected to the vibrator coil. This gives frequency stabilization with varying loads. It reduces the a-c. in the vibrator coil, which in turn reduces the amplitude of vibration, and by permitting the d-c. in the coil to be increased it permits low-starting voltage.

There is a resistor connected across the a-c. output terminals which should be disconnected if the device supplied from the inverter requires more than 3 VA . The maximum output of the inverter is 7.5 VA .

The inverter is intended for intermittent use only, which is the type of service ordinarily required of timing relays and apparatus of that nature.

Burden

20 watts on the d-c. side.

TYPE TK UNIVERSAL TIMING RELAY-Continued

D-C. TO A-C. INVERTER-Continued

INVERTER LIST PRICE

125115

Style
No.
1008561

List Price
Discount Symbol PC
$\$ 2500$

WIRING DIAGRAM

FRONT VIEW
Fig. 7-Wiring Diagram for Inverter Style No. 1008561

OUTLINE DIMENSIONS IN INCHES

Fig. 8-Outline Dimensions for Inverter Style No. 1008561

TYPE TK UNIVERSAL TIMING RELAY

STATIONARY CONTACT ASSEMBLY OLD DESIGN

STATIONARY CONTACT ASSEMBLY IMPROVED DESIGN

TYPE TK UNIVERSAL TIMING RELAY

51/2" Square Case

Reley Complete		Volts	Cycles	Ref. No. 5	Ref. No. 22	Ref. No. 23
Without Sealing Contact	with Sealing Contact			Shaft Assembly No. 1	Synchronous Motor	Operating
Style Number	Style Number			Style Number	Style Number	Style Number
$\begin{array}{lll} & 936 & 926 \\ 1 & 008 & 550 \\ 1 & 008 & 551 \end{array}$	$\begin{array}{lll}1 & 008 & 552 \\ 1 & 008 & 553 \\ 1 & 008 & 554\end{array}$	$\begin{aligned} & 115 \\ & 230 \\ & 460 \end{aligned}$	60 60 60	$\begin{array}{lll}1 & 009 & 266 \\ 1 & 009 \\ 1 & 266 \\ 1 & 009 & 266\end{array}$	$\begin{array}{lll}1 & 009 & 265 \\ 1 & 009 \\ 1 & 265 \\ 1 & 009 & 265\end{array}$	$\begin{array}{lll} & 937 & 021 \\ 1 & 008 & 563 \\ 1 & 008 & 564 \end{array}$
$\begin{array}{lll}1 & 008 & 924 \\ 1 & 008 & 925 \\ 1 & 008 & 926\end{array}$	$\begin{array}{lll}1 & 008 & 927 \\ 1 & 008 & 928 \\ 1 & 008 & 929\end{array}$	115 230 460	50 50 50	$\begin{array}{lll}1 & 059 & 221 \\ 1 & 059 \\ 1 & 059 \\ 1 & 221\end{array}$	$\begin{array}{lrl}1 & 059 & 219 \\ 1 & 059 & 219 \\ 1 & 059 & 219\end{array}$	$\begin{array}{lll} 1 & 002 & 324 \\ 1 & 002 & 325 \\ 1 & 002 & 326 \end{array}$
$\begin{array}{lll}1 & 008 & 930 \\ 1 & 008 & 931 \\ 1 & 008 & 932\end{array}$	$\begin{array}{lll}1 & 008 & 933 \\ 1 & 008 & 934 \\ 1 & 008 & 935\end{array}$	115 230 460	25 25 25	$\begin{array}{lll}1 & 059 & 222 \\ 1 & 059 & 222 \\ 1 & 059 & 222\end{array}$	$\begin{array}{lll}1 & 059 & 220 \\ 1 & 059 & 220 \\ 1 & 059 & 220\end{array}$	$\begin{array}{lll} 1 & 002 & 462 \\ 1 & 002 & 463 \\ 1 & 002 & 464 \end{array}$

* Not Illustrated

Order Parts by Style Number and Description
Parts indented are included in the Part under which they are indented

TYPE TK UNIVERSAL TIMING RELAY

51/2" Square Case-Improved Design

Relay Comiplete		Volts	Cycles	Ref. No. 5	Ref. No. 22	Ref. No. 23
Without Sealing Contact	With Sealing Contact			Sheft Assembly No. 1	Synchronous Motor	Operating
Style Number	Style Number			Style Number	Style Number	Style Number
1059953	1059962	115	60	1009266	1009265	937021
1059954	1059963	230	60	1009266	1009265	1008563
1059955	1059964	460	60	1009266	1009265	1008564
1096870	1096817	575	60	1009266	1009265	1008565
1059950	1059959	115	50	1059221	1059219	1002324
1059951	1059960	230	50	1059221	1059219	1002325
1059952	1059961	460	50	1059221	1059219	1002326
1096869	1096872	575	50	1059221	1059219	1003383
1059947	1059956	115	25	1059222	1059220	1002462
1059948	1059957	230	25	1059222	1059220	1002463
1059949	1059958	460	25	1059222	1059220	1002464
¢1 096868	41096871	575	25	1059222	1059220	\$1 002464

\& For 575 Volt, 25 Cycles only, one external resistor S\# 1009014 is required in series with 460 Volt, 25 Cycie Coil St 1002464.

* Not Illustrated

Order Parts by Style Number and Description
Parts indented are included in the Part under which they are indented

TYPE TK UNIVERSAL TIMING RELAY

Standard Rectangular Case-lmproved Design

Relay Complete				Volts	Cycles	Ref. ${ }_{5}$ No.	$\underset{22}{\operatorname{Ref}} \text { No. }$	$\operatorname{Ref}_{23} \text { No. }$
Without Sealing Contacts		With Sealing Contacts						
Projection Mount ing	Flush Mount ing	Projection Mounting	Flush Mount ing			Assembly No. 1	Synchronous Motor	$\begin{aligned} & \text { Operating } \\ & \text { Coll } \end{aligned}$
Style Number	Style Number	Style Number	Style Number			Style Number	Style Number	Style Number
1056 824-A	1056 924-A	1056 833-A	1056 933-A	115	60	1009266	1009265	937021
1056 825-A	$1056925-\mathrm{A}$	$1056834-A$	$1056934-\mathrm{A}$	230	60	1009266	1009265	1008563
$1056826-A$	1056 926-A	$1056835-\mathrm{A}$	1056 935-A	460	60	1009266	1009265	1008564
$1096875-\mathrm{A}$	$1096881-\mathrm{A}$	1096 878-A	$1096884-\mathrm{A}$	575	60	1009266	1009265	1008565
$1056821-\mathrm{A}$	1056 921-A	$1056830-\mathrm{A}$	1056 930-A	115	50	1059221	1059219	1002324
1056 822-A	1056 922-A	1056 831-A	$1056931-A$	230	50	1059221	1059219	1002325
1056 823-A	1056 923-A	1056 832-A	1056 932-A	460	50	1059221	1059219	1002326
1096874 -A	$1096880-\mathrm{A}$	$1096877-\mathrm{A}$	$1096883-\mathrm{A}$	575	50	1059221	1059219	1003383
1056 818-A	1056 918-A	$1056827-\mathrm{A}$	1056 927-A	115	25	1059222	1059220	1002462
1056 819-A	1056 919-A	1056 828-A	1056 928-A	230	25	1059222	1059220	1002463
1056 820-A	1056 920-A	1056 829-A	1056 929-A	460	25	1059222	1059220	1002464
\$1 096 873-A	\| 11096 879-A	$\$ 1096876-\mathrm{A}$	\$1 $096882-A$	575	25	1059222	1059220	\$1 002464

\nleftarrow For 575 Volt, 25 Cycles only, one external resistor S\# 1009014 is required in series with 460 Volt, 25 Cycle Coil S\# 1002464.

Ref No.	DESCRIPTION OF PART		Style Number	$\begin{aligned} & \text { No. } \\ & \text { Req } \end{aligned}$
*	Glass Cover, projection type		1001582	1
*	Glass Cover, flush type		1001581	1
$\stackrel{*}{*}$	Case, flush type		939034 704110	$\frac{1}{2}$
3	Armature Block Complete for relays with sealing contact		11099579	2
3	Armature Block Complete for relays without sealing contact		10967.13	1
4	Armature Spring.		1000998	1
5	Shaft Assembly \#l, meshes with motor.		Per Table	1
	Shaft Assembly \#ta.		1009267	1
8	Shart Assembly \#3 Shaft Assembly \#		1009268	1
9	Shaft Assembly \#5 with clutch		11096695	1
10	Shaft Assembly \#6 with tripping discs, 50 and 60 cycles		1009456	1
10	Shaft Assembly \#6 with tripping discs, 25 cycles.		1059181	1
11	Lead and Contact Arm Complete, left hand		1099580	1
12	Lead and Contact Arm Complete, right hand		1099581	1
13	Sealing Contact, when used		1099582	1
14	Core Complete . .		1096714	1
15	Stationary Contact and Support, make contact		1096860	2
16	Stationary Contact and Spring, break contact		1096710	
17	Stationary Contact and Spring, front break contact, motor circuit		1096709	1
18	Stationary Contact and Spring, rear break contact,motor circuit		1096708	1
19	Spring.		1094807	1
20 21	Bearing Screw for shaft \#5 Steel Ball, $3 / 32^{\prime \prime}$ Dia.		1009272	1
22	Motor . ${ }^{\text {a }}$.		Per Table	1
23	Operating Coil		Per Table	1
	Mounting Details for relays with sealing contacts		839131	
*	Mounting Stud.		837331	2
*	Terminal Stud.		839582	8
*	Mounting Details for relays without sealing contacts		839130	1
	Mounting Stud.		837331	2
	Terminal Stud.		839582	7

* Not Illustrated

Order Parts by Style Number and Description
Parts indented are included in the Part under which they are indented

Westinghouse

TYPE TK TIMING RELAY

INSTRUCTIOMS

APPLICATION

The type $T K$ relay is an a-c. relay suitable for applications which require a definite time-delay between closing an a-c. circuit and closing or opening other a-c. or d-c. circuits, through contacts on the relay. Accurate time-settings from a few seconds to fifty minutes can be obtained in the same relay, with a maximum leset time of less than one second for any setting. Two sets of main contacts-one single-pole double-throw and one single-pole single-throw--are provided, and these contacts can be adjusted to operate either simultaneously or sequentially. A seal-in auxiliary contact can also be provided for applications where it is desired to start a timing operation by the monentary closure of an external switch.

INSTALILATION

Inspect relay for any damage that might have occurred in shipment. When removing the blocking from the contactor armature, make sure that the armature has not shifted off its bearings. Rotate the tripping disc mechanism counter-clockwise and allow to reset to make yure that it returns to zero positively. Remove the cover strip at the top of the gear case. This can be readily done by pulling aside one end of the strip which covers the sides and bottom. This strip is held against the top corner posts by a spring. When the bent-over end is clear of the top strip, the strip can be lifted off, exposing the sliding gear assembly and the gear position index plate. With the large gear on clutch shaft set opposite the 30-second mark on index plate, rotate this gear slowly in order to check for apparent friction in gear train.

The tripoing disc mechanism is at the top of the relay and the synchronous motor at the bottom. The relay should be mounted in an approximately level position, as viewed from both front and side. Any appreciable variation from a level position will affect the operating characteristics of the relay.

Mounting studs and terminal details are contained in a small cloth bag packed with the relay.

CONSTRUCTION AND OPERATION

The type TK relay consists of a synchronous motor, a gear tiain to provide three different ratios, a clutch interposed in the gear train to permit quick resetting when the relay is de-enereized, a^{-}contactor which carries the main contacts and operates the clutch, and a tripping mechanism adjustable for time-delay.

The motor for ariving the gear train is located on the back plate of the gear train assembly in the lower right-hand corner. It runs at a synchronous speed of 600,500 or 250 R.P.M. for 60,50 or 25 cycle relays respectively, its bearing is self-sealed and self-lubricated and does not require special attention. On
relays rated at 230 volts or higher, the contactor coll has a tap brought out at the proper place to act as an auto-transformer to supply 115 volts for the motor.

The gear train is assembled as a separste unit and consists of two brass bearing plates fastened together at the corners by brass posts. The gear shafts run at low speeds and require no lubrication. The three different speeds are obtained by changing the location of a sliding gear assembly. This assembly consists of two gears on a hub that is free to slide on the clutch shaft and can be locked in any desired position with a set screw. The huo is moved to the position where the larger gear is opposite the arrow on the index plate corrosponding to the desired time scale. The mesh of the gear teeth should be inspected and the hub shifted slightly if necessary to secure a full mesh, and ther the set-screw should be tightened securely.

In 50 and 60 cycle TK relays the maximum time settings available for the three gear positions are: 30 seconds, 5 minutes and 50 minutes. The smallest sub-division is 1 second on the 30 second scele, 0.1 minute on the $5 \mathrm{~min}-$ ute scale and 1 minute on the 50 minute scale. In 25 cycle $T K$ relays the three time scales are 1, 10 and 100 minutes and the smallest sub-divisions are twice the time value for the 50 and 60 cycle relays.

The motor may require one or two seconds to reach synchronous speed after the relay is energized and its average speed during this accelerating period will be something less than synchronous speed. The time scales on the dial make no provision for the effect the accelerating period has upon the total operating time, as this is not noticeable on the intermediate or siow speed settings. When the gears are in the high speed position, it will be more accurate to use a scale setting approximately one second less than the desired time setting.

The clutch is two aluminum discs with serrated faces, arranged so that they are positively engaged and disengaged by a spring on the contactor armature when the latter is in its closed und open positions respectively. The rear disc is fastened on 1ts shaft and the front disc is a running fit on the end of the same shaft. The latter disc has fastened to it the pinion which drives the tripping mechanism. When the relay is energized, the clutch ilscs engage and power is transmitted from the motor, through the gear train, to the tripping mechanism. When the relay is de-energized, the clutch discs are separated by the opening of the contactor armature, and the reset spring for the tripping mechanism is required to rotate only the trip discs and the front clutch disc. Because of the low inertia and low friction of these parts, the trip discs will reset from the position of marimum travel in much less than one second. The position of the sliding gear assembly has no ef fect upon the resetting time.

The contactor is of the clapper type. At the top of the armature is fastened a spring arm which presses against the front half of the clutch when the relay is energized, causing the clutch to mesh. The position of the clutchoperating spring can be controlled by an adjusting screw on a bracket fastened to the front of the armature. The seal-in contact is operated by an insulating button on the end of an adjusting screw on the upper end of the same bracket. The motor and contactor coll are connected together so that as soon as the clutch is operated the motor also is energized. The armature carries the two moving contacts, which, as well as the stationary contacts, are silver. The "make" contacts will carry 12 amperes continuously and 20 .amperes for 1 minute. The "break" contact has somewhat less pressure and will carry about two-thirds of this rating. The contacts will intermupt a non-inductive a-c. circuit carrying 20 amperes at 115 volts or 15 amperes at 230 volts.

The trip mechanism is fastened to the front plate of the gear train assembly. Although the armature and clutch-operating spring move in when energized, the two moving contact fingers on the armature are prevented from operating by the two Micarta latch arms. Consequently, the back contact on the left-hand side, and the motor circuit which is the back contact on the right-hand side, will remain closed until the Micarta arms are tripped up and the moving fingers released. This is accomplished by the heads of the trip screws on the two discs, which push down the latch arm levers. Repeated tests have shown that the relay will make more than one million operations before the striking and rubbing action of the contact fingers on the ends of the latch arms wears them sufficiently to require replacement

Each disc has a small bronze index pin projecting approximately $1 / 32^{\prime \prime}$ from its edge. The relay is adjusted so that these pins are opposite the zero on the scale plate when the trip screws in the discs have reached a point where they will just trip the Micarta latch arms and release the contact fingers. To set for a predetermined trip time, first shift gears to the scale wanted. Then loosen the thumb nut locking the trip discs and rotate them so each index is on the desired scale marking, and tighten the thumb nut. The disc nearest the scale plate will trip the left finger only; the disc that is nearest the front will trip both contact fingers. To set the contact fingers for sequential operation the left finger must trip first, as the motor is in series with the back contacts on the right-hand side. When this finger is tripped, it opens the motor circuit.

In making these settings the trip disc should not be rotated so that the trip pins are holding the Micarta arms part way up. Under this condition it is possible for the moving contacts to bounce under these arms and close the front contacts instantaneously when the relay is energized. The minimum settings obtainable without partially raising the latch arm are approximately $1-1 / 2$ division on the 30 second scale, and corresponding points on the other scales.

In some applications it may be desired to have the left-hand contact operate instantaneously, as soon as the relay is energized, and have the time-delay on the right-hand contact only. This can be done by setting the disc nearest the scale plate so that the left-hand
latch arm is raised above the end of the contact finger when the trip discs are reset. If any time-delay is desired, however, the minimum setting obtainable without the possibility of erratic operation is the point at which the trip disc begins to raise the latch arm.

Some styles of the TK relay are provided with a seal-in contact, which closes the moment the relay is energized. When connected according to the wiring diagram, this contact energizes the relay, and keeps it energized, when an external contact or switch (such as a push button) is momentarily closed. The relay can be de-energized then only by interrupting the supply circuit by means of some other contact or switch.

ADJUSTMENTS AND MAINTENANCE

The adjustments described in the following paragraphs ordinarily need be made only when reassembling the relay after it has been dismantled for repairs. However, it will be advisable to check the adjustment at the regular maintenance periods and correct them, if necessary.

The die-cast bracket which supports the latch arm assembly is secured to the front gear plate by means of screws passing through slotted holes. To adjust the position of this bracket, loosen both the mounting screws and the screw which holds the stop bracket for the right hand latch arm. Move the sliding gear assembly out of mesh, so that the trip discs will not rotate, and energize the relay. The latch arms should be down so that the contact fingers are held out. Shift the die-cast bracket so that with the latch arms touching the aluminum trip discs (not the trip screws), the projection of the end of the latch arm above the top of its adjacent contact finger will be $.075^{\prime \prime}$ for the left-hand finger and .070" for the right-hand finger. The dimensions given apply to relays in which the trip discs are 1-1/8 in diameter Earlier relays used discs with a diameter of 1-3/16", and on these the dimension should be .110" for the left-hand finger and .120" for the right-hand finger. A small strip of metal with the ends filed to these dimensions will be convenient to use as a gauge. It can be rested on the ends of the contact fingers and the bracket shifted until the upper front corners of the fingers are even with the ends of the gauge. The mounting screws for the bracket should then be tightened securely. The screw for the righthand latch arm stop bracket should also be tightened, and the end of the bracket should be bent up or down until the latch arms just clear the small bronze index pins projecting from the trip discs.

Raise the right-hand latch with the fingers and move the armature in by hand until the tips of the contact fingers are opposite the lowest portions of the latch arms. When the left-hand latch arm is just touching its contact finger, there should be a gap of about . $010^{\prime \prime}$ to $.015^{\prime \prime}$ between the right-hand arm and its contact finger. (This relation between the latches and the contact fingers prevents any possibility of the left-hand finger tripping first when the trip discs are set for simultaneous tripping.)

Loosen the thumb nut locking the two trip discs and energize the relay with the gears still out of mesh. Hold the final gear firmly against its back stop, and rotate each trip disc by hand until it depresses its latch arm far

Figure 1
Internal wirine diagram of the Type TK relay with Seal-in cont acts. (Outilne \& ariling see Fig. 5)

Front View
Figure 4
Internal wiring diagram of the Type TK relay without Seal-in cont acts. (Outline \& drilling see Fig. 6 \& 7)
enough to just trip the contact finger. The bronze pin projecting from each trip disc serves as its zero index, and should be opposite the zero on the dial when the contact finger trips. The trip screws are prevented from turning by a locking wire spring which passes through a slot in the inner end of the trip screw and is accessible from the rear of the trip disc. It should be moved out of the slot and the trip screw should be screwed in or out until the index pin is opposite the zero on the dial when the contact finger is released. Then the locking spring should be placed in the slot of its trip screw to prevent any accidental change in adjustment. The trip discs should release the contact fingers when the trip screws are onescale division or more from the center or lowest position.

When the armature is held closed, the clutch teeth should have a full mesh and there should be approximately $1 / 32^{\prime \prime}$ follow on the clutch spring. Any necessary adjustment should be made by means of the lower screw in the bracket at the front of the armature, and the lock nut should be securely tightened. One quarter turn of the adjusting screw, after the clutch is closed and with the operating spring just touching the clutch pinion without deflection, will give about $1 / 32^{\prime \prime}$ follow on the spring. When the armature is released, the clutch teeth should have sufficient separation to prevent any interference with resetting of the trip discs. Too much follow on the clutch spring will prevent the clutch from being held open positively when the relay is de-energized.

The stationary contacts should be adjusted by bending so that both moving contacts make simultaneously when they move in with the armature. with about $1 / 16^{\prime \prime}$ follow. With the relay de-energized, adjust the position of the left hand back contact spring, by means of the adjusting screw, so that there will be a gap of $1 / 64^{\prime \prime}$ or slightly more, between the ends of the latch arms and the contact fingers. Tighten the lock nut securely. The gaps between the contact fingers and the ends of the latch arms should be approximately equal. If the gaps are unequal, the contact fingers probably have been bent. When the relay is de-energized and the front clutch member is at the limit of its outward travel, there should be a slight clearance between the clutch spring and the washer at the front of the clutch pinion. There should also be clearance between the clutch spring and the dial plate.

The motor circuit contact should have $1 / 16^{\prime \prime}$ to $3 / 32^{\prime \prime}$ follow when the right-hand contact finger is against the latch arm. When the motor circuit is open, there should be no gap between the rear contact spring (in which the flat contact is assembled) and its stop plate.

On relays provided with a seal-in contact, adjust the upper screw in the bracket at the front of the armature so that there will be $1 / 32^{\prime \prime}$ to $3 / 64^{\prime \prime}$ follow on the seal-in contact after it has closed. Tighten the lock nut securely. When the relay is de-energized, the seal-1n contact should have $1 / 32^{\prime \prime}$ to $3 / 64^{\prime \prime} \mathrm{gap}$.

The motor bearing is of the selfsealed, self-lubricated type and requires no special attention. Due to the close tolerances held in manufacture, no attempt should be made to repair the motor in case of damage. It should be returned to the factory for repair or a complete new motor ordered as a replacement.

If the relay operates very frequently, a small drop of special oil should be applied to the clutch pinion bearing at intervals of six months to one year. This oil is obtainable in small bottles undor style \#llol752. It will not congeal at low temperatures, and it contains an anti-oxident to retard the formation of gum at high temperatures. It can be applied by dipping a small wire into the oil and touching this to the clutch shaft between the two clutch discs. A very small amount of oil is sufficient. A drop of oil may be applied to the teeth of the clutch pinion at the same time.

The silver contacts are large enougn to permit dressing with a fine file if they should become tarnished or pitted due to breaking heavy currents. Contact file S\#l002110 is recommended for this purpose. Any other part that may be damaged can be replaced by advising the factory of the style number of the relay and giving a description of the part. However, if very extensive repairs are required, it is most satisfactory to return the complete relay to the factory unless the customer is well equipped for repair work of this nature and carries a stock of renewal parts on hand.

The burden of the TK relay at rated voltage, 60 cycles, 1 s approximately 18 voltamperes for the contactor and 2.6 volt-amperes for the motor.

Pigure 5
Outilne and drilling plan for the metal case with
a glass front. (Figures 1 and 2)

TYPE TK TIMING RELAY

Omit Term. No. 7 for Fig. 4.

Figure 6
Outline and drilling plan for the \&lass cover case projection type mounting (Figures 3 and 4)

Figure 7
Outline and drilling plan for the glass cover case clush type nounting (Figures 3 and 4)

TYPE Dn CONTACTORS

Size 3, Frame No. 330 (3 Pole)-Size 4, Frame No. 430 (3 Pole)

Frame Size		330-P		430-P		No. Per Contactor	Contactors in Use	
Arnpere Rating			100		150			
Style Number of Contactor			039891		039892		1	5
Ref. No.	Desacription of Part	Style Number of Part					Recommended for Stock	
1	Armature Iron with Mounting Bracket.		884580		884581	1	0	0
2	Non-Magnetic Shim		884574		884574	1	0	1
3	Cross Bar with Moving Contact Bracket.		039878	1	039778	1	0	0
4 5	Cross Bar.		039860		0.39860	1	0	1
5	Moving Contact Bracket		884594		884594	3	0	0
6 7	Moving Contact with Shunt. Moving Contact		884567		884568	3	0	1
8	Moving Contact		884595 884613		884595	3	2	4
9	Contact Spring		884590		884591	3	0	1
10	Bearing Bracket-Magnet End.		884575		884.575	1	0	0
11	Bearing Bracket-Left Hand End.		884576		884576	1	0	0
12	Statiorary Contact Base Complete		039877		039377	1	0	0
13	Stationary Contact.		884596		884396	3	2	4
14	Stationary Contact Screw.		186529		186529	3	2	4
15	Stationary Contact Connector		884597		884.597	3	0	0
16	Stationary Contact Spacer.		884598		884598	3	0	0
17	Blowout Coil.		884583		884.583	3	0	1
18	Arc Bese....		039859		039859	1	0	0
19	Arc Quencher.........		884589		884589	3	1	2
\dagger	Statiorary Contact Stud		178553		178553	3	0	1
\dagger	Shunt Stud.........		361718		361718	3	0	1
20	Stationary Core.		884560		884562	1	0	0
21	Shading Coi		884558		884559	2	0	1
22	Stop..		041907		041907	1	0	0
24	Coine Retaining Washer		039874		039874	1	0	0
25	Oreratune Coil........		$\stackrel{81}{ }+$		882191	2	0	0

[^1]\ddagger When ordering. specify identification number shown on Coil See Table for Style Number of commonly used Coils.
Parts indented are included in the part under which they are indented.
This list of Renewal Parts is given only as a guide. When continuous operation is a primary consideration, additional insurance against shutdowns is desirable. Under such conditions more renewal parts should be carried, the amount depending upon the severity of the service and the time required to secure renewals.

ORDERING INSTRUCTIONS

Name the part and give its style number. Give the complete nameplate reading. State wheather shipment is desired by express, freight or parcel post. Send all orders or correspondence to nearest Sales Office of the Company. Small orders should be combined so as to amount to a value of at least $\$ 1.00$ net. Where the total of the sale is less than this, the material will be invoiced at $\$ 1.00$.

Westinghouse Electric \& Manufacturing Company

TYPE Dn CONTACTORS

Size 3, Frame No. 330 (3 Pole)—Size 4, Frame No. 430 (3 Pole)

Instructions

Description-Type Dn Contactors are alternating current contactors which can be supplied either with or without De-ion arc quenchers. The contactors are designed for mounting on steel plate or insulating panels up to 2 inches thick.

When a contactor is mounted on a steel plate, insulation of the shunts is provided by an insulating plate interposed between the contactor and steel plate.

Ratings-The 8 hour open ratings are 100 amperes for the Size 3 Dn Contactor and 150 amperes for the Size 4 Dn Contactor. Insulation is for a maximum of 600 volts.

Unit Assembly-Type Dn Contactors are of unit assembly, with the crossbar pivoted in bearings integral with the frame, which supports the magnet and stationary contacts. This insures accurate and permanent alignment of parts before leaving the factory.

Interchangeability of parts among Sizes 3 Dn and 4 Dn Contactors is an advantageous feature enabling the user to carry a smaller stock of renewal parts.

Mounting of the contactor to a vertical panel is accomplished by means of three bolts inserted from the front of the frame. These may be held by nuts at the back of the panel or may be threaded into tapped spacers previously secured to the panel. The latter arrangement permits of removing the contactor from the panel for servicing or other attention without necessitating the operator's going to the rear of the panel.

Magnet-The magnet consists of an E-shaped stator and a T-shaped armature. In addition to other advantages, the T-shaped armature is of sufficiently low inertia to accelerate rapidly on opening, affording a quick break of the contacts and consequently less arcing. Movement of the armature is almost vertical, rendering less likely the chance of accidental closing due to shock or impact.

Operating Coil-The coil is designed for continuous duty at 100% of its rating. It will operate the contactor satisfactorily at from 85% to 110% of its rated voltage.

table of operating coils

Volts	Cycles	$\begin{aligned} & \text { DN } 330-\mathrm{P} \\ & \hline \text { Style No. } \end{aligned}$	DN 430-P
			Style No.
110	60	897905	1014611
208	60	944740	1040139
220	60	874111	1040140
440	60	919996	966752
550	60	943156	966746
110	50	966738	1040141
220	50	966739	1040142
440	50	966740	1040143
550	50	966741	1040144
110	25	874111	1040140
220	25	919996	966752
440	25	966742	1040145
550	25	895655	1040159

Contacts-The contact tips are of heavy copper, designed for easy removal and replacement. Movement of the tips on opening and closing produces a slight wiping action which insures a
clean contact surface but which is not sufficient to produce undue wear. A "hammer blow" dealt the contacts at the moment of opening increases the speed of separation, thereby decreasing the arcing.
Following the moment at which the contacts meet, the armature and crossbar have an unusually long overtravel before the magnet seals. This insures that ample contact pressures exist, even when the contacts are worn so far as to require replacement.

The contact springs are unusually long, insuring almost constant pressure as the contacts wear.

The current-carrying contact shunts of flexible copper cable give complete freedom to the cross-bar and have ample capacity to carry the maximum current for which the contactors are rated. The shunts are suspended about the center of rotation of the crossbar, minimizing their flexure and increasing their life to such an extent that their renewal is practically never required.
De-ion Arc Quenchers-The De-ion arc quenchers are of exclusive design functioning to confine, divide and extinguish the arc almost instantaneously, greatly prolonging the contact life. Confinement of the arc is a feature which admits of close spacing of the contactor poles, while at the same time the superior performance of the De -ion principle enables the contactor to maintain a high interrupting capacity
The arc quenchers are easily removed for inspection of the contacts.

Connections-The contactors may be connected from the front or from the back. See the Renewal Parts List for studs for back-connecting.
Provision for Interlock-Provision is made in two places, on the cross-bar of the contactor for mounting moving contact assemblies of Type L-41 Electrical Interlocks. The stationary members of the interlocks are to be secured to the panel on which the contactor is mounted. For more complete information concerning the Type L-41 Electrical Interlock refer to Instruction Leaflet 2406.

Maintenance

The contactor should be inspected frequently to see that no impairment of electrical or mechanical functioning occurs in service. Accumulations of dust may be femoved with a dry cloth or a compressed air jet. Except only when cleaning the magnet sealing surfaces avoid oily cloths, as an oil film quickly attracts dust.
Bearings-Bearing pins, are of wearresistant nitrided alloy steel. They should not be lubricated as oil collects dust, hindering free operation of the contactor.
Magnet-Before shipment, the magnet sealing surfaces are covered with grease to prevent rusting. This should be removed before the contactor is placed in service. The surfaces should be cleaned occasionally with a cloth moistened with a light oil to remove deposits of dirt and prevent rusting.

The magnet armature and the bracket supporting it may be easily removed as a unit by removing the two screws securing the bracket to the cross-bar.

Contacts-The contact tips should not be lubricated, as the slight wear of dry contacts produces a self-cleaning action. Should excessive roughening or burning occur the tips may be dressed with a fine file. Do not use emery cloth, as abrasive granules left imbedded in the contact surfaces may raise the contact resistance and produce a tendency of the contacts to weld.
Chiefly for reasons of mechanical strength it is advisable to replace the contact tips before they have become worn to one-third their original thick. ness.

Correct contact pressures should be maintained as follows:

Contactor Size No.	Initial Pressure	Final Pressure
3	2.8 pounds	6 pounds
4	4 pounds	9 pounds

The contact gap, measured at the heels of the contacts in their fully-open position, is $5 / 8$ inch for both the Size 3 Dn and Size 4 Dn contactors.

Operating Coil-To remove the coil, first remove the armature by taking out the two bolts securing its supporting bracket to the cross-bar. Then loosen the bolt which holds the coil to the magnet and separate the rectangular washers until it is possible to lower the coil entirely free of the magnet.
De-ion Arc Quenchers-To remove a De-ion arc quencher, grasp it at its lower end and swing it upward (it will pivot about point P, see Fig. 2), striking its lower corner upward with the palm of the hand to overcome any initial resistance to movement. The arc quencher is then free to be lifted entirely clear of the contactor.

To restore the De-ion arc quencher to its location on the contactor, slide it into the position indicated in Fig. 2, and by striking the upper corner in a direction indicated by the arrow force the arc quencher into the final location shown by the dotted lines.

Pig. 2-Detail of Arc Duencher and its Supmrting Bracket, Showing Ease of Removal and Replacement.

TYPE Dn CONTACTOR—SIZE 2, Frame Numbers 220, 230, 230-P, 240

Frame Size.....		220	230	230.P	240	No. Per Con-tactor	Contactors in Use	
Style	Number of Contactor $\begin{aligned} & \text { With Arc Quencher }{ }^{\text {Without Arc Quencher }} \text { W }\end{aligned}$	$\begin{array}{ll} 972863 \\ 972864 \end{array}$	$\begin{aligned} & 972865 \\ & 972867 \end{aligned}$	$\left\lvert\, \begin{array}{ccc} 1 & 039 & 961 \\ & \ldots & \ldots \end{array}\right.$	$\begin{aligned} & 972869 \\ & 972870 \end{aligned}$		1	5
Ref. No.	Description of Part		Style Num	ber of Part				
	Armature Iron With Mounting Bracket...	972858	972858			1		0
2	Non-Magnetic Shım .	972734	972734	$\begin{array}{r}972 \\ \hline\end{array}$	972734	1	0	1
3	Cross Bar With Moving Contact Bracket			1039958 1039	972856	1	0	0
4	Cross Bar............	972747 972 978 18	972748 972 738 18	1039862 972738 972	972749 972 978 (4)	1	0	1
5	Moving Contact Bracket	$972738(2)$	$972738(3)$	972738 (3) 972 (3)	972 972 738 788 (4)	,	0	0
7	Moving Cortact Moving Contact.	$972778(2)$ $972739(2)$	$972778(3)$ 972739 (3)	972 972 739	972 972 9789 (4) 972	()	0	1
8	Shunt......	972773 (2)	972773 (3)	972773 (3)	972773 (4)	()	2	4
9	Contact Spring	972774 (2)	972774 (3)	972774 (3)	972774 (4)	()	2	1
10	Bearing Bracket-Magnet End.	972735	972735	972735	972735	1	0	0
11	Bearing Bracket-Left Hand End.	972736	972736	+972736	972736	1	0	0
12°	Stationary Contact Base Complete	972860	972861	1039957	972862	1	0	0
12x	Stationary Contact Base Complete.	972775	972776		972777	1	0	0
13		972740 (2)	972740 (3)	972 40 (3)	972740 (4)	()	0	4
14	Stationary Con. Screw, 190"-32 x $3 / \mathrm{s}^{\prime \prime}$ Fil. Hd. I. M. Sc.	Std. Hdw, (2)	Std. Hdw. (3)	Std. Hdw. (3)	Std. Hdw, (4)	()	2	4
15	Stationary Contact Connector.	972743 (2)	972743 (3)	1039956 (3)	972743 (4)	($)$	2	0
15	Connection Lug-Solderless	974131 (2)	974131 (3)	974131 (4)	()	9	1
\pm	Stationary Contact Spacer.	972742 (2)	972742 (3)		972742 (4)	()	0	0
17°	Arc Quencher Support.	972766 (2)	972766 (3)	, 972765 (3)	972766 (4)	()	0	0
18	Base......	972746	972744	1039851	972745	1	0	0
19	Arc Quenche	972771 (2)	972771 (3)	972771 (3)	972771 (4)	()	0	2
\dagger	Shunt Stud...	559187 (2)	559187 (3)	559187 (3)	559187 (4)	()	1	0
20	Stationary Core.	972658	972658	972658	972660	1	0	0
21	Shading Coil.	972654	972654	+972654	972657	2	0	1
22	Stop...	972687	972687 997	1041906	972687		0	0
23	Frame. . ${ }^{\text {F }}$, ${ }^{\text {a }}$	972683	997939	1039920 	972685	1	0	0
24	Coil Retaining Washer.	972754	972754	972754	972754	2	0	0
25	Operatang Coal	+	+	+	\ddagger	1	0	0

\uparrow Not illustrated. © Used Only on Contactor With Arc Quencher. \quad Used Only on Contactor Without Arc Quencher Figures in Parentheses indicate the number per Contactor. \ddagger When ordering, specify identification number stamped on coil. See table for style number of commonly used coils. Parts indented are included in the part under which they are indented.

This list of Renewal Parts is given only as a guide. When continuous operation is a primary consideration, additional insurance against shutdowns is desirable. Under such conditions more renewal parts should be carried, the amount depending upon the severity of the service and the time required to secure renewals.

ORDERING INSTRUCTIONS

Name the part and give itg style number. Give the complete nameplate reading. State whether shipment is desired by express, freight or parcel post. Send all orders or correspondence to nearest Sales Office of the Company. Small orders should be combined so as to amount to a value of at least $\$ 1.00$ net. Where the total of the sale is less than this, the material will be invoiced at $\$ 1.00$.

TYPE Dn CONTACTORS

Size 2-Frame Nos. 220 (2 poles), 230 and 230-P (3 poles), 240 (4 poles)

Instructions

Description - Type Dn Contactors are alternating current contactors which can be supplied either with or without De-ion arc quenchers. The contactors are designed for mounting on steel plate or insulating panels up to 2 inches thick.
When a contactor is mounted on a steel plate, insulation of the shunts is provided by an insulating plate interposed between the contactor and steel plate.
Ratings - The 8 hour open rating of the size 2 Dn contactors is 50 amperes. Insulation is for a maximum of 600 volts.
Unit Assembly-Type Dn Contactors are of unit assembly, with the crossbar pivoted in bearings integral with the frame which supports the magnet and stationary contacts. This insures accurate and permanent alignment of parts before leaving the factory.
Mounting of the contactor to a vertical panel is accomplished by means of three bolts inserted from the front of the frame. These may be held by nuts at the back of the panel or may be threaded into tapped spacers previously secured to the panel. The latter arrangement permits of removing the contactor from the panel for servicing or other attention without necessitating the operator's going to the rear of the panel.
Magnet-The magnet consists of an E-shaped stator and a T-shaped armature. In addition to other advantages, the T-shaped armature is of sufficiently low inertia to accelerate rapidly on opening, affording a quick break of the contacts and consequently less arcing. Movement of the armature is almost vertical, rendering less likely the chance of accidental closing due to shock or impact.
Operating Coil-The coil is designed for continuous duty at 100% of its rating. It will operate the contactor satisfactorily at from 85% to 110% of its rated voltage.
table of operating coils

Volts	Cyclos	$\begin{aligned} & \mathrm{Dn}-220 \\ & \mathrm{Dn} 230 \\ & \mathrm{Dn}-230-\mathrm{P} \end{aligned}$	Da-240
		Style No.	Styls No.
110	60	97413.3	1014618
220	60	97413.5	1014620
440	60	974136	1014621
350	60	974138	1014623
110	50	974140	1014625
220	50	974141	1014626
440	50	974142	1014621
350	50	97414.3	$101+628$
110	25	974135	1014620
220	25	914136	1014621
440	25	974144	1014624
550	25	914145	1014630

Contacte-The contact tips are of heavy copper, designed for casy removal and replacement. Movement of the tips on opening and cloning produces a slight wiping action which insures a clean contact surface but which is not sufficient to produce undue wear. A
"hammer blow" dealt the contacts at the moment of opening increases the speed of separation, thereby decreasing the arcing.

Following the movement at which the contacts meet, the armature and crossbar have an unusually long overtravel before the magnet seals. This insures that ample contact pressures exist, even when the contacts are worn so far as to require replacement.

The contact springs are unusually long, insuring almost constant pressures as the contacts wear.

The current-carrying contact shunts of flexible copper cable give complete freedom to the cross-bar and have ample capacity to carry the maximum current for which the contactors are rated. The shunts are suspended about the center of rotation of the crossbar, minimizing their flexure and increasing their life to such an extent that their renewal is practically never required.

De-ion Arc Quenchers-The De-ion arc quenchers are of exclusive design functioning to confine, divide and extinguish the arc almost instantaneously, greatly prolonging the contact life. Confinement of the arc is a feature which admits of close spacing of the contactor poles, while at the same time the superior performance of the De-ion principle enables the contactor to maintain a high interrupting capacity.

The arc quenchers are easily removed for inspection of the contacts.

Connections-The contactors may be connected from the frant or from the back. See the Renewal Parts List for studs for back-connecting.

Provision for Interlock-Provision is made in two places, on the cross-bar of the contactor for mounting moving contact assemblies of Type L-41 Electrical Interlocks. The stationary members of the interlocks are to be secured to the panel on which the contactor is mounted. For more complete information concerning the Type L-41 Electrical Interlock refer to Instruction Leaflet 2406.

Maintenance

The contactor should be inspected frequently to see that no impairment of electrical or mechanical functioning occurs in service. Accumulations of dust may be removed with a dry cloth or a compressed air jet. Except only when cleaning the magnet sealing surfaces avoid oily cloths, as an oil film quickly attracts dust.

Bearings-Bearing pins are of wearresistant nitrided alloy steel. They should not be lubricated as oil collects dust, hindering fres operation of the contactor.

Magnet-Before shipment, the magnet sealing surfaces are covered with grease to prevent rusting. This should be removed before the contactor is placed in service. The surfaces should be cleaned occasionally with a cloth
moistened with a light oil to remove deposits of dirt and prevent rusting.

The magnet armature and the bracket supporting it may be easily removed as a unit by removing the two screws securing the bracket to the cross-bar.

Contacts - The contact tips should not be lubricated, as the slight wear of dry contacts produces a self-cleaning action. Should excessive roughening or burning occur the tips may be dressed with a fine file. Do not use emery cloth, as abrasive granules left imbedded in the contact surfaces may raise the contact resistance and produce a tendensy of the contacts to weld.

Chiefly for reasons of meehanical strength it is advisable to replace the contact tips before they have become worn to one-third their original thickness.

Correct contact pressures should be maintained as follows:

Initial pressure-1 lb. 2 oz.
Final pressure-2 lb. 14 oz .
The contact gap, measured at the heels of the contacts in their fully-open position, is $\frac{7}{18}$ inch.

Operating Coil-To remove the coil, first remove the armature by taking out the two bolts securing its supporting bracket to the cross-bar. Then loosen the bolt which holds the coil to the magnet and separate the rectangular washers until it is possible to lower the coil entirely free of the magnet.

De-ion Arc Quenchers - To remove a De-ion arc quencher, grasp it at its lower end and swing it upward (it will pivot aboltt point P, see Fig. 1), striking its lower corner upward with the palm of the hand to overcome any initial resistance to movement. The arc quencher is then free to be lifted entirely clear of the contactor.

To restore the De -ion arc quencher to its location on the contactor, slide it into the position indicated by the dashed rules in Fig. 1, and by striking the upper corner in a direction indicated by the arrow force the arc quencher into its final location

Fic, $1 \rightarrow$ Ditail of ARC QUENchIR AND IT MOVAL AND REPLACEMENT.

TYPE L-41 ELECTRICAL INTERLOCK

INSTRUCTIONS

APPLICATION

The Type L-41 electrical interlock is an auxiliary contacting device to be mounted on Sizes 2, 3 and 4 Dn contactors.

Rating

The interlock will carry of amperes continuously in control circuits up to 600 volts A-C.

DESCRIPTION

Sizes

The Type L-41 electrical interlock is produced in two sizes: Size 2 for Size 2 Dn contactors, and Size 3 for Sizes 3 and 4 Dn contactors. The only difference between the two exists in the insulating base, which is slightly smaller in the Size 2 interlock.

"Make" and "Break"

The interlock is shipped for "make" or "break" service, as ordered. Any Type L-41 "make" interlock may readily be converted to a "break" interlock by substituting stationary break contacts 11 (Fig. 1) for the make contacts 10; and rotating the moving contact assembly 3 one-half turn about the mounting screw 21, loosening and retightening screw 21 to accomplish this. A "break" interlock may be converted to a "make" interlock in an inverse manner.

Contact Tips

Both the moving and stationary contacts of the Type L-41 interlock are equipped with silver buttons securely welded in place.

INSTALLATION

Location

The Type L-41 electrical interlock may be mounted on a 2,3 or 4 pole contactor in any or all of three locations, depending upon the limitations of space imposed by the presence of other equipment.

On a LINESTARTER one of these interlock locations is occupied by the overload relay, leaving but two locations available. These two locations ere indicated by B and C in Fig. 1. Location C (mounting holes shown dotted in Fig. 1) is generally available in addition to \mathbf{B} and C on panel mounting applications.
On a reversing LINESTARTER, the upper contactor affords only locations

Fig. 1-Size 2 Type L-41 Interlocks Applied to a Size 2, 3 Pole linestarter (Overload Relay Removed, Leaving Contactor Shunts Unattached)
A and B, location C being obstructed by the mechanical interlock. The lower contactor, being accompanied by the overload relay, has available for the interlock only positions B and C.

Since interlocks are more accessible in locations A and B, these locations are to be preferred to location C.

Mounting

In locations A and B, the moving contact assembly 3 of the interlock is held to a projecting surface of the insulation cross-bar of the contactor by the mounting screw 21 (a $1 / 4-20$ fillister head iron machine screw $8 / 8$ of an inch long). In position C, an adaptor 15 is required, by means of which the moving contact assembly 3 is secured to the armature bracket 23 of the contactor. The adaptor used with the Size 2 interlock differs from that used with the Size 3 interlock. When ordering, see Renewal Parts List.

The interlock base is secured directly to the contactor panel or mounting plate, employing studs fo- insulation panel mounting or machine screws in. serted from the rear for LINESTARTER on steel plate mounting. The threaded holes provided in the interlock base to receive the mounting screws or studs are completely insulated from current-
carrying parts. Mounting hardware is included in the interlock styles in the Renewal Parts List.

Contact Pressure

The contacts should have long life without much attention. They should be replaced, however, before the contact buttons have become reduced to one-third their original thickness.
The normal overtravel of the contact support after the contacts touch is approximately ${ }^{\frac{3}{2}}$ of an inch.

Extra Terminals

For the convenience of the user, the interlock base is provided with holes to receive extra terminals (22, Fig. 1), insulated from current-carrying parts and from ground. These will be found especially useful when it is desired to operate the contactor coil from a separate control circuit, or when unusual master switch connections are to be made.

The Size 2 interlock contains one hole, and the Size 3 interlock contains two holes. The terminals are included in the styles for LINESTARTER or steel plate mounting: See Renewal Parts List.

TYPE L-41 ELECTRIC INTERLOCK

RENEWAL PARTS DATA

Fig. 2-Renewal Parts for Type L-41 Electrical Interlock

RECOMMENDED STOCK OF RENEWAL PARTS

Type of Mounting		LINESTARTER or Steel Plate		Insulation Panel		No. Per Interlock	$\begin{aligned} & \text { Interlocks } \\ & \text { in } \\ & \text { Use } \end{aligned}$	
Contact Arrangement		Make	Break	Make	Break			
Size No. 3 Interlock Style No.		Ref. No. 1	Ref. No. 2	Ref. No. 1	Ref. No. 2			
		897835 $\triangle 897839$ $\triangle 972915$	897836 $\triangle 897840$ $\triangle 972916$	897837 $\triangle 897841$ 972913	$\begin{array}{r} 897838 \\ \triangle 897842 \\ 972914 \end{array}$		1	5
Style No. 2 Interlock Style No.		974326	974327	974328	974329		Recommended for Stock	
		$\triangle 974330$	$\triangle 974331$	$\triangle 974332$	$\triangle 974323$			
		$\triangle 974337$	$\triangle 974338$	974335	-974336			
Ref.	Description of Part	Style Number of Part						
3	Moving Contact Complete	897832	897832	897832	897832	1	0	0
4	Moving Contact.	884643	884643	884643	884643	1	1	2
5	Moving Contact Support	884648	884648	884648	884648	1	0	0
6	Moving Contact Spring.	972843	972843	972843	972843	1	0	1
7	${ }^{\text {- }}$ - ${ }^{\text {ationary Contact Complet }}$	897833	897834	897833	897834	1	0	0
8	${ }^{\circ}$ Stationary Contact Base	884647	884647	884647	884647	1	0	0
9	- Washer Head Screw.	540190	540190	540190	540190	2	0	0
10	- Stationary Contact.	884644		884644		2	2	4
11	- Stationary Contact.		884645		884645	2	2	4
7	xStationary Contact Complet	974324	974325	974324	974325	1	0	0
8	xStationary Contact Base.	974009	974009	974009	974009	1	0	0
9	xWasher Head Screw...	540190	540190	540190	540190	2	0	0
10	zStationary Contact.	884644		884644		2	2	4
11	IStationary Contact		884645		884645	2	2	4
12	Stud.			361705	361705	2	0	2
13	Mounting Screw	970317	970317			2	0	2
14	- Adaptor.	884640	884640	884640	884640	1	0	0
15	zadaptor	974129	974129	974129	974129	1	0	0
\pm	o Terminal.	974 974 974	974 974 974			2	0	0
\pm	x Terminal.	974334	974334		\cdots	1	0	0

[^2]Δ Adaptor included in these Interlock Styles.
Parts indented are included in the part under which they are indented.

This is a list of the Renewal Parts and the quantities of each that we recommend should be stocked by the user of this apparatus to minimize interrupted operation caused by breakdowns. The parts recommended are those most subject to wear in normal operation or those subject to damage or breakage due to possible abnormal conditions.
This list of Renewal Parts is given only as a guide. The parts illustrated may not be identical in construction with the parts needed. but the views in Fig. 2 will assist ordering.

ORDERING INSTRUCTIONS

Name the part and give the complete name plate reading. State whether shipment is desired by express, freight or by parcel post Send all orders or correspondence to nearest Sales Office of the Company. Small orders should be combined so as to amount to a value of at least $\$ 1.00$ net; where the total of the sale is less than this. the material will be invoiced at $\$ 1.00$.

ROTARY SWITCHES-TYPE W

Instrument, Control and Auxiliary Types
GENERAL

Abstract

Application The Westinghouse type W switches are of the rotary type. They are made in three classifications: namely, instrument, control and auxiliary switches for various applications. These switches are notable for their ruggedness, accessibility and smooth, reliable operation. They are recommended for use with all types of circuit breakers and other classes of apparatus which are electrically controlled. They are insulated for 600 volts and have a continuous current carrying capacity of 10 amperes which is very conservative as indicated by the curve below.

Recommended Interrupting Ratings

Alternating Current

125 Yolts- 10.0 Amperes 250 Volts- 7.5 Amperes 600 Volts- 1.5 Amperes

Direct Current

125 Volts-4.0 Amperes
250 Volts-2.0 Amperes 600 Volts- 0.5 Amperes

The interrupting capacity depends upon the voltage, current and inductance of the circuit controlled. Control relays are to be used in conjunction with control switches on heavy current circuits.

Construction

From the front of the panel, the switch presents a pleasing appearance with its sturdy, convenient blackmolded handle and light finished dial plate.

From the rear, the black polished sides and cadmium plated steel end plates make a neat looking switch.

An operating shaft, made from a

Fig. 3-Drilling Plan for Type W Instrument and Control Switches

Fig. 1-Illustration of the Dval, Notched and Pistol-Grip Handles for thr Type W Rotary Switches
$\frac{7}{16}$-inch diameter cold rolled steel rod, rotates in bronze bearings which are riveted in steel end plates. The steel end plates provide ample support for

Fig. 2-Curve Showing Capacities of Type W Switches
the base and the enameded steel top which is channel-shaped to secure strength. This arrangement assures permanent alignment of the contacts.

The moving contacts are brass segments with a corrosion resisting finish. The segments are separated by spacers of molded moisture-proof composition.

All of the contacts are keyed to an insulated micarta tube which covers the steel operating shaft. These have numbered key notches to facilitate assembling. Spacers and contacts arc securely clamped to the shaft.

The stationary contacts are of the self-aligning type and are made of a
suitable material selected for the highest wearing and arc resisting characteristics. Good contact pressure between the moving and stationary contacts is obtained by the use of compression springs which do not carry current. This combination of contact materials operates with a high pressure, wiping action, assuring clean low resistance contacts, with long life.
Multiple laminated copper shunts conduct the current from the contacts to the terminal studs. These studs are mounted on the base in such a manner that they positively will not turn or become loose.
The base is made of an excellent grade of black molded material which has both very high mechanical and dielectric strength, and is ribbed to give ample creepage distance between studs. Each stud hole is numbered for the purpose of identifying the connections on the wiring diagram.

Sheet Micarta side plates slide in grooves in the top and bottom of the switch, snapping snugly into the closed position. This arrangement provides immediate access for the inspection of contacts.

All switches are easily mounted on panels $1 / 8,1 / 4,1,11 / 2$ or 2 inches in thick. ness without changing any of the parts except the mounting screws-the length of which depends upon the thickness of the panel. Correct shaft length is obtained by simply sliding the handle

Fig. 4 -Rear View and Dimensions of Type W instrument and Control Switches

[^3]\dagger This dimension is $45 /$-inches for switches Style No. 519110 and 519116.

ROTARY SWITCHES-TYPE W-Continued

GENERAL-Continued

over the shaft until the pointer screw fits into the proper tap-hole in the shaft.
Segments, contacts, studs, shunts, etc., are the same for the entire line of switches. This permits great flexibility of design so that type W switches can be easily supplied for special requirements other than those for which style numbers have been listed. The maximum number of circuits in the unit switch is 10 but multiple switches
operated from one handle can be obtained with up to 40 circuits.

Style Numbers

Switch style numbers include mounting screws for a 2 -inch panel. When required for other than 2 -inch panels, add the style number of extra mounting screws.
The round notched handle is standard for instrument switches, and the pistolgrip handle is standard for control
switches. Either of the switches may be obtained with the round notched, or pistol grip handle or with an oval handle.

Special combinations of keys or handles can be obtained on request.

The style number for instrument switches with removable keys does not include keys. Such keys are listed under separate style numbers. Other switches are supplied with non-removable handles.

INSTRUMENT SWITCHES

Fic. 5-Three-Phase Ammeter Siwitch Assembly with Side Panels Drawn Back

General

All type W instrument switches, with the exception of ammeter, regulator transfer and temperature indicator switches, have removable keys.

These keys, besides being labelled, are constructed so that they can be inserted only in the proper switch and can be withdrawn only when the switch is in the off position. This precludes the possibility of trouble when several independent circuits may be connected to the same instrument through similar switches. If only one key is used, only one switch can be operated at a time. A key from any dissimilar switch cannot be inserted.

Large notched handles insure easy operation. A suitable notching device assures permanent alignment of the contact segments with the dial marking, and holds the switch in the position to which it is turned. Length of key to suit different panel thicknesses is obtained in a similar manner to that for non-removable handles.

Type W instrument switches are made in standard styles for connecting any instrument or group of instruments selectively to various circuits as may be required for metering or synchronizing.

Ammeter Switches

The ammeter switches are arranged to connect instruments to any phase without openimg the secondary circuit of the current transformers. The three-circuit ammeter switch is used where other instruments are to be connected in the circuit beyond the ammeter switch.

Voltmeter Switches

Fig. 6-Operating Key for Type W Instru. MENT SWITCH

These switches are arranged to connect the voltmeter to the individual circuit of which the voltage is to be read. Switches
are supplied for reading the voltage from one to six independent circuits.

Frequency Meter Switch

This switch connects the frequency meter to one circuit only. In order to use one frequency meter on several circuits, a separate switch is required for each circuit.

Wattmeter, Power Factor Meter and Reactive Factor Meter Switches

These switches connect the instrument transformers of any one polyphase circuit to the proper instrument by means of a suitable combination of voltage and current contacts. A separate switch is required for each polyphase circuit. Power factor meter switches can be used for reactive factor meters by using a suitably marked nameplate.

ROTARY SWITCHES－TYPE W－Continuod

INSTRUMENT SWITCHES－Continued

Temperature Indicator Switches

Each temperature switch is arranged to connect the temperature measuring instrument to any one of six exploring coils located in the apparatus，the temperature of which is to be read． Two forms of this switch can be sup－ plied，single－pole and double－pole． Double－pole construction is for use with exploring coil leads of appreciably dif－ ferent lengths．For thermo－couple switch refer to headquarters．

Synchroscope Switch for Syn－ chronizing Between Machine and Bus

The synchronizing switch connects the potential transformer of the circuit to be synchronized and the bus poten－ tial transformer to the synchroscope．

One switch is required for each machine when synchronizing to a single bus system and two are required when synchronizing to a double bus system． One form of this switch includes inter－ lock contacts for connecting in the con－ trol carcuit of the circuit breaker to prevent closing the breaker unless the synchronizing switch is in use．

Synchroscope Switch for Synchronizing Between Machines

This type of switch is double－throw and requires a different key for each throw．One switch is required for each machine．

The running key turns the switch so as to connect the voltage transformer of the running machine to the running side of the synchroscope．

The incoming key is used in the switch of the circuit which is to be synchronized，and connects its voltage transformer to the incoming side of the synchroscope．By this means any circuit may be treated either as an in－ coming or a bus circuit．One form of this switch includes interlock contacts for connecting in the control circuit of the circuit breaker to prevent closing the breaker unless the synchronizing switch is in use．

Test Switches

The standard type W ammeter，volt－ meter or combination instrument switch can be used as a test switch for instru－ ments，relays，etc．The type W switch can be used in any conventional testing system，using independent connection studs，test bus，etc．The key handle can be fixed or removable，with interlocking key．

STYLE NUMBERS

SWITCHES

Schematıc	Drilling
Diagram	Plan
Fig．No．	Fig．No．

Dimension A． Inches＊	Switch Style No．	Key Style No．
5\％\％	519108	\ddagger
53／8	519109	\ddagger
11\％	519110	\ddagger
$4 \frac{13}{2}$	519111	519126
4 持	519112	519127
67\％	519113	519128
6712	591454	591680
67／8	519114	519129
7 新	519115	\ddagger
11960	519116	1
4 H	519117	519132
73	519118	519133
71	591626	519134
73	940082	\ddagger
11%	895355	
5\％／1／	519122	519136
69 自	519 i23	519137
$4{ }^{4}$	5！4 124	519 138 \dagger
		5191398
53\％	519125	5191401
		519141
73	591571	．．．．．．．．

MOUNTING SCREWS FOR INSTRUMENT SWITCHES

De：cription－Three per set	（	Style No．
Screws for 1／8－inch thick panel．		555659
Screws for 14 －inch thick panel．		555658
Screws for l－inch thick panel．		555657
Screws for 11／2－inch thick panel．		555656

[^4]ROTARY SWITCHES-TYPE W-Continued

INSTRUMENT SWITCHES-Continued

DIAGRAMS OF CONNECTIONS

Nore-Instrument switches are shown for handle end at the top.

Fig. 8-Two-Phase Ammeter Switch, Style No. 519108

Fig. 9-Three-Phase Ammeter Switch. Style No. 519109

Drum Development

Fig. 10-Ammeter Switch 3 Independent Circuits, Strle No. 519110

Fig. 11 -Single-Pole, Voltmeter Switch A-C. or D-C.
Style No. 519111

For 3 Phase Cir
Without Pot Trans

Fig. 15-A-Three-Phase Circuits When Potential Transformers are Used, Style No. 519114
Pig. 15-B-Three-Phase Circuit Without Potential Transformers, Style No. 519114
Fig. 15-C-Three-Wire D-C. Circuits, Style No. 519114

Fig. 12-Single-Phase A-C. or Two-Pole D-C. Voltmeter Switch. Sivle No. 519112

Fig. 14-Volimeter Switch, 3-Phase, 4-Wire Circuits Style No. 591454

Pic. 16-Four-Circuit, 2-Pole Switch. Style No. 519115

ROTARY SWITCHES-TYPE W-Continued

INSTRUMENT SWITCHES-Continued

DIAGRAMS OF CONNECTIONS-Continued

Fig. 17-Six-Circuit, 2-Pole Switch, Style No, 591116

Fig. 19-Power-Factor Meter Switch, Style No. 591626

Fig. 21-Switch for Synchronizing Between Bus and Machine Without Interlocks, Style No. 519122 With Interlocis, Style No. 519123

Fig. 18-Wattmeter Switch, Style No. 519118

Fig. 20-Temperature Indicator Switch, Style No. 940087 Single-Pole Six-Circuit for Approximate Lead Compensation

Note-For six exploring coils, wire as per solid lines. for more than six exploring coils, wire as per solidand dotted lines, using two or more switches as needed. For each generator, use six hot-test coils.

Fig. 22-Switch for Synchronizing Between Machines
Without Interlocks. Style No. 519124 With Interlocks, Style No. 519125

ROTARY SWITCHES-TYPE W-Continued

INSTRUMENT SWITCHES-Continued

Fig. 23-Regulator Transfer Switch
Style No. 591571
Fig. 24 Temperature Indicator Switcif, Style No. 895355, Double. Pole, Six-Circuit for Complete Lead Compensation

CON TROL SWITCHES

Application

The type W control switch is for the control of electrically-operated switches and circuit breakers, rheostats, engine and turbine governors, feeder potential regulators, etc., both motor and solenoidoperated. In general control relays are operated directly from the control switches in order to handle such heavy capacity operating current as may be met with, particularly in the case of switches and circuit breakers.

These switches are essentially multicircuit double-throw switches. One form of this switch is used for starting

Fig. 25 -Control Sivitch Fitted to Steel Panel with Side Plates in Place
induction or synchronous motors, one pull-out feature is provided in the usual position being used to close the starting "off" position to trip the breakers when breakers, the other position being used desired. These control switches are to close the running breakers. A special also adapted for raising and lowering voltage, both in conjunction with feedervoltage regulators of the induction type, and automatic generator-voltage regulators of any conventional type.

Operation

Trip Position-By turning the control switch to the trip position, the trip coil of the oil circuit breaker is energized. The control switch is latched in this position by pulling the handle forward which action also opens the signal lamp circuit.

Spring Return Handle-Control switches are provided with large pistolgrip handles to facilitate operation by

ROTARY SWITCHES-TYPE W-Continued

CONTROL SWITCHES-Continued

the switchboard attendant. These indicate the last manual operation of switches are provided with a spring return mechanism which causes the switch to return automatically to the "off" position, when released from the operating position.

Mechanical Indicator-All circuit breaker control switches are provided with a mechanical indicating device which shows a red or green marker to
the switch.

Signal Lamp-Signal lamp cutouts may be obtained with circuit breaker control switches. This lamp cutout is in circuit with one or all of the indicating lamps.

Automatic Indicator Cutouts-This arrangement is generally used for an alarm system, causing the sounding of
an alarm or the lighting of a lamp on the occurrence of an automatic operation. These contacts are also used for interlocking a common tripping circuit with several control switches.

Indicating Lamps-Suitable indicating lamps can be used in conjunction with control switches to obtain electrical indication of the position of circuit breakers or other devices.

STYLE NUMBERS

SWITCHES

DIAGRAMS OF CONNECTIONS

Note:-Auxiliary switches are shown for the open position of the breaker. Control switches are shown as top view, with the handle end at the top of the diagram.

Fig. 28-Circuit Breaker Control Sivitch, Style No. 519330

Fig. 29-Circuit Brearer Control Switch, Bell and White Lamp for Automatic Trip, Style No. 519331

ROTARY SWITCHES-TYPE W-Continued
CONTROL SWITCHES-Continued
DIAGRAMS OF CONNECTIONS-Continued

Fig. 30-Circuit Breaker Control Switch Bell and White Lamp for Automatic Trip Indication, Style No. 780374 A-Lamp Signals on Trip Wires
B-Lamp Signals on L Wires

Circuit Breaker Control Switches for Double-Bus Systems

Fig. 33-Circuit Breaker Control Switch for Double Bus System, Style No. 780375

ROTARY SWITCHES-TYPE W-Continued

CONTROL SWITCHES-Continued

DIAGRAMS OF CONNECTIONS-Continued

Pig. 38-Governor Motor-Speed Control Switch. Style No. 519338

ROTARY SWITCHES-TYPE W-Continued

AUXILIARY SWITCHES

Fic. 39-Auxiliary Switch Complete with Covfr

Application

The type W auxiliary switch is similar to the instrument and control switches having identical control fingers, rotor segments and molded base. They are applicable to circuit breakers, operating mechanisms, or other apparatus requiring auxiliary switches. These switches are made with $2,4,6$ and 10 contact circuits. The rotor turns to two positions 90 degrees apart. The rotor segment makes contact with its pair of stationary fingers in one or the other 90 degree position. Any individual rotor segment can be rotated 90 degrees to change from a "make" contact to a "break" contact or vice versa. Special
segments can be supplied for special switching arrangements.
The switch is made in two forms with and without terminal covers. The switch which is equipped with a Micarta cover, as shown in Fig. 39, has provision for bringing learis out of either end of the switch through holes provided in the end brackets. A coverplate is supplied for the hole not in use.
The switch without cover is used on applications where the apparatus is otherwise housed, as for example, with the operating mechanism on outdoor oil circuit breakers. This switch is shown in Fig. 40. The operating lever of both

Fig. 40-AUXiliary Switch Assembly
types of switches clamp to the squared end of the rotor shaft. Provision is made for changing the length of the operating lever so as to adapt the

Fig. 41-Pipe Flange Style No. 762198 for C'se on Auxilliry Sivitches
switch to an operating rod travel of from 1 to 3 inches. The angular travel of the rotor is always 90 degrees.

Where the wires arc to be carried in conduit, the auxiliary switches are arranged to accommodate a special nut, Fig. 41, with $11 / 4$-inch pipe threads which can be bolted to the switch bracket. The nut with mounting bolts Style No. 762198 is not included with the switch style number, but will he furnished, if desired, without additional charge.

STYLE NUMBERS

Description	Orer-All Length in Inches from Front of Base to Rear of Switch	\qquad	
2-pole, 1-"a"-1." ${ }^{\text {a }}$ "*	45.8	676957	591810
4-pole, 2. ${ }^{\text {a }}{ }^{\text {" }}$ - 2 - 'b"*	6318	676960	591819
6-pole, 3'*-a'-3-" $\mathrm{b}^{\prime \prime *}$	8	676963	591822
10-pole, 5"-a "-5."b"*	113/8	676986	591825

*The letter "a" and "b" designate "make" and "brcak" as shown in the N. E. M. A. hand brok on switching equipment.

WEATHER-PROOF AUXILIARY SWITCHES

Fig. 42-2-Pole Auxiliary Switch.
Cover Removed

Fig. 43-2.Pole Auxiliary Switch,
Cover in Place

The type W weatherproof auxiliary $2,4,6$ or 10 -pole types and are manaswitches are completely housed for outdoor applications. See Fig. 43. They are used with remotely controlled, gangoperated, disconnecting switches, or for any other application where it is desired to give a signal or alarm as to the action of some mechanical device.

These switches can be furnished in
factured from standard indoor switch parts mounted on a cast brass base to which the cover is bolted.

The base contains 3 holes for 3 -inch mounting bolts. Holes tapped for conduit connection are provided on two sides and the top: two ot which are fitted with pipe plugs. These holes are for
-inch conduit on the 2 and 4 -pole switches, $11 / 4$-inch conduit on the 6 -pole switch and $11 / 2$-inch on the 10 -pole switch.

A substantial cover, with a cast alloy flange, is provided to cover the switch. This cover contains an inner lining of insulating material. All joints are fitted with gaskets to assure weatherproof construction.

STYLE NUMBERS
Over-All Length in Inches from Front of Base to Rear End of Switch

13\%

599940
Style No.
599938
59939
599940
"The letters " a " and "b" designate "make" and "break" as shown in the N.E.M.A. hand book on switching equipment.
Dimensions are for reference only. For official dimensions apply to the nearest district office.
OUTLINE DIMENSIONS IN INCHES

Fig. 44-2, 4, 6 and 10-Poi.e, 10-Ampere, 250-Volt Auxiliary Switch

[^0]: - Especially designed for loom motor service, a Size O switch in a Size 1 box.

[^1]: \dagger Not illustrated.

[^2]: I Not Illustrated.
 Uscd only on Interlock Size No. 3
 x Used only on Interlock Size No. 2

[^3]: *This dimension is 3 \%-inches for switches Style No. 519110 and 519116.

[^4]: ＊Dimension A is the distance from rear of panel to rear end of switcin
 tRunning key．
 SSeparate key not required．
 SIncoming key．

