OPERATING AND SERVICEMANUAL

DIGITAL MULTIMETER 3476 A

MODEL 3476A
MULTIMETER
Manual Part No. 03476-90001

- New or Revised Item

CHANGE NO. 1 (PC 14060, 14080, 14110) applies to serial numbers 1619 A05841 and greater.

Page 6-3/6-4, Table 6-3. Change the -hp-part numbers and descriptions as shown in Table CS-1.

Table CS-1

Ref. Desig.	From	To
A1R2	$0698-8748,1 \mathrm{~K} \mathrm{5} \mathrm{\%}$	$0811-0006,5 \mathrm{~K} 1 \%$
A1R4	$0757-0440,7.5 \mathrm{~K}$	$0698-3152,3480$ ohm
A1R13	$0698-1055,1 \mathrm{M} \mathrm{5} \mathrm{\%} \mathrm{1} \mathrm{W}$	$0757-0059,1 \mathrm{M} \mathrm{1} \mathrm{\%} 1 / 2 \mathrm{~W}$
A1R51	$0683-1035,10 \mathrm{~K}$	$0683-1025,1 \mathrm{~K}$

Page 7-5/7-6, Figure 7-2. Change the value of R2 to 5 K , R4 to 3480 in the ohms current source. Change R21, 10 K to R51. 1 K associated with the MOS Substrate Voltage Adjustment.

CHANGE NO. 2 applies to serial numbers 1646 A06291 and greater.

Page 6-3. Change -hp-part number of $C 4$ to 0121-0487. qty 1. Capacitor-V TRMR-AIR 1.0/3.5 pF.

Page 6-4. Change -hp-part number of U1 to 1813-0091.
Add to A1 Mechanical Parts hp- part number 1251-3379, qty 3, Cont-Conn (25 pin).
Add to Misc. Parts hp-part number 03476-04701, P.C.B. Hybrid Spaces, qty 4.
Change -hp-part number 03476-00602 in Misc Parts to 03476-00605 and add part number 7120-6297, LabelCaution, qty 1.

Page 7-5/7 6, Figure 7-2. Change the value of C4 to $1.0-$ 3.5 pF .

OPERATING AND SERVICE MANUAL

MODEL 3476A
 DIGITAL MULTIMETER

For Instrument Serial Numbers 1619A02731 and Greater

Any changes made in instruments manufactured after this printing will be found in a "Manual Changes" supplement s Any changes made in instruments manufactured after this printing will be found in a "Manual Changes" supplement supplied with this manual. Be sure to examine this supplement, if one exists for this manual, for any changes which apply to your instrument and record these changes in the manual.

If the Serial Number of your instrument is lower than the one on this title page, the manual contains revisions that do not apply to your instrument. Backdating information given in the manual adapts it to earlier instruments.

Where practical, backdating information is integrated into the text, parts list and schematic diagrams. Backdating changes are denoted by a delta sign. An open delta (Δ) or lettered delta $\left(\Delta_{A}\right)$ on a given page, refers to the corresponding backdating note on that page. Backdating changes not integrated into the manual are denoted by a numbered delta $\left(\Delta_{1}\right)$ which refers to the corresponding change in the Backdating section (Section VIII).

WARNING

To help minimize the possibility of electrical fire or shock hazards, do not expose this instrument to rain or excess moisture.

Manual Part No. 03476-90001
Microfiche Part No. 03476-90051

CERTIFICATION

Hewlett-Packard Company certifies that this instrument met its published specifications at the time of shipment from the factory. Hewlett-Packard Company further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from the date of shipment, except that in the case of certain components, if any, listed in Section I of this operating manual, the warranty shall be for the specified period. Hewlett-Packard will, at its option, repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard, and provided the proper preventive maintenance procedures as listed in this manual are followed. Repairs necessitated by misuse of the product are not covered by this warranty. NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CONSEQUENTIAL DAMAGES.

If this product is sold as part of a Hewlett-Packard integrated instrument system, the above warranty shall not be applicable, and this product shall be covered only by the system warranty.

Service contracts or customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

TABLE OF CONTENTS

Section Page
I. GENERAL INFORMATION I-1
1-1. Introduction. $1-1$
1-3. Description $1-1$
1-5. Specifications 1-1
1-7. Instrument and Manual Identification . .1-3/1-4
1-9. Options 1-3/1-4
1-12. Accessories 1-3/1-4
1-14. Safety Considerations. 1-3/1-4
Section Page
II. INSTALLATION 2-1/2-2
2-1. Introduction 2-1/2-2
2-3. Initial Inspection 2-1/2-2
2-5. Power Requirements 2-1/2-2
2-7. Environmental Requirements. 2-1/2-2
2-9. Repackaging for Shipment 2-1/2-2
2-13. Power Cords and Receptacles. 2-1/2-2
Section Page
III. OPERATING INSTRUCTIONS 3-1
3.1. Introduction 3.1
3.3. Turn-On 3-1
3-5. Operation 3-1
3.6. Overload/Overrange Indication 3-1
3-8. Auto/Hold Switch 3.1
3.11. AC Voltage Measurements 3-1
3.14. DC Voltage Measurements 3-2
3-17. AC Current Measurements 3-2
3-20. DC Current Measurements 3-2
3.23. Resistance Measurements 3-2
3 26. Input Protection Fuses. 3-3
3-28. AC Line Fuse Replacement. 3-4
3-30. Semiconductor Junction Measurements 3-4
Section Page
IV. THEORY OF OPERATION 4-1/4-2
4-1. Introduction. 4-1/4-2
4-3. Simplified Block Diagram Description 4-1/4-2
Section Page
V. MAINTENANCE 5-1
5-1. Introduction. 5-1
5-3. Test Equipment Required 5.1
5.5. Performance Tests 5-1
5-6. DC Voltmeter Accuracy Test 5.1
Section Page
5-8. DC Ammeter Accuracy Test 5-I
5-10. Ohms Accuracy Test $5 \cdot 2$
5-12. AC Voltage Accuracy Test 5-2
5-14. AC Ammeter Accuracy Test 5.3
5-15. AC Common-Mode Rejection Test 5-3
5-17. DC Common-Mode Rejection Test 5-3
5-19. Adjustment Procedure $5 \cdot 6$
5-21. Power Supply Adjustment 5.6
5-22. Substrate Adjustment 5.6
5-23. Input Amplifier Zero Adjustment 5-6
5-25. Integrator Amplifier Zero Adjustment 5-6
5-27. + DC Volt Gain Adjustment 5-6
5-28. - DC Volt Gain Adjustment 5-6
5-29. Clock Frequency Adjustment 5-6
5-30. Ohms Adjustment 5-7
5-31. AC Converter Gain and Zero Adjustment 5.7
5-32. AC High Frequency Adjustment (.11 V range) $5 \cdot 7$
5-33. Changing the Power Line Options 5-7
SectionVI. REPLACEABLE PARTS 6-1
6-1. Introduction. 6-1
6-4. Ordering Information 6-1
6-6. Non-Listed Parts 6-1
6-8. Parts Changes 6.1
6-10. Proprietary Parts 6.1
Section Page
VII. TROUBLESHOOTING AND CIRCUIT DIAGRAMS 7.1
7-1. Introduction. 7.1
7-3. Preliminary Troubleshooting 7.1
7-10. Power Supply Troubleshooting 7.2
7-14. Display Troubleshooting 7.2
7.20. Schematic Diagrams. 7.2
7-22. Printed Circuit Assembly Exchange. 7-2
7-24. Printed Circuit Board Removal 7.3
Section Page
VIII. BACKDATING 8-1
8-1. Introduction. 8 -1
8-3. Change Sequence. 8.1

LIST OF TABLES

Table Page Table Page
1-1. Specifications 5-4. Ohms Accuracy Test $5 \cdot 2$
1-2. General Information 1.2
5-5. AC Voltage Accuracy Test 5.3
1-3. Options 1.3/1.4
5-6. AC Ammeter Accuracy Test $5 \cdot 3$
1-4. Accessories. 1-3/1-4
6-1. Standard Abbreviations 6.1
5-1. Required Test Equipment 5-0
5-2. DC Voltmeter Accuracy Test. $5 \cdot 1$
6-2. Code List of Manufacturers 6.2
5-3. DC Ammeter Accuracy Test $5 \cdot 2$
8-1. Manual Backdating Changes. 8-1
6-3. Replaceable Parts 6-3
8-2. Replaceable Parts 8-1

LIST OF ILLUSTRATIONS

Figure	Page	Figure	Page
2-1. Plug Caps.	.2-1/2-2	4-1. Simplified Block Diagram	.4-1/4-2
3-1. Overload Indication	3-1	5-1. DC Ammeter Accuracy Test	5-2
3-2. Multimeter Autoranging	3-1	5-2. Ohms Accuracy Test	$5 \cdot 2$
3-3. AC Voltage Measurement	3-2	5-3. AC Ammeter Accuracy Test	5-3
3.4. DC Voltage Measurement	3.2	5-4. Common-Mode Rejection Test.	5.4
3-5. AC Current Measurement	3-2	7-1. Display Verification.	7.2
3-6. DC Current Measurement	3-2	8-1. Component Locator.	. 8.2
3.7. Resistance Measurement .	3-3	8-2. Multimeter Schematic Diagram	.8-3/8-4
3-8. Location of Controls and Connectors	3-3	8-3. Power Supply.	. 8-5/8-6

Figure Page

1. Simplifed Block Diagram$5-2$
5-2. Ohms Accuracy Test 5.2
5-3. AC Ammeter Accuracy Test 5-3
2. Com Mode Rejection Test7.2
8-1. Component Locator. 8.2
8 -3. Power Supply 8-5/8-6

SECTION I GENERAL INFORMATION

1.1. INTROOUCTION.

1-2. This section contains general information concerning the -hp- Model 3476A Multimeter. Included is an instrument description, specifications, information about instrument and manual identification, option and accessory information, and safety considerations.

1-3. DESCRIPTION.

1-4. The -hp- Model 3476A Multimeter is a 3 digit, five function, autoranging instrument which measures ac and dc voltage, ac and dc current, and ohms. A HOLD function
is provided to enable the user to make repeated measurements without changing ranges. The sample rate is approximately three readings per second. Throughout the remainder of this manual, the 3476A Multimeter will be referred to as Multimeter.

1.5. SPECIFICATIONS.

1-6. Specifications for the Multimeter are listed in Table 1-1. These specifications are the performance standards or limits to which the Multimeter can be tested. Any changes in these specifications due to manufacturing changes, design or traceability to the National Bureau of Standards will be

Table 1-1. Specifications.

DC VDLTMETER

Ranges: $\pm 0.11 \mathrm{~V}, 1.1 \mathrm{~V}, 11 \mathrm{~V}, 110 \mathrm{~V}, 1100 \mathrm{~V}(1000 \mathrm{~V}$ Maximum Input)
Accuracy $120^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$):

Accuracy Ranges	Accuracy (90-Day Calibration Cycle)	$(1-Y$ ear Calibration Cycle)
0.11 V	$\pm(0.3 \%$ of reading $+.2 \%$ of range)	$\pm(0.5 \%$ of reading $+0.2 \%$ of range)
$1.1 \mathrm{~V}, 11 \mathrm{~V}$	$\pm(0.3 \%$ of reading $+0.1 \%$ of range)	$\pm(0.5 \%$ of reading $+0.1 \%$ of range)
$110 \mathrm{~V}, 1100 \mathrm{~V}$	$\pm(0.4 \%$ of reading $+0.1 \%$ of range)	$\pm(0.6 \%$ of reading $+0.1 \%$ of range)

Common Mode Rejection: $>100 \mathrm{~dB}$ at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}(1 \mathrm{k} \Omega$ unbalanced)
Input Resistance: $10 \mathrm{M} \Omega \pm 5 \%$
Input Protection: < 1000 V (Continuous)
Temperature Coefficient: $\pm(0.05 \%$ of reading $+0.02 \%$ of range $) /{ }^{\circ} \mathrm{C}$
AC VOLTMETER
Ranges: 0.11 V rms, 1.1 V rms, $11 \mathrm{~V} \mathrm{rms}, 110 \mathrm{~V} \mathrm{rms}, 1100 \mathrm{Vrms}(707 \mathrm{~V}$ rms Maximum)
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$:

Ranges*	Accuracy (90-Day Calibration Cycle)		
	45 Hz to 2 kHz	2 kHz to 5 kHz	5 kHz to 10 kHz
1.1 V rms to 1100 Vrms	$\begin{aligned} & \pm(1.5 \% \text { of reading } \\ & +0.4 \% \text { of range } \end{aligned}$	$\begin{aligned} & \pm(3 \% \text { of reading } \\ & +0.6 \% \text { of range }) \end{aligned}$	$\begin{aligned} & \pm 18 \% \text { of reading } \\ & +1.0 \% \text { of range) } \end{aligned}$
0.11 Vrms	$\pm(2 \%$ of reading $+0.6 \%$ of range)	\pm (5\% of reading $+0.6 \%$ of range)	$\begin{aligned} & \pm(18 \% \text { of reading } \\ & +1.0 \% \text { of range }) \end{aligned}$
	Accuracy (1-Year Calibration Cycle)		
	45 Hz to 2 kHz	2 kHz to 5 kHz	5 kHz to 10 kHz
1.1 V rms to 1100 Vrms	$\begin{aligned} & \pm(1.7 \% \text { of reading } \\ & +0.5 \% \text { of range }) \end{aligned}$	$\begin{aligned} & \pm(3.2 \% \text { of reading } \\ & +0.7 \% \text { of range) } \end{aligned}$	$\begin{aligned} & \pm(8.2 \% \text { of reading } \\ & +1.1 \% \text { of range) } \end{aligned}$
0.11 V rms	$\begin{aligned} & \pm(2.2 \% \text { of reading } \\ & +0.7 \% \text { of range) } \end{aligned}$	$\begin{aligned} & \pm(5.2 \% \text { of reading } \\ & +0.7 \% \text { of range) } \end{aligned}$	$\begin{aligned} & \pm(18.2 \% \text { of reading } \\ & +1.1 \% \text { of range }) \end{aligned}$

*Ranges usable from 0.03 to full scale.
Common Mode Rejection: (1 k Ω balanced) $>80 \mathrm{~dB}$ at 50 Hz and 60 Hz
Input Resistance: $10 \mathrm{M} \Omega \pm 5 \%$
Input Capacitance. $<30 \mathrm{pF}$
Input Protection: < 707 rms continuous
Temperature Coefficient: $\pm\left(0.05 \%\right.$ of reading $+0.05 \%$ of range $/ /^{\circ} \mathrm{C}$

Table 1-1. Specifications (Cont'd).

DC AMMETER

Ranges: $\pm 0.11 \mathrm{~A}, 1.1 \mathrm{~A} \quad(1.1 \mathrm{~A}$ maximum input)
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$:

Ranges	Accuracy (9ccuracy (90-Day Calibration Cycle)	(1.Year Calibration Cycle)
$\pm 0.11 \mathrm{~A}, 1.1 \mathrm{~A}$	$\pm(0.8 \%$ of reading	$\pm(1.0 \%$ of reading
	0.2% of range)	0.2% of range)

Impedance: 1 - 1.5 ohm constant
Protection: 1.5 A fuse to 250 V ($>250 \mathrm{~V}$ will damage the instrument)
Temperature Coefficient: $\pm(0.05 \%$ of reading $+0.02 \%$ of range $) /{ }^{\circ} \mathrm{C}$

AC AMMETER

Ranges: $0.11 \mathrm{~A} \mathrm{rms}, 1.1 \mathrm{Arms}(1.1 \mathrm{rms}$ maximum input)
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$:

	Accuracy (90-Day Calibration Cycle)		Accuracy (1-Year Calibration Cycle)	
Ranges*	45 Hz to 2 kHz	2 kHz to 5 kHz	45 Hz to 2 kHz	2 kHz to 5 kHz
1.1 A rms	$\pm 12 \%$ of reading $+0.4 \%$ of range)	$\pm(3.5 \%$ of reading $+0.6 \%$ of range)	$\pm(2.2 \%$ of reading $+0.5 \%$ of range)	$\begin{aligned} & \pm(3.7 \% \text { of reading } \\ & +0.7 \% \text { of range }) \end{aligned}$
0.11 A rms	$\pm 12.5 \%$ of reading $+0.6 \%$ of range)	\pm (5.5\% of reading $+0.6 \%$ of range)	$\pm(2.7 \%$ of reading $+0.7 \%$ of range)	$\pm(5.7 \%$ of reading $+0.7 \%$ of range)

*Ranges usable from 0.03 to full scale.
Impedance: 1-1.5 ohm constant
Protection: 1.5 A fuse to 250 V (>250 V will damage the instrument)
Temperature Coefficient: $\pm(0.05$ of reading $+0.05 \%$ of range $) /{ }^{\circ} \mathrm{C}$

OHMMETER

Ranges: $1.1 \mathrm{k} \Omega, 11 \mathrm{k} \Omega, 110 \mathrm{k} \Omega, 1100 \mathrm{k} \Omega, 11000 \mathrm{k} \Omega$
Accuracy: $120^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$)

Ranges	Accuracy (90-Day Calibration Cycle)	Accuracy (1-Year Calibration Cycle)
$110 \mathrm{~K}, 1100 \mathrm{~K}$	$\pm(0.3 \%$ of reading	$\pm 10.5 \%$ of reading
	$+0.1 \%$ of range)	$+0.1 \%$ of range)
11000 K,	$\pm(0.5 \%$ of reading	$\pm(0.7 \%$ of reading
$1.1 \mathrm{~K}, 11 \mathrm{~K}$	$+0.1 \%$ of range	$+0.1 \%$ of range)

Open Circuit Voltage: <4V
Input Voltage Protection: $<30 \mathrm{~V}$ rms continuous, no effect;
30 V to 250 V rms requires replacement of input fuse; $>250 \mathrm{~V}$ will damage instrument.
Temperature Coefficient: $\pm \mathbf{0 . 0 5 \%}$ of reading $+0.02 \%$ of range) $/{ }^{\circ} \mathrm{C}$
Table 1-2. General Information.
Ranging: Automatic or Hold Mode
Sample Rate: approximately 3 samples per second
Operating Einvironmental conditions:
Temperature range: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Humidity: < 95\% RH
Power:
AC line, $<6 \mathrm{VA}$ at:
Standard, $104-127 \mathrm{~V}, 54-66 \mathrm{~Hz}$
Option 001, 86-106 V, 54-66 Hz
Option 002, 86-106 V, 48-54 Hz
Option 003, 190-230 V, 48-54 Hz
Option 004, 208-250 V, 48-54 Hz
Weight: $0.71 \mathrm{Kg}(1 \mathrm{lb} .9 \mathrm{oz}$.
Shipping Weight: $1.14 \mathrm{Kg}(2 \mathrm{lb} .8 \mathrm{oz}$.
Dimensions: 5.84 cm (2.3 in .) high, $16.8 \mathrm{~cm}(6.6 \mathrm{in}$.)
wide, 20.6 cm (8.1 in .) deep
covered by an errata or change sheet. These specifications supersede any prior published specifications. Supplemental information in Table 1-2 is provided to describe general operating characteristics.

1.7. INSTRUMENT ANO MANUAL IOENTIFICATION.

1-8. Hewlett-Packard uses a two-section serial number. The first section (prefix) identifies a series of instruments. The last section (suffix) identifies a particular instrument within the series. A letter between the prefix and the suffix identifies the country in which the instrument was manufactured. The manual is kept up-to-date at all times by means of a change sheet which is supplied with the manual. If the serial number of your instrument differs from the one on the title page of this manual, refer to the change sheet supplied with the manual. All correspondence with Hewlett-Packard should include the complete serial number.

1-9. OPTIONS.

1-10. Table 1-3 lists the options available for the Multimeter.

1-11. The instrument contains a label identifying the line voltage for which the instrument is wired. If the jumper wires are changed to accomodate a different line voltage, the label must also be changed to indicate the new configuration.

NOTE

If the instrument is to be operated at a line frequency other than the one indicated on the label, it will be necessary to perform the Clock Frequency Adjustment in Section V of this manual.

Table 1-3. Options.

Option	Description
Standard	$104-127,54-66 \mathrm{~Hz}, 6 \mathrm{VA}, 60 \mathrm{~mA}$ Max.
001	$86-106,54-66 \mathrm{~Hz}, 6 \mathrm{VA}, 70 \mathrm{~mA} \mathrm{Max}$.
002	$86-106,48-54 \mathrm{~Hz}, 6 \mathrm{VA}, 70 \mathrm{~mA}$ Max.
003	$190-230,48-54 \mathrm{~Hz}, 6 \mathrm{VA}, 30 \mathrm{~mA}$ Max.
004	$208-150,48-54 \mathrm{~Hz}, 6 \mathrm{VA}, 30 \mathrm{~mA}$ Max.

1-12. ACCESSORIES.

1-13. The accessories available for use with the Multimeter are listed in Table 1-4.

Table 1-4. Accessories.

Accessory Number	Description
Model 11096A	R F Probe, 100 kHz to 500 MHz (down 3 dB at 10 kHz and 700 MHz) Model 11096A Adapter Model 11067A Model 11068A
Universal Test Lead Kit Soft Carrying Case	

1-14. SAFETY CONSIOERATIONS.

1-15. This Operating and Service Manual contains cautions and warnings alerting the user to hazardous operating and maintenance conditions. To ensure the safety of the operating and maintenance personnel and retain the operating condition of the instrument, these instructions must be followed.

SECTION II
 INSTALLATION

2-1. INTROOUCTION.

2-2. This section contains information and instructions for the installation and shipping of the Multimeter. Included are initial inspection procedures, power and grounding requirements, environmental information, and instructions for repackaging the instrument for shipment.

2-3. INITIAL INSPECTION.

2-4. This instrument was carefully inspected both mechanically and electrically before shipment. It should be free of mars or scratches and in perfect electrical order upon receipt. To confirm this, the instrument should be inspected for physical damage in transit. Electrical performance should be tested using the performance tests outlined in Section V. If there is damage or deficiency, see the warranty inside the front of this manual.

2.5. POWER REQUIREMENTS.

2-6. The Multimeter can be operated from any one of the ac power sources listed in Table 1-3. Before connecting the instrument to ac power, verify that the ac power source matches the power requirement of the instrument by refering to the power requirement label attached to the instrument. If the instrument is incompatible with the available power source, refer to Section V for Power Requirement Modification instructions.

2.7. ENVIRONMENTAL REQUIREMENTS.

$2-8$. The Multimeter will meet the specifications listed in Table 1.1 when the operating temperature is within the range of $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right.$ to $\left.+86^{\circ} \mathrm{F}\right)$. The instrument can be operated where the ambient temperature is within the range of $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ and the relative humidity is less than 95%.

WARNING

To prevent potential electrical or fire hazard, do not expose equipment to rain or moisture.

2.9. REPACKAGING FOR SHIPMENT.

2-10. The following paragraphs contain a general guide for repackaging the instrument for shipment. Refer to Paragraph $2 \cdot 11$ if the original container is to be used; $2-12$ if it is not. If you have any questions, contact your nearest thpSales and Service Office (See Appendix A for office locations).

NOTE

Abstract

If the instrument is to be shipped to HewlettPackard for service or repair, attach a tag to the instrument identifying the owner and indicating the service or repair to be accomplished. Include the model number and full serial number of the instrument. In any correspondence, identify the instrument by model number and full serial number.

2-11. Place instrument in original container with appropriate packing material and seal well with strong tape or metal bands. If original container is not available, one can be purchased from your nearest hp- Sales and Service Office.

2-12. If original container is not to be used, proceed as follows:
a. Wrap instrument in heavy paper or plastic before placing in an inner container.
b. Place packing material around all sides of instrument and protect panel face with cardboard strips.
c. Place instrument and inner container in a heavy carton or wooden box and seal with strong tape or metal bands.

2.13. POWER COROS ANO RECEPTACLES.

$2-14$. Figure $2 \cdot 1$ illustrates the plug cap configurations that are available to provide ac power to the Multimeter. The hp- part number shown directly below each plug cap drawing is the part number for the power cord set equipped with the appropriate mating plug for that receptacle. The appropriate power cord should be provided with each instrument. However, if a different power cord set is required, notify the nearest hp- Sales and Service Office and a replacement cord will be provided. The instrument ac power input receptacle and cord set appliance coupler meet the safety specifications set by the International Commission on Rules for the Approval of Electrical Equipment (CEE 22).

Figure 2-1. Plug Caps.

SECTION III
 OPERATING INSTRUCTIONS

3-1. INTROOUCTION.

3-2. This section contains instructions for operating the Multimeter. Measurements of ac and dc voltage, ac and dc current, and ohms are discussed. A description of the controls and connectors is given in Figure 3-8.

WARNING

To prevent potential electrical or fire hazard, do not expose the Multimeter or its accessories to rain or moisture.

3-3. TURN-ON.

3-4. Before connecting the Multimeter to ac power, verify that the ac power source matches the power requirements of the Multimeter by referring to the power requirement label located below the ac receptacle. If the instrument is incompatible with the available power source, refer to Section V of this manual for power requirement modification instructions. After this verification, connect the proper ac power to the instrument and press the ON button. The instrument is ready for use.

3-5. OPERATION.

3-6. Overload/Overrange Indication.

3-7. Figure $3-1$ shows the display indication during an Overload/Overrange condition.

Figure 3-1. Overload Indication.

3-8. Auto/Hold Switch.

3-9. In the AUTO position (out), the Multimeter is in the Autoranging mode. In this mode the Multimeter will uprange if the display reading increases above 110908 and downrange if the display decreases below $\square 11010$. These numerical autoranging points are irrespective of decimal placement. The difference between the two autoranging points is called the autoranging hysteresis. Figure 3-2 shows the autoranging points for dc voltage measurements from 0 to 1000 V dc . Autoranging in other Multimeter functions is similar.

Figure 3-2. Multimeter Autoranging.
3-10. In the HOLD position (IN) the Multimeter will remain in the same range as when the switch was depressed.

NOTE

With the Multimeter in the HOLD position, maximum input levels as described in Table 1-1 can safely be input regardless of the range selected. If the input level exceeds a| 1 | 0 | 9 | 8 |
| :--- | :--- | :--- | :--- | display indication, an overload condition will be displayed without damaging the Multimeter.

3-11. AC Voltage Measurements.

To avoid possible damage to the Multimeter circuitry, the ac input voltage must not exceed 707 Vrms .

3-12. Set the Multimeter front panel controls as follows:

$$
\begin{aligned}
& \operatorname{DC} / \mathrm{AC}(\mp \sim) . \ldots \\
& \text { VOLTS (V) . . . } \\
& \text { AUTO HOLD AUTO (OUT) } \\
& \text { AMPS (A) AND } k \Omega . \ldots \text {. (OUT) }
\end{aligned}
$$

3-13. Connect test leads from the Multimeter $V \Omega$ (HI) and COM (LOW) connectors to the voltage under test as shown in Figure 3-3.

Figure 3-3. AC Voltage Measurement.

3-14. DC Voltage Measurements.

CAUTION\}

To avoid possible damage to the Multimeter circuitry, the dc input voltage must not exceed 1000 Vdc .

3-15. Set the Multimeter front panel controls as follows:
$\mathrm{DC} / \mathrm{AC}(\sim \sim)$ $=$ (OUT)
VOLTS (V)
AUTO HOLD
AUTO (OUT)
AMP (A) AND $\mathrm{k} \Omega$.
(OUT)

3-16. Connect test leads from the Multimeter $V \Omega(\mathrm{HI})$ and COM (LOW) connectors to the voltage under test as shown in Figure 3-4.

Figure 3-4. DC Voltage Measurement.

3-17. AC Current Measurements.

To avoid possible damage to the Multimeter, do not allow the voltage across the Amps to COM input terminals to exceed 250 V at any time.

3-18. Set the Multimeter front panel controls as follows:

$$
\begin{equation*}
\mathrm{DC} / \mathrm{AC}(=\sim) \tag{}
\end{equation*}
$$

AMPS (A)
AUTO HOLD
AUTO (OUT)
. VOLTS (V) AND k Ω
. (OUT)

3-19. Connect test leads from the Multimeter \mathbf{A} and COM connectors to the current under test as shown in Figure 3-5.

3-20. DC Current Measurements.

To avoid possible damage to the Multimeter, do not allow the voltage across the Amps to COM input terminals to exceed 250 V at any time.

Figure 3-5. AC Current Measurement.
3-21. Set the Multimeter front panel controls as follows:
$\mathrm{DC} / \mathrm{AC}(\bar{\sim} \sim)$
AMPS (A) . .
AUTO HOLD.
(OUT)
VOLTS (V) AND k Ω.
(OUT)
3-22. Connect test leads from the Multimeter A and COM to the current under test as shown in Figure 3-6.

Figure 3-6. DC Current Measurement.

3-23. Resistance Measurements.

3-24. Set the Multimeter front panel controls as follows:

$$
\begin{equation*}
\mathrm{k} \Omega \tag{IN}
\end{equation*}
$$

AUTO HOLD AUTO (OUT)
VOLTS (V) AND AMP (A) . (OUT)
DC/AC $(=\sim \sim)$. Either

3-25. Connect test leads from the Multimeter $\mathrm{V} \Omega$ and

Figure 3-7. Resistance Measurement.

COM connectors to the resistance under test as shown in Figure 3.7.

3-26. Input Protection Fuses.

3-27. The AMPS input is protected by a 1.5 A 250 V fuse and the OHMS input is protected by a 32 mA 250 V fuse. These fuses are located behind the sliding Input Panel as shown in Figure 3-8, (1), (12), (13). Replacement of these fuses is accomplished by the following procedure:
a. Slide the Input Panel firmly toward the back of the Multimeter until the fuses protrude.

(1) DISPLAY: Five section, 7 segment LED readout.
(2) POWER ON Switch: Switches instrument power ON. Power is ON when the pushbutton is depressed.
(3)

AC/DC Selector Switch: Selects ac or dc mode for either voltage or current measurements. The instrument is in ac mode when the pushbutton is depressed.
(4)

VOLTAGE Selector Switch: Selects voltage function for either ac or dc voltage measurements.
(5) AMPS Selector Switch: Select amps function for either ac or dc current measurements.
$k \Omega$ Selector Switch: Selects ohms function for measuring resistance. Display reads in kilohms.

AUTO/HOLD Selector Switch: Select automatic ranging mode or hold mode. Hold mode is set with the switch depressed.

Volts/Ohms Input Terminal: Used in conjunction with the COM terminal (11) for measuring ac voltage, dc voltage, or ohms.

Ohms Input Protection Fuse: 32 mA fuse located behind the sliding input panel (13)

COM Input Terminal: Common terminal for ac/dc volts, $\mathrm{ac} / \mathrm{dc}$ amps and ohms measurements.
(11)

Amps Input Terminal: Used in conjunction with the COM terminal (10) for measuring ac or dc amps.

Amps Input Protection Fuse: 1.5 amp fuse located behind the sliding input panel (13)
(13)

Sliding Input Panel: In the front (left) position this panel allows access to the three input terminals (V $\Omega, C O M, A$). When in the back (right) position the input protection fuses (1) and (12) can be removed and replaced.

Figure 3-8. Location of Controls and Connectors.
b. Remove and replace faulty fuse.

To avoid possible damage to the Multimeter, insure that the correct fuses are used for replacement in the Input Protection circuit.
c. Push fuses firmly into their receptacles and slide the Input Panel forward to hold fuses in place and align the input jacks.

NOTE

Multimeter test lead banana plugs can be used as a tool to hold the fuses in place while sliding the Input Panel forward.

3-28. AC Line Fuse Replacement.

3-29. Refer to Section V for instruction on the replacement of ac line fuse.

3-30. SEMICONOUCTOR JUNCTION MEASUREMENTS.

3-31. Due to the low output current on the higher ohms ranges, the Multimeter must be downranged to the lowest ohms range in order to measure semiconductor junction (diode) resistance. This can be easily accomplished by the following procedure:
a. To measure the forward resistance, connect the cathode of the diode to the COM terminal and the anode to the $\Omega \mathrm{V}$ terminal.
b. Press the A pushbutton. This causes the instrument to downrange.
c. Press the $k \Omega$ pushbutton and read the forward resistance on the display.
d. To measure the reverse resistance of a diode, reverse the input connections to the diode and repeat Steps b and c.

SECTION IV

THEORY OF OPERATION

4-1. INTRODUCTION.

$4-2$. This section contains the theory of operation for the Model 3476A Multimeter. Included are simplified block diagrams and descriptions of the function of each block.

4-3. Simplified Block Diagram Description (Figure 4-1).

4-4. Signal Conditioning. The signal conditioning block consist of the input terminals, overload protection fuses and functional switching. Overload protection fuses provide protection to the Multimeter circuitry during ac or dc amps measurements and during ohms measurements.

4-5. Ohms Current Source. The ohms current source provides current for ohms measuremen's.

4-6. Input Amplifier. The input amplifier provides input range switching for all five Maltirneter functions. This is accomplished by using FET switches to select different gain
levels for the input amplifier. The FET switches are controlled by the Logic Controller.
4.7. AC Converter. The AC Converter is an average responding detector used in ac voltage and ac current measurements. The output of the AC Converter is a dc voltage equal to the rms value of the ac input voltage. In the ac current mode, the input voltage to the converter is the ac voltage drop across the 1 ohm current shunt (R45).

4-8. Integrator, Polarity/Zero Detector, Logic Control and Display. The Model 3476A uses the dual slope integration technique. The Integrator coupled with the Polarity/Zero Detector and the Logic Controller converts the signal from the conditioning circuits to a digital representation of the input measurement. This digital representation is viewed on the 3476A Display.

4-9. Power Supply. The Power Supply is a double regulated de supply which provides +6 V dc. -4 V dc and +1 V dc.

Figure 4-1. Simplified Block Diagram.

WARNING

These servicing instructions are for use by qualified service personnel only. To avoid electrical shock, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so.

Table 5-1. Required Test Equipment.

Instrument Type	Characteristics	Recommended Model
Digital Multimeter	DC Volts: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$ Accuracy: .05\% Input Resistance: $\geqslant 10 \mathrm{M} \Omega$ AC Volts: $.1 \mathrm{~V}, 1 \mathrm{~V}$ ranges Accuracy: .5\% Input Resistance: $10 \mathrm{M} \Omega$	-hp- 3465A
DC Standard	Output: . 1 mV to 1000 V Accuracy: .02\%	-hp-740B
AC Calibrator/High Voltage Amplifier	Frequency: 45 Hz to 10 kHz Output: 10 mV to 1000 V Accuracy: 0.1\%	-hp-745A/746A
Meter Calibrator	Output: 1 A Accuracy: 0.1\%	-hp- 6920B
Electronic Counter	Frequency: 10 kHz Accuracy: 0.01\%	-hp-5300A/5302A
Power Supply	Output: $5 \mathrm{~V}, 1 \mathrm{~A}$	-hp-6294A
Resistive Decade Box	Ranges: $10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega$, $10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$ Steps Accuracy: .05\%	General Radio Model GR $1433 Z$
Resistors	$\begin{aligned} & 10 \mathrm{M} \Omega \pm 0.1 \% \\ & 1 \mathrm{M} \Omega \pm 0.1 \% \\ & 300 \mathrm{k} \Omega \pm .1 \% \\ & 1 \mathrm{k} \Omega \pm .1 \% \\ & 10 \mathrm{~K} \pm .1 \% \end{aligned}$	-hp- Part No. 0698-8194 -hp- Part No. 0698-6369 -hp- Part No. 0698-6332 -hp. Part No. 0698-3491 .hp- Part No. 0698-4157

SECTION V
 maintenance

5-1. INTRODUCTION.

5-2. This section of the manual contains Performance Tests and Adjustment Procedures. The Performance Tests are designed to verify the critical specifications listed in Table 1-1. A Performance Test Card is at the end of this section for recording the results of the performance tests.

5-3. Test Equipment Required.

5-4. Equipment required for the performance tests and adjustment procedures is listed in Table 5-1, Recommended Test Equipment. Equipment that satisfies the critical specifications given in the table may be substituted for a recommended model.

PERFORMANCE TESTS

5-5. PERFORMANCE TESTS.

NOTE

Performance tables are included for both 90 day and 1 year calibration cycles. Be sure to use the appropriate table, depending on the calibration cycle to be used for your instrument.

5-6. DC Voltmeter Accuracy Test.

5-7. A DC Standard is required for this test.
a. Set the Multimeter to measure dc volts. Short the input terminals and check for a display of zero ± 1 count.
b. Connect the DC Standard to the $\mathrm{V} \Omega$ and COM terminals.
c. Check all the ranges listed in Table 5-2 for the tolerances indicated. Be sure to test for the appropriate calibration cycle.

To avoid possible damage to the Multimeter circuitry, the dc input voltage must not exceed 1000 Vdc .

5-8. DC Ammeter Accuracy Test.
5-9. This test requires the use of a Power Supply and a DC Ammeter.
a. Connect the equipment as shown in Figure 5-1.
b. Set the DC Ammeter to the 1000 mA range.
c. Set the Multimeter function to DC A. Adjust the Power Supply output for an indication of 900 mA on the DC Ammeter. The Multimeter should indicate within the limits listed in Table 5-3.

Table 5-2. DC Voltmeter Accuracy Test.

Range	DC Standard Output	Test Limits	
		90 Day Calibration Cycle	1 Year Calibration Cycle
. 11 V	-. 010 V	-. 0097 to - . 0103	-. 0097 to - . 0103
	. . 100 V	- . 0995 to - . 1005	-. 0994 to - . 1006
	$+.100 \mathrm{~V}$	+.0995 to +. 1005	+.0994 to +. 1006
1.1 V	- 1.00 V	-. 996 to - 1.004	-. 994 to - 1.006
11 V	- 10.00 V	- 9.96 to - 10.04	- 9.94 to 10.06
	+10.00 V	+9.96 to + 10.04	+9.94 to +10.06
1100 V	$+1000 \mathrm{~V}$	+995 to + 1005	+993 10 + 1007

Figure 5-1. DC Ammeter Accuracy Test.

Table 5-3. DC Ammeter Accuracy Test.

Range	Current	90 Day Calibration Limit	1 Year Calibration Limit
1.1 A	900 mA	.891 thru .909	.889 thru .911

5-10. Ohms Accuracy Test.

5-11. A precision resistance decade box will be required for the following test. It should have an accuracy of $.05 \%$.
a. Set the FUNCTION switch to $\mathrm{k} \Omega$ and connect a short between the V / Ω terminal and COM . The Multimeter should indicate zero ± 1 count.
b. Remove the short and connect the equipment as shown in Figure 5-2. Use large wire and connect the decade box as close as possible to the Multimeter. When checking the $11,000 \mathrm{k} \Omega$ range, connect the COM terminal to a good earth ground.
c. Check all ranges listed in Table 5-4 for the tolerances indicated. Use the resistance decade box to supply the standard resistances.

Figure 5-2. Ohms Accuracy Test.

5-12. AC Voltage Accuracy Test.

5.13. An AC Calibrator and High Voltage Amplifier will be required for this test.

To avoid possible damage to the Multimeter circuitry, the ac input voltage must not exceed 707 V rms.
a. Set the Multimeter to AC•V. Connect the AC Caiibrator between the $V \Omega$ and $C O M$ terminals. Be sure to connect the Calibrator sense leads.
b. Check the ranges and frequencies listed in Table 5-5 for the tolerances indicated on all ranges through 110 V .

WARNING

Use extreme care when checking the following ranges. Establish all connections before turning on the high voltage source. When the tests are completed, turn off the high voltage before disconnecting any cables or test leads.
c. To check the 1100 V range, connect the AC Calibrator and High Voltage Amplifier to the Multimeter and check the tolerances indicated for the 1100 V range.

Table 5-4. Ohms Accuracy Test.

Range (k Ω)	Standard Resistance	Test Limits $(\mathrm{k} \Omega)$		
		1 Year Calibration Cycle		
1.1		.098 thru .102	.098 thru . 102	
11	$1 \mathrm{k} \Omega$.994 thru 1.006	.992 thru 1.008	
110	$10 \mathrm{k} \Omega$	9.94 thru 10.06	9.92 thru 10.08	
1100	$100 \mathrm{k} \Omega$	99.6 thru 100.4	99.4 thru 100.6	
11,000	$1000 \mathrm{k} \Omega$	996 thru 1004	994 thru 1006	
	$10,000 \mathrm{k} \Omega$	9940 thru $10,060 \mathrm{k} \Omega$	9920 thru $10.080 \mathrm{ks} \Omega$	

Table 5.5. AC Voltage Accuracy Test.

Range	AC Standard Output	Test Frequency	Test Limits (V)	
			90 Day	1 Year
. 11 V	$\begin{aligned} & .003 \mathrm{~V} \\ & .01 \mathrm{~V} \\ & .1 \\ & \hline .01 \mathrm{~V} \\ & .1 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \mathrm{~Hz} \\ & 45 \mathrm{~Hz}, 2 \mathrm{kHz} \\ & 45 \mathrm{~Hz}, 2 \mathrm{kHz} \\ & 5 \mathrm{kHz} \\ & 5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$.0023 to . 0037 .0091 to . 0108 .0978 to . 1022 .0088 to . 0112 .0943 to . 1057 .0071 to 0129 .0727 to 1073	.0021 to . 0038 .0090 to 0.0109 .0975 to . 1025 .0087 to 0.0113 .0940 to . 1060 .0069 to .0130 .0724 to .1076
1.1 V		$\begin{aligned} & 45 \mathrm{~Hz}, 2 \mathrm{kHz} \\ & 5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$	$\begin{array}{ll} .980 & \text { to } 1.019 \\ .963 & \text { to } 1.037 \\ .909 & \text { to } 1.091 \end{array}$.977 to 1.023 .960 to 1.040 .905 to 1.094
11 V		$\begin{aligned} & 45 \mathrm{~Hz}, 2 \mathrm{kHz} \\ & 5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$	9.80 to 10.19 9.63 to 10.37 9.09 to 10.91	9.77 to 10.23 9.60 to 10.40 9.05 to 10.94
110 V	$\begin{aligned} & 100 \mathrm{~V} \\ & 100 \mathrm{~V} \\ & 100 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 45 \mathrm{~Hz}, 2 \mathrm{kHz} \\ & 5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$	98.0 to 101.9 96.3 to 103.7 90.9 to 109.1	97.7 to 102.3 96.0 to 104.0 90.5 to 109.4
1100 V		$\begin{aligned} & 45 \mathrm{~Hz}, 2 \mathrm{kHz} \\ & 5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$	685 to 715 672 to 728 633 to 767	682 to 717 669 to 730 630 to 770

5-14. AC Ammeter Accuracy Test.

a. Connect the equipment as shown in Figure 5.3.
b. Set the AC Ammeter to the 1000 mA range.
c. Set the Multimeter FUNCTION to AC A. Adjust the Meter Calibrator output for an indication of 900 mA on the AC Ammeter. The Multimeter should indicate within the limits listed in Table 5-6.

Figure 5-3. AC Ammeter Accuracy Test.

Table 5-6. AC Ammeter Accuracy Test.

Range	Current	90 Day Calibration Limit	1 Year Calibration Limit
1.1 A	900 mA	.878 thru .922	.875 thru .925

5-15. AC Common-Mode Rejection Test.

$5-16$. An AC Calibrator and a 1 kilohm $\pm 1 \%$ resistor are required for this test.
a. Connect a 1 kilohm resistor between the V / Ω and COM Multimeter terminals.
b. Set the Multimeter FUNCTION to AC V.
c. Connect the AC Calibrator HI output terminal to the Multimeter as shown in Figure 54.
d. Set the $A C$ Calibrator frequency to the ac line frequency being used.
e. Set the AC Calibrator output to 100 V rms.
f. The Multimeter should indicate $\leqslant 10 \mathrm{mV}$ rms.

5-17. DC Common-Mode Rejection Test.

5-18. An AC Calibrator, an electronic counter, and a 1 kilohm $\pm 1 \%$ resistor are required for this test.
a. Connect a 1 kilohm resistor between the V / Ω and COM Multimeter terminals.
b. Set the Multimeter FUNCTION to DC V.
c. Connect the AC Calibrator HI output terminal to the Multimeter as shown in Figure 5-4.
d. Set the $A C$ Calibrator frequency to the ac line frequency being used (50 Hz or $60 \mathrm{~Hz} \pm .1 \%$).
e. Set the AC Calibrator output to 100 V rms.
f. The Multimeter should indicate $\leqslant 1.5 \mathrm{mV}$ peak.

Figure 5-4. Common-Mode Rejection Test.

WARNING

These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so.

Wear clean cotton gloves when working on the main assembly circuit board or switches. Contamination or fingerprints on high impedance points on the main assembly will degrade the performance of the instrument. Nylon gloves should not be worn due to the possibility of static charge buildup.

$\left\{\begin{array}{c}\text { CAUTION\} } \\ \text { Quwur }\end{array}\right.$

The hybrid circuits in the 3476 A may be permanently damaged by static discharge from a hand or tool when the 3476A is disassembled. The procedures below must be followed to prevent possible damage.

1. Ground the hand while disassembling and working on the 3476 A. Conductive wristbands (-hp- Part No. 00970-67900) are available for this purpose.
2. Attach the 3476 com terminal to earth ground. Touch all tools to earth ground to remove static charges before using them on the 3476A.
3. Use a soldering iron with a grounded tip.

PRE-AOJUSTMENT PROCEOURES.

A. Oisassembly Instructions.

1. Remove the Multimeter Power Cord.
2. With the Multimeter in the inverted position, remove the two screws in the bottom cover.
3. Remove the bottom cover.
4. Remove the internal shield.
5. Remove the Input panel and Input fuses.
6. Connect a jumper across the Amps input protection
fuse holder and across the Ohms input protection fuse holder.

B. Turn-On Instructions.

1. Connect the Multimeter TP $\boldsymbol{\nabla}$ to earth ground.
2. An external 20 V dc power supply can be used to provide instrument power. Connect the power supply across C15 (500 microfarad 50 V dc electrolytic). Connect positive power supply lead to the (+) end of C15 and the negative power supply lead to the other end.
3. If external power supply is not available, use the ac power cord and the appropriate ac line voltage as specified by the option decal attached to the instrument.

5-19. ADJUSTMENT PRDCEDURE.

5-20. Refer to Figure 5.5 for the following adjustments.

NOTE

The resistors used in the adjustment procedure must be floating.

5-21. Power Supply Adjustment.

a. Connect a 1 kilohm resistor to the V / Ω and COM terminals. Set the FUNCTION to $k \Omega$ and ensure that the HOLD pushbutton is out.
b. Connect a DC Digital Voltmeter between +6 V test point and ground.
c. Adjust R47 for 5.94 to 6.06 V dc on the Digital Voltmeter.
Δ_{1} d. If it is not possible to adjust within this limit, change the adjustment range of R 47 by replacing or removing JMPR 7. Removing JMPR 7 will allow a more positive adjustment of TP +6 .

5-22. Substrate Adjustment.

a. A 1 kilohm resistor should still be connected between the V / Ω and $C O M$ terminals. Connect a jumper between the +1 test point and TP G.
b. Ensure that the Multimeter downranges to the $1.1 \mathrm{k} \Omega$ range and adjust R 42 for an indication between .078 and .082 on the display. If these limits cannot be obtained, an indication of 000 to 078 is acceptable if R42 is fully counterclockwise.

5-23. Input Amplifier Zero Adjustment.

$5-24$. The following adjustment requires that the Multimeter be set to a DC V function, 110 V range with no input applied. Since the Multimeter is autoranging, it is necessary to force it to the 110 V range and then use the HOLD function to keep it there.
a. Remove the jumper connected between +1 and TP G in the previous step.
b. Set the function to $\mathrm{k} \Omega$ and connect a 300 kilohm resistor between the Ω / V and COM terminals. When the Multimeter autoranges to the 1.1 megohm range, push the HOLD pushbutton in. This is equivalent to the 110 V range.
c. Change the Multimeter FUNCTION to DC V. Remove the 300 kilohm resistor from the input and replace it with a short.
d. Connect a jumper between U1 pin 12 and analog ground (TP \triangleright).
e. Connect a DC Digital Voltmeter to Test Point A. Adjust R38 for an indication between. 1 and +1 mV dc on the Digital Voltmeter.

NOTE

The following adjustment requires the same test setup. Do not change the setup or FUNCTION settings.

5-25. Integrator Amplifier Zero Adjustment.

5-26. This test requires the same test setup and functions as the previous adjustment.
a. Adjust R10 for a display equal to $\cdot 1000$ times the value at Test Point A in the previous adjust ment, ± 1 count.

Example:
Voltage at $\mathrm{A}=.2 \mathrm{mV}$
$.2 \mathrm{mVx}(-1000)=-00.2 \mathrm{~V}$ Display
b. If R10 does not have sufficient range for this adjustment, remove JMPR 6 and repeat Step a. If JMPR 6 has already been removed, it may be necessary to replace it.

NOTE

If JMPR 6 is open, a more positive voltage can be obtained at TPA by adjusting the Integrator Offset Adj. (R10).

5-27. + DC Volt Gain Adjustment.

a. Remove the DC Digital Voltmeter and jumper between U1 pin 12 and analog ground. Release the HOLD function, and remove the short from the input.
b. Set the Multimeter FUNCTION to DC V. Apply an input of +1.000 V dc . The Multimeter should autorange to the 1.1 V range for this adjustment.
Δ_{1} c. Adjust R47 for a display of 1.000 . If R47 does not have sufficient range, change the adjustment range of R47 by replacing or removing JMPR 7. Removing JMPR 7 will allow a more positive adjuistment of $\mathrm{TP}+6$.

5-28. - DC Volt Gain Adjustment.

a. Leave the Multimeter FUNCTION set to the DC V and HOLD function out. Change the input from +1.000 to - 1.000 .
b. Adjust R14 for a Multimeter display of -1.000 V dc .

NOTE

Leave the -1.00 volt source connected for the following adjustment.

5-29. Clock Frequency Adjustment.

a. Set the Multimeter FUNCTION to DC V, HOLD Function out and -1.000 volts connected to the input.
b. Connect an electronic counter to test point D. If the Multimeter is to be operated from a 60 Hz line frequency, adjust R43 for an indication of 954 Hz on the counter. For 50 Hz line operation, adjust R43 for 795 Hz .

5-30. Ohms Adjustment.

a. Connect a jumper wire across the fuse that protects the V / Ω terminal (F2).
b. Set the Multimeter FUNCTION to $\mathrm{k} \Omega$ and connect a 1 megohm $\pm 0.1 \%$ resistor to the input.
c. Adjust R15 for a display of 999 to 1001 .
d. Change the input resistor to 10 kilohm, $\pm 0.1 \%$.
e. Adjust R16 for a display of 10.03 to 10.04 .
f. Remove the jumper from the fuse.

NOTE

The resistance of the fuse is a part of the instrument calibration. This is why the display is adjusted high in Step e, with the fuse shorted.

5-31. AC Converter Gain and Zero Adjustment.

a. Disconnect the previous setup and set the Multimeter FUNCTION to ACV.

NOTE

To go to the 1.1 V range and HOLD, set the Multimeter FUNCTION to V AC, and apply 0.3 V to the input. When on the 1.1 V range, push the HOLD pushbutton in.
b. Apply a 1.0 V ac signal at 100 Hz to the input.
c. Adjust R48 for a display between .995 and .997 .
d. Change the input level to 0.100 V ac at 100 Hz . Adjust R9 for a display between .099 and .100 .
e. Change the input back to 1.00 V ac at 100 Hz . Adjust R48 for a display between .995 and .997 .
f. Change the input back to 0.100 V ac at 100 Hz . Adjust R9 for a display between . 099 and .100 .

5-32. AC High Frequency Adjustment (. 11 V range).

a. Set the Multimeter FUNCTION to AC V.
b. Apply a 0.1 V ac signal at 5 kHz to the input. Release the HOLD function and allow the Multimeter to autorange to the 1 V range.
c. Adjust C4 for a display between .1000 and .1010 .

5-33. Changing the Power Line Options.

$5-34$. The Multimeter is capable of operating at any of the line voltages and frequencies listed in Table $1-3$, depending upon how the instrument is wired internally. The instrument contains a label identifying the line voltage and frequency for which it is wired. If the instrument is to be operated at a line voltage and frequency other than the one for which it is wired, it is necessary to change the position of jumper wires in the power transformer primary circuit. The clock frequency will have to be readjusted if a different line frequency is used.

NOTE

If the jumper wires are changed, be sure to attach a new label to the instrument, identifying the new configuration.
$5-35$. Figure $7-2$ shows the position of all jumper wires for each line voltage. The component locator drawing of the assembly identifies the position of each numbered jumper.

WARNING

Before changing the power supply jumpers disconnect ac power from the instrument. Power supply jumpers should be changed by qualified service personnel only.

Hewlett-Packard Model 3476 A					
Multimeter Serial No. \qquad				Tests Performed By \qquad Date \qquad	
PERFORMANCE TEST CARD					
Paragraph Number	Test		Test Limit		Test Result
			90 Day Calibration Cycle	Calibra	
5.6	$\begin{aligned} & \text { DC Voltmeter Accurač } \\ & .11 \mathrm{VFange} \\ & \because .010 \mathrm{~V} \\ & \because .100 \mathrm{~V} \\ & +.100 \mathrm{~V} \\ & 1.1 . \mathrm{V} \text { Range } \\ & +1.0 \mathrm{~V} \\ & 11 \mathrm{~V} \text { Range } \\ & -10 \mathrm{~V} \\ & +10 \mathrm{~V} \\ & 110 \mathrm{~V} \text { Range } \\ & -100 \mathrm{~V} \\ & 1100 \mathrm{~V} \text { Range } \\ & +1000 \mathrm{~V} \\ & \hline \end{aligned}$		-.0995 to - .1005 +.0995 to +. 1005 +.996 to +1.004 9.96 to - 10.04 +9.96 to +10.04 99.5 to - 100.5 +995.0 to +1005.0	- . 0097 to - 0103 -.0994 to - .1006 +.0994 to +.1006 +.994 to +1.006 - 9.94 to - 10.06 +9.94 to +10.06 - 99.3 to - 100.7 +993 to +1007.0	\qquad
5.8	DC Ammeter Accuracy 900 mA		. 891 to. 909	. 889 thru .911	
5-10	Ohms Accuracy $1.1 \mathrm{k} \Omega$ Range $.1 \mathrm{k} \Omega$ $1.0 \mathrm{k} \Omega$ $11 \mathrm{k} \Omega$ Range $10 \mathrm{k} \Omega$ $110 \mathrm{k} \Omega$ Range $100 \mathrm{k} \Omega$ $1100 \mathrm{k} \Omega$ Range $1000 \mathrm{k} \Omega$ $11,000 \mathrm{k} \Omega$ Range $10,000 \mathrm{k} \Omega$.0980 to 102 994 to 1.006 9.94 to 10.06 99.6 to 100.4 996 to 1004 9940 to 10,060	.098 thru .102 .992 thru 1.008 9.92 thru 10.08 99.4 thru 100.6 994 thru 1006 9920 thru 10,080	
12			0023 to 0037 .0091 to 0.0108 .0978 to . 1022 .0943 to 0.1057 .0071 to .0129 .980 to 1.019 .963 to 1.037 .909 to 1.091 9.80 to 10.19 9.63 to 10.37 9.09 to 10.91 98.0 to 101.9 96.3 to 103.7 90.9 to 109.1 685 to 715 $\begin{array}{ll}672 & \text { to } 228 \\ 633 & \text { to } 767\end{array}$	0021 to . 0038 .0090 to . 0109 .0975 to . 1025 0040 to. 0113 .0069 to 0130 .0724 to .1076 .977 to 1.023 $\begin{array}{ll}.960 & \text { to } 1.040 \\ .905 & \text { to } 1.094\end{array}$ 9.77 to 10.23 9.60 to 10.40 9.05 to 10.94 97.7 to 102.3 96.0 to 104.0 90.5 to 109.4 682 to 717 669 to 730 630 to 770	\bar{Z} \bar{Z} \bar{Z} \bar{Z} \bar{Z} \bar{Z} \bar{Z}

SECTION VI REPLACEABLE PARTS

6-1. INTROOUCTION.

6-2. This section contains information for ordering replacement parts. Table 6-3 lists parts in alphameric order of their reference designators and indicates the description, hpPart Number of each part, together with any applicable notes, and provides the following:
a. Total quantity used in the instrument (Qty column). The total quantity of a part is given the first time the part number appears.
b. Description of the part. (See list of abbreviations in Table 6-1.)
c. Typical manufacturer of the part is a five-digit code. (See Table 6-2 for list of manufacturers.)
d. Manufacturer's part number.

6-3. Miscellaneous parts are listed in Table 6-3 following their respective assemblies. General miscellaneous parts are listed at the conclusion of Table 6-3.

6-4. OROERING INFORMATION.

6-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office. (See Appendix A for list of office locations.) Identify parts by their Hewlett-Packard part numbers. Include instrument model and serial numbers.

6-6. NON-LISTEO PARTS.

6.7. To obtain a part that is not listed, include:
a. Instrument model number.
b. Instrument serial number.
c. Description of the part.
d. Function and location of the part.

6-8. PARTS CHANGES.

6-9. Components which have been changed are so marked by one of three symbols; i.e., Δ, Δ with a letter subscript, e.g., Δ_{a}, or Δ with a number subscript, e.g., Δ_{10}. A Δ with no subscript indicates the component listed is the preferred replacement for an earlier component. A Δ with a letter subscript indicates a change which is explained in a note at the bottom of the page. A Δ with a number subscript indicates the related change is discussed in backdating (Section VIII). The number of the subscript indicates the number of the change in backdating which should be referred to.

6-10. PROPRIETARY PARTS.

6-11. Items marked by a dagger (\dagger) in the reference designator column are available only for repair and service of Hewlett-Packard instruments.

Table 6-1. Standard Abbreviations.

ABBREVIATIONS						
${ }^{\text {Ag }}$	Hz hertz (eycle (s) per socond)	NPD	, negative positive zero	\$1..	slide
A)				(zero temperature coefficiont)	SPDT	single pole double throw
A		inside diameter		... nanosecond (s) $=10^{-9}$ seconds	SPST	single pole single throw
Au	impd.	. . impregnated	nsr not separately replaceable		
c	inced	incendescent			Ta	.tentalum
cer		insulationiad	obd	Onmis	TC	temperature cosificient
coel	$\mathrm{k} \Omega$.	. . kilohm(s) $=10^{+3}$ ohms	DDourside diameter	tog^{2}	dioxide
com	kHz_{2}	\ldots kilohertz $=10^{+3}$ mertz			rol	. tolerance
comp				. . . peak	trim	. trimmer
conn		. inductor	pApicosmpere(s)	TSTA	. . transistor
	lin	.lineer raper	 printed circuit		
dep	109 logmithmic taper	pFpicoterad(s) 10^{-12} farsods	V	
DPDT			piv. peak inverse voltage	vacw	ng current working volisge
DPST	ma	milliampere(s) $=10^{-3}$ amperes	9/o part of	var. variable
	MHz_{2}	. megehertz $=10^{+6}$ hertz	pos	. . position(s)	vodew	ct current working voltage
elect	$\mathrm{m} \Omega$, T	. megohmis) 10^{+66} ohms	poly polvatyrene		
encap	meit fim	. .metel film	pot	. . potentiomater	w	. wett(s)
	mfr	- menufacturer	p-ppeak-ro-peak	w/	. . . with
	ms	.millisocond	ppon	...persts per million	wiv	working inverse voltage
FET	mig	- - moynting	proc	. . precision themperature coeffient,	w/o without
fxd	mV	milliwott(s) $=10^{-3}$ volts		long term stability and/or toterance)	 wirewound
	$\mu \mathrm{F}$ microtarad(\$)				
Gens	microsecond (s)	R	. . . resistor		
CHz_{2}	μ	. mierovotis) $=10^{-6}$ wolts	Rn	. modium		
gd	my	. Mylar(B)	1 ms .	. root-mean square		value selected at factory.
Gid.		nenoemper oisal $=10^{-9}$ amperes	rot	. .rotery		wan (part may be omitted) derd type number asioned
	NC normelly closed	Se	.selenium		selected or special type
H	Ne	.meon	soct	. section(s)		
Hg_{8}	NO	. . normally open	Si	. silicon		(A) Dupont demours
		DESIGN	TORS			
A	FL	. filtor	0	transistor	TS	. . . terminal strip
8	HR	heater	OCR	transistor diode	 microcircuir
$8 T$	IC	. integrated circuit	R ressistor		, neon bulb,phorocell. etc.
C	J	. . . jeck	RT thermistor	w cable
CR	K	. . reloy	5 switch	\times	. . .socket
OL	L	inductor	T vanstormer	$\times \mathrm{OS}$. .lampholder
DS	M	, meter	T8	. . terminal board	XF	fusholder
E	MP	, mechanical pawt	TC	. . .thermocouple	V	. crystal
F		.plug	TP	. test point		. . . network

Table 6-2. Code List of Manufacturers.

Mfr No.	Description	Address	Zip Code
01121	Allen-Bradley Co	Milwaukee, WI	53212
03888	Pyrofilm Corp	Whippany, NJ	07981
04713	Motorola Semiconductor Products	Phoenix, AZ	85008
07088	Kelvin Electric Co	Van Nuys, CA	91401
07263	Fairchild Semiconductor Div	Mountain View, CA	94040
07716	TRW Inc Burlington Div	Burlington, IA	52601
16299	Corning Gl Wk Etec Cmpnt Div	Raleight, NC	27604
24546	Corning Glass Works (Bradford)	Bradford, PA	16701
27014	National Semiconductor Corp	Santa Clara, CA	95051
28480	Hewlett-Packard Co Corporate HO	Palo Alto, CA	94304
56289	Sprague Electric Co	North Adams, MA	01247
71400	Bussman Mfg Div of McGraw-Edison Co	St. Louis, MO	63017
72136	Electro Motive Mfg Co Inc	Willimantic, CT	06226
74970	Johnson E F Co	Waseca, MN	56093
75915	Littelfuse Inc	Des Plaines, IL	60016

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
	03476-66511	1	P.C ASSEMBLY, MAIM 80ARO	28480	03476-66511
Al ai	03476-69511	1	REGUILT EXCHANGE PC ASSEMBLY	28480	03476-69511
AlCl	0160-3731	1	CAPACITOR-FXO . 510 F -208 1000wVOC CER	28480	0160-3731
AlC 2	0180-0106	2	CAPACITOR-FXO SOUF 6208 GVOC TA	56289	1500606×000682
AlC3 Δ_{1}	0160-3847	4	CAPACITOR-FXD . $01 \mathrm{UF}+80-20825 \mathrm{HVOC}$ CER	28480	0160-3847
${ }_{\text {AlC4 }}$	$0121-0452$	1	CAPACITOR-V TRMR-AIR $1.33 / 5.4 \mathrm{PF}$ 250V	74970 56289	187-0103-005
AlCs	0180-0291	1	CAPACITOR-FXO 1UF+-102 35vDC TA	56289	$1500105 \times 9035 \mathrm{~A} 2$
Alct	0180-0228	2	CAPACITOR-FXD 22UF-108 15VDC TA	56289	1500226×901582
Alct	0140-0200	1	CAPACITOR-FXO 390PF t-58 30DUVOC MICA	72136	DM15F391J0300wVICR
Alcs	0160-0577	1	CAPACITOR-FXO $1.80 \mathrm{BLF}+208$ SOUVDC MET	28480 56299	
Alcs	0 180-0228		CAPACITOR-FXO 22UFF-102 15VDC TA	56289	1500226×901582
AlC $10 \Delta_{1}$	0160-3847		CAPACITOR-FXD .OIUF $\rightarrow 80$-208 25WVOC CER	28480	0160-3847
Alc 11	0160-2150	1	CAPACITOR-FXD 33PF 4 -58 300nvoc mica	28480 56289	$0160-2150$ 1500885×000642
A1C12	$0180-1701$	1	CAPACITOR-FXD 6. BUF+-208 6VDC TA	56289 56289	1500685×000642 1500606×000682
${ }^{\text {A ILC }} 13$	$0180-0106$ $0160-2204$			56289 28480	${ }_{\text {1 }}^{1500606 \times 000682}$
Alc Alcis	${ }^{0} 0180-2804$	1		28480 56289	0160-2204 500 L 47 H 050 FK 7
A1C16	0150-0071		CAPACITOR-FXD 400PF + 581000 WVOC CER	28480	0150-0071
A1C17. C18 ${ }^{1}$	0160-3847		CAPACITOR-FXD . O1UF *80-208 25 WVDC CER	28480	0160-3847
AIC19	0180-0309		CAPACITOR-FXO 4.7UF+-20\% 10VDC TA	56289	1500475x0010A2
AlC20	0160-0153		CAPACITOR-FXD 1000PF +1-10\% 200WVDC	56289	292910292
AlC22	0160-3847		CAPACITOR-FXD . O1UF +80-20\% 25WVDC CER	28480	0160-3847
alcri	1902-3054	2	OIDDE-2NR 3.65V 58 DO-7 PD=.4W TL=-. 0558	04713	S2 $10939-56$
A1CR2	1901-0025	3	DIDOE-GEN PRP LOOV 200NA D0-7	28480	1901-0025
alcrs	1901-0025		DIODE-GEN PRP 100V 20DNA D0-7	28480	1901-0025
AICR4	1901-0025		DIODE-GEN PRP 100V 200NA 00-7	25480	1901-0025
alcrs	1901-0376	2	DICDE-GEN PRP 35V SONA DO-7	28480	1901-0376
alcas	1901-0376		O100E-GEN PRP 35 V 50 NA OO-7	28480 04713	1901-0376 Sl
AICRT	1902-3054		OIODE-ZNR 3.65V 52 DO-7 PD=.4K TC=-0552	04713	\$2 10939-56
Alcra	1901-0040	3	DIODE-SWITCHING 30V SONA 2NS DO-35	28480	1901-0040
AICRIO	1901-0040		DICOE-SWITCHING 3OV SONA 2NS DO-35	2848C	1901-0040
A1CR11	1901-0040		OIO0E-SWITCHING 30V SONA 2NS DO- 35	28480	1901-0040
A LCR12	1902-0041	1	DIODE-2NR 5.11V 58 DO-7 PD=.4W TC=-.0098	04713	S2 10939-98
A1CR13	1902-0025	1		04713	SL 10939-182
A1CR14	1906-0069	1	O100E-FW 8RDG 400 DV LA	28480	1906-0069
A 10SP 1	03476-69502	1	LED OISPlay with 15 PIN PLUG CONNECTOR	28480	03476-69502
A1F1	2110-0311	1	FUSE .063A 250 V SLO-8LO 1.25×25 UL IEC	75915	313.062 S
F2	2110-0420	1	FUSE .032A $250 \mathrm{~V} 1.25 \times .25 \mathrm{UL}$	75915	312.031
F3	2110-0043	1	FUSE 1.54 250V 1.25x.25 UL IEC	71460	AGC 1-1/2
A101	1853-0020	2	TRANSISTOR PNP SI PD=300Mm FT= 150MHZ	28480	1853-0020
A 102	$1854-0071$	14	TRANSISTOR NPN SI PDO300MM FTE200MH2	28480	1854-0071
${ }^{\text {A } 103}$	$1854-0071$ $1854-0071$			28480 28480	1854-6071
A104 A105	$1854-0071$ $1854-0071$			28480 28480	$1854-0071$ $1854-0071$
${ }^{4} 106$	1854-0071		TRANSISTCR NPN \$1 PD=300MW FT= 200MHZ	28480	1854-0071
Al07	1854-0071		TRANSISTOR NPN SI PO=300MM FT $=2004 \mathrm{~Hz}$	28480	18540071
Al08	1854-0071		TRANSISTIOR NPN SI PO=300MM FT= 200MHZ	28480	1854-0071
4109	1854-0c 71		TRANSISTOR NPN SI POE300MM FT=200MH2	28480	1854-0071
A1010	1854-0071		TRANSISTOR NPN SI PD=300MM FT $=200 \mathrm{MHZ}$	28480	1854-0071
A 1011	1854-0071		TRANSISTOR NPN SI PD $=300 \mathrm{MM} \mathrm{FT}=200 \mathrm{MHz}$	28480	1854-0071
A 1012	1854-0071		TRANSISTOR NPN SI P0=300MM FT= 200 MHZ	28480	18540071
41013	1854-0071		TRANSISTIDR NPN SI PD=300MM FT $=200 \mathrm{MHZ}$	28480	1854-0071
${ }^{1} 1014$	1854-0071		TRANSISTOR NPN SI PD= 300 MM FT= 200 MHz	28480	1854-0071
41015	1855-0308	1	transistor-jfet dual n-chan d-moot si	28480	1855-0308
A1016			NOT ASSIGNED		
A1017	$1853-0020$		TRANSISTOR PNP SI POE300MM FT=150MHZ	28480	1853-0020
${ }^{1} 1018$	1854-0071			28480	$1854-0071$ $1853-0394$
11019	1853-0394	1	TRANSISTOR PNP SI PO=40M FT=3MHZ	28480	1853-0394
A181	0698-7512	1	RESISTOR 1DM 18 2W F TC=00-100	07716	CCF-993-N330
AlR2	0898-8748	1	RESISTOR 1K 52 2w mo TC=0+-200	27167	FP42
AlR3	0683-2055	1	RESISTOR 2M 58.25w FC TC $=-900 / 41100$	01121	C82055
${ }^{\text {A } 124}$	0757-0440	1	RESISTOR 7.5K 18, 125W F TC $=0+100$	24546	C4-1/8-70-7501-F
AlR 5	0683-2225	1	RESISTOR 2.2K 52.25w FC TC=-400/*700	01121	C82225
AlR AlR A	0687-3301	1			E83301 $1810-0244$
AIR 7	1810-0244	2		28480 01121	1810-0244 $\mathrm{CB1} 1045$
AlR AlR	$0683-1045$ $2100-3522$	2	RESISTOR, VAR LOOK OHM 208	28480	2100-3522
alrio	2100-3524	2	RESISTOR, VAR SOK OHM 208	28480	2100-3524
A 1812	0683-2265	1	RESISTOR 22M 58, 25W FC TC=-900/ +1200	01121	C82265
A1R13	0689-1055	1	RESISTOR 1 M 581 CLCC TC $=0+1000$	01121	G81055
${ }^{1} 1814$	2100-3528	1	RESISTOR, VAR 100 OHM 208	28480	2100-3528
A1215	$2100-3524$		RESISTOR, VAR SOK CHM 208	28480	2100-3524
A1R16	2100-3529	1	RESISTOR, VAR IK DIM 208	28480	2100-3529

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
alR17	0683-1065	1	RESISTOR 10M 58.254 FC TC=-900/ 11100	01121	C81065
A1R18	0683-1035	1	RESISTOR 10K 58.25 FFC TC $=-400 /+700$	01121	C81035
alR19	0690-4512	1	RESISTOR 88.7K 18, 125w F TC=0¢100	24546	C4-1/8-10-8872-F
A1R 20	0698-4532	1	RESISTOR 280K $18.125 H$ F TC=04-100 RESISTOR	24546	C4-1/8-70-2803-F
A1R 22	0608-4539	1	RESISTOR 402K 18.125W F TC=0*-100	03888	PMES5S
A1R23	0698-4453	2	RESISTOR 40212.125 F F TC=04-100	24546	C4-1/8-70-402R-F
01824	0757-0472	1	RESISTOR 200K $18.125 M$ F TC=04-100	24546	C4-1/8-10-2003-F
41225	0698-4479	1	RESISTOR 14K 18.125 W F TC $=00-100$	24546	C4-1/8-T0-1402-F
11826	0757-0283	2	RESISTOR 2K 12. 125 W F TC $=0 \leftarrow 100$	24546	C4-1/8-T0-2001-F
41827	0757-0442	1	RESISTOR 10K 18.125W F TC=0-100	24546	C4-1/8-T0-1002-F
AlR 28 AlR 29	$0698-4453$ $0898-4424$	1	RESISTOR 40218.125 F F TC=0*- 100 RESISTOR 1.4K 18.125 F F 2 TC $=0+100$	24546 16299	C4-1/8-T0-402R-F $\mathrm{C} 4-1 / 8-\mathrm{TO-1401-F}$
A1R30 Δ_{1}				16299	C4-1/8-10-1401-F
$\begin{array}{ll} \text { A1R31 } \\ \text { A1R3 } \\ \Delta_{1} \end{array}$	0683-1025	1	RESISTOR 1K 5\% .25W	01121	CB1025
A1R34	0698-4474	1	RESI STOR A.45K 18, -125w F TC $=0+100$	24546	C4-1/8-70-8451-F
A1R35	0757-0465	2	RESISTQR 100K $18.1254 W^{\text {F }}$ TC $=000-100$	24546	C4-1/8-70-1003-F
A1R36	0757-0453	2	RESI STOR 30.1K 18.125M F TC $=0+100$	24546	C4-1/8-T0-3012-F
A1R 37	0757-0453		RESLSTOR 30.1K 18 .125W F TC= $04 \sim 100$	24546	C4-1/8-10-3012-F
A1R 38	$2100-3527$	1	RESISTOR, YAR 5K OHM 208	28480	2100-3527
A1R 39	0683-4745	1	RESISTOR 470K 58.25 W FC TC $=-800 /+900$	01121	C84745
A1R 40	0690-3557	1	RESISTOR 80618.125 W F TC $=00-100$	16299	C4-1/8-T0-806R-F
A1R41	0690-3262		RESISTOR 40.2 18.125 WF TC $=04-100$	16299	C4-1/8-10-4022-F
A1R42	2100-3526	1	RESISTOR, VAR 2OK OHM 202	28490	2100-3526
	2100-3522	1		28480	2100-3522
A1R45	0811-3420	1	RESISTOR 1.58 7M PW TC=0¢-50	07088	KM-700
A1R46	0698-4020	1	RESISTOR 9.53K 18 -125w F TC=0¢ 100	16299	C4-1/8-70-9531-F
A1R47 \square_{1}	2100-0558	1	RESISTOR, VAR 2.0 K OHM 10\% C TOP ADJ	28480	21000558
A1R48	2100-3525	1	RESISTIR, VAR 200 OHM 205	28480	2100-3525
AlR 49	0698-3450	1	RESISTOR 42-2K 12.125 F F $\mathrm{TC}=0+0.100$	16299	C4-1/8-T0-4222-F
${ }_{\text {AlR50 }}{ }_{\text {AlR }}{ }^{\text {a }}$	06983-4435 ${ }^{\text {063 }}$	2	RESISTOR 2K 12, 125 FW F TC=0\%-100	162991	C4-1/8-T0-2491-F F
AlR 52	00693-0365	1	RESISTOR RESISTOR 3.6 5\% 58.25 W FC TC $=-400 \% 400$	01121 01121	CB1035 C836G5
A1R53	0690-4436	1	RESISTOR 2.8 K 18. 125 WF TC $=0 \pm-100$	16299	C4-1/8-70-2801-F
A1R54	0883-1045			01121 24546	C81045
A1R117	0757-0283		RESISTOR $2 \mathrm{~K} 1 \% .125 \mathrm{~W}$	24546	C4-1/8-T0-3001-F
A1R118	0698-3161		RESISTOR 38.3K 1\% .125W	16299	C4-1/8-T0-3832-F
A1R119	0698-5578		RESISTOR 4K . $5 \% .125 \mathrm{~W}$	24546	C4-1/8-T0-4001-D
A1R132	0757-0281		RESISTOR 2.74K 1\% .125W	24546	C4-1/8-T0-2741-F
A1R149	0698-3499		RESISTOR 40.2 K 1\% .125W	16299	C4-1/8-T0-4022-J
AlR153	0698-4439		RESISTOR 3.24K 1\% .125W	16299	C4-1/8-T0-3241-F
A151-A1S6	03476-61901	1	SWITCH. Pushbutton	28480	03476-61901
Alti	$\begin{aligned} & 9100-3493 \\ & 1813-0068 \end{aligned}$	1	TRANSFORMER, POWER HYBR ID (NOT FIELD REPLACEABLE FOR REPAIR USE REBUILT PC ASSY PART NO. 03476-69501)	28480 28480	$\begin{aligned} & 9130-3493 \\ & 1813-0068 \end{aligned}$
A1U2, U3	1826-0139		IC MC 1458 OP AMP	04713	MC1458P1
Alus	1220-0223	1	IC LM 3014 OP AMP	27014	L4301AH
alub			A1 MECHANICAL PARTS		
	0340-0060	6	insulator fedthru (LARGE)	98291	FT-E-15
	0340-0092	8	INSULATOR FEEDTHRU (SMALL)	98291	FT-E-121011-6808)
	1251-4261	1	SOCKET-15 PIN DISPLAY	28480	1251-4261
	${ }_{1460-1467}^{1205-0311}{ }^{\text {d }}$	1	HEAT SINK-O19 SPRING CONTACT-TOP SHIELD	28480 28480	$1205-0311$ $1460-1467$
	1460-1469	2	CONTACT SPRING-INPUT	28480	1480-1469
	5040-8013	1	AC POWER RECP	28480	5040-8013
	0370-2913	4	PUSHBUTTON-PLAIN	28480	0377-2913
	$0370-2914$ $2110-0269$	2	PUSH8UTTON-MARKED	$\begin{aligned} & 28480 \\ & 91506 \end{aligned}$	$0370-2914$ $8008-32 \mathrm{CN}$
	2110-0269		FUSE CLIP.		8008-32CN
			MISCELLANEOUS MECHANICAL PARTS		
	1460-1470	1	BAIL-WIRE	28480	1460-1470
	$7120-5107$	1	LABEL-POWER INPUT STD	28480	7120-5107
	7120-5108	1	LABEL-POWER INPUT OPTION 001	28480	7120-5108
	$7120-5109$	1	LABEL-POWER INPUT OPTION 002	28480	7120-5109
	$7120-5110$	1	LABEL-POWER INPUT OPTION 003	28480	7120-5110
	7120-5112	,	LABEL-POWERINPUT OPTION 004	$\underline{28480}$	$\begin{aligned} & 7120-5111 \\ & 7120-5112 \end{aligned}$
	2420-0022	2	NUT-ONSERT	28480	2420-0022
	2360-0131	2	SCREW, $6-32 \times 11 / 8$ PAN	28480	2360-0131
	30500066	2	FLAT WASHER	28480	3050-0066
	$\begin{aligned} & 2190-0018 \\ & 03476-24701 \end{aligned}$	2	LOCKWASHER, HELICAL	28480 28480	${ }^{2190-0918} \mathbf{0 3 4 7 6 - 2 4 7 0 1}$
	1460-1488	3	SPRING, FUSE CONTACT	28480	1460-1486
	1600-0530	1	SHIELD. UPPER (FOIL)	28480	1600-0530
	03476 000602	1	SHIELD, LOWER (ALUM)	28480	03478-00602
	4114.0649	1	PANEL, FISPLAY ACCESS	28480	$\begin{aligned} & 03476-40201 \\ & 4114-0649 \end{aligned}$
	5040-8957	2	FOOT	28480	5040-8957
	$8120-1521$	1	POWER CORD	28480	8120-1521
	0347690001 $5040-8069$	1	OPERATING AND SERVICE MANUAL	28480	03476-90001
	5040-8070	1	LOPER SHER SHELL	284880	$\begin{aligned} & 5040-8069 \\ & 5040-8070 \end{aligned}$
	5040-8038	2	BAIL PLUG	28480	5040-8038
	O624-0333	2	SCREW. 4-20 $1 / 4$ PAN PC 8OARD FETAINING	28480	0624-0333
	0624-0289	2	SCREW, 2-28 \times 5/16 PAN HARDWARE	28480	0624-0289

SECTION VII
 troubleshooting and CIRCUIT DIAGRAMS

7.1. INTRODUCTION.

7-2. This section contains preliminary troubleshooting information, printed circuit assembly exchange information, schematic notes and reference designators, and schematic diagrams of the Multimeter and Power Supply circuitry.

WARNING

These servicing instructions are for use by qualified service personnel only. To avoid electrical shock or damage to the instrument, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so.

7.3. PRELIMINARY TROUBLESHOOTING.

GCAUTION

The hybrid circuits in the Multimeter may be permanently damaged by static discharge from a hand or tool when the Multimeter is disassembled. The procedures below must be followed to prevent possible damage.

1. Ground the hand while disassembling and working on the Multimeter. Conductive wristbands (-hp- Part No. 00970-67900) are avail able for this purpose.
2. Attach the Multimeter COM terminal to earth ground. Touch all tools to earth ground to remove static charges before using them on the Multimeter.
3. Use a soldering iron with a grounded tip.

Wear clean cotton gloves when working on the circuit board. Contamination or fingerprints will reduce the accuracy of the Multimeter. Use low flux content solder (-hp- Part No. 8090-0512) when replacing componenets. Do not permit traces of flux to form on the circuit board. Observe precautions against static discharge. Do not use flux remover.

7-4. Check to ensure the Multimeter is properly powered as indicated by the decal on the side of the instrument.

7-5. If the display illuminates and indicates near zero regardless of the input applied check the appropriate Multimeter input protection fuse.

Volts/Ohms input protection fuse: $1 / 32 \mathrm{~A}(250 \mathrm{~V}) \quad-\mathrm{hp}-\mathrm{P} / \mathrm{N} 2110-0420$

Littlefuse $\mathrm{P} / \mathrm{N} 312.031$
Amps input protection fuse:
11/2 A (250 V) -hp. P/N $2110-0043$
Bussman AGC 1 - $1 / 2$
Littlefuse 312.01.5
7-6. If input fuses are not at fault, proceed to disassemble the Multimeter as follows:
a. Disconnect the power cord.
b. Remove the input protection fuses located behind the sliding input panel.
c. Place the Multimeter upside down on a grounded work surface and remove the two screws from the bottom cover.
d. Remove the bottom cover.
e. Connect a jumper across the amps input protection fuse holder and across the ohms input protection fuse holder.
\{CAUTION\}
If it is necessary to handle the printed circuit assembly, hold it by the power transformer and the front panel switch pushbuttons to avoid contamination of the assembly.

WARNING

Disconnect the AC line cord before checking or replacing the $A C$ line fuse.

7-7. If the instrument display did not illuminate, check the ac line fuse.
ac line fuse:
1/16 A (250 V) -hp- Part No. $2110-0311$
Littlefuse 313.062
Bussman MDL 1/16
7.8. Connect the 3476A TP ∇ to earth ground.

7-9. Connect the appropriate ac line voltage as specified by the option decal attached to the instrument.

Warning

Abstract

To avoid electrical shock, do not touch the ac line fuse or the line voltage jumpers when the instrument is plugged into ac power.

7-10. Power Supply Troubleshooting.

7-11. Measure the dc power supply voltages referenced to the analog ground test point (TP \rangle). The dc voltmeter indication at TP +6 should be within the limits of 5.88 to 6.12 V dc . The dc voltmeter indication at TP -4 should be within the limits of 3.92 to 4.08 V dc. If these voltages are correct, no further power supply checks are necessary.
7.12. If the TP +6 and TP - 4 voltages are not correct, check the dc voltage at the positive terminal of C 15 . This voltage should be within the limits of +15 to +25 V dc relative to TP \rangle with less than 2 volts peak-to-peak ripple.
7.13. Verify that the power supply is not in a current limit condition by checking the voltage drop across R52. This voltage should be less than 0.36 V dc.

7-14. Display Troubleshooting.

7-15. Most problems with the display section can be isolated by front panel observations. Note the display failure symptoms prior to trouleshooting this section of the instrument. Display malfunctions can be caused by circuit failures in four main areas. These are:
a. The power supply.
b. The light-emitting diode display (DS1).
c. The associated display drive transistors ($\mathrm{Q} 1-\mathrm{Q} 14$).
d. The logic in the hybrid (Ul).

7-16. Power Supply Verification. The power supply tests in Paragraph 7.10 should be performed to verify that the power supplies are functioning properly. Malfunctions in the power supply can result in improper bias of Q1-Q14 resulting in a defective display.

7-17. Display Verification. A quick check will determine if
any segments of the LED display (DSI) are defective. The following procedure should be used:
a. Momentarily connect the emitter of Q2 through Q6 to the -4 V test point.
b. Verify that the display is completely illuminated as illustrated in Figure 7-1.
c. If this display is realized, the display is working properly. When the display does not indicate properly, proceed with the next paragraph.

Figure 7-1. Display Verification.
7-18. Display Driver Verification and Troubleshooting. The display drivers are divided into two groups: the digit drivers Q2 - Q6 and the segment drivers Q7-Q14. Therefore, the first step in troubleshooting the display drivers is to determine if the problem is segment related or digit related. During normal operation if the same segment in all five sections is either "ON" or "OFF" continuously, the associated segment driver and logic should be checked. If one entire digit is either "ON" or "OFF" continuously, the associated digit driver and logic should be checked. A shorted Q1 will cause the entire display to turn "ON".
7.19. Display Logic Problems. The digital information that controls the display is provided by NMOS Ilybrid Ul which is not field replaceable. If the Multimeter failure appears to be traceable to Ul, refer to Paragraph $7-22$ for Al PC assembly replacement instructions.

7.20. SCHEMATIC DIAG RARIS.

7-21. Figures 7.2 and 7.3 are schematic diagrams of the Multimeter and its power supply.

7.22. PRINTED CIRCUIT ASSEMBLY EXCHANGE.

7-23. To provide maximum instrument performance for minimum cost, the Multimeter is designed around an NMOS Hybrid Integrated Circuit (U1). This Hybrid and its associated discrete electronic circuitry are repairable only at the Hewlett-Packard Manufacturing Division using special equipment. An exchange program has been established to permit field repair of the Multimeter by replacing the entire Al printed circuit assembly with a factory rebuilt assembly (-hp- Part No. 03476-69510). This assembly is warranted to be fully operational and meet all instrument specifications. For ordering details, contact the HewlettPackard Sales and Service Office nearest you.

7.24. Printed Circuit Board Removal.

7-25. Remove the Al printed circuit board assembly using the following procedure:
a. Disconnect power cord, remove input fuses and bottom shell. Leave the aluminum bottom shield fastened to the PC board.
b. Disconnect positive and negative battery terminals.
c. Remove heat sink from Q100.
d. Remove two polycarbonate spacers.
e. Remove 4 PC board mounting screws - one on each side of the switch assembly and the other two in each conner at the back of the PC board.
f. Pull J4 and J5 free from the top shell.
g. Using transformer T101 as a handle, lift the PC assembly out of the top shell back first until it is above the onsert nuts. The Al Assembly will now slide back and clear of the top shell.

$\{$ CAUTION

Handle the PC assembly by the transformer (T101) and the pushbutton switches.

CAUTION\}

To aroid possible damage to the PC assembly, do not use plastic or bubble pack as a packing material. Use non-static charge producing materials such as conductive foam (-hp-Part No. 9220-1776).

GENERAL SCHEMATIC NOTES

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN PREFIX WITH ASSEMBLY OR SUBASSEMBLY DESIGNATION(S) OR BOTH FOR COMPLETE DESIGNATION.
2. COMPONENT VALUES ARE SHOWN AS FOLLOWS UN. LESS OTHERWISE NOTED.

RESISTANCE IN OHMS
CAPACITANCE IN MICROFARADS
INDUCTANCE IN MILLIHENRYS
3.

DENOTES EARTH GROUND.
USED FOR TERMINALS WITH NO LESS THAN A NO. 18 GAUGE WIRE CONNECTED BETWEEN TERMINAL AND EARTH GROUND TERMINAL OR AC POWER RECEPTACLE.

DENOTES GROUND ON PRINTED CIRCUIT ASSEMBLY. (PERMANENTLY CONNECTED TO FRAME GROUND).

4.

5. \sim - DENOTES ASSEMBLY
6.DENOTES SCREWDRIVER ADJUST
7. * average value shown, optimum value seLECTED AT FACTORY. THE VALUE OF THESE COMPONENTS MAY VARY FROM ONE INSTR. MINT TO ANOTHER. THE METHOD OF SELECTING THESE COMPONENTS IS DESCRIBED IN SECTION V OF THIS MANUAL.
8. 924 DENOTES WIRE COLOR: COLOR CODE SAME AS RESISTOR COLOR CODE. FIRST NUMBER IDES. TIFIES BASE COLOR, SECOND NUMBER IDE. TIFIES WIDER STRIP, THIRD NUMBER IDENTIFIES NARROWER STRIP. (egg. $924=W$ WITE, RED, YELLOW.)
9. DC VOLTAGE LEVELS WERE MEASURED WITH RESPECT TO CIRCUIT GROUND USING A DVM WITH 10 MEGOHM INPUT IMPEDANCE. THE VOLTAGE LEVELS SHOWN ARE NOMINAL AND MAY VARY FROM ONE INSTRUMENT TO ANOTHER DUE TO CHANGE IN TRANSISTOR CHARACTERISTICS. A VARIATION OF $\pm 10 \%$ SHOULD BE ALLOWED.

REFERENCE DESIGNATIONS

note

IS REPA ACD A ADD THE +6 POWER
NOT SE ADULSTED LOW EOOGGH.
BELOW IS A TASLE OF CONNECTIONS FOR OPTIONAL AC
LINE LOLTTAGES.
LINE VOLTAGE JUMPER Wire CONNECTION

SECTION VIII

BACKDATING

8-1. INTRODUCTION.

8-2. This section contains backdating information which adapts this manual to instruments with serial numbers lower than that shown on the title page.

8.3. CHANGE SEQUENCE.

8-4. Changes are listed in the serial number order that they occurred in the manufacture of the instrument. However, in adapting this manual to an instrument with a particular serial number, apply the changes in reverse order. That is, begin with the latest change and progress to the earliest change applying to that serial number. Table $8-1$ lists the serial numbers to which each change applies.

Table 8-1. Manual Backdating Changes.

Instrument Serial Number	Make Manual Changes
1538A00101 thru $1538 A 02730$	1

CHANGE 1.

Section V. Replace Paragraphs 5-21(d), 5-26(b) and $5-27$ (c) with the following paragraph.
d. If it is not possible to adjust within this limit, remove R49 and repeat Step c. If R49 has already been removed, it may be necessary to replace it.
b. If R10 does not have sufficient range for this adjustment, remove R20 and repeat Step a. If R20 has already been removed, it may be necessary to replace it.

- c. Adjust R47 for a display of 1.000 . If R45 does not have sufficient range, it may be necessary to remove R49. If R49 has already been removed, it may be necessary to replace it.

Section VI. Change, delete, or add the -hp- part numbers and descriptions of the replaceable parts as listed in Table 8-2.

Table 8-2. Replaceable Parts.

Reference Designator	-hp-Part No.	Description
Change A1	$03476-66501$	PC Assembly, Main Board
Change A1C3	$0160-2605$	$.02 \mu \mathrm{~F}$
Change A1C10	$0160-2605$	$.02 \mu \mathrm{~F}$
Change A1C17	$0160-2605$	$.02 \mu \mathrm{~F}$
Change A1C18	$0160-2605$	$.02 \mu \mathrm{~F}$
Delete A1C22		
Add A1R30	$0698-3153$	$3.83 \mathrm{k} \Omega$
Delete A1R31	$0757-0281$	2.74 ks
Add A1R32	$0757-0407$	200Ω
Add A1R33	$2100-0554$	500Ω
Change A1R47	$0757-0283$	$2 \mathrm{k} \Omega$
Change A1R50		
Delete A1R51 Delete A1R55-R153 Change	$1205-0298$	Heat Sink

Section VII. Change the component locator and schematic diagrams as in Figures 8-1, 8-2 and 8-3.

Figure 8-1. Component Locator.

BELOW IS A TASLE OF CONNECTIONS FOR OPTIONAL AC
LNE VOLTAGES.
Line voltage , Jumper wire connection

HEWLETT hP PACKARD

