Quality Instruments for RF Power Measurement

product close-up

index

3

2
THRULINE RF DIRECTIONAL WATTMETERS 3
Portable test instruments; power scales from
0.1 watts to 10 kilowatts 4
Directional Couplers 6, 49
MINI-MONITOR THRULINE Directional Wattmeters 7
Panel-mounted instruments 7, 12
Peak Envelope Power instruments 8
WATTCHER Monitor/Alarm 13
Rigid line wattmeters to 250 kilowatts 14
Lab Standard Wattmeters; 0-15 milliwatts and 0-100 watts 16
Amateur/CB/Marine Wattmeters 17
TERMALINE RF COAXIAL IOAD RESISTORS 18,31
continuous power ratings from 2 watts to50 kilowatts
MODULOAD Self-cooled Terminating Systems, Calorimeters 29
TENULINE Attenuators to $\mathbf{4}$ kilowatts 34
TERMALINE RF ABSORPTION WATTMETERS 37power scales from ()-25 milliwatts to ()-250C wattsORIGINAL EQUIPMENT POWER SENSORS,COAXIAL RF FILTERS48
SENTRILINE Filter-Coupleıs \& Switches 51
ACCESSORIES
Meters and Line Sections ior custom instal ation 41
QC-Type QUICK-CHANGE Connectors 42
Adapters, Coupling Kits and
RF Directional Coupler Elements 43
COAXWITCH Coaxial Selector Switches 45
$75-$ ohm Loads and Wattmeters 46
Element Chart Fold-out 47A
Load Power Derating Curves and Peak Power Ratings Fold-out 48A
THRULINE Principle 52
Order Forms 53
Foreign Representatives Inside Back Cover

[^0]
Limited Warranty

We are proud of the high quality of oux madiel
and we warrant it to the original purchaset thaf
each new instrument of our manufacture will for a
period of one year after original shipment be free
from defects in material and workmanship under
normal and proper operating conditions and that
properly used during such period it will perform in
accordance with our applicable specifications．
Our obligation and the purchaser＇s exclusive
remedy for any defect or failure to meet
specifications shall be limited，at our option，to
repair or replacement or，if we determine said
defect or failure to be so defective as to preclude
remedying by repair or replacement，the
purchaser＇s sole and exclusive remedy shall be
limited to refund of the purchase price．We shall
have no obligation if defects result from improper
use，operation above rated capacities，repairs not
made by us，or misapplication of the equipment．
Our warranty does not extend to the failure of
semiconductor devices and batteries，or to equip－
ment and parts made by others except to the
extent of the original manufacturer＇s warranty to
us．No other warranty is expressed or implied．
Bird Electronic Corporation is not liable for
consequential damages．
Warranty returns musf first be authorized by the
factory office and are to be shipped prepaid．

General Terms，Conditions of Sale

TELEPHONE，TELEGRAPH AND CABLE ORDERS
Factory telephone．（216）248－1200
Telex：98－5298
Cable address：BIRDELEC
Eastern Sales Office（Pennsylvania） Telephone：（717）569－0467
TWX：510－672－0531
Wesiern Sales Office（California）
Telephone：（805）646－7255
TWX：910－336－4710

ADDRESS

All communications except when otherwise advised should be sent to the Bird Electronic Corporation， 30303 Aurora Road，Cleveland （Solon），Ohio 44139，or to the ap－ propriate regional sales office．
ORDER BY NUMEER
Please order by model number or part number．Whenever possible，in－ clude name of the item，ranges or other significant specifications．Be sure to include in your order any accessories or special calibration required．
When modifications are desired to adapt an instrument for your special requirements，contact our Sales Department．

SHIPPING INSTRUCTIONS

Unless specific instructions accom－ pany the order，we shall use our judgement and select the best method for your shipment．If re－ quested，repair parts or other items needed quickly will be shipped by air．
Export shipments via air－freight save time，and in many cases are less expensive than surface modes．

minimum zilling

The minimum billing per order is \＄2500

CONDITIONS OF SALE

Determination of price，terms and conditions of sale and final accep－ tance of orders are made only at our factory in Cleveland（Solon），Ohio．

PRICE CHANGES

All prices are subject to change without notice．Formal price quotations remain valid for 60 days． TAXES
Applicable Federal，State or Local taxes that are in effect at the time of shipment will be added unless Cer－ tificate of Exemption is furnished by the purchaser．

SPECIFICATIONS

We reserve the right to discontinue any item without notice and to change physical and electrical specifications at any time without incurring any obligation to incor－ porate new features in instrument or parts previously sold．For in－ struments offered with the＂QC＂Con－ nector feature，maximum VSWR values listed in the specifications are obtained with the connector type shown as＂normally supplied．＂
Listed power ratings for aircooled terminations are valid to 5000 ft ．For operation at higher elevations， please contact us for applicable derating factor
SPECIAL DATA
Individual special performance data can be provided for most Bird products at a minimum charge of $\$ 40$ per unit．

TERMS

All prices are F．O．B．Cleveland （Solon），Ohio．Terms net 30 days for established accounts．C．O．D．orders accepted．
Export Terms；See Overseas Representative listing overleaf

QUANTITY DISCOUNTS

Available on most equipment when 25 pieces or more of the same model are ordered．Please inquire．

CUSTOMER SERVICE

Bird maintains complete repair and recalibration department at Solon．This department is set up to provide the best possible service of Bird equipment．Repairs will proceed as soon as the instrument is received with your authorization． Repair charges are kept at a minimum．If you require a firm quotation before repairs prozeed， please advise and a quotation will be sent promptly．All instruments returned for repair－recalibration must be shipped prepaid and to the attention of the Customer Service Group．
Each instrument repaired is thoroughly checked and recalibrated to original specifications．The material used and work performed are warranted for 90 days with the exception of semi－conductor devices and batteries．

DISTRIBUTORS

Bird equipment is stocked throughout the United States and overseas．Inquire at Solon or the East／West Coast Sales Office for distributor located closest to you．

3710

Since its founding in 1942, Bird Electronic Corporation has pioneered the development of advanced instrumentation for the communications industry, and has steadily broadened its product line as well as expanded design and production facilities. It now owns a modern plant of about sixty-two thousand square feet in a suburban setting.

Bird is a highly specialized company, concentrating on coaxial power instruments, components and accessories. While our chosen field of specialization is narrow, we do serve it in depth. This singular dedication of time and talent has resulted in Bird TERMALINE and THRULINE becoming trademarks of confidence, and our wattmeters known for their technical integrityare now Standards of the Industry.
Bird product leadership and functional utility originate in its modern J.R. Bird Research and Engineering Center - shown below where your needs and our ideas are matched.

In the production plant, milling, drilling and turning equipment is numeric controlled and most other processes, such as painting, sheet metal, engraving, finishing, aluminum brazing, silk screening etc. are all done in house. This close control over quality and increased automation enable Bird to produce reliable instruments at economic prices.
We are proud to have earned the President's E-Award for excellence in exports, based on the world-wide acceptance of our designs. Most of
our products are universally compatible with line voltages, frequencies and different environmental conditions in other countries.

In this catalog, you will find nearly all our current models displayed in a new presentation designed to make equipment selection a pleasure. However, even this new publication will already be incomplete when it reaches you. Therefore, if you do not find exact.y what you require, dial 216-248-1200 or the nearest office listed on t̉ำe back cover.
Bruce Bird and I reaffirm our dedication to the communications industry, confident that the challenge; of tomorrow are being met today.
ohm P

P. Hyland President Price Pal
Bruce Bird, Executive
Vice President

THRULINE RF Directional Wattmeters

Models for use with CW, AM, FM and TV

Peak models for pulsed, TV and SSB transmitters*
Monitor power with system in full operation
Flexible coverage: 0.1 W to 250 kW , 0.45 to 2300 MHz

*All Peak-reading models are identified by these oscilloscope patterns.

There are basically two types of RF power meters, one for laboratory measurement of signal-generator (milliwatt) power-levels and the other for design, operation and measurement of communication systems from watts to hundreds of kilowatts, the field served by Bird. We have made wattmeters for coaxial transmissions of voice, television, data, aeronautical and space guidance, in short any type of intelligence encoded on a carrier from $1 / 2$ to 4000 megahertz. The basic demands concerning communications power instruments have not changed since the first coax line: Since the communication often concerns emergencies (police, fire), life-dependent navigation (flight patterns, space guidance) or expensive investment in huge audiences (broadcasting), the test equipment must be an order more reliable than the transmitters, must be always ready and must be trusted.

The Bird THRULINE Wattmeter model 43 was conceived in the ' 50 s and is approaching the 90,000 mark. What design parameters carried the model 43 past tube, transistor and IC technology revolutions to become and remain the Industry Standard? Well, it is self-contained (no batteries, no line voltage) using microwatts of energy from the transmission it measures, the basic instrument is a meter with a precision reference line section which makes it both economical and permits built-in reference accuracy which does not diminish with age. The frequency and power level of each "Bird" is determined by a low cost Plug-In Element Since most transmission facilities are assigned a frequency and power level, one or two Elements is all that is needed If growth or expansion require other Plug-In Elements, say 10 years later, they fit right in and work with the same accuracy. The latest addition to expand flexibility are milliwatt elements.
THRULINE instruments can be left in the line for continuous monitoring of either the transmitter output power or the amount reflected by an antenna. These two quantities are actually the most important transmission parameters: Tuning for minimum reflected power results in a good match of the load (antenna) to the line, and adjusting the transmitter for maximum forward power into a matched antenna approaches ideal design goals. The net power delivered to the load under any VSWR condition is the difference between the two readings. These optimum system adjustments result in a low Voltage Sanding Wave Ratio If actual VSWR data are required, they are easily obtained from the intersection of the forward and reflected power levels on nomographs furnished.

The accuracy of most THRULINE Wattmeters satisfies the $\pm 5 \%$ of full scale requirements of the FCC for proof-ofperformance measurements. We also offer a Lab Standard accurate within $\pm 3 \%$ of reading and Peak-Envelope-Power instruments.

Birn

model 4370

model 4371

BROAD-BAND-25 TO 520 MHz WIDE RANGE. 02 TO SOO WATIS

The model 4370 THRULINE Directional wattmeter is a portable bench-type insertion instrument or measuring forward or reflectec CW power it is exceptionally su table for service shops because its wide range ard broad banc coverage is accomplished conveniently by switc her next to the readout: Two frequency bands, a chocice of torward or reflected display and eight power ranges
In operation, a precision machined $5(0$-ohm retere nos linesection is inserted between the signal source and the antenna, load or other component under power tect. Directional power sensors incorporated in thes line-section produce dc signas proportional to both incident and reflected RF main-lise power, for readout on scales caibrated in watts as well as dB The readout unit and the line-section may be separated by as much as 3 feet for operational convenience

Model $\mathbf{\$ 3 7 0}$

DIGITAL READOUT IS IDEAL FOR PRODUCTION TESTING, CONTINUOUS SERVICE APPIICATIONS

Mole 437 is milar in coverse 10 th analo version

 on the left, except for the higher in wimum power of 1000 watts achieved in six ranges. The 1 watt reflerted power range of both madels is also avaiiable or forward readings by reversing RF connections.Model 4371 is the first High-Fcwer Digital Wattmeter which the user can calib ate in the field to known RF power standards, eliminating weeks of trensit for periodic certitications. It features 25% over-tansing and typical directivity of 30 dB or more on reflected power ranges.

Forwand Power Ranges Reflect ed Power Ranges _- Frequencw Range \qquad $25-520 \mathrm{MHz}$ QC Type (Female N normally supplied) below 1.1 with N Conn. (50 ohms) Insertion VSWR Finish
\qquad Weight \qquad Rich vinyl jute Accuracy \qquad $\pm 5 \%$ OFS (of range selected) Field Calibration

Power Requirements \qquad panel, RF calibration internally $105-125 \mathrm{~V}, 50-400 \mathrm{~Hz}$ (4 W) 10, 100,1000 watts 1, 10, 100 watts
\qquad
\qquad
\qquad $1,2.5,10,50$ watts \qquad $25-520 \mathrm{MHz}$ male N normally supplied) below 1.1 with N Cenn. (50 ohms) Rich vitul jute \qquad
\qquad
\qquad

Bina

model 43

specifications

Power Rating see opposite page Impedance \qquad 50 ohms nominal Insertion VSWR with N Connectors \qquad 1.05 max. Finish \qquad Light Navy grey baked enamel (MIL-E-15090)
Weight \qquad 3 lbs . 1.4 kg)
Element Weight \qquad 3 oz. (85 g)
Accuracy \qquad $\pm 5 \%$ of full scale
Optional Cases: Cowhide Carrying Case CC-1, Plug-Ir Element Carrying Case EC-1.

For easy VSWR data, two nomo graphs are included in every THRL LINE manual. Read VSWR at the intersection of your Forward and Reverse Power meter indications. For Laminated Charts order P/N 4400-01 2 .

100 mW TO 10,000 W RANGE

The Model 43 THRULINE Directional Wattmeter is a portable insertion type instrument for measuring forward or reflected CW power in coaxial transmission lines. It accurately measures RF power flow under any load condition.
Each Model 43 Wattmeter is made up of a line section and indicating meter contained in an aluminum case, QC-Type (Quick-Change) Connectors, and Plug-in Elements - which must be ordered separately. Additional elements may be purchased at anv time. Parts mav be replaced in the field (e.g. for meter replacement, order: Indicating Meter Part No. 2080-002).

LINE SECTION: The line section is a very precise 50 -ohm coaxial air line tor insertion into the transmission line between transmitter and antenna or load. Each line section has a socket into which a measuring element in the desired frequency band and full scale power range is inserted. Ends of the line section are equipped with QC-Type Connectors.

QUICK-CHANGE CONNECTORS: The Niodel 43 THRULINE Directional Watt-
meter is normally supplied with two Female N Connectors. Other types of connectors available include: Male or Female BNC, TNC, UHF C, SC, LC, N, HN, LT, General Radio Type 874 and $7 / /^{\prime \prime}$ EIA Flanged. These Quick-Change QC Connectors are interchangeable in the field without affecting instrument calibration.

INDICATING METER: A shock-mounted 30-microampere meter wth 3 expanded scales of 25,50 , and 100 to permit conven ent direct reading of tull scale power from 100 milliwatts to 10,000 watts.

MEASURING ELEMENT: The Plug-in Elerient is a self contained directional detector calibrated for direct indication of RF power.

REMOTE INSTALLATION: The RF line section may be removed from housing ard inserted at any convenient point in the line. The meter may then be located whe e visibility is best, using the $32^{\prime \prime}$ of meter cabe supplied within the Model 43, or by using additional lengths as required.

Plug-in Elements

PLUG-IN ELEMENTS for use whth Model 43 THRULINE Wattmeter. Select one or more elements to suit your frequency and power ranges. When ordering, specity catalog number and THRULINE model number.
Table 1
STANDARD ELEMENTS (CATALOG NUMBERS)

Power Range	Freq sercy B ands (MHz)					
	$\begin{array}{r} 2 \\ \hline 0 \end{array}$	$\begin{aligned} & 25- \\ & 60 \end{aligned}$	$\begin{array}{r} .50 \\ 125 \end{array}$	$\begin{aligned} & 100- \\ & 250 \end{aligned}$	$\begin{aligned} & 200- \\ & 500 \end{aligned}$	$\begin{gathered} 400- \\ 1000 \end{gathered}$
iwatt	-	5A	5B	5 C	51)	51
10 watt	-	104	10B	10C	100	10E
27 witt	-	254	二5 ${ }^{\text {- }}$	$25 C$	250	2еE
50 watts	$5(1)+1$	704	TUB	50C	300	JCE
100 watts	100 H	100A	100B	100 C	1100	100
250 watt.	250 H	2704	25) ${ }^{\text {B }}$	250 C	2500	250
500 wat	5 OOH	5004	S0013	500 C	5700	50ct
100% uats	100) H	1000 A	10008	1000 C	10500	1016F
2500 watts	2500 H					
50.0 watts	5000 H					

Table 2 LOW-POWER ELEMENTS

1 watt	Cat No.	25 watts	Cat. Na
$60-80 \mathrm{MHz}$	O230-1	$6 \mathrm{c}-80 \mathrm{MHz}$	060-2
80-95 . 11 Hz	Of()-1	$8 \mathrm{C}-95 \mathrm{MHz}$	080-2
95-125 MHz	0.55-1	95150 MHz	095-2
$110-16)^{\prime} \mathrm{MHz}$	17()-1	$150-250 \mathrm{MHz}$	150-2
$150-250) \mathrm{MHz}$	1-0-7	$20 \mathrm{c}-300 \mathrm{MHz}$	200-2
200-300 $\mathrm{NHHz}^{\text {d }}$	200-1	$250-450 \mathrm{MHz}$	250-2
275-450 M1Hz	2.5-1	$40 \mathrm{C}-8.50 \mathrm{MHz}$	400-2
$425-850 \mathrm{MHz}$	4.5-1	$80 \mathrm{C}-950 \mathrm{MHz}$	800-2
$800-950 \mathrm{MHz}$	800-1		

Also for use with Models 3122, 4311, 4314, 4.342, 4430, 4501, 4521, 4522, 4526, and 4527 THRULINE Wattmeters, 50 n Line Sections equipped with QC-Connectors or $7 / 8$ " EIA Flanges, and TERMALINE Wattmeter Model 6151

Table 3
HIGH-FREQUENCY
ELEMENTS (CATA.LOG NUMBERS?

Power Range	Frequency Bands (MHz)			
	$\begin{array}{r} 950- \\ 1260 \end{array}$	$\begin{aligned} & 1100- \\ & 1800 \end{aligned}$	$\begin{aligned} & 1700- \\ & 2200 \end{aligned}$	$\begin{aligned} & 2200- \\ & 2300 \end{aligned}$
1 watt	1 J	1 K	1	1 M
2 S watts	2.1	25 K	25	2.5 .11
5 watt	, 1	5K	5	5M
10 watt	11.	10k	10L	10M
25 watt	2 J	25k	251	25.M
50 watt	50 J			
100 watts	100 J			
Simatts	250			

Table 4
LOW-FREQUENCY ELEMENTS (CATALOG NUMBERS)

Power Range	Frequency Band $.45 \mathbf{0 2 . 5 ~ M H z}$
1000 w atts	1000 P
2500 w atts	2500 P
5000 watt	5000 P
10000 w atts	10000 P

Table 6 Milliwatt elements

100 mW	Ca. No.	250 mW	Cat. No.	500 mW	Cat. No.
$72-76 \mathrm{MHz}$	$430-2$	70	MHz	$430-34$	$72-76 \mathrm{MHz}$
$105-120 \mathrm{MHz}$	$430-6$	$72-76$	$430-33$		
136 MHz	$430-22$	$105-120 \mathrm{MHz}$	$430-26$		
174 MHz	$430-9$	$108-118 \mathrm{MHz}$	$430-24$	$240-290 \mathrm{MHz}$	$430-27$
$328-336 \mathrm{MHz}$	$430-3$	$130-150 \mathrm{MHz}$	$430-13$	$328-336 \mathrm{MHz}$	$430-28$
400 MHHz	$430-7$	$350-180 \mathrm{MHz}$	$430-15$	$455-470 \mathrm{MHz}$	$430-30$
470 MHz	$430-8$	$1700-336 \mathrm{MHz}$	$430-16$		

Directional Coupler Elements

Series 4274 RF DIRECTIONAL COUPLER PLLG-IN ELEMENTS are used with model 43 (as well as 4311 , 4342, 4511, 4521, 4522, 4526 and 3122) for sampling of the main line signal at a fixed attenuation level. The coupler produces at the female BNC Output connector a signal that is reduced from the main line power level by the amount of the NOMINAL COUPLING $\pm 1 \mathrm{~dB}$ (within the stated FREQUENCY BAND.

CATALOG NUMBER	FREQUENCY BAND	NOMINAL COUPLING	MAX. MAIN LINE POWER
$4001-50$	30.100 MHz	-40-3B	1000W
$4002-5$	-5-150	-40, ${ }^{\text {a }}$	1000W
$40 \mathrm{Cl}-125$	125-250	-40d8	1000 W
401)-225	225-450	$-40 \mathrm{~dB}$	1000 W
350-40)	400-800	-35d8	500W
$30)-30$	$750-1250$	-3 (d) ${ }^{\text {d }}$	100W

Mini－Monitor ${ }^{\circledR}$ 4111－18

Pocket－sized，rugged Wattmeters for service and maintenance of communication transmitters from 25 to 512 MHz ．
Each wattmeter is made up of a precisely machined sec－ tion of 50 －ohm line two directional power detectors，and a meter calibrated in watts
The ser sing circuits tace in coposite directions and the front－panel switch selects the direction of power flaw to be indicated on the meter With the transmitter connected on the meter side and the load near the switch，the＂for－ ＂vard＂position is the higher power range．while＂reflected＂
selects the lower power range． In case this lower－power full－ scale value is desired for increased resolution in the iorward direction，simply reverse the RF cable connec－ tions to the wattmeter

model

Power Rating
orward ith

 Connecters Model 4171 UHf 150 I39．All or hem N／F＊ nsertion ©＇SWR \qquad 91 mm
${ }^{2}$ inish \qquad

Accuracy

\qquad ± 5 a fill whithe
Weight \qquad 1 Hz （？has：
 ＂2ow ratisit $=110$

118

For permanent installations

 the use को a क⿴囗十力
 ammenamose displite of powe indication it both dicetious selvat

Power Rating \qquad See Element Tables p．47 A Insertion VSWR \qquad QC Typer（Femali． N normalli supplied
Connectors \qquad Accuracy \qquad $\pm 5 \%$ of tull scale
Finish \qquad Lisht Navy grey baked enamel ivll－ $\mathrm{E}-15090$ ）
RF Coupling（Model 4527） Approx -53 dB trom 512 . MHz dounto 10 MHtz ，decreasing to -70 d8 between 10 and $2 \mathrm{MH}_{2}$

models $4311 \bullet 14 \bullet 15 \bullet 16$

PEAK POWER, SSB

Power Rating \qquad 10kW max peak or CW Insertion VSWR with N Connectors \qquad -1.05 max . Finish \qquad Light Naw gres baked enamel (AILL-f. -15090) Weight \qquad 4 lb 5.11 .8 kg
Element Weight \qquad
Accuracy \qquad Average (W) Mode: $\pm 5 \%$ of rull scate Peak-Pulse or Envelope-Power Mode. $\pm 8 \%$ of full scale

pulse parameters

Square Pulses:

Bind dut tator 1×10^{-4} जin reperimion fate 30 pps Sion duty factor 35 a 115^{-4} Vin bive pulsewidth at 10) of hemght
 is pasi 225 NiHz

Gaussian Pulses:

THIRULINE WAITMETER Models 4311, 4311-200, 4314, 4315 and 4316 are portable peak-reading instruments, designed specifically for the measurement of air navigational aids such as DME, ATC and other pulsed RF systems, e.g. telemetry, radar, television, command and control, and peak enevlope power (PEP) measurement of SSB or AM signals. Basically, this series samples forward or reflected power the same as the Model 43 , and the descripticins of the IINE SECIION, INDIC.ATING METER and QUICK-CHANGE CONNECTORS on page 4 are applicable.
These Wattmeters are new RF directional "multimeters" which measure practically any type of coasial transmissionpulsed, AM, FM or CW. To read the peak pover of pulses or peak envelope power, the "Peak Read" button is depressed and locked, which inserts a peak-reading servo amplitier between the sensing Element and the Meter. Switch out the amplifier and read CW or FM.
MODEL 4311 is batters powered and neither AC line voltage nor an oscilloscope are required for operation in either the peak or average power mode.
MODEL 4311-200, with an outboard battery charger, is for use in locations where the $A C$ line voltage is $220-240$ volts. MODEL 4314 has a built-in battery charger and can, therefore, be operated as a portable or plugged-in as a bench instrument ($104-126$ volts at $45-420 \mathrm{~Hz}$).
MODEL 4315 is a special high-power version similar in appearance and specifications to the Model 4311, except that it measures peak power only in two full-scale power ranges: $10 \mathrm{~kW}(2-30$ or $950-1260 \mathrm{MHz})$ and $25 \mathrm{~kW}(2-30,25-60)$, 50)-125, 10()-250, 200-500 or $400-100 \mathrm{MHz}$).

MODEL 4316 has a built-in battery charger.

Plug-in Elements

Interpreting Readings on Peak Wattmeters with CW, AM, SSB and Pulsed signals.

PLUG-IN ELEMENTS for use with Models 4.311, 4311-20k) and 4.314 . All are for either CN or peak m-asurement ex cept Table 5, which is for peak only. Select one or more elements to suit your frequency and power ranges. When orderin3, specify catalog number listed in these table, and THRULINE model number:

Table 1
 STANDARD ELEMENTS (CATALOG NUMBERS)

Power Range	Frequency Bands (MH :)					
	$\begin{array}{r} 2- \\ 30 \end{array}$	$\begin{aligned} & 25- \\ & 60 \end{aligned}$	$\begin{array}{r} 5)- \\ 125 \end{array}$	$\begin{aligned} & 100- \\ & 2.50 \end{aligned}$	$\begin{aligned} & 200- \\ & 5000 \end{aligned}$	400
5 natt	-	54	-B	5 C	5D	5E
10) watt	=	104	1013	10 C	17 D	10E
27 watts	-	254	213	25	250	25 E
50 watts	3081	504	5013	50 C	510	50 E
100 watts	100 H	1004	1003	10 OC	10) 0	TOOE
250 watt	25041	2504	25113	2500	25 (1)	$=50 \mathrm{E}$
500 watts	500 H	500) 4	5013	500 C	50 (1)	700E
1000 u alt	100\% ${ }^{\text {¢ }}$	10004	10)	100nc	$10 \% 00$	1600E
2500 watts	25004					
5000 wart	5000t1					

Table 2 LOW-POWER ELEMENTS

1 watt	Cat. No.	2.5 watts	Cat. No.
6()-80 11112	060-1	b0-80 M MHz	0664
$80-95 \mathrm{MHzz}$	080-1	$80-95 \mathrm{MHHz}$	08ci-2
95-12 MHIZ	(195-1	95-150 MHz	(3) 9^{-2}
110-160 11 Hz	$110-1$	150-250 11 H	150-2
$150-250.14 \mathrm{~Hz}$	150-1	20-300 Mryz	200-2
200-300 A1Hz	2001	$250-450 \mathrm{NH}$	25(-2
275-45 (M Hz	275-1	4) (0-850 $\mathrm{NHz}^{\text {H }}$	$400-2$
425-850 M1Hz	425-1	$830-950 \mathrm{MHz}$	$800-2$
$800-950 \mathrm{MHz}$	$8(6)-1$		

Table 3

HIGH-FREQUENCY
ELEMENTS (CATALOG NUMBERS)

Power Range	Frequency Bands (MHz)			
	$\begin{array}{r} 950- \\ 1260 \end{array}$	$\begin{aligned} & 1100- \\ & 1800 \end{aligned}$	$\begin{aligned} & 1700- \\ & 2200 \end{aligned}$	$\begin{aligned} & 2200- \\ & 2300 \end{aligned}$
1 watt	1 J	1 k	1L	1 M
25 watt	251	2 ik	25 L	$25 M$
$\overline{\mathrm{wam}}$ -	5 J	iK	5 L	5M
17) uatt	10 J	10 K	10L	10 M
L-3 watt	251	2引	251	2501
5) witt	501			
10) watt	1(x) J			
Li) watts	250」			

Table 4

LOW-FREQUENCY ELEMENTS (CATALOG NUMBERS)

Power Ran/e	Frequency Band .45 to 2.5 MHz
9(tu) -4.atis	TMOP
$\therefore 500$ a 3 tts	Ex(0)
5000 :07tts	5 TOHP
10000 Whtis	16 BOO

models 4320/4321

model 4342

Peak Amplifier for adding peak power measurement capabilities to any CW (average power THRULINE Watmeter.

When inserted between the Line Section and the Meter of a THRLIINE Wattmeter, the amplifter converts a (W-type Wattmeter to al peak-envelope-power instrument It senses the maximurn excurston of the demodulated RF envelope delivered by the Plug-in flement and then supplees an equal de output voltage from its owil power supply to the meter.
Two units are available Model 4320 tor cable, $Q C$ connector equipped and 7 E1A Wattmeters, and Mordel 4321 tor the $1 \%^{\prime \prime}, 3 \%$ " and $6 \% "$ Wattmeters used at broadcast stations and other high power installations Order three connecting cables in lengths to suit tour layout requirements (Typrical examples. 10 ft .3 m) of pulse cable is P. $\mathrm{N} 4320-(053-8$, 10 ft . of meter cable is $\mathrm{P}, ~ \mathrm{~N} 430.03(1)-3$ and 10 tt of control cable is P/N $4230-031-3$
AC Supply: 115 volts $60-400$ Hz (10 W)
Pulse Parameters: Identical to models 4311/4314 Wattmeters on preceding pages.
Power and Frequency Ranges are determined by the wattmeter with which the amplifier is used

3-in-1 Meter reads power and VSWR all af once

THRULINE model 4342 Dual Wattmeter - VSIVR Monitor displays all three measurements at once on a single meter face Forward and reflected power are indicated by individual pointers, and VSWR is monitored on a third scale from the intersection of the two power pointers. Without any adjustments or switching, the entire set of three trans miss on parameters is read out simultaneously.
Power and frequency range depend on two Plug-in Elements selected from tables on p. 47A. Choose two Elements with a 10-to-1 power ratio within your frequency range (e.g. one " $50 \mathrm{~B}^{\prime}$ for forward and one " 5 B " for reflected power indication from $50-125 \mathrm{MHz}$, or a " 10 C " with a "110-1" for $100-160 \mathrm{MHz}$).

Power Rating \&

Frequency Range \qquad see Element Tables page 4TA Insertion VSWR with N Connectors \qquad 1.035 max to point of measurement 1.07 max. overall
Connectors \qquad QC Type (Female N normally supplied) Accuracy of Power Measurement \qquad $\pm .5 \%$ of full scale, forward or reflected VSWR Range (red scale)
$1.0 / 1$ to 2.01

model 4330

model 4430
model 4305

MILLIWATFMETER

Power Rating \qquad 200 mW and

Insertion VSWR with

N Connectors \qquad 800 mlV Connectors \qquad 1.05 mlx . QC Tyme (Female N normally supplied) Finish \qquad Light Navy grev baked enamel (MIL-E-15090)
Weight \qquad $31 / 4 \mathrm{lbs}$. (1.5 kg)
Accuracy \qquad $\pm 5 \%$ of full stae
Model $4 ; 7 \mathrm{y}$ is a dual range milliwatt tersion of the Model 43. Power ranges - rurrentls 200 mlW and 800 m W rull scale are switched on the Homent PLUG-IN ELEMENTS usable onl with model 4330 Frequency
Catalog No. Range- MHz

4330 -(160)	6(0)-80
4330-(180)	$817-95$
$433(2)$	95-125
4330-110	$110-160$
4330-150	150-250
4330-200	3(1)-300)
$4330-275$	275-450
$43.30-42^{5}$	425-850
4330-8(9)	$8(0)-950$
4330-950	950-1260
4330-111.0	1100-1800
4330-1700	1700-2200
4.330-2200	2200-23(0)

RF SAMPLING WATTMETER

Powe-Rating \& F-equency
Hange 1000 W max. $2-200 \mathrm{M} \mathrm{Hz}$ 500. "r max. $200-512 \mathrm{MHz}$ Insertion VSW'R \qquad 1.05 max. Connectiors \qquad QC Type
Female N normallv supplied (Female BNC RF output)
RF Coupling \square Approx. -53 dB from 512 MHz down to 10 MHz , decreasing to -7 Cc B betwern 10 and 2 MHz
Finish \qquad Light Navy grey baked enamel (MIL-E-15090)
Weight \qquad $31 / 4 \mathrm{lbs}$. (1.5 kg)
Accuracy \qquad $\pm 5 \%$ of full scale
Model 443) is simila to the model 43 with he aderition of on 2 sampling nutput for irequer if counting and analvsis Elements on p 4 4

HI-POWER WATHAIETER

Power Rating \qquad $50+N-25 k W$
Insertion VSWR with
N Connectors \qquad 1.05 max Conrectors \qquad QC Type
(Female N normally supplied)
Finis) \qquad Light Navy grey baked enamel (MIILE-15090)
Weight \qquad $31 / 4 \mathrm{lbs}(1.5 \mathrm{~kg}$
Accuracy \qquad $\pm 5^{\%}$ of full scale

PLUG-IN ELEMENTS

models 4372/3122/4511

MODEL 4372 CW Wattmeter

BROAD-BAND 25 TO 520 MHz WIDE-RANCE 1 TO 500 WATTS
This is the rack version of model 4370 (see page 3). Forward or reflected modes of CW power in two frequency bands and eight power ranges are all conveniently selected by panel switches next to the readout. Meter scales are in watts as well as dB. A $5 \mathrm{ft} .(11 / 2 \mathrm{~m})$ cable allows the line section to be separated from the panel. Needs no Plug-in Elements.
MODEL 3122 CW Wattmeter/VSWR Monitor
3-IN-1 METER READS FORWARD AND REFLECTED POWER, AND VSWR ALL AT ONCE
Like the portable model 4342 (see page 10), this Dual Wattmeter/VSWR Monitor displays all three measurements at once on a single meter face: Forward and reflected power are indicated by individual pointers, and VSWR is monitored on a third scale from the intersection of the two power pointers.
Power and frequency range depend on two Plug-in Elements selected from tables $1,2,3,4, \& 6$ on the fold-out page. Choose two Elements with a 10-to-1 power ratio within your frequency range.

MODEL 4511 Peak and

CW Wattmeter
measures practically any type of coaxial transmission-pulsed, FM or CW, and peak envelope power (PEP) measurement of SSB or AM signals.
Power and frequency range depend on two Plug-in Elements selected from tables 1, 2, 3, 4, \& 5 on the fold-out page.

pulse parameters

Square Pulses:

- Gaussian Pulses:

Min. Min. duty factor: 3.5×10^{-4} Min. base pulse width (at 10% of height):
$0.4 \mu \mathrm{sec} .100-2300 \mathrm{MHz} \quad 3 \mu \mathrm{sec} .26-2300 \mathrm{MHz}$ $1.5 \mu \mathrm{sec} . \quad 26-99 \mathrm{MHz} \quad 15 \mu \mathrm{sec} . \quad 2-25 \mathrm{MHz}$ $15 \mu \mathrm{sec} . \quad 2-25 \mathrm{MHz}$

model 4372

Forward Power
Ranges \qquad $10,25,100,500$ watts
Reflected Power Ranges 1, 2.5, 10, 50 watts Frequency Range _.....25-520 NHz Connectors ___ QC Type (Female N normally supplied) Insertion VSWR \qquad below 1.1 with N Conn
Accuracy \qquad $\pm 5 \%$ of full scale
Finish \qquad Light Navy grey baked enamel (MIL:E-15090)
model 3122
Power Rating \& Frequency Range \qquad see text
Insertion VSWR to 1000 MHz
with N Connectors \qquad 1.0)35 max. to point of measurement. 1.07 mdx . overall

Accuracy of Power

Measurement \qquad $\pm 5 \%$ of full scale, forward or reflected
VSWR Range
(red scale) \qquad 1.0, 1 to 2.0/1

Finish \qquad Light Navy grey baked enamel (MIL-E-15090)
model 4511
Power Rating \qquad 10kW max.

Frequency Range peak or CW' Insertion VSWR
with N Connectors \qquad 1.05 max Finish \qquad Light Navi grey baked enamel (MIL-E-15090)

Accuracy

 - Average (CIV) Mode: $\pm 5 \%$ of full scale Peak-Pulse or Envelope-Power Mode: $\pm 8 \%$ of full scale

Bincil wancherrf poem Moitoralam

3127•28/3167•68

series 3160

Protect fransmitters, line and antenna from damage due to high VSWR
Acde s. 3180 isp ay accurate and sinaltaneous forward and reflecied power levels on contemparany meter faces easly read from a distance, offering thre engmeet a contmucus view of VSWR conditions and power output. For protection of transmitters transmission line, antenna sysiem, it ters, diplexers, efc. from damage due to high standing waves, the control unit shuts down the dransmitter when the reflected pomer exceed at set level. Alarm signals indicating st stem malfunction may be remoted
To order, select a line section from Table A to match vour transmission line Then choose two elements from a table appropriate for your line size isee foldout page), one for the destred full scale inciden' powef and a more sensitive one 'typically 107 for reilected power. Add (wn $25 \mathrm{f}, 171 / 2 \mathrm{~m}$) cables P.N 4220-097-10

Transmission Medium
Power Levels Meter Relay Reset

$$
\begin{aligned}
& 3127 \quad 3128 \\
& \text { rigid time cable } \\
& \text { 0.25-250kW } 0.7 \mathrm{WW}-10 \mathrm{~kW} \text { rigid Inci S E Pable } \\
& \text { Mechanical Contact Sadt-ction solid-state } \\
& \text { Manual }
\end{aligned}
$$

NEW: Power drop-off alarm for 2-way mobile networks, repeaters, etc.

Seres 3160 are new fast-action WAITEHER Fower Monitor/Alarm/ Cortrel units with any or all of the follow'ing functions:

1) Forward power indication (continucus)
2) Reflected power readim ayy momentary switch
3) Fast-action alarm ad
4) Fast-action control inower drops below a stlyel e.g. as per FCC requiremens)
Versions under rob sideration will autom+tically vitch ovet to backup transmitt case of malfunctiont, or sentjont-encoded RF level informationer aver a cable pair. Submit yoy quantity requirements with furs ons desired to the plant.

LINE SECTIONS (Table A) for use with models 3127 \& $316{ }^{\circ}$
Part No. Connectors

4802-(160 3) L-mid 00:
$405-000$ 6 EDA

for use with models 3128 \& 3168
Part No. Connectors
42201053
for $0<$
$4522-002 \mathrm{~m}$
for ox

13 horth elentm sooknte on
one sule for panel mo inting
(72. 7000 A 2 H2
 tise or 4321 Peak Amplitiors (p. W0).

BTI THRULINE ${ }^{\otimes}$ RF Directional Wattmeters

model 4712

High-Power Rigid Line Series

BIRD THRULINE RF DIRECTIONAL WATTMETERS of the High Power Rigid Line Series are designed for measuring and monitoring RF power in rigid 50 or 51.5 ohm transmission lines. Each Wattmeter is made up of a line section, a measuring element, and indicating meter mounted in a convenient carrying case.

LINE SECTION: Sections of $7 / \mathbf{l}^{\prime \prime}, 1 / 88^{\prime \prime}, 31 / 8^{\prime \prime}, 61 / 8^{\prime \prime}$, or 9 " air lines are available for insertion in the transmission line between transmitter and antenna or load resistor. Each line section has a socket into which the appropriate measuring element is inserted. Double-socket line sections for simultaneous measurement of forward and reflected power, or pressurized line sections are available on special order for Wattmeter packages.

ELEMENT: Elements are calibrated for direct reading of RF power over a specific frequency range. Forward or reflected power is selected by the direction in which the element is turned. When ordering an element, specify frequency band, full scale power, and model number of wattmeter or line section in which the element is to be used. NOTE: Elements are not interchangeable between rigid line THRULINE Wattmeter models.

METER: The meter is a sensitive microammeter with three expanded scales of 5,10 and 25 to permit convenient direct reading of full scale power from 250 watts to 250 kW . It is shock mounted in a rugged cast aluminum case with a carrying strap. Sockets are provided on the side of the case for storing extra elements. A 10 -foot (3 meters) shielded cable is provided to connect meter to line section. Other cable lengths can be supplied on request.

FINISH: Line Sections are bright silver plated, meter housings are finished in Light Navy Grey Baked Enamel (MIL-E-15090).

PEAK READING WATTMETERS: Any model on this page can be converted into a Peak AND CW reading wattmeter with the addition of a model 4321 peak amplifier (see page 10).

1-5/8" LINE

Impedance 50 ohms nominal Insertion VSWR
1.05 max.

Connector \qquad 15/8" EIA Flanged
Weight \qquad (line section) 3 lbs . $(11 / 4 \mathrm{~kg}$) (meter) 5 lbs . $(21 / 4 \mathrm{~kg}$)
Accuracy $\pm 5 \%$ of full scale
METER: $41 / 2^{\prime \prime}$ meter, shock mounted in aluminum carrying case with $10^{\prime}(3 \mathrm{~m})$ shielded meter cable. Dimensions: (wxhxd) $5 \% 6^{\prime \prime} \times 61 / 2^{\prime \prime} \times 33^{\prime \prime}$ $(141 \times 165 \times 85)$.
STANDARD ELEMENTS (CATALOG NUMBERS)*

Power	Frequency Bands (MHz)					
Range	2-30	25-60	50-125	100-250	200-500	400-1000
250 watts		250A1	$250 \mathrm{B1}$	250 C 1	250D1	250Et
500 watts		$500 \mathrm{A1}$	50081	500 C 1	500D1	SOOET
1000 watts	1000 H 1	1000A1	100081	1000 Cl	100001	1000E 1
2500 watts	$2500 \mathrm{H1}$	2500A1	250081	2500C1	250001	$2500 E 1$
5000 watts	5000 H 1	5000A1	5000B1	5000 Cl 1	5000 D 1	5000E1
10 kW	10 KH 1	10KA1	10KB1			
25 kW	25 KH 1	*When line se	dering, ion mod	ecify cat number.	numb	and

Bincl

models 460／480／4805
 models 4902／4930

3－1／8＂LINE

Model 460 Model 480 Madel 4805 Impedance \qquad 50 ohm；－ 51.5 ohms＿ 50 ohm； nominal nominal nomnal Connector \qquad 31／8＂EIA Flg＿31／8＂Unfls－ $31 / 8^{\prime \prime}$ Unflg Weignt（line section） $7 \mathrm{lbs} .(3 \mathrm{~kg})-4 \mathrm{lbs} .(2 \mathrm{~kg})-4 \mathrm{~b} 5 \mathrm{~s} .(2 \mathrm{~kg})$ （meter） \qquad $5 \mathrm{lbs} .(21 / 4 \mathrm{~kg})$
Accuracy \qquad $\pm 5 \%$ of ull scale Inser ion VSWR T．0s max METER：4＇．＂meter shack mounted in alummum ferming（ast with
 141，165，85
STANDARD ELEMENTS（CATALOG NUMBEF：S）＊

Power Range	Frequen：y Bands（MHz）					
	$\begin{array}{r} 2 . \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 25 . \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 12 \end{aligned}$	$\begin{aligned} & 100- \\ & 250 \end{aligned}$	$\begin{array}{r} 200- \\ 500 \end{array}$	$\begin{aligned} & 410-100 \\ & 1000 \end{aligned}$
1 1900）whatts		（1）（0）43	$1(601) 3$	1 （1）00c	（158）${ }^{\text {a }}$	10 HOF
2500 vats		857043	250013 ：	250063	2500023	2 L 053
5000 tart	5000 H	500043	$5000 \mathrm{C}_{3}$	50608	59（0）03	उtros
70 EW	10kt13	70kA	$10 \mathrm{kB3}$	10kC3	（0kD）	$1 \mathrm{~N}^{\text {d }}$
251 W	25kH3	25 Al	$25 \mathrm{kB3}$	25ヶC3	3゙に 3	ごれ3
50． W	50KH：	＊When	dering．	ecily	alç num	er and
100）KW	900kts	line sec	（10）mod	I number		

Model 4902 20 ohms nammil Model 4938
Impedance \qquad
Weight（line section）
121，the the ke \qquad mis nomani

（meter）

Accuracy \qquad $\rightarrow 5$ lis 24 kg \qquad （10） Hg ？ Connector \qquad （b） $1 / 8^{\prime \prime}$
\qquad $=56$ h2 $0^{3 / 4} \mathrm{hg}$ Connector 405 max \qquad aH scale Insertion VSWR \qquad 905 max \qquad 0^{7} 114FIg METER $4 / 2^{\prime \prime}$ mete．shoch mounterd il Altominum zansing Eas＂with
 171（6）
STANDARD ELEMENTS（CATALOG NUMBERS）＊FOR 4902 Frequency Bands（MHz）

Power Range	$\begin{array}{r} 2- \\ 30 \\ \hline \end{array}$	25 (0)	$\begin{aligned} & 30- \\ & 125 \end{aligned}$	$\begin{aligned} & \text { ds }(M) \\ & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & 200 \\ & 306 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 1000 \end{aligned}$
250（0）11．15		Esadib	25curb	2Fux\％	2．rciois	2500Fs，
5 （1it）u its		318040	Steroht．	spues	3rouls	50001，
10） KW		10K Ao	TOKFb	10RC．	lokith	10k\％．
25＊11	2\％HL	5Kth	¢人10	त hCW	TKLD	25kt
50 幺 11		30k－16	Cuk碞		F0KD，	S0ヶ6
100 kll		＊When	deritur	Cuy	lcis inm	er lind
2゙0kい	2 Suktio	lime	（16）mis	Inumter		
ELEMENTS FOR MODEL 4930						
Power Range Catalug No． $\text { 5 } 11$ 7弓氿多						
1041						
251.14						
When（w）ing specity ton－mit						
Suppod with onc to dlet						
Suppmad with one trillet						

BTR Laboratory Standard RF Wattmeters

4340•41

model 6300

Thruline ${ }^{\circledR}$ RF Standard

3\% Insertion Standard for calibration from 2-1000 MHz to 100 watts
 -ampersultal tuatior standact

 Eachelorment it indiedualv cathrated wits its hite dial pinteritionetel

Power Scale 6- 180 witis
Impedance \qquad 5i) ohms
Inserion VSWR with QC N Cnnnectors \qquad 1.15 mise de th 7000 Mif :
Frequency Ranges \qquad $2+10,10-30,30-700,100-503$ (see page 47A)
$500-1000 \cdot \mathrm{MHz}$ Accuracy \qquad $\pm 3 \%$ of full scale difect reading. it 3 of resdifis at 25 inequencies (ives per Element) ard the if cardinal scale divisions

Far \% cxutomi Hmatument with

 munfed 4341 (he nicquativat rarn howTermaline ${ }^{\circledR}$ Precision Thermal If Wattmeter

2\% DC to 500 MHz Transfer Standard to 15 milliwatts

 are nut ubelife belime tise treainiac

 Power Range $0-75$ millovatts
Inpur VSWR with N(Al) Commentor
1,10 mibe de io 500 Mifl
Summary of Uncertainties:

 salifitation no firtibfit

 fututed

BT1 Amateur/CB/Marine Wattmeters

models 4350-4354

 New economical RF Wattmeters for Radio Amateurs, CB and Marine Communications

 Falley
 in 50.52 stim coaval cibles
 the hethork and for contitiucis mu folly of alious
 Dometitiols
The 4190 wries of HMM-MNII, (eh)WiL and NMRINE MNTE Wimmiress are al direciesced darm of the model 43 THRCLINE Watmnter-the eromenal standand ot the melusin- and wil scuigh कileasuie RF |pmet flow under ien load cuindisino?

Mam-Mate
4350

Ham-Mate
4351

HamMa'e
4352

One of the meat impoitnit nequirements of any inerion type Ri wattineter is lis difectiots be the drlity io differentiate, betwees pewtit flokthts in oponsite ditec lions in the trinmision time Shen whimetiok an antennad to a 50-shtn lime, Ah insuminert with mafficiem cire itioy is likely fo medicate it pafect math wren none exists The undesired pickup of forwail current when tmots potion is mearumed gat earily ofly the debired madime thus productiga hike nal. Ifore, 450 Sents.
 an ahsolute mus for mearitagfyneteded power fand VSHER me तrolemeth
Recaruse of theni low insect ©pewk couplod with high diectivith-HAUHMATE Etrsests mar be phaced of

 monitothg. The djech gee bewcen forward and reflected
 \checkmark SWR is obiligefonia sat of ncmegrapots:

Frequency Ray fors
L1530 MH2
$1 \mathrm{BE}-90 \mathrm{MHz} 80-150 \mathrm{MHz}$

CB-Mate"
4353
inemate

in25/iol
(1.-. 525 W 0-25/tow 02.5/25V
Impedance Zs \qquad All Models $\geqslant 01 \mathrm{ch} \mu \mathrm{m}{ }^{+}$. Weight \qquad
 Insertion VSWR All Models it to 1.0 may Conmectors - Impit \& Qutpui All Noxiels-both Accaracy - dil Montets ± 0 ont rull Scathe Directivity \qquad All Mondets 2i dBmin

[^1]

This TT50FL dual transmither instalation an Wheyc-IV ts the firs in the country Snown alave are three IERMALINE Reject Lonse with their THRULINE Watmenters
The 30 kW Teit Load. Watt meter below richt is witched remotely (including water fow) fram the stuation 10 miles -istant, where the reiect power levels and n*ain teed jower are monitored below left

TERMALINE RF Coaxial Load Resistors

> For permanent installations or portable use in maintenance, testing and design of coaxial systems

Bird TERMALINE Load Resistors are used during adjustment, testing and alignment of transmitters in place of the antenna, as well as for permanent or stand-by termination of transmission line branches. Their low VSWR assures an excellent match and -at 1.1 -the absorption of at least 99.75% of the RF energy generated.

Our traditional liquid-dielectric convection-cooled terminations, which have given trouble-free service as dummy antennas for nearly 35 years of service, are easily recognized by their light grey finish (8785 and 8787 excepted). These units have been updated with current developments in materials and coolants. Some are made available with forced air-cooling or built-in water coils to increase their power rating to as high as 7500 watts.

Power Ratings of Bird Loads, within their specified temperature range, are their full average power capacity in continuous operation. These ratings may be exceeded for short periods. (For sustained full rated power applications on models rated above 600 watts, the coolant should be changed at recommended intervals.) For operation at higher ambient temperatures, and for peak power capabilities, see foldout page.

The first three pages of Loads following the selection chart are convection-cooled dry dielectric (air) units that can be connected to a line in any position. Also included are two conduction-type MINILOAD ${ }^{\star}$ models 8071 and 8072 , which use the equipment cabinet or panels as their heat sink. Their small size (e.g. $3 / 4 \mathrm{cu}$. in.) permits mounting them on any convenient metal surface, eliminating the need for a large volume, ventilated compartment.

The current trend to remote dual-transmitter operation has lead to the development of "Reject Loads", i.e. standby terminations which absorb power only when needed in case one transmitter fails. They must be ready to function at once without using water or energy in their hopefully eternal stand-by mode. Models 8785, 8787 and the most recent $8890-510$ series are ideal for this purpose. At $71 / 2 \mathrm{~kW}$, they are used in 30 kW FM or 50 kW TV installations. For higher capacity, contact us.

selection
 Bird TERMALINE RF Coaxial Load Resistors are listed below for your convenience in selecting a particular type according to power, model, connector, frequency and VSWR.

V'SWR max. values within specified frequency ranges (with connectors normally supplied)

BT1 TERMALINE ${ }^{\otimes}$ RF Coaxial Load Resistors

models 8010-16

2 WATTS DRY LOADS

Power Rating \qquad 2 wats continuous daty VSWR \qquad 1.0) 7 max. de to Tu00 Milz T. (K) mal 10% (a) 2000 NH , 1.1 max 2000 (0 $+000 \mathrm{MH}_{2}$

Ambient Air Temperature

Range
-40° Input Connector $\mathbf{1 8 0 1 0) \text { Female } \mathrm { N }}$ (8077)Male (80)5 Male TVC (80) 6 Frmale TVC

Weight 13/402 150 m Operation Position Finish \qquad Watts nickel platual
series 80
8052-53

Fower Rating \qquad contiourus duty VSWR \qquad
 12 male 1600 to 40001%
Ambient Air Tenzperature
Range -40° 枟 $+45^{\circ} \mathrm{L}$ Imput Connector \qquad Sex-tresor Weight $402(713 \mathrm{~g})$
Operating Pusition \qquad Finish \qquad Silverplatex

model 8080

model 8085

 model 8164

IDRY IOAD
Power Rating \qquad 25 watis continuous duty VSW/R 7.1 max de to $1(0) \mathrm{MHz}$ 1.25 mas. 10000 to 3500 MH ,

Ambient Air Temperature
Range \qquad $\left(1+45^{\circ} \mathrm{C}\right.$ Inplt Connector \qquad X lype (Male W normally supplied) Weight \qquad $907.1 \frac{1}{6} \mathrm{~kg}$ Operating Position Any Finish \qquad Lusterless black enamel

50 WATTS

H2 LCAD
Power Raving 50 watts conimuous dut. VSWR $\quad 1.1$ max. de to 1000 vite 1.2511 x .70000 O 3500 MHz

Ambie it Air Temperature
Range \qquad $\mathrm{IC}+45^{\circ} \mathrm{C}$ Input Connec int QC Type (Maic N normally supplied)

Weight

\qquad $75 \mathrm{oz}(0.4 \mathrm{~kg})$
Operating Posfon An ,
Finish \qquad I 1sterlessblack enamel iFed Speec. TT-E-527)

100 WATTS
 1R 1 . 3 A

Power Ratink \qquad 100 Watts con inuous duty VSWR _- 11 max do का $1000 \mathrm{M} \mathrm{M}_{\mathrm{z}}$ 12 max 1000 to 2500 MHz

Ambient Air Iemperature

Range \qquad Inpul Connector \qquad
Female Normalif supplied Weig it \qquad $4802 / 74 \mathrm{~kg}$
Operating Pcsition \qquad Any Finish \qquad I uaterless I lack enamel (fed. Spic. II- 5.527)

model 8166

model 8431

$8071 \cdot 72$

150 WATTS

DRY LOAD
Power Rating \qquad 150 watts continuous duty VSWR 1.1 max. de to 1000 MHz 1.2 max. 1000 to 2500 MHz Ambient Air Temperature Range \qquad -40° to $+45^{\circ} \mathrm{C}$ Input Connector \qquad QC Type
(Female N normally supplied) Weight $96 \mathrm{oz} .(2.7 \mathrm{~kg})$
Operating Position \qquad Anv Finish \qquad Lusterless black enamel (Fed. Spec. TT-E-527)

600 WATTS

DRY LOAD
Power Rating \qquad 600/500 watts ${ }^{*}$ continuous duty
VSWR 11 max dc to 1000 MH , 1.25 max. 1000 to 2500 MFz

Ambien: Air Temperature
Range \qquad -40° to $+45^{\circ} \mathrm{C}$.
Input Connector \qquad SQC Type
(Female N normally supplied)
Weight 13 lbs . (6 k! I)
Operating Position \qquad Any
finish \qquad Lusterless black enamil (Fed. Spec. TT-E-52?)

* (nntinuous fower Rating 6000 in Vertical fosition 500W in liorizental Position
SQC twpe Corinectors, as used on models - 8+31, $80-2$ and all Minimonitor Thruline Wattmeters, are available in Male N, FE male $\mathrm{N}, \mathrm{LHF}, \mathrm{C}, \mathrm{SC}, 13 \mathrm{NC}$.

model 80A

OIL. DIELECTRIC
Power Rating \qquad 20 watts continuous duty VSWR \qquad $1.1 \mathrm{max} . \mathrm{dc}$ to 1000 MHz 1.2 max. 10000 to 2000$) \mathrm{MHz}$ 1.3 max. 2000 to 3500 MHz Ambient Air Temperature
\qquad $-4)^{\circ}$ to $+45^{\circ} \mathrm{C}$.
Input Connector \qquad Fenale N Weight Operating Position \qquad $1 \mathrm{lb} .(1 / 2 \mathrm{~kg})$ Horizontal as shown, or vertical with connector down Finish _Grev wrinkle

oil cielectric
Pcwe-Rating \qquad 50 watis continuous duty VSWR _ 11 max. de to 1000 MHz 12 max .1000 to 4000 MHz Ambient Air Temperature

Range $\quad-40^{\circ}$ to $+45^{\circ} \mathrm{C}$.

Input Connectior \qquad QC Type (Fema e N normally supplied)
Meig't 4 lbs (1.8 kg)
Operating Position \qquad Horizontal, at sertical with the connector down Finish \qquad Grey wrinkle

\qquad C only

oil dielectric
Power Rating \qquad 80 watts continuoy duty VSWR 1.1 max. dc to 10.0 NHz 7.2 max. 1000 to 400 s Hz Ambient Air Temperature Range \qquad
\qquad $45^{\circ} \mathrm{C}$ Input Connector male N Weight
 (1.8 kg) Operating Position \leq Horizontal
80 WATTS
 II " || ||

BTRTERMALINE ${ }^{\text {® }}$ RF Coaxial Load Resistors

model 8135

model 8141
model 8143

150 WATTS

Power Rating \qquad 150 watts continuous duty VSWR $=-1.1 \mathrm{max}$ dc to $1000 \mathrm{NiHz}^{2}$ 1.2 max .7000 to 4000 MHz Ambiení Air Temperature

Range $-\quad-40^{\circ}$ io $+45^{\circ} \mathrm{C}$ Input Conneciot \qquad QC Type (Female N normallv supplied)

Weight

\qquad $6 \mathrm{lbs} .(2.7 \mathrm{~kg})$ Operatinp Position \qquad Horizontal onls Finish \qquad Light Navy grey baked enamel (MIL-[-15090)

500 WATTS

IL DISEETRIC

Power Rating \qquad 500 witts continuous dut) VSWR 1.1 mdx. do to 1000 MHz 1.25 max 1000 t 0250 N MHz

Ambient Air Temperature

Range -40° to $+45^{\circ} \mathrm{C}$.
Input Connector \qquad QC lype
Female N normally supplied Weight
Operating Position_Horizontai only Finish \qquad Light Navy grey laked enamel ($\mathrm{AlLL}-\mathrm{E}-1 \mathrm{\jmath}(0) \mathrm{O}$)

500 WATTS

(0) II [3ीIECTRIC

Power Rating \qquad 500 watts continueus duts
VSWR \qquad 11 mas de to lone M1Hz 125 max 7000 to $25(00 \mathrm{MH}$ 1 . 0 or 2500 to 3500 MHz
Ambient Air Tenoperature
Range -4()$^{\circ}(0)+85^{2} \mathrm{C}$ Input Connecior \qquad ix Type
Female N nomalle supplied
Weight \qquad 21 lbs .19 .5 kg
Ope ating Position_Horizontalonly Finish Light iats gey baked enamel ($\mathrm{A} 1 \mathrm{~L}-\mathrm{F}-15040)$

600 WATTS

OII DIELECTRIC
Power Fiating \qquad f(0) watis continuous duty VSU/E. \qquad 1.1 mar. de to 1000 MHz 7.2 12ax. 1000 to $3(5) 0 . \mathrm{MHz}$ Ambient Air Temperature

Rarge \qquad $-40^{\circ} 10+45^{\circ} \mathrm{C}$
Input Connectior \qquad OC Iype
(Fremale $\sqrt{\text { normally supplied) }}$
Weigh 1

- 20 ll) s (9 kg)

Operafig Pos tion_Horixomtal only Finish \qquad Light Navy grey baked enamel M M L-E-15090

Binc tremuluer r caxial Lood Resitios

model 8251

model 8833
model 8230

models 8890-8898

model BA-88

2500/5000 WATTS

OIL D ELECTRIC
Power Rating \qquad 2500 watt: $5(5000$ watts) contiruous dut.v* VSWR \qquad 1.1 max. dc to 10000 MHz 1.25 max. 1000 to 2000 NHHz

Ambient Air Temperature Range Operating Position \qquad $-40^{\circ}+0+45^{\circ} \mathrm{C}$

Onerked Thermosw ich P/N $8890-008$ is opturnal
Input

Connector

DC-LC: F
15:8 EIA Flg 50sz
35/5Unlg 50s
31/3 EIA FIg 5002
31/3 Unflg 51.50
31⁄3 Untlg 50 as
(Flush Ctı. Cond.)
3\% Untlg 50%

iRecessed Ctr Cond.)

*Power capacit" can be doubled through forced air coo ing with BA-88 [3lower Assembly on the right.

Weight	Model
$33 \mathrm{lbs}(15 \mathrm{~kg})$	8830
$35 \mathrm{lbs}(16 \mathrm{~kg})$	88.92
$35 \mathrm{lbs}(16 \mathrm{~kg})$	8895
$40 \mathrm{lbs}(18 \mathrm{~kg})$	8891
$40 \mathrm{lbs}(18 \mathrm{~kg})$	8896
$40 \mathrm{lbs}(18 \mathrm{~kg})$	8897
$40 \mathrm{lbs}(18 \mathrm{~kg})$	8898

Blower Assembly

Forced air cooling doublea the rated capacity of the 8890 series Loads on this page from 2500 watts to 5000 wat's (also doubles the ratings of TENULINE Attenuator model 8329 from 2 kW to 4 kW). With the blowers turned off but still attached, the original ratings are cut in half. Thermoswitches are recommended when using blower assembly.

Weight \qquad 18 勘 (8 kg)
AC Power Required 40 watts. Speciry 115 volts or 230 volts 5) $60 . \mathrm{Hz}$

series 8890-510

models 8785/8787

-IL IR EETCTISIC
Power Rating
23kW (7 Kikw continuous duty VSIER 1.1 mat de to $1000 \mathrm{MH}_{2}$ odel 8785

Model 8787
Power Rating \qquad 5kll ront. duty \qquad -1/ kW cont. dutr Input VSWR \qquad 1.1 mas de to 1000 MHI \qquad 11 25 max . 10 o(0) to 2000 OHHz

Ambient Air Temperalute tanke Operatíng Position
\qquad 248) $1^{\circ} \mathrm{t} 0+45^{\circ} \mathrm{C}$ izontal onls Finsh \qquad

 gowith Wame (anveruons in Inpiat

(continctor

जिए

Bina MODULOAD ${ }^{\circledR}$ RF Load Resistors

Hi-Power RF Calorimeters

Use as a standard for checking and certifying high power wattmeters.
For measurement of total RF power under amplitude modran on conditions
 meters relates Rt power measul - basic energy units I back accurate intermation en at al dit highly power dissipated in an RF ual hecause of he relativeli unicomplighed \otimes stem design he highefficiencs of tyan ter in the rew Bird water-cuoled loda Resistors and spanded-xale lalsoyy thermemeters his problabile errors me? ept within imall nown limits and er redout regure - no ,pectal skill lua rotablilits
The calorime Con be onperated as an zccurate digoctrating device is well a a on trectu/ (0) substitution devose When wed to corezare de or 60 Hz powerr with QF powemonerrer sesurc es are eblemmated and absolut accurat approse hes that of ine tre en power me:asurements

and power ranges are identical of watercooled high power if Rula 1 N toad on pager $31-13$ theaturenent uncertainties are hept to \% $\%$ at high oower and $1 \frac{1}{2}$ ", at lower power
Details on request

The new Self-Cooling MODULOAD ${ }^{\text {* }}$ RF Load Resistors operate continually in a few cubic feet of space (3 cu . ft @ $10 \mathrm{~kW}, 5 \mathrm{cu} . \mathrm{ft}$. @ 20kW, 11 $\mathrm{cu} . \mathrm{ft}$. @ 40kW) under full rated RF power without the need for external cooling water. These line terminating systems are, therefore, ideal for locations where water supply is unreliable, expensive or simply not available. Self-contained, with integral heat exchanger and protective devices, the new coaxial load systems operate in 5° to $45^{\circ} \mathrm{C}$ ambients $\left(-20^{\circ} \mathrm{C}\right.$ to $+20^{\circ} \mathrm{C}$ with 35% Ethylene Glycol antifreeze). 20 kW and 40 kW MODULOAD RF Load Resistors may be used at 25 kW or 50 kW respectively when they are operated in the following controlled environment: Air ambient temperatures of $+5^{\circ}$ to $+30^{\circ} \mathrm{C}\left(-20^{\circ} \mathrm{C}\right.$ to $+10^{\circ} \mathrm{C}$ with 35% Ethylene Clycol antifreeze).

MODULOAD transmission line terminations are designed for CW, AM, FM, SSB, TV and pulsed systems. Off-the-air measurement of average or peak power dissipated in the dummy load during transmitter maintenance and adjustment can be measured by THRULINE ${ }^{\circledR}$ Insertion Wattmeters available as optional companion packages (the slanted meter shelf bracket shown on the 20kW MODULOAD is supplied free of charge, when the Wattmeter is ordered together with the Load).

NOTE: For "Reject Load" applications in parallel dual transmitter operation, we recommend TERMALINE ${ }^{\text { }}$ Load Resistor Models 8785, 8787 and series 8890-510.

Power Rating \qquad 10kW cont. duty VSWR (max.) \& Frequency Ranges_1.1 max. dc to 1000 MHz 1.15 max. 1000 to 1490 MHz Input Connector \& Impedance \qquad 86:2) /8 EIA 5\% 50 ohms (8633) $31 / 6$ Unflg $\quad .5 \mathrm{ohms}$ (8634) $31 / 0 \mathrm{lg} 50 \mathrm{ohms}$ (8636) $15 / 84 \mathrm{~g} ~ 50$ ohms Weight (86.37) $\frac{5}{5}$ Ohflg 50 ohms NOIES: Peak Porefating Zaries tron
 i 10.600 watts $\mathrm{m} /$ avelage power) AC Power Req - 3 ampe a 115 volt 60) Hz (43/4 amps 230 volt: 50 Hz on sperial orded.

models $8641 \bullet 42 \bullet 43 \bullet 44$ models $8651 \bullet 52 \bullet 53 \bullet 5$

Power Rating \qquad 20 kW cont duts VSWR (max.) \& Frequency Ranges
$8642,8643,8644\left\{\begin{array}{l}1.1 \mathrm{mdx} \text {. do to } 500 \mathrm{NHHz} \\ 1.15 \text { max. } 500 \text { to } 700 \mathrm{MHz}\end{array}\right.$ $8641\left\{\begin{array}{l}1.1 \mathrm{max} .450 \text { g } 300 \mathrm{MHz}^{*} \\ 1.25 \mathrm{max} .150 \% 1500 \mathrm{MHz}\end{array}\right.$ Input Connector \& Impedance - $(8642$ \&1/3 Ent Flg 50 ohms
(8643) *) Untg 51.5 ohms UHF (0 aly) 3/8 Untlg 50 ohms $31 / 8$ EIA FIg 50 ohms Weight \qquad < $155 \mathrm{lbs}(70 \mathrm{~kg})$ Finish \qquad Light Navy Gre Bay finamel (MIL-E-15090)
 ACCESORIFS section Peak Power Rating varies tron Eymy a 1 He to 201 W a 10 m putor (20) (0) watts mas averay fyom
 50) Hz on spectal ord?

* Alo 50Ω at de- Nopo míz ror continuiti checksand cuhstitution calorimetri

40 KILOWATTS

Power Rating \qquad 40 kW cont. duty VSWR (max.) \& Frequency Ranges

$$
8652,8653,8654\left\{\begin{array}{l}1.1 \mathrm{max} \text {. dc to } 500 \mathrm{MHz} \\ 1.15 \mathrm{max} .500 \text { to } 700 \mathrm{MHz} \\ 1.1 \mathrm{max} .45000,300 \mathrm{MHz}^{\circ} \\ 1.25 \mathrm{max} .130+1500 \mathrm{MHz}\end{array}\right.
$$

Input Connector 8651
nput Connector \& Impedance
(8652) 3\% A FIg 50 ohms
(86 (3) $1 / 8$ Unflg 51.5 ohm:s UHF 845
Weight \qquad . 575 kg

Finish \qquad Light Navy Grevoaled Ename NOTES: Coupling kitw and aday 8 to $1 \%^{\prime \prime}$ and $6, \%^{\prime \prime}$ line available $S e=$ ACCESSORIES section
Peak Power Rating varies robath a 1 us $10+0 \mathrm{k}$ (1) a 10 ms pulses 40.000 watts met alerag me AC Power Recquired 14
ic Hz on perbil inder

Winomal [olly $P / \sim 6+52-011$
"Aico 50Ω at de <000 ber continumy checks and ubstitution ctionimetrs

series 8710

model 8720

Size and weight tell the story of the direct-water-cooled Load Resistors displayed in this section: Instead of constructing a transmission line to the load, the loads are simply connected to the line wherever needed.

The 1000 -watt model 8710 , for instance, weighs only 6 oz (170 grams)only $11 / 2$ times the weight of our aircooled 5 watt load. Frequently used as sever-loads, these non-magnetic miniature high power terminations can be mounted inside focusing coils or in any location where space is at an ultimate premium.

Even the 15 kW to 50 kW Loads are light enough to just bolt to the end of a line in any position, where they look like an 18 -inch extension of a $3^{\prime \prime}$ transmission line. These high power loads (as well as the 10 kW series) are furnished with automatic controls for interlocking with the transmitter to protect against waterflow failure.

At time of order, specify desired voltage of interlocking controls (115 or 230 Vac).

Direct water-cooled TERMALINE ${ }^{\star}$ Loads from 10 kW to 50 kW may be ordered mounted on a dolly (with or without a THRULINE Wattmeter) for easy floor maneuvering between transmitter checks.

1 KILOWATT

WTER GODT SD
Power Rating \qquad 1000 watts continuous cluty VSWR _. 1.1 max . de 103000 MHz $9.25 \mathrm{max} .70(\mathrm{kc}) \mathrm{IC}) 35(\mathrm{c}) \mathrm{MHz}$ nput Connectur \qquad Seebelow Weight $\quad 8719877750 z+142 \mathrm{~g}$ (8773) $14 \cot (4()) g$ with $18^{\prime \prime}$ ($1 / 2 \mathrm{~s}$ (1)) suting
Water Connectiors \qquad $3^{3 / 16^{11}}$ conper tubing with 镸' - PT nut and union
Flow Rate
go- $80^{\circ}: 1-$? 9 pm 1-3 liters/min Operating Position Any
Finish

Bright silver plated

5 kW
 WATER COOLED

Power Rating \qquad continuous duty
VSNR (maxil \& Firequenc)
Fanges -17 max. de to 1000 MHz 12 max 1000 to 2000 MHz
Input Connector \qquad 5/8 EIA FIg
We ght
\qquad 2 lbs . (7 kg)
Water Connections \qquad㾕" copper tubing with FPI nut
Flow Rate
$1-4 \mathrm{gom} / 475$ liters min$)$ Operating Position Any:
Fin sh \qquad Bright nickel plated

models $8732 \bullet 36 \bullet 37$

models 8742•43/8542

8752•53•54/8552
 models 8762/63/8562

8340•41

TENULINE Attenuators are an indispensable tool in the design, production and maintenance stages of communications equipment. Applications include isolation from other components in a test set-up, power reduction for measurement and signal analysis with negligible intermodulation and harmonic generation, and as a comparison standard.

Until the introduction of the HighPower Attenuator, only reactive probes and directional couplers were available for scope signal observation, frequency checks and broad frequency analyses of transmitter output.

TENULINE ${ }^{\text {® }}$ High-Power RF Attenuators have several advantages over directional couplers in applications such as Radio Frequency Interference, where a transmitter output must be analyzed for the presence and level of undesirable signal components. First of all, the attenuators are the proper termination for the transmitter and 99.9% of the output power is dissipated in them. No additional load resistors are needed when used as an attenuator, and the units are also self-sufficient when used as dummy loads. Where four individual couplers may be needed to span the range from 30 to 500 MHz , the High-Power Attenuator covers the entire range and below. Obviously the attenuation curve of one resistive device is more uniform than that of four resonant reactive devices.

The most important advantage, though, is the fact that the attenuation can be verified at 60 Hz or with direct current and Wheatstone Bridge measurements. TENULINE Attenuators are laboratory calibrated at six RF frequencies and at DC.

model 8321

model 8323
model 8322

50 WATTS

Power Rating

\qquad continuous duty Input VSWR 1.1 max. de to $500 \mathrm{MH}^{2}$ Nominal Attenuation \qquad 30 dB
Max. Fiequency Deviation
$\pm 1 / 2 \mathrm{~dB}$ dc to 500 AlHz Calibration Frequencies 30, 100,200
30) $400.50(1,11172 \pm 112 \mathrm{~dB}$
 at firm it order
Ambient Air Temperature
Range \qquad -40° to $+45^{\circ} \mathrm{C}$ Connectors - QC Type Female input and output normally supslied) Weigh \qquad 6.5 lbs .63 kg Operating Position Horizonta only Finish \qquad Light Navy grey baked enamel iMIL-E-55090)

Power Rasing \qquad 700 watis continuous duty Inpu VSWR 1 Imas de 10 50 Mitz Nomrinal Attertation \qquad 30 dB
Max Frequency Deviation
士 $1 / 2$ dB de to 500 M MHz Calitration Frequencies $30-102) \quad 210$ $300=400$, $0(0) \mathrm{M} 1 \mathrm{H} 7$ (a $\pm 02 \mathrm{~d} 13$
 ar nta ut mider
A.mbien Air Temperature

Ranger - $40^{\circ} \mathrm{ta}+45^{\circ} \mathrm{C}$
Conrecters $\quad Q C$ Type (Female N inpotant output nofmally supplied Weight \qquad $11 \mathrm{lf} 5 \mathrm{~F} \mathrm{hg})$ Operating Posit on Horizontal only Finish $-\quad 1$ Lisht Navy grey baked enamelintle-t-15(190)

200 WATTS

Power Rating \qquad $2(0)$ watts contis)uous duty Input vSWiR 1 I max de 10500 NH, Nominal Attenuation \qquad 30) dB Max. Erequency Deviation
$\pm 1 / 2 \mathrm{~dB}$ de 0500 MHHz
Cal bration Frequencies 30100,200 , 300) $400.500 \mathrm{~N} 1 \mathrm{l} / 2 \pm \pm 0.2 \mathrm{~dB}$
spoetal whemem to 1 (un) hitt avalable It titiee or crder
Ambient Air Temperature
range \qquad $-40^{\circ} t(1)+45^{\circ} \mathrm{C}$. Connectars __ QC Iype (Female N input and ouput normally supplied) Weight \qquad .19 lbs .19 kg)
Operating Pcsition Horzontalonly Finish \qquad light Navi grey baked ename| ! $\mathrm{Al\mid L}-\mathrm{E}-15090$)

500 WATTS

Power Rating \qquad 500 watts Input continuous duty VSWR \qquad 1.1 max de to 500 MHz

Nominal Attenuation

\qquad 30 dB

Max. Frequency Deviation

$\pm 1 / 2 \mathrm{~dB}$ dc to 500 MHz
Calibration

Frequencies

\qquad 30, 100, 200,
$300,400,500 \mathrm{MHz} @ \pm 0.2 \mathrm{~dB}$ Spectial callibration to 1060 MFL a wallable at time of order
Ambient Air Temperature Range \qquad -40° to $+45^{\circ} \mathrm{C}$
Connectors \qquad QC Type (Female N input and output normally supplied) Weight $25 \mathrm{lbs} .(11 \mathrm{~kg})$ Operating Position Horizontal only Finish \qquad enamel (MIL-E-15090)

1 KILOWATT

Power Rating \qquad 1000 watts Input continuous rluty VSWR \qquad 11 max. dc to 500 MHz Nominal Attenuation \qquad 30 dB Max. Frequency Deviation
Calibration $\quad \pm 1 / 2 \mathrm{~dB}$ dc to 500 MHz Frequencies \qquad 30, 100, 200, $30(0,400,500 \mathrm{MHz} @ \pm 0.2 \mathrm{~dB}$ Spectial calibration to) 1006 M M Mz a alalable at time of order
Ambient Air Temperature
Range
-40°
Connectors
-40° to $+45^{\circ} \mathrm{C}$ (Female LC input, Female N output normally supplied)
Weight \qquad $33 \mathrm{lbs} .(45 \mathrm{~kg}$) Operating Position - Horizontal only Finish \qquad Light Navy grey baked enamel (MIL-E-15090)
NOTE: Overlun Thermoswitch PN $24=\{1566$ is available

2 kW\&4 kh

Power Rating* \qquad 2000 watts Input continuous duty VSWR \qquad 1.1 max. dc to 500 MHz

Nominal Attenuation \qquad 30 dE
Max. Frequency Deviation
Calibration
$\pm 1 / 2 \mathrm{~dB} \mathrm{dc}$ to 500 MHz Frequencies \qquad 30, 100, 200 .
$30(0,400,500 \mathrm{MHz} @ \pm 0.2 \mathrm{~dB}$ Spectal calibration t1) w(t) MHz avallabler. at time of order
Ambient Air Temperature
Range \qquad -40° to $+45^{\circ} \mathrm{C}$.
Connectors QC Type (Female LC input, Female N output normallv supplied)

Weight

\qquad 33 lbs . 45 kg)
Operating Position \qquad Horizontal

Finish \qquad Light Navy grey baked enamel (MIL-E-15090)
NOTES: Overload Thermoswitch P/N 8892-t) 3 is avallable
*Power ritirg is intmedsed to 4 (go) IV when used with accesoun blower Model 13 \& 88 See patae ${ }^{2} 7$
Dimersion. identical to model 8327 to the left

5% power Meacurficnt 25 milliwatts to 2500 watts Frequency? $2 \mathrm{MHz-2300} \mathrm{MHz}$

TERMALINE
 RFAbsorption Wattmeters

BIR(D TERMALINE FRF Absorption Wattmeters are direct-roadirg term nation instruments fo sepicing and testing 50 ohm commenicitis as sustems. Theit individual frequancy coverage is generally wide than that of a directional wittm eter, and ari integral load resistor for the dissipation of line pow dotring meadsurement ofters the ad ditior.al convenience of a single. compact convenience of a sinjle. compact or 3 on he foldo ut page

Model b 51 ofer; a "custom-made Fleviblite in power scale and tre quency range trom 1 watt to 100) watts and trom, 2 ta 23) 0 MHz . Full scale powe- is determ ned by the Element, e.g. sole tiono a 50 B results in a 50 watt TERHALINE Moxdel 6151 $50-125 \mathrm{AHz}$, which can also be used as a 150) watt ter mination trom do to 2300 MHz . Chonse from Tables 1, 2

Bitu tremune ra sompoion watmees

611/612

60/80 W

model 611612

Power Rating	60 watts	80 watts
Power Scales	$0-15 \mathrm{~W}$	$0-60 \mathrm{~W}$

VSWR \qquad 1.1 max dc $10,500 \mathrm{MHz}$ Frequency Range \qquad $30 \pi \$ 0 \mathrm{MHz}$ Input Connector \ldots Female N Weight \qquad Ibs. $(3 \mathrm{~kg})$ Finish Lighturavy grey baked enan (MIL-E-15090)
Accuracy \square W\% of full scale
Srecial calibration to KOO MHz available at time of order Q -
Meter Housing Conge detached trom load for convener fading with 3 cable This is a teature on Models 611, 6212. 61, 6151 th154 and 6755 TwMALINE Wattmeters

100 WATTS

Power Rating \qquad 100 watts
Power S̃cales \qquad 0-1/0-2.5/0-5/0-10 0-25/0-50/0-100 watts
VSWR \qquad 1.1 max. dc to 1000 MHz 1.25 max. 1000 to 2300 MHz Frequency Range \qquad select any Element from 2 to 2300 MHz and up to 100 watts from Tables 1,2 or 3 listed with the Model 43 (p. 47A) Input Connector \qquad QC Type Female N normally supplied)
Weight \qquad 8 lbs. $(3.6 \mathrm{~kg})$
Finish \qquad Light Navy grey baked enamel (MIL-E-15090)
Accuracy \qquad $\pm 5 \%$ of full scale

Military Test Set
61S1.A (AN/URM-167)
consist, of:
1 ea. 6151
2 ea. PiN 433-7 Element 25 watts $1000-1800 \mathrm{MHz}$
2 ea. P/N 433-8 Element 25 watts $1800-2500 \mathrm{MHz}$
1 ea. Transit Case P/N 2742-001

Power Rating \qquad 150 watts
Power Scales \qquad 0-5, 0-15, (0-50; $0-150$ watts VSWR _1.1 max. de to 500 MHz Frequency Range__ 25 to 500 MHz Input Connector \qquad Female N
Weight \qquad $8 \mathrm{lbs} .(3.6 \mathrm{~kg})$ Finish \qquad Light Navy grey baked enamel (MIL-E-15090),
Accuracy \qquad $\pm 5 \%$ of full scale $25-500 \mathrm{NHHz}$

model 6154

model 6155

Power Rating \qquad 150 watts Power Scales \qquad 0-5, 0-15, (0-50) () 15 () watts VSWR \qquad 1.1 max . dc to 1000 MHz Frequency Range \qquad to 1000 MHz Input Eonnector \qquad Female N Weight \qquad 8 lbs .4 .6 kg Finish \qquad Light Naw grey boked enamel (MIL-E-15)90)
Accuracy \qquad $\pm 5 \%$ of fu I scale $25-5(1) \mathrm{MHz}$
$\pm 10 \%$ of full scale $500-1000 \mathrm{MHz}$

150 WATTS

Power Rating \qquad 150 watts Power Scales \qquad 0-50. ()-150 watts VSWR 11 max. dc to 30 MHz Frequency Range \qquad 2 to 30 MHz Input Connector \qquad QC Type (Fen ale N normally supplied) Weight \qquad $8 \mathrm{Hbs} .(3.6 \mathrm{~kg})$ Finish \qquad Light Naw grev baked enamel MIIL-E-15090)
Accuracy \qquad $\pm 5 \%$ of full scale

Power Rating \qquad 500 watts Power Scales \qquad $0-25: 0-7114$
(1).5 ©hy th

V \subseteq WR 11 max. cc to $50 \mathrm{~m} / \mathrm{Hz}_{2}$
 Input Connector \qquad Q Trpe
(Fermate N norm anty upplied) Weight

(11 kg) Finish \qquad Light \langle y y grey baked enapein IIL-E-15090)
Accurack

of iull sciate Spocial calitration to limat MHE at alable at time of order
METER: AF" metm rhork mountiod in
 id m tot able
D) mersitas
$[171 \times 725$

World Radio History

model 694

model 6835
model 67C

Meters \& Line Sections 50 ohms nominal

METERS

$\begin{gathered} \text { Bird } \\ \text { Part No. } \end{gathered}$	- Size	Standard Scales	Meter Seasitivity Microamps
? 080 -(1)02	312"Round	25.7010011	30)
$3080-005$	$33^{\prime \prime}$ S Square	$25 / 5010 \times W$	30
2150-015	3)" Rectangular	25/日) $10 \times \mathrm{W}$	30
$2000-030$	41/2" Round	$5 / 1025+W$	100
9210-100	In Howing	25, (1) 100 W	30
$5810-1099-$	In Housing	5/11) $256 W$	100
8300	Kit w Cable	25/3) 1010	30

Portable THRL'LINE Wattmeters an be cutom-as emved iroms (omponent parts.

1. Triple scale case-mounted meters, 18 . Part Vo. $427(0-i 00)$ with .
 ment. Both read directly in watts
2. Songle or double socket Line Sections ton either cable or rigid trans. mossion lines Line Sections or cables acce)t QC Quick-Chanze Fonnectors see Indev) to mate with a 7 common RF connertor - without pertormance-degrading adapter. Several prornianently in stalled I ine Sections can be used with a single portable meeter far mantenance checks at each sation

50Ω LINE SECTIONS

$515 \Omega 20 r 75 \Omega$ LINE SECTIONS
AVAILABLE ON SPECIA ORDEF:

Plug-In Ele nents on Foldout Page

Tables

-4230-00)6-1	* $4230-053$	2 C - izpe	Tables
* 42 3)-059	- $4522-002$	2C-Ivpe	1-6
$4501-0000$	4502-(0)0	\%/3" E 4 Flanged	
4.12-000)	$4715-(0) 0$	$\begin{gathered} 1 \% \text { " } 114 \text { f langed } \\ \therefore-1(1000 \mathrm{MH} / 1) \end{gathered}$	15/8
$471-000$	$4.16-10)$	15/8' I 1 A llanged 4: 5 220041Hz	Inquire
46000000	4610-()07)	3) " 114 Flang ${ }^{\text {a }}$ d	31/8
$4805-000$	48()2-(00)	$3{ }^{3}{ }^{\prime \prime}$ Unflanged	31/8
4902-(10)	4905000	6) \% " 14 Flanged	6\% 50Ω
$49160(1)$		4" f langed	If quire
4930-000)	4931-(4i)		6\% 755

${ }^{4}$ Lime Section supplied less connectors: wecits $Q C$ - It pe connectors when crdering isee p. 42).
3. Revermble Plug-In Flements lor power arid irequenct range selection When ordering spucits the sart number of the Line Section as well as the power and trequenci 'ange for et ith element nellided
for nor portable cust)m instal atuons, chowse from the precision panel meters listed It four applicati in requires other meter mokes or stile's consult the tactors.

Binl Accessories

QC-Type (Quick Change) Connectors

Many TERMALINE Load Resistors, Attenuators and Absorption Wattmeters, as well as THRULINE Wattmeters, are equipped with the patented QC-Type QUICK-CHANGE RF Connectors. These models may be ordered with the connector(s) most convenient for use with your equipment. Changes in connectors may be made in the field merely by removing four screws from the connector baseplate, substituting connectors, and replacing the screws. The change from one constant impedance connector to another may be done without affecting the electrical characteristics of the QC-equipped unit.

Specifications for each model list the connector type normally supplied when no other is specified. Maximum VSWR values shown in these specifications are obtained with the normally supplied connector.
QC-Type Connectors are also used on some RF Filters and Power Sensors, and on Line Sections.
We recommend ordering QC-Types likely to be required for inter-connection with your equipment in addition to the QC Connector mounted on the BIRD product, to avoid the use of performance-degrading adapters.

Adapters, Connectors, Kits

Bird Part

Number Description
4240) 165 QC IF , to $Q C$ (F) for conrecting anv tovo QClype Connectors to form a "Between-Series" Adapter
4240-244 QC (F) to QC. (M) Right Angle Adapter

EIGID LINE REDUCERS ${ }^{1}$

$4240-201$ 7/8" EIA Flanged to QC-Tvpe Connector $4220-26015 / 8^{\prime \prime}$ El A Flanged to QC-Tvpe Connec of $4240.19431 / 8^{\prime \prime}$ L14 Flanged :o QC-Type Connector 4240-187 31/8" Unflanged (51.5-ohms to) Connector

STANDARD BETWEEN-SERIES ADAPTER;

Description

5-793-2 Male N to Female UHF (SO-239)
5-792-2 Female N to Male UHF (PL-259)
5-793-1 Male N to Female E,NC
3730-001 Male LC to Female N

COUPLING KITS

Bird Part

Identification

UC-46.1 U
UG- $313 / \mathrm{U}$
UG-? ()1A/U
UG-9994, U

Number Description

4240-220 Complete kit for $7 /$ " $^{\prime \prime}$ EIA Flangec Line
4712-0)20 Complete kit for $1 \%{ }^{13}$ " EIA Flanged Line
4600-020 Complete kit for $3:^{\prime} 8^{\prime \prime}$ EIA Flanged Line
4902-020 Complete kit for 6,1/8" EIA Flanged Line
5-289 Coupling kit tor $378^{\prime \prime}$ Unflanged 51.5-ohin lire, including sleeve clamp band, $=1.5$-ohm bullet, and 50 ohm adapter
IThes versatile refucers for impedance nerdsurements and othey apol catoons where it is desirable to kerep retle tions io a minimum eviluit less than 1.5 insertion VSWR up to $1000+1 \mathrm{~Hz}$

MISCELLANEOUS ADAPTERS AND CONNECTORS
8110-186 C.A-8B Male Coplanar t) Female N Connector (used on certain obsolete models)
4240-180 Male Coplanar to QC Receptacle, to be used with any QC Connectoi
7500-076 Standard BIRD Right Angle de Connector Plug (mates with de coutput connector used on BIRD equipment)
4712-015 15/8" EIA Flanged to $7 / \varepsilon^{\prime \prime}$ EIA Flanged line (only ${ }^{1 / 2 "}$ long)
$4600-02531 / 8^{\prime \prime}$ ElA Flanged to $75 / 8^{\prime \prime}$ EIA Flonged line (only 5/8" long)
4902-025 31/8" EIA Flanged to $b 1 / 8^{\prime \prime}$ EIA Flonged line (onlv 5/8" long)

The three Adapters between rigid transmission lines of different sizes listed above are unique for their compact ness and ease of installation. Two of these Adapters are shown in the right photo, one connecting a $1 \frac{1}{8}$ " double socket line seection to a $31 / 8^{\prime \prime}$ transmission line ($\mathrm{P} / \mathrm{V} 460()$ (025), and the other adapting a $6 \frac{1 / 20}{\prime \prime}$ single socket line section to a $31 / 8^{\prime \prime}$ transmission line (PN 49(02025). The Adapters are also displayed unassembled in the photo on the left.

Bind

Directional Coupler Elements

For Sigmal Leveling. Frequency Control, Waveshape Monitoring Local Oscillalor or Marker signal Injection. etc.
Series 4274 RF Directional Coupler Plug-in Elements are similar in design to the many power measuring Elements available for the various 50 ohm THRULINE Wattmeters They extract a calibrated amount of power from the main line signal flowing in the direction of the arlow. This attenuated signal is NOT rectified (as in the standard measuring Elements), but is brought out through a female. BNC connector on top of the Element. Even though the 4274 series Coupler Elements fit the standard sockets there are no do output tabs on the Element body since no do is produced. There is an added convenience to this construction which has not received the deserved attention: Since the couplers are directional, rotat ng them between ($)^{\circ}$ and 180° varies the amount of coupling like a variable attenuator. Minimum attenuation of the main line signal is the NOMINAL COUPLING $\pm 7 \mathrm{~dB}$ sown for each unit within the stated FREQUENCY BAND.

$\begin{array}{lccc}\text { CATALOG } & \text { FREQUENCY } & \text { NOMINAL } & \text { MAX. MAIN } \\ \text { NUMBER } & \text { BAND } & \text { COUPLING LINE POWER }\end{array}$

$400-50$	$50-100 \mathrm{MHzz}$	-40 dB	$1,000 \mathrm{~W}$	FOR
$400-75$	$75-150$	-40 dB 3	$1,000 \mathrm{~W}$	QC-TYPE,
$400-125$	$125-250$	-40 dB	$1,000 \mathrm{~W}$	CABLE,
$400-225$	$225-450$	-40 dB	$1,000 \mathrm{~W}$	OR T/8"
$350-400$	$400-800$	-35 dB	500 W	EIA LINE*
$300-750$	$750-1250$	-30 dB	100 W	

501-50	$50-100 \mathrm{MHz}$	-50dB	10,000W	
501-75	75-150	-50dB	10,000W	FOR
501-125	125-250	-50dB	10,000W	15/8"
501-225	225-450	-50dB	10,000W	EIA
+51-400	400-800	-45dB	5,000W	LINE
401-750	750-1250)	-40) $\mathrm{dB}^{\text {d }}$	1,000W	
553-50	$50-100 \mathrm{MHz}$	$-55 \mathrm{~dB}$	25,000W	
553-75	75-150)	-55dB	25,000W	FOR
553-125	125-250	-55dB	25,000W	31/8"
553-225	225-450)	-55dB	25.000 W	EIA
50.3-400	400-800)	-50)dB	15.000W	LINE
503-750	750-1250)	$-50 \mathrm{~dB}$	70,000W	
606-50	50-100 ${ }^{\text {HHz }}$	-60d13	50,000W	FOR
606-75	75-150	-60dB	50,000W	61/8
606-125	125-250	-60)dB	50,000W	EIA
606-225	225-450	-60)dB	50,000W	LINE
556-400	400-800	-55dB	25,000W	
covers $2=10(8) \mathrm{SH}_{2}$ Approximate agnal-simple leaels are -50dB Main Line Pemer is 500 W				

$\square \int \square \begin{aligned} & \text { Accessories } \\ & \text { COAXWITCH }\end{aligned}{ }^{\otimes}$ Coaxial Selector Switches

description:

BIFD COAXWITCH Codxial Selector Switches employ a unique rugged anc reliable design which permits positive contact, low insertion V'SWR and negligible cross talk between channels. The switching mechanism is $4!2^{\prime \prime}$ of RG-87/U Teflon cable which is sulled away from the mating Male N connectors and rotated t,) the desired switch position. 75 ohm versions of all models shown available on special order.

installation:

BIRD Switches may be panel-mountec All connectors are located on the rear of the hous ng and are paralle to the shaft of the switch. All cornecting cables may be laced togetheı without the use of right-angle adapters.

operation:

BIRD Switches have the valuable adwantage that they cannot be oferated accidentally, but must be operated by intentional sequentia movement. The knob must be grasped, puled out, rotated, and pushed in to make contact

SWITCHING CONFGURATIONS

MODE_	7422	7441	7431	74	718	7181	$72-2$	$72-R$
POSITIONS	2	3	4	6	8	10	2	resersible
COAXIAL	1	1	1	1	1	1	2	2

TYPICAL OPERATING VALUES

Frequency \quad SVV/R Insertion Maximum RF Power | Loss Rating at $+65^{\circ} \mathrm{C}$. |
| :---: |

100 MHz neglipible () $2 \mathrm{~dB} \quad 850 \mathrm{witt}$ $1000 \mathrm{MH}, 1$ (6пns $09 \mathrm{~dB} \quad 200$ watts 4000 M1 1 1.30 rtax 22 dB

SPECIFICATIONS (all models) Weight

single-cficuit, six-postion
mcdel 74

Useful frequency Range
Max mun RF vole ge
Attequat ion to (1)wsed Channe Ambien Temperatare Range
de to 10 C tz
500 volts ms

twa-circtit, two-posit.on modm/ 7ī-2

$7 \rightarrow 7$ 75-ohm Equipment
 TERMALINE ${ }^{\oplus}$ RF Coaxial Load Resistors

8040•41

8087•88

model 8167

5 WATTS
DRY LOADS
Power Rating \qquad 5 watts
continuous duty
VSWR \qquad 1.1 max dc to 1000 MHz 1.15 max. 1000 to 2000 MHz 1.2 max. 2000 to 4000 MHz

Ambient Air Temperature
Range \qquad -40° to $+45^{\circ} \mathrm{C}$. Input

Connector \qquad (8040) Female N (8041) Male N

Weight \qquad (8040) 53/4 oz. (160 g) (8041) $63 / 4 \mathrm{Oz}$. (190 g)

Operating Position \qquad Any Finish \qquad Lusterless black enamel (Fed. Spec. T-E-527)

Power Rating \qquad 25 watts continuous duty VSWR \qquad 1.1 max. dc to 1000 MHz 1.15 max. 1000 to 2000 MHz 1.25 max. 2000 to 3000 MHz

Ambient Air Temperature
Range \square -40° to $+45^{\circ} \mathrm{C}$. Input
Connector \qquad (8087) Female N (8088) Male N

Weight \qquad (808 ־) $73 / 4 \mathrm{oz}$. $(220 \mathrm{~g}$) (8088) 8 oz. (227 g)

Operating Position Any Finish \qquad Lusterless black enamel (Fed. Spec. TT-E-527)

DRY LOAD
Power Rating \qquad 100 watts continuous duty VSWR \qquad 1.1 max. dc to 1000 MHz 1.15 max. 1000 to 1500 MHz 1.25 max. 1500 to 2500 MHz Ambient Air Temperature

Range \qquad Input Connector \qquad C. (Female N normally supplied) Weight \qquad 3 lbs . $(1.4 \mathrm{~kg}$)
Operating Position
Any Finish \qquad Lusterless black enamel (Fed. Spec. TT-E-527)

Ideally, coaxial filters are linear, lossless and passive frequency discriminating devices, equivalent to a tran mission line of 50 ohms impedance in the passband and to an open or short circuited line in the stopband. (Inciden power at stopband frequency is reflected back t the transmitter).

BIRD engineers have decades of experience in designin, transmission line filters in the propinquity* of the idea A handful of examples with typical cardinal specification and transmission profiles on the following pages illustrate the diversity of our efforts. A wide selection of parameter permits the best electrical performance within a specifie physical envelope.

Listed on the Inquiry Forms in the back of this catalog the design information required to meet your particula application. These parameters are interrelated and any on specification may be optimized. An engineer will b assigned to your inquiry to guide it through personal co sultations to an acceptable proposal and throughout th manufacturing phase.

The same knowledgable staff carries responsibility for th hundreds of models of RF Power Sensors, such as the fe pictured on the next page. These directional couplers wit dc or RF outputs are custom designed for incorporation i your transmitter or test equipment at the time o manufacture. THRULINE Power Sensors with one, tw three, four or five sampling ports on the 50 -ohm block hav been used for relay operation for transmitter protectio feed back for output leveling, video scope display, percen modulation measurement, initial tuning with low-powe elements coupled with two higher power (10 times elements for operational indication, frequency checks, a well as for directional power measurement.

The selection of parameters includes the number of RF dc output ports, type of RF and dc connectors, output vo tage, load resistance and, of course, frequency range. C you may prefer a.space-saving combination of a Powe Sensor and a Filter-our SENTRILINE Filter Coupler-an even add a fast-acting transmit/receive RF switch.
We hope that the inviting examples illustrated here wi motivate you to contact BIRD first when your design cal for an RF filter, sensor or both.

[^2]
P77 ${ }^{\text {75-ohm Equipment }}$ THRULINE ${ }^{\star}$ RF Directional Wattmeters

models 4307-4317

model 4930

Model 4307
25-5000 W max., CW $\pm 5 \%$ of full scale \qquad
Model 4317
ower Rating \qquad ccuracy Average (CW) Mode: , peak or CW Peak Pulse or Envelope Power Mode:

3 lbs. $(1.4 \mathrm{~kg})$ \qquad $\pm 8 \%$ full scale reight \qquad
\qquad 8% of full scale
$4 \mathrm{lbs}(1.8 \mathrm{~kg})$ lement Weight \qquad $3 \mathrm{oz} .(85 \mathrm{~g})$
Isertion VSWR with N Connectors \qquad 1.05 max. inish \qquad Light Navy Grey Baked Enamel (MIL-E-15090) IODEL 4307 measures CW and is functionally the 75 -ohm equivalent of the lodel 43, while model 4317 is the 75 -ohm version of model 4311. As such, it ieasures practically any type of 75 -ohm transmission-pulsed, FM or CW, and eak envelope power (PEP) of SSB or AM signals. Model 4317 operates on relaceable batteries.
ements on this page are designed exclusively for models 4307 and 4317.

5Ω ELEMENTS (CATALOG NUMBERS)

6-1/8" LINE

Impedance \qquad 75 ohms nominal Insertion VSWR \qquad 1.05 max.

Connector \qquad 61/8" EIA flanged
Weight__(line section) 13 b/ 6 kg) (meter) 5 lbs. $\quad .1 / 4 \mathrm{~kg}$)
Accuracy \qquad $\pm 5 \%$ full scale METER: 4'," meter shock munted in alunmum (arrsing (ase with 10$)^{\prime}(3 \mathrm{~m})$ shielded meter catle
Dimensions w.
141 - 165×85
ELEMENTS Power Range Catalog No. FOR MODEL 4930

Model 4930 is 50 kW version of Model 4962, designed primarily for UHF-TV transmitters Wh ardering, specify transmitter trequencl -3 hel) between $470-890 \mathrm{MHz}$. Model 4937 double-socket unit for simultaneousell switched measurement of both torwar eflected power. Double-socket Line S P.N 4931-000 is for use with Wattch of Power
Menitor; Alarm
Supplied with one
bullet: P/N 4930-021.

Plug-In Elements for THRULINE ${ }^{\oplus}$ Wattmeters
 50 ohms nominal

cable-connector equipped rigid line series

Table 1 sTANDARD ELEMENTS (CATALOG NUMBERS)

Power Range	Frequency B ands (MHz)					
	30	$\begin{aligned} & 25- \\ & 60 \end{aligned}$	$\begin{array}{r} 50- \\ 125 \end{array}$	$\begin{aligned} & 100- \\ & 250 \end{aligned}$	$\begin{aligned} & 200- \\ & 500 \end{aligned}$	$\begin{array}{r} 400- \\ 1300 \end{array}$
5 watts	-	5A	5B	ic	3D	5 E
10) watts	-	10A	10 B	10C	10D	10E
25 watts		25A	$25 B$	25 C	25D	25E
50 watts	50 H	504	50 B	30 C	50 D	50 E
100 watts	100 H	100 A	100 B	100)	100 D	1 OE
250 watts	250 H	250.	250 B	250 C	250 D	2 OL
500 watts	$5(1) \mathrm{H}$	500 A	51008	500 C	500 D	5, M)E
1000 watts	1000 H	10004	10008	1000 C	1000 D	101)(0E
2500 watts	2500 H					
jorowatts	$5(\mathrm{KOOH}$					

Table 2 LOW-POWER ELEMENTS

Table 5 HIGH-POWER ELEMENTS (Peak only)

Power Range	Frequency Bands (MHz)					
	$\begin{aligned} & 25- \\ & 60 \end{aligned}$	$\begin{aligned} & \hline 50- \\ & 125 \\ & \hline \end{aligned}$	$\begin{array}{r} 100- \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 200- \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 400- \\ & 1000 \end{aligned}$	$\begin{aligned} & 950 \\ & 1260 \\ & \hline \end{aligned}$
$5(0)$ watts	-	-	-	-	-	500 J
1000 watts	-	-	-	-	-	1000. J
2500 watts	2500 A	$25(1) 13$	2500 C	25(n)D	2510 E	2500 J
5000 watts	5000 A	5000B	5000 C	5000D	50:ME	500)\% J
100000 watts	10000 A	1000013	10000 C	10000 D	100.)0E	

Table 6 MILLIWATT ELEMENTS

100 mW	Cat. No.	250 mW		Cat. No.	$500 \mathrm{~m} / \mathrm{N}$	Cat. Ner.
$72-76 \mathrm{MHz}$	430-2	70	MHz	$430-34$	72-76 M17	430) 13
$108-118 \mathrm{MHz}$	430-6	72-76	MiHz	430-22	105-12(1 MP/,	$430-3$
136 MHz	430-9	108-118	NiHz	+30-24	240-29 (MH\%	4305
174 MHz	430-10	130-150	MHz	430-13	329-326 MH,	430 23
$328-336 \mathrm{MHz}$	430-3	150-180	MHz	430-15	$455-47 \mathrm{~N} \mathrm{NHz}^{2}$	430-3)
400 MHz	$430-7$ $430-8$	328-336	$\mathrm{MHz}_{\mathrm{MHz}}$	$430-16$ $430-17$		
470 MHz	430-8	1700-1750	MHz	$430-17$		

1-5/8" LINE
STANDARD ELEMENTS (CATALOG NUMBERS)*

	Frequency Bands (MHz)					
Power Range	$\begin{array}{r} 2 . \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 25- \\ & 60 \end{aligned}$	$\begin{array}{r} 50- \\ 125 \\ \hline \end{array}$	$\begin{aligned} & 100- \\ & 250 \end{aligned}$	$\begin{aligned} & 200- \\ & 500 \\ & \hline \end{aligned}$	$\begin{array}{r} 400 \\ 1000 \end{array}$
250 watts		250A1	$250 \mathrm{B1}$	250 C 1	25, D1	250E1
500 watts		500A1	50081	500 C 1	50×1	500E1
1000 watts	1000 H 1	1000A1	$1000 \mathrm{B1}$	1000 C 1	1000 D 1	1000E1
2500 watts	2500 H 1	2500 A 1	$2500 \mathrm{B1}$	2500C1	$2501) \mathrm{D} 1$	2500E1
5000 watts	5000 H 1	$5000 \mathrm{A1}$	$5000 \mathrm{B1}$	5000C1	50010 D 1	5000E1
10 kW	10KH1	10KA1	10KB1			
25 kW	25 KH 1	*When line se	rdering, ion mod	ecify c numbe	og num	r and

3-1/8" LINE

STANDARD ELEMENTS (CATALOG NUMBERS)*

Power Range	Frequency Bands (MHz)					
	$\begin{array}{r} 2- \\ 30 \end{array}$	$\begin{aligned} & 25- \\ & 60 \end{aligned}$	$\begin{array}{r} 50- \\ 125 \end{array}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & 20 \mathrm{H}- \\ & 50 \mathrm{H} \end{aligned}$	$\begin{gathered} 400- \\ 1000 \end{gathered}$
1000 watts		1000A 3	1000B3	1000 C 3	100ca)3	1000E3
2500 watts		2500)A3	2500B3	2500 C 3	2500 D 3	2500E3
5000 watts	5000 H 3	5000 A 3	5000B3	5000 C 3	5000013	5000E3
10 klv	10KH3	10KA3	10 KB 3	10 KC 3	10KD3	10KE3
25 kW	25 KH 3	25 KA 3	25KB3	25KC3	25 KD 3	25KE3
50 kW	50KH3	*When ordering, specify catalog rumber and				
100 kW	100 KH 3	line sec	ion mod	number		d

6-1/8" LINE

Sit ohmanominat
STANDARD ELEMENTS (CATALOG NUMBERS)*

	Frequency Bands (MHz)					
Power Range	$\begin{aligned} & 2 . \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$	$\begin{array}{r} 50- \\ 125 \end{array}$	$\begin{aligned} & 100- \\ & 250 \end{aligned}$	$\begin{aligned} & 200- \\ & 500 \end{aligned}$	$\begin{aligned} & 400- \\ & 1000 \end{aligned}$
$25(0)$ watts		2500A6	2500B6	2500 Cb	2500D6	250)E6
5000 watts		5000A6	5000B6	5000С6	5009 D 6	5000E6
10 klv		$10 \mathrm{KA6}$	$10 \mathrm{KB6}$	10KC6	10k.D6	10KE6
25 kW	$25 \mathrm{KH6}$	$25 \mathrm{KA6}$	$25 \mathrm{KB6}$	$25 \mathrm{KC6}$	25k.D6	25KE6
50 kW	50 KH 6	$50 \mathrm{KA6}$	50KB6	$50 \mathrm{KC6}$	50h.D6	50KE6
1010 kW	100KH6	*When	derin	specify	log nur	and
250 kW	250KH6	line se	tion mod	num		

100 WATT REPLACEMENT ELEMENTS FOR LAB STANDARD MODEL 4340 (page 16)

Tech Data

Termaline ${ }^{\oplus}$ RF Coaxial Load Resistors: Power Derating Curves

Typical Peak Power Ratings

		PULSE WIDTH (MICROSECONDS)					
MODELS	AVG. POWER	1	10	101)	1000	5000	10,000
DRY DIELECTRIC LOADS							
80, $1-8$ - ${ }^{\text {a }}$	iW	4kW	$3.1 \mathrm{~kW}^{\prime}$	2.2 kW	1.4kW	0.8 kW	0.5 kW
$8052-8053$	100	1 kw	7.6.W	5.2 hw	2.8 kW	1.2 kW	0.5 kW
808.)	2; W	10 kW	76 kW	5.2 kW	2.8 kW	1.2 kW	0.5 kW
$8161-8164$	10) W	$35 \mathrm{~h} \mathrm{~W}^{\prime}$	$26 . \mathrm{kw}$	18. 2 kW	10 kW	4.0 kW	?.5kW
LIQUID DIELECTRIC LOADS							
8131.-818-8135	5(1-8C-15) W	10kW	8.0kW	3.75kW	3.5kW	2.t) kW	7.5kW
*3135	150 W	3FhW	26.5 kW	18.2 kW	10kW	4.)3k	7.5kW
3201	50)W	200 kW	150 kW	105 kW	57 kW	2 jkW	10 kW
8251	100)W	2) 以小 W	150kW	105 kW	57kW	2 jkW	10 kW
889\%-8891-8892	250) W	270 kW	150 kW	105kW	57 kW	2jhW	10kW
DIRECT WATER COOLED LOADS							
8710.8714	1 kll	10kW	7.73kW		3.2kW	1.75kW	1kIV
$8720-8723$	5 kW	35kW	2? jhW	20 kW	12.5 kW	7.0 k W	5kw
8732-8736	1(kW	100 kW	77.W	506W	32 kW	16kW	10kW
8742-8743	15kM	250 kW	18 jkW	12 jkW	70kW	30 kW	15 kW
8752-8733	25 kW	250kW	191) WW	13 jhlv	7 j kW	40 kW	25 kW
8762-8763	50 kW	250 kW	197kW	145kW	97 kW	65 kW	50 kW

[^3]
Bickuruuiver poore segos

If quantity requirements are such that a custom design is not justified, we recornmend our field-proven stock cesign. Shown above and on Table A below, these STANDARD) UNITS deliver do currents proportional to torward and reflected power in the main line. These units work with any $14(10)$ ohm load, but can also be used with our 30 micro)ampere meter P / N 2080-002 (page 41).

Table A
STANDARD UNITS (CATALOG NUMBERS)

Model 41548

Frequency Range:
$60-15(1 \mathrm{MH} /$
Power Rating: 3 3 kW FWD § RFL
VSWR: 1.1:1 max
Connectors: Input-C F ()utput-LI if

DC Connectors: TPS f
DC Output: 1.5 Va 5 k ohms

Model 41620

Frequency Range: 22()-
405 NiHz
Power Rating: 40 watts
FWD \& Rft
VSWR: $11: 1$ max
Connectors: Input-
BNC F
Output-C, I
DC Connectors: Canmon zई $\mathrm{E}-9 \mathrm{~S}$
DC Output:100 $\mathrm{\mu}$ A@ 5 k ohms

Model 4168 F

Frequency Range: 225$4(0) \mathrm{MH}_{2}$
Power Rating: 2 2 W FWD 200 watts RFt
VSWR: 1.1:1 max
Connectors: Input and Output QC-IC F
DC Connectors: DC B Pass
DC Output: 200 $\mu \mathrm{A}$ @ 520 ohms

Modei 4163D

Frequency Range: 225 400 MHz
Power Rating: 10 watts FWD \& RFI
VSWR: 1.1:1 max
Connectors: Input and Output MB
DC Connectors: DC B_{1} Pass
DC Output:10V@
5.1 k ohms

Bint 1 Caxiaia p filess and

LOW-PASS FILTER Model 5179

Passband: $88-108 \mathrm{MHz}$ Stopband: $176-10000 \mathrm{MH} / 2$ Atterntation: 60dB Power Rating: 50 kl Insertion Loss: 0 IdB mal VSWR: $115: 1$ mas Temperature Range:
$-40^{\circ} \mathrm{C}$ to +50 (Weight: 92 lh$) 342 \mathrm{~kg}$

LOW-PASS FILTER Model 5315

Passban 1: - - () MHz Stopband: $4(1)-10)(1) \mathrm{MH}-2$ Attenuation 6 (1)dB Power Rating: 1hW Insertion Loss: 115 dB mas VSWR: 1.3:1 ma Temperature Range: $-65^{\circ} \mathrm{C}(1)+85^{\circ} \mathrm{C}$ Weight: $3 \sqrt{2} / t) s 15 \mathrm{~kg}$

LOW-PASS FILTER Model 5181

Passband: $960-1220 \mathrm{MHz}$ Stopband: 2(0)0-8000 A11 Power Rating: 10 Watts Insertion Loss: (). idB max VSWR: 1.4•1 mad Temperature Range:
$-55^{\circ} \mathrm{C}$ (1) $+105^{\circ} \mathrm{C}$ Weight: 3 多 $02: 10 \% \mathrm{~g}$)

LOW-PASS FILTER Model 5412

Passband: $225-400 \mathrm{M1Hz}$ Stopband: $45\left(0-12(01) . \mathrm{MH}^{2}\right.$ Power Rating: 2 Twatts Insertion Loss: 0) 418 mal VSWR: 13.1 mad Temperature Range:
$30^{\circ} \mathrm{C}$ to $+1(0)$
Weight: $202(57 \mathrm{~g})$

HIGH-PASS FILTER Model 5307

Pass and $215-\mathrm{c}$ M M ? Stopband: 10-170 M1H Power Rating: 10 watts Insertion Loss: 0 - -1 13 max VSWR: $1 .+1 \mathrm{mix}$ Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Weight: $3012+150$

HIGH-PASS FILIER Maidel 5309

Passband: $310-4(0) \backslash 1 \mathrm{H}_{2}$ Stopband: $7(1)-270 \wedge 11_{1}$ Power Rating: 10 watts Insertion Loss: 1dB mas VSWR: 1 ㅇ 1 Imd Temperature Range: $-55^{\circ} \mathrm{C}(\mathrm{t})+165^{\circ} \mathrm{C}$ Weight: 307 (85 g

HIGH-PASS FILTER Wodel 5R:43

Passband: 225-400) MHz Stopband: 10160 MHz Power Rating: 30 watt Insertion Loss: $1.4(1 \mathrm{~B}$ mat VSWR: 1.4:1 max Temperature Range:
$55^{\circ} \mathrm{C}$ to $-105^{\circ} \mathrm{C}$ Weight: I 02557 gi

HIGH-PASS FILITER Model 5544

Passband: $30 \mathrm{~T} 7, \mathrm{NH}_{1 / 2}$
Stopband: $2-5 \mathrm{~N} 1 \mathrm{H} 12$
Power Rating: 50 n att
Insertion Loss: 0 TdB ma
VSWR: $1+1$ mil
Temperature Range:
$-5^{\circ} \mathrm{C}(\mathrm{t})+105^{\circ} \mathrm{C}$
Weight: $20 / 157 \mathrm{~g}$)

Bintu smpune file couples

BAND=PASS FILTER Model 53598

Passband $30-76 \quad 11$ iz Lower Stopband: 6()d13 min a $0.5-20 \mathrm{MHz}$ Upper Stopband: $6(1) d 13$ min as 96 -10(0) NH力 Power Rating: 50 watts Insertion Loss: 075 dB md VSWR: $1.5: 1 \mathrm{mas}$ Temperature Range $\left.-55^{\circ} \mathrm{Ct}\right)+105^{\circ} \mathrm{C}$ Weight: $3.2 \mathrm{cz} / 261 \mathrm{~g}$

LOW-PASS FILTER

 COUPIER Mode 3111Passband: $88-108 \mathrm{MH} \mathrm{iz}$ Stopband: 17(6-10)(0). MH Hz Power Rating: 5kW Insertion Loss: 0.15 d 13 max VSWR: 1.15.1 max Temperature Range
$55^{\circ} \mathrm{C}(1)+85^{\circ} \mathrm{C}$ Weight: $101 / 2 \mathrm{lbs}$ i5hg

IOW-PASS FILTER

 COUPAERModel 35×9
Passband $88-108 \mathrm{MHz}$
Stopband: 176-100)(N1H 7 Power Rating: 50h W Insertion Loss: 0.1 dB ma VSWR: $15: 1 \mathrm{max}$ Temperature Range: $46^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Weight: 9) Iths 142 hg

FILTER/COUPLER

 SWITCH
Modtle 3335A

Passband: $225-400$ MHz Stopband: $45(1-40000 \mathrm{AHz}$ Power Rating: 100 watts Insertion Loss

Transmitting: 0. 7 dB max
Receiving: 1 dB max VSWR Transmitting and

Receiving: 1. $35: 1 \mathrm{mdx}$ Temperature Range:
$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Weight $1 \mathrm{lb}(1 / 2 \mathrm{~kg})$

GAND-PASS FILTER Model 53688

Passband: 22t 238 MH 7 Lower Stopband: 40kik mina 10-180 NHHz Upper Stopband: 41 kdB min a 1128 ? + CiH, Power Rating: 25 watts Insertion Loss: 10 -5 dB mas
VSWR: 131 max Temperature Range: Weight: 3602100 l

Thruline Principle

The basic sensing circuit of a THRULINE Plug-in Element consists of the mutual inductance M between the loop and the center conductor and the voltage divider C and R. In Fig. 1, E is the voltage between outer and center conductor and I is the current. Elements can be rotated 180°, resulting in either a positive or a negative M (Fig. 2 and 3). The output voltage in this lumped-constant directional coupler is the sum of two samples:
e_{R} from the division of E by R and $C, e_{R}=\frac{R E}{X_{c}}=R E$. $j \omega C$ (if $R \ll X_{t}$), and e_{M} by induction $e_{M}=1 . j \omega(\pm M)$.
The sum $e_{R}+e_{M}=j \omega(C R E \pm M I)=e$
Besides selecting R very much smaller than X_{c}, the components of the circuit are chosen so that $C R=M / Z_{0}$.
The output voltage is now $\mathrm{e}=j \omega\left(\mathrm{EM} / \mathrm{Z}_{\mathrm{o}} \pm \mathrm{MI}\right)=$ $=j \omega M\left(E / Z_{0} \pm 1\right)$.
At any one point on a transmission line, the voltage E is the sum of the forward and reflected voltages $E_{1}+E_{r}$, and the current I is $E_{f} / Z_{0}-E_{t} / Z_{o}$ (Since the reflected wave travels in the opposite direction, $\mathrm{I}_{\mathrm{r}}=-\mathrm{E}_{\mathrm{r}} / \mathrm{Z}_{\mathrm{o}}$).
When the element is pointing toward the load, the output voltage is
$e \rightarrow=j \omega M\left(E / Z_{o}+1\right)=j \omega M\left\{\frac{E_{f}+E_{f}}{Z_{o}}+\frac{E_{f}-E_{f}}{Z_{o}}\right\}=$
$=\frac{i \omega M}{Z_{o}}\left(2 E_{1}\right)$
and turning the element toward the source, it becomes.
$e \leftarrow=j \omega M\left(E / Z_{0}-1\right)=j \omega M\left\{\frac{E_{f}+E_{c}}{Z_{0}}-\frac{E_{f}-E_{i}}{Z_{0}}\right\}=$
$=\frac{j \omega M}{Z_{0}}\left(2 E_{\mathrm{r}}\right)$
We have now proved what we set out to show, namely that the RF output voltage from the sensing element is directional and proportional to the voltage in the line due to either the forward or the reflected wave. It is also directly proportional to ω, that is to frequency ($\omega=2 \pi \mathrm{f}$). In order to make it frequency independent, we terminate e in a capacitive reactance which is inversely proportional to ω. The voltage across this capacitor is rectified, filtered and displayed on a meter calibrated in RF watts.
For additional details on THRULINE principles, write for "WATT'S NEW FROM BIRD" vol. 2 no. 2.

Fig. 4

FREQUENCY RESPONSE THRULINE ELEMENTS $100-250 \mathrm{MHz}$ (C-Series)

Higher power Elements have flatter frequency characteristics than tighter coupled lower-power units. Beyond the stated frequency range, measurement results cannot be predicted.

Fig. 1

Fig. 2

Fig 3

order forms standard catalog equipment
 $|$<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">FOB</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">SOLON,</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| FOB |
| :--- |
| SOLON, |</table-markdown></div>
 SHIP VIA
 PAYMENT TERMS SEE BELOW*

bill to:
ship to: (IF BLANK - SAME AS BILL TO)
delivery requirement:

ELECTRONIC

CORPORATION
30303 Aurora Road
Cleveland (Solon), Chic 44130

DATE

$|$| FOB. |
| :--- | :--- |
| SOLON, OHIO | SHIP VIA

bill to:

YOUR NAME

\qquad
PHONE \qquad

PAYMENT TERMS	CUSTOMER ORDER ND
SEE BELOW**	

ship to: (IF BLANK -SAME AS BILL TO)
\qquad

* TERMS: Net 30 Days for established accounts, C.O.D. (L.S.A. only: or Cash-in-Advance (CHECK ENCLOSED) If you wish to establish open account terms with us, please supply three trade references.

DESCRIPTION

| desCription |
| :--- | :--- |
| |

TAX
\qquad

inquiry form fitter, power sensor or filter coupler Thruline' Power Sensors

Power Level (for maximum dc output)
FWD \qquad watts,
RFL \qquad watts,
DC Load Data
FWD \qquad $\mu \mathrm{A}$ or Volts \qquad ohms
RFL $\mu \mathrm{A}$ or Volts ohms

RF Input Conn.
RF Output Conn. \qquad
DC Connector \qquad

coaxial RF filters

Check here if you want a filter and a power sensor combined in a single Sentriline ${ }^{\star}$ Filter Coupler.

Application
\square CommercialGovernment \square Other
\square Please have your representative call.
The above is the requisite information from which we can determine your requirements and offer a prompt response

NAME \qquad TITLE \qquad PHONE \qquad

COMPANY
STREET \qquad

CITY \qquad STATE ZIP

order forms standard catalog equipment

DATE	FOB.	SHIP VIA
	SOLON, OHIO	

bill to:
 bill to.

ship to: (If Blank -SAME AS bill to)
\qquad
\qquad

If you wish to establish open account terms with us, please supply three trade references.

TAX
total

ELECTRONIC

DESCRIPTION
PAYMENT TERMS
SEE BELOW'*

CORPORATION

30303 Aurora Road
Cleveland (Solon), Ohici 44139
$\left|\begin{array}{l}\text { FOB } \\ \text { SOLON, OHIO }\end{array}\right|$ SHIP VA
DATE

bill to:

ship to: (IF BLANK - SAME AS BILL TO)

total

inquiry form fiter, power sensor or filter coupler Thruline ${ }^{\circledR}$ Power Sensors

Freq. Range	
Type of Emission \% Modulation	
Maximum Incident Power, Avg. - Peak	
Operating Temp. Range __ to	
Sensing Ports Required	
FWD $\square \mathrm{DC} \quad \square \mathrm{RF}$ (at __dB coupling)	\square Both
RFL $\square \mathrm{DC} \quad \square \mathrm{RF}$ (at __dB coupling)	\square Both

SENSOR FUNCTION

Power Level (for maximum dc output)
FWD \qquad watts,
RFL \qquad watts,
DC Load Data
FWD $\quad \mu \mathrm{A}$ or Volts
RFL $\quad \mu \mathrm{A}$ or Volts
RF Input Conn.
RF Output Conn.
DC Connector
coaxial RF filters

pass band	Frequency Range \qquad MHz to \qquad MHz Max. Insertion Loss \qquad dB Max. Insertion VSWR \qquad Max. Power \qquad watts average \qquad watts peak
	Type of Emission
stop band	Frequency Range \qquad MHz to \qquad MHz Min. Attenuation \qquad dB at \qquad MHz \qquad $d B$ at \qquad MHz \qquad dB at \qquad MHz
	Operating Temperature Range:
mechanical	Max. Size \qquad L \qquad $\times W$ \qquad $\times \mathrm{H}$ Connector Types \qquad Input \qquad Output

Check here \square if you want a filter and a power sensor combined in a single Sentriline ${ }^{\star}$ Filter Coupler.
Application \square Commercial \square Government \square Other

- Please have your representative call.

The above is the requisite information from which we can determine your requirements and offer a prompt response:

NAME \qquad
\qquad PHONE \qquad
COMPANY \qquad STREET \qquad
CITY \qquad
\qquad ZIP \qquad

ACCESSORIES (CONT.)

DOLLIES

PART NO.	DESCRIPTION	PAGE	PRICE
6771-011	For $10 \& 25 \mathrm{~kW}$ Moduloads	52	$\$ 275$
$6772-011$	For 50 kW Modulods	52	315

COOLANTS (in 1 gallon can)

PART NO.	DESCRIPTION	PAGE	PRICE
5-030-3	Refined Mineral 0il	52	$\$ 23$
$5-1070-2$	DC.200 Silicon	52	84
$5-1134-3$	Ethylene Glycol, Industrial Grade	52	30

THERMOSWITCHES

PART NO.	ACTION	PAGE	PRICE
$2450-056$	Opens @ $155^{\circ} \mathrm{C}$	56	$\$ 120$
$2450-085$	Closes @ $155^{\circ} \mathrm{C}$	52	120
$8329-028$	Opens @ $200^{\circ} \mathrm{C}$	56	120
$8630-013$	Opens @ $86^{\circ} \mathrm{C}$	52	120
$8640-066$	0pens @ $77^{\circ} \mathrm{C}$	52	120
$8890-008$	Opens @ $236^{\circ} \mathrm{C}$	52	120
$8890-017$	0pens @ $226^{\circ} \mathrm{C}$	52	120
$8896-012$	Closes @ $100^{\circ} \mathrm{C}$	52	120

BATTERIES

PART NO. VOLTS TYPE
5-733-1 $6 \quad$ NiCd

BATTERIES (CONT.)

PART NO.	VOLTS	TYPE	PAGE	PRICE
5-733-2	12	NiCd	36	$\$ 63$
$5-1230$	1.25	NiCd	36	9
$5-1375$	9	Alkaline	36	4
$5-1444$	9	Lithium	36	94
5-1475	3	Li.Mn	36	3
$5-1587$	9	NiCd	36	15
$5-1588$	7.5	NiCd	36	Inq.
MISCELLANEOUS				
PART NO.	DESCRIPTION			
5-1242	4381/2/3/4 Power Supply.120V	36	$\$ 8$	
5-1257	4381/2/3/4 Power Supply-230V	36	21	
3610-031	Dummy Plug	36	3	

General Terms, Conditions of Sale

TELEPHONE, TELEGRAPH AND

CABLE ORDERS
Factory Telephone: (216) 248-1200
Telex: 706898 Fax: (216) 248-5426
Cable address: BIRDELEC
D-U-N.S Number: 00-418-9957
Bird Electronic Corporation
30303 Aurora Road
Cleveland (Solon), Ohio 44139
Eastern Sales Office: (216) 248-1200
Western Sales Office (Ca.): (805) 646-7255

SHIPPING INSTRUCTIONS

Unless specific instructions accompany the order, we shall use our judgement and select the best method for your shipment.

> MINIMUM BILLING
> The minimum billing per order is $\$ 25.00$.

CONDITIONS OF SALE

Determination of price, terms and conditions of sale and final acceptance of orders are made only at our factory in Cleveland (Solon), Ohio. Change orders subject to $\$ 20$ administrative charge.

CUSTOMER SERVICE

Bird maintans a complete repair and calibration department. Equipment to be repaired should be shipped prepaid, attention CUSTOMER SERVICE. Repairs over $\$ 200$ will be quoted for approval unless authorization to repair is received with the unit. Repaired items will meet original factory specifications.
Repairs are warranted for 90 days except for semi-conductor devices and batteries.

Eastern

Bird Electronic Corp.
30303 Aurora Road
Cleveland, OH 44139
Phone: 216-248-1200 TLX: 706898
FAX: 216-248-5426

SPECIFICATIONS

We reserve the right to discontinue any item without notice and to change physical and electrical specifications at any time without incurring any obligation to incorporate new features in instrument or parts previously sold. For instruments offered with the "QC" Connector feature, maximum VSWR values listed in the specifications are obtained with the connector type shown as "normally supplied."
Listed power ratings for aircooled terminations are valid to 5000 ft . For operation at higher elevations, please contact us for applicable derating factor.
SPECIAL DATA
Individual special performance data can be provided for most Bird products at a minimum charge of $\$ 40$ per unit.
QUANTITY DISCOUNTS
Available on most equipment when 25 pieces or more of the same model are ordered.

DISTRIBUTORS

Bird equipment is stocked throughout the United States and overseas. Inquire at Solon or the West Coast Sales Office for closest distributor.

PRICE CHANGES

All prices are subject to change without notice. Formal price quotations remain valid for 60 days.

TAXES

Applicable Federal, State or Local taxes that are in effect at the time of shipment will be added unless Certificate of Exemption is furnished by the purchaser.

TERMS

All prices are F.O.B. Cleveland (Solon), Ohio. Terms net 30 days for established accounts.
Export Terms: Please request Overseas Representatives listing.
U.S.A. Regional Offices: Our east and west coast offices will provide complete technical and sales service and visits at your facility as may be desired. Call these offices, or the factory for referral to a close-by distributor - for quick deliveries.

Western

Bird Electronic Corp.
621 W. Ojai Ave., Suite F
P.O. Box 28

Ojai, CA 93023
Phone: 805-646-7255

E

> The President of the Unifed Srutes
> A word for f wellence in E. uporfs

Electronic Corporation

Forced Air-Cooled, Air Dielectric

MODEL CONNECTOR	POWER	age	Price
8570A-115-6 3 ${ }^{1 / 2}$ EIA FI	15 kW	51	\$4635
8570A-230-5 3/1/ EIA FI	15 kW	51	4635
8571A-115-6 3 $1 /$ Unfl	15kW	51	4635
8571A-230-5 31/8Unfl	15 kW	51	4635
8572A-115-6 31/8 EIA FI	25 kW	51	5355
8572A-230-5 3\% EIA FI	25 kW	51	5355
8573A-115-6 3\% Unfl	25 kW	51	5355
8573A-230-5 3\% Unfl	25 kW	51	5355
8574A-115-6 1/8 EIA FI	15kW	51	4840
8574A-230-5 1\% EIA FI	15 kW	51	4840

TENULINE ${ }^{\circledR}$ Attenuators

MODEL	POWER	dB	PAGE PRICE		
8302 Series(1)	2W	1, 2, 3, 6, 8 ,			
		10,14 or 20	53	\$ 28	
8303 Series(3)	5 W	3, 6, 10,			
		20 or 30	54	59	
8304 Series(2)	10W	3, 6, 10,			
		20 or 30	54	70	
8305 Series(2)	15W	3,6,10,			
		20 or 30	54	83	
8306 Series(2)	25W	3,6,10,			
		20 or 30	54	95	
8307 Series(2)	50W	3,6,100r20	55	205	
8308 Series(2)	75W	3.6.10,			
		20 or 30	55	240	
8321	50w	30	55	390	
8322	200W	30	56	610	
8323	100W	30	55	465	
8325	500W	30	56	825	
8327-300 (was 8327)	1000W	30	56	1030	
2450-056 Thermoswitch			56	120	
8329-300 (was 8329)	2000W	30	56	1360	
8329-028 Thermoswitch BA-300-115, -230 Blower					
BA-300-115, -230 BlowerIncreases $8329-300$ to 4000 W			56	540	
8345-115 or -230	6000W	30	62	4100	
8340 (3)	25W	3,6,10 or 20	54	205	
8341 (3)	* 40 W	3,6,10 or 20	54	225	
8343 (3)	100W	3,6,10 or 20	55	445	

*when bolted to heat sink
(1) add $-0-,-020,-030,-060,-080,-100,-140,-200$ for $1,2,3,6$, $8,10,14$ or 20 dB respectively
(3) add -030-N, $-060 \cdot \mathrm{~N},-100-\mathrm{N},-200-\mathrm{N},-300 \cdot \mathrm{~N}$ for $3,6,10,20$ or 30 dB respectively (8307: no 30dB)
(3) add $-030,-060,-100,-200$ for $3,6,10$ or 20 dB respectively

50Ω Line Sections

PART NO.	SOCKETS	CONNECTOR	PAGE	PRICE
4230-006-1	One	QC*	34	\$ 85
4230-018	One	Two QC-N(F)		100
4230-053	Two	QC*	34	150
4230-058	One, w/Bracket	$\begin{gathered} \text { Two QC-NF } \\ \text { \& NM } \end{gathered}$		105
4230-059	One, w/Bracket	QC*	34	88
4501-000	One	1/8F1	34	190
4502-000	Two	\% FI	34	275
4522-002-1	Two, panel mtg	Two QC-N(F)	-	133
4522-002-2	Two, panel mtg	$\begin{gathered} \text { One QC-HN(F) } \\ +1 N(F) \end{gathered}$	-	155
4522-002-3	Two, panel mtg	$\begin{gathered} \text { One QC-BNC(F) } \\ +1 N(F) \end{gathered}$		139
4522-002-5	Two, panel mtg	QC*	34	118
4600-000	One	31/ Fi	34	385
4610-000	Two	3/6 Fl	34	448
4616-000	Hi/Reg	31/8 Fl	34	479
4617-000	Hi	31/2 FI	34	420
4641-000	One	4/1/6 FI	-	685
4642-000	Two	4/1/6FI	-	770
4843-000	One	41/16 Unfl	-	810
4844-000	Two	41/16 Unfl	-	860
4712-000	One	1\%/81	34	235
4713-000	One	$51.5 \Omega 1 \% \mathrm{Fl}$	34	185
4715-000	Two	1\%/8F	34	300
4720-000	One	1\% Unfl	34	175
4720-025	One	1\% Unil	34	175
4723-000	Two	1\% Unfl	34	268
4800-000	One	$51.5 \Omega 31 /$ Unfl	34	185
4801-000	One	Special 3\%Unfl	34	265
4801-100	Two	Special 3\%Unfl	34	290
4802-000	Two	31/2Unfl	34	310
4808-000	Hi	31/ Unfl	34	260
4808-010	$\mathrm{Hi} / \mathrm{Reg}$	31/ Unfl	34	350
4808-020	Hi	31/2 Unfl	34	240
4810-000	Two	$51.5 \Omega 3 \%$ Unfl	34	430
4805-000	One	31/ Unfl	34	227
4902-000	**One	$61 / \mathrm{Fl}$	34	850
4905-000	**Two	61/8 Fl	34	965
4907-000	**One	6\%/3nfl	34	490
4909-000	**Two	6\% Unfl	34	610

Meters

MODEL		PAGE	PRICE
Standard Units for 4A-4E Series 4H Series		-	\$200
		-	250
Coaxwitch ${ }^{\circledR}$			
Coaxial Selector Switches			
MODEL	FUNCTION	PAGE	PRICE
72-R	$2 P$ Reversing	57	\$305
72-2	2P2T	57	320
74	1P6T	57	325
718	1 PQT	57	350
7181	1P10T	57	410
7422	1P2T	57	255
7431	1P4T	57	285
7441	1P3T	57	275

AcCeSSOTIES OUICK CHANGE CONNECTORS - OC

PART NO.	TYPE	PAGE	PRICE
4240-002	/\%Swivel FIEIA 50Ω	35	\$115
4240-012	LT(M)	35	110
4240-018	LT(F)	35	67
4240-025	LC(M)	35	72
4240-031	LC(F)	35	53
4240-050	UHF(F)	35	8
4240-062	N(F)	35	8
4240-063	$N(M)$	35	14
4240-075	LC(F) Bulkhead	35	105
4240-080	Open Terminal, 10-32 post	35	45
4240-090	SC(F)	35	30
4240-096	1\% Fixed FI EIA 50Ω	35	105
4240-100	C(F)	35	20
4240-110	C(M)	35	52
4240-125	BNC(F)	35	14
4240-132	BNC(M)	35	39
4240-138	LC(M) UG156A/U	35	145
4240-149	LC(F) UG157B/U	35	95
4240-156	TNC(F)	35	12
4240-160	TNC(M)	35	17
4240-179	UHF(M)	35	23
4240-208	1\% Swivel FI EIA 50Ω	35	130
4240-254	GR 874	35	56
4240-261	$N(F) 75 \Omega$	-	24
4240-268	HN(F)	35	21
4240-278	HN(M)	35	39
4240-334	SMA(M)	35	59
4240-336	SMA(F)	35	39
4240-344	European 1/6IEC Type 169-4	61	62
4240-346	UHF Miniature (Mini-UHF)(F)	35	31
4240-353	SC(M)	-	43
4100-014	SQC Small Pattern N(F)	36	12
4100-017	SQC Small Pattern UHF(F)	36	14
4100-015	SQC Small Pattern N(M)	36	19

QUICK CHANGE CONNECTORS (CONT.)

PART NO.	TYPE	Page	PRICE
4100-055	SQC Small Pattern TNC(F)	36	\$22
4110-014	SQC Small Pattern BNC(F)	36	17
MISCELLANEOUS ADAPTORS, CONNECTORS			
PART N0.	DESCRIPTION	Page	PRICE
5-793-2	N(M) to UHF(F), UG-146A/U	41	\$ 17
4240-165	QC(F) to QC(F)	34, 36	26
4240-180	Copl. (M) to QC(F)	36	48
4240-187	3\% Unti/51.5 Ω to QC(F)	36, 52	90
4240-194	3\% FI to QC(F)	36, 52	162
4240-201	1/8 Fi to QC(F)	36, 52	98
4240-244	Rt. Angle QC	36, 52	81
4240-260	1\% FI to QC(F)	36, 52	85
4240-400	Interseries Adapter Kit [N, N, UHF, BNC, TNC, (M,F)]	37	85
4240-401	Interseries Adapter Kit [N, UHF, BNC, TNC, SMA, (M,F)]	37	115
4600.025	3\% FI to $1 \% \mathrm{FI}$ EIA 50Ω	36, 52	153
4712-015	1\%/8F to $/ 1 / \mathrm{FIEIA} 50 \Omega$	36, 52	125
4902.025	3/\% FI to 6\%/8 FIEIA 50Ω	36, 52	300
7500-076	DC Conn. Plug	36, 52	
8110-186	Copl. (M) to N(F)	36	43
COUPLING KITS			
PART NO.	LINE TYPE	PAGE	PRICE
4240-220	1/2EIA FI/50 Ω	36, 52	\$ 62
4600-020	31/8EIA FI/50 Ω	36, 52	78
4712.020	1\% E\|A FI/50 Ω	36, 52	48
4902.020	61/8EAI FI/50	36,52	345
5-289	3\% Unfl/51.5 Ω^{*}	36, 52	108
5.726	31/ Unfl/50 Ω	36, 52	113
5-1322	61/\% Unfl/50 Ω	36, 52	260

CABLE ASSEMBLIES

RG-58/U with DC Plug 7500-076 on one end
for connecting Line Sections to Instruments
PART NO. LGTH OUTPUT CONNECTOR PAGE PRICE

3170-058-1	$14^{\prime \prime}$	BNC(M)	36	\$ 19
3170-058-6	6	BNC(M)	36	22
3170-058-2	15'	BNC(M)	36	24
3170-058-3	25'	BNC(M)	36	30
3171-010	25^{\prime}	BNC(M)*	36	53
3170-058-4	40'	BNC(M)	36	39
3170-058-5	50^{\prime}	BNC(M)	36	41
3170-058-7	80^{\prime}	BNC(M)	36	78
3170-058-8	90^{\prime}	BNC(M)	36	84
3170-058-9	100'	BNC(M)	36	92
4220-097-4	9"	Spade Lug	36	18
4220-097-8	$12^{\prime \prime}$	Spade Lug	36	18
4220-097-5	$16^{\prime \prime}$	Spade Lug	36	18
4220-097-21	$25^{\prime \prime}$	Spade Lug	36	26
4220-097-1	33"	Spade Lug	36	26
4220-097-2	$39^{\prime \prime}$	Spade Lug	36	27
4220-097-22	48"	Spade Lug	36	29
4220-097-6	$56^{\prime \prime}$	Spade Lug	36	30
4220-097-23	$64^{\prime \prime}$	Spade Lug	35	31
4220-097-7	10^{\prime}	Spade Lug	36	38
6810-041-1	10^{\prime}	Spade Lug*	36	41
4220-097-9	15^{\prime}	Spade Lug	36	42
4220-097-10	25 '	Spade Lug	36	43
4220-077-1	25	Spade Lug*	36	47
4220-097-19	40°	Spade Lug	36	48
4220-097-17	50^{\prime}	Spade Lug	36	55
4220-097-15	60^{\prime}	Spade Lug	36	60
4220-097-14	65^{\prime}	Spade Lug	36	65
4220-097-18	70^{\prime}	Spade Lug	36	70
4220-097-13	75	Spade Lug	36	76
4220-097-16	100^{\prime}	Spade Lug	36	87
4220-097-20	225'	Spade Lug	36	108
7500-072-1	39'	DC Plug	36	27
7500-072-3	5	DC Plug	36	33
7500-072-4	10^{\prime}	DC Plug	36	33
6810-036-1	10^{\prime}	DC Plug*	36	39
7500-072-2	25^{\prime}	DC Plug	36	39
6810-036-2	25^{\prime}	DC Plug*	36	45

$6810-036-2$
$*$ Use this cable if your Line Section is $6 \%^{\prime \prime}$
For all other applications use the cable listed immediately preceeding it.

CARRYING CASES

MODEL	FOR STORAGE OF	PAGE	PRICE
CC-1	43-size Wattmeters + access.	36	$\$ 33$
CC-2	Mini-Monitor	36	20
CC-3	43-size Wattmeters + access.	36	33
EC-1	12 Elements	36	24
4300-061	43-size Wattmeters + access.	36	43
4300-070	43 size Wattmeters + access.	36	128
4300-080	$4381 / 2 / 3 / 4$	36	103
4300-085	4391	36	103

Laboratory

Standard RF Wattmeters

MODEL				Page	
4021 RF Power Sensor 1.8.32MHz 4022 RF Power Sensor $25 \cdot 1000 \mathrm{MHz}$				17	\$750
				17	750
MODEL	DISPLAY	Batteries	Interfa	PA	PRICE
4420	Analog	No	No	17	\$1395
4421-101	Digital	No	No	17	1775+
4421-102	Digital	Nicd	No	17	1840
4421-103	Digital	Alkaline	No	17	180
4421-104	Digital	No	RS. 232	17	208
4421-105	Digital	Nicd	RS.232*	17	2150
4421-106	Digital	Alkaline	RS-232*	17	2110
4421-107	Digital	No	IEEE-488	17	2085
4421-108	Digital	Nicd	IEEE-488	17	215
4421-109	Digital	Alkaline	IEEE-488	17	2110
For field installation (4421- or 4421P only):					
4421-232 RS-232 Interface Card**					310
4421-488 IEEE-488 Interface Card				17	
+All Digital Display models available in panel-mounted versions.					
Add "P" suffix to "4421" (e.g. 4421P-101)					+300
4029 Calibrator for Sensors					1750
*May require 4380-250 Null Modem Kit					
ATTCHER® ${ }^{\text {® }}$					

MODEL
3126 for rigid lines ($15 / 30 / 60$-scale
meters)(1)(2)
3127 for rigid lines ($5 / 10 / 25$-scale meters)(1)(2)

PAGE PRICE

meters)(1)(2)	25	950
3128 for cables (25/50/100-scale meters)(1)(3)	25	1000
3170 High Speed RF Monitoring System $(25 / 50 / 100)(2)$	24	1130
3171 High Speed RF Mon. Sys. (rigid lines) $(5 / 10 / 25)(1)(2)$	24	1080
3171-020 High Speed RF Mon. Sys. (rigid lines) (15/30/60)(1)(2)	24	1080
Elements for 3171, 3171-020	33	80+
+ H-Series ELEMENTS for 3171	33	92
(1) less line section	34	
(2) less elements	31, 33	
25^{\prime} DC Cables included with WATTCHER (except 3170), other lengths optional. See CAble ASSEMBLIES	36	-
Digital Hi-Power		
RF Calorimeter		
MODEL	PAGE	PRICE
6080-115 (less TERMALINE ${ }^{\text {load) }}$	29	\$3785
6080-230 (less TERMALINE load)	29	3925
6081-115 Panel (less TERMALINE load)	29	4000
6081-230 Panel (less TERMALINE* load)	29	4035

MODULOAD ${ }^{\circledR}$ RF

Calorimeter Load Systems

TERMALINE® RF WATTMETERS (CONT.)
MODEL POWER PAGE PRICE
6734A-030 3-range 25/100/500W $40 \$ 865$
6734-034 Low Freq. Line Section with Meter $41 \quad 515$
6735-300 3-range $\quad 120 / 600 / 1200 \mathrm{~W}$ 41 1235
$\begin{array}{llll}67363 \text {-range } & 50 / 250 / 1000 \mathrm{~W} & 40 & 1190 \\ 6736-030 & 3 \text {-range } & 50 / 250 / 1000 \mathrm{~W} & 40 \\ 6737 & 1270\end{array}$
6737 3-range $\quad 100 / 500 / 2500 \mathrm{~W} 41 \quad 1190$
6737-030 3-range $\quad 100 / 500 / 2500 \mathrm{~W} 41 \quad 1270$
8863-400 3\% Unil $1500 \mathrm{~W}-1330$
$\begin{array}{ll}8864-40031 / 2 ~ F I & 1500 \mathrm{~W} \\ 8891-40031 / 2 \mathrm{FI} & 1350 \\ 8800 \mathrm{~W} & -1515\end{array}$
$\begin{array}{ll}8897-40031 / 2 \mathrm{Unfl} & 2500 \mathrm{~W}-1460 \\ 8891-41531 / 2 \mathrm{FI} 115 \mathrm{Vac} & 5000 \mathrm{~W}-2175\end{array}$
8891-420 31/6 Fl 230Vac 5000W - 2175
8891-420A 31/6 FI 230Vac 3/5kW - 2175
$\begin{array}{ll}8897-41531 / \mathrm{FI} 115 \mathrm{Vac} & 5000 \mathrm{~W}-2120 \\ 8897-42031 / \mathrm{FI} 230 \mathrm{Vac} & 5000 \mathrm{~W}-2120\end{array}$
8927-400 31/ Unt
$8936-415$ 31/6 FI 115 VaC
8936-420 31/2 Fi 230Vac
8937-415 31/8 Unfl 115 Vac
8937-420 31/6 Unfl 230Vac
Table 19 Elements for above W/M
NOTE 1 - Units with blowers are $50 / 60 \mathrm{~Hz}$ and are listed with AC voltage. These units include thermoswitch for automatic blower control.
NOTE 2 - All units include over-temperature interlock switch
NOTE 3 - Elements not included. Order separately from Table 19. *not included

"amus

RF Coaxial Load Resistors
MODEL CONNECTOR POWER PAGE PRICE
80BNCF 80 BCM
$80 \mathrm{CF}, 80 \mathrm{CM}$ 5W 44

80F, 80 M
80SCF. 80SC
80TNCF, 80TNCM
8010, 8011 N(F), (M)
8015, 8016 TNC(M), (F)
8052, 8053 N(F), (M)
8071-1 SMA(F) Heat sink rqd.
8072-1 SQC-N(F) Heat sink rad.
8080 QC-N(M)
8085 QC-N(M)
8135 QC.N(F)
8135A QC-N(F)
8141 QC-N(F)
8166 QC-N(F)
8173 QC-N(F)
8201 QC-N(F)
8230 air/water cooled QC-LC(F)
8251 QC-LC(F)
3360 Series
N(M), BNC(M), TNC(M) 2W 44 40
8361 Series $N(M)$, (F);
BNC(M), (F); $\operatorname{INC}(M)$, (F) 10 W 44
8362 Series N(M), (F);
BNC(M), (F): TNC(M), (F) 25W 45 82
8363 Series $N(M)$, (F);
$\begin{array}{lrll}\text { BNC(M), (F); } \operatorname{FNC}(M),(F) & 50 \mathrm{~W} & 45 & 115 \\ \text { SQC-N(F) } & 600 / 500 \mathrm{~W} & 46 & 595\end{array}$
8401 OC-N(F)
600 W 47
MODULOAD® Self-Cooled Load Systems
MODEL CONNECTOR
POWER PAGE PRICE
8631-115 3\% EIA FI 10kW 50 \$4325
8631-230 3 \% E|A F| 10 kW 504340
$8635-1151 \%$ E|A FI $10 \mathrm{~kW} 50 \quad 4325$
$8635-2301 \%$ E|A FI 10 kW 504350
8638-115 3\% Unfl
8638-230 31/ Unfl
8645-115 3\% EIA FI
8645-230 31/: EIA FI
8646-115 31/2 Unfl
8646-230 31/ Unfl
8655-11531/6 E|A FI
$8655-2303 \%$ EIA FI
8656-115 3\% Unfl
8656-230 3 $1 /$ Unfil
$8690-06061 / 2$ EIA FI 230 V 60 Hz (1)
$8690-0506 \%$ EIA FI 230 V 50 Hz (1)
$8691-0606 \%$ Unfl 230 V 60 Hz (1) 8691-050 6\% Unfl 230V 50Hz(1)
LINE VOLTAGE SUFFIX: -115: 115 V 60 Hz only
$-230: 230 \mathrm{~V} 50 \mathrm{~Hz}$ only
(1) 80 kW units are three phase only

Water Cooled, Air Dielectric
MODEL CONNECTOR
POWER PAGE PRICE

$8710 \mathrm{~N} / \mathrm{M}$ or F	1 kW	49	\$ 365
8711 C/M or F	1 kW	49	410
8713 \% EIA FI/50 Ω	1 kW	49	435
8720 1为 EIA FI/50 Ω	5 kW	49	680
8726 QC-LC(F)	5 kW	49	650
8730 1\%/ EIA FI Econoload ${ }^{\text {8 }}$	10 kW	49	815
8731 31/ EIA FI Econoload	10 kW	49	840
8738 31/ Unfl Econoload	10kW	49	840
8745 31/6 EIA FI Econoload	20 kW	49	1190
8746 31/2 Unfl Econoload	20 kW	49	1190
8755 31\% EIA FI Econoload	30 kW	49	1650
8756 31/ Unfl Econoload	30 kW	49	1650
8765 31/6 EIA FI Econoload	40 kW	49	1865
8766 31/ Unfl Econoload	40 kW	49	1865
8775 31/ EIA Fl Econoload	50 kW	50	2110
8776 31/ Unfl Econoload	50 kW	50	2110
8790 61/ EIA FI Econoload	80 kW	50	3245
8791 6\% Unil Econoload	80kW	50	3245

for Econoload Resistors mounted on a Dolly with Water Flow Switch, Control Box and Bracket (for optional Wattmeter),
add -677 to Model No. plus $-1(115 \mathrm{~V} 60 \mathrm{~Hz})$ or
$-2(230 \mathrm{~V} 50 \mathrm{~Hz})$ to specify voltage i.e., $8755-677-1$
Add on price
$52 \quad 814$
Control Box Assembly

MODEL

POWER PAGE PRICE
8750-115 For Econoloads, 115 Volt, $60 \mathrm{~Hz} \quad 52 \quad \$ 285$ 8750-230 For Econoloads, 230 Volt, $50 \mathrm{~Hz} \quad 52 \quad 285$ NOTE: These items previously listed as $8750-100$
Replacement Resistors - Econoloads, etc.

Air Cooled, Liquid Dielectric

MODEL CONNECTOR	POWER	PAGE	PRICE
8833-300 QC-LC(F)	1kW	47	\$ 695
8860 QC-LC(F)	1500W	47	775
8861 1\% Unfl	1500W	47	785
8862 1/\% EIA FI	1500W	47	800
8863 31/8 Unfl	1500W	47	845
8864 3/3 EIA FI	1500w	47	865
8890-300 QC.LC(F)	2\%kW	48	900
8890-008 Thermoswitch		52	120
8891-300 31/ EIA FI/50 Ω	2\%2kW	48	1030
8892-300 1\% EIA FI/50 Ω	2 2kW	48	925
8895-300 1\% Unfl/50 Ω (Recessed Ctr Cond)	$2 \% \mathrm{~kW}$	48	935
8896-300 31/ Unfl/51.5 Ω	2\%2kW	48	975
8897-300 3\% Unfl/50 Ω (Flush Ctr Cond)	212kW	48	975
8898-300 31/2 Unif/50 Ω (Recessed Ctr Cond)	212kW	48	990
BA-300-115, -230 Blower			
Increases any 8890-300 series to 8890-315 (115V) Load/Blower/	5 kW	48	540
2 Thermoswitch Assy	5 kW	48	1840
8890-320 (230V) Load/Blower/			
2 Thermoswitch Assy	5 kW	48	1840
8921 QC-LC(F)	5 kW	48	1985
8922 1\% EIA FI	5 kW	48	2010
8926 31/2 EIA FI	5 kW	58	2070
8927 3\% Unfl	5 kW	48	2055
8931-115 QC-LC(F)	10 kW	48	2985
8931-230 QC-LC(F)	10 kW	48	3020
8932-115 1\% EIA FI	10 kW	48	3010
8932-230 1\%/ EIA FI	10 kW	48	3245
8936-115 31/ EIA FI	10 kW	48	3055
8936-230 3 \% EIA FI	10 kW	48	3090
8937-115 3\% Unfl	10 kW	48	3055
8937-230 31/ Unfl	10kW	48	3090

Electronic Corporation

30303 Aurora Road, Cleveland, (Solon), Ohio 44139 216-248-1200 • TLX: 706898 - Cable: BIRDELEC FAX: 216-248-5426

THRULINE ${ }^{\circledR}$
RF Directional Wattmeters
for use with 50Ω cables

m00EL		CONNECTORS	PAGE	PRICE
43	CW/Portable	50Ω cable	4	\$184
	Elements (Table 1)	$25 \cdot 1000 \mathrm{MHz}$	5,31	52
	Elements (Table 1)	50 H thru 1000 H	5,31	64
	Elements (Table 1)	$2500 \mathrm{H}, 5000 \mathrm{H}$	5,31	92
	Elements (Table 2)	Low power	5,31	69
	Elements (Table 3)	$950-2300 \mathrm{MHz}$	5,31	108
	Elements (Table 4)	$0.45-2.5 \mathrm{MHz}$	5,31	108
	Elements (Table 5)	Peak only	19,31	113
	Elements (Table 6)	Milliwatts	5,31	98
CC-1 Carrying Case 33				
CC- 3 Carrying Case			5,36	33
EC-1 Element Case			36	24
4030 Field Strength Element			12	105
4041 Field Strength Meter			12	160
4110-182 RF Test Set			27	510
4300-064 Mobile Service Test Set			27	556
Includes: 43, 4275-100, 8164, 4240-050(2), $4400-012$ in 4300.061 Carrying Case				
4301 (Ruggedized Model 43)		50Ω cable	-	438
4304A Wide Band			6	395
	5 Hi Power	50Ω cable	11	510
	Elements (4305)(Table 8)) $0.45 \cdot 2.5 \mathrm{MHz}$	11, 32	113
	Elements (4305)(Table 8)) $2-1800 \mathrm{MHz}$	11, 32	87
4308 Cellular				395
	$4 \mathrm{pk} / \mathrm{CW}(\mathrm{AC} / \mathrm{DC})$	50Ω cable	10	705
	Use 43 Elements		31	
	Additional Elements (431	14) (Table 5)	31	113

RF Power Analyst© Series (less elements)
model
CONNECTORS PAGE PRICE
4380A-232 RS- 232 Interface Unit
4380-250 Null Modem Kit

RF Power Analyst Panel Wattmeters

4385 Panei mounted 4381	50Ω cable	18	\$895
4385-832 Bus-compatible			
4385	50Ω cable	18	1015
4386 Panel mounted 4382(2)	1\%, 3\% or 6\%	22	770
4386-832 Bus-compatible			
4387 Panel mounted 4383(2)	50Ω cable	18	775
4387-832 Bus-compatible			
4388 Panel mounted 4384(3)	1\%, 3\% or 6\%	22	775
4388-832 Bus-compatible			
4388 (2)	1\%, 3\% or 6\%	22	890
3170-058-3 25^{\prime} DC cable	e, two rqd.	36	30
3171-010 25^{\prime} DC cable for	or 6\%" ${ }^{\prime \prime}$, two rgd.	36	53
Use 43 Elements for 4381, 4383, 4385,			
4387, 4391		19,31	
Elements for 4382, 4384, 4386,	6, 4388	23,33	$80+$
DC Feed-in Element P/N 4381	-050	-	80
* May require 4380-250 Null Modem Kit			
(1) Charger included. Specify	15 V or 230 V	36	
(2) Less line section and DC cables		34, 36	
+ H-series ELEMENTS (2-30M high-power Wattmeters	Hz) for all	23,33	92

THRULINE® WATTMETERS (CONT'D)

THRULINE® WATTMETERS (CONT'D)

nal

Couplers \& Samplers

Couplers for cable or $7 / 3$ lines (Table 14)
解 for 1\%, 3\% or 6\% lines
266 HF Coupler, 1500 watts
273 Variable RF Sampler
273-020, 4275-020 e/w N(M), N(F)
4273-030, 4275-030 e/w UHF(M), UHF(F)
4273-035, 4275-035 e/w UHF(F), UHF(F)
4274-025 Wide Range RF Sample
4275 Variable RF Sampler
4275-100 for installation on Bird equipmen
278-11-1 125. 250MHz 10dB
278-111-2 125. 250MHz 20dB
$4278-211-1 \quad 250.500 \mathrm{MHz} \quad 10 \mathrm{~dB}$
$4278-211-2$ 250. 500 MHz 20 dB
$4278-211-3 \quad 250.500 \mathrm{MHz} 30 \mathrm{~dB}$
$4278-311-2 \quad 500.1000 \mathrm{MHz} 20 \mathrm{~dB}$
$4278-311-3 \quad 500 \cdot 1000 \mathrm{MHz} 30 \mathrm{~dB}$
$4278-411 \cdot 11000 \cdot 2000 \mathrm{MHz}$ 10dB
278-411-3 1000-2000MHz
4278-XXX-X Calibration Data

* 0 connectors not included

New 80kW MODULOAD ${ }^{\text {® }}$ RF Load Resistors
 61/8" with fieldreplaceable resistors!

Load may be separated from heat-exchanger and bolted directly to the line.
 For CW, AM, FM, SSB and TV transmitters.

MODULOAD ${ }^{\text {® }}$ self-cooling RF terminating systems, introduced by BIRD in the 60's, eliminate the need for external cooling water. They terminate a $50-$ ohm line with negligible VSWR during off-the-air tests and maintenance of high-power transmitters, in locations where water supply is unreliable, expensive or simply not available.
The new MODULOAD system series 8690-() is capable of 80,000 watts continuous dissipation in ambient temperatures from $-20^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ (the coolant contains 35\% industrial Ethylene Glycol to permit such a wide range). The choice of mounting the Load Resistor at a distance of up to 20 feet from the heat-exchanger cabinet offers unequalled flexibility: To avoid affecting transmitter room temperature drastically with 270,000 BTU/hour (enough to heat two houses), the heat exchanger and its hot air output may be placed in a more convenient location. The Load can be stored on a wall bracket, and bolted directly to the transmission line during tests. These unusually quiet-running models are available for operation from 230 volts $/ 3$ phase supply either at 50 Hz or at 60 Hz . The suffix indicating the applicable line frequency $(-050$, or -060$)$ is part of each model's number.
Units are protected by electrical interlocks with a flow switch (for proper minimum flow rate), a thermoswitch (to sense high coolant temperature due to air flow obstruction or failure, high ambients, etc.) and a $1 / 2$-second time delay before application of RF power. The normally open trans-mitter-interlock relay contacts are rated at 5 amps 115 volts resistive or inductive load. Airflow through the units must, of course, be unrestricted and a 3 ft . clearance should be allowed between walls and air intake. The air outlet may be ducted.

[^4]

FORCED AIR COOLED

Power Rating 80kW continuous duty VSWR \& Frequency Range 1.1 max. 1 kHz to $800 \mathrm{MHz}^{*}$ Input Connector 6-1/8" EIA Flanged
Weight (filled) 826 lbs . 375 kg)
Finish (Heat Exchanger) Light Navy Grey Baked Enamel (MIL-E-15090)
(RF Load) Lusterless Black Enamel (Fed. Spec. TT-E-527)
Ambient Air Temperature Range $-20^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$
Dimensions (Heat Exchanger) 65-1/4" $\mathrm{H} \times 27^{\prime \prime} \mathrm{D}$ $\times 51^{\prime \prime}(1657 \times 686 \times 1295 \mathrm{~mm})$; 7-1/2" (190 mm) clearance required for valves on top and load on side. Load Resistor may be wallor line-mounted up to 20 ft . 6 m) from cabinet.
AC Power Required $10 \mathrm{amps} @ 230$ volts/3 phase Model 8690-050 " " " " " " 50 Hz Model 8690-060 " " " " " " 60 Hz
Accessories (optional)
Replacement Resistor 8790-035 (Two)
Coupling Kit 4902-020 6-1/8" EIA Flanged

[^5]

Offices

Western

(Bird Flactronic ©omp. 621 West Oial Ave, Sulte F Oial, Callfornia 23023
Phones ans-646-7255
THX: 18229

Eustern

Bied Eliccionit Con
1002-18 Olac Hickory Rad
Limestelf. Peringitahum 17601

TUX Sraftane 1
Ous east and west const offices vil mporide completic texikal And ofer anize ind yidis at your riemev asman berdesihed. C.t thew officess or ahe factory for mfrrat to a chouldy distributat-for quick delweries.

Foreign

Bepresentatives

Argentina
 Aliceina Ditulto E H HosA
 Mercedis +65
 Buanos Aires, Argenting

Australia

18) Devices (Pixy lse.
is Mancis ELy Road
Concould ssik.
Australia 2IIT
4x. palis
Austria
Universal Eleitronik Impora
Zelteswe is
1010 Vhem, Aitwi4
TLX: 75011
Begium
RegulationMesures P.R.L
Av R: Vamandereswhic. is
1150 Bnuwh, Bcisum
Tix: 21520
Brazil
Comercial Gematiovs
Eletricidde E Automatrintuo L.tda. 01020 Av Servidor Querirae, 305-1
3 Sio Pauto Brazili
TEX 112704

Canada

Whitern Pravinces
National Elatadub
ishacalumbis strie!
North Vancoiver Britith Columbia CannarivTlat

Enstimen Praviners

National Eliectrolab liat
47eA: 04 ansing Square
Wilowdale Ontatio
Cr- $=1 . \mathrm{My} 1 \mathrm{IS}$

Central America-Veneruela
Han Hatler lni
Futhin Esport Repiesentative
P. C. Bo: 340159

Coral Gahte, Herida 33134
TLX 519625
Denmark
Ham Buch a Co. Als
Svancese क
P. 080×975

DK 2400 Copehagen, NV, Denmark
TLX. 15197
Finland
Aseso Oy
Kuofikatu 22
|lctinkt 10 , finland
ILK 1222.2
France
Tek=kectirtronic SA
Eiti do. Bruvéres
Rue Corle Venct
Stries (SdO). France
1LX: 204552
Iran
Sarinnen Co Ltd.
iP. 0 Pos $66 \quad 1562$
Niasaran, Tchiran, Ifan
TLX: 213441

Italy

Vianello S.p.4.
Via Tommasi da Cazzaniga, 9/6
1.20131 Milan, Italy

TLX 37023
vias. Cluce in
Strusalemme 97
Rume, Italy
Japan
Marubun Carporation
11 Nihumbshou Odenimatho
2 Crame
Chuoku, Takso, 103, Japan
TL. 02522957
Kore
NC Intermatonal
71; Markef Streat
Sat francises, Calformia 94103

Netherlands

C. 4. Rowd 8.V.
11.13 Coviv.D. Linde timat

Ritwilk 228inA A Netherlands
TLX: 3123

New Zealand

AWA New Zealard Ltd.
Wineera Drive
P. O. Box $50-248$

Porrua, New Zealand
TLX: 31001

Norway

Morgenstierne \& Company A/S
Konghellegate 3
Oslo 5, Norway
TLX: 11719

South Africa

Hurbarn Electronics (PTY) Ltd
P.O. Box 3236

Johannesburg 2000 S. Africa
TLX: 8.0180

Spain

Ataio Ingenieros
Enrique Larreta $10 Y 12$
Madrid 16, Spain
TLX: 27249
Canduxer 76
Barcelonat 6. Spain

Sweden

Ferner Electronics
Box 125
16126 Bromma. Sweden
TLX: 10312
Switzerland
Megex Electronic $A G$
Industriezone Nurd
8902 Uidort-Zurich
Switzerland
TLX: 54368
United Kingdom
Aspen Electronics Lid.
2 Kildare Close
Eastcote, Midulesex HA4 9UW
United Kingdom
TLX: 8812727

West Germany

Neumueller GmbH
Eschenstrasse 2
8021 Tautkirchen
Munchen, West Germany
TLX: 522106

The President of the United States
Award for Exceltence in Exports

Electronic Corporation
30303 Aurora Road, Cleveland (Solon) Ohio 44139
Phone: (216) 248-1200 • TLX: 98-5298
Cable: BIRDELEC

30303 Aurora Road • Cleveland (Solon), Ohio 44139

[^0]: Important Note: All drawings in this catalog are dimensioned in both inches and millimeters. Inches are displayed in Italics and millimeters in Bold tigures

[^1]: *Mar be uec *ith 50 -s? abm cabie

[^2]: *within a hair's breadth

[^3]: *Sperial High Peak Power Resistcr is used
 NOTE: Duty factor shoulc be such that the average power rating of the load is never exceeded

[^4]: 30303 Aurora Road Cleveland (Solon) Ohio 44139 216•248.1200 TLX: 98-5298 Cable: BIRDELEC

[^5]: *Also 50 ohms at dc for continuity checks

