ModelA-8A-8LR 8 TRACK RECORDER/REPRODUCER

Service Manual

NOTICE

This Service Manual applies to the A-8 Series (not the A-8LR Series) with serial numbers from and after those listed below.

UK and AUS versions	$0700464 \sim$
FCA and CND versions	$0201667 \sim$
EUR versions	$0601195 \sim$
DM versions	$1000632 \sim$

* The content is slightly different for those with serial numbers younger than the above. A separate document (Order No. 8288010101) is available for the revised section of the manual.
* The Service Manual for $A-8 L R$ starts from page 71 .

TABLE OF CONTENTS

1. INTRODUCTION 3
2. SPECIFICATIONS 4
3. THE CONTROLS AND THIER FUNCTIONS 6
4. FUNCTION OF THE CONTROL CIRCUITS 11
5. ROUTINE MAINTENANCE 22
6. SPECIAL MAINTENANCE 24
7. EXPLODED VIEW, PCB ASSEMBLIES AND PARTS LIST 43
MODEL A-8LR SERVICE MANUAL 71
8. THE CONTROLS AND THEIR FUNCTIONS 73
9. SPECIFICATIONS 78
10. SPECIAL MAINTENANCE 79
11. PCB ASSEMBLIES AND PARTS LIST 87

NOTES

* Adjustment procedures are given in this manual which also includes a Parts List and schematic diagrams to assist the service technician in maintaining the Model A-8.
please feel free to contact the nearest Fostex Dealer and Distributor, or write directly to a Fostex office, the addresses of which are printed on the back cover of this manual.
* Noise Reduction System manufactured under license from Dolby Laboratories Licensing Corporation. 'Dolby' and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.

CAUTION

\triangle Parts marked with this sign are safety critical components. They must always be replaced with identical components. Refer to the Fostex Parts List and ensure exact replacement.

1. INTRODUCTION

Fostex Model A-8 is a small size, lightweight, 8 track, 8 channel recorder/ reproducer for 1/4" tape.

It features simple switching between sync and record modes by combined action of the RECORD TRACK and MONITOR selectors, and simple switching of the monitor to these modes, punch in/out without any clicks in the recording, zero position return function of the tape counter in the rewind mode, pitch control function, and other features necessary in multi-track recording.

In addition, approximately 20 dB of noise reduction is obtained by the builtin Dolby C Type noise reduction system. Other types of noise reduction system can also be used with this recorder by the front panel Noise Reduction Switch which allows patching in of external NR systems to jacks provided for this purpose.

Maintenance of the transport is made by removing the front trim panel, and for checking and adjusting the record/reproduce amplifier, by removing the bottom cover.

2. SPECIFICATION

TAPE
FORMAT

REEL SIZE
tape speed
PITCH CONTROL
LINE INPUT (X 4)
LINE OUTPUT (X8)
record level calibration
EQUALIZATION
WOW \& FLUTTER

STARTING TIME
FAST WIND TIME
OVERALL FREQUENCY RESPONSE
SIGNAL TO NOISE RATIO

TH D
ERASURE
POWER REQUIREMENTS

DIMENSIONS
WEIGHT

1/4 inch tape width, 1 mil base
8 track, 8 channel (4 channel X 2 Record, 8 channel Reproduce)

7 inch
$15 \mathrm{ips}(38 \mathrm{~cm} / \mathrm{s}), \pm 0.5 \%$
$\pm 10 \%$
-l0dBV (0.3V), impedance: $15 \mathrm{~K} \Omega$, unbalanced
-lodBV (0.3V), load impedance: $10 \mathrm{~K} \Omega$ or higher, unbalanced

0 VU referenced to $250 \mathrm{nWb} / \mathrm{m}$ of tape flux IEC (35 microsecs.)
$\pm 0.06 \%$ peak (ANSI), weighted, measured with flutter tape

Less than 0.5 sec .
130 second for 1800 ft . of tape
$40 \mathrm{~Hz} \sim 18 \mathrm{KHz}, \pm 3 \mathrm{~dB}$
72 dB weighted, 60 dB unweighted, referenced to
38 TH D level lOdB above 0 VU) at 1 KHz
Less than 18 at $1 \mathrm{KHz}, 0 \mathrm{VU}$
Better than 70 dB at 1 KHz
120V AC, $60 \mathrm{~Hz}, 60 \mathrm{~W}$ (U.S.A./Canada models)
220V AC, $50 \mathrm{~Hz}, 60 \mathrm{~W}$ (European models)
240 V AC, $50 \mathrm{~Hz}, 60 \mathrm{~W}$ (UK/Australian models)
100/120/220/240V AC, W (General export models)
$14^{\prime \prime}$ (W) X 13-1/2" (H) $\times 6-3 / 4^{\prime \prime}$ (D)
29 lbs. (13 kg.)

3. THE CONTROLS AND THEIR FUNCTIONS

1) Head shield gate The head shield gate is manually operated. If the gate is retracted down, a short downward push of its top edge will release its lock and the gate fully rise by spring action. To retract it, the gate is pressed down and will be locked at the limiting position.
2) Rewind button [REWIND]

Depressing this button transports tape at high speed from the right reel to the left reel.
3) Fast forward button [F.FWD]

Depressing this button transports tape at high speed from the left reel to the right reel.
4) Stop button [STOP]

All modes of ZERO RTN, REWIND, F.FWD, RECORD and PLAY will be cancelled and tape stopped when this button is depressed.
5) Play button [PLAY]

Depressing this button puts the recorder in the play mode.
6) Record button [RECORD]
a) With more than one and up to four RECORD TRACK buttons depressed, simultaneous depressing both RECORD and PLAY buttons puts the tracks thus assigned in the record mode.
b) With more than one and up to four RECORD TRACK buttons depressed and with the transport in the PLAY mode, simultaneously depressing both RECORD and PLAY buttons puts those tracks thus assigned to the record mode (punch in).
7) Return to zero position [ZERO RTN]

Depressing this button puts the transport in the rewind mode, automatically rewind tape to "0000" of the tape index counter and then go to the STOP mode.
8) Record track selector [RECORD TRACK]

Tracks to be recorded on are selected by combined depressing of the RECORD TRACK and GROUP select (9) buttons.
This recorder can record on a maximum four channels in one recording pass but the remaining four channels can be recorded by using the GROUP select switch. Therefore, either tracks 1 or 5,2 or 6,3 or 7 , and 4 or 8 , are selected by the RECORD TRACK buttons and track groups of $1,2,3$ and 4 or tracks 5, 6, 7 and 8 are selected by the GROUP select button.
a) When the GROUP button and the RECORD TRACK button are assigned, the LED's located at upper left hand corner of each meter corresponding to the assign-
ed tracks, will blink to indicate that these channels are in the record ready state.

While in this state, simultaneously depressing both RECORD and PLAY buttons put the tracks thus assigned to the record mode and the blinking LED's change to a constant lighting.
b) Should the PLAY and RECORD buttons be depressed at the same time with none of the RECORD TRACK buttons depressed, the RECORD LED located at right of the tape index counter (11) will blink to indicate record ready state of the recorder. Now, if any one of the RECORD TRACK button is depressed, the LED above the VU meter for the assigned channel will light and the RECORD LED also change from blinking to constant lighting. Further, if all of the RECORD TRACK buttons are released, the RECORD LED will change to blinking again to indicate that the recorder have changed from record mode to the record ready state.
9) Group select button [GROUP]

Refer to 8) and 10).
10) Monitor select button [MONITOR]

When none of the MONITOR select buttons are depressed, the meter indications and the signal output will be for reproduce.
When any one of the MONITOR button is depressed, the input signal will be available at the line output and can be monitored with the VU meter.
In the same way as for the RECORD TRACK buttons, the channel to be monitored must be selected by the MONITOR select button in combination with the GROUP select button.
11) Counter display

Revolutions of the supply reel table is detected by two photo-interrupters and shown on a 4 digit display.
12) Reset button

The counter display reset button which clears the display to "0000".
13) Edit button [EDIT]

The EDIT switch is provided to facilitate precise splicing of tape after removing an unwanted section of tape.
When this slide switch is set to OUT (upper side), the transport will be in the normal operating mode, and when set to IN (lower side), it will be in the EDIT mode.

When in the EDIT mode, the transport will not go into any other mode except PLAY and STOP.

In the EDIT mode, the shut off switch linked to the right tension arm will be ineffective and therefore, the capstan motor will rotate upon switching on the power switch and the takeup reel, remain stationary when the PLAY button is depressed. In this case, the mechanical brakes will be released but no power is applied to the takeup reel motor and the takeup reel can be rotated easily by hand.
If EDIT is switched ON during the PLAY mode, tape will stop but if the PLAY button is depressed again, the tape will be transported at the play speed but will not be wound by the takeup reel. If EDIT is switched OUT under this condition, the transport goes to the stop mode. At this point, if tape slack is taken up so that the right tension arm is up, and then the PLAY button is depressed, the transport goes to normal play mode.
14) NR INT/EXT switch [NR]

The internal Dolby noise reduction system will be in operation when this NR switch is set to INT.
When any other type of $N R$ system is to be used with this recorder, set the NR switch to EXT and connect the encoder to INPUT, and the decoder to OUTPUT of the RCA phono jack on the rear panel.
15) Pitch control knob [PITCH CONT]

The 120° clock click action stop of this knob is the normal speed (15 ips) position, and speed can be varied -10% at CCW rotation, and $+10 \%$ at CW rotation, respectively, of this knob.
16) Record LED [RECORD]

This LED will either blink or glow continuously under the following conditions when the RECORD and PLAY buttons are depressed at the same time:

* Will blink if none of the four RECORD TRACK buttons are depressed.
* Will glow continuously if one or more RECORD TRACK buttons are depressed.

17) Record LED (Located above each VU meter)

These LED's will blink or glow continuously depending on what combination and sequence the RECORD TRACK buttons and the transport control RECORD button is depressed:

* If any RECORD TRACK button is depressed after the transport control RECORD and PLAY buttons are depressed (in the PLAY mode and record ready state), the LED of the channel corresponding to the depressed button, will glow continuously.
* With none of the four RECORD TRACK buttons depressed and while the transport is in the play mode record ready state, all four LED's of channels $1 \sim 4$ or
channels $5 \sim 8$ selected by the GROUP select button, will blink; under this condition, if any one or up to four of the RECORD TRACK buttons corresponding to the channels of the blinking LED's are depressed, the LED of the depressed channel only will glow continuously and the other LED's will be extinguished.
* If any RECORD TRACK button is depressed during ZERO RTN, REWIND, F.FWD, PLAY or STOP modes, the LED of the depressed channel will blink.

18) Cue lever [CUE]

The lifter mechanism lifts the tape away from the head in the ZERO RTN , REWIND and F.FWD modes.

The cue lever is provided to allow tape cueing when the tape is thus lifted from the head. Shifting the cue lever moves the lifter pins toward the head and the tape will touch the head.
19) Power switch [POWER]

AC power is applied to the unit and the vu meters lighted when this button is depressed.

The capstan motor will not rotate unless the takeup reel side tension arm is up, or in other words, unless the shut-off switch linked to the tension anm is on, but the capstan motor will rotate even though the tension arm is down only when in the EDIT mode.
20) Reel clamper

The reel is secured to the reel turntable by CW rotation of this clamper.
21) Transport function remote connector [REMOTE - TRANSPORT]

Remote operation of the transport function controls is possible by connecting the optional Model 8030 Remote Control Unit.
22) Punch In/Out remote jack [REMOTE - PUNCH IN/OUT]

This jack is used for punch in/out of the recording by a foot switch. Any one button among the four RECORD TRACK selector buttons is depressed and the transport put in the PLAY mode. Then, if the foot switch is depressed, the previously selected track goes to the record mode; if the foot switch is depressed again, the record mode is cancelled and the transport goes to the record ready play mode.
With none of the RECORD TRACK selector buttons depressed and the recorder in play mode, depressing the foot switch will make the record indicating LED to blink, indicating that the recorder is in the record ready state while in play mode. When any one of the RECORD TRACK selector button is depressed under this condition, the track of the depressed button will go to the record mode but
will be cancelled, returning to the record ready state, when the foot switch is depressed again.
One word of caution - the foot switch can neither punch in nor out when the transport is put in the record mode by the control panel PLAY and RECORD buttons.
23) Input/output jack [INPUT/OUTPUT] The number of input is four which are routed to the channels $1 \sim 4$ group or channels $5 \sim 8$ group by the GROUP select button on the front panel. The number of output is eight and an RCA phono jack is provided for each channel.
24) Power cord

4. FUNCTION OF THE CONTROL CIRCUITS

4.1 SYSTEM CONTROL CIRCUITS

Control signals, which are the foundation of tape transport operation, are processed by the TTL type LSI, U9.

In the System Control of this Unit, the $U 9$ output pins for PLAY, STOP, F.FWD, REWIND, REC and BRAKE are used in the various control circuits, and when a low level is input to the pin corresponding to the output for that function, a low level is obtained at that output pin.
4.2 PERIPHERAL CONTROL CIRCUITS OF THE LSI

1) $C R 1$ (U9-5)

This is the reset signal input pin of U9. At switch on of power, U9-5 goes to "L" level for the length of time that QL is on, thus resetting U9.
When power is switched on, C2l begins to be charged, during which time the base of Ql goes to "H", thus switching on Q1. When C2l becomes fully charged, the base of Q1 goes to "L", thus switching off Ql.
When power is switched off, C21 is quickly discharged through D38 and thus becomes ready for the next switch on of power.
2) EBR IN(U9-4)

In this system, brake is applied electrically from REWIND or F.FWD before finally going into the STOP mode.
For example, if the STOP button is depressed during REWIND, the transport temporarily goes into F.FWD mode and then into STOP mode when an "L" level is applied to this EBR IN. For timing of "L" level application to EBR IN, refer to Tape Counter netecting Circuit and Hotion Sensing Circuit (Item 4.7).
3) EDIT

The "L" level signal from the EDIT switch when it is set to IN is not only applied to Qll, which is the circuit to stop the takeup reel (right side) motor (Refer to Item 4.6) but also to the exclusive OR gate U2-2.
When the EDIT switch is set from OUT to IN, an " L " level is applied to U2-2 and as U2-13 is also at "L", output U2-ll goes to " L " and as this is applied to U9-6, U9 goes to the STOP mode.
In the meantime, the input to $\mathrm{U} 2-12$ will go to " H " level after a certain delay introduced by the integration circuit of R12 and C3, and output pin U2-11 goes to "H" level.
One " L " level pulse is output from $U 2-11$ when the EDIT switch is set from IN to OUT.

Under " H " level state of $\mathrm{U} 2-2, \mathrm{U} 2-13$ will also be at " H " level and consequently, U2-3 goes to "L" level. After a certain delay, U2-12 goes to "L" level and thus U2-ll goes to " H " level.
4) ZERO RETURN

The system goes to REWIND mode when the ZERO RTN button is depressed as U9-2 pin will be connected to zero volt via D32. On the other hand, an "H" level is applied to U4-7 (S input pin) via inverter U7.

U4 is a JK flip flop and pins Q and K are set to " H " when pin S is set to " H ". At the instant the counter display changes from 0001 to 0000 , the emitter of Q3 is held at zero volt for a length of about $200 \sim 400 \mathrm{msec}$. after which Q3 switches on, U9-6 (STP) goes to "L" and U9 goes to STOP mode. The "L" output from the counter returns to "H" after about $200 \sim 400 \mathrm{msec}$, applied to U4-3 (C input) and the Q and K pins returns to "L" level.

U4-4 (R input) is the reset pin and the ZERO RTN is reset by the REWIND, F.FWD, STOP, PLAY and SHUT OFF signals.

Fig. 4-1

4.3 REMOTE PUNCH IN/OUT [REMOTE PUNCH IN/OUT]

A latching type foot switch is plugged into the REMOTE PUNCH IN/OUT phone jack on the rear panel.

Each time the foot switch is depressed, Cl5 is repeatedly charged and discharged, producing waveforms shown below.

These signals are shaped by Ul and then input to the exclusive OR gate U2-lO. When input pins \#8 and \#9 are in combinations of "L" and "H" levels, an "H" level is obtained from its output pin \#iO whose waveform is shown below.

Fig. 4-2

U6 is a delayed flip flop which outputs signals shown below upon receiving a play mode " H " level from $\mathrm{U} 3-10$ and the signal from the foot switch.

U8 is a reset circuit, and when the play mode is cancelled, an " H " level is applied to pin R of $U 6$ and the flip flop is reset. Also, when the GROUP select switch is manipulated, an "L" reset pulse is applied to $U 3-13$ and the resulting " H " level from U8-ll applied to the R pin resets U6.

Fig. 4-3

The signals from U6-1 (Q output) and U9-14 (REC-O output) passing through the OR gate of D41 and D40 is applied to the base of $Q 8$ to switch it on if either of the above signals are of " H " level, and thus an "L" level representing the transport record signal is applied to the RECORD TRACK selector circuit.

4.4 CAPSTAN MOTOR DRIVE CIRCUITS

If the recorder is switched on with the tape loaded (with the left/right tension arm in the up position), the capstan motor begins to rotate at $1,000 \mathrm{rpm}$, and when put in the play mode, accelerates to $2,000 \mathrm{rpm}$.

Q18 is in the on state when power is switched on and this raises the DC level of Ull-1 which then switches on Q19 to start the motor.

The $1,200 \mathrm{~Hz}$ output from the TACH generator applied to Ull-14 is amplified and a square wave is output from its pin \#14. This square wave is differentiated by C25, R90, R91 and the plus side of this waveform switches on Ql6. When the recorder is switched on, U8-1 goes to "L", Q14 and Q15 switches on and this output is applied to the integration circuit of R92, R93 and C47/C48. Therefore, a sawtooth waveform made by the signal from the integration circuit and on/off action of Q 16 , is applied to comparator Ull-8. The rectified output from the integration circuit of R98, R99 and C27 passes through Q18 and DC amplifier Ull-1 and applied to Ql9 which controls the current to the capstan motor.

Fig. 4-4

Q20 switches on when Q19 is off, to act as a braking circuit by absorbing the counter electromotive force from the motor.

When the PLAY button is depressed, the "L" output from U9-17 is passed through an inverter and applied to U8-5; on the other hand, as the signal to U8-6 is also "H", the output of U8-4 is an "L" but on being inverted by U8-10, the "H" level output is applied to Ql2.

Q12 and Ql3 is then switched on and its output applied to the integration circuit of R94, R95 and C47/C48. At the same time, the "H" output of U8-10 makes the output of U8-3 go to "L" thus switching off 815.

By this alternating switching of 213 and $Q 15$, the integration circuit constant is affected and output duty of comparator Ull-8 is changed. As a result, the motor revolution changes from $1,000 \mathrm{rpm}$ to $2,000 \mathrm{rpm}$, and consequently, the TACH output of $1,200 \mathrm{~Hz}$ rises to $2,400 \mathrm{~Hz}$. The TACH output at $1,000 \mathrm{rpm}$ is about 350 mV .

When the shut off switch is on (left/right tension arm in down position), Q17 is switched on to force the Ull-l output to " L " which then switches off $Q 19$ and the motor is stopped. However, the motor will continue to run in the EDIT mode, even if the shut off switch is on, as the EDIT switch is in series with the shut off switch.

4.5 INTERMITTENT SOLENOID DRIVE CIRCUIT

Two plunger solenoids are used in the tape transport mechanism. One is for activating the pinch roller in the play mode and releasing the brake, and the other for activating the lifter in the fast forward or rewind modes and also to release the brakes.

Output pins \#17 and \#18 of U9 goes to "L" when the PLAY button is depressed.
The "L" level from pin \#l7 is inverted to an "H" level by Ul0-4 and applied to Q44 to switch on both Q44 and Q45.

On the other hand, the "L" level from pin \#l8 switches off Q39 which then starts to charge C34 by D61, R172 and R171. This charging of C34 switches on 840 but is switched off after a certain length of time which also switches off $Q 41$. Therefore, when $Q 45$ is switched on, the PLAY solenoid, $L l$, is energized by the $+24 V$ DC flowing through Q41, D64, Ll and Q45. When $Q 41$ is switched off, the $+24 V$ DC drops to +16 V DC as the current will now flow through D65, Ll and Q 45.

When the F.FWD button is depressed, output pins U9-22 and U9-18 goes to "L" level; and when the REWIND button is depressed, pins U9-23 and U9-18 goes to "L" level. The signals from U9-22 and U9-23 are applied to $Q 42$ via the OR gate of D46 and D47.

On the other hand, Q41 is switched off by the " L " level from U5-18 in the same way as for PLAY mode and the +24 V DC applied to L2 (FAST SOL.) drops to +l6V DC.

C45 is provided to drive the intermittent solenoid when the transport is put in either F.FWD or REWIND modes from the PLAY mode.

When the transport is put in either the F.FWD or REWIND mode, $C 45$ is charged through D46 or D47 during which $Q 39$ switches on, C34 is discharged, and when C45 reaches full charge, $Q 39$ switches off, which in turn charges C34, and the intermittent solenoid drive circuit is activated as previously mentioned.

Fig. 4-5

4.6 REEL MOTOR DRIVE CIRCUIT

The left and right reel motor drive circuits are identical except for the additional Q 28 and Q 29 in the takeup reel motor circuit.

Q28 and Q29 act to stop the takeup reel motor when the PLAY button is depressed during the EDIT mode.

Setting the EDIT switch to IN shorts the emitter of Qll to zero volt, and if the PLAY button is now depressed, the "L" level output of U9-17 inverted to "H" by the inverter, switches on Q1l. Switching on of Qll then switches off both Q27 and Q28. At this point, the +24 V DC flows into the base of Q 29 via Rl40, D55 and D56 to switch it on. This switch on of $Q 29$ results in a short circuit across the motor terminals, thus electrically stopping it. Except for PLAY mode during EDIT, Q28 is always in the on state.

When the PLAY button is depressed in other than the EDIT mode, U9-17 goes to "L" but is inverted and applied to $Q 21$ to switch it on which in turn switches on

Q26 and 236 .
Now, the takeup reel motor torque is adjusted to $320 \mathrm{~g} . \mathrm{cm} \pm 50 \mathrm{~g} . \mathrm{cm}$ by pot Rl29 ($22 \mathrm{~K} \Omega$), and the supply reel motor torque to $220 \mathrm{~g} . \mathrm{cm} \pm 50 \mathrm{~g} . \mathrm{cm}$ by pot Rl61 (22K Ω) which adjustments result in potentials of $14.5 \sim 15 \mathrm{~V}$ at pin \#12 of Ul2-14, and $13.5 \sim 14 \mathrm{~V}$ at pin \#3 of Ul2-1.

Ul2-14, Q30, Q31 and U12-1, Q37, Q38 are constant current output circuits and as the potential across R136 and Rl67 changes in accordance to the motor current, these potentials are fed back to the constant current circuits of Ul2-14 and Ul2-1.

The two circuits of Ul2-8, Q24 and Ul2-7, Q34 are provided to prevent a sudden high tape tension by gradually raising the voltage to the takeup reel motor at F.FWD or REWIND modes.

Taking for example the circuit of $U 12-8$ and $Q 24$, when power is switched on, the potential from the dividing resistors Rl 31 and $\mathrm{Rl} 32+\mathrm{Rl} 36$ for +24 V DC charges C30 via U12-8.

The integration circuits of $22, \mathrm{C} 35$ and C49, R87 are the boost circuits to prevent tape slacking at start up in the PLAY mode.

When an " H " level is applied to C 49 from UlO-4, an " H " level is applied to Q2 for a certain length of time during which $Q 2$ switches on. This in turn, applies an "L" level to pins \#13 and \#2, respectively, of U12-14 and U12-1, thus raising the amplifier gain at each output which results in increase of motor currents and consequently, rise in motor torque. Then, when $Q 2$ switches off after elapse of a certain length of time, C35 starts to charge, the voltages applied to pins \#l3 and \#2, respectively, of Ul2-14 and U12-1 gradually rises, and each amplifier gain drops to their normal level.

Then, if the F.FWD button is depressed, the " L " level from U9-22 is inverted to an "H" level and applied to the base of Q22 which switches on both Q22 and Q23.

At switching on of Q23, the +24 V DC passing through R116 and R119 further charges C30, and the voltage divided by R116 and R119 is applied to Ul2-14.

As the potential applied to U12-14 rises slowly in step with the charging rate of C 30 , the motor current also rises oradually, resulting in a smooth rise in torque of the takeup reel.

When the transport is put in the REWIND mode from F.FWD, the "L" level from U9-23 is inverted to switch on Q32 and $\Omega 33$, but at the same time switch off $Q 22$ and Q23. At switch on of Q33, the +24 V DC flows through Rl48 and D50 to switch on 224 which quickly discharges C 30 down to the emitter potential of 224 , or in other words, the output potential of Ul2-8.

C30 is also discharged when the transport is put in the STOP mode from F.FWD.

In this case, the "L" level from U9-19 is inverted to an "H" level, applied to Q9 and Ql0 to switch it on, thus feeding a base current to 224 through Rl25 and D49 to switch it on, thus discharging C30.

Fig. 4-6

4.7 TAPE COUNTER DETECTING CIRCUIT AND MOTION SENSING CIRCUIT

Rotation of the left side reel table is detected by two photo-interrupters and their outputs fed to the counter section. These outputs serve as the count pulse and up/down signal.

The signals from the two photo-interrupters are converted, as shown in the Signal Timing Chart of Fig. 4-7 and applied to the counter section as the count pulse and up/down signal.

Fig. 4-7

4.8 COUNTER SECTION

U1 is the P-MOS type tape counter LSI which contain both a counter circuit and display driver. Display is of the static type.

* UP/DWN : Input pin for selecting up count or down count of the counter. An "H" level must be applied to this Ul-12 pin for up count function. As shown by the timing chart in Item 4.7, above, these outputs go to "H" level in the PLAY or F.FWD modes and thus Ul goes to up count mode.

In the ZERO RTN or REWIND modes, an "L" level is applied to U1-12 and the counter thus goes to the down count mode.

* COUNT PULSE : Thecount pulse is obtained from Q^{6} on the System Control PCB. The count pulse is about 4 Hz at beginning of tape wind and about 8 Hz near end of tape wind.
* DIRECT : Input pin for selecting the operating mode of the predivider, in the stage prior to the lowest digit of the counter, to $1 / 5$ or $1 / 1$. As the $1 / 5$ mode is used in this system, this pin is open or at "L".
* RESET : The counter and display are reset to "all zero" by an "H" level to this pin.
* AC IN : The AC power line frequency (50/60Hz) is applied here for the reference frequency.
* OUT 1 : At the instant the counter register changes from 0001 to 0000 , this driver output pin goes to "H" for a duration of $200 \sim 400 \mathrm{msec}$.
* SIX/DECADE : An "L" (or open pin) to this pin sets the counter to decimal counting or an "H" to modulo-six of digit two. This pin is kept at "L", or at open, in this system.
* SEG la $\sim 4 \mathrm{~g}:$ The LED segments are directly driven by these pins.

4.9 RECORD TRACK SELECT (LED display circuit)

The LED corresponding to each track of the RECORD TRACK select buttons either blink or light continuously to indicate the mode of operation.

1) Blinking at depressing the RECORD TRACK button

The output of multi-vibrator $Q 1$ and $Q 2$ are applied to $Q 3$ which switches on/off Q3, Q4 and Q5 at about $1 \mathrm{~Hz} \sim 2 \mathrm{~Hz}$.
The output of $Q 5$ is connected to the LED anodes via the GROUP select switch and the cathode of the LED selected by the RECORD TRACK button is connected to $O V$, and that LED will blink.
2) Blinking of the GROUP LED (TRK $1 \sim 4$ or TRK 5 ~ 8)

The transport goes to the record mode if both the RECORD and PLAY buttons are simultaneously depressed. Then, if none of the RECORD TRACK button is depressed, all four LED's for tracks $1 \sim 4$ or $5 \sim 8$, either of which is selected by the GROUP button, will blink. The +8 V supply is applied to the LED through $Q 5$ which is switched on by the record mode "L" level from the transport control circuitry. Q6 is switched on by the "L" applied to its base and an "H" is thus applied to the base of $Q 9$ but as the emitter of $Q 9$ is connected via $D 5$ to the collector of Q4 which is constantly switching on and off, the four LED blinks.

This blinking of all four LED's clearly indicate which group of tracks have been selected and when any one of the RECORD TRACK button is depressed while in this state, the base of $Q 9$ drops to zero volt thus switching it off, and the +8 V flows through D5, LED, Dl3 (or D14, Dl5, Dl6), then to zero volt. Therefore, the led of the selected track(s) only is lighted and the other blinking LED's will go off.
3) Constant lighting of the LED

The LED will change to constant lighting when any one of the RECORD TRACK button is depressed during the RECORD mode or when this order of depressing the button

is reversed.

4.10 RECORD INDICATION

The RECORD indicating LED either blinks or lights constantly when the RECORD and PLAY buttons are simultaneously depressed.

1) Blinking

By switch on of $Q 6$ by the "L" level transport record signal, an " H " level is applied to the base of $Q 8$ to switch it on but as the emitter of $Q 8$ is connected to the collector of $Q 4$ via D5, $Q 8$ will switch on and off in step with $Q 4$ and the LED thus blinks.
2) Constant lighting

When any one of the RECORD TRACK button is depressed under the above 1) state, the emitter of $Q 7$ is connected to zero volt by the selected button which switches it on and the LED is lighted in the constant state.

4.ll RECORD TRACK SELECT (Record/reproduce amplifier control circuit)

U6-ll is an exclusive OR gate. Each time the GROUP select switch is manipulated, the output of U6-11 goes to " H " to switch on 23 and an " L " pulse is applied to the System Control LSI.

Due to this, the record mode is cancelled by switching of the GROUP selector even if the LSI is in the record mode.

An encode/decode switching, record relay control and bias on/off control signals are sent to the Record/Reproduce Amplifier from the RECORD TRACK select circuit.

As the circuits of track 1 through 8 are all identical, track 1 only will be taken as an example.

When GROUP $1 \sim 4$ is selected, input U6-9 is set to " H " and the output U6-10 goes to "L" level (if U6-9 is "L", then U6-10 goes to "H").

When inputs U7-8 and U7-9 are at "L", output U7-10 goes to "L", or in other words, when the RECORD TRACK 1 button is depressed and the transport is in the record mode.

By the "L" level of U7-10, U3-1l goes to "L", and the "L" from U3-10 applied to Ul-2 makes output Ul-3 go to "L" which is the encode mode signal. After a certain delay, introduced by the integration circuit of R14 and C5, Ul-4 goes to "L" which makes both Ul-1l and Ul-10 go to "L" level.

When either U7-8 or U7-9 goes to "H" level, U7-10 will go to "H", then as Ul-4 first goes to "H", Ul-ll goes to "H" (bias off), then, after a delay introduced by Rl4 and C5, Ul-10 goes to "H" (record relay off) and after another delay
by R16 and C6, Ul-3 goes to "H" (decode mode).
U6-4 is the IC for controlling the master bias, and its output goes to "H" level when any one track goes to the' encode mode, and to " L " level when all tracks are put in the decode mode.

4.12 MONITOR SELECT CIRCUIT

If the MONITOR selector is set to INPUT when the record/reproduce amplifier is in the decode (reproduce) mode, that channel only goes to the ENCODE (record) mode, and the monitor output is changed from reproduce output to record input.

When MONITOR select 1 is set to INPUT, an "L" level is applied to U3-8 and thus U3-10 goes to "L" which is applied to Ul-2. Under this condition, if the GROUP select is at GROUP $1 \sim 4$, then $U 8-1$ will be at " L " and CHAN 1 will go to the ENCODE mode.

If the GROUP select is at GROUP $5 \sim 8$, U6-9 will be " H " and thus U6-10 also at "H" to make CHAN 1 go to the DECODE mode but then, U4-10 will go to "L" and thus CHAN 5 goes to the ENCODE mode.

5. ROUTINE MAINTENANCE

Troubles and breakdown in the recorder can be prevented by scheduled checking and maintenance. Periodically follow the check items listed below:
a) Cleaning the heads and tape guides

All heads and guides in the tape path must be cleaned after each 6 hours of operation or before starting a new session of recording.

Cleaning fluids specially prepared for tape recorders is recommended.
b) Cleaning the pinch roller

Clean at least once after each full day of use.
A cleaning fluid which will not attack rubber must be used.
c) Cleaning the capstan

Clean this at the same time the head is cleaned.
The same cleaning fluid is recommended.
d) Demagnetizing of heads and tape guides

After cleaning all heads and tape guides, they should be demagnetized every morning or before starting a new session of recording.

1) Be sure to switch off the recorder.
2) Have all tapes at least 5 or 6 feet away when demagnetizing because the demagnetizer's magnetic field will erase them.
3) Slowly wave the tip of the demagnetizer up and down in front of each head, then, slowly move it away (Slow movement is recommended as any abrupt motion can remagnetize the head). Like a turtle, take your time to repeat the process on the other heads.

After you finish work on all heads, draw the demagnetizer an arms-length away, switch it off, and unplug the cord.
e) Testing the brakes

See Item 6.3, b) Brake torque, page 32.
f) Testing the pinch roller pressure

See Item 6.3, a) Pinch roller pressure, page 31.
g) Testing the amplifier

Thread a blank tape on the Model A-8 and record a $1 \mathrm{KHz}, 0 \mathrm{VU}$ signal. While the machine is in the record mode, check to see that the meters read 0 VU of, first, the channels $1 \sim 4$ group, then the channels $5 \sim 8$ group, by selecting with the GROUP button.

If adjusting is required, refer to Item 6.4.
Rewind the above recording to the beginning, reset the RECORD TRACK to SAFE, and put the machine in the PLAY mode. The VU meters should all read 0 VU .

Record a 45 Hz through 18 KHz signal and check the overall frequency response with the VU meter to see that it is within $\pm 3 \mathrm{~dB}$.

Disconnect any equipment plugged into the INPUT, record a length of no-signal tape, and reproduce it to check the S / N ratio. In the same way as before, recording and checking is done, first, on the $1 \sim 4$ channel group, then switched to the $5 \sim 8$ channel group by the GROUP button, and the same steps repeated.

6. SPECIAL MAINTENANCE

6.1 TEST EQUIPMENT REQUIRED

6.2 DISMOUNTING OF MAJOR COMPONENTS

Depending on the extent of special maintenance, you may have to remove the bottom cover, trim panel, and furthermore, dismount major components inside.

For the sake of efficient maintenance, please follow the procedures below. Should it be difficult to fully understand the procedures, please refer to the EXPLODED VIEWS.

1) Bottom cover (Fig. 6-1)

The record/reproduce amplifier can be adjusted to a certain extent by removing only the Bottom Plate but for Dolby level calibration and bias trap adjustments, the Bottom Cover must be removed.

The bottom cover can be removed by unscrewing four screws (A) on the bottom side and a total of six screws (B) from both sides. The four screws (A) are of the self tapping type.

Fig. 6-1
2) Tape transport panel (Fig. 6-2)

* With the bottom cover removed, unscrew the four truss head 4×10 self tapping screws (A) from the bottom side.

Next, from the top panel side, remove the head housing, pinch roller and the left and right roller guides.

* The head housing can be removed by loosening the two 3×8 hex socket screws (B).
* The rubber roller of the pinch roller can be removed by taking off the cap with a CCW rotation.
* After removing the left and right rollers by taking off the caps by CCW rotation, dismount the tension roller base by loosening the 3×4 set screws (C).
* With these components dismounted, the tape transport panel can be removed, thus permitting adjustments on pinch roller pressure, brake torque and tape tension.

Fig. 6-2
3) Amplifier panel (Meter and control panel, Fig. 6-2)

* With the bottom cover removed, as in previous item l), remove two upper and lower screws on the panel side, from among the six (D) screws on both sides of the amplifier section.
* Then, draw out the panel section and remove the dress panel by unscrewing the six screws (E) from the underside of the panel.

4) Record/reproduce PCB (Fig. 6-3)

* Regular adjustments on the record/reproduce amplifier is possible without removing the bottom cover, as previously mentioned, but for adjusting the
bias trap coil or to connect an $A C$ voltmeter and oscilloscope to the test point at adjusting trim pots, the record/reproduce PCB must be brought out by using the extension card (Fos'tex P/N 8273059000).
* Upon removing the plate holding down the PCB's by unscrewing the four screws (A), the record/reproduce PCB can be brought out by using the extension card as these are all of the plug-in type.

Fig. 6-3
5) Amplifier assembly (Fig. 6-4)

* Upon loosening a total of eight screws (A) (four each on both sides) on the side chassis of the amplifier assembly, it can be pulled out from the housing.

6) Tape transport mechanism (Fig. 6-5)

* Remove five screws (A) and loosen the two screws (B), securing the solenoid.
* Unhook the spring shown in the drawing.
* Remove the pinch roller rubber after taking off the cap by turning it CCW.
* The base plate, with the capstan assembly, head assembly, roller and tension arm assembly all mounted as a single unit on it, can be taken out.

CAUTION: The pinch roller pressure must be adjusted to its correct value whenever this unit is removed and reinstalled.

Unhook this spring
(B) Loosen these two screws to allow easy removing of plunger from the solenoid.

Fig. 6-5
7) System control PCB assembly (Fig. 6-6)

* Upon removing the two screws (A), the system control PCB assembly can be swing down pivoted on the lower two screws (B).
* The assembly can be taken out completely if either one of the (B) screw is removed.

8) Rectifier assembly (Fig. 6-5)

* The rectifier assembly can be removed by unscrewing the two (C) screws.

9) Regulator assembly (Fig. 6-6)

* The regulator assembly can be removed by unscrewing the three (D) screws.

10) Power transformer (Fig. 6-7)

* Remove the four (A) screws.
* Unsolder the primary wires at the power switch and the secondary wires at the rectifier PCB assembly.

11) Reel assembly (Fig. 6-7)

* Remove the three screws (B) and the reel assembly can be taken out from the front side of the recorder.

12) Reel motor assembly (Fig. 6-7)

* Remove the three screws (C) and the reel motor assembly can be taken out.
* The motor lead wires are unsoldered at the terminating PCB.

13) Capstan motor assembly (Fig. 6-7)

* Remove the three (D) screws and the capstan motor assembly can be taken out.
* Unsolder the motor lead wires at the terminating PCB.

14) Replacing the capstan belt

* Remove the four (E) screws, shown in Fig. 6-7, and after removing the capstan shaft thrust bracket, replace the belt through the cutout at right of the bracket.

Fig. 6-7

* Assemble in reverse order whereby the belt is inserted through the cutout, strung on the flywheel and capstan motor pulley and then the thrust bracket reinstalled.

15) Replacing the reel motor drive belt

* With the top panel removed, as in Fig. 6-5, hold the brake in their released state and remove the belt through the gap between the brake drum and brake band, taking care not to bend the brake band.

The new belt is reinstalled in reverse order through this gap.

6.3 TRANSPORT CHECK AND ADJUSTMENT

1) Pinch roller pressure

Pinch roller pressure is supplied by the Pinch Roller Pressure Spring only and it is most important that the solenoid plunger be fully bottomed before taking pressure measurement.
a) Place deck in the EDIT mode.
b) Attach a suitable spring scale to the pinch roller shaft with a short loop of twine.
c) Put the deck in the PLAY mode, and positioning the scale as illustrated, slowly draw it in direction opposite the capstan until the pinch roller stops rotating.
d) The spring scale should indicate $4.4 \mathrm{lbs} . \pm 10 \%$ ($2.0 \mathrm{~kg} . \pm 10 \%$).
e) If the reading is off specification, loosen the 2 screws (Refer to Fig. A) and re-position the plunger solenoid. As the pressure will greatly change with only a slight shift in position, re-position the solenoid in small increments.

The pressure will increase by moving the solenoid in the direction away from the capstan motor.

After obtaining optimum pressure, securely tighten the screws and make a final re-check of the pressure.

Fig. 6-8
f) Adjust position of the solenoid-limit so that the gap between capstan shaft and pinch roller is approximately $4 m m$ when the solenoid is not actuated. Limit is adjusted by loosening the mounting screw (A), then sliding the limit until the proper gap is obtained.
2) Brake torque

Brake torque is applied mechanically. Pressure is set by the variable spring force. While making these measurements and adjustments, be careful not to bend the brake bands. As brake torque will change after cleaning, brake drums and brake shoes should be cleaned only when absolutely necessary. If cleaning is required, use alcohol. After cleaning, operate the machine for a month of normal operation before performing the procedures below.
Brake adjustments are made with NO power to the equipment.
a) Place an empty $2^{\prime \prime}$ hub reel on the left reel table, and fasten one end of a $30^{\prime \prime}$ length of twine to the reel anchor.
b) Wind several turns of twine CCW around the hub and attach a suitable spring scale to the free end of the twine.
c) Take reading only when the reel is in steady motion since the force required to overcome static friction will produce a false, excessively high initial reading.
d) The reading should be $28.5 \sim 42.0 \mathrm{in}-\mathrm{oz}(800 \sim 1200 \mathrm{~g}-\mathrm{cm})$.

Fig. 6-9
e) If adjustment is required, hook the spring to the next hole. Torque will increase as the spring is successively hooked to holes in the outward direction.
f) The adjustment of the right brake is the same, with the exception that rotations are clockwise (wind string CLOCKWISE around reel hub). The torque should be the same as for the left brake.
3) Tape tension adjustment procedures Tape tension is adjusted in the PLAY mode only, and are fixed for the F.FWD and REWIND modes.

Tape tension is determined indirectly by measuring the torque supplied by the supply and takeup motors.

Fig. 6-1.0

* Back tension adjustment procedures *

1) Block the shut-off arm in the oN position.
2) Place an empty 7" reel on the left reel table.
3) Manually rotate the reel and wind several turns of twine around the hub. Attach spring scale to other end of the twine.
4) Place deck in the PLAY mode.
5) Pull the scale away from the reel against the motor torque with a smooth, steady motion.
6) Read the scale while it is in steady motion and multiply this value by the hub radius to obtain the torque.
7) Be sure the twine is not rubbing against the reel flange when taking measurements.
8) The specified torque is 7.8 in-oz ($220 \mathrm{~g}-\mathrm{cm}$), $\pm 20 \%$.
9) If adjustment is required, adjust $R 161,22 \mathrm{~K} \Omega$ pot, as required.

* Takeup tension adjustment procedures *

1) Place an empty $7^{\prime \prime}$ reel, with a spring scale attached to the hub by a length of twine, on the right reel table.
2) Place deck in the PLAY mode.
3) Allow the reel to slowly wind-in the scale.
4) Follow the spring scale travel with enough force to allow a steady reading and multiply this value by the reel hub radius to calculate the torque.
5) The specified torque is 11.2 in-oz ($320 \mathrm{~g}-\mathrm{cm}$), $\pm 20 \%$.
6) If adjustment is required, adjust $R 129,22 \mathrm{~K} \Omega$ pot, as required.

rear view
Fig. 6-11
7) Wow and flutter

Wow and flutter measurements should be undertaken only after studying the following items and determining which method and standard will be employed.
a) Determine whether the Reproduce Method, or the Record/Reproduce Method, is to employed for measurement.
If the Reproduce Method is to be employed, a flutter test tape will be required.

Recommended test tape; Fostex P/N 8266008000, Standard Tape Lab., \#53-1 or equivalent.

In the Record/Reproduce Method, a 3 KHz sine wave is recorded on a blank tape, rewound to beginning of the recording, and reproduced again for the measurement process.

NOTE:
When reproducing the recorded signal at measurements by the Record/Reproduce Method, adopt the maximum wow and flutter value obtained by repeated play and stop modes of operation which is necessary to be sure that wow and flutter content between record and reproduce will not be in phase to create a false reading.
b) Determine the Standard to be used.

The wow and flutter meter is set to measure the IEC/ANSI peak value.
c) The wow and flutter meter must be calibrated for "weighted" measurements.
d) As the measured results will vary with respect to location on tape at which it was taken, at least two parts - at beginning and near the end of tape should be selected for measurement.

NOTE:
Recommended Wow \& Flutter Meter:
Meguro Denpa Sokki Co., Model MK-668C (Japan)
There will be slight differences in absolute value between other manufacturers.
IEC/ANSI (peak value)

Reproduce method	$\pm 0.06 \%$
Record/Reproduce Method	$\pm 0.08 \%$

5) Tape speed

Tape speed is measured by using the flutter Test Tape which contains a highly accurate, continuous 3 KHz tone.

Connect a digital frequency counter to either OUTPUT.
The indicated frequency should be $3 \mathrm{KHz}, \pm 0.5 \%$ for all speeds.
If tape speed is greatly offset from the specification, check pinch roller pressure and takeup tension for correct values, and see that the tape path is clean.

6.4 RECORD/REPRODUCE AMPLIFIER CHECKS AND ADJUSTMENTS

Checking and adjusting of the record/reproduce amplifiers can speedily and efficiently be carried out by following the procedures below.

Model A-8, R/P amp card installation.

6.4.1 Calibrating the Dolby encode mode and meters

1) Put transport in the EDIT mode. To calibrate TRACK 1, GROUP select is set to 1-4, depress the $1 / 5$ RECORD TRACK button, simultaneously depress RECORD and PLAY buttons to put TRACK 1 (CHAN. 1) in the record mode.
2) Plug in an audio oscillator output to the recorder rear panel INPUT 1 jack and apply a $400 \mathrm{~Hz},-10 \mathrm{dBV}$ (0.3 V) signal.
3) Set the NR INT/EXT switch on the recorder front panel to EXT, connect a level meter to test point $T P-101$ and adjust REC CAL (R-3ll, lOKSB) so that the level here is 390 mV .
4) On completing the above adjustments, connect the level meter to OUTPUT l jack on the recorder rear panel and check that the level here is -lOdBV (0.3V) $\pm 1 \mathrm{~dB}$.
5) After checking the OUTPUT jack level, adjust METER CAL (R312, 50K ΩB) for a 0 VU reading on the recorder VU meter.
6) Calibrate tracks 2,3 and 4 in the same way, then switch GROUP select to 5-8 for adjusting tracks $5 \sim 8$ by the same procedures.
7) Return the NR INT/EXT switch, on the recorder front panel, to INT.
6.4.2 Calibrating the Dolby decode mode
8) Set the NR INT/EXT switch on the recorder front panel to EXT and switch off all RECORD TRACK buttons.
9) Playback the Reference Level Section of the Reproduce Alignment Tape.
10) Beginning adjustments from TRACK 1 (CHAN l), connect a level meter to test point TP-101 located near Ul06 upon the CHAN 1 PCB of the record/reproduce amplifier, and adjust REP CAL (R314, 10K R_{B}) so that the level is 390 mV .
11) After these adjustments, connect the level meter to the recorder rear panel OUTPUT 1 jack and check that the level is $-10 \mathrm{dBV}(0.3 \mathrm{~V}) \pm 1 \mathrm{~dB}$.
12) After check of the OUTPUT jack level, confirm that the meter reading is $0 \mathrm{VU}, \pm 1 \mathrm{VU}$.

If the reading is not $0 \mathrm{VU} \pm \mathrm{IVU}$, repeat the adjustments in the previous section, Item 5.
6) Calibrate tracks $2 \sim 8$ (CHAN $2 \sim 8$) by the same procedures for TRACK l, above.
7) On completing the above adjustments, return to INT the NR INT/EXT switch on the recorder front panel.

6.4.3 Adjusting the reproduce frequency response

1) Set the NR INT/EXT switch on the recorder front panel to EXT and switch off all

RECORD TRACK buttons.
2) Playback the Head Azimuth and Frequency Response sections of the Reproduce Alignment Tape.

The Azimuth and Phase Adjusting Screw is adjusted for this alignment as shown in Fig. 6-12.

Fig. 6-12
3) Adjust the Azimuth and Phase Adjusting Screw for maximum reading on all eight VU meters of the recorder.

Then, connect the vertical input of the oscilloscope to TRACK 1 output and the horizontal input to one among TRACKS $2 \sim 8$, set the oscilloscope to $X Y$ mode to obtain a lissajous waveform to check the phase.

Trace for vertical input alone

Trace for horijontal input alone

Unequal levels

If the trace length between (1) and (2) are not the same, it means that the two inputs are not of the same level. Correct for equal lengths by the oscilloscope controls.

If the playback head azimuth is out of alignment, the following patterns will result:

(A small misalignment 30° out of phase)

(A larger error 90° outof phase)

(A big one, 180° out of phase)

(Perfect azimuth 0°, in phase)

Fig. 6-13

As a result of phase check with a 10 KHz signal, the adjustment is finished if difference in phase is less than 90° between tracks and azimuth adjustment is at the best point.
4) Check the playback frequency response of each channel by playback of the Frequency Response section of the Reproduce Alignment Tape. The recorder VU meters can be used for this check but if a more accurate measurement is necessary, the level meter is plugged one by one into the recorder rear panel $1 \sim 8$ OUTPUT jacks and the levels measured here.

The normal playback frequency response should be within $\pm 3 \mathrm{~dB}$ for a frequency range of $50 \sim 18,000 \mathrm{~Hz}$.

If it is not within spec, adjust REP EQ R313, 10K I_{B} (odd number tracks) or R323, 10K ΩB (even number tracks).
5) Whenever R313 and R323 are adjusted, the Dolby encode must be recalibrated (Item 5.2).

6.4.4 Bias leakage check

Two bias trap modules are provided for each channel. One is in the first stage of the reproduce amplifier and the other in the output stage of the record amplifier.

1) Reproduce bias trap module (Ul09 --- odd number channels; U209 --- even number channels)

To check bias leakage of TRACK 1, the oscilloscope probe is hooked to TP-105 and the probe ground clip to the nearest GND.

Put TRACK 1 in the reproduce mode, the adjacent TRACK 2 in the record mode and check bias leakage at TP-105. If this is less than $250 \mathrm{mV} \mathrm{P}-\mathrm{P}$, it is normal. (At checking TRACK 2, put the adjacent tracks 1 or 3 in the record mode.) If the voltage is high, it is adjusted by rotating the center core of $u l 09$ but before doing this, check the frequency $(100 \mathrm{KHz}, \pm 0.5 \mathrm{KHz})$ of the erase/bias master oscillator. To check the oscillator frequency, the record/reproduce amplifier PCB is pulled out from the A-8 and the frequency at connector pin No. 2 is checked.

If the oscillator frequency is largely off spec, replace the erase/bias master oscillator module (U13).
2) Record bias trap module (U108 --- odd number channels; U 208 --- even number channels)

To check bias leakage of TRACK 1, the oscilloscope probe is hooked to TP-104 and the probe ground clip to GND nearest to TP-105.

Put TRACK 1 in the record mode and check bias leakage at TP-104. It is normal
if the voltage is $1.1 \mathrm{~V} P-\mathrm{P}$.
If it is off spec, check frequency $(100 \mathrm{KHz}, \pm 0.5 \mathrm{KHz})$ of the bias/erase master oscillator before rotating the center core of U 108 to adjust bias leakage.

6.4.5 Erase current adjustment

In adjusting the erase current, put the track to be adjusted in the record mode.

To adjust TRACK 1 , for example, hook the hot side of the oscilloscope probe to TP-103 located near relay $K-101$ and the ground clip of the probe to GND pin in front of the REP EQ pot, R313. Set the core of L-103 so that voltage at TP-103 is 1.7 V P-P.

The test point for TRACK 2 is TP-203 located near relay L-201. The GND pin to be used is located left of the REP CAL pot, R324; erase current is adjusted by the core of L-203.

6.4.6 Bias current adjustment

The track of which bias current is to be adjusted is put in the record mode.
To adjust TRACK 1 , for example, hook the oscilloscope probe hot side to TP-102 located near connector J-101, and the ground clip to the GND pin.

Then, set the BIAS LVL pot, R317, $47 \mathrm{~K} \Omega \mathrm{~B}$ at approximately 450 mV p-P.
For an accurate adjustment, load a blank tape (Ampex \#457, Scotch \#227) on the recorder, record a test signal, set the $N R$ switch to INT, and trim the BIAS LVL pot so that the overall frequency response is within 3 dB between 250 Hz and 10 KHz , or within 5 dB when the higher end is 14 KHz .

During this adjustment, temporarily set the screwdriver adjusting slot of REC EQ, R3l6, 1K 1 B so that this slot is parallel with the PCB plane, then trim it for a more flat overall frequency response.

6.4.7 Recording level adjustment

1) Proceed to the following adjustments only after checks and adjustments in the previous Sections 6.4.1 ~ 6.4.6 have been completed.
Set the front panel NR INT/EXT switch to EXT.
2) Load a blank tape (Ampex 457 or Scotch 227) on the transport and apply an audio oscillator output of $400 \mathrm{~Hz},-10 \mathrm{dBV}(0.3 \mathrm{~V})$ to the INPUT jack on the recorder rear panel.
Also, plug in a level meter to the OUTPUT jack.
Taking TRACK 1 as an example, the connector number is "l" for both INPUT and OUTPUT jacks.
3) Set the GROUP select switch to $1-4$ and depress $1 / 5$ of the RECORD TRACK button. Depress the RECORD and PLAY buttons to put TRACK 1 in the record mode.

When thus in the record mode, the meter will indicate the input level regardless to select position of the input button.
Check to see that the reading of this meter is $0 \mathrm{VU} \pm 1 \mathrm{VU}$.
4) It will be convenient to rewind the tape to the start if the tape index counter reset button is depressed, at start of recording, to return the display to 0000 .
5) After recording a certain length of $400 \mathrm{~Hz}, 0 \mathrm{VU}$ signal, depress the ZERO RTN button to rewind tape to the starting point, put the transport in the PLAY mode and check the meter reading. The MONITOR switch must be at TAPE.

It is in normal condition if the meter reading is $0 \mathrm{VU} \pm 1.5 \mathrm{VU}$.
If it is off spec, correct by adjusting REC LVL R315, 5KßB.
Do the same on the remaining tracks 2, 3 and 4. For adjusting tracks 5, 6, 7 and 8, set GROUP select to 5-8 and follow the same procedures as for TRACK 1.

6.4.8 Overall frequency response

1) With the front panel NR INT/EXT switch at EXT and under the measurement setup of the previous Section 6.4.7, apply signals from 40 Hz through 18 KHz at -10 dBV (0.3V) to the recorder INPUT jack and set the NR switch to INT. To adjust TRACK 1 , for example, apply the signal to INPU' 1 and plug in a level meter to OUTPUT jack 1. Put TRACK 1 in the record mode to record a certain length of the sigmal, rewind it to the start, and playback the tape. It is in good normal condition if the frequency response in reference to 400 Hz is within +3 dB and -3 dB .

If it does not fall within spec in the high frequency region, correct it by a slight rotation of REC EQ pot R316, lK 2 B .
2) Check and adjust the remaining tracks in the same way.

6.4.9 Overall S / N measurement.

1) Set the front panel NR INT/EXT switch at INT.
2) Upon completing checking up to Section 6.4 .8 , apply a 400 Hz , $-10 \mathrm{dBV}(0.3 \mathrm{~V}$) signal to the rear panel INPUT jack 1 (example for track l), record the signal onto a blank tape, then, without stopping the tape, unplug the oscillator connected to the INPUT jack and further record a length of no-signal tape.
3) Plug a level meter into OUTPUT jack l, playback the recorded signal section to measure the noise level of the no-signal section against the 400 Hz reference level, calculate the difference between noise level and reference level, add $12 d B$ to it and obtain the ratio between peak recording level and noise level.
```
Specification: 72 dB weighted 60dB unweighted
```


6.4.10 T.H.D. measurement

1) Set the front panel NR INT/EXT switch to INT.
2) To adjust TRACK 1, for example, apply a 400 Hz , -10 dBV (0.3 V) test signal to INPUT jack l, record it, playback the recorded tape and apply its output from OUTPUT jack 1 to the distortion meter.
Specification: T.H.D. 1% or less
3) If it is not within spec, demagnetize the head, check the bias trap adjustment and record level.

If it still does not fall within spec after making the corrective measures above, readjust the bias current by the procedures in the previous Section 6.4.6.
4) When the Section 6.4 .6 adjustments are made, it is necessary to go through procedures in Sections 6.4.7 and 6.4.8.

6.4.11 Erase measurement

1) Set the front panel NR INT/EXT switch to INT.
2) To adjust TRACK 1, for example, apply a 1 KHz , OdBV (1V) signal which is 10dB higher than the reference level, to INPUT jack 1 and put TRACK 1 in the record mode.

Partially rewind the tape to retain a section of the 1 KHz signal and then record over the remaining section without any signal at the input.
3) Rewind to start of recording, playback the tape, insert a 1 KHz bandpass filter between OUTPUT 1 and the level meter to measure the output.
4) The level ratio between the 1 KHz recording and the no-signal recording is the erasure figure. It is in good normal condition if erasure is higher than 70 dB .
5) If it is less than the spec, increase erase current about 10% by the procedure of Section 6.4.5. Monitor the erase current waveform on the oscilloscope at adjusting and set the core just before the waveform begins to deteriorate. A higher current will heat the erase head and result in damage to the tape.

6.4.12 Sync crosstalk measurement

1) Sync crosstalk is the relative figure against the reference level on how much of the recording signal from the track in the recording mode is leaking into the track being reproduced.

When sync crosstalk is excessively high, playback output during overdubbing will
sound muddy by effect of the recording signal leakage or cause oscillation at ping-pong recording whereby the playback output is transferred to another track.
2) Sync crosstalk occurs in relation to the track and pitch dimensions of the head and its construction, and since this cannot be corrected without affecting its frequency response, to be aware of how much margin there is before oscillation occurs at ping-pong recording is very important at drawing out best performance from the recorder. Sync crosstalk must be measured, of course, when the head is replaced with a new one.
3) It is in good normal condition if sync crosstalk is lodB or better, when either track of two adjacent ones, is put in the record mode.
4) To adjust TRACK 1 , for example, load a blank tape on the transport, put TRACK 1 in the sync mode (playback) and TRACK 2 in the record mode.

Plug in a level meter to the TRACK 1 OUTPUT jack, an audio oscillator to the TRACK 2 INPUT jack and apply a $20 \mathrm{~Hz} \sim 20 \mathrm{KHz},-10 \mathrm{ABV}$ (0.3 V) signal to the recorder. Thus, the signal appearing at the TRACK 1 OUTPUT is sync crosstalk. If crosstalk from TRACK 1 OUTPUT is higher than -lOdBV (0.3 V), TRACK 1 cannot be playbacked for transferring to TRACK 2 as oscillation will occur.
5) As TRACKS 2 through 7 will each have two adjacent tracks, either one side only is put in the record mode at taking measurements. It could be useful in using this recorder if, for reference, the figure for both tracks in the record mode is measured.

7. EXPLODED VIEW, PCB ASSEMBLIES AND PARTS LST

ASSEMBLING HARDWARE CODING LIST

All screws conform to ISO standards, and have crossrecessed heads, unless otherwise noted. ISO screws have the head inscribed with a point as in the figure to the right.

FOR EXAMPLE:
B $M 3 \times 6$

Diameter in mm (D) *
Metric System
Nomenclature

- Inner dia. for washers and nuts

	CODE	NAME	TYPE
	P	Pan Head Screw	(1) manimin
	T	Stove Head Screw (Truss)	(2) miniili
	B	Binding Head Screw	8)
	F	Flat Cowntersunk Head Screw	(8) Miphin
	0	Oval Countersunk Head Screw	(2) ymanit
	PWH	Pan-Washer Head Screw	(2) jibinim
	RW	Found Head Wood Screw	(8)
	FW	Flat Countersunk Wood Screw	(a)
	OW	Oval Countersunk Wood Screw	8)
$\begin{aligned} & 3 \\ & \text { 3 } \\ & \text { c } \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & \frac{0}{0} \\ & \frac{a}{a} \\ & 1 \end{aligned}$	PTP	Pan Head Solf Tapping Screw (B type)	(3) Ainfifin
	PTPWH	Pan-washer Head Salf Tapping Screw 18 type)	(2) गHillim
	TTP	Stove Heed Self Tapping Screw (B type)	Bnanini
	FTP	Flat Countergunk Head Selt Tapping Screw (8 trpe)	sisumining
	PTT	Pan Head Tapping Screw	(2)
	PTTWH	Pan-Washer Head Tapping Screw	
	TT	Stove Head Tbobing Screw	(3) manmin
	FTT	Flat Countersunk Head Tapping Screw	
	PS	Pan Head Screw with Spring Washer	
	PSW	Pan Head Screw with Washer and Spring Washer	
	W	Flat Waster	(3)
	LW	Spring Wesher	(T)
	LWI	Internal Teeth Lock Washer	(5)
	LWE	Extemal Teeth Lock Washer	4

	CODE	NAME	TYPE
	TW	Trim Washer I Cowntersunk I	(B)
	N	Hex Nut	(10)
	L	Lug	E
	THW	Thrust Washer (Poly Washer)	(5)
	HSF	Hex Socket Setscrew (Flat Poini)	
	HSC	Hex Socket Setscrew (Cup Point)	$6{ }_{\text {gmplin }} 7$
	SSF	Slotted Socket Setscerew (Flat Point)	(1)] 7
	SSC	Slotted Socket Setscrew \{ Cup Point 1	
־	HSB	Hex Soket Head Bolt	
	HB	Hex Heed Bolt	תx\|m!
$\begin{aligned} & \frac{Z}{2} \\ & 0 \\ & \frac{2}{x} \end{aligned}$	ER	E-Ring (Retaining Washer)	(-)
	CAR	C-Ring I Inner :	ω
	CRS	C-Ring (Outer)	(2)
	GR	Seeger Ring	$\leq ?$
	SP	Spring Pin	
	SR	Srap Ring	(598) Tor
$\frac{\frac{T}{M}}{\frac{\Sigma}{2}}$	2n	Zinc plating	
	CZn	Colored zinc plating	
	82n	Black zinc plating	
	Ni	Nickel plating	
	BNi	Black nieket plating	
	Cr	Chrome plating	
	BCr	Black chrome plating	

Ref. No.	Parts No.	Nomenclature
1	8212040100	Housing, head
2	8260036000	Panel, trim transport
3	8223029000	Cap, tension roller
4	8212026000	Roller, tension
5	8223028000	Base, tension roller
6	8223004000	Cap, pinch roller
7	8212027000	Cover, pinch roller
8	8260018000	Pinch roller
9	8260039000	Panel ass'y, trim, amplifier, $8 T$
10	8226017000	Button, reset
11	8226012000	Button, push
12	8226015000	Button, control
13	8270049000	Transport assembly, $8 T$
14	8226009000	Knob, slide
15	8226006000	Knob (ll)
16	8214003000	Washer
17	8270119000	R/P amplifier assembly, $8 T$
18	8273082002	PC8 assembly, R/P amplifier
19	822004400	Plate, PCB lockíng
20	8212033000	Cover, bottom
21	3216003000	Foot
22	8220052000	Plate, cover
23	8207000600	Plastic rivet, No. 794
24	8226013000	Button, push (B)
25	8226021000	Reel clamper

The following apply to A-8LR only.
98260096000 Panel ass'y, trim, amplifier, 8T
188273082001 PCB ass'y, R/P amp., $19 \mathrm{~cm} / \mathrm{s}$
8273082002 " " , " " , $38 \mathrm{~cm} / \mathrm{s}$

Ref. No.	Parts No.	Nomenclature	Ref. Mo.	Parts Ko.	Nomenclature
1	8212024200	Reel table	48	8260022000	Arm assembly, tension R
2	8260031000	Brake assembly, R	49	8220041000	Arm, joint
3	8260030000	" " , L	50	8214014000	Link
4	8214008000	Spring	51	8214007000	Spring
5	8249002000	Solenoid (B)	52	8260024000	Lifter assembly, A
6	8220031000	Bracket, solenoid	53	8216007000	Tube
7	8214013000	Spring	54	8214009000	Spring
8	8204007001	Pin, SP3×10	55	8260026000	Plate assembly, shield
9	8249005000	Solenold	56	8220042000	Plate, shield
10	8204007004	Pin, SP3X20	57	8212030100	Knob, shield
11	8220031000	Bracket, solenoid	58	8214010100	Spring, shield plate
12	8220024000	Lever, fast winding	59	8260015000	Shaft assembly
13	8220025000	Lever, brake	60	8210001000	Flywheel
14	8214007000	Spring, FF solenoid	61	8223007000	Shaft, pinch roller solenoid
15	8210002000	Housing	62	8260019000	Arm assembly, pinch roller
⑯	8242019000	Transformer, power, 8T, 100V	63	8214031000	Spring
\triangle	8242020000	" " 120 V	64	8214012000	Spring
\triangle	8242021000	" " " 220/240V	65	8260034200	Chassis assembly
\triangle	8242022000	" " 100~240V	66	8216005100	Belt, reel
17	8223017000	Collar, cue	67	8253016000	Switch, micro
18	8214006000	Spring	68	8220030000	Bracket, safety switch
19	8220035000	Arm, cue	69	8249004000	Motor, capstan
20	8212029000	knob, cue	70	8220023000	Bracket, motor
21	8220046200	8ase, head	71	8216008000	Bushing
22	8214011100	Spring, head	72	8204006001	Screw (Sholdek)
23	8273083000	PC8 assembly, head terminal	73	8223008100	Pulley, capstan
24	8220034100	Bracket, head mount	74	8216006100	Belt, capstan
25	8259003000	Head, E, 8T	75	8249003000	Motor, reel
26	8259004100	", R/P, 8T	76	8223009000	Puley, reel
27	8273029000	$P C B$ assembly, sensor	77	8276007000	Harness assembly, reel motor R
28	8223016100	Collar, head guide	78	8276030000	" " " " L
29	8220033000	Guide, edge, head	79	8220026000	Bracket, capstan
30	8223015100	Guide, spacer, head	80	8216010000	Sheet
31	8220054000	Chassis assembly, sub	81	8270032001	Rectifier assembly, DM
32	8223030000	Cap, impedance roller		8270032002	" USA
33	8212025100	Roller, impedance		8270032003	EUR
34	8260021000	Base assembly, impedance roller	82(C203)	8232035103	Cap, ceramic, JF, 0.01uF, 50 V
35	8223004100	Cap, pinch roller	(C204)	1	" " " "
36	8212027000	Cover, pinch roller	83(C201)	"	" " " " "
37	8260018000	Pinch roller	(C202)	"	"
38	8223029000	Cap, tension roller	(c205)	"	" " " "
39	8212026100	Roller, tension	84	8216041000	Stopper
40	8223028000	Base, tension roller			
41	8216011000	Screen, tension arm			
42	8214007000	Spring			
43	8260023000	Arm assembly, tension L			
44	8216019200	Cushion, felt			
45	8220047100	Locking spring			
46	8214016000	Spring			
47	8204005001	Screw (Sholdek)			

Ref. No.	Parts No.	Momenclature
1	8220060400	Chassis, 8/4
2	8270035000	PCB assembly, control switch
3	8270036000	PCB assembly, display
4	8270037000	Control pot
5	8248003000	Meter
6	8273012000	PCB, meter
7	8273043000	PCB assembly, group switch
$\triangle 8$	8253029001	Switch, power, DM
\triangle	8253029002	" " , USA, CND
4	8253030002	" , EUR
9	8270038001	Function/counter assembly
10	8273048000	PCB assembly, switch A
11	8260032100	Chassis assembly, side L
12	8260033100	" R
13	8220048000	Bracket
14	8212028000	Guide, PCB
15	8270040000	PCB ass'y, connector board, 8T
16	8270031000	PCB ass'y, regulator, 8T
17	8245017000	Connector, jack, RCA, black, 8P
18	8273041000	Connector ass'y, transport, remote
$\triangle 19$	8276003000	Cord, power, DM
\triangle	8276004000	" " , USA
\triangle	8276005000	" " , HYDRO
Δ	8276006000	" , EUR
\triangle	8276007000	" " , UK
\triangle	8276008000	" , AUS
20	8207000209	Bushing, SR-4K-4, EUR/UK/AUS
	8207000215	" , SR-5P-4, HYDRO
	8207000207	, SR-4P-4, UL/CSA
21	8220057000	Back panel, 8T
22	8270004000	Rivet, plastic, No. 980
23	8245030000	Cnctr, jack, phone, mono, 36-7625
24	8270034000	System control assembly
$\triangle 25$	8256008000	Sparkiller, DM
\triangle	8256009000	" , UL
\triangle	8256010000	, CSA
\triangle	8256011003	Capacitor, SEMKD
26	8216027000	Cover, switch A, AUS
27	8220045100	Heat sink, power

SYSTEM CONTROL PCB ASSEMBLY, ASSEMBLY Mo. 8273033000
Ref. Mo. Parts No. Nomenclature

8251036200 PCB, system control

Ref. No.	Parts No.	Nomenclature	
R045	8230004105	Vertical mounting, w W,	7к, " "
R046047	8230004563	" " "	56KR,
R048	8230004105	" " "	IM2, ",
R049050	8230004563	" " "	56KR,"
R051	82300041.04	" " "	100ks, "
R052	8230004474	" " "	470K,
R053	8230004753	" " "	75k,
R054~056		Deleted	
R057	8230004104	Vertical mounting, 4 W,	100k, "
R058	8230004474	Vertical mounting, \ddagger W,	470ks, J.
R059	8230004470	" " "	478, "
R060	8230004681	" " "	6802, "
R061~062	8230004103	" " "	10Ks, "
R063	8230004105	" " "	142, "
R0642065	8230004154	" " "	150ks,"
R066~067	8230004103	" " "	10ks, "
R068	8230004104	" " "	100ks, "
R069	8230004474	" " "	470kS,
R070~071	8230004473	" " "	47 k , "
R072~073	8230004104	" " "	100ks,"
R074	8230004474	" " "	470ks, "
R075~076	8230004473	" " "	47k8, "
R077	8230004472	" " "	4.7kת,"
R078	8230004104	" " "	looks,"
R079	8230004474	" " "	470k,
ROBO	8230004104	" " "	100ks,"
R081	8230004474	" " "	470ks, "
R082	8230004823	" " "	$82 \mathrm{~K} \Omega$,
R083	8230004474	" " "	470kS,
R08\$085	8230004104	" " "	100k8, "
R086	8230004331	" " "	3308, J
R087	8230004472	" " "	4.7\%8, "
R088	8230004473	" " "	47ks,
R089	8230004753	" " "	75ks, "
R0900909	8230004103	" " "	loka, "
R092	8231001333	VR, metal, flat mtg, B,	33K8, "
R093	8230004164	Vertical mounting, tW ,	160ks, "
R094	8231001223	VR, metal, flat mtg, B,	22kS, "
R095	8230004753	Vertical mounting, iW,	75kS, "
R096	8230004752	" " "	7.5ks, "
R097	8230004123	" " "	12kת,"
R098	8230004103	" " *	10Kת, "
R099	8230004102	" "	1K, "
R100 101	8230004104	" " "	100ks, "
R102~103	8230004472	" " "	4.7kת, "
R104	8230004103	" " "	10kת,"
R105	8230004472	" " "	$4.7 \mathrm{KR}, \mathrm{J}$
R106	8230004103	" " *	10KR, "
R107	8230004821	" " "	8200, "
R108	8230004272	" " "	2.7ks,"
R109	8230004104	" " "	100ks,"
R110	8230004474	" " "	470kS, "
Rlll	8230004103	" " "	10KS,"
$\mathrm{Rl12}$	8230004104	" " "	100ks,"

S No. Nomenclature		
R179		Deleted
R180	8230004473	Vertical mounting, $\ddagger \mathrm{W}, ~ 47 \mathrm{~K}, \mathrm{l}$,
R181	8230004103	10k2,
R182	8230004104	100k,
R183		Deleted
R184	8230004473	Vertical mounting, $\mathrm{WW}, 47 \mathrm{~K} \Omega, \mathrm{~J}$
R185		Deleted
R186	8230004683	Vertical mounting, $\ddagger W, 68 \mathrm{~K} \Omega, \mathrm{~J}$
R187	8230004101	1008
R188	8230004472	4.7kת
	CAPACITORS	
C001~002	8232035103	Ceramic, HE70SJYF103Z
C003	8232003106	Electrolytic, 10uF, 16V, SMVB
C004~005	8232035103	Ceramic, HE70SJYF1032
C006	8232006225	Electrolytic, 50V, 2.2uF, VB
C007~012	8232035103	Ceramic, HE70SJYF1032
C013	8232027472	Mylar, 0.0047uf, 50V, K
C014	8232035103	Ceramic, HE70SJYF103Z
CO15	8232006105	Electrolytic, luF, 50V, SMVB
col6w 017	8232035103	Ceramic, HETOSJYF103Z
CO18	8232064106	Electrolytic, 10uF, 16V, SHBVB
COI9	8232006474	. 0.47uF, 50V, SMVB
CO2D	8232035103	Ceramic, ME70SJYF103Z
C021	8232067225	Electrolytic, 2.2uF, 50V, SHBVB
CO22	8232005475	. 4.7uF, 35V, SNVB
C023	8232027682	Mylar, 0.0068uF, $50 \mathrm{~V}, \mathrm{~K}$
C024		Deleted
C025	8232031331	My ${ }^{\text {ar, }}$ 330pF, 100V, X
C026		Deleted
C027	8232065475	Electrolytic, 4.7uF, 25V, SHBVB
C028	8232027333	Mylar, 0.033uF, 50V, K
C029	8232027332	, 0.0033uf, 50V, K
C030	8232003476	Electrolytic, 47uF, 16V, EUVB
C031	8232027333	Mylar, 0.033uF, 50V, K
C032	8232003476	Electrolytic, 47uF, 16V, EUVB
${ }^{0} 033$	8232027333	Mylar, 0.033uF, $50 \mathrm{~V}, \mathrm{~K}$
C034	8232002476	Electrolytic, 47uF, 10V, SMVB
C035	8232004107	, 100uF, 25V, 5MVB
C036	8232027152	Mylar, 1500pF, 50V, K
C037	8232006105	Electrolytic, luF, 50V, SMVB
C038	8232035103	Ceramic, hE70SJYFI03Z
C039	8232002107	Electrolytic, 100uF, 10V, 5MVB
C040	8232035103	Ceramic, he70SJYF103Z
C041	8232002107	Electrolytic, 100uF, 10V, SMVB
C042~043	8232035103	Ceramic, he70SJYF103Z
C044	8232005476	Electrolytic, 47uF, 35V, SMVB
CO45	8232006474	, 0.47uF, 50V, SNVB
C046	8232002107	, 100uF, lov, Smvb
C047	8232026822	Polypropylene, 0.0082uF, 50V, J
C048	8232031222	Polypropylene, 0.0022uF, 300V, J
C049	8232005475	Electrolytic, 4.7uF, 35V, SMVB
C05005	8232067474	, 0.47uF, 50V, SHBVB
C052	8232063476	47uF, 10v,

Ref. No.	Parts No. Nomenclature		
	MISCELLANEOU		
J101	8245024002	Connector, jack,	2P, W 5045-02F
J102	8245001005	" "	5P, W 5045-05A
J103	8245001007	" "	7P, W 5045-07A
J104	8245024022	" "	2P, RE 5045-02F
J105	8245001010	" "	10P, W 5045-10A
3106	8245001008	"	8P, W 5045-08A
3107	8245024042	" "	2P. BL 5045-02F
J108	8245001003	" "	3P, W 6045-03A
J109	8245001004	" "	4P, W 5045-04A
J10	8245001006	" "	6P, W 5045-06A
111	8245001024	" "	4P, RE 5045-04A
312	8245024002	" "	2P, W 5045-02F
3113	8245001044	" "	4P, BL 5045-04A
3114	8245024022	" "	2P, RE 5045-02F
315	8245024042	" "	2P, BL 5045-02F
	8220028000	Heat sink	

PCB ASSEMBLY CONTROL SWITCH

PCB ASSEMBLY, CONTROL SWITCH, ASSEMBLY No. 8273032100
Ref. No. Parts No. Nomenclature

8251035000 PCB, control switch
SCOI~OO6 8253004000 Switch Tact, KHG10901

PCB ASSEMBLY, DISPLAY, ASSEMBLY No. 8273031000
Ref. No. Parts No. Nomenclature
8251034100 PCB, display
DIODES
D001~004 8234002300 LED, display, MAN74A
D005 8234001501 LED, opto-, LN233RP
S001 8253004000 Switch, Tact, KHG10901

Ref. Mo.	Konenclature		
8138, 238	8230004153	Vartical atg. .	15ke
8139. 239	8230004332	* *	2.3ke
R140, 240	8230004562	*	5.6K0
R141, 261	8230004168	* *	160
8142. 242	8230004682	* *	6.80
2143, 243	E2300041 03	*	1060,
8144. 244	8230023222	* * .	, setal. 2.2ch. 15
R145, 245	8230004683	* *	68 kc
8145, 246	8230023512	* *	5.160
8147, 247	8230005561	* *	5600
R148, 248	8230004392	* *	3.9ke
R149, 245	8230006912	*	9.1ke
R150, 250	-	* *	*
R151, 251		Deleted	
R152, 252		*	
R153, 253	8230004123	* *	12000
8154, 254	8230004472	"	4.7 KF
2155. 255	5230004313	*	33KE
k156. 256	8230004104	* *	100ke
R157, 257	8230004472	* *	4.7 KE
R158, 258	8230004183	* *	18KE
R159. 259	8230004202	* *	2 KO
R160, 260	-	*	$*$

R/F APLIFIER PCB NSSEMBC, AT(3Icn/s), ASS'Y No, 8273082002

off. No. Farts Mo.

Ref. Mo.	Parts Mo.	Nomenclature	
R161, 261	8230004102	" "	$1 \mathrm{~K} \Omega$
R162, 262	8230004200	"	208
R163. 263	8230004223	,	22K8
R164, 264	8230004273	" "	27k8
R165, 265	8230004822	" "	$8.2 \mathrm{k} \Omega$
R166, 266	8230004562	" "	5.6Kת
R167, 267	8230004105	" ${ }^{\text {a }}$	1 m
R168, 268	8230004272	Vertical mtg., $2.7 \mathrm{k} \Omega$	
R169, 269	8230004223	" "	22K8
RI70, 270	8230004563	,	56 K 8
R171, 271	8230004104	" ${ }^{\circ}$	100ks
R172, 272	8230004333	"	33<2
R173, 273	8230004104	" "	100k8
R174, 274	8230004361	-	3608
R175, 275	8230004333	" "	33k8
R176, 276	8230004104	" "	100ks
R177, 277	8230004273	" "	27K8
R178, 278	8230004334	" "	330kת

Ref. Mo. Parts Mo. Nomenclature

	CAPACITORS	
C101, 201	8232006105	Electrolytic, 50V, luF, 20\%, 5 M
C102, 202	8232026472	PES, 50V, 0.0047uF, 5\%, AMX
C103, 203	8232003106	Electrolytic. 16V, 10uF, 20\%, SM
C104, 204	8232026473	PES, 50V, 0.047uF, 5\%, SM
C105, 205	8232003100	Electrolytic, 16V, 10uF, 20\%, SM
C106, 206	8232018224	, 50V, 0.22uF, 20\%, KA
C107. 207	8232002477	, 10V, 470uF, 20\%, SM
C108, 208	8232026333	PES, 50V, 0.033uF, 5\%, AMX
C109, 209	8232026104	- , 0.luF, 5\%, AMX
C110, 210	8232026333	, 0.033uF, 5\%, AMX
C111, 211	8232026104	' , 0.luF, 5\%, AMX
C112, 212	8232003336	Electrolytic, 16V, 33uF, 20\%, SM
C113, 213		Deleted
C114, 214	823207106	Electrolytic, 16V, 10uF, 20\%, LR-VB
C115, 215	8232035103	Ceramic, 50V, 0.01uF, YF
C116, 216	8232005475	Electrolytic, 35V, 4.7uF, 20\%, SM
C117, 217	8232051220	Ceramic, 50V, 22pF, 10\%, SL
C118, 218	8232005475	Electrolytic, 35V, 4.7uF, 20\%, SM
C119, 219	8232004226	, 25V, 22uF, 20\%, SM
C120, 220	8232005475	, 35V, 4.7uF, 20\%, SM
C121, 221	8232004106	, 25V, 10uF, 20\%, SM
C122, 222	8232026102	PES, 50V, 1000pF, 5\%, AMX
C123, 223		Deleted
C124, 224	8232051101	Ceramic, 50V, 100pF, 10\%, SL
C125, 225	8232003107	Electrolytic, 16V, 100uF, 20\%, 5M
C126, 226	8232085105	, 50V, luF, LR-BP
C127, 227	8232034271	Ceramic, 50V, 270pF, 10\%, YB
C128, 228	8232003336	Electrolytic, 16V, 33uF, 20\%, SM
C129, 229		Deleted
Cl30, 230	8232026153	PES, 50V, 0.015uF, 5\%, AMX
C131, 231	8232051220	Ceramic, 50V, 22pF, 10\%, SL
C132, 232	8232003106	Electrolytic, 16V, 10uF, 20\%, SM
C133, 233	8232006105	, 50\%, 1uF, 20\%, SM
C134, 234	8232051470	Ceramic, 50V, 47pF, 10\%, SL
C135, 235	8232030333	PPR, 100V, 0.033uF, 2\%, APS
C136, 236	8232026472	PES, 50V, 4700pF, 5\%, AMX
C137, 237	8232030103	PPR, 100V, $0.01 \mathrm{LF}, 28$, APS
C138, 238	8232018224	Electrolytic, 50V, 0.22uF, 20\%, KA
C139, 239	8232003336	, 16V, 33uF, 20\%, SM
C140, 240		Deleted
C141, 241		Deleted
C142, 242	8232026332	PES, 50Y, 3300pF, 5\%, AMX
C143, 243	8232072475	Elect, 25V, 4.7uF, 20\%, LR-VB
C144, 244	8232003106	Electrolytic, 10uF, 16V, SMNB
C145, 245	8232030333	Polypropylene, 0.033uF, 100V, G
C146, 246	8232031392	PPR, 100V, 3900pf, 5\%, APS
C147, 247	8232031272 .	" , 2700pF, "

Nomenclature

C148, 248 Deleted

C149, 2498232002107 Electrolytic, 10V, 100uF, 20\%, SM
C150, 2508232026183 PES, 50V, $0.018 \mathrm{UF}, 5 \%$, AMX.
C151, 2518232005475 Elect, 35Y, 4.7uF, 20\%, 5M
C152, 2528232003106 Electrolytic, 16V, 10uF, 20\%, 5M
C153, 2538232026104 PES, 5OV, O.1UF, 5\%, AMX
C154, 2548232072475 Electrolytic, 4.7uF, 25V, LRVB
C155, 2558232027683 PES, 50V, O.06BuF, AMX
Cl56, 2568232035103 Ceramic, 50V, 0.01uF, YF
C157, 2578232072106 Electrolytic, 10uF, 25V, LRVB
C158, 2588232004107 " , 1004F, 25V, SM

CARBON TRIMER POTS

R311, 3218231004103 Vertical mounting, $10 \mathrm{~K} \Omega$, 8
R312, 3228231004503 " " , 50K , "

R313, 3238231004502 " " , 5K , " R314, 324 8231004103 " " , 10K, " R315, 3258231004202 " * $2 \mathrm{~K} \Omega$, " R316, 326 R317, 3278231004103 " " , 10K ," R318, 328 Deleted
\qquad
MISCELLANEOUS
K101, 1028248006006 Relay, sub-mini, G2E-182P-K
Ll03, 2038242004000 Coil, 0.8 mph
J101, 2018245011019 Cnctr, jack, 3024-19AH, white
8276001000 Pin, header, x12
8276002004 Wire, jumper, 10 mm , IPS-1041-4, x39
8276001000 Pin, header (X 9)

PCB ASSEMBLY FUNCTION/COUNTER

PCB ASSEMBLY, FUNCTION/COUNTER, ASS'Y No. 8273030001

Ref. No. Parts No.	Nomenclature	
	8251033100 PCB, function/counter	
U001	IC's	
	8236007100	Digital, LM8523
	TRANSISTORS	

Q001~004	8234000203	2SC1815GR
Q002~004		Deleted
Q005~006	8234000303	2SA1015GR
Q007~010	8234000203	2SC1815GR
Q011	8234001003	2SA684R

| D001~005 | 8234001800 | MA 150 |
| :--- | :--- | :--- | :--- |
| D006~009 | 8234003900 | MA 154 WK |
| D010~012 | 8234001800 | MA 150 |
| D013 | 8234003900 | MA $154 W K$ |
| D014~022 | 8234001800 | MA 150 |
| D023 | 8234003900 | MA $154 W K$ |

CARBON RESISTORS

PCB ASSEMBLY REGULATOR

PCB ASSEMBLY, REGULATOR, ASSEMBLY No. 8273040001

Ref. No.	Parts No.	Nomenclature
	8251039000	PCB, regulator
	IC's	
\triangle U001	8236.026000	Analog, regulator, 7818A
$\triangle \cup 002$	8236026100	" " , 7808A
$\triangle 10003$	8236026200	" " , 7805A
$\triangle \cup 004$	8236,026300	" " . 7824A
	TRANSISTOR	
Q001	8234003400	2SD686
	DIODE	
D001	8234001957	Zener, KZ240
$0002 \sim 003$	8234000700	1N4002
	CARBON RESIS	TORS

Ref. No.	Parts No.	Momenclature
	CAPACITORS	
COOI	8232006105	Electrolytic, luF, 50V, SANB
C002	8232005107	, 100uF, 35v, SNWB
C003	8232006476	, 47uF. 50V, SMVB
C004	8232005107	, 100uF, 35Y, SMVB
C005	8232006105	, luF, 50Y, SMNB
COO6	9232003107	, 100uF, 16V, SMVB
C007	8232006105	, luF, 50V, SANB
C008	8232003107	, 100uF, 16V, SMY8
COO9	8232006105	, luF, 50V, SMYB
C010	8232005107	, 100uF, 35V, SMYB

ROO1, 0028230006221 Flat mounting, $\ddagger W, 2202, J$

PCB ASSEMBLY RECTIFIER

RECTIFIER PCB ASSEMBLY, ASSEMBLY No. 8273039000

Ref. No.	Parts No.	Nomenclature	Ref. No.	Parts No.	Nomenclature
	8251040000	PCB, rectifier		MISCELLANEOUS	
	DIODES			8239000100	Holder, fuse, SN5051
\triangle D001	8234001602	2W02		8239000200	" " SN5053
\triangle D0012003	8234001703	W02	$\triangle \mathrm{FOO}$	8239000540	Fuse, DM, 4A, 250V
$\triangle 0004$	8234000700	1N4002	$\triangle \mathrm{FOO1}$	8239000340	" , UL/CSA, 4A, 250V
	CAPACITORS		\triangle FOO1	8239000740	" , SEMKO, 4A, 250 V
			$\triangle \mathrm{A} 002$	8239000515	", DM, 1.5A, 250 V
COOI	8232078478	Electrolytic, 4700uF, 50V, SMUP	$\triangle \mathrm{FOO2}$	8239000316	" , UL/CSA, 1.6A, 250 V
COO2	8232035103	Ceramic, HE70SJYF103Z	\triangle F002	8239000716	", SEMKO, 1.6A, 250 V
C003	8232077338	Electrolytic, 3300uF, 35V, SMVP	\triangle F003	8239000520	" , DM, 2A, 250 V
COO4	8232035103	Ceramic, HE70SJYF103Z	\triangle F003	8239000320	" , UL/CSA, 2A, 250 V
C005	8232079228	Electrolytic, 2200uF, 63V, SMVP	\triangle F003	8239000720	" , SEMKO, 2A, 250V
C006	8232035103	Ceramic, HETOSJYF1032	\triangle F004	8239001110	" , DM, 1A, 250V
C007	82320031.08	Electrolytic, 1000uF, 16V, SNVP	\triangle F004	8239000610	" , UL/CSA, 1A, 250 V
			\triangle F004	8239000710	" , Semko, IA, 250 V

PCB ASSEMBLY HEAD TERMINAL

HEAD TERMINAL PCB ASSEMBLY, ASS'Y No. 8273083000

Ref. No.	Parts No.	Nomenclature
	8251121000	PCB, head terminal
	CARBON RESIS	TORS
R001~007	8230034102	Flat mtg., 1/6W, $1 \mathrm{~K} \Omega_{8}$, 5\%
	CAPACITORS	
c001~007	8232026123	PES, 50V, 0.012uF, 5\%, AMX

PCB ASSEMBLY CHANNEL DISPLAY

CHANNEL DISPLAY PCB ASSEMBLY, ASS'Y No. 8273012000
Ref. No. Parts No. Nomenclature

8251029100 PCB, channel display
8276147000 Cover, LED
DIODES
D001~004 8234001401 Opto, LED, LN222RP

SCHEMATICS

Remote control

SCHEMATICS

Power supply

© 11-1982 FOSTEX CORP. 8298026300 A-8/A-8LR

ModelA-8LR Service Manual

There are two types in the A-8 LR Series - the LOW SPEED 7-1/2 ips version and the HIGH SPEED 15 ips version.

The majority of adjusting methods for the A-8 LR are identical with the A-8 and the points and methods different from the A-8 only are detailed in the A-8 LR SERVICE MANUAL. Therefore, the A-8 SERVICE MANUAL should be referred to for other servicing data.

1. THE CONTROLS AND THEIR FUNCTIONS

1) Head shield gate

The head shield gate is manually operated. If the gate is retracted down, a short downward push of its top edge will release its lock and the gate fully rise by spring action. To retract it, the gate is pressed down and will be locked at the limiting position.
2) Rewind button [REWIND]

Depressing this button transports tape at high speed from the right reel to the left reel.
3) Fast forward button [F.FWD] Depressing this button transports tape at high speed from the left reel to the right reel.
4) Stop button [STOP]

All modes of ZERO RIN, REWIND, F.FWD, RECORD and PLAY will be cancelled and tape stopped when this button is depressed.
5) Play button [PLAY]

Depressing this button puts the recorder in the play mode.
6) Record button [RECORD]
a) with more than one and up to four RECORD TRACK buttons depressed, simultaneous depressing both RECORD and PLAY buttons puts the tracks thus assigned in the record mode.
b) With more than one and up to four RECORD TRACK buttons depressed and with the transport in the PLAY mode, simultaneously depressing both RECORD and PLAY buttons puts those tracks thus assigned to the record mode (punch in).
7) Return to zero position [ZERO RTN]

Depressing this button puts the transport in the rewind mode, automatically rewind tape to "0000" of the tape index counter and then go to the STOP mode.
8) Record track selector [RECORD TRACK]

These eight pushbuttons determine whether recording can commence on a given track. The specific function also depends on whether or not tape is stopped or is advancing in the record ready mode.
a) If tape is stopped, depressing a RECORD TRACK button places the corresponding track in the record mode, and the LED above that track's meter [17] will blink. If the RECORD button only is depressed, the VU meter indications and signals from the OUTPUT jacks will change from tape out to input monitor only for those channels whose

RECORD TRACK buttons are depressed, and the record LED [16] will change to blinking.
This mode will be cancelled'by depressing the STOP, PLAY or ZERO RTN buttons but will not be cancelled by depressing F.FWD or REWIND buttons.

If the RECORD and PLAY buttons are subsequently depressed, tape begins recording, the track's meter LED [l7] stops blinking and remains on, and the record LED [16] also turns on.

Although the VU meter indications and signals from the output jacks will go to input signal monitor of the channels only which go to record mode by this operation, the other channels will remain in the tape out signal monitor mode.
b) If tape is rolling in the PLAY mode, depressing a RECORD TRACK button has the same effect as in a), above; it readies the track for recording.
In this condition, the VU meter indications and signals from the output jacks will be tape out signal monitor for all channels.
c) If tape is rolling in the record ready mode (i.e. RECORD and PLAY buttons have been depressed), the record LED [16] adjacent to the tape counter will blink and the LED's above each of the eight VU meters will not blink. Subsequent depression of a RECORD TRACK button immediately causes that track to enter record mode; the record LED [16] now remains on (so does the LED associated with the track's VU meter [17].

9) INPUT MONITOR SELECTOR

When this button is depressed, signals at the line output jacks and the VU meter readings will be input monitor for all 8 channels. This means that while input monitor signals will be output from each channel output jacks whose number correspond with each channel input jacks at the rear panel, at the same time these levels will be indicated by each channel vu meter.

When this button is in the up position, any channel can be monitored by a combination of the desired RECORD TRACK SELECTOR number and the RECORD, PLAY buttons on the transport control. For instance, depress RECORD TRACK SELECTOR buttons 2 and 3 while in the STOP mode; then, depressing the RECORD button only puts channels 2 and 3 in the input monitor mode and the remain-
ing channels will be for tape monitor.
From this condition, depressing the PLAY button only cancels the input monitor mode for channels 2 and 3 , and the remaining channels will be for tape monitor.

When the PLAY and RECORD buttons are simultaneously depressed, channels 2 and 3 will go to the record mode and also in the input monitor mode for these two channels only.
10) Head assembly
11) Counter display

Revolutions of the supply reel table is detected by two photo-interrupters and shown on a 4 digit display.
12) Reset button

The counter display reset button which clears the display to "0000".
13) Edit button [EDIT]

The EDIT switch is provided to facilitate precise splicing of tape after removing an unwanted section of tape.
When this slide switch is set to OUT (upper side), the transport will be in the normal operating mode, and when set to IN (lower side), it will be in the EDIT mode.

When in the EDIT mode, the transport will not go into any other mode except PLAY and STOP.

In the EDIT mode, the shut off switch linked to the right tension arm will be ineffective and therefore, the capstan motor will rotate upon switching on the power switch and the takeup reel remain stationary when the PLAY button is depressed. In this case, the mechanical brakes will be released but no power is applied to the takeup reel motor and the takeup reel can be rotated easily by hand.

If EDIT is switched ON during the PLAY mode, tape will stop but if the PLAY button is depressed again, the tape will be transported at the play speed but will not be wound by the takeup reel. If EDIT is switched OUT under this condition, the transport goes to the stop mode. At this point, if tape slack is taken up so that the right tension arm is up, and then the PLAY button is depressed, the transport goes to normal play mode.
14) NR INT/EXT switch [NR]

The internal Dolby noise reduction system will be in operation when this NR switch is set to INT.

When any other type of $N R$ system is to be used with this recorder, set the NR switch to EXT and connect the encoder to INPUT, and the decoder to OUTPUT of the RCA phono jack on the rear 'panel.
15) Pitch control knob [PITCH CONT]

The 12 o'clock click action stop of this knob is the normal speed (15 ips) position, and speed can be varied -10% at CCW rotation, and $+10 \%$ at CW rotation, respectively, of this knob.
16) Record LED [RECORD]

This LED will either blink or glow continuously under the following conditions when the RECORD and PLAY buttons are depressed at the same time:

* Will blink if none of the four RECORD TRACK buttons are depressed.
* Will glow continuously if one or more RECORD TRACK buttons are depressed.

17) Record LED (Located above each VU meter) These LED's will blink or glow continuously depending on what combination and sequence the RECORD TRACK buttons and the transport control RECORD button is depressed:

* If any RECORD TRACK button is depressed after the transport control RECORD and PLAY buttons are depressed (in the PLAY mode and record ready state), the LED of the channel corresponding to the depressed button, will glow continuously.
* With none of the four RECORD TRACK buttons depressed and while the transport is in the play mode record ready state, all four LED's of channels $1 \sim 4$ or channels 5 ~ 8 selected by the GROUP select button, will blink; under this condition, if any one or up to four of the RECORD TRACK buttons corresponding to the channels of the blinking LED's are depressed, the LED of the depressed channel only will glow continuously and the other LED's will be extinguished.
* If any RECORD TRACK button is depressed during ZERO RTN, REWIND, F.F'WD, PLAY or STOP modes, the LED of the depressed channel will blink.

18) Cue lever [CUE]

The lifter mechanism lifts the tape away from the head in the ZERO RTN , REWIND and F.FWD modes.

The cue lever is provided to allow tape cueing when the tape is thus lifted from the head. Shifting the cue lever moves the lifter pins toward the head and the tape will touch the head.
19) Power switch [POWER]
$A C$ power is applied to the unit and the VU meters lighted when this button is depressed.

The capstan motor will not rotate unless the takeup reel side tension arm is up, or in other words, unless the shut-off switch linked to the tension arm is on, but the capstan motor will rotate even though the tension arm is down only when in the EDIT mode.
20) Reel clamper

The reel is secured to the reel turntable by CW rotation of this clamper.
21) Transport function remote connector [REMOTE - TRANSPORT]

Remote operation of the transport function controls is possible by connecting the optional Model 8030 Remote Control Unit.
22) Punch In/Out remote jack [REMOTE - PUNCH IN/OUT]

This jack is used for punch in/out of the recording by a foot switch. Any one button among the four RECORD TRACK selector buttons is depressed and the transport put in the PLAY mode. Then, if the foot switch is depressed, the previously selected track goes to the record mode; if the foot switch is depressed again, the record mode is cancelled and the transport goes to the record ready play mode.

With none of the RECORD TRACK selector buttons depressed and the recorder in play mode, depressing the foot switch will make the record indicating LED to blink, indicating that the recorder is in the record ready state while in play mode. When any one of the RECORD TRACK selector button is depressed under this condition, the track of the depressed button will go to the record mode but will be cancelled, returning to the record ready state, when the foot switch is depressed again.

One word of caution - the foot switch can neither punch in nor out when the transport is put in the record mode by the control panel PLAY and RECORD buttons.
23) Input jack [INPUT]
24) OUTPUT JACKS [OUTPUT]

These 8 jacks carry the output from tracks 1 through 8 of the recorder.

With the INPUT MONITOR selector and RECORD TRACK selector buttons depressed, depressing the RECORD button only or both the RECORD and PLAY buttons at the same time makes the tape out signal change to input monitor signal.
25) Power cord
26) Capstan and Pinch roller
27) Supply idler roller
28) Tension arm
29) VU meter

2. SPECIFICATION

TAPE	1/4 inch tape width, 1 mil base
FORMAT	8 track, 8 channel (8 channel record, 8 channel reproduce)
REEL SIZE	7 inch
TAPE SPEED	15 or $7-1 / 2$ ips (38 or $19 \mathrm{~cm} / \mathrm{s}$), $\pm 0.5 \%$
PITCH CONTROL	$\pm 10 \%$
LINE INPUT	```-10aBV (0.3V) Impedance: 30k\Omega, unbalanced```
LINE OUTPUT	```-10ABV (0.3V) Load impedance: lok\Omega or higher, unbalanced```
RECORD LEVEL CALIBRATION	0 VU referenced to $250 \mathrm{nWb} / \mathrm{m}$ of tape flux
EQUALIZATION	35 usecs at 15 ips, $50 \mu \mathrm{secs}$ at 7-1/2 ips
WOW \& FLUTTER	$\pm 0.06 \%$ peak (IEC/ANSI), weighted for 15 ips, $\pm 0.10 \%$ peak (IEC/ANSI), weighted for $7-1 / 2 \mathrm{ips}$ measured with flutter test tape
STARTING TIME	Less than 0.5 sec.
FAST WIND TIME	130 seconds for 1800 ft . of tape
FREQUENCY RESPONSE	$40 \mathrm{~Hz} \sim 18 \mathrm{KHz}$, for 15 ips $\pm 3 \mathrm{~dB}$ $40 \mathrm{~Hz} \sim 15 \mathrm{KHz}$, for $7-1 / 2$ ips $\pm 3 \mathrm{~dB}$
SIGNAL TO NOISE RATIO	```72dB weighted, 60dB unweighted for }15\mathrm{ ips, 72dB weighted, 60dB unweighted for 7-1/2 ips, referenced to 3% T.H.D. level (12dB above O VU) at l KHz```
T.H.D.	Less than 1\% at $1 \mathrm{KHz}, 0 \mathrm{VJ}$
ERASURE	Better than 70 dB at 1 KHz
POWER REQUIREMENTS	```120V AC, 60Hz, 60W (U.S.A./Canada models) 220V AC, 50Hz, 60W (European models) 240V AC, 50Hz, 60W (UK/Australian models) 100/120/220/240V AC, 60W (General export models)```
DIMENSIONS, overall	14" (W) $\times 13-1 / 2^{\prime \prime}$ (H) $\times 6-3 / 4{ }^{\prime \prime}$ (D)
WEIGHT	29 lbs. (l3Kg.)

6. SPECIAL MAINTENANCE

6.4 RECORD/REPRODUCE AMPLIFIER CHECKS AND ADJUSTMENTS

Checking and adjusting of the record/reproduce amplifiers can speedily and efficiently be carried out by following the procedures below.

6.4.1 Calibrating the Dolby encode mode and meters

1) Put transport in the EDIT mode. To calibrate TRACK 1, depress the RECORD TRACK 1 button, simultaneously depress RECORD and PLAY buttons to put TRACK 1 (CHAN. 1) in the record mode.
2) Plug in an audio oscillator output to the recorder rear panel INPUT 1 jack and apply a 400 Hz , -10 dBV (0.3 V) signal.
3) Set the NR INT/EXT switch on the recorder front panel to EXT, connect a level meter to test point TP-101 and adjust REC CAL (R-311, 10KRB) so that the level here is 390 mV .
4) On completing the above adjustments, connect the level meter to OUTPUT 1 jack on the recorder rear panel and check that the level here is $-10 \mathrm{dBV}(0.3 \mathrm{~V}) \pm 1 \mathrm{~dB}$.
5) After checking the OUTPUT jack level, adjust METER CAL (R-312, 50KRB) for a 0 VU reading on the recorder VU meter.
6) Calibrate tracks $2 \sim 8$ in the same way.
7) Return the NR INT/EXT switch, on the recorder front panel, to INT.

6.4.2 Calibrating the Dolby decode mode

1) Set the NR INT/EXT switch on the recorder front panel to EXT and switch off all RECORD TRACK buttons.
2) Playback the Reference Level Section of the Reproduce Alignment Tape.
3) Beginning adjustments from TRACK 1 (CHAN l), connect a level meter to test point TP-101 located near $U 106$ upon the CHAN 1 PCB of the record/reproduce amplifier, and adjust REP CAL (R314, lOK $\Omega \mathrm{B}$) so that the level is 390 mV .
4) After these adjustments, connect the level meter to the recorder rear panel OUTPUT 1 jack and check that the level is $-10 \mathrm{dBV}(0.3 \mathrm{~V}) \pm 1 \mathrm{~dB}$.
5) After check of the OUTPUT jack level, confirm that the meter reading is 0 VU, $\pm 1 \mathrm{VU}$.

If the reading is not $0 \mathrm{VU} \pm I \mathrm{VU}$, repeat the adjustments in the previous section, Item 5.
6) Calibrate tracks $2 \sim 8$ (CHAN $2 \sim 8$) by the same procedures for TRACK l, above.
7) On completing the above adjustments, return to INT the NR INT/EXT switch on the recorder front panel.
6.4.3 Adjusting the reproduce frequency response

1) Set the NR INT/EXT switch on the recorder front panel to EXT and switch off all RECORD TRACK buttons.
2) Playback the Head Azimuth and Frequency Response sections of the Reproduce Alignment Tape.

The Azimuth and Phase Adjusting Screw is adjusted for this alignment as shown in Fig. 6-12.

Fig. 6-12
3) Adjust the Azimuth and Phase Adjusting Screw for maximum reading on all eight VU meters of the recorder.

Then, connect the vertical input of the oscilloscope to TRACK 1 output and the horizontal input to one among TRACKS $2 \sim 8$, set the oscilloscope to XY mode to obtain a lissajous waveform to check the phase.

Trace for vertical input alone

Trace for horijontal input alone

Unequal levels

If the trace length between (1) and (2) are not the same, it means that the two inputs are not of the same level. Correct for equal lengths by the oscilloscope controls.

If the playback head azimuth is out of alignment, the following patterns will result:

(A small misalignment 30° out of phase)

(A larger error 90° outof phase)

(A big one, 180° out of phase)

(Perfect azimuth 0°, in phase)

Fig. 6-13
As a result of phase check with a lokHz signal, the adjustment is finished if difference in phase is less than 90° between tracks and azimuth adjustment is at the best point.
4) Check the playback frequency response of each channel by playback of the Frequency Response section of the Reproduce Alignment Tape. The recorder VU meters can be used for this check but if a more accurate measurement is necessaxy, the level meter is plugged one by one into the recorder rear panel $1 \sim 8$ OUTPUT jacks and the levels measured here.

The normal playback frequency response should be within $\pm 3 \mathrm{~dB}$ for a frequency range of $50 \sim 18,000 \mathrm{~Hz}(15 \mathrm{ips})$ and $50 \sim 15,000 \mathrm{~Hz}(7-1 / 2 \mathrm{ips})$.

If it is not within spec, adjust REP EQ R313, loK l0K 2 B (even number tracks).
5) Whenever R313 and R323 are adjusted, the Dolby encode must be recalibrated (Item 5.2).

6.4.4 Bias leakage check

Two bias trap modules are provided for each channel. One is in the first stage of the reproduce amplifier and the other in the output stage of the record amplifier.

1) Reproduce bias trap module (U109 --- odd number channels; U209 --- even number channels)

To check bias leakage of TRACK 1 , the oscilloscope probe is hooked to TP-105 and the probe ground clip to the nearest GND.

Put TRACK 1 in the reproduce mode, the adjacent TRACK 2 in the record mode and check bias leakage at TP-105. If this is less than 250 mV P-P (l5 ips) and 700mV P-P (7-l/2 ips), it is normal. (At checking TRACK 2, put the adjacent tracks l or 3 in the record mode.) If the voltage is high, it is adjusted by rotating the center core of Ul 09 but before doing this, check the frequency ($100 \mathrm{KHz}, \pm 0.5 \mathrm{KHz}$) of the erase/bias master oscillator. To check the oscillator frequency, the record/reproduce amplifier PCB is pulled out from the A-8 and the frequency at connector pin No. 2 is checked. If the oscillator frequency is largely off spec, replace the erase/bias master oscillator module (Ul3).
2) Record bias trap module (U108 --- odd number channels; 4208 --- even number channels)

To check bias leakage of TRACK 1, the oscilloscope probe is hooked to TP-104 and the probe ground clip to GND nearest to TP-105.

Put TRACK 1 in the record mode and check bias leakage at TP-104. It is normal
if the voltage is l.1V P-P.
If it is off spec, check frequency $(100 \mathrm{KHz}, \pm 0.5 \mathrm{KHz})$ of the bias/erase master oscillator before rotating the center core of $U l 08$ to adjust bias leakage.

6.4.5 Erase current adjustment

In adjusting the erase current, put the track to be adjusted in the record mode.

To adjust TRACK 1, for example, hook the hot side of the oscilloscope probe to TP-103 located near relay K -101 and the ground clip of the probe to GND pin in front of the REP EQ pot, R3l3. Set the core of $\mathrm{L}-103$ so that voltage at TP-103 is 1.7V P-P (15 ips) and 1.5 V P-P (7-1/2 ips).

The test point for TRACK 2 is TP-203 located near relay L-201. The GND pin to be used is located left of the REP CAL pot, R324; erase current is adjusted by the core of L-203.

6.4.6 Bias current adjustment

The track of which bias current is to be adjusted is put in the record mode. To adjust TRACK 1, for example, hook the oscilloscope probe hot side to TP-102 located near connector J-l01, and the ground clip to the GND pin.

Then, set the BIAS LVL pot, R317, $47 \mathrm{~K} \Omega \mathrm{~B}$ at approximately 450 mV P-P.
For an accurate adjustment, load a blank tape (Ampex \#457, Scotch \#227) on the recorder, record a test signal, set the NR switch to INT, and trim the BIAS LVL pot so that the overall frequency response is within 3 dB between 250 Hz and 10 KHz , or within $5 d B$ when the higher end is 14 KHz .

During this adjustment, temporarily set the screwdriver adjusting slot of REC EQ, R316, $1 \mathrm{~K} \Omega \mathrm{~B}$ so that this slot is parallel with the PCB plane, then trim it for a more flat overall frequency response.

6.4.7 Recording level adjustment

1) Proceed to the following adjustments only after checks and adjustments in the previous Sections 6.4.1 ~ 6.4.6 have been completed.

Set the front panel NR INT/EXT switch to EXT.
2) Load a blank tape (Ampex 457 or Scotch 227) on the transport and apply an audio oscillator output of $400 \mathrm{~Hz},-l 0 \mathrm{dBV}(0.3 \mathrm{~V})$ to the INPUT jack on the recorder rear panel.

Also, plug in a level meter to the OUTPUT jack.
Taking TRACK 1 as an example, the connector number is "l" for both INPUT and OUTPUT jacks.
3) Depress the RECORD TRACK 1 button, then, depress the RECORD and PLAY buttons to put TRACK 1 in the record mode.

When thus in the record mode, the meter will indicate the input level regardless to select position of the input button.

Check to see that the reading of this meter is $0 \mathrm{VU} \pm 1 \mathrm{VU}$.
4) It will be convenient to rewind the tape to the start if the tape index counter reset button is depressed, at start of recording, to return the display to 0000.
5) After recording a certain length of $400 \mathrm{~Hz}, 0 \mathrm{VU}$ signal, depress the ZERO RTN
button to rewind tape to the starting point, put the transport in the PLAY mode and check the meter reading. The MONITOR switch must be at TAPE.

It is in normal condition if the meter reading is $0 \mathrm{VU} \pm 1.5 \mathrm{VU}$.
If it is off spec, correct by adjusting REC LVL R315, 5K $\Omega \mathrm{B}$.
Do the same on the remaining tracks $2 \sim 8$.

6.4.8 Overall frequency response

1) With the front panel NR IN/EXT switch at EXT and under the measurement setup of the previous section 6.4.7, apply signals from 40 Hz through 18 KHz (15 ips) and 40 Hz through 15 KHz ($7-1 / 2 \mathrm{ips}$) at $-10 \mathrm{dBV}(0.3 \mathrm{~V}$) to the recorder INPUT jack and set the NR switch to INT.

To adjust TRACK l, for example, apply the signal to INPUT 1 and plug in a level meter to OUTPUT jack 1. Put TRACK 1 in the record mode to record a certain length of the signal, rewind it to the start, and playback the tape. It is in good normal condition if the frequency response in reference to 400 Hz is within +3 dB and -3 dB .

If it does not fall within spec in the high frequency region, correct it by a slight rotation of $R E C E Q$ pot $R 316,1 K \Omega B$.
2) Check and adjust the remaining tracks in the same way.

6.4.9 Overall S / N measurement

l) Set the front panel NR INT/EXT switch at INT.
2) Upon completing checking up to Section 6.4 .8 , apply a 400 Hz , - 10 dBV (0.3 V) signal to the rear panel INPUT jack 1 (example for track 1), record the signal onto a blank tape, then, without stopping the tape, unplug the oscillator connected to the INPUT jack and further record a length of no-signal tape.
3) Plug a level meter into OUTPUT jack l, playback the recorded signal section to measure the noise level of the no-signal section against the 400 Hz reference level, calculate the difference between noise level and reference level, add 12 dB to it and obtain the ratio between peak recording level and noise level.

Specification: 72 dB weighted
60 dB unweighted
6.4.10 T.H.D. measurement

1) Set the front panel NR INT/EXT switch to INT.
2) To adjust TRACK 1 , for example, dpply a $400 \mathrm{~Hz},-10 \mathrm{dBV}(0.3 \mathrm{~V})$ test signal to INPUT jack 1 , record it, playback the recorded tape and apply its output from OUTPUT jack 1 to the distortion meter. Specification: T.H.D. 1% or less
3) If it is not within spec, demagnctize the head, check the bias trap adjustment and record level.

If it still does not fall within spec after making the corrective measures above, readjust the bias current by the procedures in the previous Section 6.4.6.
4) When the Section 6.4.6 adjustments are made, it is necessary to go through procedures in Sections 6.4.7 and 6.4.8.
6.4.11 Erase measurement

1) Set the front panel NR INT/EXT switch to INT.
2) To adjust TRACK 1 , for example, apply a 1 KHz , OdBV (lV) signal which is lodB higher than the reference level, to INPUT jack 1 and put TRACK 1 in the record mode.

Partially rewind the tape to retain a section of the 1 KHz signal and then record over the remaining section without any signal at the input.
3) Rewind to start of recording, playback the tape, insert a 1 KHz bandpass filter between OUTPUT 1 and the level meter to measure the output.
4) The level ratio between the 1 KHz recording and the no-signal recording is the erasure figure. It is in good normal condition if erasure is higher than 70 dB .
5) If it is less than the spec, increase erase current about 10% by the procedure of Section 6.4.5. Monitor the erase current waveform on the oscilloscope at adjusting and set the core just before the waveform begins to deteriorate. A higher current will heat the erase head and result in damage to the tape.

6.4.12 Sync crosstalk measurement

1) Sync crosstalk is the relative figure against the reference level on how much of the recording signal from the track in the recording mode is leaking into the track being reproduced.

When sync crosstalk is excessively high, playback output during overdubbing will
sound muddy by effect of the recording signal leakage or cause oscillation at ping-pong recording whereby the playback output is transferred to another track.
2) Sync crosstalk occurs in relation to the track and pitch dimensions of the head and its construction, and since this cannot be corrected without affecting its frequency response, to be aware of how much margin there is before oscillation occurs at ping-pong recording is very important at drawing out best performance from the recorder. Sync crosstalk must be measured, of course, when the head is replaced with a new one.
3) It is in good normal condition if sync crosstalk is lodB or better, when either track of two adjacent ones, is put in the record mode.
4) To adjust TRACK 1 , for example, load a blank tape on the transport, put TRACK 1 in the sync mode (playback) and TRACK 2 in the record mode.

Plug in a level meter to the TRACK 1 OUTPUT jack, an audio oscillator to the TRACK 2 INPUT jack and apply a $20 \mathrm{~Hz} \sim 20 \mathrm{KHz},-10 \mathrm{dBV}(0.3 \mathrm{~V})$ signal to the recorder. Thus, the signal appearing at the TRACK 1 OUTPUT is sync crosstalk. If crosstalk from TRACK 1 OUTPUT is higher than -lOdBV (0.3 V), TRACK 1 cannot be playbacked for transferring to TRACK 2 as oscillation will occur.
5) As TRACKS 2 through 7 will each have two adjacent tracks, either one side only is put in the record mode at taking measurements.
It could be useful in using this recorder if, for reference, the figure for both tracks in the record mode is measured.

7. PCB ASSEMBLIES AND PARTS LIST

COHHECTOR BOARD PCB ASSEMBLY, Ass'y No. 8273087000 ; 8TLR

Ref. No.	Parts Mo.	Nomenclature	
	8251101100	PCB, connector board	
	IC's		
U001~003	8236003301	Digital, MC14071B	
U004	8236002901	" , MC14050B	
บ005	8236004001	" , MC14081B	
U006, 007	8236003500	" , MC14073B	
U008	8236000101	" , MC140018	
uoorwall	8236003301	" , MC14071B	
U012	8236002901	" , MC14050B	
U013	8236004001	" , MC34081B	
U014	8236003500	" , MC14073B	
U015	8256017000	Module, OSC, LR, 100 KHz	
	TRAMSISTORS		
Q001	8234000303	2SAIO15GR	
Q002~005	8234000203	2SC1815GR	
Q006	8234003702	2SC2655Y	
Q007	8234003802	2SA1020Y	
Q008	8234000303	2SA1015GR	
	DIODES		
D001~013	8234003500	MA 150, fVS	
D014	8234000700	1N4002	
D015	8234003500	MA 150, fVS	
CARBON RESISTORS			
All resistors $\mathbb{4}$, $\pm 5 \%$ unless otherwise noted.			
ROO1	8230004472	Vertical mounting, 4.7K, J	
R002	8230000103	$" \quad " \quad, 10 \mathrm{~K} \Omega, "$	
RCO3	8230000103	" " , l00K , "	
R004	8230004243	" " , 24k ${ }^{\prime \prime}$	
R005	8230004104	100ks	
R006	8230000333	" " , 33k , "	
R007	8230000104	10	
R008	8230000472	" " , 4.7	
R009	8230000103	J	
RO10	8230000104	" " . 100	
RO13	8230000243	" " , 24k , "	
R012	8230000104	"	
RO13	8230000333	" " , 33kת,"	
R014	8230000104	" " . $100 \mathrm{~K} \Omega$	
R015	8230000472	" " , 4.7k	
R016	8230000103	" " , 10kS	
R017	8230000104	" " , 10	
R018	8230000243	" " . $24 \mathrm{~K} \Omega$,	
R019	8230000104	" " , 100k ,	
R020	8230000333	" " , $33 \mathrm{~K} \Omega$,	
RO21	8230000104	" " , 100k8, "	
R022	8230000472	" " , 4.7K , "	
R023	8230000103	" " . $10 \mathrm{~K} \Omega$,	
R024	8230004104	" " , 100k ${ }^{\prime \prime}$, "	
RO25	8230004243	- 24kR,	
R026	8230000104	" " , 100k8, "	
R027	8230000333	" " , 33k ,	

Ref. Mo.	Parts No.	Nomenclature	
R028	8230000104	Vertical mounting,	100ks,
R029	8230000472	" " .	$4.7 \mathrm{~K} \Omega$,
R030	8230000103	" "	10Kת, "
R031	8230000104	"	, 100KR, "
R032	8230000243	" "	24k Ω,
$R 033$	8230000104	" "	, la0ks, "
R034	8230000333	" " .	33kת."
R035	8230000104	"	100ks,"
R036	8230000472	" * ,	, 4.7K, "
R037	8230000103	" " ,	10ks,
R038	8230000104	"	, 100k Ω, "
8039	8230000243	" " ,	- 24k Ω,
R040	8230000104	" " ,	, 100K Ω, "
R041	8230000333	"	33kת,
R042	8230000104	*	100ks,
R043	8230000472	\cdots	, 4.7k Ω, "
R044	8230004103	" " .	- 10k8,
R045	8230004104	Vertical mounting,	, 100k及, J
R046	8230000243	" n .	24KS,
8047	8230000104	"	100ks, "
R048	8230000333	" "	33kת,
R049	8230000104	" " ,	$100 \mathrm{~K} \Omega$,
R050	8230000472	" " ,	4.7 KR ,
R051	8230000103	" "	10kS,
R052	8230000104	" "	100k Ω,
R053	8230000243	" " ,	24kת,
R054	8230000104	" " ,	100kS,
R055	8230000333	" "	33K8,
R056	8230000104	" "	100ks, "
R057	8230000472	" "	4.7k ${ }^{\text {a }}$
$R 058$	8230000103	" "	- 10K Ω,
R059	8230000104	" "	100k Ω, "
R060	8230000472	" "	$4.7 \mathrm{~K} \Omega$,
R061	8230000473	" "	, 47k8, "
R062	8230000472	" "	4.7kת, "
R063	8230000473	" "	, 47kת,"
R064	8230004164	" "	, 160k Ω,
R065	8230004163	" "	, 16K Ω,
R066	8230000104	"	, l00ks, "
R067	8230000474	" "	, 470kS,
R068	8230000103	" "	, 10K8, "
R069	8230000621	*	- 6208, "
R070	8230000181	" "	- 1808,
R071	8230000103	" "	, 10K及, "
R072	8230000104	" "	, 100K Ω,
R073	8230000473	"	- $47 \mathrm{~K} \Omega$,
R074	8230000472	"	, 4.7kת,
R075	8230000104	"	, 100kS,
R076	8230000102	"	, lK, "
R077	8230000103	"	, 10K Ω,
R078	8230000104	" "	, 100k Ω,
R079	8230000220	1	- 22Ω,

CONNECTOR BOARD

Ref. No.	Parts No. Nomenclature		
	8251100100	PCB, R/P amplifier, 8T	
	IC's		
U101, 201	8236027600	Analog, Dolby	, NE 652
U102, 202	8236027700	"	, NE 654
U103, 203	8236021000	" , NJM 4	455900
U104, 204	8236020900	" , NJM 4	4559DF
U105, 205	8256013000	Module, low pas	pass filter, 25 KHz
U106, 206	"	" "	" " "
U107. 207	8256012000	* . skewi	
U108, 208	8255014000	" , trap,	P, 100 KHz
U109, 209	8256015000	" , "	S,
	TRANSISTORS		
Q101, 201	8234000109	FET, 2SK117Y-	
Q102, 202	8234000203	2SC1815GR	
Q103, 203	8234000602	2SC2878B	
Q104, 204	8234000111	FET, 2SK117GR	
Q105, 205	8234000203	2SC1815GR	
Q106, 206	"	"	
Q107, 207	"	"	
Q108, 208	8234000602	2SC2878B	
Q109, 209	8234000203	2SC1815GR	
	DIODES		
D102~106	8234003500	MA 150, FVS	
D201 206	8234003500	MA 150, FVS	
D108, 208	"	" *	
D107, 207	8234000700	iN4002	
CARBON RESISTORS All resistors $\mathbb{Z} W, 5 \%$ unless otherwise noted.			
R101, 201	8230004273	Vertical mtg.	, 27Kת
R102, 202	*	" "	"
R103, 203	8230023123	" "	, metal, 12ks, 1\%
R104, 204	8230023753	" "	, $75 \mathrm{~K} \Omega$,
R105, 250	8230004334	" "	330Kת
R106, 206	8230004394	" ${ }^{\circ}$	$390 \mathrm{~K} \Omega$
R107, 207	8230004334	" "	330Kת
R108, 208	8230004394	" "	390k
R109, 209	8230004123	- "	$12 \mathrm{~K} \Omega$
R110, 210	8230004822	" "	8. $2 \mathrm{~K} \Omega$
R111, 211	"	" "	"
R112, 212	8230004104	" ${ }^{\prime}$	100ks
R113, 213	8230004201	" "	2008
R114, 214	8230004153	" "	15K Ω
R115, 215	8230114154	" "	$150 \mathrm{~K} \Omega$
8116, 216	8230004561	" "	560Ω
R117, 217	8230114103	" "	10K8
R118, 218	8230004562	" "	$5.6 \mathrm{~K} \Omega$
R119, 219	8230004333	" "	33Kת
R120, 220	8230004223	$1{ }^{\prime}$	22Kת
R121, 221	8230004562	" "	5.6Kת

Ref. No.	Parts No.	Nomenclature		
R122, 222	8230004103	"	"	10K8
R123, 223	Deleted			
R124, 224	8230004682	"	"	$6.8 \mathrm{~K} \Omega$
R125, 225	8230004101	"	"	1008
R126. 226	"	"	"	"
R127, 227	8230004682	${ }^{\prime}$	"	$6.8 \mathrm{~K} \Omega$
R128, 228	8230004562	"	"	$5.6 \mathrm{~K} \Omega$
R129, 229	8230004103	"	*	10K8
R130, 230	8230004221	"	"	2208
R131, 231	8230004273	"	"	27KR
R132, 232	8230004331	Vertical	mtg.	3308
R133, 233	8230004473	"	"	47K8
R134, 234	8230004103	"	"	10Kת
R135, 235	8230004391	"	"	3908
R136, 236	8230004394	"	"	$390 \mathrm{k} \Omega$
R137, 237	8230004332	"	"	$3.3 \mathrm{~K} \Omega$
R138, 238	8230004153	"	"	$15 \mathrm{~K} \Omega$
R139, 239	8230004332	"	11	$3.3 \mathrm{~K} \Omega$
R140, 240	8230004562	11	"	$5.6 \mathrm{~K} \Omega$
R141. 241	8230004102	"	"	$1 \mathrm{~K} \Omega$
R142, 242	8230004682	"	"	$6.8 \mathrm{~K} \Omega$
R143, 243	n	${ }^{\prime \prime}$	"	"
R144, 244	8230023222	"	"	metal, 2.2kS, 1\%
R145, 245	8230004683	"	"	68Kת
R146, 246	8230023512	"	"	$5.1 \mathrm{~K} \Omega$
R147, 247	8230004561	"	"	560Ω
R148, 248	8230004392	"	"	3.9Kת
R149, 249	8230004912	\cdots	"	$9.1 \mathrm{k} \Omega$
R150, 250	.	"	"	"
R151. 251	8230004222	\cdots	${ }^{\prime \prime}$	2.2Kת
R152, 252	8230004100	"	"	108
R153, 253	8230004123	"	\cdots	12K8
R154, 254	8230004472	${ }^{\prime}$	"	$4.7 \mathrm{~K} \Omega$
R155, 255	8230004333	\cdots	\cdots	33K Ω
R156, 256	8230004104	\cdots	*	100ks
R157, 257	8230004472	"	"	$4.7 \mathrm{~K} \Omega$
R158, 258	8230004183	1	"	18K8
R159, 259	8230004202	"	"	$2 \mathrm{~K} \Omega$
R160, 260	"	"	11	"
R161, 261	8230004102	"	"	$1 \mathrm{~K} \Omega$
R162, 262	8230004200	"	"	208
R163, 263	8230004223	"	"	22 K 8
R164, 264	8230004273	"	${ }^{\prime \prime}$	27Kת
R165, 265	8230004822	"	"	8.2kת
R166, 266	8230004562	"	*	$5.6 \mathrm{~K} \Omega$
R167, 267	8230004105	"	"	1 MR
R168, 268	8230004272	Vertical	mtg. .	. $2.7 \mathrm{~K} \Omega$
R169, 269	8230004223	"	"	22KS
R170, 270	8230004563	"	"	$56 \mathrm{~K} \Omega$

C141, 2418232026153 PES, 50V, 0.015 uF, 5\%, AMX
C142, 2428232026562 PES, 50V, 5600pF, 5\%, AMX
C143, 2438232072475 Elect, 25V, 4.7uF, 20\%, LR-VB
C144, 244
C145, 245
C146, 246
C147, 247
C148, 248
C149, 249
C150, 250
C151, 25
C152, 252-8232003106
C152, 252 82320031 06 , 82320261 PES, 50Y, D. VuF, 5\%, AMX
8232026104 PES, 50V, O. IUF, 5\%, AMX
C154, 2548232005475 Elect, 35V, 4.7uF, 20\%, SM
Cl55, 2558232027683 PES, 50V, $0.068 \mathrm{uF}, 5 \%$, AMX
C156, 2568232035103 Ceramic, 50V, D.01uF, YF
Cl57, 2578232072106 Elect, 25V, $10 \mathrm{uF}, 20 \%$, LR-YB
C158, 2588232004107 " , 25V, 100uF, 20\%, SM

CARBON TRIMYER POTS
R311, 3218231004103 Vertical mtg. . IOKSB
R312, 3228231004503 " " 50ksB
R313, 3238231004103 " " 10K $2 B$
R314, 324 " " " "
R315, 3258231004502 " " 5K 8 B
R316, 3268231004202 " " 2K $8 B$
R317, 3278231006473 " " , metal, $47 \mathrm{~K} \Omega B$
R318, 328
Deleted

MISCELLANEOUS

L103, 2038242004000 CO11, 0.8 mH
Kl01, 1028248006006 Relay, sub-mini, G2E-182P-H
J101, 2018245011019 Cnctr, jack, 3024-19AH, white
8276001000 Pin, header, $\times 12$
8276002004 Wire, jumper, 10 mm , IPS-1041-4, $\times 39$

The following parts list is for R/P AMPLIFIER
PCB ASSEMBLY ($38 \mathrm{~cm} / \mathrm{s}$) (Ass'y No. 8273082000)
R123, 2238230004682 Vertical mtg., $6.8 \mathrm{~K} \Omega$
R151, 251 Deleted
R152, 252
"
C140, 240 "
C141, 241 "

Cl42, 2428232026332 PES, 50Y, 3300pF, 5\%, AMX
C148, 248 Deleted

REMOTE CONTROL PCB ASSEMBLY, ASS'Y No. 8273086000
Ref. No. Parts No. Nomenclature

8251102000 PCB, remote
IC's
U001
8236000600 Digital, CMOS, MC14012B
CARBON RESISTORS
R001~008 8230006104 Flat mtg. . 100K, 1%
CAPACITORS
COOI~003 8232035103 Ceramic, 1000pF, 50V, YF

TERMINAL PCB A-8/A-8LR

© 11-1982 FOSTEX CORP. 8298061100 A-8/A-8LR

TAPE TRANSPORT

