

Guarantee

The equipment described herein is sold under the following guarantee:
Collins agrees to repair or replace, without charge, any equipment, parts, or accessories which are defective as to design, workmanship or material, and which are returned to Collins at its factory, transportation prepaid, provided
(a) Notice of the claimed defect is given Collins within one (1) year from date of delivery and goods are returned in accordance with Collins instructions.
(b) Equipment, accessories, tubes, and batteries not manufactured by Collins or from Collins designs are subject to only such adjustments as Collins may obtain from the supplier thereof.
(c) No equipment or accessory shall be deemed to be defective if, due to exposure or excessive moisture in the atmosphere or otherwise after delivery, it shall fail to operate in a normal or proper manner.
Collins further guarantees that any radio transmitter described herein will deliver full radio frequency fower output at the antemna lead when comeched to a suitable load, but such guarantee shall not be construed as a guarantee of any definite coverage or range of said apparatus.

The guarantee of these paragraphs is void if equipment is altered or repaired by others than Collins or its authorized service center.

No other warranties, expressed or implied, shall be applicable to any equipment sold hereunder, and the foregoing shall constitute the Buyer's sole right and remedy under the agreements in this paragraph contained. In no event shall Collins have any liability for consequential damages, or for loss, damage or expense directly or indirectly arising from the use of the products, or any inability to use them either separately or in combination with other equipment or materials, or from any other cause.

How to Return Material or Equipment

If, for any reason, you should wish to return material or equipment, whether under the guarantee or otherwise, you should notify us, giving full particulars including the details listed below, insofar as applicable. If the item is thought to be defective, such notice must give full information as to nature of defect and identification (including part number if posstble) of part considered defective. (With respect to tubes we suggest that your adjustments can be speeded updryou give notice of defect directly to the tube manufacturer.) Upon receipt of such notice, Collins will promply advise you respecting the return. Failure to secure our advice prior to the forwarding of the goods or failure to provide full particulars may cause unnecessary delay in the handling of your returned merchandise.

ADDRESS:
Collins Radio Company
Service Division
Cedar Rapids, Iowa

INFORMATION NEEDED:
(A) Type number, name and serial number of equipment
(B) Date of delivery of equipment
(C) Date placed in service
(D) Number of hours of service
(E) Nature of trouble
(F) Cause of trouble if known
(G) Part number (9 or 10 digit number) and name of part thought to be causing trouble
(H) Item or symbol number of same obtained from parts list or schematic
(I) Collins number (and name) of unit subassemblies involved in trouble
(J) Remarks

INFORMATION NEEDED:
(A) Quantity required
(B) Collins part number (9 or 10 digit number) and description
(C) Item or symbol number obtained from parts list or schematic
(D) Collins type number, name and serial number of principal equipment
(E) Unit subassembly number (where applicable)

FM Modulation Monitor
(c) Collins Radio Company 1964

$$
\text { Collins } 319-395-1000
$$

Parts

$$
\begin{aligned}
& \text { Contiwantal Electromies } \\
& 214-381-7161
\end{aligned}
$$

XTaI
Eidion Electronics co.

$$
\text { PO. Box } 3751
$$

Temple Tx 76505 817-773-3901

\wedge

\geqslant

6

table of contents

Section Page
1 GENERAL DESCRIPTION 1-1
1.1 Purpose of Instruction Book 1-1
1.2 Purpose of Equipment 1-1
1.3 Description of Equipment 1-1
1.3.1 Physical Description 1-1
1.3.2 Electrical Description 1-2
1.4 Equipment Supplied 1-2
1.5 Equipment Required but not Supplied 1-2
1.6 Equipment Specifications 1-3
1.6.1 Mechanical 1-3
1.6.2 Electrical 1-3
1.7 Semiconductor and Fuse Complement 1-5
2 INSTALLATION 2-1
2.1 Unpacking 2-1
2.2 Installation Procedures 2-1
2.2.1 Mounting 2-1
2.2.2 External Connections 2-1
2.2.2.1 Power Comnections and Change 2-1
2.2.2.2 Input-Output Connections 2-1
2.2.3 Installation Adjustment Procedures 2-1
3
OPERATION. 3-1
3.1 General 3-1
3.1.1 \quad R-F Level Adjustment (900C-1. $900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C}$) 3-1
3.1.2 Modulation Meter Calibrate ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C}$). 3-1
3.1.3 Monaural Signal/Noise Ratio Measurements (900C-1, 900C-1A, $900 \mathrm{C}-1 \mathrm{~B} .900 \mathrm{C}-1 \mathrm{C}$) 3-2
3.1.4 AM Noise Measurements (900C-1, 900C-1A, 900C-1B, $900 \mathrm{C}-1 \mathrm{C}$) 3-2
3.1.5 Frequency Response Measurements (900C-1, 900C-1A, 900C-1B, 900C-1C) 3-2
3.1.6 Distortion Measurements (900C-1, $900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C}$). 3-3
3.1.7 Phase Calibrate (900C-1, 900C-1A) 3-3
3.1.8 Stereo Noise Measurements (900C-1, 900C-1A) 3-3
3.1.8.1 Left Channel Noise Measurement 3-3
3.1.8.2 Right Chamnel Noise Measurement 3-3
3.1 .9 Chamnel Separation (900C-1, 900C-1A) 3-3
3.1 .10 Crosstalk Measurements ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}$) 3-3
3.1.10.1 Transmit Main Channel, Measure Subchannel Crosstalk 3-3
3.1.10.2 Transmit Subchamnel, Measure Main Channel Crosstalk 3-4
3.1.11 Subcarrier Suppression (900C-1, 900C-1A) 3-4
3.1.12 Exciter Pilot Carrier Phasing (900C-1, 900C-1A) 3-4
3.1 .13 Pilot Carrier Level Measurement (900C-1, 900C-1A) 3-4
3.1.14 SCA Injection Level Measurements (900C-1, $900 \mathrm{C}-1 \mathrm{~B}$) 3-4
3.2 Normal Operation 3-4PRINCIPLES OF OPERATION4-1
4-1 General 4-1

table of contents (cont)

Section Page
4.2 Block Diagram Discussion 4-1
4.2.1 Monaural Operation 4-1
4.2.2 Stereo Operation 4-2
4.3 Detailed Circuit Discussion 4-2
4.3.1 Monaural Circuits 4-2
4.3.1.1 Mixing and AM Detector Circuits 4-2
4.3.1.2 Pulse Counting Demodulator Circuits 4-5
4.3.1.3 Phase-Splitter and Filter Circuits 4-5
4.3.1.4 Peak Voltmeter Circuit 4-6
4.3.1.5 Peak Light Circuits 4-6
4.3.1.6 Average Voltmeter Circuit 4-6
4.3.2 Stereo Circuits 4-7
4.3.2.1 19-Kc Amplifier-Doubler and 38-Kc Phasing Circuits 4-7
4.3.2.2 Stereo Demodulator and Amplifier Circuits 4-7
5 MAINTENANCE 5-1
5.1 General 5-1
5.2 Transistor Testing Techniques 5-1
5.2.1 Transistor Testing 5-1
5.2.2 Testing PNP Transistors 5-1
5.2.3 Testing NPN Transistors 5-2
5.3 Trouble Shooting 5-2
5.4 Adjustment Procedures 5-2
5.4.1 Test Equipment Required 5-2
5.4.2 Oscillator-Tripler Tuning ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C}$) 5-2
5.4.3 Modulation Meter Calibration Adjustment ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}$, $900 \mathrm{C}-1 \mathrm{C}$) 5-2
5.4.4 Modulation Polarity Equalizing Adjustment (900C-1, 900C-1A, $900 \mathrm{C}-1 \mathrm{~B}$, $900 \mathrm{C}-1 \mathrm{C}$) 5-5
5.4.5 Main Channel Modulation Adjustment (900C-1, $900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}$, 900C-1C) 5-6
5.4.6 Subchamnel Modulation Adjustment (900C-1, 900C-1A Only) 5-6
5.4.7 SCA Modulation Adjustment (900C-1, 900C-1B Only) 5-6
5.4.8 Peak Light Adjustment (900C-1, 900C-1A, 900C-1B, 900C-1C) 5-7
5.4.9 19-Kc Tuning Adjustments (900C-1, 900C-1A Only) 5-7
5.4.10 Pilot Modulation Adjustment (900C-1, 900C-1A Oniy) 5-7
5.4.11 $38-\mathrm{Kc}$ Tank Circuit Tuning ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}$ Only) 5-7
5.4.12 Stereo Demodulator Adjustments (900C-1, 900C-1A Only) 5-8
6 PARTS LIST 6-1
7 ILLUSTRATIONS 7-1

list of illustrations

Figure Page
1-1 900C-1() FM Modulation Monitor (C1021-35-P) 1-1
2-1 900C-1() FM Modulation Monitor, Outline and Mounting Dimensions (C1021-05-4) 2-2
2-2 Test Point and Adjustment Locations of Oscillator-Tripler-Mixer A1 (C1021-26-P) 2-5
2-3 Local Oscillator Crystal Location (C1021-36-P) 2-5
3-1 Front Panel Control and Indicator Locations (C1021-39-P) 3-2
4-1 900C-1B and 900C-1C FM Modulation Monitor, Block Diagram (Monaural and SCA) (C1021-15-5). 4-3
4-2 900C-1 and 900C-1A FM Modulation Monitor, Block Diagram (Monaural, Stereo, and SCA) (C1021-02-6) 4-4
4-3 Pulse Counting Demodulator Waveforms with Sine Wave Modulation (C1021-22-3) 4-5
4-4 Stereo Demodulator $19-\mathrm{Kc}$ and $38-\mathrm{Kc}$ Outputs with Phase Changes (C1021-16-3) 4-7
4-5 Elementary Time Division Multiplex System (C1021-17-3) 4-8
5-1 Typical $900 \mathrm{C}-1$ () Waveforms (C1021-19-P2) 5-4
5-2
Typical Wide-Band Output Waveforms (C1021-18-P) 5-5
Factory Adjustment Locations (C1021-14-2) 5-5
5-4 Test Setup for Modulation Meter Calibration Adjustment (C1021-21-3) 5-6
5-5 Test Switch for Obtaining Stereo Signals (C1021-20-3) 5-8
5-6 5-96-1Front View, Parts Location (C1021-34-P)
6-106-9
6-2
6-2
6-3
Top View, Parts Location (C1021-37-P).
Bottom View, Parts Location (C1021-41-P) 6-116-46-5
6-6
Rear View, Parts Location (C1021-40-P) 6-12Left Side View, Parts Location (C1021-38-P)6-13
6-7 Pulse Counting Demodulator A2, Parts Location (C1021-25-P) 6-15Oscillator-Tripler-Mixer A1, Parts Location (C1021-28-P)6-14
6-8 6-166-9 Peak Voltmeter A4, Parts Location (C1021-42-P)
6-186-10Peak Light A5, Parts Location (C1021-33-P)6-17
6-11 Average Voltmeter A6, Parts Location (C1021-27-P) 6-196-1219-Kc Amplifier A7, Parts Location (C1021-29-P)6-20
6-13 Amplifier Doubler A8, Parts Location (C1021-32-P) 6-21
6-14 Stereo Demodulator A9, Parts Location (C1021-31-P) 6-22
6-15 Stereo Demodulator A9, Rear View with Shield Removed, Parts Location (C-1021-43-P) 6-23
6-16 Audio Amplifier A10, Parts Location (C1021-24-P) 6-24
7-1 Oscillator-Tripler-Mixer Card A1, Schematic Diagram (1021-01-5) 7-1
7-2 Pulse Counting Demodulator Card A2, Schematic Diagram (C1021-11-4) 7-2
7-3 Phase Splitter Card A3, Schematic Diagram (C1021-09-4) 7-3
7-4 Peak Voltmeter Card A4, Schematic Diagram (C1021-04-4) 7-4
7-5 Peak Light Card A5, Schematic Diagram (C1021-12-4) 7-5
7-6 Average Voltmeter Card A6, Schematic Diagram (C1021-03-4) 7-6
7-7 19-Kc Amplifier Card A7, Schematic Diagram (C1021-06-3) 7-7
7-8 Amplifier-Doubler Card A8, Schematic Diagram (C1021-08-4) 7-8
7-9 Stereo Demodulator Card A9, Schematic Diagram (C1021-07-4) 7-9
7-10 Audio Amplifier Cards A10, A11, Schematic Diagram (C1021-10-4) 7-10
7-11 900C-1 () FM Modulation Monitor Chassis, Schematic Diagram (C1021-13-6A) (C1021-13-6B) 7-12

list of tables

Table
Page
1-1 Available Equipment 1-2
1-2 Equipment Supplied for Each 900C-1() Model 1-2
1-3 Diode, Transistor, and Fuse Complement 1-5
2-1 Terminal Strip TB1 Functions 2-3
2-2 Local Oscillator Crystal Frequencies and Part Numbers 2-3
3-1 Control Functions 3-1
5-1 Typical Test Point Voltage Measurements 5-3
5-2 Test Equipment Required for Adjustment Procedures 5-4

general description

1.1 Purpose of Instruction Book.

This instruction book contains the information necessary for installing, operating, and maintaining the 900C-1() FM Modulation Monitor. This instruction book also contains a theory of operation section to be used as an aid in understanding the operation of the modulation monitor.

1.2 Purpose of Equipment.

The Collins 900C-1() FM Modulation Monitor is used to measure transmitter modulation characteristics of a commercial FM broadcast station, monaural or stereo multiplex, operating in the standard frequency
modulated broadcast band of 88 to 108 megacycles. In addition, the 900C-1() may be used as an extremely accurate FM demodulator for driving the station's audio monitors.

I.3 Description of Equipment.

1.3.1 PHYSICAL DESCRIPTION.

The 900C-1() FM Modulation Monitor, shown in figure 1-1, is constructed on a standard 19 -inch rack mount and is 19 inches wide, 10-15/32 inches high, 14-15/32 inches deep and weighs approximately 35 pounds depending on equipment type. Individual circuits are constructed on wired circuit cards mounted in a

Figure 1-1. 900C-1() FM Modulation Monitor
separate shielded compartment. This compartment is located within the $900 \mathrm{C}-1()$ case. Most often used controls are located on the front panel of the $900 \mathrm{C}-1$ () with seldom used controls and test points located behind a hinged front panel door. Factory adjustments are located within the monitor dust cover on the lower chassis. The a-c power input and monitor inputs and outputs a re located on the rear of the $900 \mathrm{C}-1$ () chassis, on individual connectors, or on a rear terminal block.

1.3.2 ELECTRICAL DESCRIPTION.

The 900C-1() is basically a fully transistorized low sensitivity, crystal controlled, superheterodyne, FM monaural or stereo multiplex receiver. Various metering and testing provisions are contained within the modulation monitor to measure transmitter output characteristics. These provisions include a peak modulation light, a peak reading voltmeter, an average reading voltmeter, and methods of reading channel separation and crosstalk (stereo models only), pilot carrier injection level (stereo models only), SCA injection level (SCA models only), left channel audio (stereo models only), right channel audio (stereo models only), main channel audio (stereo models only), subchannel audio (stereo models only), and a metering circuit to set the incoming r-f level. In addition to these functions, the $900 \mathrm{C}-1$ () is designed to measure modulation in both positive and negative directions. Outputs obtained from the modulation monitor include a monaural output, a left channel output (stereo models only), a right channel audio output (stereo models only), a distortion meter output, a wide-band audio output, a $19-\mathrm{kc}$ pilot carrier output (stereo models only), and a frequency meter output. Remote monitoring of the $900 \mathrm{C}-1$ () may be externally provided for the peak light and the modulation meter, either in a short or a long remote loop.

1.4 Equipment Supplied.

The $900 \mathrm{C}-1($) is available in four different models. Each model consists of a main chassis, optional wired circuit cards placed in the card holder of the main chassis and removeable SCA filters. Addition or deletion of these cards changes the modulation monitor functions. Table $1-1$ gives the Collins part numbers for each model and a short description of each. Table 1-2 lists the different models and the wired circuit cards and filters supplied with each.

1.5 Equipment Required but not Supplied.

The 900C-1() FM Modulation Monitor is supplied as a complete unit and requires no external equipment for operation. See section 2 of this instruction book for interconnecting cabling required.

TABLE 1-1
AVAILABLE EQUIPMENT

TYPE	FUNCTION	COLLINS PART NUMBER
$900 \mathrm{C}-1$	Contains monaural, stereo, and SCA moni- toring functions Contains monaural and	$522-3275-00$
$900 \mathrm{C}-1 \mathrm{~A}$	Conteo monitoring stereo functions Contains monaural and	$522-3484-00$
$900 \mathrm{C}-1 \mathrm{C}-1 \mathrm{C}$	SCA monitoring functions Contains monaural monitoring functions	$522-3485-00$

TABLE 1-2. EQUIPMENT SUPPLIED FOR EACH 900C-1() MODEL

CIRCUIT CARDS AND FILTERS	COLLINS PART NUMBER	EQUIPMENT TYPE			
		$900 \mathrm{C}-1$	$900 \mathrm{C}-1 \mathrm{~A}$	$900 \mathrm{C}-1 \mathrm{~B}$	$900 \mathrm{C}-1 \mathrm{C}$
Oscillator- Tripler-Mixer A1	$528-0430-00$	X	X	X	X
Pulse Counting Demodulator A2	$528-0431-00$	X	X		
Phase Splitter A3	$528-0432-00$	X	X	X	
Peak Voltmeter A4	$528-0433-00$	X	X	X	X
Peak Light A5	X	X	X	X	

TABLE 1-2. EQUIPMENT SUPPLIED FOR EACH 900C-1() MODEL (Cont)

CIRCUIT CARDS AND FILTERS	COLLINS PART NUMBER	EQUIPMENT TYPE			
		900C-1	900C-1A	900C-1B	900C-1C
Average Voltmeter A6	528-0435-00	X	X	X	X
19-Kc Amplifier A7	528-0436-00	X	X		
Amplifier-Doubler A8	528-0437-00	X	X		
Stereo Demodu- lator A9	528-0438-00	X	X		
Audio Amplifier A10	528-0439-00	X	X		
Audio Amplifier All	528-0439-00	X	X		
Filters FL1, FL2, FL4, FL5		X	X	X	X
Filter FL3		X		X	

1.6 Equipment Specifications.

1.6.1 MECHANICAL.

Size 19 inches wide, $10-15 / 32$ inches high, $14-15 / 32$ holder).

Weight:

1.6.2 ELECTRICAL.

Power source
100 to 125 volts rms or 200 to 240 volts rms, $50-60 \mathrm{cps}$.

SECTION 1

General Description

Signal-to-noise ratio:
Monaural . 75 db with 75 -microsecond de-emphasis.
Stereo ($900 \mathrm{C}-1$ and $900 \mathrm{C}-1 \mathrm{~A}$ only) 55 db with 75 -microsecond de-emphasis.

Distortion:

Output voltage and impedance:
Wide band . 400 mv peak to peak at 600 ohms, unbalanced.
Monaural audio 0.775 volt rms at 600 ohms, unbalanced (0 dbm).
Stereo audio . 0.775 volt rms at 600 ohms, unbalanced (0 dbm).
Distortion meter 10 volts rms at 10,000 ohms, unbalanced.

1.7 Semiconductor and Fuse Complement.

Table 1-3 shows the diode, transistor, and fuse complement of the 900C-1() FM Modulation Monitor.

TABLE 1-3. DIODE, TRANSISTOR, AND FUSE COMPLEMENT

SYMBOL	TYPE	FUNCTION	SYMBOL	TYPE	FUNCTION
OSCILLATOR-TRIPLER-MIXER A1			PEAK VOLTMETER A4 (Cont)		
CR100	1N716A	Voltage limiter	Q253	2N1225	Feedback bias
Q100	2N2380	Mixer	Q254	2N1225	Peak amplifier
Q101	2N2362	Local oscillator	Q255	2N1225	Emitter follower
Q102	2N2362	Tripler	PEAK LIGHT A5		
Q103	2N1225	Reference oscillator	Q300	2N697	Amplifier
PULSE COUNTERING DEMODULATOR A2			Q301	2N1605	One-half pulse generator
CR150	1N270	Switching	Q302	2N1605	One-half pulse generator
CR151	1 N 270	Triggering	Q303	2N1605	One-half multivibrator
CR152	1 N 3022 A	Voltage limiter	Q304	2N1605	One-half multivibrator
Q150	2N706	One-half pulse generator	Q305	2N697	Switching
			Q306	2N526	Amplifier
Q151	2N706	One-half pulse generator	Q307	2N526	Buffer
Q153	2N706	One-half multivibrator	AVERAGE VOLTMETER A6		
Q154	2N2380	Buffer	CR350	1N270	Rectifier
PHASE SPLITTER A3			CR351	1 N 270	Rectifier
Q200	2N1225	Amplifier	CR352	1 N 270	Rectifier
Q201	2N697	Phase splitter	Q350	2N1175A	Amplifier
Q202	2N697	Amplifier			,
Q203	2N1175A	Amplifier	Q351	2N1225	Amplifier
PEAK VOLTMETER A4			Q352	2N1225	Emitter follower
CR250	1N270	Blocking	Q353	2N1225	Amplifier
CR251	1N270	Clamp	Q354	2N1225	Amplifier
Q250	1N270	Amplifier	AUDIO AMPLIFIER A10, A11 (900C-1 AND 900C-1A ONLY)		
Q251	2N1225		Q400	2N526	Amplifier
		Emitter follower	Q401	2N526	Amplifier
Q252	2N1285	Peak detector	Q402	2N526	Amplifier

TABLE 1-3. DIODE, TRANSISTOR, AND FUSE COMPLEMENT (Cont)

SYMBOL	TYPE	FUNCTION	SYMBOL	TYPE	FUNCTION
STEREO DEMODULATOR A9 (900C-1 AND 900C-1A ONLY)			19-KC AMPLIFIER A7 (900C-1 AND $900 \mathrm{C}-1 \mathrm{~A}$ ONLY)		
CR450 Q450	$\begin{aligned} & \text { FA } 4000 \\ & \text { 2N } 706 \end{aligned}$	Demodulation	Q550 Q551	2N526 2N526	Amplifier Buffer
Q450	2N706	Amplitude correction amplifier	MAIN CHASSIS		
Q451	2N706	Amplitude correction amplifier	CR1	1 N 830 A	Detector
AMPLIFIER-DOUBLER A8 (900C-1 AND 900C-1A ONLY)			CR2	1N538	Rectifier
CR500	1N270	Doubler	CR3	1N538	Rectifier
CR501	1N270	Doubler	CR4	10M102B1	Voltage limiter
			CR5	1N1124A	Rectifier
Q500	2N1285	Amplifier	FUSE COMPLEMENT		
Q501	2N1285	Phase splitter	F1	$\begin{aligned} & 1 / 8 \mathrm{amp} \\ & 1 / 2 \mathrm{amp} \end{aligned}$	Oven heater protection Demodulator protection
Q502	2N 1285	Amplifier	F2		

installation

2.1 Unpacking.

When unpacking the $900 \mathrm{C}-1()$, avoid damaging the equipment through use of careless procedures which could damage the equipment in any way. Inspect all equipment for physical damage immediately after unpacking the equipment. If damage exists, file a claim promptly with the transportation company. Save all packing material for proof of damage claim. Check the equipment against the packing slip to be sureall equipment has been received.

2.2 Installation Procedures.

2.2.1 MOUNTING.

The 900C-1 () FM Modulation Monitor is designed to be mounted in a standard 19 -inch rack mount. When mounted in a rack, no cooling area need be provided above or below the unit as very little heat is generated by the modulation monitor. However, when the modulation monitor is mounted above high heat generation equipment such as vacuum-tube power supplies, consideration should be given to cooling requirements which allow a free movement of cooler air through and around the $900 \mathrm{C}-1$ (). In no instance should the ambient chassis temperature be allowed to rise above 50 degrees C (122 degrees F). An increase above this temperature will cause frequency drifting of the heterodyning crystal resulting in a loss of monitor accuracy.

Mount the $900 \mathrm{C}-1$ () to the rack mount panel using eight no. 10 screws and eight no. 10 countersunk finishing washers. Refer to figure 2-1 for an equipment outline and mounting dimension drawing.

2.2.2 EXTERNAL CONNECTIONS.

2.2.2.1 POWER CONNECTIONS AND CHANGE. Power for operation of the $900 \mathrm{C}-1()$ is connected to the rear chassis panel through a recessed male connector. A power cable which fastens to this connector is furnished as part of the modulation monitor. Power required for operation is either 115 volts 50 to 60 cps or 220 volts 50 to 60 cps. The $900 \mathrm{C}-1$ () as received is connected for 115 -volt 50 - to 60 -cps operation. To convert to 220 -volt operation, perform the following procedures:
a. Remove the wire shorting 25 -watt resistor R45. This resistor is located in the lower right corner of the chassis.
b. Disconnect wires from transformer T1 which connect terminals 1 to 3 and 2 to 4 .
c. Connect a jumper wire from terminal 1 to terminal 4 of transformer T1 to place the twoprimaries of T1 in series. The $900 \mathrm{C}-1($) is now ready for 220 -volt 50 to $60-\mathrm{cps}$ operation.

WARNING

When changed to 220 -volt operation, connector J13 located at the rear of the $900 \mathrm{C}-1$ () chassis is also changed to 220 volts. Do not connect 115 -volt equipment to J 13 when the $900 \mathrm{C}-1$ () is converted to 220 -volt operation.
2.2.2.2 INPUT-GUTPUT CONNECTIONS. Signal connections to the $900 \mathrm{C}-1$ () FM Modulation Monitor are made at the rear of the main chassis to either the phono plugs or the terminal strip. In most cases the phono plug outputs arealso connected in parallel to the terminal strip connections. The exception to this is the frequency meter output and r-f input. Connections to these points must be run through coaxial cable due to the relatively high frequencies present.

If connections to the phono jacks are used, connect RG-58 coaxial cable to a standard male phono jack. These jacks may be obtained from Collins Radio Company under part number 360-0195-00. When making connections to the terminal strip, use number 22 shielded wire for the monaural, left channel, right channel, and distortion meter outputs. This shielded wire prevents pickup generated by external equipment from being induced in the low level audio output lines.

Terminals 11 and 12 of the rear terminal board are normally connected to a Collins frequency meter. If the Collins frequency meter is not used, jumper terminals 11 and 12 together. This connects the 60 -cycle switching voltage from terminal 12 to the MODULATION METER CAL switch. Table 2-1 showsterminal strip TB1 and the functions of each tie point.

2.2.3 INSTALLATION ADJUSTMENT PROCEDURES.

When received, the 900C-1() FM Modulation Monitor is not adjusted to the customer's frequency. To bring the monitor to the customer's frequency, the proper heterodyning crystal must be installed in the monitor and the monitor must be tuned to the new frequency.

Figure 2-1. 900C-1 () FM Modulation Monitor, Outline and Mounting Dimensions

TABLE 2-1
TERMINAL STRIP TB1 FUNCTIONS

CONNECTION NUMBER	FUNCTION
1	Monaural output
2	Left audio chamnel output
3	Ground
4	Right audio channel output
5	Distortion output
6	Local meter output (for remote operation)
7	Ground
8	Peak meter output (for remote operation)
9	Peak light output (for remote operation)
10	36 -volt d-c output
11	60 -cycle calibration input
12	28 -volt a-c output

These same procedures should be followed if the customer's frequency is changed or the monitor is transferred to a station operating at an assigned frequency for which the monitor is not aligned.
Before performing these procedures, the $900 \mathrm{C}-1()$ must be completely installed and the transmitter
operating at the authorized power level. The trans mitter sampling loop must be set to provide a 4 - to 10 -volt signal at the monitor input. Refer to figure 2-2 for location of adjustments. Perform the following procedures to align the $900 \mathrm{C}-1()$ at the new frequency.
a. Determine the proper crystal operating frequency by referring to table 2-2. Place a crystal whose frequency matches the frequency determined from table $2-2$ in the position shown in figure 2-3. Table 2-2 shows each crystal frequency possible for each channel of the FM spectrum and the Collins part number of each.
b. Connect the transmitter monitor output to the modulator monitor r-f input jack. Place the 900C-1() RF LEVEL control to the MIN position.
c. With the transmitter in operation, place the 900C-1() METER switch to the RF LEVEL position and adjust the RF LEVEL cont rol until the meter reads 100 percent.
d. Remove the monitor dust cover and wired circuit card holder cover. Place an oscilloscope between TP-102 (figure 2-2) and ground of the oscillator-tripler-mixer card to observe the $500-\mathrm{kc}$ i-f signal.
e. Adjust C118 (figure 2-2) until anoutput is observed on the oscilloscope. This indicates that the local oscillator is in operation.
f. Adjust C119 (figure 2-2) until a peak amplitude indication is observed on the oscilloscope.
g. Adjust C118 for a peak amplitude indication on the oscilloscope and then turn C118 an additional 10 degrees towards the low capacity side to improve the oscillator stability. The low capacity side may be observed directly or may be determined by setting the capacitor on the side of the signal peak where the 500ke signal falls off the least with tuning.
h. Turn the POWER switch to OFF and then back to ON. Observe that the $500-\mathrm{kc}$ i-f signal is present after the power is reapplied. If the oscillator does not start upon reapplying power, adjust C118 for less capacitance until the local oscillator starts.
i. Repeat step h until the localoscillator starts upon applying power.

TABLE 2-2. LOCAL OSCILLATOR CRYSTAL FREQUENCIES AND PART NUMBERS

CRYSTAL FREQ (mc)	CHANNEL FREQ (mc)	COLLINS PART NUMBER	CRYSTAL FREQ (mc)	CHANNEL FREQ (mc)	COLLINS PART NUMBER
29.53333	88.1	$289-6220-00$	30.20000	90.1	$289-6230-00$
29.60000	88.3	$289-6221-00$	30.26666	90.3	$289-6231-00$
29.66666	88.5	$289-6222-00$	30.33333	90.5	$289-6232-00$
29.73333	88.7	$289-6223-00$	30.40000	90.7	$289-6233-00$
29.80000	88.9	$289-6224-00$	30.46666	90.9	$289-6234-00$
29.86666	89.1	$289-6225-00$	30.53333	91.1	$289-6235-00$
29.93333	89.3	$289-6226-00$	30.60000	91.3	$289-6236-00$
30.00000	89.5	$289-6227-00$	30.66666	91.5	$289-6237-00$
30.06666	89.7	$289-6228-00$	30.73333	91.7	$289-6238-00$
30.13333	89.9	$289-6229-00$	30.80000	91.9	$289-6239-00$

TABLE 2-2. LOCAL OSCILLATOR CRYSTAL FREQUENCIES AND PART NUMBERS (Cont)

$\begin{gathered} \text { CRYSTAL } \\ \text { FREQ } \\ (\mathrm{mc}) \end{gathered}$	$\begin{gathered} \text { CHANNEL } \\ \text { FREQ } \\ \text { (mc) } \end{gathered}$	COLLINS PART NUMBER	$\begin{gathered} \text { CRYSTAL } \\ \text { FREQ } \\ \text { (mc) } \end{gathered}$	$\begin{gathered} \text { CHANNEL } \\ \text { FREQ } \\ \text { (mc) } \end{gathered}$	COLLINS PART NUMBER
30.86666	92.1	289-6240-00	33.53333	100.1	289-6280-00
30.93333	92.3	289-6241-00	33.60000	100.3	289-6281-00
31.00000	92.5	289-6242-00	33.66666	100.5	289-6282-00
31.06666	92.7	289-6243-00	33.73333	100.7	289-6283-00
31.13333	92.9	289-6244-00	33.80000	100.9	289-6284-00
31.20000	93.1	289-6245-00	33.86666	101.1	289-6285-00
31.26666	93.3	289-6246-00	33.93333	101.3	289-6286-00
31.33333	93.5	289-6247-00	34.00000	101.5	289-6287-00
31.40000	93.7	289-6248-00	34.06666	101.7	289-6288-00
31.46666	93.9	289-6249-00	34.13333	101.9	289-6289-00
31.53333	94.1	289-6250-00	34.20000	102.1	289-6290-00
31.60000	94.3	289-6251-00	34.26666	102.3	289-6291-00
31.66666	94.5	289-6252-00	34.33333	102.5	289-6292-00
31.73333	94.7	289-6253-00	34.40000	102.7	289-6293-00
31.80000	94.9	289-6254-00	34.46666	102.9	289-6294-00
31.86666	95.1	289-6255-00	34.53333	103.1	289-6295-00
31.93333	95.3	289-6256-00	34.60000	103.3	289-6296-00
31.00000	95.5	289-6257-00	34.66666	103.5	289-6297-00
32.06666	95.7	289-6258-00	34.73333	103.7	289-6298-00
32.13333	95.9	289-6259-00	34.80000	103.9	289-6299-00
32.20000	96.1	289-6260-00	34.86666	104.1	289-6300-00
32.26666	96.3	289-6261-00	34.93333	104.3	289-6301-00
32.33333	96.5	289-6262-00	35.00000	104.5	289-6302-00
32.40000	96.7	289-6263-00	35.06666	104.7	289-6303-00
32.46666	96.9	289-6264-00	35.13333	104.9	289-6304-00
32.53333	97.1	289-6265-00	35.20000	105.1	289-6305-00
32.60000	97.3	289-6266-00	35.26666	105.3	289-6306-00
32.66666	97.5	289-6267-00	35.33333	105.5	289-6307-00
32.73333	97.7	289-6268-00	35.40000	105.7	289-6308-00
32.80000	97.9	289-6269-00	35.46666	105.9	289-6309-00
32.86666	98.1	289-6270-00	35.53333	106.1	289-6310-00
32.93333	98.3	289-6271-00	35.60000	106.3	289-6311-00
33.00000	98.5	289-6272-00	35.66666	106.5	289-6312-00
33.06666	98.7	289-6273-00	35.73333	106.7	289-6313-00
33.13333	98.9	289-6274-00	35.80000	106.9	289-6314-00
33.20000	99.1	289-6275-00	35.86666	107.1	289-6315-00
33.26666	99.3	289-6276-00	35.93333	107.3	289-6316-00
33.33333	99.5	289-6277-00	36.00000	107.5	289-6317-00
33.40000	99.7	289-6278-00	36.06666	107.7	289-6318-00
33.46666	99.9	289-6279-00	36.13333	107.9	289-6319-00

Figure 2-2. Test Point and Adjustment Locations of Oscillator-Tripler-Mixer Card A1

Figure 2-3. Local Oscillator Crystal Location

3.1 (eneral.

The following operating procedures describe methods used to operate each of the possible functions of the 900C-1 FM Modulation Monitor. This monitor contains stereo and SCA provisions. Applicable test procedures for other $900 \mathrm{C}-1$ () models are designated by a list of models preceding each procedure. The
first two operating procedures set the level of the incoming $r-f$ signal and calibrate the modulation meter. The remaining procedures are arranged first into monaural monitoring procedures and then stereo calibration and monitoring procedures. Refer to figure 3-1 for location of front panel controls. Table 3-1 gives a brief explanation of the function of each control. Normal operating procedures are given in paragraph 3.2.

TABLE 3-1. CONTROL FUNCTIONS

CONTROL	FUNCTION
DECIBELS switch METER switch METER ADJUST control POLARITY switch PERCENT MODULATION control MODULATION METER CAL switch and control SUB CARRIER PHASE CAL switch and control DE-EMPHASIS switch RF LEVEL control	Adjusts gain of average voltmeter in 10-db steps. Selects monitoring mode of the $900 \mathrm{C}-1()$. Calibrates the average voltmeter. Selects monitoring polarity of incoming signal. Selects the percentage of modulation at which the peak light indicates. Selects the meter calibrate mode and calibrates the peak voltmeter circuits for 100 percent modulation. Switches the monitor circuits to the phase calibrate function and calibrates the monitor $19-\mathrm{kc}$ pilot carrier and subcarrier for proper zero crossing. Switches de-emphasis in or out of the monitor circuits. Adjusts the incoming r-f level to the correct value for AM noise measurement purposes.

3.1.1 R-F LEVEL ADJUSTMENT (900C-1, 900C-1A, 900C-1B, 900C-1C).
a. Set the METER front panel switch to the RF LEVEL position.

Before applying an r - f input, set the $R F$ LEVEL control to the MIN position.
b. Adjust the RF LEVEL control located behind the front panel door until the meter reads 100 percent (this equals a 1 -volt rms r-f input at the input of the AM detector circuit).
3.1.2 MODULATION METER CALIBRATE (900C-1, $900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C})$.

To calibrate the over-all monitor gain (modulation percentage), perform the following procedures.

Figure 3-1. Front Panel Control and Indicator Locations
a. Turn the SUB CARRIER PHASE CAL switch to the OFF position. Turn the METER switch to the TOTAL MOD position.
b. Turn the MODULATION METER CAL switch to ON and adjust modulation meter calibrate ADJ control until the meter reads 100 percent.
c. Return the MGDULATION METER CAL switch to OFF.

3.1.3 MONAURAL SIGNAL/NOISE RATIO MEASUREMENTS ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C}$).

Perform the foilowing test procedures to measure the monaural signal-to-noise ratio.
a. Place the METER switch in the TOTAL MOD position and switch the DECIBELS switch to the 0 position.
b. Apply a monaural, 400-cps signal to the transmitter and modulate 100 percent.
c. Turn the DE-EMPHASIS switch located on the subpanel to the IN position. Turn the METER switch to the MAIN CHAN AUDIO position and rotate the METER ADJUST control until 0 db is indicated on the front panel meter.
d. Remove the 400-cps monaural signal and rotate the DECIBELS switch clockwise until an indication is observed on the meter. The monaural signal-tonoise ratio is the algebraic sum of the DECIBELS switch and the meter indication.

3.1.4 AMI NOISE MEASUREMENTS (900C-1, 900C-1A, 900C-1B, 900C-1C).

To measure the AM noise present on the transmitted output, perform the following procedures.
a. Remove all modulation, turn METER switch to RF LEVEL and set r-f level to 100 percent with the RF LEVEL control.
b. The AM noise may be measured directly by placing an rms reading vtvm on the AM NOISE jack, which is located on the subpanel. The AM noise voltage should be referenced to a carrier level of 1 volt rms.

3.1.5 FREQUENCY RESPONSE MEASUREMENTS (900C-1, 900C-1A, 900C-1B, 900C-1C).

The frequency response of the transmitting equipment may be measured by performing the following procedures.
a. Place the METER switch in the TOTAL MOD position and adjust the transmitter for 100 percent modulation at 400 cps using a signal generator. Monitor the output of the signal generator with a vtvm.
b. Change the signal generator frequency to each of the standard FCC modulating frequencies, 50,100 , $400,1000,5000,7500,10,000$ and $15,000 \mathrm{cps}$, keeping the modulation percentage constant at 100 percent.
c. The vtvm indication in db should follow the standard $75-\mathrm{microsecond}$ de-emphasis curve as specified by the FCC.
d. The right and left stereo channels may be measured for frequency response by inserting a right only or left only signal and repeating the frequencies given in step b.

3.1.6 DISTORTION MEASUREMENTS (900C-1, $900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C}$).

Channel distortion may be measured using the 900C-1() FM Modulation Monitor by connecting external distortion measuring equipment to the DISTORTION METER jack located on the monitor subpanel. Each channel is measured by rotating the METER front panel switch to a selected position, either the LEFT AUDIO, RIGHT AUDIO, or MAIN CHAN AUDIO position.

3.1.7 PHASE CALIBRATE ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}$).

To calibrate the phase of the monitor subcarrier with the $19-\mathrm{kc}$ pilot carrier so exact zero crossing is accomplished, perform the following procedures.

NOTE

Modulation may be applied to the $900 \mathrm{C}-1()$ during this procedure.

Be sure that the DECIBELS switch is in the 0 position before turning the SUB CARRIER PHASE CAL switch or damage to the meter may result.
a. Adjust the station's transmitter to transmit a pilot carrier at approximately 10 percent modulation. b. Turn the SUB CARRIER PHASE CAI switch to the NOR position and note the reading on the meter.
c. Switch the SUB CARRIER PHASE CAL switch to the REV position and again note the meter reading. d. If a difference exists between the two readings, turn the ADJ control until there is no difference between the readings in the NOR and REV position. When no difference between the readings is noted, the two signals are exactly in phase.
e. Return the SUB CARRIER PHASE CAL switch to the OFF position.

NOTE

This procedure calibrates the modulation monitor 19 -kc phase only. Refer to paragraph 3.1.12 for transmitter stereo generator $19-\mathrm{kc}$ phase adjustments.

3.1.8 STEREO NOISE MEASUREMENTS (900C-1, 900C-1A).

3.1.8.1 LEFT CHANNEL NOISE MEASUREMENT.

a. Turn the DECIBELS switch to the 0 position. Adjust the transmitter output for a left channel signal plus pilot carrier (100 percent total modulation at 400 cps).
b. Turn the METER front panel switch to the LEFT AUDIO position. Place the DE-EMPHASIS switch to the IN position. Turn the METER ADJUST control until the front panel meter indicates 0 db .
c. Remove the transmitted left audio signal and rotate the DECIBELS switch until an indication is noted on the meter. The left chamel noise is the algebraic sum of the DECIBELS switch and the meter indication.
3.1.8.2 RIGHT CHANNEL NOISE MEASUREMENT. Repeat paragraph 3.1.8.1 substituting left for right and right for left.

3.1.9 CHANNEL SEPARATION (900C-1, 900C-1A).

To measure channel separation with audio applied to the right channel, perform the following procedures.
a. Apply 100 percent modulation left channel only plus pilot carrier from the station transmitter.
b. Place the METER front panel switch in the LEFT AUDIO position.
c. Place the DECIBELS switch in the 0 position and rotate the METER ADJUST front panel control until the meter indicates 0 db .
d. Switch from left chamel modulation to right channel modulation and switch the DECIBELS switch in a clockwise direction until an indication is observed on the front panel meter. The channel separation is the algebraic addition of the DECIBELS switch markings and the front panel meter indication.
To obtain channel separation measurements with audio applied to the left channel and measurements taken in the right channel, repeat steps a through d and substitute left for right and right for left where these instructions are indicated.

3.1.10 CROSSTALK MEASUREMENTS (900C-1, $900 \mathrm{C}-1 \mathrm{~A}$).

To measure the magnitude of main and subchannel crosstalk, perform the following procedures.

3.1.10.1 TRANSMIT MAIN CHANNEL, MEASURE SUBCHANNEL CROSSTALK.

a. Turn off the transmitted pilot carrier and SCA signals. Turn the DECIBELS switch to 0 .
b. Place the METER front panel switch in the TOTAL MOD position and adjust the transmitter for 90 percent modulation with an $L=+R$ signal.
c. Turn the METER switch to MAIN CHAN AUDIO and rotate the METER ADJUST control for 0 db as indicated on the front panel meter.
d. Switch the METER switch to the SUB CHAN AUDIO position and rotate the DECIBELS switch clockwise until an indication is noted on the front panel meter. The crosstalk value in db is the algebraic sum of the DECIBELS switch indication and the meter indication.

3.1.10.2 TRANSMIT SUBCHANNEL, MEASURE MAIN CHANNEL CROSSTALK.

a. Turn off the transmitted pilot carrier and SCA signals. Turn the DECIBELS switch to 0 .
b. Place the METER front panel switch in the TOTAL MOD position and adjust the transmitter for 90 percent modulation with an $L=-R$ signal.

> c. Do not reset METER ADJUST control.

NOTE

The meter will read approximately 4.5 db low at this time. However the peak value will be calibrated for 0 db .
d. Switch the METER switch to the MAIN CHAN AUDIO position and rotate the DECIBELS switch clockwise until an indication is noted on the front panel meter. The crosstalk value in db is the algebraic sum of the DECIBELS switch indication and the meter indication.

3.1.11 SUBCARRIER SUPPRESSION (900C-1, 900C-1A).

To measure the subcarrier suppression in db, perform the following procedures.
a. Switch the transmitter pilot carrier and SCA off. Turn the DECIBELS switch to 0 .
b. Turn the METER front panel switch to TOTAL MOD and apply an $L=+R$ signal to the transmitter. Adjust the transmitter for 90 percent modulation.
c. Turn the METER switch to the MAIN CHAN

MOD position and adjust the METER ADJUST control until the meter indicates 0 db .
d. Turn off the $L=+R$ transmitter input and rotate the METER switch to the SUB CHAN AUDIO position.
e. Rotate the DECIBELS switch in the clockwise direction until a meter indication is observed. The subcarrier suppression is the algebraic sum of the meter and DECIBELS switch indication.

3.1.12 EXCITER PILOT CARRIER PHASING (900C-1, 900C-1A).

To bring the stereo generator pilot carrier and stereo subchannel signals exactly in phase, perform the following procedures.
a. Bring the $900 \mathrm{C}-1$ () subcarrier and transmitted pilot carrier exactly in phase by performing the steps of paragraph 3.1.7.
b. Modulate the transmitter with an $L=-R$ stereo signal. See figure 5-5 for an example of a test switch for obtaining this type of stereo signal.
c. Place the monitor METER switch to the LEFT AUDIO or RIGHT AUDIO position.
d. Adjust the transmitter stereo generator pilot carrier phase for a maximum indication on the $900 \mathrm{C}-1$ () front panel meter.

3.1.13 PILOT CARRIER LEVEL MEASUREMENT (900C-1, 900C-1A).

To measure the level of the transmitted pilot carrier, turn the METER switch to PILOT MOD position and read the output on the 0 to 30 percent scale. This is the pilot carrier output level.

3.1.14 SCA INJECTION LEVEL MEASUREMENTS ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~B}$).

To measure the SCA injection level, perform the following procedures.
a. Feed a normal SCA input into the transmitter.
b. Set the METER front panel switch to the SCA MOD position. Read the SCA level on the 0 to 30 percent scale of the front panel meter.

3.2 Normal Operalion.

During normal operation, the 900C-1() METER switch is usually set to the TOTAL MOD position. The meter will then indicate percent of total modulation. The PEAKS light is set to operate at 100 percent modulation. This allows the station operator to check the $900 \mathrm{C}-1$ ()'s most important function, that of monitoring percent of modulation.

To set the $900 \mathrm{C}-1$ () for monitoring percent of modulation, turn the METER switch to the TOTAL MOD position and the PERCENT MODULATION control to 100 percent. The POLARITY switch may be left in either the POS or NEG position. The front panel meter will now indicate the actual percent of transmitter modulation and the PEAKS light will indicate any modulation peaks present over 100 percent.

NOTE

The PEAKS light will indicate only if the meter switch is in the TOTAL MOD position.

principles of operation

4.1 General.

The following discussions describe the operation of the 900C-1() FM Modulation Monitors. As the four types of modulation monitors can be divided into two main groups, monaural and stereo, the following discussions will describe first monaural operation common to all four types of monitors and then stereo functions which are added to the monaural functions. SCA operation is obtained by the addition of SCA filter FL3. The four equipment types are physically similar except for the addition or deletion of certain wired circuit cards and the SCA filter. Refer to table 1-2 for a list of components necessary to make up each equipment type.

4.2 Block Diagratl Discussion.

4.2.1 MONAURAL OPERATION.

Refer to figure 4-1. The r-f input obtained from the monitor output of the FM transmitter is fed through an adjustable pad (RF LEVEL control) to an AM detector circuit. The adjustable pad is used to adjust the r-f input level to 1 volt rms to prevent overloading of the monitor input circuits. The AM detector contains a standard 75 -microsecond de-emphas is net work and provides and AM noise output. This output is fed to the front panel AM NOISE jack and is used for AM noise measurement purposes in conjunction with an external audio vtvm.

The r-f signal from the variable attenuator is further attenuated by a fixed attenuator and is fed to a mixer which combines the incoming $r-f$ signal with the output of a crystal oscillator-tripler operating 500 kc above the incoming signal. The difference signal, a fully modulated FM signal centered about a 500 -kc carrier, is fed to demodulation circuits. Switch S2A selects the mixer output or the output of a $500-\mathrm{kc}$ crystal oscillator and comnects either to the pulse counting demodulator. This demodulator consists of a pulse shaping stage, a monostable multivibrator, and a phase linear low pass filter, FL4. When switch S2 is in the calibrate position, the $500-\mathrm{kc}$ reference frequency is alternately keyed on and off at a 60 -cps rate by a switching diode. This causes a large amplitude $60-\mathrm{cps}$ square wave to appear at the output of the phase linear low pass filter. This square wave is attenuated and is used for calibration of subsequent modulation metering circuits.

When S2 is in the normal operating position, the mixer output is demodulated by the pulse counting demodulator, is fed through a low pass filter, around an $11-\mathrm{db}$
pad which is used in the calibrate position, to a phase splitter and metering circuits.

The metering circuits consist of wide-band audio amplifiers, a phase splitter, filters, a true peak reading voltmeter, an average reading audio voltmeter, and a peak light flashing circuit. Wide-band audio amplifiers located in the phase-splitter amplify the low level output of the pulse counting demodulator to a usable level. The phase-splitter also is used to select either modulation in the positive (higher frequency) or negative (lower frequency) direction for measurements. This ensures against overmodulation because of the assymetrical nature of the human voice.

An output from the first phase-splitter amplifier stage is fed through a switchable de-emphasis to a monaural output jack The output is then fed through S1D to an amplifier d transformer which raises the level to 10 volts rr for use by an external distortion analyzer. All ha onics through 45 kc appear unattenuated (excep or de-emphasis) at this output.

A second output from the phase splitter is fed, in monaural operation, through a resistance pad (for total modulation measurements), main channel filter (for $30-\mathrm{cps}$ to $15-\mathrm{kc}$ measurements), or an SCA filter (for $59-\mathrm{kc}$ to $75-\mathrm{kc}$ measurements), to either peak voltmeter or average voltmeter circuit. These three circuits provide for selective monitoring of each band of frequencies. The remaining filters are present in the monaural modulation monitor models but are not used. These filters allow for simple conversion to stereo operation with only the addition of wired circuit cards.

An output is taken from the peak voltmeter circuit and is fed to a peak light flasher circuit which causes a lamp to flash when modulation peaks exceed a threshold level set by the PERCENT MODULATION front panel control. This peak modulation must exceed a time duration of 100 microseconds. Connectors are provided for addition of a second remote lamp.

In addition to the true peak reading voltmeter which is used in the percent modulation metering modes, an average reading audio voltmeter is contained in the 900C-1(). This audio voltmeter has adjustable sensitivity which is useful for reading voltage ratios such as those required in signal/noise measurements.

SECTION 4

Principles of Operation

4.2.2 STEREO OPERATION.

The stereo modulation monitor uses the same monaural circuits as described in paragraph 4.2.1 but contains additional circuits which allow monitoring of the complex stereo signal. A block diagram at the stereo modulation monitor is shown in figure 4-2. The following paragraphs discuss only these circuits.

The demodulated, wide-band composite autio modulating signal, containing frequencies between 30 cps and 75 kc from the low pass filter is fed around the calibrating $11-\mathrm{db}$ pad to output jacks for wide-band monitoring purposes and to metering circuits and the stereo demodulator circuits.

The wide-band signal is fed through the same phase splitter as is described in paragraph 4.2 .1 and is broken up into separate audio component bands by filters which are selected by METER switch S1. These audio components are the main channel (30 cps to 15 kc), the stereo subchamel (23 kc to 53 kc), the pilot carrier (19 kc), and the SCA channel (59 kc to 75 kc). The pilot carrier filter is part of the stereo demodulator circuit. These filters may be bypassed and total modulation read by selecting the TOTAL MOD position of S1. This is the normal position since total modulation must be monitored continuously. The peak voltmeter circuit responds only to peak values and will read the same regardless of the frequency content of the signal. This is a necessary requirement for stereo andSCA modulation monitoring since both of these modulating signals are complex waveforms.

In the stereo model of the modulation monitor, the average reading voltmeter is used for reading voltage ratios such as signal/noise (used in monaural operation also), chamel separation, and crosstalk measurements. This voltmeter can be switched by the METER switch to the output of the main channel filter, the stereo subchannel filter, the left audio output, and the right audio output.

The stereo demodulator circuits consist of the stereo demodulator, subcarrier regeneration circuits, left and right audio amplifiers, left and right audio $15-\mathrm{kc}$ low pass filters, and subcarrier phase calibrating circuits. The wide-band audio signal is fed to a $19-\mathrm{kc}$ amplifier which has two functions: it transforms the wide-band signal source impedance to a low value suitable for driving the stereo demodulator, and to separate the $19-\mathrm{kc}$ pilot carrier for further amplification and doubling to the $38-\mathrm{kc}$ regenerated subcarrier frequency. This high level regenerated subcarrier is fed to the demodulator and causes the incoming composite stereo information to be broken down into left and right audio outputs. An output is taken from the stereo demodulator and is fed to a second 19-kc separator and amplified in the subcarrier phase calibrating circuits for subcarrier phase adjusting purposes. By reversing the $38-\mathrm{kc}$ subcarrier phasing with switch 55 and relay K1, the phasing between
the received pilot carrier and the regenerated subcarrier can be set for optimum stereo demodulation. The left and right audio outputs from the stereo demodulator is fed through two $15-\mathrm{kc}$ low pass filters to two identical audio amplifiers. De-emphasis can be switched in by the same control which switches deemphasis into the monaural output.

1.3 Detailed Circuit Discussion.

4.3.1 MONAURAL CIRCUITS.

Refer to figures 7-1 through 7-6 and figure 7-11.
4.3.1.1 MIXING AND AM DETECTOR CIRCUITS. The station transmitter monitor output is connected through a coaxial cable to the RFIN jack located at the rear of the modulation monitor. This $r-f$ input signal is normally of too great an amplitude to be used directly by the modulation monitor circuits. The r-f input signal is reduced to a usable level by a variable attenuator, capacitor C2 (RF LEVEL control), which shorts a portion of the signal to ground causing a voltage drop across $R 2$. The remaining ignal, an adjusted 1 -volt rms r-f signal across C2, is fed to a fixed attenuator and a conventional AM detector circuit. The AM detector circuit consists of diode CR1 and an r-f filter which removes the r-f present below the AM signal. The remaining AM signal is a vailable at the AM NOISE jack for monitoring purposes by an external vtvm.

Diode CR1 in conjunction with front panel meter M1 is also used as a means of monitoring the incoming r-f level. As the diode rectifies the positive half of the FM input signal, the d-c average of this signal is proportional to the input r-f. With the METER switch placed in the RF LEVEL position, the output of CR1 is then placed across meter M1. The r-f input level to the modulation monitor may then be read directly by the front panel meter.

The adjusted 1 -volt rms input signal from C 2 is fed through a fixed attenuator, R100 and R101, to mixer Q100. Mixer stage Q100 mixes the output from the tripled local oscillator output, which is 500 kc above the transmitter output signal, and the incoming r-f. The resulting $500-\mathrm{kc}$ i-f signal is comnected through coupling capacitor C104 to MODULATION METER CAL switch S2.

The local oscillator is crystal controlled with the crystal placed in an oven to produce an extremely stable output frequency. This frequency must be much more stable than the transmitter frequency to ensure measurement accuracy by an externally connected frequency monitor (if used). The output from Q101 is fed through inductor T100 to a grounded base amplifier tripler Q102. The output of Q102 is connected to a tank circuit, C119 and L103, which is tuned to the third harmonic of the oscillator fundamental frequency. Inductance L103 is tapped for proper impedance matching to mixer Q100.

The mixer output is connected to MODULATION METER CAL switch S 2 . With S 2 in the ON position, the output of the reference oscillator, a $500-\mathrm{kc}$ signal from Q103, is switched to the input of pulse generator Q150 and Q151 for calibration purposes. With S2 in the OFF position, the mixer output is connected to the pulse generator input for normal monitoring. Switch S2 also provides a bias voltage to diode switch CR150 to bias the diode on when S 2 is in the OFF position. With switch S 2 in the ON position a 60 -cps switching voltage obtained from the $60-\mathrm{cps} 28$-volt source, TB112 , is routed through the external frequency meter to diode CR150. This voltage switches diode CR150 on and off at a 60 -cps rate effectively placing a 0 - or $500-\mathrm{kc}$ FM signal (500 kc from the reference oscillator) on the pulse generator input (Q150 and Q151) for Modulation meter calibration purposes.
4.3.1.2 PULSE COUNTING DEMODULATOR CIRCUITS. With S 2 in the OFF position, the $500-\mathrm{kc}$ mixer output is fed through CR150 to pulse generator Q150. This transistor, in conjunction with Q151, takes the sine wave input FM signla and changes it to a square wave whose polarity follows the input i-f signal polarity and phase. The square wave output of Q151 is then fed to a differentiating circuit consisting of capacitor C153 and R161. This circuit changes the pulse generator square wave output to positive and negative spikes which have leading edges with a sharp rise time. The negative pulses from C153 and R161 are blocked by diode CR151 so only the positive pulse is seen by the base of transistor Q152. Transistors Q152 and Q153 form a single shot multivibrator which produces a pulse with a fixed time length and magnitude each instant a pulse is received through diode CR151. The output from the multivibrator is then a series of pulses with a fixed length and magnitude whose spacing depends upon the incoming frequency. Figure 4-3
shows pictorially how this waveform is obtained from the different circuit locations and the relationship to the incoming $r-f$ frequency. The d-c average voltage or filtered demodulator output is then equivalent to the original FM modulated wide-band transmitter input. The output of the single shot multivibrator is amplified by buffer amplifier Q154 which has an output connected to an external frequency meter and is fed through a phase linear low pass filter. This filter passes all frequencies in the $F M$ modulating spectrum, 0 to 75 kc . The low pass filter averages the pulse output from the pulse counting demodulator to produce audio frequencies from 0 to 75 kc (wide-band audio). With S 2 in the OFF position, the filter output is connected through S2 to switch S1E, the $19-\mathrm{kc}$ amplifier discussed in the stereo section of this instruction book, and to the wide-band output jack for external monitoring. Switch S1E, the METER control, switches the wideband audio fromswitch 52 to the phase-splitter circuits or, with the METER switch in the PILOT MOD position, switches the $19-\mathrm{kc}$ amplifier output to the phase-splitter circuits. Switch S2 has a final function, to add an $11-\mathrm{db}$ pad in the filter output circuit when S2 is in the ON position. This reduces the output from the pulse counting demodulating circuit to a fixed level for modulation meter calibration.

4.3.1.3 PHASE-SPLITTER AND FILTER CIRCUITS.

 The phase-spliter circuits consist of an emitter coupled amplifier, Q200, and a conventional amplifier, Q201, which has two outputs of opposite phase but equal amplitude. Switch S4, the POLARITY switch, selects one of these phases and connects the signal to output amplifier Q202. An output is also taken from the collector of Q200 which is fed through power amplifier Q203 to produce a monaural output of sufficient strength to drive external monaural monitoring amplifiers. De-emphasis is switched into the input of Q203 by

Figure 4-3. Pulse Counting Demodulator Waveforms with Sine Wave Modulation
switching capacitor C207 into the circuit with DEEMPHASIS switch S4. The output of Q203 is also connected through switch S1D to a second amplifier located in the average voltmeter wired circuit card. This amplifier, Q350, and transformer T2 produce a 10 -volt peak-to-peak signal for use by an external distortion analyzer.
The output of Q202 is connected to a series of filter and resistor circuits through METER switch S1. This switch selects which of the incoming wide-band subchannels is to be monitored by the modulation monitor voltmeter circuits. The wide-band audio may be fed around the selective filters for total modulation monitoring and for monitoring the $19-\mathrm{kc}$ pilot carrier. The $19-\mathrm{kc}$ carrier frequency is selected at the input of the phase-splitter circuits.
4.3.1.4 PEAK VOLTMETER CIRCUIT. With METER switch S1 in any of the first five positions, the output of switch S1C is connected to the peak voltmeter circuits. The peak voltmeter circuits are of the automatic slideback peak voltmeter type and are an ideal circuit for determining the peak voltage of the complex waveforms monitored by the 900C-1(). A basic slideback voltmeter operates by reverse biasing a diode to a point where the incoming signal can no longer switch on the diode. The reverse d-c bias voltage is then equal to the incoming peak voltage. The automatic slideback voltmeter operates in a similar manner but operates automatically by taking the signal voltage which is conducted through the reverse biased diode, amplifying the signal, and applying the resultant $d-c$ as a reverse bias to the diode. Signals will cause the diode to conduct until the d-c reverse bias from the amplifiers cuts off diode conduction.

The wide-band complex waveform is amplified by grounded emitter amplifier Q250 and fed to an emitter follower amplifier, Q251. The wide-band signal power is greatly amplified by Q251 with the resulting signal impressed upon peak detector Q252. At the instant that the first half cycle of the input complex waveform appears on the base of Q252, the transistor conducts causing the base signal to appear across load resistor R262. This signal is then fed through coupling capacitor C255 to transistor amplifier Q254 where the signal across load resistor R262 is amplified. The signal output from Q254 is further amplified by emitter follower Q255 and is rectified and clamped by diodes CR252 and CR251 to charge capacitor C257 in the negative direction. Capacitor C257 averages the negative output from diode CR252 into a negative d-c potential which appears at the base of feedback bias switch Q253. With this negative bias present at the base of PNP transistor Q253, the transistor will be heavily biased on increasing the voltage drop across resistor R 261 . This drives the emitter of Q252 in the negative direction biasing the transistor to the point where only a small signal peak is conducted by Q252. This reduces the signal voltage across load resistor R262 when the succeeding half cycles of the wide-band input waveform arrive at the base of the peak detector transistor. Due to the
gain of transistor stages Q254 and Q255, any conduction of transistor Q252 will cause the voltage at the base of Q253 to be sustained at a level which permits only a very small signal peak to be conducted by Q252. This will occur at a point where the peak wide-band input signal level will cause the peak detector transistor to conduct only for small signal peaks. The voltage present at the collector of Q253 will then be proportional to the peak voltage present in the complex wide-band waveform. This voltage is available at TB1-8 for operation of a remote peak voltmeter and may be connected to the front panel meter through dropping resistor R265 and switch S1A.
4.3.1.5 PEAK LIGHT CIRCUITS. An output from the emitter of Q251 is connected to the input of the peak light circuits. These circuits operate the front panel peak light each time the wide-band waveform exceeds a preset level. This preset level represents a percentage of modulation that must be exceeded by the input waveform before the peak light will operate. The peak light circuits operate as follows. The wide-band audio from the peak voltmeter amplifiers is amplified to a usable level by Q300 and applied to the base of Q301. This transistor is one-half of a pulse generator. The pulse generator firing voltage is controlled by a bias voltage adjusted with the front panel PERCENT MODULATION control. With no wide-band input signal on the base of Q301, the pulse generator circuit is in a condition that causes Q302 to conduct with Q301 nonconducting. With Q302 conducting, the emitter voltage at Q301 is relatively high, ensuring that this transistor will be biased off. The adjustable positive bias voltage at the base of Q301 works against the emitter voltage, increasing or decreasing the emitter-base bias. This emitter-base bias must be exceeded by the input signal voltage before the transistor will conduct.

Conduction of Q301 cuts off transistor Q302 increasing the voltage at the collector of Q302. This voltage increase is differentiated by capacitor C307 to produce a sharp pulse input to Q303 one-half of a single shot multivibrator. Transistor Q304 provides the other half of the multivibrator and furnishes a square wave pulse to transistor switch Q305. The square wave pulse on Q305 causes Q305 to turn on, effectively shorting the collector of Q305 to ground. This switching action turns on the peak light indicator located on the front panel and indicates that the incoming modulation peaks have exceeded the level preset by the PERCENT MODULATION control. The PERCENT MODULATION control is calibrated in modulation percentage, from 50 to 120 percent. A lead attached to the ground side of peak light DS2 may be connected to an external indicator for remote monitoring purposes. This lead places the remote lamp in parallel with DS2.
4.3.1.6 AVERAGE VOLTMETER CIRCUIT. With the METER switch in positions 6 through 9, the average voltmeter circuits and front panel meter are used to monitor the left and right audio channels, main

Figure 4-4. Stereo Demodulator 19-Kc and $38-\mathrm{Kc}$ Outputs with Phase Changes
channel audio, and the left channel audio signal levels. These circuits consist of amplifiers and a full wave bridge rectifier and filter which produce a d-c equivalent voltage of the incoming average audio signal level. This d-c voltage is impressed across the front panel meter input for direct reading of incoming levels. The amplifier circuits consist of grounded emitter circuits Q351, Q353, and Q354. Emitter* follower Q352 reduces the circuit impedance to a point where addition or deletion of circuit resistance by switch S 7 does not affect over-all linearity. Switch $S 7$ increases or decreases the over-all circuit gain in $10-\mathrm{db}$ steps allowing direct measurement of db ratios using the front panel meter.

4.3.2 STEREO CIRCUITS.

Refer to figures 7-7 through 7-11.
4.3.2.1 19-KC AMPLIFIER-DOUBLER AND 38-KC PHASING CIRCUITS. The wide-band demodulated signal, obtained from the pulse counting demodulator, is fed to the base of amplifier Q550 which serves the dual function of a grounded emitter amplifier and emitter follower. The emitter output is connected directly to the stereo demodulator. This circuit will be discussed in later paragraphs. The collector of $Q 550$ is connected to a double tuned resonant circuit. This circuit effectively rejects all other frequencies but the $19-\mathrm{kc}$ pilot carrier frequency present at the amplifier output.

The double tuned $19-k c$ resonant tank circuits are connected to the base input of an emitter follower buffer amplifier. The buffer amplifier output is connected to the amplifier-doubler circuits, an external output jack for $19-\mathrm{kc}$ monitoring purposes, and to switch S1E which allows the metering circuits to monitor the $19-\mathrm{kc}$ voltage level when the METER switch is in the PILOT MOD position.

The amplifier-doubler amplifies the output from the 19-kc amplifier in Q500 and impresses this amplified signal on the base of phase splitter Q501. As the signal present on the collector and emitter of Q501 are 180 degrees apart, diodes CR500 and CR501 perform the function of a full wave rectifier, effectively doubling the original $19-\mathrm{kc}$ pilot carrier to 38 kc . This $38-\mathrm{kc}$ signal is further amplified by grounded emitter stage Q502 and connected to the input of the stereo demodulator circuits through relay K1. Relay K 1 is used to reverse the phase of the $38-\mathrm{kc}$ stereo demodulator switching voltage. By reversing the $38-\mathrm{kc}$ input phase and comparing the $38-\mathrm{kc}$ signal with the $19-\mathrm{kc}$ pilot carrier at the stereo demodulator, proper zero crossing of the $38-\mathrm{kc}$ switching signal will be achieved. Proper zero crossing is indicated by a balance in the voltage observed on the front panel meter each time the SUB CARRIER PHASE CAL control is switched from reverse to normal. A voltage differential occurs across the demodulator diodes because the $19-\mathrm{kc}$ pilot carrier, present at the demodulator wide-band input, increases or decreases in magnitude according to the phase relationship of the $38-\mathrm{kc}$ switching frequency. This relationship is shown in figure $4-4$. If the $38-\mathrm{kc}$ and $19-\mathrm{kc}$ frequencies are exactly in phase, the $19-\mathrm{kc}$ pilot carrier voltage at either side of the diode demodulator will be equal (C, figure 4-4). As the phase relationship changes, the pilot carrier voltage across the demodulator diodes will be unbalanced (D and E, figure 4-4). This unbalance is detected by changing the $38-\mathrm{kc}$ switching frequency phase by 180 degrees, thus effectively sampling the $19-\mathrm{kc}$ pilot carrier voltage present on each side of the demodulator diodes.

The sampled $19-\mathrm{kc}$ signal from stereo demodulator diode CR450 is amplified by transistor stages Q306 and Q307 when the SUB CARRIER PHASE CAL control is in the REV or NOR position. Transistor stages Q306 and Q307 along with the associated resonant circuits restore the sine wave symmetry to the $19-\mathrm{kc}$ signal and also amplify the signal. The output of Q307 is connected to the average voltmeter through $S 5$. The average voltmeter circuits then indicate through the front panel meter the magnitude of $19-\mathrm{kc}$ pilot carrier signal present at the stereo demodulator.
4.3.2.2 STEREO DEMODULATOR AND, AMPLIFIER CIRCUITS. The stereo demodulator circuits separate the original left and right audio channels from the wide-band composite signal. This demodulation is accomplished by alternately switching the incoming wide-band composte stereo at the 38 -kc suppressed

SECTION 4

Principles of Operation
carrier rate. The switching is accomplished in diode CR450. This diode is composed of four diodes arranged as a shunt type demodulator. As the original transmitted stereo signal is composed of alternate switching of the left and right audio channels at a $38-\mathrm{kc}$ rate (time division multiplex system, figure 4-5), demodulation is accomplished by the reverse method.

The outputs from the diode shunt demodulator, left and right audio channels, are fed to amplitude correction amplifiers Q450 and Q451. The left audio channel is fed to Q450, the right audio channel to Q451. The amplitude correction amplifiers correct for the fact that the signal was transmitted with equal peak amplitude main and subchannel signals rather than a signal which consists of a subchannel signal which is $\frac{4}{\#}$ times the main channel signal. This latter signal could be demodulated without an amplitude correction. The amplitude correction amplifier outputs are fed through 0 - to $15-\mathrm{kc}$ low pass filters ($F L 1$ and FL5) which remove all frequencies present on the demodulated audio above 15 kc .

The outputs of filters FL1 and FL5 are fed through identical audio amplifiers which increase the

Figure 4-5. Elementary Time Division Multiplex System
demodulated left and right audio channels to a usable level. These amplifiers consist of Q400through Q402. The final amplifier, Q402, is an emitter follower which reduces the output impedance to approximately 600 ohms at the output terminals of TB1. The front panel METER switch can select either the left or right audio output of Q402 and connect either to the average voltmeter input. The average voltmeter (discussed in the monaural section) and front panel meter may then measure channel separation, crosstalk, channel noise, frequency response, or channel distortion measurements of the demodulated left and right audio channels.

maintenance

5.1 General.

The following paragraphs contain information concerning maintenance of the 900C-1() FM Modulation Monitor.

5.2 Transistor Testing Techniques.

The 900C-1() FM Modulation Monitor is a completely transistorized equipment. The following transistor testing techniques are supplied for the purpose of acquainting the person unfamiliar with transistor servicing with general transistor testing techniques.

NOTE

All transistors are placed in sockets to facilitate testing and repair. If a transistor is removed from its socket, replace the transistor in the socket with transistor tab located adjacent to the black dot printed near the transistor socket.

When performing maintenance on the $900 \mathrm{C}-1$ () do not interchange transistors. Interchange may cause calibration errors.

5.2.1 TRANSISTOR TESTING.

If a transistor tester is not available, a good ohmmeter may be used for testing. The results will not be conclusive, but a general indication of transistor condition will be obtained. Do not use an ohmmeter from which high currents could be obtained, or transistors may be damaged.

Ohmmeter test lead polarity must be established before testing transistors as junction resistance is measured in each direction. In most multimeters, the positive ohmmeter lead is the COM lead, and the V/A lead is negative. In other models of multimeters, this may be reversed.

To test transistors properly, they should be removed from the circuit to eliminate shunt resistances or clamping diodes. If it is impossible to remove the transistor from the circuit, examine the power supply schematic, and determine the approximate total shunt resistance bridging the two transistor elements to be checked. Take this resistance into account when performing the following steps.

5.2.2 TESTING PNP TRANSISTORS.

The resistance values stated in the following steps are approximate, and will vary over a wide range with different transistor types and different ohmmeters. The important observations to be made are the ratio of resistance indications when the ohmmeter leads are reversed, the open circuit indication, and a short circuit indication. In general, the resistance indications at the high end of the ranges given apply to smallsignal transistors, while the resistance indications at the low end of the ranges given apply to large-signal or power transistors.
a. Connect the positive lead of the ohmmeter to the emitter. the negative lead to the base. Ohmmeter indication should be approximately 50 to 150 ohms.
b. Connect the positive lead of the ohmmeter to the base, the negative lead to the emitter. Ohmmeter indication should be approximately 30,000 to 60,000 ohms. If the absolute value of resistances read differs greatly from the values above, check that the ratio of resistances is on the order of 500-to-1 or greater. Indications with large variations from the above probably indicate a defective transistor.
c. Comect the positive lead of the ohmmeter to the collector, the negative lead to the base. Ohmmeter indication should be approximately 50 to 160 ohms.
d. Connect the positive lead of the ohmmeter to the base, the negative lead to the collector. Ohmmeter indication should be approximately 30,000 to 60,000 ohms. If the absolute value of the resistances read differs greatly from the values above, check that the ratio of resistances is on the order of 200-to-1 or greater. Indications with large variations from the above probably indicate a defective transistor.
e. Comect the positive lead of the ohmmeter to the emitter, the negative lead to the collector. Ohmmeter indication should be approximately 100 to 7000 ohms.
f. Connect the positive lead of the ohmmeter to the collector, the negative lead to the emitter. Ohmmeter indication should be approximately 5000 to 60,000 ohms. If the absolute value of the resistances read differs greatly from the values above, check that the ratio of resistances is on the order of 8 -to- 1 or greater. Indications with large variations from the above probably indicate a defective transistor.
g. Connect the positive lead of the ohmmeter to the emitter, the negative lead to the base and collector. Ohmmeter indication should be approximately 5000 to - 60,000 ohms.
h. Comnect the positive lead of the ohmmeter to the emitter, the negative lead to the base and collector. Ohmmeter indication should be approximately 100 ohms. If the absolute value of the resistances read differs greatly from the values above, check that the ratio of resistances is on the order of 200 -to- 1 or greater. Indications with large variations from the above probably indicate a defective transistor.

5.2.3 TESTING NPN TRANSISTORS.

The tests for NPN transistors are identical to those for PNP transistors in paragraph 5.2.2 except that the polarity of the ohmmeter voltage is reversed for all parts of all checks. Indicated resistances and resistance ratios are the same.

5.3 Trouble Shooting.

Trouble shooting is facilitated through the use of the card extender located beneath the card cage cover. With the circuit card mounted on the card extender and the extender replacing the position of the circuit card, the components located on the card are easily available for in-circuit testing. All cards may be mounted in this way for in-circuit testing with the exception of the oscillator-tripler-mixer card. Due to the frequencies generated and fed into this card, it is necessary to keep the interconnecting leads as short as possible or serious circuit losses will result. The resulting losses will cause apparent equipment malfunctions. The tuning tool located at the left end of the card cage is included for tuning of the oscillator inductances located on the oscillator-tripler-mixer card.

Trouble-shooting procedures of the $900{ }^{\circ}-1()$ will consist of isolating the trouble to a stage and then making resistance measurements of the isolated stage until the trouble source is found. Test points are located on each circuit card for the purpose of aiding the technician in this trouble isolation. These test points are usually located on the imput and output of each card and in certain instances, at intermediate locations. Table 5-1 is provided in this section to show the voltage expected at each test point and the conditions in which each measurement was taken. These voltages are typical only and do not represent absolute values. Other modulation monitors may contain voltages which vary slightly from those values given with no loss of performance.

Figure 5-1 is included to show the expected waveforms present at various points throughout the 900C-1(). Only significant waveforms are given.

Figure 5-2 shows the waveforms that are present at the wide-band output jack for each of the three types of stereo modulation and with $\mathrm{L}=-\mathrm{R}$ modulation without pilot carrier. These waveforms are present only with sine wave modulation.

5.4 Adjustment I'rocedures.

CAUTION

The following procedures show how to adjust the factory adjustments located below the protective cover (figure 5-3). These adjustments have been made at the factory to optimize the performance of the modulation monitor. Under no circumstances should the following adjustments be made without first determining that the source of trouble is positively caused by one of these adjustments. Indiscriminate adjustment or adjustment without the high quality test equipment recommended will result in serious loss of equipment performance.

5.4.1 TEST EQUIPMENT REQUIRED.

Table 5-2 gives the equipment necessary to perform the adjustment procedures. The equipments given in the table or equivalent equipment of the same high quality must be used in these procedures.

5.4.2 OSCILLATOR-TRIPLER TUNING (900C-1, $900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C})$.

Perform the procedures as given paragraph 2.2.3, steps b through i.

5.4.3 MODULATION METER CALIBRATION ADJUSTMENT $\quad(900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}$, 900C-1C).

a. Connect the modulation meter to the test equipment as shown in figure 5-4.
b. Turn the monitor RF LEVEL control to the MIN position.
c. Connect a dummy load to the antenna connection and turn on the station transmitter. Set the incoming r-f level by switching the monitor METER switch to the RF LEVEL position. Adjust the RF LEVEL control for a front panel meter scale reading of 100.
d. Turn the METER switch to the TOTAL MOD position.
e. With no transmitter modulation, tune in the frequency translator output frequency on the communications receiver.

NOTE

If a Collins A830-2 Wide Band FM Broadcast Exciter is used in the station's transmitter, it will not be necessary to use the frequency translator. Connect a pickup loop from the communications receiver antemn to the area of Q606 on the A830-2. Tune the communications receiver for 14 megacycles to receive the A830-2 i-f signal.

TABLE 5-1. TYPICAL TEST POINT VOLTAGE MEASUREMENTS

TEST POINT	INDICA TION *(volts a-c)	CONDITIONS
TP100	1.5	MODULATION METER CAL switch ON, no modulation, carrier only
TP101 (1)	0.24	No r-f input (MODULATION METER CAL switch OFF)
TP101 (2)	0.68	R-f input, carrier only, no modulation
TP102	0.5 (min)	Same as TP101 (2)
TP150	0.5 (min)	Same as TP101 (2)
TP151	3.2	Same as TP101 (2)
TP200	0.13	Carrier modulated 100% with $400-\mathrm{cps}$ monaural signal
TP201	0.45	Same as TP200
TP250	0.46	Same as TP200
TP251	0.94	Same as TP200
TP252	0.074	Same as TP200
TP300	0.94	Same as TP200
TP301	0.08	Carrier modulated 100% with 400 -cps stereo $L=R$ signal, SUB CARRIER PHASE CAL switch to NOR
TP302	0.042	Same as TP301
TP350	0.088	Carrier modulated 100% with 400 -cps monaural signal, METER switch to MAIN CHAN AUDIO
TP351	1.9	Same as TP350
TP400	0.0285	Carrier modulated 100% with $400-\mathrm{cps}$ stereo $\mathrm{L}=\mathrm{R}$ signal
TP401	0.775	Same as TP400
TP450	0.044	Same as TP400
TP451	0.044	Same as TP400
TP500	0.08	Same as TP400
TP501	7.4	Same as TP400
TP550	0.12	Same as TP400
TP551	0.12	Same as TP400

*Voltages are a-c only. Test points TP100 through TP151 voltage measured with Hewlett-Packard 410B.
Test points TP200 through TP551 voltages measured with Hewlett-Packard 400D.

TABLE 5-2. TEST EQUIPMENT REQUIRED FOR ADJUSTMENT PROCEDURES

EQUIPMENT TYPE	FUNCTION
Hewlett-Packard 200DC	A-f signal generator
Hewlett-Packard 330D	Distortion and noise meter
Hewlett-Packard 400L, D, or H	Audio vtvm
Hewlett-Packard 410B	Vtvm
Hewlett-Packard 524D	Frequency counter
Tektronix 545A	Oscilloscope
Tektronix Type D Plug-in Unit	Vertical amplifier
Collins 75S-3	Communications receiver
--------------------	Frequency translator (Not used if Collins A830-2 is available)

Figure 5-1. Typical 900C-1() Waveforms

Figure 5-2. Typical Wide-Band Output Waveforms
f. Adjust the output of the audio generator 8667 cps as indicated on the frequency counter.
g. Reduce the audio generator output to 0 volt.
h. While observing the communications receiver S meter, slowly increase the audio generator output voltage. As the level is increased, the transmitter carrier indicated on the S-meter will disappear suddeny. Continue increasing the audio generator output voltage until the third carrier disappearance is indicated on the S-meter. This is the 100 percent modulation point.
i. Place the MODULATION METER CAL switch in the OFF position and the POLARITY switch in the NEG position. Adjust the monitor front panel meter reading for exactly 100 by adjusting the MODULATION METER CAL control.
j. Place the MODULATION METER CAL switch in the ON position.
k. If exactly 100 percent modulation is not indicated on the front panel meter, adjust R 8 for an exact 100 percent indication.
l. Remove test equipment from the monitor. Shut down the transmitter.

5.4.4 MODULATION POLARITY EQUALIZING ADJUSTMENT \quad ($900 \mathrm{C}-1,900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}$, 900C-1C).

a. Place the POLARITY switch in the POS position "and switch the MODULATION METER CAL switch to the ON position.

FRONT PANEL
(${ }^{\infty}$ CAL SET (LPN)

MAIN CHANNEL LEVEL

SUB CHANNEL LEVEL

PILOT CARRIER LEVEL

CA CHANNEL LEVEL

AMPLITUDE EQUALIZER

PEAK LIGHT ADJ

$\underset{\mathbf{c}}{\bar{m}}$ SEPARATION ADJ

$\underset{\sim}{\underset{\alpha}{x}}$

RIGHT CHANNEL ADJ

Figure 5-3. Factory Adjustmont Locations

Figure 5-4. Test Setup for Modulation Meter Calibration Adjustment
b. If 100 percent is not indicated on the front panel meter, adjust R10 for an exact 100 percent indication.
c. Switch the POLARITY switch to the NEG position to determine that the positive and negative meter readings are equal.
d. Return the MODULATION METER CAL switch to the OFF position. Leave the POLARITY switch in the NEG position.

5.4.5 MAIN CHANNEL MODULATION ADJUSTMENT (900C-1, $900 \mathrm{C}-1 \mathrm{~A}, 900 \mathrm{C}-1 \mathrm{~B}, 900 \mathrm{C}-1 \mathrm{C}$).

a. Set the METER switch to the TOTAL MOD position.
b. Apply a $400-\mathrm{cps}$ modulating signal to the station console and adjust the transmitter for 100 percent modulation as indicated on the $900 \mathrm{C}-1$ ().
c. Set the METER switch to the MAIN CHAN MOD position. If a front panel meter indication of 100 percent is not obtained, adjust R17 for a 100 percent modulation indication.
d. Return the METER switch to the TOTAL MOD position.

5.4.6 SUBCHANNEL MODULATION ADJUSTMENT (900C-1, 900C-1A ONLY).

a. Place the METER switch in the TOTAL MOD position.
b. Apply a $38-\mathrm{kc}$ input signal for 100 percent modulation as indicated on the 900C-1 () front panel meter.
c. Place the METER switch in the SUB CHAN MOD position.
d. If the front panel meter does not indicate exactly

100 percent, adjust R14 for an indication of 100 percent.
e. Return the METER switch to the TOTAL MOD position.

5.4.7 SCA MODULATION ADJUSTMENT (900C-1, 900C-1B ONLY).

a. Place the METER switch in the TOTAL MOD position.
b. Apply a $67-\mathrm{kc}$ signal from the SCA equipment to the transmitter exciter.
c. Adjust the $67-\mathrm{kc}$ input signal until 100 percent modulation is indicated on the modulation monitor front panel meter.
d. Note the exciter $67-\mathrm{kc}$ input signal voltage for 100 percent modulation on a Hewlett-Packard 400L audio voltmeter.
e. Adjust the modulation to 30 percent by lowering the $67-\mathrm{kc}$ signal voltage to $3 / 10$ of the voltage noted in step d.
f. Place the METER switch in the SCA MOD position.
g. If the monitor front panel meter does not indicate 30 percent on the lower scale, adjust R16 for a meter reading of 30 percent.
h. Return the METER switch to the TOTAL MOD position.

5.4.8 PEAK LIGHT ADJUSTMENT (900C-1, $900 \mathrm{C}-1 \mathrm{~A}$, 900C-1B, 900C-1C).

a. Modulate the transmitter 100 percentas indicated on the monitor front panel meter with a 400 -cps input signal.
b. Turn the PERCENT MODULATION control until the PEAKS light flashes intermittently. The PERCENT MODULATION control should indicate 100 exactly.
c. Modulate the transmitter 50 percent as indicated on the monitor front panel meter with the 400 -cps signal.
d. Turn the PERCENT MODULATION control until the PEAKS light flashes intermittently. The PERCENT MODULATION control should indicate 50 exactly.
e. If the conditions of steps b and d are not met, proceed with the remaining steps of this procedure.
f. Remove the PERCENT MODULATION adjustment knob from its shaft.
g. Modulate the transmitter 100 percent, as indicated on the monitor front panel meter, with a 400 -cps signal.
h. With the transmitter modulated 100 percent, rotate the PERCENT MODULATION control until the PEAKS light flashes intermittently. Replace the PERCENT MODULATION knob so that knob points to 100 percent with the PEAKS light flashing intermittently.
i. Reduce the transmitter modulation to 50 percent as indicated on the monitor.
j. Rotate the PERCENT MODULATION control until the PEAKS light flashes intermittently. The control should indicate 50 percent modulation.
k . If the PERCENT MODULATION control indicates more than 50, perform stepl. If the PERCENT MODULATION control indicates less than 50 , perform step m.

1. Adjust R18 slightly in the clockwise directionand repeat steps f through k.
m. Adjust R18 slightly in the counterclockwise direction and repeat steps f through k.

NOTE

Potentiometer R18 determines the threshold spread and also affects the center of this spread. Each time R18 is adjusted, the PERCENT MODULATION knob must be readjusted on its shaft. The final adjustment will result in tracking between the front panel meter and the PERCENT MODULATION control at 50 and 100 percent modulation levels.
n. Tighten the PERCENT MODULATION knob securely.

5.4.9 19-KC TUNING ADJUSTMENTS (900C-1, 900C-1A ONLY).

a. Remove the $19-\mathrm{kc}$ amplifier card from the monitor and place it on the card extender connected in its place.
b. Place a short jumper across capacitor C555.
c. Connect a Tektronix 545A high impedance probe to the collector pin of transistor Q550.
d. Apply $19 \mathrm{kc} \pm 5 \mathrm{cps}$ modulation to the transmitter and adjust the transmitter for 10 percent modulation as indicated on the monitor front panel meter. Monitor the $19-\mathrm{kc}$ output with an $\mathrm{HP}-524 \mathrm{D}$ frequency counter. The METER switch should be in the TOTAL MOD position.
e. Adjust L551 for maximum 19-kc voltage as indicated on the oscilloscope.
f. Remove the jumper from across C555 and adjust L553 for a minimum oscilloscope indication.
g. Remove the card extender and replace the 19-kc amplifier card in its socket.

5.4.10 PILOT MODULATION ADJUSTMENT ($900 \mathrm{C}-1$, 900C-1A ONLY).

a. Connect an audio signal generator, an HP-400L audio voltmeter, and an HP-524D frequency counter to the transmitter exciter audio input.
b. Place the 900C-1() METER switch in the TOTAL MOD position.
c. Apply $19-\mathrm{kc} \pm 5-\mathrm{cps}$ signal to the transmitter. Modulate the transmitter 100 percent as indicated on the monitor front panel meter.
d. Note the transmitter audio input voltage as indicated on the HP-400L audio voltmeter.
e. Adjust the transmitter audio input voltage to $3 / 10$ that noted in step d. This modulates the transmitter 30 percent.
f. Place the METER switch in the PILOT MOD position.
g. The front panel meter should indicate 30 percent modulation as read on the lower scale.
h. If the requirement of step g is not met, adjust R15 for a reading of 30 percent as indicated on the monitor front panel meter lower scale.
i. Return the METER switch to the TOTAL MOD position. Remove the test equipment from the transmitter audio input.
5.4.11 $38-\mathrm{KC}$ TANK CIRCUIT TUNING ($900 \mathrm{C}-1$, $900 \mathrm{C}-1 \mathrm{~A}$ ONLY).
a. Apply a pilot carrier from the stations stereo generator. Do not apply audio to the stereo generator.
b. Place the SUB CARRIER PHASE CAL switch to the NOR position and note the monitor front panel meter reading. Adjust this reading with the METER ADJUST control to 100 .
c. Switch the SUB CARRIER PHASE CAL switch to the REV position and note the meter reading. d. The meter readings in steps b and c should be equal. If these readings are not equal, adjust $L 450$ on the stereo demodulator card until the readings in the NOR and REV positions are the same. This reading should be adjustable by the METER ADJUST control for a reading of 100 .
e. Return the SUB CARRIER PHASE CAL switch to the OFF position.

SECTION 5

Maintenance

Figure 5-5. Test Switch for Obtaining Stereo Signals

5.4.12 STEREO DEMODULATOR ADJUSTMENTS (900C-1, 900C-1A ONLY).

CAUTION
 canion

The following calibration adjustments must only be performed if a Collins $786 \mathrm{M}-1$ Stereo Generator and a Collins A830-1 10 W WideBand FM Broadcast Exciter is available for use as the transmitter stereo input equipment.
a. Construct a stereo test switch as illustrated in figure 5-5.
b. Connect the stereo test switch and audio generator to the $900 \mathrm{C}-1$ () and the station transmitting equipment as indicated in figure 5-6.
c. Place the station's transmitting equipment in the stereo mode.
d. Set the stereo test switch in the $\mathrm{L}=-\mathrm{R}$ position. Place the modulation monitor METER switch in the TOTAL MOD position.
e. Adjust the transmitter to modulate 100 percent as indicated on the modulation monitor with a 400-cps input signal.
f. Repeat paragraph 5.4 .11 to calibrate the monitor $38-\mathrm{kc}$ phasing.
g. Check the pilot carrier phase adjustment of the station's stereo generator. Adjust if necessary. This adjustment technique is given in the $786 \mathrm{M}-1$ Stereo Generator instruction book. The adjustment must be set for optimum performance in order to complete the remaining monitor demodulator adjustments.
h. Place the stereo demodulator card on the card extender and remove transistor Q451 from its socket. Place a jumper between TP450 and TP451.
i. Place the station's stereo generator in the monaural mode and modulate the transmitter 100 percent with a 400-cycle input signal.
j. Place the 900C-1() METER switch in the LEFT AUDIO position and note the meter reading.
k. Place the $900 \mathrm{C}-1$ () METER switch in the RIGHT AUDIO position and again note the meter reading.

1. If the readings of steps j and k are not equal, equalize these readings by adjusting the right channel gain adjustment, R34.
m. Again check the adjustment by repeating steps j through 1 .
n. Replace transistor Q451 in its socket and remove the jumper between TP450 and TP451. Remove the card extender and the stereo demodulator card and replace the stereo demodulator card in its socket.
o. Place the stereo generator in the stereo mode. Place the test switch to the $\mathrm{L}=\mathrm{R}$ position.
p. Modulate the transmitter 100 percent as indicated on the modulation monitor with a 400 -cps signal.

```
NOTE:
    REPLACE PRE-EMPHASIS NETWORKS WITH
    IBDB FLAT ATTENUATOR NETWORK.
                ! !
```

Figure 5-6. Test Setup for Stereo Demodulator Adjustments
q. Place the $900 \mathrm{C}-1()$ METER switch in the LEFT AUDIO position and note the meter reading.
r. Place the 900C-1() METER switch in the RIGHT AUDIO position and again note the meter reading.
s. If the readings of steps q and r are not equal, equalize these readings by adjusting the stereo demodulator balance adjustment, R29.
t. Place the 900C-1() METER switch in the LEFT AUDIO position.
u. Place the test switch in the $\mathrm{L}=\mathrm{R}$ position and note the modulation monitor meter reading.
v. Place the test switch in the $L=-R$ position and again note the meter reading.
w. If the readings of steps u and v are not equal, equalize the readings by adjusting the stereodemodulator channel separation adjustment, R31.
x. Recheck the preceding adjustments by switching
the METER switch to the LEFT AUDIO and RIGHT

AUDIO positions while the modulation is alternately switched from $L=R$ to $L=-R$. All four meter readings should be the same. If these readings are not the same, repeat steps o through w.
y. Place the METER switch to the RIGHT AUDIO position.
z. Set the test switch in the left only position and modulate the transmitter 100 percent with a 400 -cps signal.
aa. Adjust R31 for maximum channel separation by setting R31 for a minimum meter reading.

NOTE

When adjusting R31, the meter sensitivity must be increased. Move the DECIBELS switch clockwise as the channel separation is increased.
parts lisu

［TEM	DE．SCRII＇TION	COL．LINS PART NL゙MBr．R
	900C－1（）FM MOIUULATION MONITOR	522－3275－00
Cl	CAPACI＇fOR，FIXEI）， $11 \mathrm{CA}: 1000$ uut $\pm 50^{\circ}$ ， 500 v de：Electro Monive part no．DM19F102V500WV	912－3001－00
C2	CADACITOR VARIABLE：，AlIR：DUAK moshing type：100． 5 unf max， 6 ubl min capate ity： alumitum or hrass plates	922－0024－00
C3	CAPACITOR，FIXEI）．MICA： 100 uul $\pm 5^{\prime \prime} \% 500$ v de：Flletro Molive part no．DM 15 F101．J500WV	912－2816－00
C4	CAI＇ACITOR．FIXEI），NICA： 7500 unf $\pm 5^{\circ}{ }^{\circ}$ ， 500 v de：E゙Jertw Motive part no．DM30 F752．I	912－2726－00
C5	CAP＇ACITOIR，FIXEI，PAPFR： $0.1 \mathrm{ut} \pm 20^{\circ} \%$ ． 400 v do ：Spararue Eloctric Co part no． 1601P10404	931－5491－00
C6	CAPACITOI，FIXE1），ELECTROLYTIC： 1000 uf $-10^{\prime \prime \prime},+100^{\prime \prime}$ ． 50 y de：Sumague Electric Co．part （1）1） 133643	183－1403－00
C7	CAPACITOR，FIXEI），ELECTROLYTIC：same as C6	183－1403－00
C8	CAPACITOIR，FIXED，ELECTROLYTIC：same ats C6	183－1403－00
C9	CAD＇ACITOR FIXEA．EIIECTROLYTIC： 500 Uf $-10^{\prime \prime} \% \cdot 100^{\prime \prime}$ ．50 i de：Sprague Electric part no． ［）34998	183－1575－00
C10	CAIACITOR，FIXF：1）．CFRAMIC： $0.05 \mathrm{ul}-20^{\prime} \mathrm{f}$ $+50^{\prime \prime}$ ， 500 v de：Sprow Electric Co．of Wisconnsjupart nu．33C58	913－3153－00
Cll	CAP＇ACITOLR，F－IXEI，ELEECTROLYTIC： 2 ut $-10^{\prime \prime}$ ． $100^{\prime \prime} 50 \mathrm{v}$ de：Sprarfae Flectrice part no． 301）190A1	183－1183－00
C12	CAPACIJOR，FIXED．（FRRMIC：10，000 unf $\pm 20^{\circ \prime}$ ， 500 v．de	913－3013－00
C13	CAD＇ACITOR，FIXES，PAPER：samm as C5	931－5491－00
C14	CAJACITOR，FIXED．EI．ECTROLYTIC： 500 UF． -10 ． $100^{\circ} 50 \mathrm{v}$ de：Spraguc Electric part no． I） 34998	183－1575－00
$\mathrm{CR1}$	SEMICONDLCTOR IEEVICE：DIODE：Type 1N830A	
$\mathrm{Cl2}$	SEMICONDCCTOR IJEVICE，DIODE：silicon： Gemeral Ele etric Co．part in．1N538	353－1526－00
CR3	SEMICONDUCTOR DFVICE．DIODE：Same as CR2	353－1526－00
CR4	SEMICONIACTOR DEVICE SET：fwhermelically sealed shlicom soltage relerone diodes：Motorola part no．10M10\％131	353－1238－00
Cl 5	SEMICONDLCTOR DEVICE．DIODE：silucon： Raytheon Mitg．（i）part no．1N1124A	353－1301－00
ISS1	LAMP．GLOW：neron， 14 w．110－125 がac． single contact bayonet eandelabra，T－3－1 4 bulh； 1－3 16 in ．h： 5000 hes fated life：w ofternal resistor：General Filoctrie part mo．NE－5111	262－0680－00
DS2	LAMP．INIICATOR T＇－3－1 4 lulb： 36 v de： 0． 10 amps：（Foneral Elecoric Co．part mo． 1822	262－0353－00
D83	LAMP，INCANDESCENT：miniture single comati w T－3－1 4，crloar bulb： 28 ㄴ： 0.17 amp： MIL 1yne MS15571－4	？62－3270－00
DS4	LAMP，INCANJESCENT：Same as DS3	262-3270-00
F1	Fl＇SE，CAleTIRIDGF：glass case，brass terrules： 18 amp， 250 volt：Bussiman part no．MDL－ 18	264－0290－00
F2	FUSE，CARTRIDGF： 12 amp， 250 ：glass（asab． brass lerrules；Bussmatn part no．MDL－1 2	264－0293－00
FLL	FILTER，1，OWPASS： 5000 ohms inpu1， 5000 ohms output impedanee： 30 eps to 15,000 eps pass band，19， 100 cps to 75.000 （pss stop iband：1－3 4 in．by 2－3 4 in by 2－13 16 in ，exclitummals	673－1014－00
YL， 2	FILTER，BANDPASS： 5000 ohms input． 5000 ohms output impedance：23，000 cps to $53,000 \mathrm{cps}$ frequency response： 30 cps to 15.000 cps and 59,000 （ps 10 75,000 eps stoy）biand：1－3 4 ut by 2－3 4 in ．by 3－13 16 m ． max tern：inals	673－1015－00

IT： 11		CULLIN： 戸ART ふじい13！R
FL3	FILTER，HIGHPASS： 5000 ohms mput． 5000 ohms cotput impedance：59， 000 cps and above．67，000 （f）s trequency responsic： 30 cpsi to 53.000 eps sitop band：1－11 16 in．bỵ 2－1 16 in ．bỵ 3－1 8 in ．exel torminals	673－1016－00
FL4	FILTER，LOVPASS： C 00 whms huput． 600 ohms to 75.000 cps .400 kc to 1200 kc froquency response：1－1t 16 in．by 2－1 16 in．by 3－1 8 in．： excl termmals	673－1013－00
FI． 5	FILTER，LOWPASS：same as FLl	673－1014－00
J1	CONNECTOR，RECEIJTACLE，ELECTRICAL： 22 emmacts． 5 amps：Amphemol Burg Filectronic Corp．part ims．143－022－01－1106	372－7257－00
J2	CONNECTOR RECEPTACLE．FLECTRICAI．： same as Jl	372－7257－00
J3	CONNECTOR，RECFPTACLE，ELECTRICAL： same as Il	372－7257－00
J4	CONNECTOR，RECEPTACLE：FLECTRICAL： simme as J1	37－7257－00
． 55	CONNECTOR，RECEPTACLE，ELECTRICAL： same as J1	372－7257－00
J6	CONNECTOR，RECEIPTACLF：，FLECTRICAL： same as J1	372－7257－00
． 7	CONNECTOR，RECFPTACLE，FLECTRICAL： sume as J1	372－7257－00
． 58	CONNECTOR，RECEPTACLF，ELECTRICAL： same ats il	372－7257－00
J9	CONNECTOR，IRECEPTACLE：FILECTRICAL： same as J1	372－7257－00
． 10	CONNECTOR，RRFCEPTACLF：，FELECTRICAL： same as J 1	372－7257－00
J 11	CONNECTOR，RECEPTACIF，ELECTIRICAL： same as J 1	372－7257－00
J12	JACK，TELEPMONE：steel，pamel mid， 58 m． ad by 2732 in ．lg：switcheratt part no． 3505 F	360－0195－（0）
． 113	CONNECTOR，RECFPTACLE，F1\＆FCTRICAL： 3 femald contacts： 15 amp． 125 v de：pantal mis： Pass \＆Sevmour Ine part no．DS 2001	368－0115－00
．114	IACK，TELEDHONE S＊MM as J12	360－0195－00
． 115	，ACK，TELFPHONE：same as J12	360－0195－00
． 116	CONNECTOR，RECEPTACLE，RLECTRICAL： 3 male comtacts： 125 volts： 7 omps：Tower Mus． Corp．part ins．1H－1061	368－0207－00
． 17	JACK，TELEPHONE：same as ， 112	360－0195－00
． 18	JACK，TEIEPHONF：samm as ll	360－0195－00
． 119	IACK，TELEPDHONF：samm as d 12	360－0195－00
． 20	JACK，TELFPHONE：same as dl2	360－0195－00
． 212	JACK，TELAFPHONF：same as 112	360－0195－00
． 22	JACK，TEIEEPHONF：Stme as Jl2	360－0195－00
． 123	JACK，TELFPHONE：Same as ．l12	360－0105－00
J24	JACK，TElalPHONE：same as .112	360－0195－00
K1	RE：AY．ARMATLIRE： 4 C ：low level or upto 2 650 ，hms $\pm 10^{\prime}$ ，at $\cdot 25$ der \mathbb{C} enil resistance：ron－ KHJ 17リ！3	970－2257－00
1.1	COII．RADJO FRF（xLENCY：smule layer wound －20－22 All ；wne：3． 90 un mductance，2． 40 कhms de resistance． 280 mat de current：MIL type M1516225－14	240－1575－00
\11	AMMF：TER．DIRECT CLJRRENT： 0 10500 ин， 610 whms mebre realisthum： 3.125 m by 4.060 m ．by 5 031 m	458－0725－00
121	RESISTOR，FIXFIH，COMPOSITLON： 68 ，hms 	745－5603－00
122	RESISTOR，FIXIII，COMPOSITION： 180 ohms 210＇． 2 w：31I，1ym－RC426；181K	745－5621－00
R3	RESSISTOR，FIXEI）COMPOSITION： 10,000 （hmis $=10^{\circ} .14$ w：MII．ज゙p．RC07GF103K	745－0785－00

ITFM	DFSC RIPTION	COLLINS p.MAT NIMBER
R4	[RFSISTOR. FIXFII, FILAT: 3160 ohms ± 1 i. 14 w: Mill. 1ype RN6533161F	705-7120-00
R25	IRFSISTOR. FIXFIT, COMPOSITION: 8. 200 ohm $\pm 10^{\prime \prime}, 14$ w: MIL wper RC07CF82K	745-0782-00
126	resistor, fixfin, Composition: 10.000 thems $+10^{\circ}$, 12 w: Mill type RC20cF103K	745-1394-00
F27	RESISTOR. FIXEI), COMIPOSITION: 3.900 ohm $\pm 10^{\prime \prime} \%, 14$ w: MIL ype RC07GF392k	745-0770-00
T28	resistor, Varlabley, COMPOSITION: 5.000 ohms $\pm 20^{\prime} ; 0.2 \mathrm{w}$: Chatago Telfophore Supply Co. part ine. 376-0205-00	376-0205-00
129	RESISTOR. FIXEI), FILAT: 619 uhms $+l^{\prime} \mathrm{C} .14 \mathrm{w}$: MLI type IRN65136190F	705-7086-00
I2 10	RESISTOR, VARIABLE, COMPOSITION: 250 ohms $\pm 20^{\prime \prime} 0.2$ w: Chicafo Telephom Supply Ce. part us. 376-0201-00	376-0201-00
R11	RE'SISTOR, VARIABLE COMPOSITION: 250 ohms $\pm 20^{\prime}$ i, 0.2 w	376-4604-00
R12	RESISTOR, FIXEI), FILM: 3.830 ohms $\pm 1^{\prime \prime}$ '. 1/4 w: MIL. type RN6513385 1F	705-7124-00
R13	RESISTOR, FIXFI), FILM: 1.000 (H2ms $\pm 1^{\prime \prime}$, 14 w: MIL typer RN65B100tF	705-7096-00
R14	RESISTOR, VARIABLE, COMPOSITION: same as IR8	376-3205-00
R15	IRESISTOR, VARIABLE, COMPOSITION: same as 1 R	376-0205-00
H16	RESISTOR, VARIABLE, COMPOSITION: same as lR8	376-0205-00
R 17	RESISTOR, VARIABLE, COMPOSITION: same as R8	376-0205-00
R18	RESISTOR, VARIABLE, COMPOSITION: same as R8	376-0205-00
R19	RESISTOR, FIXED, COMPOSITION: same as R5	745-0782-00
1220	RESISTOR, FIXED. FILM: 4,640 ohms $\pm 1^{\prime \prime}$, 14 w: MLL type RN65B4641F	705-7128-00
R2 1	resistor. Fixed, Fifm: 681 ohms ± 1 l", 14 w: MIL type RN65B6810F	705-7088-00
1222	RESISTOR. FIXED, COMPOSITION: Same as 127	745-0770-00
R23	RESISTOR. FIXF:D, COMPOSITION: 1.000 ohms : 10°, , 14 w: MIL, type RC07GF102K	745-0749-00
R24	RESISTOR. FIXED. WIREWOUND: 5.0 ohms 210". 5 w: IRC part no. PW5-51000-10	710-9105-00
R25	RESISTOR. FIXFD. WIREWOUND: 18 ohmens $\pm 5^{\prime \prime}$. 6.5 w: Dale Products part mo. HS-5	747-5425-00
1226	RESISTOR, FIXED, WIREWOUND: same as R25	745-5425-00
R27	RESISTOR, FIXED. WIIREWOUND: same as R25	745-5425-00
R28	resistoir. FIXED. WIREWOUND: 1.200 ohms : $10^{\circ} \mathrm{n}, 14$ w. MIL type RC07GFI22K	745-0752-00
R29	RESISTOR, VARIABLE, COMFOSITION: I,000 thms $\pm 20^{\circ}$, 0.2 w.Cheago Telephone Supply Co. part no. 376-0203-00	376-0203-00
12301	RESISTOR, FIXED, COMPOSITION: Same as R28	745-0752-00
H31	RESISTOR, VARIABLE, COMPOSITION: SAME as 18	376-0205-00
1232	RESSSTOR, FIXED. FILM: same as R13	705-7096-00
1233	RESISTOR, FIXF:D. FILA: 12. 100 ohmis $\pm I^{\prime \prime} \mathrm{n}$, 14 w: MLL type RNG6S1212F	705-7148-00
R234	RF,SISTOR, VAIRIABIEE, COMPOSITION: SAme .1.s 188	376-0205-00
R35,	RESISTOR, FIXE:D, FILM: 8. 2.50 ohms $\pm \mathrm{I}^{\prime \prime} \mathrm{n}$. 14 w: MLL type RNG65B251F	705-7140-00
R36	RESISTOR. FIXE:D, FILA: 42.200 (hm $\pm \mathrm{l}^{\prime \prime} \mathrm{n}$. 18 w ; MIL type RN60[3222F	705-6674-00
1237	RESISTOR, FIXED, FILM: 3160 chms $+1^{\prime \prime}$, $18 w:$ MLL tyee RN60133161F	705-6620-00
R38	RESISTOR, FIXF:D, FTLM: 28,700 chms ± 1; 1 8w: M11. twe 1RN60132872 F	705-6666-00
R39	IRESISTOR. FIXFD, FILA: 1,330 ohms $\pm 1^{1 /}$, 18 w: MIL type RN60131331F	705-6602-00
1240	RI:SISTOR, FIXED, FIL,M: 4640 , hms $+1^{\prime \prime}, 18$ w: Mht type R.N60B4641F	705-6628-00
2241	RE:SISTOR, FIXED. FILAM: 383 (nhm $=1$ ' 18 w: MIL 14p RNGOB3B30F	705-6576-00
R42	RR:SISTOR, FIXF:D, FILM: 1,780 whms : 1 . 18 w: MIL type R2N60H1781F	705-6608-00
1243	RESISTOR. FIXED. FIL.M: 110 thms $=17,18 \mathrm{w}$: MIL type RNG013100F	705-6550-00
1244	R2:SISTOR. FIXFID. FILAM: 316 uhms : $1^{7}, 18 \mathrm{w}$; MIL typu :RN60h3160F	705-6572-00
R45	RESETSTR, FIXED, WIREWOUND: 1500 , hans :3. 25 w	747-8676-00
R46	RESS'SOR FIXF:D, FILM: 90.9 uhms +1 - 1 H w: MIL type RN60R90R9F	705-6546-09

I'TEA	DFSCRIPTIOA	(con IINS PART NCMBr
1 R 76	rfsistor, variable, composition: 250 ohms :?0 14 w	376-2483-00
1248	RESESTOR, FIXFI), COMPOSITION: 180 (Hmm 	7-5-(0)2:-00
R49	RFSISTOR, FIXEI, FIL.M: $3+8$, dhm - 1 . 18 	
1250	RE.SISTOR. FIXED, FILAI: 1.960 ,hmm - 1 	205-2110-00)
R51	 	750-15.510-01)
R252	ReSEISTOR, FIXFID, F11.M: 511 whms - 1 	705-3034-00
IR 53	RESISTOR, FIXFED, COMDOSITFOX: 42 , (1OH 	74.-118093-00
1254	RESISTOR, FIXED. COMDOSITION: 0.10 mewhm $\pm 10^{\circ} ; 14$ w: MIL, Iype RC076F104K	74.-1182:-00
1255	ReSISTOR, FIXEI), FILAM: 619 ,hms: 1 . 18 w: M1L type RN60B6 190 F	7015-11586-00
R 56	RESISTOR, FIXED, FILM: 12,100 ohms $\pm 1^{\prime}$, 18 w: MIL type RN60B1212F	T05-6648-00
R 257	REESISTOR. FIXED. FILM: samu de R21	705-7088-10)
1258	RRSISTOR. FIXED. COMIPOSITION: 330 Am : $10^{\prime \prime \prime}$, ; w: MIL typ RC32(iF331K	₹ 4, -3331-110
1159	1RESLSTOR, FIXED, FILM: Sume ds R20	215 -7128-100
1160	RFSSESTOR. FIXED. FILAM: 17,8 thms : 10 18 w: A11L 19pe RN601317188 F	7015-6512-40
\$1	sidtcha, rotary: 10 citour. 10 pold. In posimom. 5 section: 10 mowne coments, il fixed contedels	259-1354-100
S2	SWITCII, ROTARY: 6 cheum, 6 puti. 2 pisulum 	259-1955-40
S3	SWITCII, ROTARY: 3 memt. 3 phli. 2 position, 1 section: 3 movine contants. 7 haxal contacts	259-1456-10
S4	SWITCH, ROTARY: 1 circuit. 1 pale. 2 position, 1 sechom: 1 moving eromact. 3 lixerd contacts	259-1:157-00
S5	SWITCH, ROTARY: 5 circuit , 5 pule. 3 position, 2 sectom: 5 mowng contatis, 13 axad contacts	259-1958-09
S6	250 vac. 10 amps: Cutcr-Hammer, Ine par n1) 7561 K 4	26if-0099-00
S7	SWITCII, ROTARY: 1 circuit. 1 pile. 6 position, 1 sectom: 1 mowng watat. B axed contects	259-1959-00
TI	TRANSFORMETR, POWER, STEP-1OW : primary 120 whms, 240 whms: sreondary 78 whms. CT, 28 othms: 5060 epss: combunums duty ryele: Stancor Electroncs part un 32740	044-1310-662
T2	TRANSFORMEI, AUDIO FREQUFNCY: primary 50 ohms. Secoudary 10,000 ohms: 50 to 45,000 aps irequency response: cominuous duty acele	044-1288-667
T31	TERMINAL BOARD: phemohe: 12 wrmanals: 0.250 in by 0.6875 in . by 5.187 in : Howird B. Jones, Division of Cinch Mfy. Corp part m6. 353-18-12-001	367-0020-00
XISS 1	LIGHT. INDICA'TOR: for use with T-3-1 4 minature bayone thase bulb, polished chrome: Dialight part mo 81410-1-P'C	26;2-0093-00
KıS3 2	IIGHT, INDICATOR: smonth frosted slap-hil lens. used w type mmature beyone thas(-412 ur T-3 $: 4$ lamps indicator, solder luy termmals: inels hartware	262-1271-100
XIDS3	IAS:PHOLDE:R: for use with T-3-1 4 mmature bayome hase lamp: MIL, typ Ms90282-3	262-0913-10
XDS4	LAMPHOLDFR: same is XIS3	262-0913-69
XF 1	FLSE:HOLIOR:It: tor use with (1-1 $4 \times 14)$ luses. 15 amps. 250 wolls: Bussman Fus. Co part me hkip-hilk	265-1019-00
XF2		2655-1019-00
XYO Yi	SOCKET' ELECTRON TTIBE: *世t. molde de enometructom: Ienw lose compositum: $5811 \mathrm{~h} .1-764 \mathrm{~m}$ dı, $1-78 \mathrm{ml}$ lit, exal termanals aded contats: Mil. 1ype TS101s01 hodter rallme: James Knatht Co. part mo 900-0069	$220-1121-10$ $292-0184-00$
	OSCTILATOR - TRIDLLFR - MIXER A	528-0430-00
C100	(APACITOR, FIXED, MICA: 470 uut 55°. 	912-2974-00)

ITEM	DFSCRIPTION	condins B．APT NTMBF：
C101	CAPACITOR，FIXF：D，CEIRAMIC： 0.1 ut -20 － $80^{\circ} \mathrm{n}$ ． 50 r de：Spraque Fhectroc Cor part mo． 33 C 41	913－3886－00
C102	CAPACITOR，FIXFID，CERAAIIC：same as cl01	913－3886－00
C103	CAPACITOR，FIXFIJ，CEIRAAILC：same as Cl01	913－3886－0
C104	CAPACITOR．FIXFIJ．PAPEIR： $001 \mathrm{ul}: 20$ 200 v de：Sprague Electric part mo．1601P10302	931－5500－00
C105	CAPACITOR，FIXED，MICA： 47 uIf $\pm 5 \% .500$ v de：Electro Motwe part mo DM15F．470．500WV	312－2792－00
C106	CAPACITOR，FIXF：I，MICA： 1000 uuI $: 5{ }^{\prime \prime} r$ ． 500 rdc Electro Motive part mo． DMI9F102．5500WV	912－3001－00
C107	CAPACITOR，FIXFID，MICA： 18 uul $\ddagger 10^{\circ}$ ． 500 IM ILSC180K500WV	912－2763－00
C108	CAPACITOR．FIXED，CFRAMIC： 1000 uuf $-20^{\circ},-100^{\prime \prime}, 500$ v de：Erie Resistor Corp．part no． $851000 \times 5 \mathrm{~L} 0102 \mathrm{Z}$	913－3009－00
C109	CAPACITOR．FIXED．CERAMIC：same as Cl08	913－3009－00
C110	CAPACITOR．FIXED．CERAMIC：sam as C108	913－3009－00
C111	CAPACITOR，FIXED，CERAMIC：same as Cl01	913－3886－00
C112	CAPACITOR，FIXED，CERAMIC：same as C101	913－3886－00
C113	CAPACITOIR，FIXEIJ，MICA： 120 uuf $45^{\prime \prime} \% 500$ v de：Flectro Motive Mig．Co．pari no． DM15F121．500WV	912－2822－（\％）
C114	CAPACITOR，FIXFP，CERAMIC：Same as Cl01	913－3886－00
C115	CAPACITOR，FIXFID．CERAMIC：same as Cl01	913－3886－00
C116	CAPACITOR，FIXED，MICA： 91 uuf $\pm 5 \%, 500$ v de；Electro Motive Mig．Co．part no． CM05F910J03	912－2813－00
C117	CAPACITOR，FIXED．PAPEIR：same as Cl04	931－5500－00
C118	CAPACITOR，VARIABLE： 1.8 uul－12．40 uuf	922－1007－00
C119	CAPACITOR：same as Clle	922－1007－00
CR1200	SEMICONDUCTOR DEVICE，DIODE：silicon： hermetically sealed：Motorola Inc．part no． 1.5716 A	353－2731－00
L100	COIL，RADIO FREQUENCY： 1.00 uh $\pm 10^{\circ}$ ； inductance， 030 ohms de resistance． 900 ma ds current rating，M1L type LT7K 108	240－1568－00
L101	COIL，RADIO FRYQUENCY： $10 \mathrm{ul} \pm 10^{\mathrm{*} \mathrm{\prime}}$ inductance， 60 ohms de resistance， 700 ma de current rating：MIL type LT7K140	240－1600－00
L102	INDUCTOR：toroid	
L103	INDUCTOR：coil	
L104	COIL，RADIO FRF：QUENCY： 2000 uh nom inductance， 27.5 ohms de resistance， 0.1 amp current rating．Delevan Electronics Corp．part m6．2500－42	240－2547－00
Q100	TIRANSISTOR：type 2N2380	044－5840－04
Q101	TRANSISTOR：germanium：hermetically sealed： Philco part no．2N2362	352－0407－00
Q102	TRASSISTOR：same as Q101	352－0407－00
Q103	TRANSISTOR：wermanium，JETEC type 2 N1225	352－0135－00
R100	RESISTOR．FIXEI）．COMPOSITION： 100 ohms $\pm 10^{\circ} \%$ ． 1 w：MIL type RC32GF101K	745－3310－00
R101	RESISTOR，FIXED，COMPOSITION： 33 ohms $\pm 10^{\prime \prime} \% .14$ w：MIL type RC07GF330K	745－0695－00
R102	RESISTOR，FIXED．COMPOSITION： 56 olms $\pm 10^{4 \%}, 14$ w：MIL type RC07GF560K	745－0704－00
［ 2103	RESISTOR，FIXED，COMPOSITION： 470 ohms $\pm 10^{\circ} \mathrm{s}$ ， 14 w：MIL type RC07GF47／K	745－0737－00
R104	RESISTOR，FIXED，COMPOSITION： 1.000 ohms $\pm 10^{\circ} \%$ ． 14 w：MIL type RC07GF102K	745－0749－00
R105	RESISTOR，FIXED，COMPOSITION：2． 200 ohms $\pm 10^{\text {co }}, 14 \mathrm{w}$ ：MIL type RC07GF222K	745－0761－00
R106	RESISTOR，FIXED，COMPOSITION： 8.200 ohms $\pm 10_{n}^{\text {en }}, 14 \mathrm{w}$ ：Mil．type RC07GF82 2 K	745－0782－100
R107	IRESISTOR，FIXED，COMPOSITION： 100 ohms $\pm 10^{\prime \prime}, 14$ w：MIL type RC07GF1JIK	745－07 13－100
R108	RESISTOR，FIXIED，COMIPOSITION： 18,000 ohns $\pm 10^{m}$ ． $14 w:$ MIL type RC07GF183K	745－0794－00
R109	RFFSISTOR，FIXF：D，COMPOSITION：6．800 dhms $10^{\prime \prime}$ ． 14 w：M1L type RC07GF6R2K	745－0779－00
12110	RFSSISTOR，FIXFID．COMPOSITION：SAme as RI05	745－0761－00
［1111	resistor，fixfil．COMPOSITION：sam as R107	745－0713－00
R112	RF：SISTOR．FIXED，COMPOSITION： 68 ohms $\pm 10^{\prime \prime \prime}, 14 w:$ Mil，type RC07G F680K	745－0707－00
R113	RESISTOR，FIXED．COMPOSITION：s．mm as R103	745－0737－00

ITFA	DEがRIPrios	（0．0．1．Ns ！1R1＂N＂，MBI＇
12114	RESISTOR，FIXED．COM1DOSITON：680 ，hms $=10$ ． 1 w：M1L 1צわ［2C326FF881K	745－3345－00
18115	RESISTOR，FIXED．COAIPOSITION：39．000 	74．9－0806－00
R116	HFSHSOR，FIXED，COMPOSITION： 15.000 	$74.7-07961-00$
1217	HESSLTOR，FIXED，（OMIDOSITION： 3.300 ，hms 	74．07－07－00
12118	RESISTOR，FIXEI），COMPOSITION：summ ds R107	74．5－0713－00
18119	RFSISTOR，FIXED，COMPOSITION．s．tme an 1R！04	745－0749－00
T100	TRASSFORMIER：	
TP100	JACK．TII＇：tor use whth standerd 0）．080（1p） plus．doublate ended：black hods：Amp．Int＇patt m，2－582120－0	3800－0277－00
TP101	 2－582120－8	$3600-027500$
T1P102	JACK，Til＇：lur use with standard 0． 080 thp plug．double eroded：white body：Amp，Ime． p．art nes．2－582120－9	360－0276－00
XQ100	SOCKET，TRANSETOR： 3 conntacts spaterd wh ． 11 0.200 in．dia errela：Eloo Corp part mo． 3307 X	352－09003－00
XQ：01	SOCKET，TRANSISTOR： 4 （＂mtatts spated oll an 0． 200 it ．daturele：Eles）Corp．part mo． 3307	$352-9902-00$
XQ102	SOCKET，TRANSISTOR：same as XQ101	352－9942－00
XQ103	SOCKE．T．TRANSISTOR：Sam as XQ101	35－9902－00
XY 100 Y 100	SOCKET＇．CRYSTAIE：tor u w crystal sl\％c HC－6 U＇and IC－ 13 C Bom homponal or vertictal insulation：Augat Bross．lne．part no． 8000 A（i2 CRYSTA1，UNIT，QUARTZ： $500.000 \mathrm{ke}: \mathrm{MIL}$ ． type CR－46 L＇500．000KC＇	292－0215－00
	PULSE COUNTING Inemodtlator az	528－0431－00
C150	CAPACITOIR，FIXEID，CEIRAMIC： 0.1 uI－20＇ ． 80^{\prime} ； 50 v de：Sprague Electric Cor part no． 33 C 41	913－3886－60）
C151	CAPACITOR，FIXF：ID，PAPFR：0． 01 uf $\mathrm{g}^{\circ} 20^{\prime} ;$ 200 v de：Sprague Electric Co．part no 1601 10302	931－5500－00
Cl 152	CADACITOR．FIXED，MICA： 200 uul $+5{ }^{\circ} \mathrm{n}, 500$ v de：Electro Motnee part no．IJ． 115 F 201.5500 W	912－2837－00
C153	CAPACITOR，FIXED，MICA： 180 aut $: 5 \%$ ， 500 v de：Electro Motive ，Bart mo．Dat15 Fl81．5500WV	912－2834－01）
C154	CAPACITOR，FDXFD，MICA： 130 uul $+5 \therefore 500$ v de：Elecetro Motse part no．IOM15 F131．I500W	912－2825－0）
C155	CAPACITOR，FIXED，EIIECTROIYTIC： 250 u！ $-10^{\prime \prime} \mathrm{n} \cdot 100^{\prime \prime} \mathrm{n}$ ， 30 v de：Spotague Electric part ma． 4 Y 1213	183－1901－00
C156	CAPACITOR FIXED，ELECTROI，YTIC：samt． as C155	183－1901－010
C 157	CAPACITOR．FIXF：I，PAPER：same as C 151	（931－5500－01）
C158	CAPACITOR，FIXED，CERAMIC： 1000 uul -20^{\prime} － 100^{*} ， 500 v de：Erif fresistor Cowp．part mo． 851000 X5L＇0 $102 Z$	913－3009－01）
CR150	SEMICONDUCTOR DEVICE．DIODE：wermaini－ um：hermotically weded：JETEC type 1.2270	353－2018－00
CR151	SEMICONDUCTOR JEVICE，DIOJF：same as CR 150	353－2018－00）
CR152	SF．MICONDUCTOR DEVICE，DIOIJE：Salama： hermetically soaled：JETEC type 1N3022A	353－1317－00）
Q150	TRANSISTOR：silucon：hermetically seaded： JETEC type 2N706	352－0195－00
Q151	TRASSISTOR：same as Q150	352－0195－019
Q152	TRANSISTOR：same as Q150	352－0195－00
Q153	TRAASLSTOR：stme as Q150	352－（1）95－09
Q154	TRANSISTOR：TYpe 2 N 2380	
R150	RESISTOR，FIXFII，COMIPOSITION： 5600 （hms $\pm 10^{\circ}$ ， 14 w：M11．1gpe RC076；F562	745－（1）76－10）
R151	RESISTOIR，FIXED，COMPOSITION： 100 ohms 	745－0713－10）
R152	RESISTOR，FIXED，COMPOSITION：same as ［ 150	745－0776－010
［12．53	RESISTOR，FIXED，COMPOSITION： 1,500 thms 	745－0755－109
R154	RESISTOR，FIXED，FILM： 3.830 ，ohms $\pm 1^{\prime} \%$ ． 	705－7124－00
12155	RESISTOR．FIXED．FILM： 681 （hms $+1^{\prime 2}$ ． 14 w：MIL t3pe RN65136810F	705－7088－00
R156	RESISTOJ，FIXI：D）．FIl．M： 383 ，hms $\pm \mathrm{l}^{\prime \prime}$ ． 14 w：MIL type R205133830 F	705－7076－00

ITEM	DFSCRIPTIOX	$\begin{gathered} \text { COILINS } \\ \text { P.W } \because \text { MBIR } \end{gathered}$
R157	[RFSISTOR, FIXEI), FII.M: samm as R154	705-7124-00
12158	RFSIS'TOR. FIXEI). FILA: 38.3 ohms $\pm \mathrm{I}^{\prime \prime}$, 1/4 w: MIL type RN65R38RR3F	705-7028-00
R159	RESISTOIR, FIXEI), FILM: 2.150 ohms $\pm 1 / 0$. 1 4 w : MIL type RN65132151F	705-7112-00
R160	re:SISTOR, FIXED, FILM: 383 ohms $\pm 1^{\prime \prime}, 12$ w: MLL typr RN:70133830F	705-7576-00
R161	RE:SISTOR, FIXEI), FILM: 1,000 ohms $\pm 1^{\prime \prime}$, 14 w : MIL type RN65131001F	705-7096-00
R162		705-7112-00
12163	RESLSTOR, FIXEI), FILM: 1000 (shms $\pm 1^{\prime \prime}{ }_{\rho}$, 12 w : MII. type [ri70131001F	705-7596-00
R164	RESISTOR, FIXEI), FILM: 12,100 ohms $\pm 1^{\prime \prime} n$, 14 w : MIL 1 ype RN65ß3212F	705-7148-00
R165	RK:SISTOR, FIXEI), FILM: 10,000 chms $\pm 1^{\prime \prime \prime}$. 1/4 w: Mill. type RN65131002F	705-7144-00
R166	RESISTOR, FIXED. FILAT: same as R161	705-7096-00
12167	IRESIS'TOR, FIXEI, FILAT: 619 ohms $\pm 1^{\prime \prime \prime}$, 14 w: MII, typ R R N65136190F	705-7086-00
12168	14 w: MIIL 1ype RN 65 B8250F	705-7092-00
R169	RESISTOR, FIXF:D, COMPOSITION: s.mm as 12151	745-0713-00
R170	RESISTOR, FIXEIS, COMDOSITION: 100 ohms $=10^{\circ} \% .1$ w: MIL type RC32GF101K	745-3310-00
TP150	1ACK, TII': Hor use with standard 0.080 tip plug. clouble ended: whitw body: Amp. Ins. part mif. 2-582 120-9	360-0276-00
TP151	dick. TIP: for use with standard 0.080 tip plug. disubte whded: Whack hody: Amp, Inc. part no. 2-582120-0	360-0277-00
XQ150	SOCKI:T, TRANSISTOR: 3 contacts spaced on an 0. 200 ill dia circle: Elco Corp. part no. 3307X	352-9903-00
XQ151	SOCKET, TRANSISTOR: same as XQ150	352-9903-00
XQ152	SOCK1:T, TRASSISTOR: same as XQ150	352-9903-00
XQ153	SoCkr:T, TRANSISTOR: same as XQ150	352-9903-00
XQ154	SOCKF:T, TRANSISTOR: same as XQ150	352-9903-00
Phast: SPLITTER A3		528-0432-00
C200	CAPACITOR, FIXI:I, F:LECCTROLYTIC: 20 uf $-10^{\circ} \mathrm{F} 10-100^{\circ} \mathrm{o} .25$ \& de: Sprague Electric Co. part ing. 40D18192	183-1365-00
C201	CAPACITOR, FIXFI, FLECTROLYTIC: same as C200	183-1365-00
C202	CAPACITOR, FIXF:D, F:LECTROLYTIC: 250 uf $-10^{\%} \% \mathrm{to}+100^{\%} \%, 30$ v dc: Sprague Electric Co. part inc. 4 Y 1213	183-1901-00
C203	CAPACITOR, FIXF:D, F:LECTROIYTIC: same as C200	183-1365-00
C204	CAPACITOR. FIXE:D, F:LEC"TROLYTIC: 50 uf $-10^{\circ} \cdot 100^{\circ} .50$ o de: Sprague Electric Co. part н\%. I)33003	183-1398-00
C205	CAPACITOR, FIXEI, FLECCTROLYTIC: same as C200	183-1365-00
C206	CAPACITOR FIXFID, FELECTROLYTIC: same as C202	183-1901-00
C207	CAPACITOR, FIXED, CERAMIC: 0.01 ut -20" - $80^{-7} .100$ v de; Frie Resistor Corp. part no. $855502 \times 5(001031)$	913-3680-00
C208	CAPACITOR. FIXFID, ELECTROLYTIC: same as C200	183-1365-00
C209	CAPACITOR, FIXED, F:LECTROLYTIC: 100 uf $-10+100^{\circ} \% .25$ v de: Sprague Electric part no. 301334489	183-1192-00
C210	CAPACITOR, FIXEI). ELECTROLYTIC: same as C204	183-1398-00
C211	CAPACITOR, FIXFID, FILECTROLYTIC: same as C204	[83-1398-00
L200)	COIL. RADIO FRF:(XCENCY: 2000 uh nom inductancer 27.5 ohms de ressstanee 0.1 amp current ratime: Delevan Electomies Corp. part 116. 2500-42	240-2547-00
L201	COIL, RADHO, FREQUFACS: single layer wound 20.-22 AbG wire: 2.20 uh induetante. 1. 00 ohms de resistance, 500 ma de current: MS type MS 16225-11	240-1572-00
Q200		352-0135-00
Q201	TRANSISTOR: siliean: hermetically sealed: JF:TEC type 2N697	352-0197-00
Q202	TRANSISTOR: Same as Q201	352-0197-00
Q203	TRASSLSOR: hermetually sealed: PNP нermanium: JETEC type 2 Nt 175 A	352-0315-00

IT1M	DESCRIDTES	$\begin{gathered} \text { (a)AMS } \\ \text { MRT NMBre } \end{gathered}$
R200	RHSISTOR, FIXEID, COMPDSITION: 82.000 	745-0818-10
R201	RRESLSTOR, FIXED, FILA: 23.700 , whms ± 1 $1+$ w: MIL type RNO6512372F	705-7162-00
1202	RFFSISTOR. FIXEIS, COMPOSITION: 5, 600 , chm: 	745-0776-00
R203	RF:SLSTOR, FIXED, COMIPOSTTION: 820 , whm 	745-(1746-10)
12204	RFSSISTOR. FIXEI), COMPOSITION: 680 ahm: 10. 14 w: Mill type RCOTGFlimik	745-0743-00
1205	12ESISTOR, FIXF.I). COMPOSITION: 12.000 	745-0788-100
R206	RESE'TOR, FIXEI), COMBOSITION: 27,000 ohms $=10$. 1 +w: MLL typ RCO7(ile 23 K	$745-1800-10$
1207	RFSISTOR FTXED, COMP OSITION: 390 , hms : $10^{\circ}, 1+\mathrm{w}:$ MIL type RC07(iF391K	745-(1734-00
12208	RFSSISTOR, FIXED. COMPOSITRON: 270 wm. 	745-19728-10)
T209	RESISTOR, FIXED, COMPOSITtoN: 0. 10 mw- 	745-0821-100
H210	RESINTOR. FIXED, COMPOSITION: 12202	745-0776-00
12211	RFESISTOR. FIXED. COMPOSITION: 47,000 	7-45-08093-00
R212	RESISTOR, FIXED. COMPOSITION: s.ame to ! 203	7-45-07-46-00
R213	RESISTOR, FIXEI, FILA: 5.110 , ohms : 1 ; 	705-7130-00
12214	RESISTOR, FIXFD. COAIPOSTTION: 3, 900 , mims $10^{\prime \prime} \% 1+w:$ M1L tyar RC07GF392K	745-0770-00
R215	RESESTOR. FIXED, COMPOSITION: 8, 200 ohms $+10^{\circ} .14$ w: : MLL type RC07GF822K	745-0782-00
R216	RESSISTOR, FIXFE, COMPOSITION: same as 12202	745-0776-00
R217	RL:SISTOR, FIXED, COMPOSITION: 4700 ohms . 10 - . 14 w: M1L type RC07(if 472 K	745-1773-00
R218	RESESTOR, FIXED, COMPOSITION: 1.200 whms $+10^{\prime}, 14 w:$ MIL typu RCO7GF122K	745-0752-00
R219	RESISTOR, FIXED, COMIPOSITION: 10.000 (hms $+10 \% .14$ w: MIL type RC07GF103K	745-0785-110
R220	IRESISTOR, FIXEI), COMPOSITION: same at 12209	745-0821-10
R221	RESISTOR, FIXEID, COMPOSITION: same as R209	745-0821-100
R222	RESISTOR: SELECTED IN PRODUCTION	
TP200	.ACK, TII: Hor use with standard 0.080 tip plus. double anded: white bedy: Amp, Inc. part me. 2-582120-9	360-0276-180
TP201	JaCK, TIP: for use with standard 0.080 idp plug, double ended: black body: Amp. Ine. part เกา. 2-582120-0	360-027T-00
X(2200	SOCKET. TRANSISTOR: 4 domats spaced on an 0.200 j (h dia circle, Filco Corp. part no. 3307	352-9902-00
X(Q201	sOCKET, TRANSISTOR: 3 contacts spaeed on an 0.200 in. dia circle; Eito Corp. part no. 3307X	352-9903-00
XQ202	SOCKET, TRANSIS TOR: same as $\mathrm{XQ}^{\text {P201 }}$	352-9903-00
XQ203	SOCKET, TRANSISTOR: same as Xog201	352-9903-00
	Peak voltmeter a4	528-0433-00
C2.50	CAPACITOR, FLXFI, ELLECTROLYTIC: 20 u $-10^{\circ-\%} \cdot 100^{\circ} \cdot 25$ r de: Sprague Electric Co. purt ing. 40D181A2	143-1365-00
C251	CAPACITOR. FLXED, ELECTROLYTIC: 250 uf $-10 \% \cdot 100 \%$. 30 ve de: Spragur Fifertric Co. part mo. 4Y'12	183-1901-00
C252	CABACITOR, Fixfid, ELECtrolytic: same as. C250	183-1365-00
C253	(ADACITOR FIXED ELECTROLYTIC: 8 ut $-10^{\circ} \cdot 100^{\prime} \cdot 50$ o de: Sprague Fobetric Cor part (11.2. 4010192A2	183-1354-00
C254	CAPACITOR. FIXED, PAPFR: 0.1 uf $20^{\circ} \%$. 196P1040154	931-4488-00
C2.55	CAPACITOR, FEXEI), B:LFOCTROLY'TIC: same as C250	183-1365-00
C256	CAPACITOR FIXED, ELFETROLYTIC: same as C 253	183-1354-00
C25	CAPACITOIR, FIXED, ELECTROLYTIC: same as C250	183-1365-00
C258	C.APACITOR FIXE: D , ELECTROLY'TIC: samu ats C251	183-1901-00
C259	CAPACITOR. FIXEI, ELECTROLYTIC: same as C250	183-1365-00

［TE．M	DESCMIPTION	（0hIIN： PNRT STMBFI
C260	CAPACITOR，FLXEI，ELIFCTHOLYTIC： 50 uf $-10^{\circ}+100^{\sim}, 25 \mathrm{r}$ de：Spraque Electric Co． part inc．4011184A2	183－1379－00
C26 1	CAPACITOR，FIXEI，ElfeCTIROLYTIC：same as C250	183－1365－00
C262	CAPsCITOR，FIXED，ELECTROLYTIC：same ats C251	183－1901－00
Cr250	SEMICONDUCTOR DFVICE，DIODE：permanium： hermetically sealed；Transitem part mo．1N270	353－2018－00
CR251	SEMICONDUCTOR DEVICE，DODE：same as CR250	353－2018－00
Cr252	SFMiConitctor DFVICE，DIDE：same as CR250	353－2018－00
L250	COIL，RAJIO FREQUENCY：single layed wrund： 642 turns no． 40 AWG wire： 2000 uh nom inductance， 27.5 ohms de resistance： 0.1 amp eurrent rating：Delevan Electronics Corp．part n．．2500－42	240－2547－00
Q250	TRANSISTOR：germanium：Joint Electronic Tubr Finginerring Council part no．2， 1225	352－0135－00
Q251	TRANSISTOIR：same as $\mathrm{Q}^{\text {250 }}$	352－0135－00
Q252	TRANSISTOR：Germanium： 2 N 1285	352－0243－00
Q253	TRANsISTOR：same as Q250	352－0135－00
Q254	TRANSISTOR：same as Q250	352－0135－00
Q255	Transistor：same as Q250	352－0135－00
R250	RESISTOR，FIXED，COMPOSITION： 47,000 ohms $\pm 10^{m}, 1 / 4 \mathrm{w}$ ；MIL type RC07CF473K	745－0809－00
R2．51	RESISTOR，FIXED，COMIPOSITION：8，200 ohms $\pm 10^{\prime \prime}$ n， $1 / 4$ w；MIL type RC07GF822K	745－0782－00
R252	RESISTOR，FIXED，COMPOSITION： 5,600 ohms $+10^{\prime \prime}$ ， $1 / 4$ w：MIL type RC07GF562K	745－0776－00
R253	RESISTOR，FIXED，COMPOSITION： 120 ohms $\pm 10_{o}^{\mathrm{F}}$ ． $1 / 4 \mathrm{w}$ ：MIL type RC07GF121k	745－0716－00
R254	RESISTOR，FIXED，COMPOSITLON： 1,200 ohms $\pm 10^{\prime \prime}, 1 / 4$ w：MIL type RC07GF122K	745－0752－00
R255	RESISTOR，FLXED，FILM：same as R 251	745－0782－00
R256	RESISTOR，FIXFD，COMPOSITION：stme as R254	745－0752－00
R257	RESIS＇TOR，FIXED，FILM： 23,700 ohm ± 1＂n ， 1／8 w：MIL type RN60B2372F	705－6662－00
R258	IRESISTOR，FIXF：D，COMPOSITION：same as ［252	745－0776－00
R259	RESISTOR，FLXFD，COMPOSITION：same as R254	745－0752－00
R260	RESISTOR，FLXED，COMPOSITION：same as R252	745－0776－00
R261	RESISTOR，FIXED，COMPOSITION： 390 ohms $\pm 10^{\circ} \%, 1 / 4 \mathrm{w}$ ；MLL type RC07GF391א	745－0734－00
R262	RRESISTOR，FLXED，COMPOSITION：same as T2252	745－0776－00
R263	RESISTOR，FIXED，FILM： 1620 ohms $\ddagger 1^{\prime \prime}$ ． 1，4 w：MIL type RN65B1621F	705－7106－00
R264	RESISTOR，FIXED，COMPOSITION：3， 300 uhms $\pm 10^{7}, 1 / 4 \mathrm{w}$ ：MIL type RC07GF332K	745－0767－00
R265	RESISTOR，FIXED，FILM： 12.100 ohms $\pm 1^{\omega \prime}$ ． 1／8 w；MIL type RN60B1212F	705－6648－00
R266	RESISTOR，FIXFD，FILA： 6.190 ohms $\div 1.0^{\prime \prime} r$ ． $1 / 8$ w：M1L type RN60B6191F	705－66．34－00
R267	RESISTOR，FLXED，COMPOSITION： 3,900 ohms $10^{\prime \prime}$ ， 14 w：MIL type RC07CiF392K	745－0770－00
R268	RESISTOR，FIXED，COMDOSITION： 12.000 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$ ；MIL type RCORGF123K	745－0788－00
R269	RESISTOR，FIXF：D，COMPOSITION： 2,200 ohms $\pm 10_{n}^{\prime \prime}, 1 / 4 \mathrm{w}$ ；MIL type RC07GF222K	745－0761－00
R270	ReSISTOR，FIXED，COMPOSITION：same as ［252	745－0776－00
R271	RESISTOR，FLXED，COMPOSITION： 10,000 ohms $\pm 10^{\circ} \mathrm{n}$ ， 14 w ：MIL type RC07GF103K	745－0785－00
R272	RESISTOR，FIXED，COMPOSITION： 27,000 ohans $\pm 10^{\circ \prime}, 14$ w：MIL type RC07（iF273K	$745-0800-00$
R273	RESISTOR，FIXED，COMIDOSITION：same ts R269	745－0761－00
R274	resistor，fixeld，COMPOSITION：sume as R269	745－0761－00
R275	RESISTOR，FIXED，COAPOSITION： 22.000 ohms $\pm 10^{\%} \%, 14 \mathrm{w}$ ：MIL type RC07（iF223k	745－0797－00
R276	Resistor：SElected in production	
R277	RESISTOR，FIXED，FILM： 1000 shms +1 ． 14 w：Mill type RN65B1001F	705－7096－00
R278	RESISTOR，FIXED，COMPOSITION： 39,000 ohms $\pm 10^{\circ \prime} \mathrm{r}, 14 \mathrm{w}:$ ：MIL type IRC076F393K	745－0406－00
R279	RESISTOR，FIXED，COMPOSITION： 18,000 olms $\pm 10^{\circ}, 14 \mathrm{w}:$ ML type RC07GF183k	745－0794－00

ITEM		
12 T 250	RESISTOR，THEIRMAL： 1.000 whms ，th 2.5 dere（ 	714－1732－00
127251	RESISTOR，THERMBAL：Somm no Rreso	714－1732－（4）
T1י250	 $2-582120-0$	
T1325	JACK．TII：bur use wath standart 0．O8O tip plus． double ended：srey body：Amp，lace patitas． $2-582120-8$	360－1227．）－60
T1252	doulte ended：white bods：Amp，Int：port mo． 2－582120－9	360102761000
X（2250	 	352－9900－（6）
X（225］	Socket transsitor：same is XQ250	$352-6902-00$
X（2252	Socket transis Tore s．ume as XQ250	$33^{2}-4802-010$
XQ253	socke：Thasiss fore same as XQ250	352－4902－00
X 2254	sockl：Thansistore same as XQ250	352－4902－010
X（2255	sockl：Thanstistor：same as XQ 2.50	$3.52-4063-00$
	PREAK likiht Aj	$55^{2} \times-043.4-011$
C300	CADACITOR，FIXF：1），FLLE（＂TROLYTIC：2 U $-10 \%-100$ \％ 50 v de：spordtur Eleqtim 40J） 187 ． 2	183－1343－019
c301	－ $10^{\prime \prime}$ ． $100^{\prime \prime}, 25$ v de：Spratur Eleqrid Co．pat ma． 401$) 181.12$	183－1365－00
C302	500 w de：Elewion Mhotive palt me． 10 $115 \mathrm{~F} 201,5500 \mathrm{WV}$	91：－2837－010
C303	CAPACITOR，FIXF：I），FLECTROLYTIC： 100 แI $-10^{\prime \prime}+100^{\prime \prime \prime}$ ， 25 v de：Spmatue Electrid Cu．port ㄴ․ 30D188：1	14：3－11：30－00
C304	$\begin{aligned} & \text { CAPACITOR, F1XED, H1LECTROI.YTLC: sam } \\ & \text { AS C } 303 \end{aligned}$	18：3－15：2－00
C305	CAPACITOR，FIXED，MICA：sime as C302	912－2837－00
C306	C APACITOR，FIXFD，PSPER：0．68 u1 20 ； 200 v de：Spratue Filectrice Cir．path mo． 118 P 6840254	951－10．41－00
C307	CAPACITOR，FIXED，AICA： 100 unt ：5＂． DM15F101．5500W6	912－2816－00
C308	CAPACITOIR，FIXE1），CERAMIC： 0.1 uf－20 ． 80 ＂， 500 v de：Sprague Flletric Co．phat mo． 41 CO 2	913－3152－00
C309	CAPACITOR，FIXF： 1 ，ACA：560 unt：5＂． 500 v de：． 1111 tym（＇，M06 F56 1.103	912－29833－00
C310	CAPACITOR，FIXI：1），MICA：33，000 umf ： 1 i． 500 r de：Flectro Motive Aft．Cor part mo． D．142F333F03	912－313－4－00
C311	CAPACITOR，FIXFID，F：LE（＂TIROLYTIC： 20 ul part mo．401）1！！5， 2	183－1369－00
（312	CAPACITOR，FIXI：D，AICA： 560 uUL $=5$ 500 v de：Plectur Mative Cos．part nes． J． 119 F 561.500 W	912－2983－00
C313	CAPACITOR，FIXI：C CERANIC： $0.47 \mathrm{ut}-20$ 	913－3804－00
C314	CADACITOR，FIXI：D，MICA：same as C309	912－2983－00
C315	CAPACITOR，FIXEIS，MICA：same the C310	912－3134－00
C316	CAPACITOR，FIXE：ELECTROI，YTIC： 1 ut -10° ． 100° ， $50 \mathrm{~s}^{\circ} \mathrm{de}$ ：Smapue Electrac Cor part แッ．4015186： 22	183－1367－00
I． 300		756－3899－003
L301	REACTOR：same as L300	756－3899－003
Q300	Farrhild patt Iル．2N697	352－0197－00
Q301	TRANSLSTOR：\＆－1mamum；hermoterally metled： Sylvana Filectrac part int．2． 1605	352－034\％－00
Q302		352－0348－00
Q303	TRADSISTOR：same as（301	352－0348－00
（2304	TRRASSISTOR：same as（301	352－0348－00
Q305	TRANSISTOR：same as（300	352－0197－00
Q306	TRANSISTOR：：Ermanum：hermotically seded： Sylramat Eloctrid part mo． 2 N 526	352－0123－00
Q307	TRANSLTOR：samm as Q306	352－0123－00
［2300	RF：SISTOR．FIXEI）．COMPOSITION：33，000 ohms 	745－0803－00
R301	REESIS＇TOR，FIXED，COMPOSITION：8． 200 ohms ： 10° ， 14 w：A1L type RC07（iF822K	745－0782－00
［2302	IRESISTOR，FIXED，COMIPOSITION： 560 ，hm s $: 10^{\circ}, 14$ w：AIL type RC07（iF5゙JIK	745－0740－00

ITEM	DESCRIPTION	(oldins PART NTMBFH
R303	RESISTOR, FIXED, COMPOSITION: 100 uhms $\pm 10^{\%} \%, 1+w$: MIL type RCO7CFI01K	745-2713-00
R304	RESISTOR, FIXED, COMPOSITION: 470 ohms $\pm 10^{\prime \prime}, 1 / 4$ w: MIL type RC07(jF47 1K	745-0737-00
R305	RESISTOR, FIXEI). COMP()SITION: 10,000 chms $\pm 10^{\circ \prime}, 1 / 4 w:$ MIL type RCOTGF102k	745-0749-00
12306	RESISTOR, FIXEI), COMPOSITION: 2, 700 ohms $\pm 10^{\prime \prime}$, $1 / 4$ w: NIL type RC07GF272K	745-0764-00
12307	RESISTOR, FIXED, COMPOSITION: 15,000 ohms $\pm 10^{\circ \prime}$, $1 / 4$ w: MIL type RC07G F153K	745-0791-00
R308	RESISTOR, FIXED, COMPOSITION: Same as R302	745-0740-00
12309	RESISTOR: SELECTED IN PRODUCTION	
12310	resistor, fixed, Composition: same as I2305	745-0749-00
R311	IRESISTOR, FIXED, COMPOSITION: 120 ohmis $+10^{\prime \prime} \%, 1 / 4$ w: MLL type RC07GF12IK	745-0716-00
R312	RESISTOR, FIXED, COMPOSITION: 1000 ohms $\pm 10^{\mathrm{m}}, 1 / 2 \mathrm{w}$: MLL type RC20GF102K	745-1352-00
R313	RESISTOR, FIXED, COMPOSITION: 10,000 ohms $\pm 10^{\text {ch }}, 1 / 4$ w: Mil, type RC07GF103K	745-0785-00
R314	RESISTOR, FIXEI, COMPOSITION: 39,000 bhms $\pm 10^{\prime \prime}$, $1 / 4$ w: MIL type RC07C F393K	745-0806-00
R315	RESISTOR, FIXEI, COMPOSITION: same as R312	745-1352-00
R316	RESISTOR, FIXEL, COMPOSITION: 2, 200 ohms $\pm 10^{\prime \prime} \%, 14$ w: MLL type RC07GF222K	745-0761-00
[2317	resistor, fixed, COMPOSITION: 0.10 megotms $\pm 10^{\prime \prime}$, 14 w: MIL type RC07GF104K	745-0821-00
R318	RESISTOR, FIXED, COMPOSITION: same as R317	745-0821-00
R319	RESLSTOR, FIXEI), COMPOSITION: 390 ohms. : $10^{\circ \%}, 14$ w: MIL type RC07GF391K	745-0734-00
R320	RESISTOR, FIXED, COMPOSITION: 4700 ohms $\pm 10^{\sim}$. 14 w : MLL (ype RC07GF472K	745-0773-00
R321	RESISTOR, FIXED, COMPOSITION: same as R317	745-0821-00
R322	RESISTOR, FIXED, COMPOSITION: same as R317	745-0821-00
12323	RESISTOR, FIXED, COMPOSITION: same as r2313	745-0785-00
R324	resistor, fixeld, composition: same as i2313	745-0785-00
TP300	IACK, TIP; for use with standard 0.080 tip plug, double ended; white berdy: Amp, Inc, part 116. 2-582120-9	360-0276-00
TP301	JACK, TIP: tor use with standard 0.080 tip plug, doubile ended, black body; Amp, Ine. part ⒒ 2-582120-0	360-0277-00
T1302	JACK, TIP: fer use with standard 0.080 tip pluk, double ended: grey body: Amp, Ince. part III. 2-582120-8	360-0275-00
XQ300	SOCKET, TRANSISTOR: 3 contacts spated on an 0.200 in . dia cirele; Elco Corp. part no. 3307X	352-9903-00
XQ301	SOCKET, TRANSISTOR: same as XQ300	352-9903-00
XQ302	SOCKET, TRANSISTOR: same as XQ300	352-9903-00
XQ303	SOCKET, TRANSISTOR: same as XQ300	352-9903-00
XQ304	SOCKET, TRANSISTOR: same as XQ300	352-9903-00
XQ305	socket, TRANSISTOIR: same is XQ300	352-9903-00
XQ30G	SOCKET, TRANS1STOR: 4 comtacts spaeed on an 0.200 in diad circle: Elen Corp. part mo. 3307	35-9902-00
XQ307	SOCKET, TRANSISTOR: same as XQ306	352-9902-00
	Averame voltmeter ab	528-0435-00
C350	CAPACIORR, FIXE1). EIFCTROLYTIC: 50 ut $-10 \% \cdot 100 \%$. 50 y de: Sprosue Filectric Co. part no. 1333003	183-1398-00
C351	CAPACITOR, FIXI:D. FLECTROLYTIC: 20 uf $-10^{\prime \prime}, 100^{\circ} \%$, 25 r de: Sprague Emetric Co. 	143-1365-00
C352	CAPACITOR, FIXED. ELEECTROLYTIC: 100 uf $-10 \%+100^{\circ}$. 25 y de: Sprafue Etectro part ins. 1)34489	183-1192-00
C353	CABACITOR FIXED. ELSCTROLYTIC: same as C351	183-1365-00
C'354	CAPAClIOR FIXEI), ELA:CTROLYTIC: same as C 351	183-1365-00
C355	CAPACITOR, FIXE:I), ELECTROLY'TIC: 250 uf $-10^{\prime \prime} \cdot 100^{\circ}$. 30 v de: Sprabue Flectric part in. $4 \mathrm{Y}^{1213}$	183-1901-00
(356	CAPACITOR, FIXED, ELECTROLYTIC; s.Ine as (352	1.43-1192-00

ITEM	DISCRIPTHOS	(1)!!ixs 1. Alf N1.abrtz
C357	CAPA(ITOR, FIXED. FLECTIROISTKC: s, \& .1. C352	183-1192-00
C358	CAPACITOR, FLKRI). R.IECTROLITIC: s.mm as C350	183-1398-00
C359	$\begin{aligned} & \text { CAPACITUR, FDXED. FLECTROI.Y TIC: - -m } \\ & \text { as C } 355 \end{aligned}$	183-19011-00
C360	$\begin{aligned} & \text { CAPACITOR, FIXFD, EAFCTIROLSTIC: A, Am } \\ & \text { As C350 } \end{aligned}$	183-13998-011
C361	1 s C 355	18:3-1901-10)
C362	$\begin{aligned} & \text { CAPACITOR, FIXFI). FLAECTRO1.YTIC: s.1月1 } \\ & \text { as C } 350 \end{aligned}$	183-13998-014
CR3550	 	353-2018-180
CR35 1	SEAICOSIDUCTOR DEVICE. DIODE: SHME AS CR350	353-2018-00
Cl2352	SEAICONDHCOTOR DEVICE, DHODE: sume as ('R350	35.3-2018-019
CR353	SEMICONDCHOR DEVICE, DIODF: : Amme AM (12350	353-2018-011
Q350	TIRANSISTOIR: : 	352-0315-00
Q351		352-0135-00
Q352	TRANSISTOR: sumbe ats (2351	352-0135-00
Q353	TRASSISTOR: same as (2351	352-0135-019
Q354	TRANSETOR: same de (2351	352-0135-04
R350	RESISTOR, FIXE1). COMPOSITION: 3.900 whms, ± 10; 14 w: A111, typ RCOOTGF392k	745-0770-010
R351	IRESISTOIR, FIXEI), COMPOSITION: 4880 mm $=10^{\prime \prime}, 14$ w: MIL Mpe RC07(;F681ん	74.3-074.3-610
R352	RESISTOR, FIXI:D, COMPOS1TION: 56.000 olms: 10 ; 1 tw: N1L, (xper RCOT(iF563k	745-0812-00
12353	RESEISTOR, FIXEI). COMPOSITION: M11. typ JRC20GF681K	74.5-134.3-(0)
R354	IRESISTOR, FIXED, COMPOSITION: 0.10 	745-0821-00
R355	IRESISTOR, FIXFI), COMPOSITION: 22.000 	74.3-0797-00
R356	RESLSTOR. FIXFD, COMPOSITI()N: 5.600 whm 	745-0776-00
R357	IRESISTOIR, FIXED, COMP()SITRON: 1 KO whm +10'n, 14 w: MIL lype RC07(if181k	745-0722-091
R358	RESISTOIR, FIXEI), COMPOSITION: 1,800 , कm 	745-07.58-010
R359	RF:SISTOR, FIXEJ, COMP(OSITION: 27.000 whms • $10^{\prime \prime} .14 \mathrm{w}$: MLI, tyme R(\%)7CF273K	T-45-0800-00
R360	RESISTOR, FIXED, COMPUSITION: 39,000 whas $\pm 10^{\prime}$, 14 w : Mll. type RC07GF393k	745-0806-00
R36 1	IRESISTOR, FIXED. COMPOSITION: S.Ime ds 12356	745-0776-00
R362	1R1:SISTOR, FIXEI), COATPOSITION: 47,000 ohms a $10^{\circ}{ }^{\circ}$, 1 \& w : MIL, Iype RCO7GF473K	745-08093-00
R363	RISSISTOR. FIXEI), COMPOSITIOS: 10,000 (shme t $10^{\prime \prime}$. 1 \& w: MIL, type RC07GF103K	745-0785-00
R364	IRESISTOR, FIXEI), COMIPOSITION: 12,000 	745-0783-10
R365	RESISTOR, FIXED, COMPOSITIUN: 100 thms $\pm 10^{\prime \prime}, 14$ w: MIL type RCO7GF101k	745-0713-00
R366	RESISTOIR, FIXEI). COMPOSITION: 2.200 ohms $+10^{\circ}$. 14 w: MIL tepe 1RC076;222k	74,-0761-00
R367	RESISTOR, FIXED, COMPOSITION: 15,000 (hmm : 10°. 1 \& w : MIL lype RCO7 (;F153K	745-0791-00
R368	RESISTOK, FIXED, COMPOSITION: 68,000 	745-0815-00
R369	RESISTOR, FIXEL, COAPOSITION: sathe de 12356	74.5-0776-00
R370	RESISTOR, FIXEI). COMPOSITION: 3300 (hmm $\pm 10^{\circ} .14$ w: MIL typer RC07CF332K	745-0767-00
R3371	RESISTOR, FIXFE, COMPOSITION: samm as 12358	745-0758-00)
R372	RESISTOR FIXED, COMPOSITION: 47 ohms 	74.5-0701-00
R373	RESISTOR, FIXEI), COMPOSITION: same as 12363	74.5-0785-00
111350	IACK, TII: Ior use with standard 0, 080 tip) plus. double a nded: white brody: Anp, Ince part (10. 2-582120-9	360-0276-00
TP351	JACK, T1P: lor use with standard 0. 080 tip) plus. double chaled: black body: Amp. Itwe part (15) 2-582120-0	360-0277-00
X $\mathrm{Q}^{3} 50$	SoCKET, TRANSISTOR: 3 enntect spated on , th 	352-9903-00
Xe33 1	SOCKET, TRANSISTOR: 4 comtucts spated rn an 0. 200 1n. dat cractle. Eleor Corpl part mos. 3307	352-9902-00
X $\mathrm{Q}_{3} 52$	SOCKET. TRANSISTOR: stme to X X 351	352-9902-00
X Q 353	SOCKET, TRANSISTOR: S.mme to Xe331	352-9902-00
XQ354	SOCKET, TRANSISTOR: s.mme ne Xe351	352-9902-00

ITEM	DFSCRIPTION	COLLINS pART NIMBFR
19-KC AMPLIFIER A7		528-0436-00
C550	CAPACITOR, FIXED, ELECTROLYTIC: 100 uf $-10^{7}+100^{\text {\% }}, 25 \mathrm{v}$ dc; Sprague Electric part no. D34489	183-1192-00
C55 1	CAPACITOR, FIXED, ELECTROLYTIC: 20 uf $-10 \%+100 \%, 25 \mathrm{v}$ dc; Sprague Electric Co. part no. 40D181A2	183-1365-00
C 552	CAPACITOR, FIXEI), ELECTROLYTIC: same as C550	183-1192-00
C 553	CAPACITOR, FIXED, MICA: 30,000 ufi $\pm 1^{\prime \prime \prime}$, 500 v de; Electro Motive Mfg. Co. part no. DM42 F303F03	912-3131-00
C554	CAPACITOR, FLXED, MICA: 560 uff $\pm 5^{\circ}$, 500 v de: Electro Motive Co. part no. DM19E561J500WV	912-2983-00
C555	CAPACITOR, FIXED, MICA: same as A7 C 553	912-3131-00
C556	CAPACITOR, FIXED, CERAMIC: 0.47 uf $-20^{\%}$ $+80 \%$, 25 v de: Sprague Electric part no. 5C11A	913-3804-00
C557	CAPACITOR, FIXED, ELECTROLYTIC: same as C551	183-1365-00
C558	CAPACITOR, FIXEI, ELECTROLYTIC: same as C550	183-1192-00
C559	CAPACITOR, FLXED, ELE.CTROLYTIC: 1 uf $-10 \%+100 \%$, 50 v dc; Sprague Flectric Co. part no. 40 D 186 A 2	183-1367-00
C560	CAPACITOR, FDEED, E1,ECTROLYTIC: 2 uf $-10 \% \mathrm{~F}+100^{\prime \prime}, 50 \mathrm{v}$ de: Sprague Electric part no. 401187A2	183-1383-00
L550	REACTOR: $11 / 16 \mathrm{in}$. by $1-1 / 8 \mathrm{in}$. by $1-3 / 8 \mathrm{in}$.	756-3899-003
L55 1	COIL, RADIO FREQUENCY: 200 to 280 uh inductance, 100 v de, \# $20 \mathrm{AWG}: 0.580 \mathrm{in}$. by 0.671 in . by 0.750 in .	278-1864-00
L552	REACTOR: same as L550	756-3899-003
L553	COIL, RADIO FREQUENCY: same as L551	278-1864-00
Q550	TRANSISTOR: germanium: hermetically scaled: Sylvania Electric part no. 2N5 26	352-0123-00
Q551	TRANSISTOR: same as Q550	352-0123-00
R550	RESISTOR, FIXED, COMPOSITION: 0.10 megohm $\pm 10 \%, 1 / 4 \mathrm{w}$: MIL type RC07GF104K	745-0821-00
R55 1	RESISTOR, FIXED, COMPOSITION: same as R550	745-0821-00
R552	RESISTOR, FIXED, COMPOSITION: 1,000 ohms $\pm 10 \%$, $1 / 4$ w; MIL type RC07GF102K	745-0749-00
R553	RESISTOR, FDXED, COMPOSITION: 4,?00 ohms ± 10 \%, $1 / 4$ w; MIL type RC07GF472K	745-0773-00
R554	RESISTOR, FLXED, COMPOSITION: 220 ohms ± 10, $1 / 4$ w: MIL type RC07GF221K	745-0725-00
R555	RESISTOR, FDED, COMPOSITION: same as R550	745-0821-00
R556	RESISTOR, FXXED, COMPOSITION: same as R550	745-0821-00
R557	RESISTOR, FIXED, COMPOSITION: 10,000 ohns $\pm 10 \mathrm{~m}, 1 / 4 \mathrm{w}$; MIL type RC07GF103K	745-0785-00
R558	RESISTOR, FLEED, COMPOSITION: same as R554	745-0725-00
R559	RESISTOR, FIXED, COMPOSITION: 12,000 ohms $\pm 10^{\mathrm{\prime} \mathrm{\prime}}, 1 / 4 \mathrm{w}$; M1L type RC07GF123K	745-0788-00
R560	RESISTOR, FIXED, COMPOSITION: same as R550	745-0821-00
R561	RESISTOR, FIXED COMPOSITION: same as R550	745-0821-00
TP550	JACK, TIP: for use with standard 0.080 tip plug, double ended; white body; Amp, Inc. part no. 2-582120-9	360-0276-00
TP55 1	JACK, TIP: for use with standard 0.080 tip) plus, double ended; black body; Amp, Inc. part no. 2-582120-0	360-0277-00
XQ550	SOCKET, TRANSISTOR: 3 contact spaced on an 0. 200 in. dia circle: Eleo Corp. part no. 3307X	352-9903-00
XQ55 1	SOCKET, TRANSISTOR: same as XQ 550	352-9903-00
	AMPLIFIER-DOUBLER A8	528-0437-00
C500	CAPACITOR, FLXEID, ELAFCTROLYTIC: 1 uf $-10^{\circ} \%+100^{\circ}$, $50 \times$ dc: Sprague Electric Cu. part no. 40D186A2	183-1367-00
C501	CAPACITOR, FIXED, CERAMIC: $0.1 \mathrm{uf}-20^{\circ}$ n +80 ch, 50 v de: Sprague Electric Co. part mo. 33 C 41	913-3886-00
C502	CAPACITOR, FLXED, EI.ECTROLYTIC: 20 uf $-10^{\circ} \%$ to $+100^{\circ} n, 25$ de: Sprague Electric Co. part no. 40D18142	183-1365-00

ITEM	Discriptios	COLIINS P.ART NTMRF:R
C503	CAPACITOLR, FUXFD. CERAMHC: 0.05 ut -20° -80%. 50 v de: Sjrataue Electric Co. part toc. 55 C 23 A 12	913-3885-00
C504	CAPACITOR, FIXELD, CERAMIC: samme as C503	913-3885-00
C505	CAPACITOR, FIXF:D. E1,ECTIROLYTIC: sAm as C502	183-1365-00
C506	CADACITOR, FIXED, CERAMIC: same as C501	913-3886-00
C507	CAPACITOR, FIXED, CERRANIC: 0.47 ut -20° $\cdot 80^{\circ \prime}$, 25 v de: Sprague Electric Co. part no. 5C11A	913-3804-00
C508	CAPACITOR, FIXF:D, EtACTROLYTIC: same ds C502	183-1365-00
C509	CAPACITOR, F1XFI), MIC'A: 4300 unf $\pm 1^{\circ} \mathrm{C}, 300$ ϑ de: Cornell-I)ubilier Electric Corp. part wo. CD19F432 F03	912-3047-00
C5 10	CAPACITOR, FIXED, MICA: 560 uแf ± 5 万. 500 y de: Electro Motive Co. part ms. D.M19F56 L. 500 WV	912-2983-00
C511	CAPACITOR, FIXFD, MICA: 390 ut ± 5 \% 500 ₹ de: MIL type CM05F391.J03	912-2858-00
CR500	SEMICONDUCTOR DEVICE, DIODF: \&ermaniam: hermetically seded: Transitron part mo. 1 N270	353-2018-00
CR501	SEAMCONDUCTOR DEVICE. DIODF: same as CR500	353-2018-00
L500	REACTOR: $11 / 16 \mathrm{in}$, by 1-1 8 in . by 1-3 8 in .	756-3901-003
Q500	TRANSISTOR: Lermanium: hermetically sealed: Sylvania Electric Co part no. 2 N 1285	352-0243-00
Q501	TRANSISTOR: same as Q $^{\text {S }} 00$	352-0243-00
Q502	TRANSISTOR: same as Q 500	352-0243-00
12500	RESISTOR, FIXED, COMPOSITION: 0. 15 megohms $\pm 10^{\prime \prime}, 1 / 4 \mathrm{w}:$ MLL type RC07GF154K	745-0827-00
R501	RF:SISTOR, FIXEIX COMIPOSITION: 18.000 ohms $\pm 10^{\prime \prime}, 14 \mathrm{w}:$ MLL type IRC07GF183K	745-0794-00
R502	RESISTOI, FIXEI, COMPOSITION: 33,000 ohms $\pm 10^{\circ} n, 1.4 \mathrm{w}:$ MIL type RC07 (FF333K	745-0803-00
R503	RESISTOR, FIXEI), COMPOSITION: 3,900 ohms $\pm 10^{\prime \prime} n, 1^{\prime} 4 \mathrm{w}:$ MIL type RC07GF392k	745-0770-00
R504	RESISTOI, FIXED, COMPOSITION: 0.10 mergehm $+10^{\prime \prime} n, 1 / 4 w$: MIL type RC07GF104K	745-0821-00
R505	RESISTOR, FIXEI), COMPOSITION: 47.000 ohms $\pm 10^{\prime \prime}$, 14 w : MIL type RC07GF473K	745-0809-00
R506	RESISTOIR, FIXED, COMPOSITION: 2, 200 ohms $\pm 10^{\circ} \mathrm{B}, 14 \mathrm{w}$: MIL type RC07GF222K	745-0761-00
R507	RESISTOR, FIXED FILM: 1.470 ohms $\pm 1^{\circ} n$. $1^{\prime} 8 \mathrm{w}$: MiL type RN60B1471F	705-6604-00
R508	RESISTOR, F'IXED, COMPOSITION: 220 (hms $\pm 10^{\prime \prime} n, 1^{\prime} 4 \mathrm{w}$: WIL type RC07GF221K	745-0725-00
R509	RESISTOR, FIXED, COMPOSITION: 22,000 ohms $\pm 10^{\prime \prime}$, 14 w : MIL type RC07GF223K	745-0797-00
R510	RESISTOR, FIXED, COMPOSITION: same as R509	745-0797-00
12511	IRESISTOR, FIXED, COMPOSITION: 1,000 ohms $\pm 10^{\prime 7}$, 14 w : M1L type RC07GF102K	745-0749-00
R512	RESISTOR, FIXED, COMPOSITION: same as R502	745-0803-00
R513	IRESISTOR, FIXEI), COMPOSITION: stme as R504	745-0821-00
R514	IRESISTOR, FiXEI), COMPOSITION: Same as R508	745-0725-00
R515	RESISTOR, FIXED, COMPOSITION: 1,500 ohms $\pm 10 \%$. 14 w : MIL type RC07GF152K	745-0755-00
R516	RESISTOR, FIXED, COMPOSITION: 39, 000 ohms $\pm 10^{\prime \prime \prime}, 14 \mathrm{w}:$ MIL type RCO7GF393k	745-0806-00
TP500	JACK, TIP: tor uso with standard 0.080 tip) plug. double ended: white body: Amp, Ince part HO, 2-582120-9	360-0276-00
TP501	JACK, TIP: for use with standard 0.080 tip plug. double ended: black body: Amp, Inc. part no. 2-582120-0	360-0277-00
XQ 5^{500}	SOCKET TRANSLSTOR: 4 rontacts spaceed on an 0.200 in . dia circle. Eleo Corp., part ins. 3307	352-9902-00
XQ501	SOCKET TRANSISTOR: same as $\mathrm{XQ500}$	352-9902-00
X(2502	SOCKFT TRANSISTOR: same as $\mathrm{XQ500}$	352-9902-00
	StEREO DEMODULATOR A9	528-0438-00
C450 C451	CAPACITOR. FIXEI), FIRETROLYTIC: 50 uf $-10^{\prime \prime}+100^{\prime \prime}$. 25 y de: Sprague Flectric Co. part no. 40D184A2 CAPACITOR. FIXFII, E.LFCTIROLYTIC: 100 uf $-10 \% \cdot 100$. 25 v de: Sprague Electric Co. part no. D34489	$183-1379-00$ $183-1192-00$

Parts List

ITEA	[1F:S(RIITIO)N	colliss PART NTMBFR
C452	CAPACITOR, FIXED, FLECTROLYTIC: 20 uf $-10^{\prime \prime} n,+100^{\prime \prime} n, 25 \mathrm{v}$ de: Sprapue Electric Co. part no. 40118142	183-1365-00
C453	CAPACITOR, FIXED, FLECTROLYTIC: same as C450	183-1379-00
C454	CAPACITOR, FIXED, ELECTROLYTIC: same as C45I	183-1192-00
C455	CAPACITOR, FIXED, ELECTIOLYTIC: same as C452	183-1365-00
C456	CAPACITOR, FIXI:D, MICA: 12,000 uuf $\pm 1^{\prime \prime n}$, 300 v de: Flectro Motive Mig. Co. part no. DM30F123F03	912-3070-00
C457	CAPACITOR, FIXEIS, MICA: 120 uul $\pm 5^{\prime \prime} n, 500$ v de: Electro Motive part no. DM 15 Fi2 10500WV	912-2822-00
C12450	SEMICONDUCTOR DEVICE, MATCHED QUAD: four matenod silieron diodes, eneapsulated: Fairchild Semiconductors part no. FA-4000	353-3271-00
1.450	COII, RADIO FREQUENCY: 200 to 280 ult inductance, 100 vde , 20 AWGS 0.580 in . by 0.671 in . by 0.750 in .	278-1864-00
L45 1	COIL, RADIO FREQUENCY: $3.90 \mathrm{uh} \pm 10 \%, 1.50$ ohms de resistance; 550 ma de rated current; MS type MS16222-8	240-1657-00
L452	COIL, RADIO FREQUENCY: same as L451	240-1657-00
Q450	TIRANSISTOR: silicon, hermetically seated: Hughes Aircraft part no. 2N706	352-0195-00
Q451	TRANSISTOR: same as A96450	352-0195-00
R 450	RESISTOR, FIXFID, FILM: 5, 110 ohms $\pm 1^{\prime \prime}{ }^{\prime \prime}$, I/4 w: MIL type RN65155111F	705-7130-00
R 2451	RESISTOR, FIXEI), FILM: same as I2450	705-7130-00
R452	RESISTOR, FIXED, COMPOSITION: 220 ohms $\pm 10^{\prime \prime}$,, 14 w : MIL type RC07(GF22IK	745-0725-00
R453	RESISTOR, FIXED, COMPOSITION: 47,000 ohms $\pm 10^{\prime \prime} \% 1^{1 / 4} w$: MIL 1 ype RC07GF473K	745-0809-00
R2454	RESISTOR, FIXEI), COMPOSITION: 2,200 ohms $\pm 10^{\prime 7}, 1 / 4$ w: MIL type RC07GF222K	745-0761-00
R455	resistor. fixfir, Composition: same as R454	745-0761-00
R456	resistor, fixeid, COMPOSITION: same as R 452	745-0725-00
R 4.57	RESISTOR, FIXEI, COMPOSITION: same as R453	745-0809-00
R 458	RESISTOR, FEXFI, COMPOSITION: same as R454	745-0761-00
R459	RESIS TOR, FLXED, COMPOSITION: same as R454	745-0761-00
R460	RESISTOR, FIXEI, COMPOSITION: 4700 ohms $\pm 10^{\prime \prime}$, $1^{1 / 4}$ w: MIL, type RC076F472K	745-0773-00
R461	RESISTOR, FIXEI, COMPOSITION: same as R460	745-0773-00
R462	RESISTOR, FIXFI), COMPOSITION: same as R453	745-0809-00
R463	RESISTOR, FIXFI, COMPOSITION: same as R453	745-0809-00
T450	TRANSFORMER, RADIO FREQUENCY: 5/8 in. by 1-3/8 in. by $1-38$ in.	756-3902-003
T 4.51	TRANSFORMEIR, RADIO FRRQUENCY: 58 in. by 1-1/4 int by 1-1 4 in .	756-3900-003
TP450	JACK, TIP: for use with standard 0.080 tip plur, double ended: white body: Amp, Inc. part no. 2-582120-9	360-0276-00
TP451	JACK. TIP: tor use with standard 0.080 tip plus. double ended: black body: Amp, Inc: part no. 2-582120-0	360-0277-00
	SOCKET, TRANSISTOR: 3 comatacts spaced on an 0.200 in. dia circle: Fico Corp. part no. 3307X	352-9903-00
XQ451	SOCKET. TRANSISTOR: same as XQ450	352-9903-00
	AL'DIO AMPLIFIER A10, All	528-0439-00
C400	CAPACITOR, FIXED, FLECTROLYTIC: 20 uf. $-10^{\circ} \cdot 1000^{25}$ de: Sprazue Electric Co. part no. 40D181A2	183-1365-00

17FA	Dfschermos	$\begin{gathered} \text { (OH,J,NA } \\ \text { J.ART NISRFHR } \end{gathered}$
C401	CAPACITOR, FIXED, ELECTIZOLYTIC: same ats C400	183-1365-00
C402	CAPACITOR, FIXED). ELF(CTRO)I.YTIC: sume as C400	183-1365-00
C403	CAPACITOR, FIXFD. ELF.(‘TROLYTI(': 250 ut $-10^{*} \cdot 100^{*} 30$ v de: Sprague Flevtric phrt mo. 4Y1213	183-1901-00
C404	CAPACITOR, FIXED, FIECTROLYTIC: simm as C400	183-1365-00
C405	CAPACITOR, FIXFID, ELECTIROI,YTIC: 100 ut 1) 34487	183-1192-00
C406	CAPACITOR, FIXED, ELICTROIYTIC: sam as C400	183-1365-00
C 407	CAPACITOR, FIXEID, PAPER: $0.015 \mathrm{ul} \pm 20 \%$. 600 ve de; Spritue Flectril part no. 160115306	931-5.502-00
C408	CAPACITOR, FIXED, ELECTROIYTIC: sam, ats C405	183-1192-00
C409	CAPACITOR, FIXED, ELA:CTROLYTIC: s.tme as C403	183-1901-00
Q400	TIRANSISTOR: germanium; hermetically sealed; Sylvania part mo. 2N526	352-0123-00
Q401		352-0123-00)
Q402	TRANSISTOR: same as Q400	352-0123-00
R400	RESISTOR, F1XED, FILA: 19600 ohms ± 1. 14 w: MIL Hpe RN65B1962F	705-7158-00
R401	RESISTOR, FIXED, FILA: 34800 ohms $+1^{\prime \prime}$. i 4 w: MIL type RN65133482F	705-7170-00
12402	RLESISTOR, FIXED, COMDOSITION: 2. 200 olm $\pm 10^{\circ} \mathrm{F}$. 14 w: MLI tye RC07CF22K	74.5-1761-00
R403	RESISTOR, FIXED, COM1POSITION: 470 ohms $\pm 10^{\prime \prime \prime}, 14$ w: MIL type RC07 (; 47 F 1 K	745-07.37-00
R404	RESISTOR, FIXED, FILAT: 4220 ohn $: 1^{7}$. 14 w: M1L type RN65 134221 F	705-7126-00
R 405	RESLSTOR, FIXED, COMPOSITION: 1.000 ,hms $\pm 10^{\mathrm{cm}}, 1 / 4 \mathrm{w}$: MIL type RC07GF102K	745-0749-00
R406	RESISTOR, FIXED, FILM: 42,200 ohmis $+\mathrm{I}^{\prime \prime \prime}$, 14 w: S1IL type RN6534222F	705-7174-00
R 407	RESISTOR, FIXED, FILM: 23, 700 ohme $=1 \%$, 14 w: MIL type RN65132372F	705-7162-100
R 408	RRESISTOR, FIXED, COM1POSITION: 6, 800 ohms t $10 \%, 14$ w: MIL type RC07GF682k	745-0779-00
R409	RESISTOR, FIXED, COMPOSITION: 680 anms t $10^{\prime *}$, 14 w: MIL type RC07GF681k	745-0743-00
R410	RESISTOR, FIXED, FILM: same as R404	705-7126-09
R411	RFSISTOR, FIXED, COMPOSITION: same as R405	745-0749-00
12412	RESISTOR, FIXED, COMPOSITION: 39,000 ohms $\pm 10^{\prime \prime}, 14$ w: MIL type RC07GF393k	745-0806-10)
R413	RESISTOR, FIXED, COMIPOSITION: 0.10 mm what $=10^{\prime \prime}$, 1 \& w: MIL typer RC07(iF104k	745-0821-00
R414	RFSISTOR, FIXED, COMPOSITION: sime ats R2402	745-0761-00
R415	RFSESTOR, FIXF.D, COM1POSITION: 220 ohms : $10{ }^{\prime \prime} \mathrm{n}$, 14 w: M1L type RC07GF221k	745-0725-00
R416	RESISTOR, FIXFID, COM1POSITION: 10,000 ohms : 10° - $14 w^{*}$: MIL type RC07GF103k	745-0785-00
TP400	JACK, 'TIP: tor use with standurd 0.080 (ip phag. druble ended: white loody: Amp, Lut. part по. 2-582120-9	360-0276-00
TP401	MACK, TTP: tor usi with stabdard 0.080 tip bluse druble moded: black hody: Amp. buc. patt no. 2-582120-0	360-0277-00
XQ400	SOCKET' TRAASISTOR: 3 contacts spaced on 3307 X	352-9903-00
X 2401	SOCKET, TRANSISTOR: Samb as XQ400	352-9003-00
XQ402	SOCKF:T, TRANSISTOR: same dis XQ400	352-3903-00

Figure 6-1. Front View, Parts Locatior:

Figure 6-2. Top View, Parts Location

Figure 6-3. Bottom View, Parts Location

Figure 6-4. Rear View, Parts Location

Figure 6-5. Left Side View, Parts Location

Figure 6-6. Oscillator-Tripler-Mixer A1, Parts Location

Figure 6-7. Pulse Counting Demodulator A2, Parts Location

Figure 6-8. Phase Splitter A3, Parts Location

Figure 6-9. Peak Voltmeter A4, Parts Location

Figure 6-10. Peak Light A5, Parts Location

Figure 6-11. Average Voltmeter A6, Parts Location

Figure 6-12. 19-Kc Amplifier A7, Parts Location

Figure 6-13. Amplifier Doubler A8, Parts Location

Figure 6-14. Stereo Demodulator A9, Parts Location

Figure 6-15. Stereo Demodulatcr A9, Rear View with Shield Removed, Parts Location

Figure 6-16. Audio Amplifier A10, Parts Location

Figure 7-1. Oscillator-Tripler-Mixer Card A1, Schematic Diagram

 ALL CAPaCITANCE VALUES AR
VaLUES ARE IN MICROHENRYS

Figure 7-2. Pulse Counting Demodulator Card A2, Schematic Diagram

Figure 7-3. Phase Splitter Card A3, Schematic Diagram

notes:
UNLESS OTHERWISE INOICATED ALL RESISTANCE VALUES ANE NOHMS. ALL CAPACITANCE VALUES ARE IN PIG
ANO ALL INUCTACE VALUES ARE IN MICROHENRYS
2. Value selected in production.

Figure 7-7. 19-Kc Amplifier Card A7, Schematic Diagram

Figure 7-8. Amplifier-Doubler Card A8 Schematic Diagram

NOTE:

1. UNLESS OTHERWISE INDICATED ALL RESISTANCE VALUES

ARE IN OHMS, ALL CAPACITANCE VALUES ARE IN PICOFARADS,
AND ALL INDUCTANCE VALUES ARE IN MICROHENRYS.

Figure 7-9. Stereo Demodulator Card A9, Schematic Diagram

Figure 7-10. Audio Amplifier Cards A10, A11, Schematic Diagram

wrabye 2exat

