VARISPEED OWNERS MANUAL

HOW TO USE YOUR 'BRENELL VARISPEED'

Sufficient cable is allowed to enable the 'VARISPEED to be positioned remotely. It should be remembered that in use the main unit gets quite hot, this is normal, therefore you must allow GOOD VENTILATION around the unit.

Connect the 'VARISPEED' as shown in the connection diagram. The 'VARISPEED' will not operate as soon as the MINI 8 is switched on.

With the switch on the control box switched to 'SYNC' the tape speed will be synchronised to the mains frequency.

With the switch on the 'VARY' position the L.E.D. will illuminate and the tape speed may now be varied by means of the control potentiometer. It is possible to obtain a speed variation of approximately $\pm 15 \%$ of normal tape speed.

The 'VARISPEED' will be fully stable approximately fifteen minutes after switch on.
Should you wish to bypass the 'VARISPEED' and run from normal mains but without fully disconnecting it, simply switch the rocker switch on the 'MINI 8 ' into its upmost position.

EXTERNAL CONTROL

It is possible to control the tape speed from an external voltage source. To do this proceed as follows:-
a) Obtain a suitable 6 pin DIN PLUG.
b) Disconnect mains.
c) Disconnect the control box from the 6 way DIN socket.
d) Insert 6 pin DIN plug and connect pins 1 and 5 together. This puts the 'VARISPEED' into the 'VARI' mode.
e) Apply the control voltage to pin 4 of the 6 pin DIN plug. This voltage should be low impedance (approximately 600 ohms) and is of a fairly low level, in the range of 0.6 volts to 1.1 volts. Exceeding these values may cause the capstan motor to fall out of synchronisation.

R1	$=$	1K
R2	$=$	1K
R3	$=$	3K9
R4	=	47K
R5	=	100K
R6	=	47K
R7	=	47K
R8	=	47K
R9	=	2K2
R10	=	12K
R11	$=$	10K
R12	=	180K
R13	=	2K Preset
R14	=	2K Preset
R15	$=$	47K
R16	=	680R
R17	$=$	32K
R18	=	100R
R19	=	$4 \mathrm{K7}$
R20	$=$	150R
R21	=	470R
R22	=	$4 \mathrm{K7}$
R23	=	22R 2.5W Wirewound
R24	=	22R 2.5W Wirewound
R25	$=$	150R 2.5W Wirewound
R26	=	220R 2.5W Wirewound
R27	$=$	220R 2.5W Wirewound
R28	=	1K $\frac{1}{2} \mathrm{~W}$ Carbon
R29	=	$1 \mathrm{~K} \frac{1}{2} \mathrm{~W}$ Carbon
R30	$=$	150R 2.5W Wirewound
R31	=	560R
R32	$=$	100K
R33	=	2R2 7W Wirewound
R34	$=$	2R2 7W Wirewound

```
VR1 = 220R Linear
C1 = 0.33 mfd
C2 = 100 mfd 3v Tantillum
C3 = 5000 mfd Electrolytic 50v
C4 = 5000 mfd Electrolytic 50v
C5 = 220 mfd Electrolytic 25v
C6 = 220 mfd Electrolytic 25v
C7 = 0.047 mfd Mylar 100v
TR1 = BF244 FET
TR2 = BF240
TR3 = BFX85
TR4 = BFX87
TR6 = TIP36C
TR7 = TIP35C
D1 = 1N4148
D2 = 1N4148
D3 = 1N4148
D4 = 1N4148
D5 = 1N5401
D6 = 1N5401
D7 = 1N5401
D8 = 1N5401
D9 = 1N4148
IC1 = LM324N
Z1 = BZY 88 5v6
Z2 = BZY 88 5v6
Z3 = BZY 88 5v6
Z4 = BZY 88 15v
Z5 = BZY 88 15v
RL1 = MZ 24HGSingle Pole Changeoves
```

ALL RESISTORS \ddagger WATT CARBON UNLESS OTHERWISE STATED.

